
DISSERTATION 

AN ADAPTIVE ALGORITHM FOR AN ELLIPTIC OPTIMIZATION 

PROBLEM, AND STOCHASTIC-DETERMINISTIC COUPLING: A 

MATHEMATICAL FRAMEWORK 

Submitted by 

Sheldon Lee 

Department of Mathematics 

In partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Summer 2008 



UMI Number: 3332756 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3332756 

Copyright 2008 by ProQuest LLC. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, Ml 48106-1346 



COLORADO STATE UNIVERSITY 

July 2, 2008 

WE HEREBY RECOMMEND THAT THE DISSERTATION PRE­

PARED UNDER OUR SUPERVISION BY SHELDON LEE ENTITLED 

"AN ADAPTIVE ALGORITHM FOR AN ELLIPTIC OPTIMIZATION 

PROBLEM, AND STOCHASTIC-DETERMINISTIC COUPLING: A MATH­

EMATICAL FRAMEWORK" BE ACCEPTED AS FULFILLING IN PART 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSO­

PHY. 

Committee on Graduate Work 

grO^^t. 
-—>• 

Dr. Edwin Chong 
\ 

Dr. James Liu 

AdSriseffDr. Donald Estep 

Co-Adviser: Dr. Simon Tavener 

km J. )klm 
Department Head: Dr. Simon Tavener 

n 



ABSTRACT OF DISSERTATION 

AN ADAPTIVE ALGORITHM FOR AN ELLIPTIC OPTIMIZATION 

PROBLEM, AND STOCHASTIC-DETERMINISTIC COUPLING: A 

MATHEMATICAL FRAMEWORK 

This dissertation consists of two parts. In the first part, we study opti­

mization of a quantity of interest of a solution of an elliptic problem, with 

respect to parameters in the data using a gradient search algorithm. We 

use the generalized Green's function as an efficient way to compute the gra­

dient. We analyze the effect of numerical error on a gradient search, and 

develop an efficient way to control these errors using a posteriori error anal­

ysis. Specifically, wc devise an adaptive algorithm to refine and unrefine the 

finite element mesh at each step in the descent search algorithm. We give 

basic examples and apply this technique to a model of a healing wound. 

In the second part, we construct a mathematical framework for cou­

pling atomistic models with continuum models. We first study the case 

of coupling two deterministic diffusive regions with a common interface. 

We construct a fixed point map by repeatedly solving the problems, while 

passing the flux in one direction and the concentration in the other direc­

tion. We examine criteria for the fixed point iteration to converge, and offer 

remedies such as reversing the direction of the coupling, or relaxation, for 

the case it does not. 
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We then study the one dimensional case where the particles undergo 

a random walk on a lattice, next to a continuum region. As the atomistic 

region is random, this technique yields a fixed point iteration of distribu­

tions. We run numerical tests to study the long term behavior of such an 

iteration, and compare the results with the deterministic case. We also 

discuss a probability transition matrix approach, in which we assume that 

the boundary conditions at each iterations follow a Markov chain. 

Sheldon Lee 
Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 
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Chapter 1 

INTRODUCTION 

This thesis consists of two separate projects, and is thus divided into 

two parts. This chapter discusses an overview of both problems, and is 

followed by Parts I and II. Part I consists of Chapters 2 through 5, in which 

we discuss an adaptive optimization problem. Part II consists of Chapters 

6 through 9, where we discuss a mathematical framework for stochastic-

deterministic coupling. We end the paper with a Chapter 10, where we 

give conclusions for both parts. 

1.1 An Adaptive Algorithm for an Elliptic Optimization Prob­
lem 

The first part of the thesis involves solving an elliptic parameter opti­

mization problem. This involves optimizing a quantity of interest obtained 

from an approximation to the solution of a differential equation. We com­

pute an expression for the gradient of the quantity of interest, then search 

for a local extrcma using a gradient search technique. We utilize a pos­

teriori error analysis [22, 18, 3] to correct for the numerical error in the 

solution, and hence in the gradient. The ideas of a posteriori error analysis 

have made an enormous impact in engineering application over the past few 

decades, and many of the ideas have been adopted into production codes 
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at Sandia National Laboratory. In this first project, wc use these error 

techniques to speed up and improve the process of optimizing a quantity of 

interest. 

Consider a wound healing model as in [37], where we have two con­

servative equations, one for the epithelial cell density per unit area, u\, 

and one for the concentration, u2, of the mitosis-regulating chemical. The 

three parameters describe the time decay rate of the chemical, the max­

imum rate of chemical production, and the maximum level of chemical 

activation of mitosis. We study the problem of optimizing the functional 

q(X) = ((ui,u2)
T,'ip)LHQ)-

The general problem is to optimize q(u\ A) = (u,'ip), where u solves 

- V • (oVu) = f(u; A), xe tt, 1 

u = g(x), x e <9ft. 

We use the generalized Green's function, or adjoint, as an efficient way 

to compute the gradient used for the descent algorithm. If we consider 

a perturbation of parameter A, A, and the corresponding solution u, we 

linearize about u to obtain the adjoint (j), which satisfies 

- V • (aV^O - D*uf{u; \)4> = V x £ ft, 

0 = 0, x e dtt. 

We then express the gradient VA9(A) using the adjoint, 

VA9(«; A) • (A - A) = (VA/(£; A) • (A - A), <£)L,(n). 

We implement a conjugate direction method to find local extrema in param­

eter space. We then analyze the effect of numerical error on such a gradient 

search. We take note that different parameter values may require different 

meshes to achieve accuracy, and that computing a mesh for each parameter 
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value in the descent search is an expensive proposition. To remedy this, 

we devise an adaptive algorithm that uses the same mesh, which wc refine 

and unrefine as the parameter changes. Using a posteriori techniques, wc 

derive an expression for the gradient error, and show that this represents 

the change in error from one parameter value to the next. Specifically, 

Vxq{0; A) • (A - A) = (VA/([/, A) • (A - ~\),$) + K(U, 0, $), (1.1.2) 

where U is the finite clement approximation to (1.1.1) with parameter A, 

and <j>, 4> solve the adjoint problems for parameters A and A respectively. 

The term (V\f(U, A) • (A — A), <fi) is the computable approximate gradient, 

and the term 1Z(U, </>, 4>) represents the weak residual for the gradient error. 

To summarize the algorithm, wc first construct an efficient mesh for the first 

parameter Ao by controlling the error in g(A0), using standard a posteriori 

techniques. For subsequent parameter values, we use (1.1.2) to approximate 

the gradient, while using TZ(U,4>,4>) to flag elements for refining and un-

refining. We give basic examples and apply this technique to the wound 

healing model. 

The first part of the thesis consists of Chapters 2 through 5. In Chap­

ter 2, we discuss background material from the areas of analysis and dif­

ferential equations. This includes a discussion of the basic function spaces, 

operator derivatives, adjoint operators, and elliptic operators. In Chapter 

3, we discuss the finite element methods and a posteriori error estimation 

used to solve elliptic problems and correct for numerical error. In Chap­

ter 4, we discuss some of the basic gradient search methods used for un­

constrained optimization. Here we discuss steepest descent, the conjugate 

gradient method, and line search methods. In Chapter 5, we discuss the 
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aforementioned optimization problem in detail, with proofs of the major 

theorems and numerical results. 

1.2 Stochast ic -Determinis t ic Coupling: A Mathemat ica l Frame­
work 

In the second part of this thesis, we create a rigorous mathematical 

framework for coupling atomistic with continuum models. 

The continuum region is modeled by differential equations and is solved 

using standard methods such as finite elements. The atomistic region is 

modeled by some atomistic simulation method such as molecular dynamics, 

Monte Carlo, or in our case, Brownian motion. As atomistic simulations 

arc random, we introduce stochastic error into the problem. Controlling 

the stochastic error of the atomistic simulation could involve increasing the 

resolution of the simulation, the number of samples, or the length of time 

that the simulation is run. 

If we solve the continuum problem using finite elements, we can reduce 

the discretization error using standard a posteriori techniques. In coupling 

the continuous problem with an atomistic problem, we typically pass results 

of the atomistic simulation as parameters into the continuum region. Since 

the results of the atomistic simulation are uncertain, we introduce stochastic 

error into the continuum problem. Ideally, we would like to account and 

correct for both types of errors in an efficient way. A rigorous mathematical 

theory for achieving this goal is lacking. 

We arc particularly interested in situations in which there is feedback 

between the two models. We consider iterative algorithms in which data is 

passed back and forth between the continuum and the atomistic model. 

4 



In some coupling schemes, only an ensemble average of quantities from 

the stochastic model are passed to the continuum model. This complicates 

the notion of defining a convergence of iterations, as well as introduces 

modeling assumptions that may not be valid. Instead, we consider the 

entire distribution of values from the atomistic simulations. That is, wc 

pass distributions back and forth between the models. 

The iterative process of passing the distribution of values at the inter­

face is considered to be a fixed point problem. Using the Banach fixed point 

theorem, we can obtain necessary conditions for the sequence to converge. 

In the case of atomistic coupling through the boundary, wc couple a 

Brownian motion computation on a domain fij, to a continuum problem 

—Au — f(u), x € fi2, 

< g = A(x), x e r c dn2, (1.2.1) 
^u = g(x), x <E dtt2 \ T, 

where A is the random field generated from an atomistic simulation in an 

adjacent region tti. The coupling is through the common boundary F. Wc 

solve (1-2.1) using several realizations of A. The solution u on F is also a 

random vector, which enters back into the atomistic model. The algorithm 

is as follows. 

Make initial guess tr°'|r. 

For fc = 1,2,... 

Using u(fc-1)|r as an initial condition, approximate A(x)^ 

using an atomistic technique in fix. 

Approximate u^ by solving (1.2.1). 
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Figure 1.1: We use an atomistic model in Cl\, and a continuum model in 
0,2. We pass information through T, the common interface. 

End for 

Since A and u\^ are random variables, this coupling involves passing 

distributions back and forth. The natural questions that arise are what does 

it means for a distribution to converge, and how do we test for convergence? 

Chapters 6 through 9 discuss this atomistic to continuum portion of 

the thesis. In Chapter 6, we include some basic background material from 

probability theory. We briefly mention the key theorems used to perform 

statistical analysis on an atomistic simulation. Next, we briefly discuss 

kernel density estimation. We then include some of the relevant matrix 

theory needed to study Markov chains. We conclude the chapter with a 

discussion of stochastic processes and Markov chains. In Chapter 7, we give 

an overview of molecular dynamics and Brownian motion. These arc two 

of the many techniques that can be used to simulate the diffusion equation 

in a region at the atomistic level. In Chapter 8, we discuss the problem 

of coupling diffusion equations across an interface. This chapter consists 

of the formulation and convergence of the fixed point problem. In Chapter 

6 



9, we discuss the stochastic-to-detcrministic coupling for a one-dimensional 

diffusion problem. We formulate the problem of finding the distribution on 

the interface as the solution to a fixed point problem. We then mention 

an alternative formulation, in which wo describe the problem as a Markov 

chain. We discuss convergence criteria and show numerical results in both 

cases. 
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Chapter 2 

BACKGROUND: FUNCTIONAL 
ANALYSIS AND DIFFERENTIAL 

EQUATIONS 

In our work, we approach error estimation using a posteriori techniques, 

meaning that the error estimates are computed after the solution has been 

computed. It turns out that stability of the solution of a differential equa­

tion greatly influences the effects of perturbation and error. We use duality 

and adjoint operators to quantify stability a posteriori. 

2.1 Function Spaces and Duality 

We briefly recall linear operators. Given normed linear spaces X and 

Y over M, a linear operator L is a function L : X —> Y such that L(ax + 

y) = aL(x) + L(y) for all x,y e X, a G R. A linear operator is bounded, 

or continuous if there is a C such that ||L(x)||y < C||a;||x for all x £ 

X. The space of all continuous operators from X to Y is denoted by 

C(X, Y) and is itself a linear space. An important example is the case 

Y — R, in which case we call / ; X - ^ l a linear functional on X. Linear 

functionals arc important in our work as we view them as a particular piece 

of information from a solution of a model. We call this piece of information 

a quantity of interest. For example, suppose u belongs to some vector 
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space X and represents the solution to some differential equation. We 

could then consider the value of u at a point yo in the domain Q to be a 

quantity of interest. The quantity of interest is a linear functional given by 

J"n U(X) Syo(x) dx. The set of bounded linear functionals on a linear space X 

is given the following definition. 

Definition 2.1.1. Given a normed linear space X, the dual space of X is 

the set X* : C(X,M.) of linear, bounded, real valued functions on X. 

We denote this space by X*, and denote elements by x* e X*. The 

action of an element of the dual x*(x) is often denoted with x*{x) — (x*,x). 

The dual space is a normed linear space under the dual norm 

\\X \\x* — S U p -rr—r . 
xytO WX\\X 

For example, it turns out that the dual space of U is isometrically 

isomorphic to Lq, where p~x + q~l = 1. 

Definition 2.1.2. We define the adjoint of a map L E C(X,Y) to be the 

map L* € (Y*,X*) if the following bilinear identity is satisfied: 

L*y*{x) = y*(Lx), or (L*y*,x) = (y*,Lx), 

for all x EX,y* E Y*. 

Example 2.1.1. If A : Rn —» Km is a linear operator, then A is an m x n 

matrix. The adjoint of A, A* : Km —» M™ is the transpose matrix of A, 

denoted AT. 

Proposition 2.1.1. If we consider L\, Li e C(X,Y), then the following 

properties of the adjoint hold: 

10 



• (aL)* = aL* 

. (L^Y = L*2L\. 

Next, we define Banach spaces and Hilbert spaces, our vector spaces 

of choice for solving differential equations using the finite element method. 

Definition 2.1.3. A Banach space is a normed linear space that is com­

plete, that is, any Cauchy sequence m V converges under \\-\\v to an element 

in V. 

Definition 2.1.4. An inner product is a function (•, •) : X x X —> E, such 

that the following hold 

1. (x + y,z) = (x,z) + (y,z), 

2. (ax) = a{x,y), 

3. (x,y) = {y,x), 

4- [x,x) > 0, and (x,x) — 0 if and only if x — 0. 

Definition 2,1.5. A Hilbert space is a Banach space equipped with an inner 

product, and whose norm is induced by the inner product \\ • || = y (•, •). 

In a Hilbert space, the norm satisfies the following parallelogram law, 

ll* + y||2 + l |z~y| |2 = 2(||x||2 + |M|2). 

If if is a Hilbert space, and v G H, then the function L(x) — (X,V)H 

defines a linear functional on H. It turns out that all linear functionals on 

a Hilbert space may be defined that way. Also, the dual space of a Hilbert 

space H is isometrically isomorphic to H itself. These facts are stated in 

the following theorem. 

11 



Hilbert Space 
Rn 

L2{n) 
if s(O),S = 0,l,... 

Inner Product 
(x,y) = x- y 

(u,v)L2(n) = J0uvdx 
(U,V)H-(CI) = T,M=o(dau(x)>dav)mn) 

Table 2.1: Hilbert spaces and their associated inner products. 

Theorem 2.1.1. (Riesz Representation Theorem) The dual space of a 

Hilbert space is isomorphic to the Hilbert space itself. Specifically, if f € H*, 

there is a unique x & H such that 

(f,y) = (x,y)H for ally G H, 

and furthermore, \\X\\H — ||/!!#*• 

Using the Ricsz Representation Theorem, we express the following 

identity, 

(u,L*v)H = (LU,V)H, 

to characterize the adjoint of a linear operator L in a Hilbert space H. 

2.1.1 Orthogonal Projectors 

One of the reasons that Hilbert spaces are so useful is they allow us to 

define a sense of orthogonality. 

Definition 2.1.6. In a Hilbert space H, we say that u and v are orthogonal 

if(u,v)H = 0. 

Suppose we want to compute (/, v)z,2(/c) f°r some v € 14, where K is 

some element taken from a finite element mesh. Suppose \4 is the space 

of functions that arc polynomials of degree q on each element K. Then we 
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find a function in irhf G 14 that is closest to / on average. Specifically, we 

require that {f,v)L2(K) = (nhf,v)L2{K), or 

(/ ~ Khf\v)L2(K) = 0, 

for all v £ 14,. In other words, we seek the function -n^f such that / — -n^f is 

orthogonal to the space 14. Such a function 7^/ is called the L2 projection 

of / into Vh. 

We show that 7T/j exists uniquely. To show uniqueness, if there are 

U,D £ 14 such that (/ - U,W)H — 0 and (/ - V,W)H for all w € 14, then 

u — w G 14. Setting u> = it — i>, we obtain (u — v, u — v)# = 0, so u = v. 

Next, given a basis {vj}q
j=0 of 14, we write 

j=o 

so that (nhf,w)H = Y1]=OW3^UIIW)H for all u> e 14- Applying each basis 

element in 14, 

(/,'^)H = X^^^."^)^for i = ° ' 1 , • • • ' ? ' 
j=() 

which is a system of g + 1 equations and <? + 1 variables. Since the solution 

is unique, it must exist. 

The projection n^f turns out to be the closest function to / in the L2 

sense. That is, 

11/ - Khf\\tf(K) < 11/ - v\\L2(K) for all v e Vh. 

2.2 Gateaux and Frechet Deriviatives 

In the previous section we reviewed the adjoint operator, which is de­

fined for linear operators. As we solve problems with nonlinearitics in our 
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projects, we are left with the problem of how to define the adjoint. In order 

to obtain an adjoint for a nonlinear differential operator, we will linearize 

the problem using operator derivatives. These derivatives are discussed 

briefly in this section, and may be found in detail in [2, 38]. 

2.2.1 Basic Definitions 

Recall that a real-valued function / ; K —> R is diffcrcntiablc at x if 

there exists an a = f'(x) such that 

\im±{f(x + t)-f(x)-at) = Q. 

We extend this definition to operators in higher dimensions using norms as 

follows. 

Definition 2.2.1. Let F : D C W1 -> Rm. We say that F is Gateaux 

differentiable at u € D° if there exists an operator A € £(R™, Rm) such that 

lim U\F(u + hv) ~Fu-hAv\\ = 0 for all v € R". (2.2.1) 
/i—>o h 

We think of Av as the dcriviative of F in the direction v, and we 

sometimes write F'(u)v = Av. Such an A is unique, for suppose A\ and A2 

satisfy (2.2.1). Then, 

\\(A1~A2)v\\ 

F{u + hv)~ F{u) 
< 

y ' -—!- - Aiv 
h + , A2v 

h 

= h\F{u + hv) - F{u) - hAlV\\ + j\\F(u + hv) - F{u) - hA2v\\, 

which converges to 0 as h —>• 0. Since v is arbitrary, \\A\ — A2 \\ = 0, or 

A\ — A2. Note that the statement Av = limh_o \{F{U + hv) — F(u)) for 

all v follows from (2.2.1). However, the limit on the right hand side existing 
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for all v does not imply the existence of the Gateaux dcriviativc, as the 

following example demonstrates. Let / : R2 —> E be defined by 

'0, x = 0, 
I{X) ^ s i x 3

r , x ^ O , 
A+*V 

Then we show that limt_o f ( / ( ^ ) ~ /(0)) — /f> which clearly cannot be 

written in the form Ah for A € £(R2 ,R). Hence, / is not Gateaux diffcr-

entiable at x = 0. 

In general, Gateaux differentiability does not imply continuity. For 
, (0 x2 = 0 

example, let / : R —> R be defined by f(x) — < x2 . Then X 2 ^ 0 

we show that / has Gateaux deriviative (0,0)T at 0; however, / is not con­

tinuous at 0. One can overcome this problem by using Frechet deriviatives. 

Definition 2.2.2. Let F : D C R"' -> Rm, where D is an open subset of 

R™ . We say that F is Frechet differentiable at u £ D if there exists an 

operator A <E £(R",Km) such that 

, .m \\F{u + ll)-F(u)-AH=0 

H/ill-o \\h\\ 

Note that the above limit must exist for all sequences {hn}^=1 of 

nonzero elements of Rn such that hn —> 0. If the limit exists, we call A 

the Frechet derivative of F at u, and write F'(u) — A. We also note that 

(2.2.2) is equivalent to F(u + h) - F(u) - Ah = o(||h||), or 

Ah = F{u + h)-F(u) + o\\h\\, (2.2.3) 

where g{h) = o\\h\\ if and only if JT4 —* 0 as ||/i|| —-> 0. 

Proposition 2.2.1. If F is Frechet differentiable, then F is also Gateaux 

differentiable. 
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The converse to the above statement is not true. For example, let 

J 0 x = 0 

One may show that / is Gateaux differentiable at 0, but is not Frechet 

deriviativc at 0. 

Finally, the following fact illustrates a main advantage of the Frechet 

deriviative over the Gateaux deriviative: 

Proposition 2.2.2. If F is Frechet differentiable, then F is continuous. 

Theorem 2.2.1. (Chain Rule) If F : D} c E" - • Em has a Gateaux 

derivative at x, and G : DQ C E m —> W has a Frechet derivative at Fx, 

then the composite mapping H = G o F has a Gateaux derivative at x, and 

H'(x) = G\Fx)F'{x). 

If, in addition, F'(x) is a Frechet derivative, then H'(x) is a Frechet deriva­

tive as well. 

2.2.2 The Mean Value Theorem 

Recall the Mean Value Theorem for scalar functions: If <p : [a, b] C 

E —> K is continuous on [a, b] and differentiable on (a, b), then there exists 

a t e (a,b) such that <p(b) - if (a) = <p'(t)(b — a). It is not too difficult to 

make sense of a Mean Value Theorem for functionals: 

Proposition 2.2.3. // F : D C E" —> E is Gateaux differentiable at all 

points in a convex set D0 C D, then for each x,y € D0 there exists a 

t e [0,1] such thai f{y) - f{x) = f\x + t{y ~~ x))(y - x). 
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There are several ways to define a Mean Value Theorem for functions 

F : M.n —-> M.m. The first approach is one in which we apply the previous 

proposition to each component functional of F. For F = (/i, . . . / m ) T , we 

apply Proposition 2.2.3 to get t\, . . . , im G R such that 

f[(x + h{y-x)) 
Fy - Fx = (2/ - a ; ) -

f'm(X + *m(y - X)) 

Another alternative gives an upper bound for \\Fy — Fx\\ in terms of F'{x), 

Proposition 2.2.4. If F : D C Rn -> Rrn is Gateaux differentiable at all 

points in a convex set D0 C D, then for all x,y G D0 we have 

\\Fy — Fx\\ < sup \\F'(x+ t(y — x))\\\\x — y\\. 
te[o,i] 

Corollary 2.2.1. // ||F'(x)|| < M < 00 for all x G D0 then F is Lipschitz 

continuous in Do. 

The third approach to the mean value theorem is based on the Integral 

Mean Value Theorem. Let G : [a, b] C R -» I 

where each g, : [a, b] c Define J*G{t)dt 

Thus, G = [gu. ..,gm], 

9i(t)dt 

. Then 

letting F : Rn - • Km, where F = [^(x). . . /m(x)]T , we have /;(</) - /»(x) = 

Jo fi(x + t(v ~~ x))(y ~ ^)di for each i. To justify this formula we simply take 

<fo(s) = /j(x + s(y - x)) and apply the Fundamental Theorem of Calculus to 

4>{s). Provided that each /, is Riemann integrable, under proper conditions 

we write 

Fy - Fx F'{x + t{y-x)){y-x)dt. 
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2.2.3 Fixed Point Theory 

Given a map F, a fixed point x satisfies Fx = x. A common problem 

is to guarantee that a map has a fixed point, and that the iterative map 

xn — F x n _ i converges to a fixed point. 

T h e o r e m 2.2.2. (Banach Fixed Point Theorem) Let X be a Banach space, 

and M be a closed nonempty subset of X. Let F : M —> M be a map 

satisfying \\Fx — Fy\\x < q\\x — y\\x for 0 < q < 1. Then there is a unique 

fixed point x* € M. Furthermore, the s equence xn — Fxn—\ converges to x* 

for any initial xo £ M. 

Provided the Frcchet derivative F' exists, wc may use the Banach Fixed 

Point Theorem to obtain: 

| | F ' ( i ) | | = lim FX Fy 

y-*x x — y 

2.3 T h e Adjoint Operator 

,. \\Fx~Fyl 
— hm ~ ~— < q < 1. 

y-*x \\x — y\\ 

We recall that for a Hilbert space H, and a linear operator L on H, wc 

use the identity 

{u,L*v)H = {Lu,v)H, 

to define the adjoint operator L*. To obtain the adjoint of a differential 

operator L, wc want to move the derivatives away from u onto v. To do 

this, we recall the Divergence Theorem, Jn V • Fdx = JafJ F • n dS(x), where 

n is the outward normal pointing unit vector across the surface boundary. 

By setting F = vWu and applying the product rule, wc obtain Green's First 

Identity, 

vAudx= vdvudS{x)- I Wv-^Judx, (2.3.1) 
Jn Jan Jn 
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where dnu — Vu • n. Equation (2.3.1) is a generalization of integration 

by parts to higher dimensions. Also, if Cl C K" and there is a matrix 

A(x) e Knxn, then wc generalize (2.3.1) to get 

V-{AVu)vdx= vAVu-ndS{x)~ I AVu-Vvdx. (2.3.2) 
Ja Jan JQ 

2.3.1 A Linear Example 

Consider the boundary value problem, 

(Lu = - V - ( 4 V u ) + b . V u + cu = / , I 6 S 1 

\ u = 0, xzdQ. 

The goal is to find an operator L* such that (Lu,v) = (L*,v) for all u e 

L2(fi). Wc multiply both sides by v and integrate over U to obtain 

(Lu,v) — / (—V • (AVu) v + b • Vitu + cuu) dx, 

where wc have assumed that v is zero on the boundary dQ,. We apply (2.3.2) 

to the first term and integration by parts to the second term, 

(Lu,v) = / (AVu • Vv - ub • Vv + cuv) dx. 
JQ 

Applying (2.3.2) again, 

{Lu,v) = / u ( - V • (AVv) -uh-Vv + cuv)dx = {u,L*v). 
Jn 

We thus obtain the adjoint equation, 

fL*v = - V - 0 4 V u ) - b - V v + cv = V, i e ! 1 

\ v = 0 I 6 9fi. 

Remark 2.3.1. From the previous example and in view of Proposition 

2.1.1, we see that the operator Lu = — V • (aVu) + cu is self-adjoint. That 

is, L — L*. 
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Suppose wc want to evaluate u(yo) for some yo <= Q. We solve the 

adjoint problem (2.3.4) by setting the data ip — 5yo. Thus, we obtain 

u{yo) = {u,8yo) = (u,L*v) = {Lu,v) = ( / » . 

This is called the method of Green's function. 

2.3.2 A Semilinear Example 

As the adjoint is defined for linear operators, we may construct a unique 

adjoint to linear differential equations as done in the previous example. 

Suppose we have a problem with a nonlinear right-hand side, 

(-V'(iVu) = /W, xen 
\u = Q, xedCl. 

Since the right hand side depends on the solution u, wc need to include it 

as part of the operator. That is, we let 

Lu = -V • (AVu) - f{u). 

The problem is that if / is nonlinear, then L is not linear with respect to u. 

Provided that the nonlinear operator is a map between Banach spaces with 

a convex domain, we may choose one of several ways to define the adjoint. 

In general, we want to estimate a linear functional of the error e — u — U, 

where U is an approximation to the true solution u. To obtain a linear 

operator when L is Frcchet differentiable, we use the Integral Mean Value 

Theorem to write 

L{u)~L(U)= I L'{tu + {l-t)U)dt(u-U)t 
Jo 

where L' is the Jacobian of L. We define the "average" Jacobian 

17= / L'{tu + {l-t)U)dt, 
Jo 
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a linear operator which is, in a sense, the average of L'(u) and L'(U). Wc 

take the adjoint of the nonlinear operator L to be the adjoint of the linear 

operator L' using the standard identity (L'e,4>) = (e,L' <p). This adjoint 

operator is impractical because it requires the exact solution u. To define 

a computable adjoint, we instead simply linearize L about U, i.e., replace 

U with L'(U). To take this approach for (2.3.5), we take the Gateaux 

derivative as follows. 

L'{U){v) = \im-{L{U + hv)-LU) 
/i—o h 

= lim \ ( -V • {AV{U + hv)) - f(U + hv) + V • (AVU) + /(£/)) 

= lim i ( - W • (i4Vu) - A J ( ^ ) /iu + o(/i2)) 
/i->0 / l 

= - V • (AVv) - Duf(U) v. (2.3.6) 

We define the adjoint of L as the adjoint of the linear operator L'(U). 

That is, we search for (£/(£/))* such that {L'(U)v,w) - (v, (L'{U))*w). By 

Remark 2.3.1, with c — -f'(U), we see that L'(U) is self adjoint. Hence, 

(L'{U){w))* = - V • (AVu.) - Duf(U) w. (2.3.7) 

2.4 The Diffusion Equation 

To motivate the diffusion equation, consider a domain ficK contain­

ing a contaminant with concentration u(x,t) at position x € Q, and time 

t > 0. Let F(x,t) be the flow rate of the medium, which is a vector quan­

tity F = (Fi, F2) F3), where Fi{x, t) is the rate of flow in the xt direction at 

position x and time t. 

We start with the following basic conservation principle. In a region 

0, the total change in mass of a contaminant during the interval t\ < t < t2 
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is equal to the total outward flux of the contaminant across the boundary 

of the region, 

/ u(x,t2)dx - / u(x,ti)dx = — / / F(x,t) • rjda(x) dt. 
Jn Jn Jti Jan 

Using the Fundamental Theorem on the left, and the Divergence Theorem 

on the right, 

I I ut(x, t) dxdt = — / / V • F dx dt, 
Jti JQ Jti Jn 

or 

/ hut + V-F)dxdt = Q, 
Jti Jn 

for all fi, (^1,^2). Then, 

ut + V • F = 0 for almost every x. 

According to Fick's Law, particles flow from regions of high concentration 

to regions of low concentration depending on Vu. In other words, the flow 

rate is proportional to the rate of change of u, 

F = -D(x)Vu. 

Substituting this into the above, we obtain 

u t - V • (D( i )Vu) = 0. 

If we consider the addition of a particle source f(x, t), the diffusion equation 

is given by 

dtu{x,t) - V • {D(x)Vu{x,t)) = f{x,t). (2.4.1) 

If D(x) is constant, we get a simplified case called the heat equation, 

dtu-DAu = f{x,t). 
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We also note that if u(x,t) represents the temperature in a region, then 

the above derivation is equally valid, and in this case D(x) represents the 

thermal conductivity. In order for the problem to be solvable, we gener­

ally specify an initial condition u(x,0) = u0(x) and boundary conditions 

u(x,t) = ui(x,t) or D9T,u(x,<) = u\{x,t) for x 6 dQ, t > 0. 

In the case of particle diffusion, u denotes concentration of a con­

taminant, and D the corresponding diffusion coefficient, To demonstrate, 

consider the initial value problem 

ut(t,x) " \Duxx(t,x) = 0, t > 0 , i e l ('2 4 2) 
u(Q,x) — 5Q(X). 

This problem models all of the particles lying at x — 0 at time t = 0. The 

coefficient D controls how quickly the particles disperse from x = 0. The 

solution to (2.4.2) is 

u(t,X') = v4eXP(^)' 
a Gaussian with mean zero and standard deviation \fDt. Hence, the par­

ticles spread out with increasing time. In addition, increasing the diffusion 

coefficient D results in the particles spreading out at a faster rate. 

If we expect the concentration u(x,t) to settle to some equilibrium 

value u(x) after a long time, we set the derivative dtu — 0 to obtain the 

stationary state equation, 

- V • ( D ( I ) V U ( I ) ) = f{x). (2.4.3) 

We note that (2.4.3) is an example of an elliptic equation and will be a 

topic of discussion for much of this thesis. 
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2.5 Elliptic Problems 

Consider the differential operator having the form 

n n 

Lu = - ] T dXj(aij{x)dXi) + ^6j(x)9X iw + c(x)u, (2.5.1) 

or equivalcntly, 

Lu = - V • (A(x)Vu) + b(x) • Vu + c(x)u. 

We say L is an elliptic operator if the matrix A = [ar>(x)] is a real positive 

definite, symmetric matrix. In particular, for arbitrary £ G R™, L satisfies 

the ellipticity condition 
n 

X OiiWtei > 0. (2.5.2) 

In general we make the stronger assumption of uniform ellipticity, 

n 

J2 %•(*)&& > C\(\2. (2.5.3) 

If A is symmetric and in addition (2.5.3) holds for all £ € R™, wc say that 

L is uniformly elliptic. If this holds, then the smallest eigenvalue of A is 

greater than or equal to C for all x. 

For example, if a^ = 5ij,bi = 0,c — 0, then L = —A, a uniformly 

elliptic operator. An equation of the form — Au = / is called Poisson's 

equation, and an equation of the form —Aw = 0 is called Laplace's equation. 

2.5.1 Applications of Elliptic Problems 

Poisson's equation has numerous applications in areas such as electro­

statics, elasticity, fluid mechanics, and statistical physics. 

In electrostatics, we study the electrostatic potential, or voltage in a 

region Q, C R . From the Maxwell equations we have V • E — p in 0, where 
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E(x) is the electric field. From Faraday's law, E is a conservative field, so 

that E = Vu for some scalar electric potential u. This leads to the Poisson 

equation Au = p. In addition, we assume that U\QQ = c for some constant 

c, so that dtt is a perfectly conducting surface. 

In fluid mechanics, we have a velocity field F(x) of fluid in a region 

Q.. We assume that the fluid is rotation-free, so that the field is conser­

vative. Then we have u = V F for some velocity potential. If the fluid is 

incompressible, then V -u = 0, and we obtain the Laplace equation Au = 0. 

Wc may also apply the Laplace equation to Brownian motion. Consider 

a randomly moving particle within a region fl that moves at random until 

it hits the boundary T. Wc divide the boundary so that V — Fi U T2, and 

let u(x) be the probability that a particle starting at x ends up on T\. Then 

it turns out that u solves 

' Au = 0 i e O , 

< u = 1, x G Y\ 

u — o, x e r2. 

2.5.2 Sobolev Spaces 

Before continuing, we review some basic facts about Sobolev spaces. 

These turn out to be useful in studying partial differential equations, and 

are the spaces wc use in solving finite element problems. The vector space 

L2(J7) is a Hilbert space defined by 

L2(0) = \u{x)\ f \u{x)\2dx < oo j , 

where the integral is defined in the Lebesgue sense. The L2(fi) inner product 

is defined as 

(U,V)L2{Q) — / u(x)v(x)dx, 
Ju 
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and the induced norm is 

1/2 

\u{x)\\L2{n) = f / |u(x)|2dxj 

Before introducing more general Sobolev spaces, we first review the no­

tion of a weak derivative. Let C^P(fi) be the space of infinitely diffcrcntiable 

functions </> : fi —» M with compact support in Q, Functions </> € C~(Q) are 

often called test functions. 

Definition 2.5.1. A function o : II C I " -» E belongs to the space L}oc(£l) 

if for every i £ l ] , there is an open neighborhood N containing x such that 

N C fi and v is integrable on N. 

Definition 2.5.2. Suppose u,v <E Ll
loc(U), and let a be a multiindex. We 

say that v is the ath weak partial derivative of u, and write Dau = v, if 

uDa<pdx = ( - 1 ) | Q ! I vcpdx for all <l> e Cg{SI), 
n Ju 

One may show that weak derivatives are unique up to a set of measure 

zero. 

Example 2.5.1. Let fi = (0,1), and define 

( i 0 < I < 1 f l 0 < x < 1 
U = < V = < 

^1 1 < x < 2, [0 1 < x < 2. 

Note that u is not differentiate at x — 1; however, u has weak derivative v 

in the weak sense. To show this, let 4> <£ C(?(Cl). Then, 

/ u<p'dx= x<t>'dx+ <f>'dx = - I <j>dx + <)>{1) + <t>(2) - </>{l) 
Jo Jo J\ Jo 

f1 f2 

— — I <j)dx = — I v 4> dx, 
Jo Jo 

as desired. 
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For s € Z+ , wc define the Sobolev space HS(Q) to be the set of functions 

such that the weak derivative Da exists and is in L2(fi) for each multiindex 

a with |a| < k. That is, 

Ha{Q) = {u{x)\dau £ L2{Q), for all \a\ < s}, 

where a = (ai,..., an). It may be shown that H8 is a Hilbert space, with 

the inner product and norms defined to be 

/s V / 2 

\l«l=o / 

s 

| Q | = 0 

Note in particular, that L2(Q) = H°(tt). Also, for s = 1, we have 

( n \ ! / 2 

\W{X)\\\HU) + Yl WdxAx)\\LHn) J • 

We define HQ(Q) as the set of functions u € H1(Q) such that u|an = 0. The 

set HQ(£1) is a subspacc of Hl(U) and shares its norm and inner product. 
Remark 2.5.1. By Poincare's inequality [23], 

\\u\\2
Hlm < c\\Vu\\\,{n). (2.5.4) 

Consequently, it may be shown that ||Vu||^2(n) is an equivalent norm for 

the set Hl(Q). 

2.5.3 Existence and Uniqueness 

Consider the elliptic boundary value problem 

f -V-(A(x)Vu) + b(x)-Vu + c(x)it = f{x), xeQ, 

where fi C Kn, and A = aln. To obtain uniform ellipticity, wc require that 

a > cio > 0. 
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Definit ion 2.5.3. Given a vector space V, a bilinear form is a function 

B : V x V —> K, that is linear in each argument. 

Definit ion 2.5.4. We say that u £ HQ(Q) is a weak solution to (2.5.5) if 

B(u,v)= / AVu • Vv + b' Vuv + cuvdx = ( / » , (2.5.6) 

for alive H*{Q). 

Definit ion 2.5.5. A bilinear map B is bounded if there exists a constant 

a > 0 such that 

\B(u, v)\ < a\\u\\fi\\v\\fj for all u, v G H. 

Definit ion 2.5.6. A bilinear map B is coercive if there exists a constant 

(5 > 0 such that 

(3\\u\\2
H < B(u, u) for all ueH. (2.5.7) 

For example, if Lu = Au, then (2.5.7) means that 

0IMl£a{n) < HVti||ia(n), 

which requires the derivative to be bounded away from zero. 

T h e o r e m 2.5.1 . (Lax-Milgram Lemma) Let H be a real Hilbert space, and 

B : H x H —> R be a coercive, bounded, bilinear mapping on H. If f : H —> 

K is a bounded linear functional on H (i.e. f € H*), then there exists a 

unique element u € H such that 

B{u,v) = ( / » for all v e H. 

Furthermore there is a constant C, independent of f, such that 

\\u\\H<C\\f\\H.. 
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This theorem relies on the Riesz Representation Theorem applied to 

the mapping v —> B(u,v). 

To apply the Lax-Milgram Lemma to (2.5.5) to get an existence result, 

we need the following theorems. 

Theorem 2.5.2. Let B(u,v) be the bilinear form defined in (2.5.6). Then 

there is an a > 0 such that 

\B{u,v)\ < a\\u\\Hiii})\\v\\HiiQ). 

The proof of the following result is given in Appendix A. 

Theorem 2.5.3. / / - § V • b + c > 0, then B is coercive. 

We look for solutions u G HQ(CI). WC therefore require that / G 

H-\tt) = (#d(fi))*, the dual space of H%{Q). Then provided that - ± V • 

b + c > 0, the Lax-Milgram lemma (2.5.1) guarantees that there is a unique 

u € HQ(Q,) satisfying 

B{u,v) = (f,v) for all v G H^tt). 

We list some basic regularity results for the case that / has higher 

regularity than i f - 1 ($7). 

Theorem 2.5.4. Suppose a,b,c G C°°( f i ) , / G C°°{n), and u G ^ ( 0 ) is 

a tueaA: solution to (2.5.5). Then u G C°°(f2). 

Theorem 2.5.5. Suppose that a G C 1 ^ ) , ^ G L°°(f i ) , / G L2(Q), and 

it G -#o(fi) is a weak solution to (2.5.5). Then u G H2(Q), and 

\H\HHU) < C ( | | / | |L2 (n ) + ||u||L2(n)) , 

for some constant C depending on . In addition, if'u G HQ(0,) is the unique 

weak solution, then 

|M|#2(0) < C'||/||i,2(n). 
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Theorem 2.5.6. (Weak Maximum Principle) If ft is compact, and u € 

C2(ft) U C(ft) satisfies Au > 0 in ft, then 

maxu(x) = maxu(a;). 

The theorem is sometimes used to give a uniqueness result, for if u = v 

on 5ft, then u = v on all of ft. 

The Weak Maximum Principle also gives a useful continuous depen­

dence result. Consider the problem 

- A u = f(x), x e ft, 

u = g(x), x (E 9ft, 

where / , 5 arc continuous. Define the perturbed problem, 

-Aw = f(x) x G ft 

w — h(x) x e (9ft. 

By the maximum principle, 

max(u — w) = umx(y — h). 

Consequently, if |<? - h\ < e for all x € <9ft, then |w — u;| < e for all x G ft. 

This says that u depends continuously on the Dirichlct condition on the 

boundary. 
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Chapter 3 

BACKGROUND: FINITE ELEMENTS 
AND ERROR ESTIMATION 

3.1 The Finite Element Method 

The finite element method [11, 28, 17] is one of the standard methods 

for approximating the solution of a differential equation. It gives a system of 

equations which may be solved using a computer to produce an approximate 

solution. The method is very powerful in that it can be used for a variety of 

domains with complex geometries. It is also desirable because we can use 

a posteriori error estimation to improve the error in a quantity of interest 

while minimizing the extra computational effort required to do so. 

3.1.1 A Two Point Boundary Value Example 

In this section, we give a brief overview of solving a two point boundary 

value problem using the finite clement method. Consider the problem 

-(a{x)u{x)'y = f{x), x e ( 0 , l ) , 

u(l) = g, (3.1.1) 

-u'(0) = h. 

The finite element method amounts to approximating the solution u 

with a function U that solves the differential equation "on average". That 
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is, we require that 

I 
1 

{{-aU'Y - f)vdx = 0 for all v e Vw. (3.1.2) 

The functions v € Vw are called test functions, or weighing functions, and 

the set Vw is called the test space. Thus, we do not require the residual 

error -(all')' — / is zero, but rather that the residual error is orthogonal to 

the set Vw- This condition is known as Galcrkin orthogonality. 

The finite element method also amounts to solving the weak form of 

(3.1.1). That is, we integrate by parts, and multiply both sides by a function 

v 6 Vw- Specifically, we find U <E VT satisfying 

/ aU'v'dx= J f vdx for all v e V. (3.1.3) 
Jo Jo 

The space VT is the set of trial solutions. Using the weak formulation has 

several consequences. First, to solve (3.1.3), U needs one less derivative 

than needed to satisfy (3.1.1). This means that the finite clement solution 

U may not even be twice differentiable. Also, we may integrate U' even if 

it is discontinuous at isolated points. 

For the example (3.1.1) posed above, let VT = {u 6 Hl\u{\) = g} 

be the set of trial solutions, and Vw = {w € Hl\w(l) = 0} be the set of 

weighing functions. To derive the weak formulation, we multiply both sides 

of (3.1.1) by w £ Vw and integrate over (0,1) to get 

1 rl 

(au')'wdx— I fwdx. 
Jo 

Integrating by parts, we get 

-a(l)u'(l)w(l) - a(0)u'{0)w{0) + / au'w'dx= / fwdx. 
Jo Jo 
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Next, since w(l) = 0 and u'(0) = h, we have 

—ha(0)w(0)+ / au'w'dx — / fwdx. 
Jo Jo 

The finite element formulation to find u £ VT such that 

B(u,w) = (f,w) + hA(Q)w(0) for all w e VW, (3.1.4) 

where B{u,v) = J0 au'v'dx and (it, u) = JQ uvdx. Equation (3.1.4) is 

called the weak, or variational formulation. 

Wc will use the discretization of VT and V\y over some mesh T^ = 

{x$,x\,..., XJV+I}, where XQ = 0 < x\ < ... < x^ < x^+\ = 1, Call these 

spaces VJp and V^. For example, we may discretize the spaces over T by 

the space of piecewise polynomials of degree q with specified values on mesh 

points in %,,. The weak formulation of the discretized problem is to find 

uh e Vp such that 

B{uh,wh) = (f,wh) + ha(0)wh{0) for all wh e V&. 

However, since VT and Vw only differ at x = 1, we have 

Vr
ft = { U V = vh + / , ^ e V ^ , / ( l ) = <?}. 

We express the weak formulation in terms of searching for functions in V^ 

instead of Vp. This has the advantage of allowing us to search for solutions 

in the same space as the space of weighting functions. Then, the weak 

problem is to find vh € Vyy such that 

B(vh, wh) = (/, wh) + ha(0)wh(0) - B(gh, wh) for all wh e V&. (3.1.5) 

Let {<j>i}jLi be basis functions for V^. Note that this implies that 

4>i(l) = 0 for all i. Then, wh = Yli=iwi(Pi' anc^ yh = X)j=i vi4>iy f°r s o m c 
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{wi}iL\) {vi}iL\' We introduce another function <^v+i with the property 

</)JY+I(1) = 1. Then gh{x) = g<f)n+i(x), so that gh(l) = g. Hence, for any 

u € Vfi, we have 

i-l 

Rewritting (3.1.5), wc must find uh e Ky such that for all wh e V$, 

( AT TV \ / N \ N 

Yl v^vY2Wi(i>i)= I ^ YlWi^1)+ /m(°) Y2 w^i(°) 
j = l 1 = 1 / V 1=1 / !=1 

Then, 

N / N \ N N 

Y2 WiB ( </>», Y^ '"oh ) = 5Z w>(f' h) + Yl Wi<t>i(Q)ha{0) 
j=l \ j=l / i=l i=l 

N 

~ Yll
WiB^n+i'^9-

Since this holds for all {iVi}^, 

or 

JV 

] T VjB{<j>i, ^ ) = (/, 0,) + /io(0)^<(0) - £(&, </>„+1)<? (3.1. 

for all i = 1, 2,..., iV. Define the N x N stiffness matrix 

Aij = B((j}i,cj)j), 

for i,j = 1,2, ...n and the TV dimensional load vector 

^ = (/, <t>i) + ha(Q)^i(0) - Bifa, (j>N+1) 5 
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for i = 1,2, ...,N. Then if the desired weights V = (v\, ...,vn)
T, we write 

(3.1.6) as 

AV = F. 

For example, let Vp be defined as the space of function that are linear 

on each interval of the mesh T, [x,, x,+i] for i — 2,..., N. In this case, the 

linear basis functions {4>i}^=l are defined by 

X t : vX?;_i 5 *^J> 

X' 6 (x,,X,+iJ, 

otherwise, 

x e [xi,x2], 

otherwise, 

[0, otherwise. 

These basis functions are shown in Fig. 3.1. Note that 4>i{xj) = (%. Con­

sequently the stiffness matrix A has values given by 

for i = 2,. 

and 

,N, 

<bi -

4>i = 

Xi-Xi-l ' 
) S i + l - X 
| *i+1 - x , ' u 

| X2-2.' 
_ J X% — X\ ' 

"\o, 

f X — XN 

Aij — < 

'#(<&><&) i = « 

0̂ otherwise, 

and the load vector F has values 

( ( / ,<M + Mo)<MO) » = i 
fl = < ( / , & ) 2 < i < i V - l 

[{f,M - B{<t>N,4>N+l)g i = N. 

We note that A is a sparse matrix due to the fact that the basis functions 

(f>i are zero on most nodes. The matrix is also banded. For this example, 

since Vp and Vjy consist of functions that are linear on each interval, then 

all but the main and off-diagonal elements of A arc zero. In addition, since 
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Figure 3.1: Piccewise linear basis functions {fa}!^1 in ID. 

a((f>i, (f>j) is symmetric, A will be a symmetric matrix. It also turns out that 

A is positive definite, hence invertiblc. The nice properties of A add to the 

appeal of the finite element method. In particular, due to the sparseness of 

A, we can quickly solve AV — F using an iterative technique. 

We solve the problem 

(-V -{AVu) = f xEQ. 

\u = 0 xe dtt, 

for a domain fi C R™ in higher dimensions by following the same general 

technique as above. For a problem in two spatial dimensions, we typically 

assume that fl is a polygonal domain consisting of triangular elements. We 

say the set of triangles that partition SI is a triangulation of fi if no vertex 

of any triangle lies in the interior of an edge of another triangle. In other 

words, the mesh must contain no hanging nodes. In this case, we let 7/j 

denote a triangulation of fi, hk denote the length of the largest edge of 
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k G %, and set h(x) = /ife. Numerous texts such as [11, 28, 17] explain the 

generalizations to other types of problems or problems of higher dimensions. 

3.1.2 A Semilinear Partial Differential Equation 

Consider the problem 

- V • (AVu) - f{u) xttt 

u = 0 x G dtt. 
(3.1.7) 

The weak version of the problem is to find U £ Vh such that 

{AVU • Vv - / ( [ / ) v) dx = 0 (3.1. 
in 

for all v E Vh- We cannot apply the analysis above for a general nonlincarity 

/ . We can, however, approximate the solution to (3.1.8) by using a fixed 

point technique applied to the operator F(u) = ^ V • (AVu) — f(u) + u. 

However, convergence of the method requires that the norm of the derivative 

is bounded by 1, | |F'(f/) | | < C < 1. The success of this method is therefore 

fairly limited, since this bound will typically not hold. 

A better option is to apply Newton's method to solve (3.1.7). Recall 

that in order to solve F(x) = 0, we start with an initial guess XQ and iterate: 

F(XJ.I) 

F'{xi-{) 

until \\xi — £j_i|| is sufficiently small. Equivalently, we repeatedly solve 

F\xi-.\)wi = —F'(Xi-\), and set Ui — Ui-i + Wi until ||u;i|| is small. 

We apply this technique to solving 

L(u) = - V • (AVu) - / ( u ) = 0. (3.1.9) 

Newton's method is to find wt = Ui — u^\ such that 

L'(ui-1)wi = -L(ui.i), (3.1.10) 
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for each iteration i. To linearize L, we find the Gateaux deriviative L'(u) 

in the direction v. Following the argument in (2.3.6), 

L'{u)v = - V • {AVv) - Duf{u)v. 

Wc then write (3.1.10) as 

- V • (AVwi) - Dvfim-Jwi = V • (AVui-x) + /(ui- i) . 

Since Wi = Ui — Uj_i, 

- V • (AV{ui - m-i)) - Duf{ui-i)(ui - u,_i) = V • (aVui_i) + /(ui_i), 

or simply 

- V • (AVu,) - Duf{u^i)(ui) = -Duf{ui-i)ui-i + / K _ i ) . 

Putting this into weak form gives the algorithm: 

Choose initial guess UQ. 

While ||ui - Uj-iH > TOL or i > MAX ITS 

Find «j+i € V such that Jn(y4Vuj • Vi> — Duf(ui-\)uiv)dx = 

ju{-Duf{ui-x)Ui-i + f{ui))vdx for all t> € Vft. 

End while 

3.2 A Posteriori Error Estimation 

In this section, we define a representation for the error in a quantity of 

interest computed from an elliptic problem, using techniques of a posteriori 

analysis (see [18] or [22] for example). First, we provide an overview of 

a posteriori error estimation. Consider a simple model problem, where 
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A e M n x n , b € Mn, and wc would like to find x € Mn satisfying Ax = 6. 

Given an approximation X to x, define the error to be e = x - X, and 

assume that we want to estimate the value of the error functional (e, ip) for 

some ip GRn. Then, consider the solution <p e K™ of the associated adjoint 

problem 4̂T(/> = ip. This leads us to 

n 

|(e, V)| = l(e,^r</>)| = |O4e,0)| - | ( 6 - ^ X , 0 ) | < £ |fo» - ^ | • |<fc|, 

(3.2.1) 

the weighted a posteriori estimate. The residuals {h, — AXi}
r^=:[ are easy 

to compute, and the weights {pi}]'=] tell us about the influence of the local 

residuals on the error of (e, ip). 

3.2.1 A Linear Elliptic Problem 

Consider the boundary value problem 

t-v-(A(x)Vu) = f(x) xen 
\u = 0 xedtt, 

where fi C R™ is a convex and polygonal domain, / is a smooth function, 

and A(x) is a symmetric, positive definite matrix with smooth entries such 

that y1Ay > ao\\y\\2 for all y. Let e = u — U be the difference between 

the true solution u and the computed solution U. In general, it is com­

putationally inefficient and impractical to compute the pointwise error at 

each point in the domain. In many applications, it is useful to compute 

the average error of the solution against some weighting function ip. The 

function ip reflects the region in fi in which we would like to gain infor­

mation about the error. Specifically, we compute {e,ip), a linear function 

of the error weighted by ip 6 L2(il). For example, if ip = 1, then (e,pj) 
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gives the average error. If ijj = Sy(x), then (e, tp) gives the error at point y, 

u(y) — U(y). Denote the linear operator L by 

Lu=-V-(AVu). (3.2.3) 

We use the following notation: 

(u,v) = / uvdx, (AX7u,Vv) = / AVu -Vvdx. 

Since L is linear, we define the adjoint operator L* so that (Lu, v) — (u, L*v) 

for all v <E L2(fi). The adjoint equation takes on the form L*<p — i>. We 

use an analogous argument to (3.2.1); 

|(e,^) | - \{e,L*<t>)\ = \(Le,<f>)\ = \(f - LU,</>)\ < \\f - LU\ 

where we have used the Cauchy-Schwartz inequality. Thus, we are able to 

obtain an upper bound for the error after the solution U has been computed. 

To demonstrate, we derive an error estimation formula for (3.2.2). 

From (2.3.4), we have L*v = - V • (AVv). To derive (2.3.4), recall that 

we assumed that v = 0 on the boundary. The adjoint equation for this 

problem is then 

f - V - ( 4 V 0 ) = ̂  xett 

\(t> = 0 xedtt 

We also define 7T/jU to be the L2 projection of u onto the finite element space 

V. Then by Galerkin orthogonality, 

(AVu,VTTh<P) = {f,TTh<P). 

Finally, we obtain the error estimate 

(e,V) = (u - £/,-V • OW)) 

= (-V-(^Vu),0)-(i4VJ7,V0) 

= (f,<f>)-(AVU,V</>) 

= (f,<l>-nh<l>)-{AVU,V(<p-TTh<l>)). 
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suppose we would like to include the effects of quadrature error. Let 

g be some approximation of g, so that when we integrate g(x) using a 

quadrature rule, we obtain fQg(x)dx exactly. For example, if we use a 

trapezoidal rule, g is the projection of g onto the space of piecewisc linear 

polynomials. The actual problem to be solved is; Find U eVh such that 

/ a(x)VUVv dx = / fvdx 
Jn Jn 

for all v G V/,. WC use the same error formula as before, then add and 

subtract the above equation with n^cp substituted for v. 

eipdx = / fcpdx- I AVU-V4>dx 
n Jn Jn 

f<pdx- / fnhcpdx- / AVU-V<t>dx+ / AV • UV<j> dx 
n Jn Jn Jn 

/ O - nh<p) dx - / AVU • V(0 - -nh(p) dx 
n Jn 

+ / {f*h<t> - fnh<t>) dx - / (AVE/ • V T T ^ - AVU • Vir^) dx. 
Jn Jn 

The first two terms measure the discretization error and the last two mea­

sure the effects of the quadrature error. 

3.2.2 A Semilinear Elliptic Problem 

In this section, we provide an error representation formula for the el­

liptic problem 

f -V-(A(x)Vu( i ) ) = /(«,x;A) ) xett, 

\ u = 0, xe dn, 

where Q, C R™ is a convex and polygonal domain, / is a smooth function, 

A(x) is a symmetric, positive definite matrix with smooth entries, yTAy > 

ao|M|2 for all y, and A £ A c Kp are parameters. 
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We let Vh denote the space of continuous piecewisc linear functions 

with respect to 7^ that arc zero on dVl. The finite element approximation 

U £ Vu solves 

(AVU,Vv) = (f(U,\),v). (3.2.5) 

for all v E Vh- We define the adjoint to the linearized problem about U 

using (2.3.7), 

f-V-(AV0)-L>*/(i7;A)<£ = ^ x e Q , 

\0 = o, x e an. 

Thus, 

(e, </0 = (« - t/, - V • (aV<£)) - (D*uf(U, A), 0) 

- (u - [/, - V • (aV</>)) - (u - U, D*J(U; A)0). (3.2.6) 

If we integrate by parts on the first term and use the definition of the adjoint 

on the second term, we obtain 

(e, V) = (AV(u - U),V4>) - (Duf(U, \)(u - U), 4>). 

Next, we expand the first term, then integrate by parts to obtain 

(e, i>) = (AVu, W ) - (AVU • V4>) - (Duf(U, \)(u -U),4>) 

= (V • (4Vu), 0) - (AVU, V</>) - (Duf(U, X)(u ~U),4>). (3.2.7) 

Using (3.2.4), 

(e, V) = (f(u, A), 0) - (/LVf/, V</>) - (£>„/([/, A)(n - 17), 0). 

Next, we make use of the Taylor expansion 

f(u, A) = /([/ , A) + Duf(U, X)(u -U) + Ru 
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where Ri — o(\u — U\), to obtain the representation: 

(e, ip) = ( / (u, A), 0) - (AVC/, Vtf>) - (/(<«, A) - /(£/, A) + Ru </>). 

Wc cancel terms and ignore the higher order term (Ri,(f>) to obtain the 

estimate: 

(e, 4>) * ( - 4 W , V0) + (/([/ , A), <t>). (3.2.8) 

Note that terms in (3.2.8) do not cancel since <f> is not necessarily a member 

of V. However, we introduce a projection of </> onto space V, tthfy- Using 

the orthogonality condition (3.2.5), wc have 

( - A V C / . V T T ^ ) + (/([/ , A), T T ^ ) = 0. 

Substituting these into (3.2.8) gives 

(e, V) « (-AVJ7, V(</> - T T ^ ) ) + (/(£/, A), O - TT,,)). (3.2.9) 

This analysis also holds for the case in which (3.2.4) is a system of equations. 

3.3 Adapt ive Error Control 

In this section, we use the a posteriori error estimate as the basis for 

adaptivity by employing the following standard "optimization framework" 

[18, 6, 3]. 

The overall goal of adaptive error control is to generate a mesh with a 

small number of elements such that for a given tolerance TOL, 

error in the quantity of interest = |(e, ^ ) | < TOL. (3.3.1) 

In general, we cannot use (3.3.1) directly since e is unknown. We thus use 

an error estimate and construct a mesh that satisfies 

a posteriori estimate of the error in the quantity of interest < TOL. 
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We write the estimate as a sum of "clement contributions" that indicate 

the contribution to the total error for each clement of the mesh. From (3.2.9) 

for example, we write 

|(e, V)| « \(-AVUMd> ~ *h<P)) + (f(U, A), (0 - TT^) ) | 

^ ( - ^ V £ / , V ( ^ - 7 r h 0 ) ) K + (/([/, A), (0-7rh0))K- < TOL. (3.3.2) 
Kerh 

If the approximation U satisfies (3.3.2), the solution is acceptable and the 

refinement process is stopped. 

However, if (3.3.2) is not satisfied, wc need to determine which el­

ements of the mesh to refine, or if wc should increase the order of the 

element functions. One problem with using (3.3.2) is that there may be 

significant cancelation between the element contributions. A large positive 

contribution from one of the elements could cancel with a large negative 

contribution from another element. The standard remedy is to introduce 

norms, to get the acceptance criterion 

|(e,VOI< E |-(^Vt/, V ^ - T r ^ ) ) ^ + (/([/, A), ( ^ - T T ^ K - I ^ TOL. 
KeTh 

(3.3.3) 

We may view the problem as a constrained minimization problem. That 

is, wc find a mesh with a minimal number of elements, for which the ap­

proximation satisfies (3.3.3). The solution of the problem is achieved by 

following the Principle of Equidistribution [6], which states that the ele­

ment contributions should be approximately equal. We therefore accept 

elements that satisfy 

TOL 
\-(AVU, V(> - nh<j>))K + (f(U, A), 4> - -nh<t>)K\ < -jj~, (3.3.4) 
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where M is the number of elements in 7^. The difficulty of finding an 

optimal mesh selection arises due to the fact that (3.3.3) is typically orders 

of magnitude larger than the error estimate (3.2.9). To limit the number 

of elements refined at each step, we could use a number of strategies. For 

example, wc could refine elements whose clement contribution to the error 

bound is greater than a number of standard deviations from the mean error 

contribution. Alternatively, wc could refine a fixed fraction of the elements 

with the greatest element contributions. 

45 



Chapter 4 

BACKGROUND: GRADIENT METHODS 
FOR OPTIMIZATION 

In our project, we optimize a quantity of interest with respect to param­

eters in the model by using a gradient search algorithm. In particular, wc 

use a search method that follows the gradient and avoids the computation 

of the Hessian. In this chapter, wc discuss topics in unconstrained opti­

mization that arc relevant to our project. In particular, wc discuss steepest 

descent, conjugate gradient, and Quasi-Newton methods [32, 8, 16, 13]. We 

also discuss issues that arise when we perform a line search. 

The basic descent method Xk+\ = Xfc + otkdk is defined to generate the 

sequence {x/t}, where a^ = a rS™m/(xfc + adk), and <4 is some direction 

of descent. The value a* is found using a line search strategy. Under 

proper conditions, the sequence {xi,} will converge to a local minimum of 

the function f(x). For example, in steepest descent, c4 = — V/(x'fc), and for 

the conjugate gradient method, do = — Vq(Xo), and c4 = —Vq(\k) + 0kdk-\ 

for k > 1. Higher-order methods such as Newton's method are commonly 

used but we will not address them here, since wc wish to avoid computation 

of the Hessian V 2 / ( x ) in this thesis. We discuss the steepest descent and 

conjugate gradient methods in detail below. 
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4.1 Steepest Descent 

The descent methods utilize the fact that the gradient points in the 

direction of the maximum increase of / . This simple fact may be easily 

verified. Recall that if d is any unit vector, the rate of increase of / ( x ) 

in the direction d is given by V / ( x ) • d. Hence, by the Cauchy-Schwartz 

inequality, 

V / ( x ) • d < | |V/(a;)|| | |d|| - | |V/ (x) | | = V / ( x ) • i j | M j j 

Thus, V / ( x ) • d is maximized when d — \mi(x 11 • 

To derive the method of steepest descent, let x° be an arbitrary point 

in the domain of f(x). By Taylor's theorem, 

/ ( x ° - a V / ( x 0 ) ) = / (x°) - a | |V / (x ) | | 2 + o(a ) 

So for small a > 0, f(x° - a V / ( x 0 ) ) < f(x°). At each step, we wish to 

find the best such a > 0. The steepest descent algorithm is as follows: 

Choose x° 

For fc = 0 ,1 , . . . 

ak = argmmQ > 0 /(x f c - aS7f{xk)) 

xk+\ _ xk _ a f c y/(x A : ) 

End 

In the case of / ( x ) being quadratic, we may easily calculate a^ at 

each iteration. Let f(x) — ^xTQx — b1 x, where Q is a symmetric, positive 

definite matrix. Then the cxtrcma of f{x) is found by solving 0 = V / ( x ) = 

Qx — b. For the sake of readability, let g\. — V/(x, t) . We seek a solution to 
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ak = argmina>0</>fc(o!), where 4>k(a) = f(xk - agk). Applying the first order 

necessary conditions, <j>'k(a) = 0. That is, 

0 = ±{f(xk-agk)) 

= -9k^f(xk ~ otgk) 

= -gI(Q(xk ~ agk) - b) 

= 9kb - QkQxk + aglQgk. 

Therefore, the optimal a is given by 

a = 9l(-b + Qxk) = glgk (4 1 ^ 
glQgk gkQ9k' 

4.2 The Conjugate Gradient Method 

The steepest descent algorithm works well for simple functions, and 

converges to the exact minimum in one iteration in the case that / is 

quadratic. On the other hand, steepest descent works poorly for functions 

such as the Rosenbrock function, 

f(x,y) = (l~xf + 100(y~x2)2. (4.2.1) 

The function is well known for having the property that steepest descent 

performs poorly in finding the local minimum (1,1). For example, in Fig. 

4.1 we run 213 iterations to reach a stopping tolerance, 

l |V/ (x , )~V/(x- ,_ 1 ) | |<10- 5 (4.2.2) 

to find the minimum of (4.2.1). 

We want to avoid the oscillating behavior of steepest descent. We 

avoid this by using a relaxation approach. That is, we do not use only 
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the current gradient to determine the step direction at each iteration, but 

rather an average of the current gradient with some previous gradients. It 

turns out that the conjugate gradient method does exactly this. Instead of 

stepping in the —V/(xk) direction, wc step in a direction that is a linear 

combination of the current gradient and all previous directions taken. In 

particular, the direction taken is one which is called Q-conjugate to all 

previous search directions. 

To demonstrate the improved results, in Fig. 4.2 we see that the conju­

gate gradient method requires 17 iterations to achieve the stopping criterion 

(4.2.2) for (4.2.1), a big improvement from steepest descent. Another ex­

ample is shown in Fig. 4.3, where we compare the results of the two search 

methods for f(x) = - sin(5x2 - \y2 + 3) cos(2x + 1 - ev), x0 = (-.4, A)T. 

We see that steepest descent requires 34 iterations to achieve (4.2.2) while 

the conjugate gradient method only requires 6. 

Steepest Descent. 213 iterations 

-2 ^ ' ' ' ^ 
-1 -05 0 05 1 15 0615 0 82 0.625 0.83 0 835 

Figure 4.1: Steepest descent applied to the Rosenbrock Function, with a 
zoomed view on the right. Convergence reached in 213 iterations. 

Wc investigate conjugate direction methods for finding dk- Again, let 

f(x) — ̂ xTQx — xTb, where Q is a symmetric positive definite nxn matrix, 

and x G Rn. Let g^ denote the gradient at the kth iteration, V/(xfc). 
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Congugate Gradient, 17 iterations 

Figure 4.2: Conjugate gradient applied to the Rosenbrock function, with a 
zoomed view on the right. Convergence reached in 17 iterations. 

Definition 4.2.1. Let Q be a real symmetric matrix. The directions do, d\,..., d, 

are Q-conjugate if djQdj = 0 for all i ^= j . 

To begin the conjugate gradient algorithm, we choose an initial guess 

xo, and set do = -go- If we have Q-conjugate directions do, di, •••,dn, then 

at each iteration we choose Xk+i — %k + «fcdfc, where a^ = dyQ* . We 

may directly show that a% is chosen to satisfy a^ = argmina>0^/c(a), where 

4>k{oi) = f(xk + adk). Using the fact that the directions {d,}™^1 are linearly 

independent and Q is positive definite, we obtain the following theorem: 

Theorem 4.2.1. The above algorithm converges in n iterations 

The following lemma gives us that the gradient g^+i is orthogonal to 

the previous direction dk-

Lemma 4.2.1. For each k = 0,1,.. . , n — 1 in the above algorithm, g^+1 dk = 

0 

The gradient gk is also orthogonal to all previous directions do, d\, ...dk-i, 

as stated in the following lemma. 
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Steepest Descent, 34 iterations Congugate Gradient, 6 iterations 

0.0 -0.4 -0.2 0 0.2 0.4 0.6 0 8 1 -0 8 - 0 6 -0.4 -0.2 0 0.2 0.4 0.6 0. 

Figure 4.3: Descent methods applied to f(x) = 
l - e ^ ) , x 0 = ( - . 4 , . 4 ) T . 

sin(5x2 - j2/ +3) cos(2x-

L e m m a 4.2.2. For 0 < k < n — 1, 0 < i < k, we have gq
k+1 di = 0 

We are left with the problem of generating Q-conjugate directions 

{di}™_0. This is done by setting dk to be a linear combination of gk and 

dfc_j. We use the following proposition to fill in the missing piece of the 

algorithm. 

9l+iQdk Propos i t ion 4 .2 .1 . Let Pk dlQdk 
•• If d0 = -go, and dk+\ = -gk+i + 

Pkdk, then the directions {di}™=0
x are Q-conjugate. 

Combining (4.1.1) and Proposition 4.2.1, the conjugate gradient algo­

rithm takes on the form: 

Choose x°, set k — 1 

g0 = V / ( x 0 ) 

Set da - -go 

For A; = 0 ,1 , . . . 
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ak dlQdk 

xk+\ = xk + a ^ 

9k+\ = V/(x f c + 1) 

P, -
 a'*Qd> 

d£Qdk 

dk+i = ~9k+\ + Pkdk 

End for 

Recall that wc do not have the Hessian, Q, which appears in the com­

putation of fik and a t . Since ak = argmina>0/(xfe + adk), we replace (4.2) 

with a numerical line search procedure, the details of which will be given 

later. The other part that requires the Hessian is 

Q = 9kQdk 

djQdk' 

Wc may approximate Pk in several ways, as described in [13]. One method 

uses the fact that Qdk ~ ak+i~9k, To justify this approximation, recall that 

xk+x = xk + akdk. Pre-multiplying by Q gives Qxk+i = Qxk + akQdk and 

in the quadratic case, gk = Qxk - b, so that gk+i = gk + akQdk. But then, 

Qdk = 3k+i-9k ^ ]\fow ^ n e f o r m u i a becomes 
Ctk 

9k+i(9k+i ~9k) 

dl(gk+i - 9k) 
Pk = »k+}™+1 **' (4.2.3) 

which is called the Hcstcnes-Stiefel formula. Other formulas for Pk exist 

such as the Polak-Ribierc formula, 

Pk = 9T
k+l{9k+^ 9k) ^ 

\\9k\\ 

and the Fletcher-Reeves formula, 

Pk = l^4- (4.2.5) 
\\9k\\ 
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4.3 Other Descent Methods 

Other methods such as the quasi-Ncwton method could be used as well. 

These methods approximate the inverse Hessian without having the Hessian 

in hand. We outline one type of quasi-Newton method, the BFGS (Broy-

den, Fletcher, Goldfarb, and Shanno) briefly method below. To implement, 

suppose we wish to optimize a function f(x), where i G l " , 

Let HQ be a real, symmetric, positive matrix. 

For fc = 0,1,2,... 

dk - -Hk 

ak = mina>0 f{xk + adk) 

xk+i - xk + o>kdk 

Axk = akdk 

Agk = 9kk + 1 - 9k 

f AglHkAgk\ AxkAxT
k 

Hk+^Hk+{l + ^9jAiT)Ax^9! 

HkAgkAxT
k + (HkAgkAxlf 

AglAxT
k 

End for 

With an accurate line search, the sequences generated by quasi-Newton 

methods tends to conjugate directions and the algorithm constructs an ap­

proximation to the inverse Hessian matrix. As a result, near a local min­

imum where the Hessian matrix is positive definite, the method tends to 

approximate Newton's method, hence it achieves a faster convergence rate. 
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Another advantage is that quasi-Newton methods are not as sensitive to 

accuracy in the line search. On the other hand, the conjugate gradient 

method is faster in large dimensions. To illustrate, let n be the dimen­

sion of the variable to optimize, q-j- the computational work required to 

compute the cost function q, and Vqj the computational work required to 

compute the gradient. Then the quasi-Newton method requires roughly 

QT + V(?T + 0(n2) computations per iteration, while the conjugate gradient 

method requires roughly qT 4- V<?r + O(n) computations per iteration. If 

qr + Vgr << 0(n2), the the conjugate gradient method is preferable, oth­

erwise the quasi-Newton may be preferable due to its previously mentioned 

advantages. 

4.4 Line Search Methods 

If we use a descent method without use of the Hessian, we need to apply 

a line search at some point to minimize 4>(a) — f(xk + adk), where xk is 

some iterate and dk is some direction in the descent method. A simple line 

search method is the secant method, which is based on Newton's Method. 

To elaborate further, let q(x) = f(xk) + f'{xk){x - xk) + \f"{xk){x - xk)
2, 

the second order Taylor scries approximation of f(x). Then to optimize 

q(x), we set 0 = q'(x) = f'(xk) + f"(xk)(x - xk), which yields the result 

x~Xk f"(xky 

Since we do not wish to compute f"(x), we rely on the secant method and 

make the substitution 

fit \ ~ / ' ( x > ) _ f'(xk-i) I i^k) « • 
Xk — Xfc^i 
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This yields the line search method: 

_ xk — xk-\ fi, N 
Xk+\ -Xk~ — — r — " / [Xk). 

J \xk) ~ / \xk-{) 

There are many other commonly used methods, such as polynomial inter­

polation, described in [16] or [8], for example. 

To guarantee that we take a step of decrease, wc could naturally impose 

the condition on ak that f(xk + otkdk) < f{xk). In practice, wc introduce a 

stronger requirement on a called the Armijo condition: 

f(xk + adk) < f(xk) + cxaVf(xk) • dk. (4.4.1) 

In other words, 

<j){a) < 4>(0) + c1acj)>(0). 

This guarantees a condition on the amount of decrease of / during the line 

search. Another condition we may impose is a curvature condition, 

Vf(xk + akdk) • 4 > c2V/(xfc) • dk, 

or 

<P'(ak) > c20'(O). 

The strong Wolfe conditions consist of a slight modification of these: 

\f(xk + akdk) < f(xk) + ciakVf{xk) • dk) . . 

\\^f{xk + ockdk)-dk\<c2\Vf{xk)-dk\. 

The above conditions guarantee that the descent sequence is decreasing at 

a sufficient rate. Numerous line search algorithms exist that incorporate 

these conditions (see [16] for example). 
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Chapter 5 

AN ADAPTIVE ALGORITHM FOR AN 
ELLIPTIC OPTIMIZATION PROBLEM 

5.1 Introduction 

In this chapter, we address the problem of optimizing the quantity 

of interest computed from a solution of an elliptic problem with respect to 

parameters defining the problem. We let u solve the elliptic boundary value 

problem, 
r - V - 0 4 V u ) = /(u,x;A), x e ft, ,g 1 ^ 

\u = 0, xedn, 

where Q C Kn is a convex and polygonal domain, u : Rn+P —> R , / 

is a smooth function, A(x) is a symmetric, positive definite matrix with 

smooth entries, yT Ay > ao||y||2 for all y, and A £ A C Kp are parameters. 

We assume that the quantity of interest q(X) = q(u,X) = (u,V0z,2(fi) is 

a linear functional determined by the data ip € L2(Ct). For example, if 

tp = l/vol(0), then q(X) is the average value of the solution u and if %j) — <5s, 

then q(X) = u(x). The analysis in this chapter extends to general boundary 

conditions and to the case a(x) — a(x, X) as well. 

In this chapter, wc consider the problem of numerically implementing 

gradient descent methods for searching for an optimal value of q(X). To 
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define the gradient of the functional Vg(A), we use the definition of the 

Frechet derivative. To obtain a robust search algorithm, we need accurate 

values for the gradient Vg(A) and the quantity of interest q(X). In practice, 

we use an approximate solution U, thus introducing error in the gradient 

search. Hence, the accuracy of U is a major concern. In particular, typical 

searches require several computations of U corresponding to different values 

of the parameter A. Wc may view u as an implicit function of A and note 

that as A varies, then the error in U is also likely to vary. This in turn 

affects the gradient error. In this chapter we derive an a posteriori estimate 

of the gradient error and devise an efficient adaptive algorithm to control 

this error. 

In [3, 5, 4], a general cost functional q(u(x), X(x)) is optimized subject 

to the constraint A(u) — /(A), where A is a partial differential operator re­

lating a state variable u and a control variable A. In these papers, stationary 

points of the associated Lagrangian functional are computed, which corre­

spond with the set of possible local extreme values. The stationary points 

are found by solving the corresponding Euler-Lagrangc system of equations. 

The mesh adaptation is driven by a posteriori error estimates for either the 

cost functional or an arbitrary quantity of interest. In this chapter, we opt 

to instead find local extreme values using gradient searches, and we apply 

a posteriori techniques to correct for error in the gradient. 

To illustrate, wc give an example of a two point boundary value prob­

lem in which numerical errors change as the parameter varies, 

-u" = f(u) = - sin(u) + g(x), x e ( - 1 , 1 ) , . . 

u ( - l ) = u ( l ) = 0. 

The true solution is u = tanh(20eA l( 1-A l )(x-eA 2 ( 1 _ A 2 )~ i)) cos(7rx/2)(Af+.1), 

and we take ip = 1, so that q(X) = J__1 udx. In Fig. 5.1, we plot the true 
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Figure 5.1: On the left is a plot of an approximation of q(\) = J_x udx for 
(5.1.2). There are two extremal values in the parameter domain. On the 
right is a plot of the L2 errors of the finite element solutions computed on 
a uniform mesh versus parameter values. The errors vary significantly. 

q(X) as a function of A, where A £ M.2. We see that there are two local 

minima, at points A and B. If we compute approximate solutions using 

one grid for all parameter values, the error varies greatly as the parameter 

varies, as demonstrated by Fig. 5.1. In addition, the areas in the domain 

where the error is large vary in parameter space. In Fig. 5.2 we sec that the 

pointwise errors for two different points in the domain vary and are quite 

distinct from each other. 

We also demonstrate that the gradient error can make a significant 

impact on the progression of a search algorithm. In Fig. 5.3 we plot the 

errors of the partial derivatives, which vary considerably with respect to the 

parameters. In Fig. 5.4 we start the search algorithm in the saddle border­

ing the two local minima. Without error control, the sequence converges to 

point A, as shown in Fig. 5.4 on the left. On the other hand, if we control 

the error in the gradient in the way described in this paper, then we obtain 

a sequence converging to point B, as shown in Fig. 5.4 on the right. 

The straightforward "standard" approach is this: We use a posteriori 

analysis employing adjoint operators and computable residuals in order to 
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Figure 5.2: Plots of the pointwise error of finite element solutions U com­
puted on uniform meshes as parameters vary. Left: error at x — 0. Right: 
error at x — 0.5. 

Figure 5.3: Plots of errors in approximated dq/dX\ (left) and dq/dX2 (right) 
computed on uniform meshes as parameters vary. 

obtain accurate error estimates in both a quantity of interest and the gra­

dient of the quantity of interest. With an accurate error estimate in hand, 

it is natural to try to devise an adaptive control algorithm. This is prob­

lematic in computational terms. We approximate U{XQ) by computing an 

adapted mesh that controls error in q(U(Xo)) and Vq(U(Xo)), then com­

pute a new adapted mesh to control the error in q(U(Xi)), Vq{U(Xi)), and 

so on. Generating new adapted meshes at each step is a very expensive 

proposition. It is also inefficient given that the parameter A only changes 

59 



Figure 5.4: Plots of sequences of gradient searches for extrema. Left: com­
puted without error control. Right: computed with error control. 

by small increments at each step. Hence, we expect the solution and the 

numerical error to change by small increments. 

We therefore propose a way to make use of an incremental adaptive 

algorithm in which wc refine and unrefine as A changes. Specifically, we 

propose a strategy where mesh changes are taken only on those elements 

in which error contributions take on significant changes. We use the a 

posteriori estimates on the gradient error to control the mesh changes. 

5.2 Comput ing the Gradient 

Wc derive a formula for the gradient Vq(X) using duality and adjoint 

equations. We first consider the change in a quantity of interest corre­

sponding to a change in parameter. Let A be a parameter value, and u 

the corresponding solution. We let A denote a perturbation of A and u the 

corresponding solution, 

- V - ( i 4 V u ) = / (u ;A) , z e f i , 

u = 0, x <£ dil. 
(5.2.1) 
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We define the adjoint by linearizing about u. Using (2.3.7), the adjoint 

operator may be defined as 

(L'(u)4>)* = - V • {AV$) - Duf(u; A) I 

Let tp 6 L2(0) be some smooth function. The adjoint equation is defined 

as 

(-V-(AVJ>)-D*uf(u;\)4> = >iP, xeQ, 

\4> = 0, xedQ. ' ' ; 

The relevance of this problem to computing the gradient is given by the 

following theorem: 

Theorem 5.2.1. Suppose that (5.1.1) satisfies the Lipschitz condition \\u — 

w|U2(fi) < L\^ — A| for some L > 0. Let <p be the solution to the adjoint 

equation (5.2.2). Then the Frechet derivative of q(X) evaluated at X may be 

approximated by 

VA?(u; A) • (A - A) « (VA/(u; A) • (A - I) J), (5.2.3) 

where (•,•) denotes the L2 inner product. 

Proof. To compute the Frechet derivative of the quantity of interest with 

respect to the parameter A, we need to consider the difference q{X) - q(X). 

Using (5.2.2), 

(u-u,^) = (u-u,-V-(AV$)-D*J(u;\)<l>) 

= (u - u, - V • (AV&) - (u - u, D*J(u; X)4>). 

Now integrating by parts twice on the first term and using the definition of 

the adjoint on the second term gives 

q(X)-q(X) = {-V-{AV{u-u)),i)-{Duf(u-,~\){u-u),4>) 

= (/(«; A) - / («; A), <£) - (Duf(u; X)(u -u),j>). 
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Recall the Taylor expansion of /(it; A) centered at (u, A): 

f(u; A) = f(u; A) + Duf(u; \)(u - u) + VA/(u; A) • (A - A) + fl(u, u; A, A), 

where /? = o(|A — A|) + o(||u - u\\). Hence, 

9(A)-g(A) = ( / (u ; A)- / (u ;A) ) 0) 

- (f(u; A) - /(u; A) - VA/(u; A) • (A - A) - R(u, u; A, A), </>), 

or simply 

q{\) - 9(A) = (VA/(u; A) • (A - A), </>) + (i?(u, u; A, A), ^). 

This yields (5.2.3) provided that 

Inn l ( f l ( « . f r . y ) . * ) l = 0 , (5.2.4) 
|A-A|-.0 |A - A| 

To show (5.2.4), we require R to be higher than first order in both 

||u — it|| and |A — A|. Under reasonable assumptions on / and assuming u 

and u are contained in a compact region, we can obtain 

\\R\\ < C ( j | u - u | | 1 + e + |A-A| 1 + e 

for some e > 0, all A, A e A. From [10], we know that ||u — it|| —> 0 

as |A — A| —> 0. We assume the problem satisfies the stronger Lipschitz 

condition ||u - it|| < L|A - A| for some L > 0. With these assumptions, we 

have 

\R\\ K 
c ( | | u ~ u | | 1 + e + |A-A| 1 + e ) 

| A - A | ~ |A-A | 

| A - A | _ i i 

as |A - A| - • 0, where C = C(L1+t + 1)||</>||. • 
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5.3 Computing the Gradient Error 

We now return to the problem of estimating the error in the gradient 

Vg(A), arising from using a finite element approximate solution, Again, we 

use the finite element formulation (3.2.5) to solve for the solution of U at 

parameter value A. Similarly, we compute the solution to (5.2.1) by rinding 

U G Vh such that 

(aW.Vi ; ) = ( / (# , A), v) (5.3.1) 

for all v € Vh- Wc make use of two dual problems, obtained respectively by 

linearization about U and U. The problems are defined by 

- V • (AV<P) - D*J(U; X)<t> 

0 - 0 , 

and 

- V • 0 W ) - £ > : / ( £ / ; A)<£ 

0 = 0, 

Theorem 5.3.1. Under the assumptions of Theorem 5.2.1 above, 

VA^(A) • (A - A) = K(U, <t>) - K(U, $) + (S7xf(U, A) • (A - A), $). (5.3.4) 

Proof. Wc estimate q(X) — q(X) using the decomposition 

q(X)-q{X) = (u-u^) = (u-U,iP) + (U-U,i>) + (U-u,iP) = T^n + T,. 

First, by (3.2.9) we have 

Tl = - ( A W , V0) + (/([/, A), 0) + (R^u, U), </>), (5.3.5) 

for a remainder term R\. Wc estimate T3 analogously, since 

(U-u,il>) = -(u-U,il)). 

4>, i e ! l , 
(5.3.2) 

•0, x € fi, 

x e an. 
(5.3.3) 
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Hence, 

T3 = (oVJ7, V0) - (f(U, A), 0) - (R3(u, U),<p), (5,3.6) 

for remainder term R3. To compute T2, we use either (5.3.2) or (5.3.3). 

Using (5.3.3), we get 

T2 = (U- U, - V • (oV0) - D*J(U, ~\)4>) 

= ( £ / - £ / , - V • (aV<£)) - ( £ / - £ / , £>;/(£/, A)<£). 

Integration by parts on the first term and using the definition of the adjoint 

on the second term gives 

T2 = (aVJ7, V<̂ ) - (aVU, W4>) - (DJ(U, X)(U - U), 4>). 

Using Taylor's theorem, 

/([/ , A) = f(U, A) + Duf(U, X)(U - U) + Dxf(U, A) • (A - A) + R(U, U, A, A). 

Hence, T2 becomes 

T2 = (AVU,V4>) - {AVU,V4>) 

- (f(U, A) - f(U, A) - Dxf(U, A) • (A - A) - R2(U, U; A, A), <£), (5.3.7) 

for a remainder R2. Combining (5.3.5), (5.3.6), and (5.3.7) and rearranging 

gives 

q(\)-q{\) = -(AVU,V</>) + {f(U,\),<t>) + (Ri,<l>) 

+ (oVf / ,V0) - ( / (C / ) A)^) - ( / ?3 ) 0) 

+ (AVU, V$) - (AS7U, V4>) - (/(£/, A),^) + (/(£/, A), <£) 

+(D A / (C/ ,A)-(A-A),0)-( J R 2 ,0) , 
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or 

q(X) - q(X) = -(AVU, V0) + (/([/, A), 0) + (AW, V0) - (/([/, A), 0) 

+ {Dxf{U,\)-(\-~\),4>) + R, (5.3.8) 

where fl = R(U, U, A, A, 0, <j>) is defined by fl = Rx(u, U),<t>)+(R2{U, U; A, A), <£)-

(Rs(u, U), <fi). Again, wc consider the projection of <fi onto space V, n^cf). 

Using Galerkin orthogonality condition (3.2.5), 

(oVf/.VTT^) - ( / ( £ / , A), 7T^) = 0, 

and 

(aVt/ ,V7rh0)-(/(t / ,A),7r^) = O. 

Substituting these into (5.3.8) gives 

q(\) - q(\) = -{AVU, V(0 - nh<f>)) + (f(U, A), 0 - irh<t>) 

+ (AVU, V(0 - W ) ) - (f(U, \),j>- 7ih& + (Dxf(U, A) • (A - A), <£) + R. 

For simplicity of notation, wc denote 1Z(u,v) = -(AVu,V(u — n^v)) + 

(f(u,X),v-TTh,v). Thus, 

g(X) - q(X) = ft(<7, 0) - ft(£/, 0) + (Dxf(U, A) • (A - A), 0) + R. 

In order to show that 

lim — = 0, 
|A-A|~*O |A - A| 

we assume that R is higher than first order in \\u — u\\ and |A — A|. We thus 

prove (5.3.4) by the same argument as in Theorem 5.2.1. D 
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5.4 Convergence Propert ies 

Our approach applies to a wide variety of gradient-based optimization 

algorithms. Wc focus on a particular choice for clarity. Typical optimization 

methods include steepest descent, conjugate gradient, and Quasi-Newton 

methods, as discussed in Chapter 4. The basic descent method Xk+i = Afc + 

akdk is defined to generate the sequence {Xk}, where ak = arS™m(^(a) = 

q(\k + adk), and dk is some direction of descent. For the conjugate gradient 

method, we have d0 = — Vqi(Ao), and dk = — Vq(Afc) + (3kdk-\ for k > 

1. To compute (3k, wc used the Fletcher-Reeves formula (4.2.5), in which 

Pk = yv^i^i'lip» although others such as (4.2.3) or (4.2.4) may be used. 

To compute otk, we optimize ip(a) = q{Xk + ad^) by performing a line 

search which uses ip{a) along with the first derivative information <p'(a) = 

VAg(Afc + a 4 ) -dk. 

The global convergence properties of gradient descent methods with 

errors are well known. In [9], a result for general descent methods is given, 

and in [50], a result for the Fletcher-Reeves Conjugate Gradient method 

is given. For the following, assume that / : Rn —> R is a continuously 

differentiable function in which V / is Lipschitz continuous. 

Theorem 5.4.1. Let the sequence {x^} be generated by the descent method 

xk+i = xk + ak(dk + ek), 
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and suppose that the following estimates hold: 

ci | |V/(x f c) | |2<-V/(x f c)Td*, (5.4.1) 

I K | | < c 2 ( l + ||V/(xfc)||), (5.4.2) 

||efc|| <lk{q + p\\Vf(xk)\\), (5.4.3) 

oo 

^Tlk = oo, (5.4.4) 
fc=0 

00 

fc=l 

where c\, c-i, V and Q are scalars. Then either f(xk) —> —oo or f{xk) —> 

L < oo and Vf(xk) —̂  0. ^4/so, whenever Xk —> x*, V/(x*) = 0. 

Note that in the case of steepest descent, c4 = V/(xfc) and so (5.4.1) 

and (5.4.2) are trivially satisfied. However, this suggests that it is practical 

to check that the gradient error R(U, <t>) — R(U, <fi) does not exceed 

C-\{\ + \\Vf{xk)\\), (5.4.6) 

for some constant C, in order to satisfy (5.4.3), (5.4.4), and (5.4.5). 

Theorem 5.4.2. (The Fletcher-Reeves Conjugate Gradient Method) 

Let Xk+\ — Xk + oik{sk + ek), where ak is the step-size determined from an 

inexact Wolfe or Armijo line search, and the direction Sk is determined by 

s = f-V/(x fc), fc = l, 
bk \-Vf(xk) + Pkdk^, k>2, 

and dk — sk + wk, where 0k — \\vftx W ^e assur^e that 

ci\\Vf(xk)\\
2<-Vf(xk)Tsk (5.4.7) 

IMI <7*(9 + p||V/(xfe)||) (5.4.8) 

Ik = O (^) , (5.4.9) 
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where Cj, p, q, 7^ > 0. IfVf is Lipschitz continuous, then either f(xk) — 

- 0 0 or liminffc^oo ||V/(a:fc)|| = 0. 

In this theorem, (5.4.8) and (5.4.9) are equivalent to conditions (5.4.3), 

(5.4.4), and (5.4.5), so we may still use (5.4.6) to define the tolerance. 

5.5 A n Adapt ive Algor i thm 

We now devise an efficient adaptive algorithm that insures an accurate 

approximate gradient during the optimization search. A straightforward 

approach would be to use the standard adaptive error approach, described 

in section 3.3, at each iteration in the gradient search. This requires the 

generation of a new mesh at each step in the search algorithm, which is 

needlessly expensive. Assuming the solution depends continuously on the 

parameter, small changes in the parameter lead to small changes in the 

error indicators. The alternative is to seek changes in the error indicators 

as the parameters change, and refine and unrefine the mesh as needed. 

On the first step, we create an adapted mesh that produces an accurate 

value of q(U). Specifically, we refine the mesh using (3.2.9), (u — U,tp) « 

-(AVU,V{4>-nh(f))) + (/(£/, A), </>- 7Th4>) + {Ri,4>)- To control the error, 

we write 

\(u - U, VOI < ] T \~(AVU, V(</> - irh</>))k + (/([/ , A), <j> - 7 ^ 1 • (5.5.1) 
k 

Denoting TZ(U, 4>)k = {AVU, V(</> - TTh(p))k - (f(U, \),4>- nh(/))k, the equa­

tion (5.5.1) becomes \(u — U,ip)\ < Ylk l ^ ( ^ ' 4>)k\- We use the standard 

optimization based adaptive mesh control as described in section 3.2. For 

example, if \7Z(U, <j))k\ > TOL, we could refine element k. 
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Next, we control the error in V\q(\). By (5.3.4), 

Vxq(u, A) • (A - A) = %{U, 0) - K(U, 0) + (Vxf(U, A) • (A - A), 0). 

In practice, we compute the gradient at U, in the direction A — A, 

Vxq(U, A) • (A - A) « (VA/(c>, A) • (A - A), 0). (5.5.2) 

The terms 7Z(U, (f>)~7l(U, 0) indicate the difference in the approximated and 

true gradients, and may be found after computing the approximated gradi­

ent. To summarize, we first approximate U at A, the adjoint 0 at A, then 

use this information to compute the approximated gradient (VA/ (£ / , A) • 

(A — A),0). Next we compute the solution U and the adjoint 0 at A, then 

compute the gradient error 7l(U, 0) — 1Z(U, 0). If the gradient error is high, 

we can refine the mesh to reduce this error. We can decompose further by 

noting that 

\K(U, 0) - K(U, 0) I = \K(U, 0) - K(U, 0) + 11(0,0) - K(U, 0) | 

< \K(U, 0) - K{U, 0)| + \K(U, 0) - K{U, 0)|. (5.5.3) 

Note that the first term \K(U, 0) - TZ{U, 0)| gives the change in error from 

one iteration to the next. So we do not need a completely new mesh each 

time we solve the PDE, but may use (5.5.3) to refine and unrcfine the mesh. 

That is, we start with a good mesh by using (5.5.1) then as A changes, we 

find elements in which the error estimate has changed. We refine element 

K if either \K(U,4>)K - TZ{U,4>)K\ or \H(U,4>)K - K{U,j>)K\ is large. If 

refinement is to take place, we then recompute the solution U, adjoint 0 at 

A, and the new approximated gradient (Vxf(U, A) • (A — A), 0) on this new 

mesh, and repeat this process. 

69 



Wc incorporate a tolerance which takes into account Theorems 5.4.1 

and 5.4.2, so set TOL = ^-(1 -f- ||Vg(Afc)||) at each step k in the descent 

method. Also, wc avoid over-refining or under-refining, by selecting a cer­

tain percentage of elements which have the largest or smallest error con­

tributions. For our test problems, wc refined elements in which the error 

contribution is greater than either TOL/N or /J, + ca2, where N is the 

number of elements, /i and a2 are the mean and standard deviation of the 

contributions respectively, and c is some constant. 

Recall that the line search step in the descent method requires solving 

V<?(A + ad) • d for various values of a. Here, wc take A = A + d in (5.3.4) to 

obtain 

VA9(A) • d = K(U, 0) - K(U, 4>) + (DxHU, A) • d, 0), (5.5.4) 

where U and <f> are computed at A = A + d. Note that from the reference 

value A, wc could also take a smaller step in the direction d, so that A = 

A + ed for some e > 0. Then A - A = de, so that (5.3.4) becomes 

VAg(A) • (de) = K{U, d>) - K(U, 0) + (Dxf(U, A) • (dt),$), 

or 

V\q(X) • d = V (Dxj{U, X) -d,4>), 

where U and 4> are computed at A — A 4- ed. 

Unlike the line search, the descent method requires the full gradient 

Vq(X). We simply apply (5.5.2) using A - A = e* for i = 1, ...,p. In this 

case, the formula becomes 

V A g ( A ) - e , = (V A / (£ / ,A) . e j ,< /> ) . 

This allows us to reconstruct the gradient, since VA</(A) • e* = Jj-q(\). 
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5.6 Pseudo-code 

To solve the problem (5.1.1), we propose the following adaptive algo­

rithm: 

Choose initial guess Ai G MJ1 

g\ = [EstimatcGradicnt(Ai,ei), ...EstimatcGradient(Ai,ep)] 

d\ = -0 i 

For k — 1 to n (n > p) 

a/c = LincScarch(Afc, d^) 

Afc+i = Afc + a>kdk 

gk+\ = [EstimateGradient(Afc+i, ej), ...EstimateGradient(A,t+1, ep)\ 

T 

/3k = £*+i^±i (Fletcher-Reeves formula, others may be used) 

dk+i — —Qk+i + Pkdk 

End for 

Function LineSearch(A, d) (This function performs an inexact line 

search that optimizes if (a) = q(X + ad) using the derivative ip'{a) = 

Vq{X + ad) • d). 

Set constants cx = l ( r 4 , c 2 = 0.1.LINETOL = 1CT4. 

Choose initial guesses a0 — 0, ca\ = 1. 

Call EstimatcGradient(A,(i) to get <p(ao) and <p'(ao)-

Set j - l. 

Loop 
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Call EstimatcGradient(A + ctjd,d) to get tp(aij) and y>'{aj) 

If <p{aj) > ip(aQ) + ciOjip'(a0) (check for sufficient decrease), 

set cKj+i < oty 

Else, if ip'{aj) < C2'p'{ao) (curvature condition), set Qj+i > 

ar 

Else, exit loop and increment j . 

If <p(aj) RJ tp(ao) then d is not a direction of descent, return 

0. 

End loop 

Loop until \a:j ~ a^}\ < LINETOL 

Call EstimateGradicnt(A + aijd,d) to obtain tp'(otj). 

Set a]+i = aj - ip'{aj) • ̂ q^f^j~) (secant method, see 

[13]) 

Increment j 

End loop 

Return a3-

End function 

Function EstimateGradicnt(A,<i) (This function estimates Vg(A) • d). 

Solve for U and (j) at A. 

Set A = A + ed. 

Loop until error TZ(U, 4>) — TZ(U, </>) is controlled. 
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Solve for U and 0 at A 

Refine and/or un-refine using criteria \TZ(U,(/>) — TZ(U,(I))\ 

and \n(U,4>)-n(U,4>)\. 

End loop 

Return Vq(X) • d = JQ VA/(£/, X)-d<pdx 

End function 

5.7 Numerical Results 

We write code for performing the gradient search in MATLAB. We also 

make use of the finite element package ACES (Adaptive Coupled Equation 

Solver) developed by Tim Wildey. We use the package for solving the for­

ward and the adjoint problems, computing the error indicators, and refining 

and unrefining the mesh. 

5.7.1 A Semilinear Example in One Dimension 

Consider 

-u" = f(u)^-u2 + g(x): i 6 (-1,1), 

u ( - l ) = u(l) = 0, 

where g(x) is chosen so that the solution is 

u = tanh (20eAl^A'> (x - e ^ 1 ^ ) - ! ) ) c o s ( ™ ) . 

The quantity of interest used is ip(x) — 1, so q(X) — j _ x u dx. This example 

has the property that the solution changes as the parameter A makes small 

changes. For example, in Fig. 5.5 on the left, we see that the solution 

is very steep at x « 0.5. The gradient error terms 1Z(U,4>) — 1Z(U,4>) are 

naturally higher here, so these elements are marked for refinement. The Fig. 
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Figure 5.5: Left: Top panel shows U{X) and U(X) at A = (1,1)T, d = (1, 0)T. 
Middle panel shows mesh, where triangles denote elements marked for re­
finement and circles denote elements marked for unrefincment. Bottom 
panel shows error in the gradient at A. Right: Plots at A = (1,1)T, 
d = ( 0 , l ) T 

shows the initial mesh, and elements marked for refinement are shown with 

triangles. As the parameter changes, we obtain a very different solution, 

which is shown in Fig. 5.5 on the right. Here the solution is steep at x « 0, 

and very smooth at x ~ 0.5. Wc see that the elements near 0 are marked 

for refinement and elements near 0.5 are marked for un-refinement, which 

is indicated by circles. The mesh up to convergence is shown in Fig. 5.6, 

where again triangles indicate that the element is marked for refinement 

and circles indicate that the clement is marked for un-refinement. In 

Table 9.3.1 we provide an example in which controlling the error improves 

the approximation of the gradient. 

No error control 
After error control 

True Gradient 

V<?(A) 
(-0.00198,0.603)r 

(0.00275,0.613)T 

(0.00352,0.615)r 

Table 5.1: Computed gradient at A = (1,1)T, before and after error control. 
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Figure 5.6: Mesh gridpoints at each level of refinement. Triangles indicate 
elements to refine, circles indicate elements to be unrefined. 

5.7.2 A Wound Healing Model in Two Dimensions 

To give an example in two dimensions, consider the stationary state of 

the wound healing model as described in [37], 

qiAui = / i ( u i , u 2 ; A ) , 

q2Au2 = f2(ui,u2;X), 
(5.7.1) 

in the wound domain 0 C M2, where u\ = u2 = 1 on the wound boundary. 

In this model, we have two conservative equations, one for the epithelial cell 

density per unit area, tix, and one for the concentration, u2, of the mitosis-

regulating chemical. Here we assume that the mitosis-regulating chemical 

controls the rate of proliferation of new cells in the wound domain. The 

nonlinearity f\ describes the difference between the mitotic generation and 

the natural cell loss rate, and f2 represents the difference in the production 

of the chemical by cells and the decay of the active chemical. The parameter 

A € M.3 describes the time decay rate of the chemical, the maximum rate 

of chemical production, and the maximum level of chemical activation of 

mitosis. We optimize the quantity of interest q(X) = (u(\),ip). 
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We use the qi,q2, / i , fi described in [37] to obtain 

-o.035Am = 2 w^rg (^ ) ) u am(2 - ui) 

-0.31Au2 = a{fi) y~^^ 

a(/i) = ^ log(2/i3) 

w2 
x e fi, 

(5.7.2) 

Here, fi = (/u1,/x2,/i3)r arc parameters. To obtain useful numerical results, 

we artificially set 
' m = o^e1-4*1*1-*1), 
^ 2 = 3 e l - 4 A 2 ( l - A a ) ) 

/i3 = l.Ole4^1-*3). 

This results in analyzing parameter values of n near (0.99, 3,1.01)r and 

small changes near these values as a result of the optimization search. The 

new parameter A has the property that the quantity of interest q(X) = 

Jn{u\ + U2) dx has a local extrcrna at A = (0.5,0.5, 0.5)T, Fig. 5.7 depicts 

the change in mesh during the stepping algorithm, as A varies from (1,1,1) 

to (0.5,0.5,0.5). 
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Figure 5.7: Plots of U\ + U2 and the evolving mesh, at four values of A in 
the optimization algorithm. 
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Chapter 6 

BACKGROUND: PROBABILITY 

6.1 Limit Theorems 

In this section, we introduce some of the statistical tools used in Monte 

Carlo techniques. Monte Carlo techniques involve repetitively simulating 

a random process to obtain information about the process. Each time we 

simulate the process, we obtain what wc call a realization of the process. 

Using the realizations, we may compute sample statistics such as mean and 

variance. In this section, wc examine the tools used to understand the 

relationship between the number of realizations and the accuracy of the 

statistical information obtained. 

If X is a random variable with probability density function / , denote 

E[X] — J xf(x) dx to be the mean, or expectation of X. 

Propos i t ion 6.1.1. (Markov Inequality) Let X be a non-negative random 

variable. If E[X] exists, 

P{\X\ > a) < a - 1 £ ( | X | ) for any a > 0. 

Applying the Markov inequality to (X — E[X})2, wc obtain the following 

characterization of variance. 
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Propos i t ion 6.1.2. / / a random variable X has finite variance, then for 

any a > 0, 

P{(X - E[X})2 >a)< a'2var(X). 

The Central Limit Theorem states that the sum of a large number of 

independent random variables taken from the same distribution behaves like 

a single normal random variable. To analyze large sets of random variables, 

we need the Central Limit Theorem, as well as the Law of Large Numbers. 

We first review some basic modes of convergence. 

Definit ion 6.1.1. Let Xn be a sequence of random variables, and let X be 

a random variable. 

• Xn converges to X almost surely (a.s.), if 

P ( lim Xn = x) = 1. 

• Xn converges to X in probability if 

lim P(\Xn - X\ > e) = 0, 
n—*oo 

for every e > 0. 

• Xn converges to X in L , or in mean square, if 

lim E\\Xn-X\2} = 0. 
n—>oo 

If Xn converges to X almost surely, this means that the set of values 

ui, such that Xn(tu) does not converge to X(ui), is a set of measure zero. 

Convergence in probability is a weaker mode of convergence, in fact, both 

almost sure and L2 convergence imply convergence in probability. 
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Theorem 6.1.1. (Central Limit Theorem) Let {Xi}^ be independent, 

identically distributed random variables with mean \i and variance CT2,0 < 

a2 < oo. Then for any a < P, 

In experiments, we would like to understand how well the average 

If ]Ci=i-^i approximates the mean of Xt. After rearranging terms and 

dividing by v M , the Central Limit Theorem tells us that for large M, 

p 4L< lyXt-vK -^=) « 4= Fe-^dx. (6.1.1) 

For example, for large M, if we choose a = —A<f1//4,/3 = M1/4, wc see that 

M _ 1 X ^ i -^i is close to /a with high probability. We get an error bound by 

noticing that (6.1.1) becomes 

, M \ , „M1/4 
O 1 V~^ , . <7 \ 1 / _ I T 2 , 

e 2 dx. \ Mi/4 - M jri l r ~ M1/4 y y/2^J.Mu* 

Theorem 6.1.2. (Strong Law of Large Numbers) Let { A ^ } ^ be indepen­

dent, identically distributed random variables, fj, = E[Xi},o~2 — var(Xi) < 

oo. Then, 
1 ™ 

lim —} Xi — u a.s. and in L2. 
n^oo n —' 

This also implies the convergence is in probability, which is called the 

Weak Law of Large Numbers. 

6.2 Sampling Techniques 

The goal in this section is to generate random variables with a known 

distribution F. Assume we have a pseudo-random number generator that 

draws numbers from the uniform distribution on [0,1]. We denote U([a,b}) 
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to be the uniform distribution on [a, b]. The corresponding density function 

is fu = V(k~~ a)- We note that samples from C/([a,6]) are easily generated 

by taking U\(b — a) + a, where U\ is a random number from the interval 

[0,1]. 

We discuss some of the basic methods of generating random variables 

from an arbitrary distribution. We denote X ~ / to mean that a random 

variable X is taken from a distribution with density function / . One way 

to generate random variables from a distribution with density function / is 

to find a deterministic function h : [0,1] —> R such that h(U) ~ / , where 

U is drawn from a uniform distribution on [0,1]. For example, suppose 

we wish to draw random variables from the exponential distribution. The 

exponential distribution has density function 

|̂ 0, x < 0, 

and cumulative density function F(x) = 1 — e~7x,x > 0. We define h(u) = 

— i logu,0 < u < 1. Then it can be shown that if U is taken from the 

uniform distribution on [0,1], then h(U) has the exponential distribution 

with density function / . 

We computed F " 1 to devise the h, which uses the fact that F is mono­

tone. In general, if F is right-continuous and non-decreasing, we define 

F ' 1 = MF(z) > n for u e [0,11. 

Theorem 6.2.1. Let F be the cumulative density function of a random 

variable and U be a random variable taken from the uniform distribution 

on [0,1]. Then F'-\U) ~ F and F~x(l - U) ~ F. 
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Example 6.2.1. Suppose we want to generate an exponential random vari­

able X with rate A. The density function in this case is f(x) = \e~Xx, 

and the cumulative density function is F(x) = 1 — e~Xx. Thus, we can gen­

erate a random variable by inverting F, and have X — — jlog(U), where 

C/~£/(0, l) . 

The second approach is a Monte Carlo approach called the rejection 

method, or accept-rcjection sampling. This method avoids the need for 

inverting the function F. The goal is to generate a random variable X 

taken from a distribution with density function f{x). Suppose that / is 

bounded and zero outside of [a,b]. Set c = s u p , ^ ^ f(x). To perform the 

basic rejection method, we run the following to generate X ~ / : 

1. Generate Q ~ U{a,b\. 

2. Generate y ~ U[0,c]. 

3. If Y < f(Q), then set X := Q. Otherwise, return to step 1. 

To summarize, we generate a random vector {Q,Y) G [a, b] x [0, c]. We 

check that the random vector is in the region below the graph of / . This 

method generalizes to random vectors in higher dimensions as well. 

We describe a more general approach which may be used to decrease 

the number of rejected samples, and therefore speed up the algorithm. Sup­

pose there is a function g{x), called the proposal density function, and scalar 

M > 1 such that f(x) < Mg(x). In addition, suppose we can easily sample 

g(x). Then instead of sampling from / , we sample from Mg(x), where sam­

pling is easier. For example there are many advanced algorithms, often in­

cluded in software packages, that efficiently generate random numbers from 

83 



common distributions such as the normal, the gamma, or the exponential 

distributions. To generate X ~ / , we follow the following algorithm. 

1. Generate Q ~ g(x). 

2. Generate Y ~ I7[0,l]. 

3. If Y < f/{Mg), then set X := Q. Otherwise return to step 1. 

6.3 Kernel Density Estimation 

A kernel density estimator / is used to approximate a density function 

/ , given a set of samples {x\, ...,xn} from f(x). The density histogram is 

the most basic of kernel density estimators. To obtain a histogram, we need 

a sample {x\,...,xn} from f(x), and a mesh {tk,k £ M}. If, in addition, we 

require that t^+i — tk = h for all k, then the histogram is said to have bin 

width h. The common frequency histogram is built using blocks of height 

1 and width h and integrates to nh. The density histogram uses blocks of 

height l/(nh), so that the histogram integrates to 1, and is defined as 

1 " 

where 

nh 

r , , _ j 0, x, £ [tk,tk+i), 

Definition 6.3.1. We say a kernel is a function K : R —> K /or which 

K{x)dx = 1. 

An example of such a kernel is K(x) = - |= exp ( — Y ) , the density 

function for a Gaussian random variable with zero mean and unit variance. 

Another example is the delta function, K(x) = 8(x). 
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Let K be some kernel function, and x\, £2, •••, xn € R be data samples. 

Then the basic kernel estimator is 

'"<*>-;s £> ( 4 s ) • 
( = 1 s 

Here h is the smoothing parameter, also called the window width, or band­

width. The estimate / approximates the density function / by using the 

samples x\, ...,xn. This approximate density function inherits the smooth­

ness properties of the kernel K. Note that f(x) integrates to 1, since 

/f(x)dx = \y [K(?^)dx = —hY f K(u)du = -yi = i. 
A nh~t^ V h J nh j^U «£? 

For example if we use the Gaussian kernel K(x) = -4= exp ( — y ), the 

corresponding density estimate becomes 

/w-at*(Ts)-=5st-(-KT5)')-
This density estimate is a sum of Gaussians centered around each data 

point, each with standard deviation h. Note that if h is too small we will 

under-smooth the data and if it is too large we will over-smooth the data. 

In many cases, correcting for over-smoothing results in noise in the tail 

areas. Thus, it may be necessary to use a larger h near the tails. In Fig. 

6.1, we take 222 samples of the waiting times for a particular geyser to 

strike. We apply a kernel density estimate for varying values of h. We see 

that if h is too small, we get unnecessary peaks around data points. By 

using a favorable value of h, we see that the data is clearly bimodal. If h 

is too large, the density estimate docs not reflect the fact that the data is 

bimodal, and we have over-smoothed the data. 
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Figure 6.1: Kernel Density Estimates for varying smoothing parameters, 
h = 0.05,0.1,0.5,1. 

The empirical cumulative density function is given by 

rp ( \ l V^ T i \ #{Xi - x} Fn(x) = ~ > /(-oo.zl0^) = ' • n t—* n 
i=l 

To approximate the corresponding density function, one could use divided 

differences to approximate the derivative of the empirical cumulative density 

function, 

Fn(x) - Fn(x - h) 1 
/ ( * ) h nh 

1=1 

( — co,x] \^i) —oo,x+h] i%i) 
i = l 

-, n .. n 

h 
(6.3.1) 

This is indeed a kernel estimator with kernel K(x) — /(o,i]- The function is 

a step function that gives the number of points xt in the interval (x — h, x] 
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Figure 6.2: Approximate empirical density function, 

for any given value of x. An example is shown in Fig. 6.2, using the geyser 

data with h = 0.5. 

Note that if we take the limit h —» 0 in (6.3.1), we obtain the derivative 

of the empirical cumulative density function, which we call the empirical 

probability density function, 

dx 
1 . \ 

n i = l 

6.4 Matrix Algebra Background 

Definition 6.4.1. A stochastic matrix is a square matrix with non-negative 

entries in which each row sums to 1. A stochastic vector is a row vector 

with entries summing to 1. 

A stochastic vector v has the property that ve — 1, where e is defined 

b y e = ( l , l 1 . . . ) l ) T . 

Definition 6.4.2. If vA — Xv for some scalar A and row vector « / 0 , we 

say that v is a left-eigenvector of A. 
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The entire theory of eigenvectors could be done for left-eigenvectors. 

The eigenvalues would be the same. To see this, suppose that Ax — Ax for 

x ^ 0, so that det(A7 - A) = 0. Then, 

det(AJ - A) = dct[(A7 - A)T] = det(A7 - AT). 

Thus, A and AT share eigenvalues and multiplicities. In addition, ATy = 

Ay, or yTA = XyT. In general, the eigenvectors will not be the same, that 

is x ^ y. 

Theorem 6.4.1. (Perron-Frobenius theorem for non-negative matrices). 

Let A be a real square matrix with non-negative entries. Then: 

1. The spectral radius of A is an eigenvalue. That is, there is a real 

eigenvalue r > 0 such that |A| < r for all eigenvalues A. 

2. There is an eigenvector associated with r having non-negative entries. 

3. 

m i n ^ a i j < r < max\ ay. (6.4.1) 
i i 

Note that for a right stochastic matrix, ^ . a^ = 1 for each row i, 

therefore (6.4.1) implies that the dominant eigenvalue is r = 1. Therefore, 

the dominant left eigenvector n satisfies IT A = n. In fact, since the rows of 

A sum to one, we have Ae = e, where e = (1,1,..., 1)T, the dominant right 

eigenvector. The Perron-Frobenius theorem also asserts that |A| < 1 for all 

eigenvalues A. 

Definition 6.4.3. An m x m matrix A is a permutation matrix if it is row 

equivalent to Im. That is, if there is a 1 in every row and column and zeros 

elsewhere. 
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Definition 6.4.4. An m x m matrix A is reducible if there exists a permu­

tation matrix P such that 

An A12 

0 A22 
PAPT = 

where An, A22 are, square matrices. A is irreducible if no such matrix exists. 

It can be shown that positive matrices (i.e., a^ > 0 for each i,j) are 

irreducible. 

Definition 6.4.5. A non-negative, irreducible matrix is primitive if the 

number of eigenvalues having modulus equal to the spectral radius is 1. 

The proof of the following proposition is outlined in Appendix A 

Proposition 6.4.1. Let A be a primitive, stochastic matrix, where xA — 

x, Ae — e, and L •— ex. Then limm^oo = L. 

In the case that A is not primitive, the sequence xA is generally cyclic, 

and does not approach a limit. Suppose, for example, that A has eigenvalues 

of 1 and -1, and the other eigenvalues are distinct and satisfy |A| < 1. In 

this case, we show that xAk is a 2 cycle. Let {'fj}™=1 be the left eigenvectors 

of A. As these form a basis for E™, for arbitrary x we can write 

1 i=3 

If V\,V2 correspond to eigenvalues 1 and -1, respectively, then 

n n 

xA = a\V\A — OI2V2A + 2 . ai'uiA = ^1^1 ™ <*2V2 + / , Cti\Vi 
i=3 i=3 

Inductively, 
n 

xAk = aivi + a2(-l)
kv2 + ] P o.i\kv%. 

i=3 
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Since |Aj| < 1 for i = 3,4,..., n, we nave 

lim xAk = axvx + a 2 ( - l ) v2. (6.4.2) 

We see that for large values of fc, the sequence x ylfc approximately alternates 

between the sequences ct\Vi + a2v2 and ot\Vi — a2i>2. 

6.5 Random Variables and Stochastic Processes 

In this section, we review some facts about random variables and 

stochastic processes. 

6.5.1 Joint Probability Density Functions 

Let fn(Xi, ...,Xn) be the joint probability density function of random 

variables Xi,..., Xn, so that for any measurable set flcl", 

P(Xlt...,XnzD)= / /„( X i, ..., Xn ) (IX \... (lXn. 
JD 

Then, for s < n, 

/ s(xi,. . . ,x s) = fn(xi,...,xn)dxs+i---dxn, (6.5.1) 

the marginal distribution for the subset. The equation (6.5.1) is sometimes 

called the Chapman-Kolmogorov equation. Note that in particular, 

Jn—l {-^l j •••) 3-n-l j / Jn[xl> •••) xn)"'Xn, 

and 

fi(xi) — / /n(^i) •••> xn) dx\...dxi^\ dxl+i...dxn. 

The conditional probability density function is denoted as / s | r_ s(xi, ...xs |xs+i, ...xy), 

and has the property that 

P(Xi,...Xs G D\Xs+i = xs+i, ...,Xr = xr) = I /5 | r_s(x1,...xs |xs+1, ...xr)dxi...dxs. 
JD 
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By Bayes rule, 

JryX\) ,,.Xr) J r_ s(^x s-f i , . , .X r) Js\r—s[X\, ..., Xs\Xs+\ j . . . X r ) , 

Definition 6.5.1. If fr(xi, ...,xr) = fs(xi,..., xs)fr-s(xs+i, • ••, xr), we say 

the sets {X\, ...,XS} and {Xs+i,..., Xr} are independent of each other. In 

this case, 

Js\r — s\X\i ••• > %s\Xs+li •••> Xr ) J syX i, ..., X s ) . 

6.5.2 Transformation of Random Variables 

Let X be a random variable with density function fx(%)- Let Y = g{X) 

be a new random variable with density function fy{x). We would like to 

express /y(y) in terms of fx(x). If g{x) — x, we know that 

fx{x) = fy(y) = / S(x - y)fx(x) dx. 

For arbitrary g, we write 

FY(y + Ay) - FY(y) = P(y<Y<y + Ay) = I fx(x) dx, 
I[y<g(x)<y+Ay} 

Dividing by Ay, 

,_F(y + Ay)-F(y) If 
fr(y) « T-, = A^ / fx(*X> dx 

J Ay 

where H is the Heaviside function. Taking Ay —> 0 yields the relationship 

fy(y) = / 5{g(x) - y)fx(x) dx. 
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6.5.3 Stochastic Processes 

Definition 6.5.2. A stochastic process is a family of random variables Xt 

for t in some indexed set T. 

For a continuous time stochastic process, we typically have T = [0, oo). 

A discrete time process corresponds to T — {0,1,2,...}. The state space 

is the range of the random variables. If the state space S is countable, we 

say that Xt is a discrete valued stochastic process. We sometimes denote 

the stochastic process with Yx(t) = f(X,t). A realization of the process is 

Yx(t) = f(x,t). The probability density function for Yt is given by 

f(y,t) = J6(y-Yt(uj))f(u,)du>. 

Definition 6.5.3. A Markov process is a stochastic process Xt with the 

property that for any set of n successive times (t\ < t2 < ... < tn), 

fl\n-l(xtn\xU,...,Xtn^) = f\\l{Xtn\Xtn^)-

That is, given X(s), the values of X(t) for t > s do not depend on the 

values of X(u) for u < s. This can be stated as, if t\ < t2 < ... < tn < t, 

then 

P(a <Xt< b\Xtl = xi, ...,Xtn = xn) - P(a < Xt < b\Xtn - xn). 

For a Markov process, we may generate an identity on transition den­

sities. By applying Bayes law, we know that for t\ < t2 < £3, 

h(Xt!,Xt2,Xt3) — / l (Xf1)/ i j i(Xt2 |X(1)/ i |2(x , t3 |x<1 ,Xt2) . 

By t h e Markov proper ty , 

fay^u i xt2>
 xt3) — fi(xti)f\\i{xt2\xti)fi\i(xt3\xt2)-
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Integrating the above with respect to xt2, we obtain 

/ h{xtl,xt2,xta)dxt2 = / fiixtjf^ixt^xtjf^ixt^xt^dx^. 

Using (6.5.1), 

f2{xtl,xt3) = fi{xtl) / fi\i{xh\xh)fi\i(xt3\xt2)dxti, 

and therefore 

fi(xtl)fi\i{xt3\xtl) = h{xtl) j fi\i(xt2\xtl)fiii(xt3\xt2)dxh) 

and dividing yields the forward Kolmogorov equation, 

fi\i{xt3\xh) = fi\i(xt2\xh)fi\i{xt3\xt2)dxt2. (6.5.2) 

This equation gives a relationship between the values of the stochastic pro­

cess at three times t\ < ti < t3. We can compute the transition probabilities 

from t\ to £3, if we know the transition probabilities from t\ to £2, a n ( i from 

t2 to t3. 

6.6 Markov Chains 

A simple class of Markov processes are Markov chains. A Markov chain 

is a Markov process in which the both the time variable and the state space 

are discrete. 

Definition 6.6.1. Let {Xn}^L0 be a stochastic process that takes values 

from a countable set S, called the state space. We say that Xn is a Markov 

chain if 

P(Xn+i = J\XQ = io,Xi — i\, ...,Xn-.\ = in-i,Xn = i) 

= P(Xn+1=j\Xn = i), (6.6.1) 

for n = 0,1, 2,... and states i0, i\,..., in-\, i,j-
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The equation (6.6.1) is called the Markov condition. It is easy to show 

that (6.6.1) is equivalent to 

P{Xn+\ — j\Xni — ii, ...,Xn — ik) = P(Xn+\ ~ j\Xn — ik), 

for all 0 < rii < n2 < ... < n,j,ii, ...,ik in the state space and 

P\Xm+n = J\XQ = io, •.., Xm = im) = P(Xm+n ~ j\Xm = im), 

for all m,n > 0, io, ...,im)j in the state space. We assume Markov chains 

satisfy a homogeneity condition P(Xn+\ = j\Xn = i) = P(X\ = j\X0 — i) 

for all n. That is, the probability transitions do not depend on n, but upon 

the time difference alone. We then denote 

ptj = P{Xn+i = j\Xn = i), 

the probability of Xn+X being in state j , given that Xn is in state i. Using 

the law of total probability, we can show that Y^JLoPij = 1 f° r a u 'L Each 

vector {'Pij}f=\ may be thought of as a probability mass function for the 

value of the chain, assuming the chain is in state i at the previous time 

step. 

The simplest type of Markov chain is a finite Markov chain, in which the 

state space S is finite with N possible states. In this case, the probability 

mass function is an ^-component vector and the transition probabilities 

Pij = P(X2 = i\X\ = j)ij may be thought of as a N x N matrix. We call 

this the probability transition matrix of the Markov chain. Since the row 

sums are one, the probability transition matrix is a stochastic matrix. 

We develop an analogous equation to (6.5.2). By the law of total 

probability, 

P{XX = i,X3= j) = Y, p(xi = hX2^ k, X, = j). (6.6.2) 
k 
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By the Markov property, 

P(Xl = i,X2 = k,X3 = j) 

= P{XX = i)P(X2 = fc|Xi = i)P{X3 = j\X2 = k), 

and summing each side over k, 

J2P(X1^i,X2^k,X3 = j) 
k 

= ]T p{xt = i)P{x2 = k\xx = i)p(x3 = j\x2 = k). 
k 

Now using (6.6.2), 

P(Xi =i,X3 = j) = P{XX = i)J2 P(X2 = k\Xi = i)P(X3 = j\X2 = A;). 
k 

After applying Bayes law on the left hand side, we obtain 

P(X1=i)P(X3 = j\Xl=i) 

= P(Xr = 0 ^ P(X2 = fc|X! = i)P(X3 = j | X a = fc). 

Dividing gives the Kolmogorov equation for Markov chains, 

p(x3 = j\xx = 0 = E p^ = k^ = ^p^ = ^ 2 = *)• 

We may easily generalize to the case of arbitrary time steps between the 

random variables. Indeed, 

P(Xm+n+r = j\Xm = i) 

= ] P P(xm+n = k\Xm = i )P(X m + n + r = j\Xm+n = A;), (6.6.3) 
k 

for m, n, r > 0. 
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6.6.1 Recurrence and Periodicity 

The following definitions characterize the long time behavior of states 

in a Markov chain. In particular, assuming the Markov chain starts in a 

particular state, we want to know the probability that the chain returns to 

the state. 

Definit ion 6.6.2. For a Markov Chain with state space S, we say that state 

i is recurrent if P(Xn — i for some n > l |Xo = i) — 1, and is transient if 

P(Xn = i for some n > 1\X0 = i) < 1. 

That is, when a chain exits a recurrent state, it is sure to return, and 

when a chain exits a transient state there is a nonzero probability of the 

chain not returning. 

Definit ion 6.6.3. The mean recurrence time of state i of a Markov chain 

is the average number of steps required to return to state i given that it 

started from state i. That is, /x, = E[Ti\, where T = min„{X„ = i\X0 = i}. 

It can be shown that 

{^ n n / j ( n ) , i is recurrent, 

oo, j is transient, 

where fij(n) — P{{X\ ^ i, ...,Xn-i ^ i, Xn — I\XQ = i}). Note that Hj may 

be infinite if i is recurrent. 

Definit ion 6.6.4. For a recurrent state i, i is null if ^ = oo and non-null 

or positive if Hi < oo. 

Remark 6.6.1 . We denote p7^ to mean the (i,j) entry of the matrix Pm. 

Definit ion 6.6.5. The period of state i is d(i) = gcd{n : P£ > 0}. / / 

d(i) — I, we say that state i is aperiodic and is periodic otherwise. 
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T h e o r e m 6.6.1 . / / state j is positive recurrent and has period t, then 

lim p% = t/iij. 

Propos i t ion 6.6.1. If state j is null recurrent or transient, then as n —> oo, 

p"3- —> 0, and p™ —> 0 for all i. 

Definit ion 6.6.6. A state is ergodic if it is positive recurrent and aperiodic. 

6.6.2 Irreducibility 

Definit ion 6.6.7. A Markov chain is irreducible if it has a single commu­

nicating class. That is, if for every i,j in the state space, there is some m 

such that p™; > 0. 

It can be shown that if a Markov chain is irreducible, then either all 

states are transient, or all states are recurrent. Also, states of a Markov 

chain share the same period. 

A Markov chain is irreducible if and only if its transition matrix is 

irreducible. Another equivalent condition for irreducibility is for its digraph 

to be strongly connected, where we think of the matrix as the adjacency 

matrix of the graph. These conditions arc difficult to check. However, we 

may use the following to test for irreducibility, the proof of which can be 

found in Appendix A. 

Propos i t ion 6.6.2. A finite Markov chain with n states is irreducible if 

and only if its probability transition matrix P satisfies (I + P)n~l > 0. 

We may also use Proposition 6.6.2 to determine if a finite chain has 

recurrent states by use of the following. 

Propos i t ion 6 .6 .3 . For a finite irreducible Markov chain, all of the states 

are positive recurrent. 
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6.6.3 Limit Behavior 

Definit ion 6.6.8. Let S be the state space of a Markov chain. The row 

vector n = (^j)jes *s a stationary distribution of the chain if TTJ > 0 for all 

3> E j ^ j = !> and Kj = T,iesniPii' (ie- n = *P-) 

Remark 6.6.2. For a finite Markov chain we can use Theorem 6.4-1 to 

deduce that P will always have a stationary distribution, which is the left 

eigenvector corresponding the the eigenvalue 1. 

Definit ion 6.6.9. If there exists a probability distribution q on a state space 

S such that limn_00p?- = q.j for all i,j, then q is a limiting distribution of 

the chain. 

This convergence means that, in the long run, as n —> oo, the probabil­

ity of finding the Markov chain in state j is approximately qj, independent 

of the initial condition. 

We list some basic limit theorems below. 

Theorem 6.6.2. 1. An irreducible chain has a stationary distribution n 

if and only if all states are positive recurrent. In this case, i\ is unique, 

and moreover, iii = 1/ fa for all i, where fa is the mean recurrence 

time of state i. 

2. If P is the transition matrix for an irreducible aperiodic Markov Chain, 

then 

lim p"7 — — for all i,j. 
n—>oo J faj 

3. If a chain is positive recurrent and aperiodic (i.e., ergodic) then there 

is a limiting distribution which is also the unique stationary distribu­

tion. 
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Corollary 6.6.1. 1. If the chain is irreducible, aperiodic, and in addi­

tion either transient or null-recurrent, then p™ —> 0 for all i,j as 

n —> oo. 

2. If the chain is irreducible, aperiodic, and positive recurrent, then pf, —> 

ixj — 1/HJ, which is also the unique stationary distribution. 

Remark 6.6.3. If a chain has a limiting distribution n, then vPn —> n 

for any stochastic row vector v, and Pn —> en. To see one direction, if 

Pn —> en, then 

ven = (vi, ...,vn) • (1 , . . . , l)n = n, 

since Y2ivi ~ 1- Thus, vPn —> n. Conversely, if vPn —> IT, then evPn —> 

en. Since v is a stochastic vector, ev = 1, and so Pn —> en. 

One of the ways to verify that a finite Markov chain has a limiting 

distribution is to examine its spectrum. Recall that by Proposition 6.4.1, 

l i m m _ 0 0 P m —» ex, whore x is the dominant left eigenvector. This shows 

that P has limiting distribution x in view of Remark 6.6.3. Since x > 0, it 

follows that e x > 0, so that Pm > 0 for some m > 1. 

Propos i t ion 6.6.4. / / a finite Markov chain has a primitive transition 

matrix P, then it has a limiting distribution, and Pm > 0 for some m > 1. 

Assuming that Pm > 0 for some m > 0, it follows that Pk > 0 for 

all k > m. Hence, for any state i, Ps" > 0 for n € {m, m + 1,..., m + n}, 

which only has one as a common divisor. The Markov chain in this case is 

aperiodic. This leads to the following Corollary. 

Corollary 6.6.2. If a finite Markov chain has a primitive transition matrix, 

then it is aperiodic. 
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The proof of the following converse is given in [27]. 

Proposition 6.6.5. If a Markov chain is aperiodic and irreducible, then it 

has a primitive transition matrix. 

Given that a finite Markov chain has a limiting distribution, the fol­

lowing proposition gives a rate of convergence. 

Proposition 6.6.6. Suppose that P is a primitive stochastic matrix. //A2 

is an eigenvalue such that |A2) < r < 1, and |A| < IA2J for all A ^ 1, then 

there is a constant C depending on P and r such that 

\\Pm - exJU < Crm, for all m > 1. 

This shows that the convergence rate is dependent on the second largest 

eigenvalue. The rate slows as A2 —> 1 and speeds up as A2 —» 0. We thus 

view IA1/A2I, or in our ease, 

1/|A2| (6.6.4) 

as a convergence rate for the sequence Pm. 

If P is periodic with period d, the sequence vPn fails to converge in 

general. However, the following proposition gives a characteristic of the 

long term behavior of the sequence. The proof is given in Appendix A. 

Proposition 6.6.7. Suppose P is periodic with period 2. Then for large 

n, the sequence vPn is a 2 cycle, whose average approaches the stationary 

distribution n. That is, 

100 



In general, if P is irreducible with period d, then P will have d complex 

eigenvalues. For each of these d eigenvalues, z, we have \z\ = 1, and zd = 1. 

In addition, each of the d eigenvalues is simple. In this case, vPn will cycle 

through d different distributions, but they will average to the stationary 

distribution TX. That is, 

lim ~{vPn+l + ...+vPn+d) = ir. 
n—>oo d 

6.6.4 Reducible Chains 

In probability transition matrices encountered in our research project, 

we often find a column of zeros, meaning that some state cannot be reached 

from the other states. We may still obtain a limiting distribution, provided 

that the nonzero states are aperiodic and irreducible. The zero columns 

will correspond with zero entries in the limiting distribution. Wc use the 

following theorem which states that we can essentially remove the zero 

columns and corresponding rows from the matrix, before applying Theorem 

6.6.2 on the remaining states. 

Theorem 6.6.3. Suppose a Markov chain contains finitely many states, 

denoted by S. Furthermore, suppose that the chain is reducible and contains 

a single closed class C C S of aperiodic states. Let P be the transition 

matrix for states belonging to C. Since this closed class is in itself an 

irreducible, aperiodic Markov chain, we have Pn —> eir. Then, if we denote 

the transition matrix for S by Ps, we have 

P^e(Tr,Q). 
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Example 6.6 .1 . Consider the matrix 

0 0 0.5 0.5 0 
0 0.5 0.5 0 0 
1 0 0 0 0 . Using Propo-
1 0 0 0 0 
1 0 0 0 0 

sitions 6.6.2 and 6.6.3, we examine the matrix (7 + P ) 5 - 1 , and see that 1,3,4 

are recurrent states, as they correspond to the positive columns. States 2 

and 5 are transient states. The subset {1,3,4} has period 2 and hence is 

not ergodic. In fact, P has an eigenvalue of-1. 

0 0 0.5 0.5 0 ~ 
0 0.5 0.5 0 0 
0 0.5 0.5 0 0 . By exam-

0.5 0 0.5 0 0 
^ 1 0 0 0 0 

ining the matrix (I + P)5~x, we see that states 2 and 3 are recurrent. The 

set {2, 3} is also aperiodic, hence ergodic. So there is a limiting distribution 

IT = (0,0.5, 0.5, 0, 0) where the nonzero entries correspond with the transient 

states. 

Example 6.6.2. Consider the matrix 

Now suppose P has multiple recurrent classes R\,..., Rr, and transient 

classes T\,...,T3. For Rk, we have a stationary distribution nk such that 

IT* — 0 if i ^ .Rfc. Assume the submatrix P^ corresponding to R^ is aperiodic. 

Then, p™- —> n^ for j G Rk, and??™- —> 0 if j ^ R^. As before, if j is transient, 

then pfj —> 0 for all i. 

6.7 Continuous State Markov Chains 

For a discrete-time Markov process with a continuous state space, 

-XQ, Xi , . . . arc random variables such that 

P(Xm+i < x\X0 = j/o,..., Xm_ x = ym-i,Xm =• y) = P(Xm+l < x\Xm = y). 

(6.7.1) 
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If the cumulative density function of the transitional probability (6.7.1) is 

independent of m, we say the chain is homogeneous. The n-step density 

function is defined by 

Pn{x;y) = P{Xm+n < x\X0 = y0,...,Xm^i ~ ym^,Xm = y) 

= P{Xm+n < x\Xm = y), 

the probability of the process jumping from y to a value less than or equal 

to x in n steps. 

Note that Pn(x;y) and PQ{X) = P{XQ < x) determines Pn{x) uniquely. 

The Chapman-Kolmogorov equation is 

Pn+m{x;y)= / Pn{z]y)Pm{x]z)dz. 

Note that this corresponds to the Chapman-Kolmogorov equation for the 

discrete state space, (6.6.3). 

Suppose Pn(x;y) —» P(x) as n —> oo (regardless of PQ{X).) Then 

the limiting distribution P(x) of the Markov chain satisfies the stationary 

condition 

P(x)= I P{z)P{x;z)dz= I P(x;z)dP(z). 

This corresponds to the case of a discrete valued Markov chain in that if 

p"j —» Vj, and the chain is finite, irreducible, and aperiodic, then v coincides 

with the stationary distribution, so that Vj = ^ f,pjj, 5Z • Vj = 1. 

Analyzing a chain with a continuous state space poses challenges in that 

the theory is not as well developed as in the discrete time case. However, 

special methods are developed for certain types of chains, such as random 

walks. 
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Chapter 7 

BACKGROUND: ATOMISTIC 
TECHNIQUES 

7.1 Molecular Dynamics 

Molecular dynamics (MD) is a computer simulation technique where 

the time evolution of a set of interacting atoms is followed by integrating 

their equations of motion. This is done by following Newton's law: F, = 

mjOj for each atom i in a system of N atoms, where m, is the atom mass, a, 

its acceleration, and F, the force acting on it due to interactions with other 

atoms. Molecular dynamics may be viewed as a simulation of the system 

as it develops over time. 

Molecular dynamics is a statistical mechanics method. The goal is 

to obtain a set of configurations distributed according to some statistical 

distribution function, or statistical ensemble. The microcanonical, or NVE 

ensemble, is the natural statistical ensemble to use with MD. Here the 

number of molecules, N, the volume, V, and the total energy, E remain 

constant. We assume that there is no heat exchange, and the total energy is 

conserved. In three dimensions, we keep track of the position ri{t) G R3 and 

the velocity Vi(t) E R3 of each particle i at time t. If we consider phase space 

to be the 6N dimensional space of all possible velocities and positions of the 
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N particles, we wish to describe the distribution of some statistical quantity 

of interest in phase space. This process requires ergodicity in order to be 

valid. The crgodic hypothesis of statistical physics states that observing a 

process for a long time is equivalent to sampling many realizations of the 

same process. That is, if we run the simulation forward in time using a 

single initial condition, then for long time the trajectory will densely fill in 

the manifold and we use this to compute statistical quantities. Typically, 

however, engineers will perform several MD simulations for reasonably long 

times and average the results. 

7.1.1 Quantit ies to Est imate 

In general, consider a property A at time t: 

A(t) = /(r1(t) , . . . ,rw(<),t;1(i) , . . . )^(i)). 

After an MD simulation we may be interested in its time average over the 

system trajectory: E[A] = jj- X t̂=a ^(0> where NT is the total number of 

time steps. Examples of quantities A include: 

• Average Potential Energy: V(r(t)) = J2il2j>i^i^iit)-rj(t)\), where 

4>{r) is the potential energy between atoms separated by distance r. 

• Kinetic Energy: K(t) ~ \Y^mivi{t)'i-

• Total energy: H(r(t),v{t)) = K(t) + V(r(t)). 

• Temperature: T = §7^—, where K is the average kinetic energy and 

ks is the Boltzmann constant (Equipartition formula with 3 degrees 

of freedom). 
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• Mean Square Displacement: MSD = E[(r(t) - r(0))2], where E[-] 

indicates the average over all N particles. This contains information 

on the atomic diffusivity. The diffusion coefficient, D, is given by 

D=lim±-E{(r(t)~r(0))% 

where 6 is replaced by 4 in two-dimensional systems. 

7.1.2 A Molecular Dynamics Program 

The program consists of the following steps. 

• Read in parameters that specify the conditions of the simulation (e.g., 

initial temperature, number of particles, density, time step). 

• Select initial positions and velocities. 

• Compute forces on all particles. 

• Integrate Newton's equations of motion. This step and the previous 

step are repeated for the desired length of time. 

• Compute the averages of measured quantities. 

One way to set up the initial positions is to arrange the particles in a 

lattice. Then we could give random velocities according to some distribu­

tion. If we are using the micro-canonical ensemble for example, we would 

shift velocities so that the velocity of the center of mass is zero and scale the 

resulting velocities to adjust the mean kinetic energy to the desired value. 

We must choose an appropriate potential for the model. Potential 

energy is typically a sum of pairwise interactions, and is given by V(r) = 

Yli Ylj>i(t>(\rt~~r]\)- For example, the Lennard-Joncs potential is frequently 
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used, which is given by cj)(r) - 4e ((^) - 2 (~) J, where r is the atomic 

separation. In this potential, the term 1/r12 dominates at a short distance, 

and models the repulsion between atoms which arc close to each other, The 

term 1/r6 dominates at a large distance, and models the attraction between 

atoms. Next, we compute the forces using the relationship Ft = — Vr? V(r). 

We then obtain the new positions r(t) and velocities v(t) by applying an 

integrating scheme to solve F — ma. After applying the potentials to each 

particle we use Newton's equations to get new positions and velocities of 

the particles at each new time step i + At. In this section, wc discuss the 

Verlet, Leap Frog, and Velocity-Vcrlct algorithms. 

7.1.3 Integration Algorithms 

After applying forces to each particle, we use Newton's equations to 

get new positions and velocities of the particles at the new time step i + At, 

Assuming wc use the microcanonical ensemble, we would like to hold the 

total energy constant. The integrators that we discuss have the property 

that the total energy drift is minimized, provided that the time steps arc 

sufficiently small. To derive the Verlet algorithm we use a third order Taylor 

expansion: 

r{t + At) = r(t) + v(t)At + l ^ A t 2 + V ( t ) A t 3 + 0(At4) (7.1.1) 
2 m 6 

where we have used r'(t) = v(t) and Newton's law F(t) = mr"(t). Similarly, 

r(t - At) - r(t) - v(t)At + - ^ A t 2 - -r"'{t)At3 + 0(At4) (7.1.2) 
2 771 6 

Adding these equations wc obtain the Verlet algorithm: 

r{t + At) = 2r(t) - r(t - At) + ^ A t 2 + 0(At4) (7.1.3) 
m 
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Given the position of a particle at times t and t — At, we find the position 

of the particle at time t + At. This allows us to compute the new potential 

and forces. 

To acquire the new kinetic energy and temperature we need to compute 

the velocity. A simple way to compute the velocity is to subtract (7.1.2) 

from (7.1.1) to obtain 

r(t + At) - r{t - At) = 2v{t)At + 0(At3). 

Then, 

v{t) = r{t + At)-rit-At)
+Q(Af). w 2At y ' 

To derive the Leap-Frog algorithm, we compute velocity at half time 

steps, 
/ At\ ( At\ }{t) . 

"(, + TJ = "('-TJ + ^ 
and at full time steps we compute the new positions, 

r{t + At) = r(t) + v (t + — ) At. 

It turns out that this method yields the same trajectories as the Verlet 

scheme. However, since r and v are computed at different time steps, we 

cannot compute the total energy. 

Another algorithm that will turn out to be equivalent to the original 

Verlet scheme is the Velocity-Vcrlct algorithm. To obtain the new positions, 

we use a second order expansion 

r(t + At) = r(t) + v{t)At + ^-At2. 

To obtain the new velocities, use a second order expansion, averaging the 

forces at t and t + At. 

/ N f(t+At) + f(t) A 

v[t + At) - v(t) + ~ —L J-AJ-/\t. 
2m 
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To reduce the number of flops, we store v(t) + ^ A t , which are computed 

in both steps. This algorithm generates the same trajectories as the original 

Verlet scheme, in a more efficient manner. 

7.2 Other Stochastic Techniques 

It is possible to perform MD in other ensembles. Instead of keeping 

the total energy constant, we could instead keep temperature or pressure 

constant[25, 46]. MD has several shortcomings. We note that quantum 

laws hold rather than Newton's law, and perhaps the Schrodinger equation 

should be used. However, for most particles, the classical approximation is 

valid. Quantum effects become important if temperature is low, and if the 

particles are very lightweight (H2, He, Ne for example.) There are methods 

such as quantum molecular dynamics and quantum Monte Carlo, which 

take these quantum effects into account. However, these methods arc much 

more demanding in terms of computational power. 

The main disadvantage of MD is that many applications require short 

time steps, on the order of 10~15s [49], Realistically, we can run the simu­

lation on the order of microseconds, but to obtain the desired quantities of 

interest we need to run the simulation for much longer time. 

Monte Carlo methods arc different in that they approximate the system 

by following a directed random walk. These methods are very popular for 

studying static properties of a system. Kinetic Monte Carlo methods [49, 12, 

34] approximate the evolution of a system in time. These methods overcome 

the time scale problem by using the fact that the long-time dynamics for 

certain types of systems consists of diffusive jumps from state to state. In 

the kinetic Monte Carlo method, we assume that all processes occur with 
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known transition rates. We can expect a considerable savings in cost over 

MD since there are typically long periods of inactivity between transitions 

among states. 

7.3 Random Walks and the Diffusion Equation 

In this section, we examine the unrestricted one-dimensional random 

walk problem, and explain its connection to the diffusion equation (2.4.1). 

The following derivations can be found in detail in [52], Assume that a 

particle starts at the origin of the X-EIX1S and takes steps of length 6 to the 

left or to the right. The probabilities for the increment x, are P(x, = 6) == p, 

and P(xi — —5) = q. We view {re,} as independent identically distributed 

random variables which take on the value 5 if the particle moves to the 

right at the ith step and —5 if the particle moves to the left. The position 

of the particle after n steps is Xn = Y^=i xi- We compute the expectation 

of a single Xi, 

E{xi) = SP{x, = 5) + {-6)P{xi = -5) = 6p-6q = {p- q)5. 

We use linearity to compute the expected value of Xn, 

( n \ n 

5 > < ) = X ) E ^ = (p - dSn-

To compute the variance, we note that 

E[x2} = 52P(Xi = 5) + (-5)2P(Xi = -5) = 52(p + q) = <52, 

and so 

^(xi) = E{x2} - E[x,)2 = 52 _ (p _ q)252. 
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Since the {XJ} are independent, 

a\Xn) .= a2(J2 Xl) = JT a\x%) = n5\l - (p - q)2) 

= n82(l - (p2 - 2pq + q2)) = nd2{l - (p2 + 2pq + q2) + 4pq) 

= n52(l - (p + q)2 + Apq) = 4pq52n, 

where we have used the fact that (p+ q)2 — 1. 

To derive the Brownian motion model we assume that wc have exper­

imentally found the average displacement of the particle per unit time c, 

and the variance of the displacement to be D. If we assume that there are 

r collisions per unit time, then after r steps, 

(p - q)Sr « c, 

and 

4pq82r^D. (7.3.1) 

If we assume that p — q — | , then (7.3.1) becomes 52r s=s D. 

To make the problem continuous, we take the step length <5 —> 0 and 

r —> oo. If p = g = | , then it is clear that 82r —> D in the limit, lip ^ q, 

then 
c 

8r —> as 8 —> 0 and r —> oo. (7.3.2) 

This, in turn, implies 

Af)QQ 

4pqS2r = 4pg^(5r) —» <5 —> 0, as 5 —> 0, r —> oo. 
p~q 

But we know that the variance should tend to D =/= 0 in this limit, so we 

require p — q —> 0 as 5 —> 0, r —* oo. Hence (7.3.1), along with the fact that 

P ~~> ^, </ —*• \, imply t h a t 

82r -+ D, as <5 -» 0, r -* oo. (7.3.3) 
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Since r is the number of steps per unit time, then one step occurs 

in 1/r = r units of time, and n steps occur in n/r = nr time units. In 

our random walk model, we would like to obtain the probability that the 

particle is at position x at time t, given that it started at x — 0 at time 

t = 0. After, n steps, wc require that Xn = x. Since n steps occur in nr 

time units, wc also require that nr = t. 

Wc define v(x,t) = P(Xn = x) at time t — nr to be the probability 

that at time t, the particle is located at point x. We could determine v(x, t) 

explicitly using the binomial distribution, but since wc are interested in 

the limit as the position and time steps 5, r —> 0, wc instead construct a 

difference equation satisfied by v. Wc have: 

v(x, t + T) = P{Xn = x at time t + r) 

= F(X„ — x - 5 at time t) p + F(X„ = x + 8 at time i) q 

= pv(x - S,t) +qv(x + 8,t). (7.3.4) 

Using Taylor's formula, 

v(x, t + T) — v(x, t) + Tvt(x, t) + 0 ( T 2 ) , and 

v(x ±5,t) = v{x,t) ± vx(x,t) + -S2vxx(x,t) + 0{83). 

Substituting these into (7.3.4), 

v(x,t) + rvt(x,t) + 0( r 2 ) = v(x,t + T) — pv(x — 5,t) + qvix + 5,t) 

= p(v(x, t) - 5vx{x, t) + -52vxx(x, t) + 0(53)) 

+ q{v(x,t) + Svx(x,t) + -62vxx(x,t) + 0{63)) 

I 
= (p+ q)v + 5{p - q)vx + -(p + q)52vxx + (p + q)0(83) 

= v + 8(p- q)vx + -S2vxx + 0(83), 
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so that 

TVt + 0 ( r 2 ) = 6{p - q)vx + -52vxx + 0(53) 

or 
r 1 c2 

vt = - (p - g)v* + o — u ^ + O ^ A ) + O(r). 

Taking (5 —> 0, r —> 0 yields the limiting partial differential equation 
dv dv 1 d2v 

where we have used (7.3.2) and (7.3.3). The equation (7.3.5) is the diffusion 

equation in one dimension with diffusion coefficient D. 

Example 7.3.1. Consider the diffusion problem 

I r. f= U 

(7.3.6) 
Ut{t,x) = ^Duxx(t,x), t>0,xe 

\u(0,x) = 6o(x). 

This corresponds to a random walk in which every particle lies at x — 0 

at time t = 0. We simulate the random walk up to a final time of t = 1 

several times and compare the results with the solution to (7.3.6), 

1 / x2 

u(t, x) — . •. .. cxp V2^Di *A 2Dt 

Results are shown in Fig. 7.1. 

7.3.1 Absorbing Boundary Conditions 

In the case of an absorbing boundary at x — I, the particle exits at 

x = I and cannot move back into the region x < I. Again, let p denote the 

probability of a jump to the right. Then, 

v(l,t + T) = pv(l - 6,t). 
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u(t,x) at t = 1 
0.05 

0.04^ 

0.03 

0.02 

0.01 

10 20 

Figure 7.1: Kernel smoothed trajectories of 50 random walks at t = 1. The 
mean value of these random walks is shown in bold, and the true solution 
is the dashed line. 

We have essentially given the condition that there is a zero probability of 

moving left from the right at the point x — I. By Taylor's theorem, 

v(l, t + T) = v{l, t) + vt(l, t)r + 0 ( r 2 ) , and 

v(l -6,t) = v(l, t) - vx(l, t)d + 0{62). 

Thus, 

v(l,t) + Vt(l,t)T + 0(T2) = v(l,t + T) =pv(l-5,t) 

= pv(l,t) -pvx(l,t)6 + pO{62). 

Combining terms, 

(1 - p)v{l, t) = -vt[l, t)r -P5vx(l, t) + 0 ( r 2 ) + pO(62). 

Now taking r, 6 —• 0, we have 

( l - p M M ) = 0 ( r ) + 0(J) . 

Hence, v(l,t) = 0 is the corresponding boundary condition for the continu­

ous problem. 
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7.3.2 Reflecting Boundary Conditions 

In the case of a reflecting boundary at x — I, the particle may move 

to the right with probability p, and in this case, the particle ends back at 

x = / at time t + r. Then, the number of particles at x = / at time t is 

given by sum of the number of particles that came from x = I — 6 and the 

number of particles that jumped to the left from x = I. Therefore, 

v{l,t + r) = pv(l - S,t) +pv(l,t). 

Using Taylor's formulas, 

v(l,t) + vt{l, t)r + 0 ( r 2 ) = v(l, t + r) =pv{l - 5, t) +pv(l, t) 

= pv{l,t) -pvx(l,t)6 + pO(52) +pv(l,t). 

Now, collecting terms, 

v{l, t)(l - 2p) + vt{l, t)r + 0 ( r 2 ) = -pvx{l,t)8 + p 0{52). 

Noting that 2p - 1 = 2p - (p + q) — p - q, we have 

v{l,t)(P ~ Q) + Ml,t)r + 0(T2) = -pvx(l,t)5 + pO{52). 

Multiplying by S/T, 

V{1, t)(p - q)5/T + vt(l, t)6 + 0(T5) = -pvx(l,t)5
2/T + p 0(6*/T). 

Next, taking r, 6 —> 0, we obtain 

v(l,t)c= -—vx(l,t). 4q 

If p = q = 1/2, then we get 0 = —^Dvx(l,t), or simply vx(l, t) — 0. 
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The probability transition matrices for the case of reflecting or absorb-

le following form, for the case of five grid 

The parameter a — 0 corresponds to 

ing boundary conditions takes on t 
" a 1 -a 0 0 0 

q 0 p 0 0 
points, 0 q 0 p 0 

0 0 q 0 p 
0 0 0 1 - a a 

a reflecting boundary, and a = 1 corresponds to an absorbing boundary. 

7.3.3 The Stationary Problem 

To obtain the stationary elliptic problem, we simulate the random walk 

for a sufficiently long time. This results in approximating the equation 

u"(x) — 0. We pose this as a two-point boundary value problem. A nonzero 

Dirichlet boundary condition may be thought of as a source or sink of par­

ticles on the boundary. Implementing this boundary condition is discussed 

in detail in Chapter 9. 

Consider the stationary diffusion problem: 

u" = 0, 

u(0) = 100, 

u(l) = 200. 

i e f i = (0,1), 

We simulate the random walk and approximate the gradient by computing 

the difference in the number of particles at x — 1 and x — 1 — Ax, at some 

final time tf. Wc repeat this process N times and compute the gradient 

by taking an ensemble average. We expect the error to decrease as N 

increases. In fact, if we take a number of realizations of the process to give 

a distribution of ensemble averages, wc expect the standard deviation of 

the M realizations to follow the asymptotic relationship 

a sa Cx/VN. (7.3.7) 

In Fig. 7.3, we see that increasing N reduces the variance as expected. 

116 



Figure 7.2: 50 random walks, with the mean shown in bold. 

Alternatively, we compute the gradient at each time step for t £ (fy,, i/), 

where % > 0 is the burn time for the simulation, and compute the gradient 

as the mean of these values. If the process is ergodic, wc expect that this 

yields similar results to computing the ensemble average as described above, 

and in particular we expect to sec the asymptotic relationship 

o « ct/y/tf - tb. (7.3.8) 

In Fig. 7.4, we see that increasing the final time reduces the variance. 

Evidence of (7.3.7) and (7.3.8) is shown in Fig. 7.5. 

We could also model diffusion with forcing, au" = / , in a region by 

adding particles at points in the domain as dictated by / . 
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Figure 7.3: Computation of the gradient at x = 1 for 1000 realizations. We 
compute each gradient by taking the ensemble average of N random walks. 
Left: N = 100. Right: N = 400. 
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Figure 7.4: Computation of the gradient at x — 1 for 1000 realizations. We 
compute each gradient by taking the average gradient for each time step, 
for each t € (tb,tf). Left: tf =• 10. Right: tf - 50. 
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a vs. t 

Figure 7.5: Figure shows results of increasing n and increasing the final 
time tf. A line of slope -1/2 is shown in each case. Left: Relationship 
between n and a. Right: Relationship between tf and a. 
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Chapter 8 

FIRST RESULTS: CONTINUUM 
COUPLING 

8.1 The Deterministic Problem 

In this section, wc analyze the problem in which we have continuous 

diffusion in two adjacent regions, with differing diffusion coefficients. We 

solve the problem by constructing a fixed point iteration that leads to the 

solution on the boundary. We first solve the Dirchlet to Neumann problem 

in one region, pass the Neumann boundary condition to the second region, 

then solve the Neumann to Dirichlet problem in the second region. We 

repeat this process, which creates a fixed point map. We want to find 

conditions on the problem so that this fixed point iteration converges. 

8.1.1 The Fixed Point Iteration 

Consider the deterministic problem in one dimension: 

X ' = 0, x e f i i = (0,1), 

«i(0),= a, 

ia1u[{l) = a2u'2(l), 

' \ U l ( l ) = u2(l), [ ' ' ' 

u% = o, i e n 2 = (i,2), 
M2) = 0-
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The analytic solution is two straight lines that meet at the interface x = 1, 

and the value at the interface is 

U l ( l ) = t t 2 ( l ) = !^±^ i (8.i.2) 
1 + r 

where r = — represents the ratio of diffusivity coefficients of regions Q\ and 

re­

consider solving the system itcratively. That is, we find iterates {u[ }̂ o> 

{ 4 }i=o- Under desirable conditions, the solution to (8.1.1) is given by 

limfc_00Ui (x) and lim/c_00U2 (x). We may also view this as a fixed point 

problem, in which wc find a fixed point of the map g : ixi(l) —> xxi(l). The 

iterates ui(l), 1x2(1) are given by 

u[ \l) — u2 (1) — c0 (initial guess for solution at the interface), 

F o r i - 1,2,... 

(uS<))'(l) = « S < _ 1 ) ( l ) - « . 

(«?))'(l) = r(t«?))'(l), (8-1-3) 

u»( l ) = t4 i )(l). 

The first few iterates are then given as: 

(40))'(1) - co - a, 40)(1) = P- rco + m , 

^ X ) ) ' ( l ) = / 3 - r c o + ( r - l)a, 4^(1) - /3(1 - r) + r2c0 + ( - r 2 + r)a, 

and inductively, 

k-1 k 

uf{l) = / ^ ( - r f + (-O'co - a £ ( - r ) \ (8.1.4) 
2=0 1=1 

Provided that \r\ < 1, the limit of (8.1.4) as k —> 00 agrees with the analytic 

solution (8.1.2). 
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8.1.2 Convergence Analysis for the Fixed Point Map 

Consider the more general diffusion coupling problem with forcing, 

' < = / i , i 6 f l i = (0 , l ) , 

u(0) = Q, 

i fr^(l) = '̂2(1), 
\ u i ( l ) = u2(l), 

< = /2, i e f i s = (i,2), 

ku2(2) = /3, 

where r = ^ represents the ratio of diffusivity coefficients of regions fix and 

^2' We summarize the iterative technique: 

Given initial guess «2(1) — CQ, loop until convergence. 

Given u\(l) — 1*2(1), solve for u\ and compute a\u\(l). (8.1.5) 

Given a2u'2(l) = o,iu\(l), solve for u2 and compute '^(l)- (8.1.6) 

Each iteration consists of solving two boundary value problems. Let g2 

denote the Neumann-to-Dirichlet problem, (8.1.6). Specifically, #2 : M. —> R, 

it is the map that takes values of the flux a2u'2 (1) at the boundary and 

returns values of the concentration 1*2(1) at the boundary, for the problem 

I «2(2) = /?, 
(~a2u2(l) = h. 

Wc would like to compute the Frcchct derivative -r,—%TTV TO do this, wc 

consider the perturbed problem, 

'w'i = h, iefi2 = (l,2), 
< w2{2) = (3, 
^a2w'2(l) — h + 8. 
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We consider the change in 'u2(2), given the change h —> h + 5. Let e2 — 

w2 — u2, so that e2 solves the problem 

'4 = 0, xen2 = (i,2), 
e2(2) = 0, 

-a2w'2{\) = 6. 

The Frechet derivative is expressed as 

^ _ l i m ^ ( D - U 2 ( l ) = l i m e 2 ( l ) 

dh <5-o 5 «->o 6 

Then e2 is linear, so that the analytic solution is e2 = ~—x + —. Hence, 

e2(l) = —. Next, we compute the Frechet derivative, 

(8.1.7) 
dg2 

dh 
— lim —:— 

(5^0 5 
= lim —- = 

6->o a2S 

1 

a2 

We perform a similar computation for the Dirichlet-to-Neumarm prob­

lem, (8.1.5). Call this map gx : M. —> R, the map that takes values of Ui(l) 

at the boundary and returns the flux —axux(l), for the problem 

' < = / i , x e f i i = (o , i ) , 

ui(0) = a, 

>u1(l) = /i. 

Again, we consider the perturbed problem 

i e f l i = (0,1), 

Let ei = ui\ - u i , so that ex solves 

e'/ = 0, x 6 f l , = (0,1) 

6i(0) = 0, 

ei(l) = (5. 

The Frechet derivative is 

dgi .. - a x u / x ( l ) + a xu x ( l ) - a x e x ( l ) 
—r- = hm — - = lim - . 
dh s-+o 5 s^o 8 
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Provided that a\ is constant, the analytic solution is t\{x) = 8x, so that 

e'(l) = 8. Then the Frechet derivative becomes 

h m — ~ ^ = hm—^- = -av 8.1.8 

Next, define the map g to be the composition g = gi og1, the map that 

takes values u\ (1) and returns the next value in the iteration Uj (1). 

Then, the Frechet derivative of c/ is 

dg _ dg2 dgx _ _ a i 

d'Ui(l) c/(a2'u2(l)) dui(l) a2 

By Theorem 2.2.2, the fixed point iteration converges provided that 

< 1. (8.1.9) 

In Fig. 8.1, we see evidence of (8.1.9). 

8.1.3 Applying Relaxation to the Fixed Point Problem 

Suppose that instead of computing u\ (1) = u\ (1) at each iteration, 

we take a weighted average of the Dirichlet value given from the continuum 

problem with the Dirichlet value at the previous iteration, Uj (1). That 

is, during each iteration we limit the amount that the boundary condition 

can change. Upon obtaining 1x2(1), we compute ui(l) using the map g^ : 

(u«(l) ,« ( i _ 1)( l)) -» uW(l). defined by 

( f e ^ U ) , i4 i - 1 )(l)) - AK(rx)(l) + (1 - A)uf(l), (8.1.10) 

where the relaxation parameter A e [0,1). The map corresponding to one 

fixed point iteration is now given by g — g$ o g2 o gx. To compute the 

spectrum, we need the Frechet derivatives, 

dgs , <9c/: 3 
^ T - 7 ^ 7 = ( l - A ) . 

au
{r1}(i) ' 5uf(i 
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Figure 8.1: Concentration at the interface as a function of iteration, r = 
1/2,2,1. 

To determine the effect that changing u (/_1)(l) has on u[ (1), we apply the 

chain rule to get 

dg = dff3 dgi dg2 dg3 ^x_ , _ x) 

dui(l) dui(l) dUl(l) d(a2u'2(l)) du2(l) '' 

The fixed point iteration will converge provided that |A — r( l — A)| < 1, or 

r — 1 
r + 1 

< A < 1. (8.1.11) 

If we consider the optimal parameter A to be the value that minimizes 

|A — r( l — A)|, we see that the optimal value is given by 

A = r / ( l + r). (8.1.12) 
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Figure 8.2: Number of iterations to convergence for varying relaxation pa­
rameters. 

Example 8.1.1. We solve (8.1.1) using a = 100,/? = 500, ̂ ( l ) = 

220, r — 2, for varying parameters A. We iterate until the stopping cri-

M)i ,(i-D terion of \u\ (1) — u\~ (1)| < 10 has been reached. Following (8.1.11) 

and (8.1.12), the iteration converges provided that | < A < 1, with optimal 

parameter | . Evidence of this is shown in Fig. 8.2. 

8.1.4 Reversing the Coupling 

In the event that (8.1.9) is not satisfied, we reverse the direction of 

the coupling to guarantee convergence. We find iterates {u[ }^i, {?4 }£i 

given by the following algorithm. 

(u\ )'(1) = do, (initial guess for gradient at the interface) 

Fori = 1,2,... 

«?>(!) 

4\i) 
,M\' 

[u (i-»y{ l) + a, 

u{;\i) 5.1.13) 

«)/ « ) ' ( ! ) = / ? - < ( ! ) , 

(^r(i) = ^(4°)'(D. 
ax 
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Following the argument as in section 8.1.2, the fixed point iteration (8.1.13) 

converges provided that (02/011 < 1. 

8.2 A Green's Function Approach to Convergence Analysis 

For a general n-dimcnsional problem, wc use the generalized Green's 

function <j) to find a formula for the derivative of the Dirichlet-to-Neumann 

map pi. We similarly find the derivative of the Neurnann-to-Dirichlet map 

g2 in terms of <j>. The problem remains as to how to obtain the derivative 

°f 9 = 92 ° ffi) since this technique only gives a linear functional of the 

Neumann or Dirichlet data. 

8.2.1 The Dirichlet-to-Neumann Derivative 

The Dirichlet-to-Neumann problem is 

' - V - ( a V u ) = /> x £ fi, 
< u - A(x), x e r C dtt, 

u = a(x), x e dQ \ r . 

The variational formulation is to find u € H1^) such that u = A for x e F, 

u = a for x € dtt \ F, and (aVu, Vu) = (f,v) for all u 6 H^{Q). The 

quantity of interest is 

q(\) = -(advu,ip)r, 

a functional of the flux on the common boundary F. Following the method 

described in [51], the adjoint problem is 

- V • (aV<£) = 0, i e S l , 

4> — ip, x e F, 
0 = 0, i e M \ r , 
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Note that this problem satisfies 

(/,</>) = ( -V-(oVu) ,0) 

= (aVu, V</>) - (adr,u, <j>)r - {ad^u, 4>)on\r 

— (aVu, V0) - (advii, ip)r 

= ( -V • {aV(p),u) + {adrt^),u)r + {ad^uj^r - (advu,tp)r 

= (d^ , A)r + (ac\</>, a)aan\r - (o^u, ^ ) r . 

Hence, the quantity of interest is written as 

q(X) = -{adr,u,tlj)r = (/,</>) - (adv<p,X)r - (adv(t),a)dQ\r. 

To compute the Frechet derivative, consider the perturbed problem, 

-V-(aVw),= / ^ e f i , 
u; = A(x) + <5(x), x £ T C 311, 

_K7 = a(x), i e f f l \ T. 

Then, we compute the difference q(X + 6) — q(X), 

q{X + 5)-q(X) - -{advw, ip)r + (advu, ^ ) r 

= (/ , 4>) - (adv<j>, X + 5)r - {ad^, a )an \ r 

- ( / , 4>) + {adv4>, A) r + (adv<j), a)m\r 

= -(adr,<l>,6)r. 

The Frechet derivative in the direction 6(x) is 

V A g(A)- ( J=- (aa^ ,d) r . (8.2.1) 

To verify this, 

||(?(A + 5) - q(X) - VA9(A) • <J|| || - (adv<P, 6)r + (adn<t>, 6)r\\ 

\\S\\ PI 
0. 
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8.2.2 The Neumann-to-Dirichlet Derivative 

The Neumarm-to-Dirichlct problem is stated as 

' - V - ( a V u ) = / , i G f l , 
—adnu = X(x), x € r C dfl, 
u = P{x), x<Edfl\r. 

The quantity of interest is 

q(X) = (u,ip)x 

a functional of the solution on the boundary T. The adjoint problem is 

-V • (aV</>) = 0, x e 0, 

- a ^ 0 = ^(z), x G T C <9f2, 

= 0, x e ^ n \ r . 
.2.2) 

We note that 

(/,</>) = ( -V- (aV U ) , ^ ) 

= (aVu, V0) - (ac^u, </>)r - (advu, (j))m\r 

= (aV«,V^) + (A,0)r 

= ( - V • (aV0), u) + (adv(p, u)r + {adv<p, u)an\r + (A, </>)r 

= - ( u » r + (adv^,/3)da\r + (A,0)r. 

After rearranging terms, 

<?(A) = (w,V')r = -(/,<£) + {adr,4>,/3)m\v + (>; .2.3) 

In order to compute the Frechet Derivative, we perturb the flux at the 

common boundary T to obtain the problem 

-V • (aVto),= / x e Q, 

—advw = A(x) + 5(x), x € T c <9 ,̂ 

w = p{x), xedn\r. 
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Then, 

q{\ + 5)-q{\) = - ( / , 0 ) + ( o ^ ) ^ ) a n \ r + (A + <J)0)r 

+ (/,0) - (a0„,/?)an\r - (A,</>)r 

- (<U)r-

The Frechet Derivative in the direction 8(x) is 

VA<z(A) • <5 = (M)r - (8.2.4) 

To give an example, we verify that (8.2.1) and (8.2.4) agree with the 

formulas (8.1.8) and (8.1.7) in one dimension. For the Dirichlet-to-Ncumann 

case, we have the problem 

(-alU" = f, i e ( 0 , l ) , 

I u(0) = a, 

(u(l) = X, 

and the adjoint problem, 

- a i 0 " = O, a; €(0,1), 
0(0) = 0, (8.2.5) 

0(1) = V-

If 0 = 1, the quantity of interest is q(X) = u{\). According to (8.2.1), the 

derivative is given by q'(X) = —ai0'(l). If we solve the adjoint equation 

(8.2.5), we get 0'(1) = 1. The derivative is then q'(X) — —a\, in agreement 

with (8.1.8). 

In the Ncumann-to-Dirichlct case, the problem is 

-a2u" = f, x 6(1,2), 
-a2 'u'(l) — A, 
u{2) = /?, 
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and the adjoint problem, 

' - a 2 0 " = O, x € ( 0 , 1 ) , 

< - o 2 0 ' ( l ) - 4>, (8.2.6) 

> ( 2 ) = 0. 

Assuming ip = 1, the quantity of interest is q(X) = u ( l ) . By (8.2.4), wc 

have g'(A) = 0(1). The solution to the adjoint equation (8.2.6) gives us 

(f)(1) — l /a2 . The derivative becomes q'(X) = l / a 2 , in agreement with 

(8.1.7). 

8.3 Adding Randomness 

We discuss ways of adding stochastic behavior to (8.1.1), and explain 

the effect that a random boundary condition, or a random forcing function 

has on the fixed point iteration. Wc also give an application of the Green's 

function approach to the Ncumann-to-Dirichlct map discussed above. 

8.3.1 Randomness at the Interface 

Consider the problem (8.1.1), where at each iteration we add a random 

variable with density function N(n,a2) to the interface. This models the 

situation where the values at the interface are obtained from a stochastic 

technique. This is certainly the case if the value at the interface comes from 

results from an atomistic simulation in an adjacent region, as we explore in 

Chapter 9. In particular, suppose that (u |°) ' ( l ) = u(j0(l) - a + Xu where 

Xi ~ N{/j,a2). We define the sequence 
{u<2}(l)}kLo analogously to (8.1.3), 

and it turns out that 

fc-1 k k 

4fc)(D = / ? £ ( - * • ) ' + (-r)"co -aJ2(~rY + £ ( - r ) ^ . 
»=0 i = l i = l 
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As expectation is linear, 

E £(-r)% 
i = i 

= X>r)>-
i=l 

Since Aj's arc independent, 

/ k 

var £ ( - ! • ) % U ^ - r f v a r ^ ) , 
i = l 

so that E t i ( - r ) ' A » ~ ^ ( E t i t - O V . E ^ r 2 ^ 2 ) - Provided that |r| < 

1, we let fc —* oo to obtain 

ui(l) = u2(l) = 
ra + 6 

+ A*, where A* ~ JV —r 
:M-1 + r ' " ' '• " V.l + rr"' 1 - r 2 

We note that the variance increases without bound as r approaches 1. 

8.3.2 Random Forcing 

The preceding argument includes adding randomness to the bound­

ary condition used in the coupling. A different problem involves adding a 

random forcing function on one of the sub-domains, i.e., 

r - < = /(A), 
ui(0) = a, 

(ru'1(l) = u'2(l), 

\ u i ( l ) = u2(l), 

A = o, 

i £ f i i = (0,1) 

xett2 = (1,2) 

(8.3.1) 

U(2) = /?, 
where A is some random variable. 

For example, in the case where /(A) = A, the analytic solution to 

the problem in Hi is U\(x) = — |Ax2 + (uj(l) + \\ — a)x + a, and thus 

u[(l) = Ui(l) — |A — a. To iterate, we use the analytic solutions at each 
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iteration, 

u[ (1) = u2 (1) = Co (initial guess for solution at the interface), 

for i = 1,2,... 

(uSi))'(l) = « ? " 1 ) ( l ) - ^ - a , 

(««)'(l) = r(ti«) '(l), 

4 i ) ( l ) = ^ - r ( 4 ) ) ' ( l ) , 

ui')(l) = t4 i )(l). 

The result, considering that A is constant, is 

rv J. n. * /v 

4fc)(l) = P^i-r)* + (~r)fcc0 - a ^ " ^ ~ f E ^ ' 
1=0 «=] -(=1 

Taking the limit k —> oo, wc obtain W2(l) = —jx^—j provided that \r\ < 1. 

On the other hand, if A is a random variable with density iV(/u,iT2), 

then 

fc-l k - k 

trt-(l) = /?£(-»•)< + (-r)*Co - a £ ( - r ) < - ± J > r ) ' A , 4 f c ) u ^ -, - ^ •, 2 
i = 0 »=1 i = l 

where \ ~ A^/x, <r2). Then, using a similar argument as described in section 

8.3.1, 

Assuming jr| < 1, wc take the limit k —> oo, to get 

P + ra (\ r 1 r2 

h A , where A ~ N [ u, „. 
1 + r V21 + r r ' 4 1 - r 2 u2(l) = ^ - + A*, where A* ~ AT /x, rer2 . (8.3.2) 

We experimentally find that the sample mean and variance of u2 (1) ap­

proach that of (8.3.2) as k —-> oo for a variety of r, fj,, a, a, (3. 
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8.3.3 The Green's Function Representation 

Consider the continuum problem, 

' -V- (a 2 Vi t 2 ) = / , x G tt, 

< azSjjU't = X(x), x € T, (8.3.3) 

^U2 — P(x), x e dU \ F, 

where A(x) is a random vector representing the flux on F. This may model 

the case in which diffusion is coupled with a stochastic model through the 

boundary V. Assume that we have a distribution for A and wish to sample 

from this distribution to compute a quantity of interest, q(X) — (u, ip)?. The 

quantity of interest is a linear functional describing the concentration on T. 

Obtaining several samples of q(X) might involve solving (8.3.3) repeatedly 

for each realization of A. Alternatively, we may use the Green's function 

representation of the Neumann to Dirichlct map to speed up the sampling 

process. Assuming we have obtained the solution </> to the dual problem 

(8.2.2), we recall (8.2.3) to get 

q(X) = (u2,ip)r = -(/,</>) + (a2dv<p,(3)an\r + (A,</>)r. 

To summarize, if we have a distribution of A, we easily compute several 

values of q(X) by solving only one adjoint problem. We may also use the 

methods described in [19] to increase the efficiency of the sampling process. 
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Chapter 9 

FIRST RESULTS: ATOMISTIC TO 
CONTINUUM COUPLING 

9.1 Overview 

The coupling of atomistic and continuum models has emerged as a 

critical component in computational materials science. For a multiscalc 

process, the finite clement method may fail to describe processes occurring 

on a small time or spatial scale. For example, a material could have a crack 

or deformation that occurs on an extremely small scale, yet still affects the 

macroscopic behavior of the problem. In a crack tip region, the laws of 

linear elasticity fail to hold and we need an atomistic simulation to model 

the problem. However, fully atomistic simulations of many domains arc 

computationally infeasiblc. The atomistic-to-continuum methods address 

this problem by performing a continuum calculation on a majority of the 

domain, and an expensive atomistic simulation on the subset of the domain 

where the atomistic detail is needed. For example, Rudd and Broughton [42] 

discuss multiscale computations for a rotary nano-engine with a diameter of 

30nm. The engine drives Salmonella and E. coli bacteria by rotating close 

to 20,000 rpm while using very little energy. The engine is too small to obey 

continuum principles, as a continuum model fails to describe surface effects 
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[24]. However, a fully atomistic model results in billions of unknowns. Some 

of the popular atomistic-to-continuum methods include quasi-continuum 

[44], Finite Element-Atomistic (FEAt) [29], and Coarse Grained Molecular 

Dynamics [42]. 

The primary issue in this chapter is to give a mathematically sound 

framework for coupling stochastic and deterministic descriptions of nature. 

These two kinds of descriptions apply at different scales and describe differ­

ent phenomena that nevertheless interact closely. Stochastic descriptions 

often apply at very fine scales, describing the detailed motion and inter­

action of the smallest building blocks, e.g., molecules or bacteria. Deter­

ministic models usually apply at larger scales and describe the aggregate 

behavior, e.g., fluid flow. 

We note that error is also a difficult issue for stochastic-deterministic 

coupling. For a stochastic simulation, there is a statistical or probabilis­

tic description of error and uncertainty at each step. On the other hand, 

a deterministic simulation is affected by deterministic error, such as dis­

cretization error. Hence, the description of uncertainty and error between 

the two types of simulation is fundamentally different. 

In this chapter, we formulate coupling between stochastic and deter­

ministic models as an iterative process, and begin to study the convergence 

analysis for the iterative process. In a stochastic simulation, the quantities 

of interest are random variables computed as statistical averages, generated 

from a finite number of realizations of the simulation. On the other hand, 

a deterministic problem produces one solution for each data set, and when 

the data input is random, the output is another random variable or field. 

Hence, in a coupled system the information that is passed back and forth 

136 



are random variables. In the case of feedback between the components we 

have to describe a framework of iteration that converges to the solution of 

the complete system. 

In [1], the authors formulate a hybrid particle/continuum algorithm to 

solve a diffusion problem, where the particles follow a random walk on a 

lattice. The domains for the two models overlap, and the flux is matched 

in the common region. Motivated by [1], we pose a problem that couples 

a Brownian motion model and a continuum model, with non-overlapping 

domains. This idealized model has Brownian motion on a lattice next to 

a material treated as a continuum. We make an initial guess for the con­

centration at the boundary, then solve the Brownian motion model. As 

this is a stochastic model, we simulate many realizations, then obtain an 

approximate distribution for the solution value on the interface. We sample 

from this distribution and pass these values into the continuum region as 

boundary conditions. This, in turn, provides another distribution which 

is passed back into the Brownian motion region. This process is repeated 

until some convergence criteria is met. 

The Brownian motion region yields random variables that are associ­

ated with probability densities as the computed quantities. The accuracy 

is improved by taking more realizations. In this case, the continuum model 

describes the expected value of particle behavior, but does not model indi­

vidual particles. 

As described, the process gives a sequence of distributions. We there­

fore should discuss convergence of this sequence. Wc view this problem as 

a fixed point problem for the probability distribution on the interface. Wc 

addressed convergence for the analogous fixed point iteration for coupled 
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continuum models in Chapter 8. For the continuum-continuum problem, 

we may obtain the derivative of the iterative map G, and show under cer­

tain conditions that we have \G'\ < L < 1. Let G& denote the map of the 

atomistic to continuum model, where we conjecture that G$ —> G as 5 —> 0, 

and so under appropriate conditions, \G'g\ < L + e < 1. In other words, 

since the map G$ approximates the continuum map G, we conjecture that 

it inherits the convergence properties of the continuum map. 

Another important question that arises is whether we can interchange 

the limits of the number of samples approaching infinity, with the number 

of fixed point iterations approaching infinity. This is a practical issue, If the 

continuous region can be solved relatively cheaply, then it may be more cost 

effective to run several fixed point iterations before increasing the number of 

samples. However, if the continuous region involves an expensive calculation 

then we may be better off with a large number of samples for each fixed 

point iteration. 

Another interesting subject is numerical error. The accuracy for the 

continuum model is controlled by numerical error, and by sampling from 

the distribution at the interface. We would like to control the numerical 

errors so it does not significantly bias the densities computed. 

9.2 Coupling a Random Walk with a Continuum Model 

138 



Consider diffusion on two adjacent regions fij and f̂ , with diffusivity 

a\ and a2, respectively: 

' a\u'{ = 0, x <E f i x = [a, b], 

ui(a) — a, 

Uiu'1(b) = a2u'2(b), 

\ui(b) = u2{b), 

o2it2 = 0, i e S l 2 = [6, c], 

,u2(c) = 0. 

We simulate the Brownian motion simulation in Qi and pass the results 

to the continuum problem in fi^ Since we are considering a stationary 

state problem, we run the atomistic simulation for a sufficiently long time 

in order to eliminate the initial transient behavior. 

Assume the Brownian motion region [a, b] is computed on a lattice with 

grid values a = XQ < x\ < ... < xm = 6, where Xi — Xi-\ = Ax. We need 

a way to convert between concentration and the number of particles at a 

point. Let c(x) be the concentration per unit length at point x, and n(x) 

be the number of particles at grid point x. Given the concentration C(XJ) 

at a grid point Xi, we need to approximate n(x,), the number of particles 

at Xi. We assume the particles arc evenly distributed in a region of width 

Ax about each x*. We denote this region as U = [xi — Ax,Xi + Ax) for 

i = 0, l , . . . ,m. Since the concentration is defined at all points in [a,b] 

including the endpoints, we effectively simulate Brownian motion in the 

region [a — Ax,b + Ax). We write this interval as 

[a- Ax, b + Ax) = \Jli. 
i=0 

The particles in each interval Li have concentration C(XJ). The number of 

particles at the grid point is therefore approximated by c(xi) multiplied by 
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the interval length Ax. Hence, for i = 0,1,..., m, 

n(xi) = round(c(xi)Ax) 

c(xi) = n(xi)/Ax. 

Wc simulate the atomistic simulation in Sl\ first, using u\(b) = c0 as an 

initial guess for the concentration at the midpoint. We then pass the flux 

a\u'(b) as a boundary condition into f^ Suppose we run the simulation up 

to a final time of tj, so that 0 < t < tj. Define the rate r to be the number 

of steps per time unit. The total number of random walk steps to take is 

then 

T = rtf. 

When we set the initial configuration of particles, we enforce the boundary 

conditions by requiring that the number of particles at XQ and xm be 

n(xo) — round(c(x0)Ax), n(xm) = round(c(xTO)Ax). (9.2.2) 

Now for each of the T time steps, wc move each particle to the right or left 

with probabilities p and 1 - p, respectively. If a particle falls outside of the 

range [a,b], we remove it from the simulation. After wc have moved every 

particle, we again enforce the boundary conditions (9.2.2), 

One way to approximate the gradient at the interface b is to compute 

the difference in particles between the grid points xm and xm — Ax at the 

final time. That is, 

„ , ( & ) « _ _ £ _ _ . _ (9.2.3) 

We may then follow the approach described in section 7.3.3, where we view 

one "realization" of a gradient as the ensemble average of the N gradients, 

<(b) * 4 f »(<)(*")-f(*™-i), (9.2.4) 
1 W N ^ Ax2 v ' 

140 



Increasing N has the effect of decreasing the error in the gradient. We 

repeat this process M times, to get a distribution of the sample means. 

We note that this means the random walk is simulated a total of NM 

times. To clarify, increasing N reduces the variance of the distribution, 

while increasing M has a smoothing effect on the histogram of the sample 

means. 

Alternatively, we may opt to compute (9.2.3) at each time step t € 

(tb,tf), where ib is some appropriate "burn time", at which the initial tran­

sient behavior has stabilized. We then compute the realization of the gra­

dient as the average over the T time steps, 

, l r n w (x m ) - n{i)(xm-i) 

If ergodicity holds, this time average is equivalent to taking the statistical 

ensemble as described above. 

We describe a strategy for passing the flux into the continuum region 

Q,2- We run the simulations to produce several realizations of (9.2.4), and 

obtain a distribution of gradients. After converting the gradients to obtain 

a distribution of fluxes, we use a kernel density estimator to approximate 

an approximate density function for the flux, / . Using rejection sampling, 

we then take several samples z^1 ~ f,k = 1,..., S, to obtain a distribution 

of boundary conditions for the continuum region fV The continuum prob­

lem is solved using a finite clement method. Since the flux on the interface 

is a random variable, we have introduced data error into the continuum 

problem. We solve the continuum problem for each z^ to compute a dis­

tribution for 112(b). We pass a distribution of Dirichlet boundary conditions 

into the Brownian motion region in an analogous manner. We repeat the 

process of passing distributions between the regions. 
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Figure 9.1: Concentration at the boundary at each iteration for (ii/a?, = 
1/2. The black line indicates the mean concentration and the grey lines 
indicate three standard deviations above and below the mean. The dashed 
line indicates the analytic solution. 

In Fig. 9.1, we see that during the first few iterations, the mean value 

of the iterates approaches the analytic solution. Subsequently, however, the 

mean value does not improve but oscillates about the analytic solution due 

to the presence of random noise from the atomistic simulation. 

To reduce the variance of the distribution of concentrations, we increase 

the number of samples N. In Fig. 9.2, we see the effect that doubling N at 

each fixed point iteration has on the variance. Here, we assume that it is 

valid to interchange increasing the number of samples with increasing the 

number of fixed point iterations. 

9.2.1 A n Example wi th Nonzero Advect ion 

Suppose the probability, p, of a particle moving to the right, is not 

equal to the probability, q, of the particle moving to the left. Then by 

(7.3.5), the corresponding coupling problem has a nonzero advection term 
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r = 1/2 

Figure 9.2: The black line indicates the mean concentration and the grey 
lines indicate three standard deviations above and below the mean. The 
dashed line indicates the analytic solution. At each iteration, the number 
of samples is doubled. 

with coefficient c, 

| a i U" — cu\ = 0, 

ui(0) = a, 

f a i u i ( l ) = a2u'2{l), 

\ u i ( l ) = u 2 ( l ) , 

\a2u'2 — cu'2 = 0, 

K(2) = /3, 

l £ f i i = (0,1), 

i G f i 2 = ( l ,2 ) , 

(9.2.5) 

where c = (p - q)-. The solution to the problem 

( l i a 2 U 2 - c w 2 = 0, x G ( l , 2 ) , 

1/2(1) = m, 

[w2(2) = /3, 

is 

u2(x) = ^e^+P~^ek, 

where k — ^. Next, we give the analytic solution to the problem (9.2.5). 

Let &i = —, fc2 —, and r = 2J-. Then, 

ui(x) = Ae*11 + a - A and u2(x) = Ce*2t + /? - Ce ,2k2 
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p = 0.45 

Figure 9.3: Solution to problem (9.2.5), for a = 100,0 = 500,p = 0.45, r = 
0.5. The dashed line shows the analytic solution, and the solid line shows 
the approximate solution for the iterative scheme with Brownian motion in 
(0,1), and continuous diffusion in (1, 2). 

where 

A 
C(e k2 _ „2fc2 ) + 0-a 

gfcl _ I 
and C 

a- 0 
ek2 - e2fc2 _ fc2efc2(efci-l) 

A plot of a solution to (9.2.5) is shown in Fig. 9.3. 

9.2.2 Applying Relaxation to the Iterative Map 

In section 8.1.3, we describe a method to apply relaxation to the fixed 

point iteration for the deterministic case. Since the Brownian motion model 

approaches the deterministic model, we hope that relaxation may provide 

similar results. In Fig. 9.4, we see that by using the optimal parameter 

given by (8.1.12), the oscillation in concentrations is dampened. In Fig. 

9.5, we attempt to solve the problem with a\ja<i — 2. We see that the 

distribution diverges without relaxation, but converges using relaxation. 
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Figure 9.4: Concentration at the boundary at each iteration for a\jai — 2. 
The black line indicates the mean concentration and the grey lines indicate 
three standard deviations above and below the mean. The dashed line 
indicates the analytic solution. Left; no relaxation. Right: A = 0.33. 

9.2.3 Reversing the Direction of the Coupling 

Wc investigate the effects and benefits of reversing the coupling, that 

is, we pass the Dirichlet condition to the continuum region and enforce a 

Neumann condition at the interface. The result of a particle simulation 

is shown in Fig. 9.6. In the continuous case discussed in section 8.1.4, 

we address the case of the unstable ratio of diffusivities |aj/a2 | > 1 by 

reversing the direction of the coupling. We find this works well for the 

case of stochastic-deterministic coupling as well. We solve the Neumann to 

Dirichlet problem in the Brownian motion region and solve the Dirichlet to 

Neumann problem in the continuum region. An example is shown in Fig. 

9.7. 

9.3 A Probability Transition Matrix Approach 

In this section, wc use an alternative to the fixed point formulation 

described in section 9.2. We examine a single step of the stochastic process, 

which is assumed to be a Markov process. If wc can obtain a probability 
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Figure 9.5: Concentration at the boundary at each iteration for a\ja<i — 2. 
The black line indicates the mean concentration and the grey lines indicate 
three standard deviations above and below the mean. The dashed line 
indicates the analytic solution. Left: no relaxation. Right: A = 0.7. 

transition matrix for the process and verify that the Markov properties 

hold, then wc may be able to find a limiting distribution for the Markov 

chain. Under desirable conditions, the limiting distribution obtained from 

this approach will coincide with the distribution obtained using the fixed 

point iteration. Consider the following algorithm. 

1. Given a number of particles at 6, n(6)(fc\ run the atomic simulation 

in fli and compute a single realization of the flux z — a\u'(b). 

2. Solve the continuum equations in fi2 using the Newmann boundary 

condition u'2(b) = z/a2-

3. Compute the new number of particles n(6)(fc+1) on the boundary by 

converting the concentration u^ib) to a number of particles as de­

scribed in section 9.2. 

We consider (l)-(3) as a single step of a stochastic process that provides a 

mapping from the number of particles n(b)^ to n(b)(k+1\ Since the new 
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Figure 9.6: Particle concentration for 50 random walks with a fixed Dirichlet 
condition at x = — 1 and a Neumann condition at x = 0. The bold line 
indicates the mean concentration of the 50 random walks. 
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Figure 9.7: Concentration at the boundary at each iteration for ai/a2 = 2, 
with the direction of the coupling reversed. The black line indicates the 
mean concentration and the grey lines indicate three standard deviations 
above and below the mean. The dashed line indicates the analytic solution. 

147 



number of particles nib)^k' only depends on the previous number of particles 

n(byk~1', we make the Markov assumption 

P(n(6)(&+1> = j\n(b)M = iun(b){2) = *2, -,n(b){k) = ik = i) 

= P{n{b){k+1) =j\n(b)w = i). 

We construct a transition matrix P, where Py is the probability that given 

n(6)(fc) = it applying steps (l)-(3) results in n(b)^k+l^ = j . Obtaining P 

analytically is difficult, since we cannot necessarily obtain the exact transi­

tion probabilities for the Brownian motion model. However, rows of P may 

be estimated numerically by taking many realizations of the process and 

observing the results. 

As P is a stochastic matrix, it has an eigenvalue of 1, with all eigenval­

ues satisfying |A| < 1. The stationary distribution IT is defined to be the left 

eigenvector corresponding to the eigenvalue of one, so that 7r = 7rP. If P is 

a primitive matrix, then by Proposition 6.6.4, it has a limiting distribution 

which is equal to TX. 

We illustrate this approach for a range of diffusivity ratios r = ai/a?. 

The mean and standard deviation for the equilibrium solution 7r is defined 

to be 

K K 

H = 'Y^kTTk) and a2 = ]P(fc - ^)27rfc, 
fc=0 k=0 

where K is an upper bound for the number of particles on the boundary. 

Although the spectral radius is fixed at 1, the convergence rate I/IA2I, 

as given in (6.6.4), is affected by r. In addition, the mean and variance 

of n also varies with r = a\jai- From numerical tests, we find that P is 

generally a primitive matrix whenever r < 1. In Table 9.1, we see that the 

second largest eigenvalue A2 approaches — 1 as r approaches 1. In addition, 
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the variance of the limiting distribution is increasing as r —> 1, as shown in 

Table 9.1 and Fig. 9.8. 

a\/a2 

0.5 
0.6 
0.7 
0.8 
0.9 

True Solution 
366.7 
350 

335.3 
322.2 
310.5 

M 
366.4 
348.9 
335.4 
322.2 
309.2 

a2 

18.8 
36.5 
43.9 
113 
240 

A2 

-0.51 
-0.69 
-0.77 
-0.86 
-0.91 

Table 9.1: Mean, variance, and second largest eigenvalue for different dif-
fusivity ratios. 

In the case that r > 1, the matrix fails to be primitive and does 

not model the original problem (9.2.1). From numerical experiments we 

typically find that there are two eigenvalues of modulus one in this case, 

1 and — 1. Although P does have a stationary distribution 7r in this case 

which we may find using (6.6.7), the distribution ix does not represent the 

solution to (9.2.1). In general, n will be highly bimodal, as we see in Fig. 

9.8 for r = 1.1. However, we can address the situation in which r > 1 

be reversing the directions in which the Dirichlct and Neumann boundary 

conditions are passed. 

The accuracy of the limiting distribution n depends on the accuracy of 

the transition matrix, The accuracy of the matrix, in turn, depends on the 

Brownian motion simulation, and the accuracy of the continuum solution, 

which is addressed using standard a posteriori techniques. 

9.3.1 A Relaxed Probability Transition Matrix 

In section 9.2.2, we discussed a relaxation approach for the fixed point 

iteration. Here we discuss ways to apply relaxation to the transition prob­

ability matrix approach. The basic probability transition matrix approach 
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u(x,) 

Stationary distribution, r = 0.9 
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Figure 9.8: Stationary Distributions, r — 0.5,0.75,0.9,1.1 

involves approximating P, and solving the problem 

Yn = Yn^P n > 1. 

The sequence x Yn converges to the limiting distribution of the Markov 

chain, for any stochastic row vector x. A natural way to define relaxation 

in this case is with the fixed point iteration defined by 

ir° = X ° ' (9 3 2) 
\Yn = aYn.! + (1 - a)Yn.iP n > 1, 

where a is the relaxation parameter, with a = 0 corresponding to no re­

laxation. We define the relaxation matrix, PR = al + (1 — a)P, so that 

(9.3.2) can be written 

Yn = Yn-iP
R n > 1. 
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We remark that PR is a stochastic matrix. To see this, we have 

Ylj Pij = 1 since P is a stochastic matrix. Then, 

The stochastic process (9.3.2) is an entirely different stochastic pro­

cess than (9.3.1); however, we may show that P and PR share stationary 

distributions. Suppose that irP — ix. Then, 

nPR = n{al + (1 - a)P) = air + nP - anP = vrP = vr. 

There is a'clear relationship between the eigenvalues of P and PR. By 

linearity, if P has eigenvalue A, then PR has eigenvalue a + (1 — a) A. Define 

the map g : M. —> R to be the map from eigenvalues of P, to eigenvalues of 

PR, so that 

g(X) — a + (1 — a)A. 

We note that ^(1) = 1, and by the Perron-Frobcnius Theorem, we have 

|<?(A)| < 1. In addition, g(—1) — 2a — 1, which implies that an eigenvalue 

of —1 is mapped strictly inside the unit circle, provided that 0 < a < 1. In 

fact, the map g generally shrinks the range of eigenvalues with respect to 

the unit circle. The new spectrum lies inside the circle with radius 1 — a 

and center (a, 0). An example with r — a = 1/2 is shown in Fig. 9.9. 

From (6.6.4), the convergence rate of (9.3.1) is 1/|A21, where A2 is the 

second largest eigenvalue of P. Since g(A2) = a + (l — a)A2, the convergence 

rate is at most 

| a + ( 1 - a ) A 2 | 

If a is close to 1, the upper bound (9.3.3) of the convergence rate approaches 

1, and this relaxation approach fails. In general, relaxation may or may not 
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r = 0.5 r = 0.5, with relaxation parameter a = 0.5 

Re(A) Reft) 

Figure 9.9: Plots of spectrum, r = 1/2. Left: Spectrum of P, with the unit 
circle. Right: Spectrum of PH, a = 1/2, with plots of unit circle and circle 
of radius 1/2, with center (1/2,0). 

improve the convergence rate. If A2 is close to — 1, the map will generally 

move A2 closer to the origin. However, if A is positive and real, then g 

moves A further from the origin. For example, in Table 9.2, we see that 

A2 = -0.603, and g{\2) = 0.199. However, |j?(0.435)| = 0.718, and we sec 

that although g has mapped A2 closer to the origin, the convergence rate 

has decreased. For larger ratios r, relaxation may yield a slight improve-

A 
0 

-0.002 
0.027 

0.114 ±0.144i 
-0.143 ±0.140i 

0.435 
-0.603 

1 

|A| 
0 

0.002 
0.027 
0.183 
0.200 
0.435 
0.603 

1 

\R 

0.500 
0.499 
0.514 

0.557 ±0.072? 
0.429 ± 0.070i 

0.718 
0.199 

1 

\Xk\ 
0.500 
0.499 
0.514 
0.562 
0.434 
0.718 
0.199 

1 

Table 9.2: Spectrum of P and PR, before and after relaxation (r — a = 
1/2). 

ment in the convergence rate. For example, using r = 0.9 and a = 1/2, 
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we numerically obtain convergence rates of 1.07 and 1,12 before and after 

relaxation, respectively. 
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Chapter 10 

CONCLUSIONS 

In the first part of this thesis, wc study optimization of a quantity of 

interest of a solution to an elliptic problem, with respect to parameters in 

the data. We use the generalized Green's function as an efficient way to 

compute the gradient. Wc used gradient search techniques as described 

in Chapter 4 to generate a minimizing sequence. Wc analyze the effect 

of numerical error on a gradient search. Using a posteriori error control 

based on adjoints and residuals as introduced in Chapter 3, we devise an 

efficient adaptive algorithm to control the error in the gradient. Wc apply 

this technique to an example in one dimension with dramatic results, and 

to a wound healing model in two dimensions. 

In the second part of this thesis, we create a mathematical framework 

for coupling atomistic with continuum models. We first look at the case of 

coupled diffusion, and examine the criteria for the fixed point iteration to 

converge. In case the condition is not satisfied, we look to use relaxation 

or to reverse the direction of the coupling. We use the Green's function 

approach to get an expression for the values at the interface, as well as the 

derivatives of the Dirichlet-to-Neumann and Ncumann-to-Dirichlet maps. 

In the last chapter, we look at the simple one dimensional case in 

which the particles undergo a random walk on a lattice, next to a con­

tinuum region. We generate samples and use kernel density estimation to 
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approximate the density functions of the uncertainties. We then sample 

from these density functions to generate the boundary conditions for the 

adjacent region. This defines a fixed point iteration of distributions. From 

numerical tests, the convergence criteria mimics that of the criteria for the 

case of coupled continuous diffusion. Just as in the case of continuous cou­

pling, we overcome an unstable ratio of diffusivities by using relaxation or 

by reversing the direction of the coupling. It is not clear how to define 

convergence of the distributions. We see that after a certain number of 

fixed point iterations, the values oscillate due to the random noise from the 

atomistic region. If needed, we dampen the oscillation by increasing the 

number of samples. We also discussed a probability transition matrix ap­

proach, where we assume the boundary conditions at each iteration follow a 

Markov chain. We discussed criteria for the existence of a limiting distribu­

tion. We finished the chapter with the formulation of a relaxed probability 

transition matrix. 

The future holds many possibilities for further investigations. We 

would like to develop a rigorous notion of convergence for a sequence of 

distributions. We would like to account and correct for numerical errors 

in the coupling in an efficient way. The mathematical theory for achieving 

these goals is lacking. 
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Appendix A 

SELECTED PROOFS 

Theorem A.0.1. Let B de defined as in (2.5.6). If -±V • b + c > 0, then 

B is coercive. 

Proof. First, we claim that 

/ wb- Vwdx = - - / (V -b)w2dx + - / w2b-ndS. (A.0.1) 
Jn 2 Jn 2 JQQ 

Using the identity V • (wb) = Vu • b + uV • b, we have 

- \ I (V • b)w2 dx = \ lb- V(w2) dx-\ I V • {wb) dx. 
2 Jn 2 JQ 2 Jn 

Using the identity V(w2) = 2wVw on the first term, and the Divergence 

theorem on the last term, 

- - / (V -b)w2dx= j w{b-Vw)dx~~ - I w2b-ndS, 
2 Jn Jn 2 Jgn 

which proves (A.0.1). Next, 

B(u,u) = / a|Vu| dx + / ub • udx + / cu dx 
'n Jn Jn 

a\Vu\2dx - - (V • b)u2dx + - / w2b-ndS+ j cu2dx 
an 

a\Vu\2 dx+ / (c - - V • b) u2 dx 
'n Jn 2 

^ ao|lullH0
1(n)-

D 
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Proposition A.0.1. Let A be a primitive, stochastic matrix, where xA = 

x, Ae = e, and L = ex. Then limTO_00 A
m = L. 

Proof. First, note that Lm = (ex)(ex)...(ex), but since J2xi = 1 > w e n a v e 

xe = 1. It follows that 

Lm = ex' = L. (A.0.2) 

Next, ,4mL = Am~lAL = Am~Mex = i ^ ' a = ^ r o - 1 L, and inductively, 

ylmL = L, and similarly, L4 r o = L. (A.0.3) 

Next, we claim that 

(A - L)m = Am-L. (A.0.4) 

This is trivially true if m = 1. If we suppose it is true for m = k, then 

(A - L)k = Ak - L. Then, 

{A - L)k+l = (A - L)k(A -L) = (Ak - L)(A - L) 

= Ak+1 -LA- AkL + L2 = A*+1 - L-L + L = Ak+1, 

where we have used (A.0.2) and (A.0.3). 

Next, we claim that if \i ^ 0 is an eigenvalue of A — L, then \i is 

also an eigenvalue of A. Suppose that (A — L)w — fxw for w ^ 0. Then 

premultiplying by L gives 

liLw = L(A - L)w = (LA - L2)w = (L - L)w = 0, 

hence Lw = 0. Then, fiw = (A — L)w = Aw — Lw — Aw which shows that 

{j, is an eigenvalue of A. 
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We can then show that 1 is not an eigenvalue of A-L. If (A-L)w - w, 

then Aw — w as shown above with \i = 1. But since A is primitive, the 

eigenvalue of 1 is simple, so that w = ae for some a =4 0. Hence, 

w — (A — L)w = Aae — Lae = ae — e xae = ae — ae = 0, 

where wc have used the fact that xe = 1. This contradicts the fact that 

w; 7̂  0. Hence, 1 is not an eigenvalue of A — L. 

Next, we show that p(A — L) < jA21, where 1 — Ai > |A2j > ••• > \^N\-

If n 7̂  0 is an eigenvalue of A — L, then \i is an eigenvalue of A as shown 

above. Thus, p(A — L) = \\k\, where Afc is some eigenvalue of A. By 

the previous fact, Afc ^ 1, and since A is primitive, wc then have that 

p{A-L) = \Xk\ < 1. 

Finally, 

Am = L + Am~-L 

= L + {A-L)m, by (A0.4). 

Then, since p(A — L) < 1, 

lim Am = L = ex. 
m—>oc 

• 

Proposition A.0.2. A finite Markov chain with n states is irreducible if 

and only if its probability transition matrix P satisfies {I + P ) n _ 1 > 0. 

Proof. We first claim that p™ > 0 if and only if the chain can go from 

state i to state j in m steps. If rn — 1, this is trivial. If m = 2, we have 

Pij ~ TTk^xVikVki > 0 if and only if pik > 0 and pkj > 0 for some k. Hence, 
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a chain starting in state i can go to state j in 2 steps. Now, suppose the 

property is true for m = q. Then, 
n 

pit1 = SP'JP*J > 0 -
fc=l 

if and only if pq
ik > 0 and p^ > 0 for some k. That is, there is a k such that 

we can get from i to k in q steps and k to j in one step. This proves the 

claim. 

Next, 

(/ + P ) - 1 = / + (n - 1)P + ( " ~ *) F 2 + ... + ( " ~ ^ ) P""1 . 

This is a positive matrix if and only if for all entries (i,j), at least one of 

/ , P, P2,...,, Pn~l has a positive (i,j) entry. By the claim, this holds if and 

only if we can get from state i to state j in less than n steps. • 

Proposition A.0.3. Suppose P is periodic with period 2. One can check 

that for large n, the sequence vPn is a 2 cycle, whose average approaches 

the stationary distribution n. That is, 

T T , = l im J ( p ™ + p ™ + 1 ) . 

Proof. Since P has period 2, it has eigenvalues 1 and -1, with all other 

eigenvalues satisfying |Aj < 1. By (6.4.2), we have 
n 

xPk = aivi + a2(-l)
kv2 + ^a»Afw t -> axvx + a2(-l)

kv2, 

for arbitrary initial distribution x. Hence, 

\{xPk + xPk+l) = \[axvx + a2(-l)
kv2 + axvx + a2{-l)k+1v2 + £(k)] 

where £(fc) —> 0 as k —> 00. Since vx is the left eigenvector corresponding 

the the eigenvalue of 1, it is also the stationary distribution. Taking the 

limit k —> 00 completes the proof. • 
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