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ABSTRACT

Although atmospheric prediction models appear to yield results similar to observation, both their detailed
predictive capability and their time-averaged forecasts depend on space truncation. Such dependence may
be readily studied with a spectral model because of the ease of modifying truncation. A simple, two-level,
quasi-geostrophic, forced general circulation model was represented in spectral form and nine cases of dif­
ferent truncation were integrated for the same forcing, starting with initial conditions generated from a state
of rest. The truncations ranged from six to sixteen meridional waves, from five to ten degrees of freedom with
latitude, and the models were integrated for about 60 days with tinite-amplitude nonlinearity. Considering
the kinetic energy in the vertical mean flow, and separating this energy into zonal and eddy, the results
show that the general circulation may be predicted with as few as twelve planetary waves and eight latitu­
(!inal degrees of freedom, whereas detailed prediction for a period of 15-20 days requires at least sixte(~n

planetary waves and eight to ten latitudinal degrees of freedom. The broad variation in solutions for dif­
fel'ent truncations observed in this study implies that care must be taken in selecting space truncation
for any physical model chosen for integration.

1 Present.ed at the AMS-IMS International Conference on
Meteorology, Israel, 30 November-4 December 1970.

Computational approximations and their impact on
solutions have been studied traditionally by application
to linear systems, a procedure validat.ed by allowing
comparison to known; exact solutions. A considerable
body of knowledge exists in this area, but unfortunately
the same cannot be said for nonlinear problems as
exemplified by the atmospheric prediction problem.
Moreover, this problem is compounded by requiring
truncation in both space and time. Although experi­
menters in testing nonlinear models utilize what infor­
mation is available to maintain computational stability
in their integrations (and this basically implies the
extrapolation of information from linearized systems),
little systematic study has been applied to the etIect
on solutions of variations in truncation, especially
space truncation, with all other factors held lixed.

With the intent to increase our understanding of the
influence of space trmication .innumerical weather pre­
diction, we have ch~sen a simple, but hopefully mean­
ingful, physical model incorporating in a crude way the
basic physics as it applies to motions in the atmosphere.
The model contains two atmospheric layers with iixecl­
stability, internal and 'surface stresses, and an inhomo­
geneous heat source to account for energy input. It will
become apparent from the text that the incorporation
of a forcing function obviates the need to specify initial
condit ions, thereby bypassing one of the aforemen tioned
unresolved problenls, in numerical weather prediction.
We have integrated this model numerically in time for
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1. Introduction

The ultimate solution to the problem of large-scale
numerical weather prediction, if indeed a unique solu­
tion exists, will rest on the thorough understanding of
several factors arising principally from the fact that
the problem is basically nonlinear. These factors in­
clude a proper analytic specification of the physical
forces and accelerations, the influence of initial concli­
tions on the solutions as a function of time, and the
impact. of truncation (computational procedures) as
the solution proceeds with time. The latter thorn arises
from the lack of exact solutions to complex nonlinear
systems thereby requiring numerical integration of a
non-continuous (truncated) form of the exact system.

Significant progress has been made in the develop­
ment of models which include detailed specification of
physical processes, and further refinements will un­
doubtedly be fort.hcoming as more information about.
the at.mosphere becomes available. These models have
furthermore been specifically designed to consider dif­
ferent integration periods, such as short-range prediction
("'3 days), long-range prediction ("'3 weeks), and
the general circulation. Investigations into the impact
of init.ial conditions go on apace. Since the literature is
replete with results of such studies, specific references
will be neglecter!'
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a number of dilTerent truncations (in all cases using
the same time extrapolation procedure), starting with
a self-generated zonal flow distribution by which wave
activity was amplified.

To further simplify the task of varying truncation
for difTerent experiments,2 we have represented our
model equations in the "spectral" domain, wherein the
time-space dependence of dependent variables in a
horizontal surface is characterized by a series of un­
known time-dependent coellicients multiplied by known
orthogonal polynomials (in this case Legendre poly­
nomials). The entire system may then be written as a
set of ordinary nonlinear dilTerential equations in time
for the unknown coetlicients. Space truncation, defined
in terms of this representation as "spectral" truncation,
is thus simply established by the point at which the
series expansion is terminated. We have chosen nine
difTerent truncations (truncation points) and discuss
the results of the consequent integrations with reference
to them. The reader Illay easily re-interpret the results
in terms of truncation in the finite-di!Terence domain.

The results of these integrations will be interpreted
from the viewpoint that beyond a certain level of resolu­
tion (which may not have been reached by any of our
truncations) all experiments will yield similar, if not
identical, solutions. To assess the results of any experi­
ment we shall depict primarily the behavior of the
energy in the system and its variation in time; no e!Tort
has been made to consider phase changes. Furthermore,
since there is a significant difTerence in prediction re­
quirements for long-range prediction and the general
circulation, we have studied the effects of truncation
for both these problems. Finally, in/luences due to
truncation may be assessed independently of the fidelity
of computational results to observed atmospheric
events; the reader is consequently alerted to avoid
interpreting the results in terms of their "correctness"
but rather in terms of truncation.

avoid complexity in the physics and to limit computing
requirements-but one which incorporates real atmo­
spheric processes sutliciently to yield realistic predic­
tions. Such a model was first presented by Phillips (195(»
and later by Charney (1959). We will utilize this model
as represented in an energetically consistent fashion
by Lorenz (1960).

Our model utilizes the quasi-geostrophic assumption,
is quasi-hydrostatic, has fixed static stability, and in­
corporates horizontal difTusion, vertical shearing stresses
both internally and at the lower boundary, and a forc­
ing function to describe heating. Represented in pres­
sure (p) coordinates, the levels 1000, 750, 500, 250 and
omb are referred to by the subscripts 04, respectively.
The vertical pressure velocity vanishes at both top and
bottom of the model atmosphere, i.e., WO=WI=O. The
horizontal wind field (V) may be represented in terms
of a streamfunction (1/;) where we have V=kXv1/;,
with k describing the unit vector in the direction of
increasing geopotential (<1». Following Lorenz (1960),
we may describe both the stream field and the thermal
tield in terms of a mean and shear as follows:

(1)

where e is potential temperature, allli IT static stability,
a constant. Geostrophically, moreover, the mean po­
tential temperature is related to the stream shear by

1
H=-2"Q,

cp

wherefll is a mean Coriolis parameter and b=0.124.
The heating function (to be discussed in more detail

subsequently) is deJined as

and the vertical component of the curl of stress and
diffusion is represented by the symbol D.

Utilizing the above notation and approximations,
we arrive at the dynamic equations for this model in

2. The model

. To establish the influence of space truncation on the
ultimate prediction of an atmospheric model, a general
circulation model would be most appropriate because
it bypasses the influence of initial conditions. Many
such models of varying sophistication have been de­
veloped in recent years (see, for example, Smagorinsky
et al., 1965; Kasahara and Washington, 1967; Leith,
1965; and Mintz, 1965). The problem of truncation
may best be studied with a simpler model-both to

2 This term is used svnonvrnollslv in the text with numerical
inte~rations or calculations since lliey refer to the results for a
given truncation.

fll
e=-T+constant,

bc p

(2)
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the following form (see Lorenz, 1(60):

ao 2cr
-= -J(t/t,O)+-w2+II
at po

a
-- V2t/t= -J(t/t, \Jv+.n -J(T, Y2T)
III

J)a+D1

+---- . (3)
2

Tn the free atmosphere we choose the stress proportional
to the vector wind shear whereas at the surface it is
chosen proportional to the square of the wind, although
we linearize for ease of computation. These conditions
yield

(i)

a
\J2 T = -J(t/t,V2 r ) -.T (T, V2t/t+.n

al where the surface wind is linearly extrapolated from
levels 1 and 3. Using (6), (i), (1), and the relationship
hetween wind and the streamfunrtion, we lind for the
contribution to vorticity change from stress in levels
1 and 3

Tn (3), .T refers to the Jacohian in the coordinates on
the spherical surface, i.e.,

(S)

where>.. represents lonl!;itude, c/J latitude, and J.L=sinc/J.
Utilization of the geostrophic condition (2) and simul­
taneous solution of the first and third of Eqs. (3) will
yield two predictive equations in t/t and T.

Let us consider now the forms of ditTusion and stress.
We define the dissipation forces as

where cI=gk l / ~p2 and c2=gk,pol Vo[/2~p.
If we now evaluate (5) at levels 1 and 3 and combine

these results with (8), the contributions of dilIusion
and stress to the equations for the time change of the
mean and shear stream fields become

and the contribution to the vertical component of
vorticity equation as k· V'XF. The Laplacian operator
in (-1-) is in the horizon tal (spherical) surface, A the
coeilicient of horizontal momentum dilIusion, and g the
acceleration of I!;ravity. Development in spherical co­
ordinates (>..,c/J) shows that

where p is the density and a represents the mean radius
of the earth. We ignore the last term on the right-hand
side of (5) since we shall see that it is overwhelmed by
the shearing stresses. Assuming that the stress at the
top of the model vanishes (T.=O), we find that the
intluence of stress is evaluated at the mid-level and at
the surface from the conditions

(9)

(10)

with the definitions ca=2(A/a2)-c2 and cl=2[CI/( 2)

-CI-C2]. Substitution of (9) into (3) together with (2)
will now provide us with two prediction equations in
the variables t/t and T. Finally, when we nondimen­
sionalize all variables in time bv the earth's rotation
rate (12) and the earth's mean r~dius (0), we arrive at
the nondimensional prediction equations

a
-V2t/t+ !'It/t-2c/V2T= -.T(t/t, V'2t/t) -J(T, V'2T)
{It

a
--(vtT-a2;)2T)+L2T-r/VV
at

(4)
(11:

F=.1V'2V+g_,
ap

a1:)
ap 3

,
np

(6)
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The conventional procedure to reduce Eqs. (IOJ to
spectral form is to multiply each equation by a con­
jugate polynomial (Y/) and integrate over t he unit
sphere. Because of the orthogonality condition (1-l),
all linear terms will yield a single expansion coeflicient,
say 1/;'l' The linear operators ['1 and L 2 defined in (11)
thus yield

The entire flCld of {'l may then be written as a vector
{ such that

where we shall defme (\=c,+a202, a modified eigenvalue
discussed in terms of energy exchanges in low-order
spectral systems by Baer (1968).

The terms in the Jacobians of (10) are clearly non­
linear and result in interactions between most of the
expansion coefficients (1/;'l,T,). For ease in representa­
tion and programing, we shall follow the procedure
recommended by Baer and King (1967). Since we shall
always truncate the series for T and if; (12) at the same
wave vector ')', let us consider 1/;, and T'l as a vector
pair and represent them by the symbol {'l' where

where the linear operators 1'1 and [,~ are defined as

(11)

and 1j2~ ft?/ (be plI). The primed coefficients refer to the
nondimensional form of the dimensionally defined quan­
tities whose values are listed in the Appendix. We have
also made use of the nondimensional form of f = 2p, to
remove it from the Jacobians and include it with the
linear terms.

3. Spectral representation

vVe have chosen to solve system (10) in the spectral
domain principally because of the ease with which
truncation mav be altered therein. Spectral components
ma\' be added'or subtracted from the svstem with little
modification both to the formal relat'ions and to the
computational programs. Moreover, the spectral equa­
tions have been shown to eliminate aliasing and to
conserve integral constraints in truncated, nonforced
systems (see, for example, Baer, 196-1; Robert, 1966;
or Merilees, 1968).

The detailed properties of the polynomials used in
the spectral expansion of variables on a spherical surface
(spherical harmonics) and their applicability to meteor­
ological problems have been discussed by Platzman
(1960); consequently, any aspect of the following dis­
cussion which may appear too cryptic to the reader
may be clarified by reference to that paper.

We define the mean and shear streamfunctions in
series of Legendre polynomials as

~fL,fY,'ds~(2il,-A",'+',',,)f,~',",f,l
4:!L2TY'l*ds=(2i/'l-A'e/+c/C'l)T'l= C'l1J'lT'lJ'

(IS)

(16)

(17)

where -y=n,+i/'l represents a wave vector index III

terms of rank and degree of the solid harmonic

1/;= L 1/;,(/) Y'l(A,p.)}, ,
T=L T'l(I)Y-Y(>--,p.)

'l

(12)
Because of the nonlinearity of the Jacobians, one must
evaluate integrals of three solid harmonics, termed
interaction coefiicients, which have the following form
[for details on these coefficients the reader is referred
to Baer and Platzman (1961)]:

(18)

(1-l)

sat isfying the ditTerential equation

V~l''l= -e'lY'l' C'l=II,(I/'l+1), (13)

and with the orthogonal property that

l_ !1·al·il*dS=oa,R.
-l1r

Since the functions 1/; and T are real, the series (12)
must exten<l over both positive and negative values
of I,; however, it may be shown that conjugate values
of the coefficients (denoted by an asterisk) are related
such that 1/;/=1/;,' and T/=T'l"

where the prime denotes dilIerentiation with regard to

p, and i=-V-1. We now develop the following (2X2)
matrices incorporating the interaction coefticients de­
fined in (18) and having all zero elements except for that
matrix location defined by the superscript indices; for
example,

(19)

These matrices may be used to develop larger square
matrices with the same dimensions as the vector {,
and ordered on a and {3 in the same sense as (17). Thus,
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we would have

(20)

where 1:::;i:::;2 and 1:::;):::;2. We must linally ddine
matrices involving the eigenvalues Cy , since they occur
through the Laplacian in all the Jacobians of (10).
Following a procedure similar to (19) and (20), we let
the (2X2) diagonal matrix Cy be deJined as (y times
the unit matrix E, i.e.,

System (25) represents a set of ordinary, nonlinear
differential equations in time. For any reasonable
truncation of wave vectors 'Y, these equations must be
solved numerically. Because of its simplicity and suc­
cess in previous experiments, we have chosen the leap­
frog scheme as our integration procedure. Noting the
reduction in truncation at tained by t rea t ing the linear
terms exactly (Baer and Simons, 1970), we extrapolate
numerically the equation

(21) (27)

Now gcnerating a square matrix with the dimensions
of {with Cy on the diagonal and ordered as in (17), i.e.,

we may write all Jacobians in matrix form. Note that
the matrix e is generated simply hy substituting cy

for (y in (22). As an example,

4. Forcing and energetics

'to maintain simplicity we have chosen to drive our
model atmosphere wit h a heat ing function which is
purely inhomogeneous, in a manner similar to Phillips
(1956). Although the heating function would be more
realistic if it were related to the dependent thermal
variablesc---a point explored with reference to numerical
models many years ago by Charney (1959)-the prob­
lem of truncation may be investigated without this
complexity.

Fig. 1 describes a number of estimates of atmo­
spheric diabatic heating, including all heat sources as
a function of latitude in langleys per day. These data
include values used by dirrerent l1lodellers (Phillips,
1956; Mintz, 1958; Sn;agorinsky ct 1.1/., 1965), and esti­
mates taken from observation (Davis, 1963; Lettau,

which leads to the result that

{yt+.!lt = exp(2By~t){/-.!lt+2~texp(By~t), (2~)

where we make use of (26) to evaluate the matrix
exponential. We note that (28) is a three-level system
in time (Richtmyer, 1957) and is therefore subject to
parasitic modes of period 2~t. These oscillations are
inhibited by using a restart technique (Kikuchi, 1969)
whereby the system (27) is periodically (every 96 time
steps) treated as a two-level system and integrated
one time step with the Euler forward scheme.

Finally, the model is integrated on the hemisphere
rather than the entire sphere. This is achieved by re­
quiring that the vectors in the expansion of { are all
of odd parity, thereby making the streamfunction an
odd function of latitude. From the geost rophic relat ion
it may be seen that this requires the zonal wind to be
symmetric across the equator whereas the meridonal
wind component will be antisymmetric.

The reader should note that spectral truncat ion is
achieved simply by defining the vectors (and their
order) in the stream tield { [Eq. (17)]. Since all
matrices depend OIl the truncation and order of {, no
modification in the extrapolation equation (28) is re­
quired for different truncations. It will be seen, however,
that the time increment (~t) must be varied for different
spectral truncations.

(24)

(23)

(26)
(

Vy

B =
Y I A

(2 Cy , Cy

CY1 0 0
0 Cy

"
0

c= (22)

0 0 CI'lilax

ey~~ I(!:::)l'y*dsc~My.

Utilizing the delinitions (12) (2-1-), we may now write
Eqs. (10) in spectral form as

where the tilde denotes transposition. Finally, we define
the contribution to components from the heating fum:­
tion (which we shall discuss in detail subsequently) as

In (26) Gy is the modal matrix of By, and A yrepre­
sen ts the eigenvalue mat rix. Since the elements of By
are invariant in time, the eigenvalues of each matrix
may be evaluated once and for all. Note how clearly the
time rate of change of any element {y may be inter­
preted from (25) in terms of its dependence on the
quadratic relationship of the entire { vector, whereas
the linear dependence is ent irely incorporated in the
matrices By. The elements My will be seen to be
inhomogeneous.
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(31)

1lJ54; Sellers, 1965; Lorenz, l%i), It is clear from the
tigure that a wide range of values exists with the com­
mon effect that there is heating in the tropics and cool­
ing at the pole. lVIore detailed data are currently being
taken by systematic satellite measurements, but
broad variations in these data do not lead to a more
valid curve for Fig, 1. Consequently, we have elected
to use the heating function given by the solid curve on
Fig. 1, made up of only tWd zonal polynomials (1'=2,4)
and represented as

K-y,=r,yl/I-yV;-y* }
K /=C-yT-yT-y*
A -y=a~o~T-yT/ '
K-y=R-y+K/

where R -y represents the mean kinetic energy, K / repre­
sents the shear energy, K -y is the total kinetic energy,
and .1 -y represents the available potential energy, all
in the '1' component. The total energy in each of these
categories is clearly

(32)

E=1\.+K'+A =~ L (c-yv;-yifi-y*+C-yT"IT-y*)
-y

It has already been made evident that the total energy
I~ of our model must be conserved except for heating
and dissipation. There are also exchanges occurring
between different forms of energy in this model, and
they may be seen from the diJTerential equations (3).
lTsing these equations, we gel for the time rate of change
of ener"\'"'.

(29)

a function which vanishes when integrated from pole
to equator. The values of h~ and h4 are listed in the
Appendix in dimensional form to correspond to the
values plot ted on Fi.~. 1. Clearly II as described by
(29) is an even function of latitude. However, we note
that II enters linearly into (10), the equation for pre­
diction of the st ream shear. If we are to maintain a
purely odd system in the mean and shear streamfunc­
tions as indicated earlier (i.e., allow only odd wave
vectors '1'), II must enter in (10) as an odd function.
Such a form may be constructed as follows. The heating
function H as it enters (10) is preceded by a coeflicient
which represents a mean value of the Coriolis parameter
and was established 1)\, the elimination of the vertical
velocity (w~) between the tirst and third equations of
(3). A mean Coriolis parameter was chosen in (3) in
order to assure that the non-forced, non-dissipative
system was energetically conservative. Since the heat­
ing function is clearly not constrained by a conservation
condition, we may allow f to vary when it multiplies
the heating function. Since f is an odd function and
is proportional to fJ., we substitute fll for foIl in (10).
The desired function now becomes fJ.Il, an odd function,
given as

by use of (29), (24) and the recursion formulas for
Legendre polynomials (see, for example, Hobson,
1(55). Eq. (30) is described graphically on Fig. 1 by
the dashed curve; but care should be used in its inter­
pretation; it represents the function used in the predic­
tion equation for the shear streamfunction but is not
specifically the heat ing funcl ion for our model, which
is given by the solid curve.

The energy response of our model to the heating
function discussed above will undoubtedly be of great
significance in interpreting the truncations used. Since
the model is treated in the spectral domain we may
represent the energy in wave components immediately
by the definitions

(33)

3(..' f 2 J'--~- ifi'iPTlls+--- - flIT/Is
.f7r . 47r(TH
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. FIG. 1. Various heating rates (iy day-I) used in general circula­
~lOn models and taken from ohservations, including the OI1l' llsed
IJ1 the present model, as a function of latitude.

5. Truncation and initialization

Truncation in the spectral domain is defined bv the
approximation of the infinite series (12) to a linite ~eries
which includes .Y wave vectors 1'. We then note from
(17) that there will be LV unknowns (degrees of free­
dom) in the system with I',,,,,,,=I'N. By choosing differ­
ent values of .\" and solving (28), we may investigate
the effect of spect ral truncation. There are, however
many ways to limit I' as we have alreadv seen it Ii;
depend on two quantities loy and 1l.,(I'=Il-y+il-y). From
their relation to the Legendre polynomials, I, repre­
sents the planetary wavenumber and n the degree of
the polynomial. Furthermore Il-y must be greater than
!loy I, (11-y> II-y I), and both must be illlegers. Finallv
since we allow for only odd functions, Il-y+l-y must f)~
(I(lt~'bWith these limitations on 1/, and l-y, we may de­
scn e the allowed vectors I' for a given truncation on an
II-I diagram with I on the abscissa and n on the ol"lli­
nate, somewhat analogous to a rotated complex plane.
All allowed vectors in a truncation set (hereinafter
to be referred to as an experiment) emanate from the
origin and terminate at the intersection of the inte<rers
(1/,1). Two such vectors, I' = 1-1- -11 i amI I' = 19+4 i
are described as examples ~m Fig. 2. . ,

In previous studies utilizing the spectral method
several truncation schemes were applied, of which the
two most popular were the triangular (Baer, 1%-~)

and the rhomboidal (Elsaesser, 19M). Based on the
successful integrations of Elsaesser, we have chosen to
use rhomboidal truncation. The conditions for a
rhomboidal experiment require the speciticat ion of a
maximum planetary wavenumber (I"",,,) and an integer
.(m) to dc~ote. the n.umber of veclors for a given l-y
III the II chrectlOn. \\ e thus have for each experiment
all I' vectors included in the set

(3-1-)

(35)
Ca' -c,A' = -[c/+.'1'(c-y-2)]<0 l
r/ -r-yA' = -[2e\'+r/+(r,-2).1 'J<ol '

From (33) we see that excha.nge of kinetic energy bc­
lween the mean and shear occurs through the Jacobian
terms, whereas conversion of potential to kinetic energy
takes place through the correlation of W28. Moreover,
this conversion can contribute directly only to the
shear kinetic energy. The last of Eqs. (33) shows,
as already indicated, that variations in total energy
come about only by heating and dissipation (diITusion
or momentum exchange with the ground). The terms
entering the equation for the time change of E may be
evaluated in spectral form by usc of (12) and (1.:;) to
yield

L (,(2T-y-if;,)(if;-y-T-y)*>O,
-y

Noting that e/, e/ and J' arc all positive quantities,
and utilizing the definitions of c:/ and c/ from Section
2, we lind for the coetlicients in the first of (3-1-)

since by choosing only odd veclors 1', coy? 2.
Eqs. (3-1-) and (35) lead to the following observations

about the energetics of our model. The internal stress,
as represented by el', always acts to reduce the shear
kinetic energy whereas the horizontal diffusion A' acts
to reduce both the mean and shear kinetic energ\·.
Clearly the heating as represented by the three coeffi­
cients AI -y tends to increase the available potential en­
ergy, but only in the three lowest modes of the zonal
tield. Finally, although surface stress generally acts to
reduce the kinetic energy of both the mean and shear,
there is a special condition under which momentum
may actually be added to the atmosphere bv this
process. This comes about if the vorticitv at levei three
exceeds the vorticih" at level one bv mo~e than a factor
of 3, i.e., when ta> 3t \. In spertr;ll terms this comes
about when

a condition which follows readily from (3-1-) whm
applied to (33). Indeed this eITect is a consequence of
choosing the surface wind by linear extrapolation from
levels 3 and 1.
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FIG. 2. Spectral map including the wave vector boundaries of
two truncation experiments and two sample wave vectors in
n, I coordinates.

Conditions (36) imply that the domain of'Y vectors
of any experiment as represented on the 1I-l diagram
be completely fIlled, i.e., without holes. Examples of
two such experiments for the smallest and largest
truncations utilized in our study are depicted on Fig. 2
where the limiting values 1l1llax (l) =l-1+2m+201,o from
1=0 to lma" are connected and enclose the region of
included wave vectors 'Y. The extra vector in the zonal
fleld (l=O) is based on the fact that the stream coeflici­
ent for 'Y = 1 is inactive in a nonforced barotropic system.

(;iven the limits (l",ax,111) for a given experiment (IIJ),
we may now order the vectors 'Y as follows. Beginning
with l"'(=O, the vectors are ordered on increasing 11"'(

to 11"'((max) for l"'(=O and then increasing l"'( to l'Il"'"
More specifically we have

Nine experiments (spect ral truncations) were selected
for study ranging from 132 to 662 degrees of freedom.
They are listed, together with selected properties, in
Table 1. Among these properties we include 1 nz
I1 ,Ha", tot~tl number of wave vectors 'Y (one-h';~If' th:'
number of degrees of freedom), the total integration
period in days, the time increment (D.t) in hou~s used
for extrapolation (and found to be computationallY
stable), and finally the number of unique, nonzero intel:­
action coefiicients, K"'(,,,,~ [Eq. (1H)]. Since the heller
constants are used multiplicatively at each time step
in the matrix multiplications indicated in (28) by R"'(t,
one sees the dramatic increase in computation with the
increase in spect ral resolution. Adding to this increase
we furthermore note that the addition of more wave
vectors (including shorter, faster traveling waves)
requires a smaUer extrapolation interval (D.t) therein'
compounding the computational requiremen{s. .

Since we are dealing here with a nonlinear initial
value problem, each experiment requires the speciJi­
cation of an initial state before the extrapolation ma\'
be performed. Moreover, as we are interested in spectr<~l
truncation, aU experiments should begin with the same
initial state. This state may be chosen from a variet v
of states which arc characterist ic of the atmospher~.
Such a choice, however, would leave the ultimate con­
clusions dependent on that choice of initial conditions.
Fortunately, as with aU general circulation experiments,
we are dealing with aim'ced initial value problem which
we may assume will generate its own initial conditions
starting from a state of rest, a procedure followed bv
most general circulation modellers. Such an jniti,~l
st~t~ is specified for our spectral model simply by re­
qumng each element of the vector {(I=O)=O [see
Eq. (17)J, implying no motion at the initial time and a
temperature specifIed by the choice of static stabilit v;
note that Eq. (2) relates 0 and T only to within ~n
arbitrary constant.

Unfortunately, it can be shown that if there is no
amplitude in the wave components 'Y for 'Y complex,
aU nonlinearity vanishes and we are left with a forced,
uncoupled linear system. This comes about because
of the conditions for nonvanishing of the interaction

1510

1610

5

1=19+ ..4

o-5

35

-10

PLANETARY WAVE NUMBER (.9.)

-15

....J
<t
Z
a
a:
o

a:
w
CD
::E
:::>
z
w
>
<t
3:

TABU: 1. Pertine.nl data descri~)in!;the tru:1CatiO!1 properties of the
= va:~us eXI~~mll'TllS for which ltltegrallOTlS were performed.

- _.::...•. ..: -=::;-:~ --_.- -- ---- ._~

Number
of Period

\ectors Idavs)

'Yo = 1, 'Y I =3, , 'Y",=2m+1,
'Y",+1=2+i, , 'Y2rn=2m+i,

'Y2m jl=3+2i, ... , 'Y1mfj =l-1+2j+I£, ... ,

!'(lmad·l1 m = [lila" -1+2m+l",.."i.

This ordering uniquely speriEes the position of any
variable {"'( in the vector {[Eq. (17)]. The vectors with
negative planetary wavenumber (l"'«0) are not in­
cluded in the set because of the previously stated con­
dit ion that Y;/ =Y;"'(', which identifies all required in­
formation in the domain of positive wavenumbers.
These vectors exist, however, and the total number of
such vectors in a given experiment is 2m(l",,,,,+1)+1,
whereas the number in the above set is m([",...,,+1)+1.

JD

O(lOS
0805
OR07
1006
1208
1408
1608
1410
1610

6
8
8

10
12
14
16
14
16

15
17
21
21
27
29
31
33
35

111

5
5
7
6
8
8
8

10
10

66
86

120
127
20t
233
265
29t
331

t3.1
(hr)

180 l.S
156 1.5
156 1.5
158 15
96 0.75
96 0.75
96 0.75
96 050
96 0.40

Number of
interaction
coellicienls

3118
5416

14000
14032
45788
62338
81456

118241
154946
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(37)

ZONAL WIND PROFILE - DAY 36

VE Loe ITY 1m/51

Zonal KE=ZKE=L K..,(l..,=O) }

Eddy KE=HKE=lc-ZKE=1.1 K..,(l'YrfO) ,

6. Analysis of data

In presenting the results of our nine truncation experi­
ments, we shall focus primary attention on the behavior
of the energy with time, both the total kinetic energy
K and the available potential energy A [see Eqs. (31)
and (32)], although the zonal velocity distribution with
latitude will also be displayed. We have already seen
from (31) that the energy is available in wave com­
ponent form, i.e, as a function of the wave vector 'Y.
It is customary as well as meaningful to separate the
energy into both a zonal and an eddy part. Such a
grouping in terms of our spectral notation implies that

with a similar interpretation for zonal available po-

FIG. 3. Zonal wind profile for mean and shear (Ill sccl) gencrated
by zonal forcing at day 36 and used as initial conditions.

15

MEAN
90

75

Since the waves are not activated before day 36, we
have chosen to use the distribution of the 0605 experi­
ment at this time (day 36) as the initial conditions for
all the truncations listed in Table 1. This procedure
not only systematizes the initiation of all experiments
but does so based on the forced solution required by
the heating function. In the subsequent analyses we
have assumed for convenience that all experiments
begin at t=O, but the reader should be aware that
actual numerical calculations begin at day 36 with the
initial conditions tabulated in the Appendix and speci­
tied above. It should also be apparent from the discus­
sion of computing time (earlier in this section) that this
initializing procedure afforded considerahle savings.

~ 60
:)

l-

I-

:3 45

:I:
I­
0::

~ 30
{'Y- B'Y{'" = R'Y= (;..,),

thus yielding a separate solution for each couple {..,.
Diagonalizing B'Y by a similarity transformation, we
have the solution for {"I:

{'Y=G"'-_',[eXP(A..,t)-E]A..,G..,R"(},
(38)

B"(=G'Y A..,G'Y

where A'Y is a diagonal matrix of eigenvalues, G'Y the
modal matrix, and E the unit matrix. Clearly we shall
have non-zero solutions only for couples {.., for which
the forcing function coefficients M.., are non-zero.
Reference to (30) shows that for the heating function
selected here, only {"I components for 'Y = 1, 3, 5 will be
activated to set up a forced zonal distribution. The
limiting solutions are

{..,(t~oo)=-B'Y-'R..,. (39)

Computation of (39) for values given in the Appendix
show that the mean kinetic energy, when represented
as a characteristic velocity, is in the neighborhood of
250 m sec', an unreasonably large value for our
atmosphere. This asymptotic solution also shows that
I/;..,/T'Y~ 2, a condition imposed by the surface stress
and the linear extrapolation of the surface stream field
from levels 1 and 3. This limiting condition, moreover,
takes many days to be realized; the roots A'Y (all of
which are negative) give e-folding times ranging from 4
to 740 days.

Characteristic atmospheric energy values expressed
as velocities of 2(}-30 m sec' are realized from (38)
between 30-40 days. We may therefore anticipate that
wave activity should begin in this time range to offset
the unrealistic growth in the zonal flow. To check the
validity of this hypothesis, we have integrated the 0605
experiment with all mean components 1/;.., given the
values of 10-5 in nondimensional units and the shear
T'Y set to zero, i.e., 1/;..,= lO-"(l+i), 7"1=0 for all complex
'Y. Results of the integration show that the numerical
solution follows the solution of (38) exactly for the
first 36 days, after which the waves become active and
the nonlinear solution diverges significantly from the
linear one. The zonal velocity distribution of both
mean and shear at day 36 is shown on Fig. 3.

coefficients K'Y.a.~ (see Baer and I'latzman, 1961). One
of these conditions requires that I.., = la+l~, which re­
quires either all l's to vanish or that at least two be
non-zero. The former condition leads to no interaction
since we see from (18) that these interaction coefficients
vanish. The latter condition does indeed yield non­
vanishing interaction coefficients, but at least one of
the elements in each matrix product R.., [Eq. (25)J
vanishes by nature of the fact that {..,=O for all 'Y.

Let us now consider the linear equations which result
from the assumption that {(t=O) =0. From (25) we
have
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TABLE 2. Sixty-day av(~rap;c percent kinetic cncrgy in basic subsct (0605) to total kinctic energy, standard deviations,
and percent degrees of freedom included in the subset for each experiment.

_.. ~ -~ - ------------- --_._---

ID
0605 0805 0807 1006 1208 1408 1608 1410 1610

-------_._-,-~---------.-. -------_.-._-------- .._------~

Percent dep;rees of
freedom in subset 100 77 55 52 33 28 25 23 20

Percent enerp;y in subset
(time mean) 100 89.2 87.9 86.4 90_2 91.6 91.7 94.8 93.9

Standard deviation 6.0 5.9 6.2 4.9 4.1 3.9 2.6 1.6

------ - _.. _--- --. ----- .--_._--_._- .-----

len tial energy (ZA l'!~) and eddy available potential
energy (Kll)!~). Clearly the clements comprising the
zonal energy are independent of longitude [equation
following (12)], whereas the eddy clements describe the
composite of planetary W'Lves. The energy in each of
the latter waves may als:) be discussed separately
without reference to its latitudinal dependence by the
definitions

(40)

where A-/ is generally referred to as the energy in plane­
tary wavenumber I and a similar interpretation may
be given ..t /. Such usage has substantial precedent in
meteorolDgical literature and is the basis for many
analyses of atmospheric data as exemplified by the
works of Saltzman (1958), Wiin-Nielsen (1967) and
many others. To describe the energy in each spectral
component 'Y, we have plotted energy values at the
appropriate vector location point on charts such as
Fig. 2 (also sometimes termed n-I diagrams), analyzed
the data and generated .'spectral maps." Such maps
show at a glance the distribution of energy as a func­
tion of spectral component and may be prepared from
data at any instant of a calculation or for time-averaged
data.

Almost total emphasis in analyzing our results will
be on comparing the nine different experiments to
determine whether increased spectral resolution leads
to similarity of solutions. Neverthcless, the tendency
to evaluate solutions in terms of their fidelity to ob­
servation is overwhelming and we shall therefore in­
clude some general comments here and neglect them in
subsequent evaluations, which will be directed to the
above stated objective. Because of the model's sim­
plicity, the latitude of the principal jet is considerably
too far north as seen from Fig. 6. The zonal kinetic
energy tends to be overly large by comparison to the
wave kinetic energy, especially for the experiments
with higher resolution. Within a given planetary wave
the energy distribution shows a maximum for lI.y values
midway between the permissible extremes. This feature
has yet to be discussed for atmospheric data. The avail­
able potential energy for most experiments tends to be
about twice the kinetic energy, a result somewhat more
in line with observation. Despite these shortcomings of

our model, the influences of truncation, as they become
apparent, should be indicative of similar eiTects in more
sophisticated models.

Current studies of predictability indicate a tinite
time limit for accurate detailed forecasts, a limit which
may not depend directly on truncation (see, for ex­
ample, Lorenz, 19(9). However, the average properties
(general circulation) of a forced model may be strongly
inlluenced by truncation. We have therefore separated
our analysis into two parts: one in which we compare
results for 30·day averages of the integration data, and
the other wherein we compare the detailed structure
of variables with time for the tirst 25 days (beginning,
of course, at day 36 as implied by our discussion of
initialization).

We shall see subsequently that increasing resolution
has a pronounced elTect on the ultimate solution, at
least until a minimum resolution is reached. Because
additional resolution implies more degrees of freedom-·­
more wave components--and because all wave com­
ponents exchange energy nonlinearly [Eq. (25)], one
might anticipate that for higher resolution experiments
energy would spread over the entire spectral domain
and less energy would be found in the subset of com­
ponents comprising the lowest truncation (JJ)=060S),
thereby providing at least some explanation for differ­
ences in solution. To test this hypothesis, Table 2 was
prepared, wherein we describe for each experiment the
time average percent of kinetic energy in a basic
subset (henceforth to be considered the set of compon­
ents included in the 0605 experiment) to the total
kinetic energy together with its standard deviation, and
the ratio of degrees of freedom in the subset to the total
number (this latter information is taken from Table 1).
The time period for which averages are taken includes
day 36 to day 95. Remarkably, we find from this table
that more of the ener<Tv is confined to the basic subset

~~.

for the experiments with largest resolution despite the
small percentage of components involved. We are thus
led to the initial conclusion that the addition of degrees
of freedom to a system does not act as an energy drain
to the basic subset but has a catalytic eiTect which
allows for a redistribution of energy among the com­
ponents in the basic subset. Moreover, since such a
high percentage of energy remains in the basic subset,
we may make comparisons of the different experiments
by references to this subset alone.
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FIG. 6. Thirty-day mean zonal velocity profiles (m sec-I) as a function of latitude
for all nine truncation experiments.

The general structure of the energy field as it develops
with time has been displayed in Fig. 4, wherein the
total energy E, the available potential energy A and the
total kinetic energy K are plotted for each experiment
from day 36 to day 95. The curves from top to bottom
represent the experiments in order of increasing resolu­
tion as they are described in Table 1. This figure shows
that E reaches a relative maximum during the period
and then continues to increase for each experiment,
although the relative maximum varies from one experi­
ment to another, whereas the level of energy attained
increases with increasing resolution. We note here the
similarity between the two experiments of maximum
resolution (1410 and 1610) but defer interpretation of
this observation. The total potential energy develops
in time for all experiments in a manner very similar to
the total energy despite the fact that it represents only
about two-thirds of that energy.

The total kinetic energy, on the other hand, shows
marked Huctuations and a decidedly more pronounced
maximum, which is reached more than once only by
cases 1-108 and 1608, and varies in time from one case
to another. Indeed, similarity in time fluctuations are
clearly evident only between the two highest resolution
experiments. It is also apparent that cases 1408 and

1608 show uncharacteristic variations (when compared
to the other truncations) beyond their first maximum.

To complete this overview on the behavior of our
truncation experiments, Fig. 5 describes the time fluctu­
ations of the zonal and eddy parts of both the total
kinetic energy and the available potential energy
throughout the integration period for each case. Since
the predominant part (about 25 to 1) of the available
potential energy is zonal, it is hardly astonishing that
this energy has a time variation almost identical to the
total available potential energy as seen from Fig. 4.
The fluctuations in eddy available potential energy show
little correspondence beyond day 50 and this only for
the last five experiments, an anticipated feature for a
parameter of such small relative magnitude.

The zonal KE, as shown in Fig. 5, shows a systematic
tendency to reach its first and major maximum for
later integration time with increasing resolution. Al­
though this similarity of time dependence deteriorates
with time, the energy level stabilizes to roughly similar
values for the last four (highest resolution) experiments.
Little more may be said for the eddy KE except that a
tendency toward similarity of behavior with time is
evident between the last two experiments.

Perhaps the most evident feature of Figs. 4 and 5 is
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FIG. 7. Thirty-day mean zonal kinetic energy distributions [(dkm sec')2] for zonal components 1'=1,3,5,7,9,11,
for all nine truncation experiments.

the increase in total energy in systems with greater
resolution despite the fact that the forcing function is
identical for all truncations and that the energy remains
confined primarily to the basic subset as evidenced by
Table 2. We shall attempt to uncover further effects of
truncation by considering the properties summarized
on Figs. 4 and 5 in greater detail.

7. The general circulation

We have seen the behavior in time of the gross ener­
getics for the different experiments in Figs. 4 and 5.
Although we note the lack of exact similarity of the
different experiments toward the end of the integration
period, we may yet find that some of the higher resolu­
tion cases yield similar solutions on the average, which
is to say that they describe the general circulation for
our model in a similar way. To establish the extent of

this similarity, we have chosen to interpret 30-day
running time means of the energy components and also
one 50-day mean (from day 40 to day 90); hopefully,
30-day means have some correspondence to monthly
means.

Let us consider first the distribution of the mean
zonal wind with latitude. Fig. 6 depicts this distribution
for two 30-day periods and for each experiment. One
sees immediately the similarity in profile for the last
five experiments, whereas for those experiments with
less than 12 planetary waves the profiles not only vary
significantly, but also change from one time period to
another. Those experiments including at least 14
planetary waves show remarkable similarity in their
zonal wind profiles and do not change significantly
from one time period (30-dayaverage) to another. There
appears to be a gradual increase in the zonal wind ampli­
tude with increasing resolution, a feature already noted
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FIG. 8. Thirty-day mean eddy kinetic energy distributions in planetary waves 1-6 r,,<iven as percent
of total kinetic energy for all truncation experiments.

from the increased energy in the zonal kinetic energy
displayed on Fig. 5.

The zonal field as represented by Fig. 6 is made up
of zonal spectral components which are completely
specified by their energy because they have no imagi­
nary part. Their prediction properties are of particular
interest since they represent components which are
forced by the heating function. We describe the kinetic
energy in these components as averages for three 30-day
integration periods and one 50-day period for all nine
experiments by histograms on Fig. 7. It is apparent
that a similarity in distribution among the components
from case to case does not occur until at least 12 plane­
tary waves are included, an observation which cor­
responds to the similarity noted in the zonal velocity
field as represented in Fig. 6. We also see that the vector
'Y=3 contains the bulk of the zonal kinetic energy in
the five experiments of maximum resolution. Since the
ratio established by the linear model as initial condi-

tions at t=36 days is E('Y=3)/E('Y=1)"='3, the experi­
ments with higher resolution not only maintain, but
amplify this ratio. There is, furthermore, little change
in the relative energy distribution among the wave
components from one time period to another (this might
also have been anticipated from Fig. 6) except for a
gradual but not pronounced decrease in energy of wave
'Y=3 for case 1610. The last two experiments, 1410
and 1610, show particularly good correspondence in
the amplitude of wave 'Y=3.

We have seen from (33) that the effects of heating go
directly into changing the available potential energy.
The component distribution of this energy in the zonal
field is shown in Table 3. This table indicates that con­
trary to the kinetic energy distribution with its pre­
dominant maximum in 'Y=3, more potential energy is
found in the first component ('Y= 1); the remaining
active components have scventl orders of magnitude
less energy and are therefore not tabulated. Moreover,
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FIG. 9. Fifty-day mean of spectral kinetic energy [em sec' )2J distribution in all included wave vectors analyzed
on n-l diagrams for all nine truncation experiments (see Fig. 2).

this energy increases in time for 'Y = 1 while decreasing
for !=3, although it increases for both components
with increasing resolution. Thus, we see once again the
significant changes in the basic subset (here the primary
forced components) with increased resolution, indicat-

TABLE 3. Mean available potential energy [em sec-1)2J in zonal
components y= 1,3 for selected periods for all experiments.

Wave
IDvector Period

"Y (days) 0605 0805 0807 1006 1208 1408 1608 1410 1610

1 40-70 606 584 640 605 603 699 699 725 830
3 40-70 249 244 428 34.1 663 551 541 622 586

1 60-90 962 926 859 857 732 !1l26 971 11l.19 1165
3 60-90 91 61 175 132 529 434 359 517 467

ing some form of catalytic involvement by the addi­
tional degrees of freedom.

To assess the influence of truncation on the energy
distribution in the different planetary waves, we have
prepared histograms of the planetary wave kinetic
energy as defined by (40) for several 30-day means in
percent of the total kinetic energy and displayed them
for each experiment in Fig. 8. Because of the pre­
ponderance of energy in the first six waves and because
all experiments contain at least six waves, we have
limited our analysis to these waves. We note immedi­
ately the obvious reduction of relative wave energy
with increasing resolution, a feature which also holds
true for the non-normalized energy. Furthermore, a
common distribution among the waves appears only
after at least 12 planetary waves are included in an
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FIG. 10. Selected thirty-day mean spectral kinetic energy [(m seC1)'] distribution in the basic subset (0605) analyzed
on n-l diagrams for all nine truncation experiments.

experiment, thereby excluding the first four truncations
which show a strong tendency toward erratic distribu­
tions. This similarity among wave distributions be­
comes yet more pronounced for the last three experi­
ments, and their variation from one time period to
another and to the overall time mean is not pronounced.
For the highest resolution experiments, this similarity
makes the relat ive influence of increasing 11 or 1 com­
ponents diflicult to assess.

Although Fig. 8 implies a tendency for similar energy
dist ributions among planetary waves for the higher
resolution cases, the energy in each wave may not be

distributed similarly with latitude. To determine these
distributions, we have prepared spectral maps of
kinetic energy in each 'Y component for each experi­
ment and for several 30-day periods. These maps were
prepared by plotting the energy in each vector com­
ponent at the corresponding location of its vector on
an n-l diagram (Fig. 2) and analyzing the energy field.
Fig. 9 displays nine such maps (one for each experi­
ment) for the average energy over the integration
period of 40--90 days. This figure indicates that at least
for the five highest resolution experiments the lati­
tudinal distribution is not random but tends to be
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similar from one experiment to another with the pat­
terns on the last three cases comparing quite acceptably.
There is, however, a tendency toward reduced energy
amplitude in the shorter waves with higher resnlution,
as suggested by Table 2. Since most of the energy is
confined to the basic subset (0605) for all integrations,
we have prepared Fig. 10 which compares only the
energy in the basic subset for all experiments and for
averages of several time periods; the analyses in the
lower right of this figure are clearly the subset details
of Fig. 9. We note immediately the strong tendency
toward a maximum in the vicinity of n::::::6-8 and as
already seen from Fig. 8, a maximum for the largest
planetary wave (l= 1). The tendency toward reduced
energy in all components with increased resolution has
already been demonstrated and needs no further com­
ment. Comparison of cases 1408 with 1608 and 1410
with 1610 suggests that increasing the resolution in
latitude is more influential in decreasing component
energy than increasing the number of planetary waves
with fixed latitudinal resolution. Nevertheless, the dis­
tributions of all four cases show surprising similarity.
Fig. 10 also implies that pronounced variations in
spectral energy distribution do not occur frOm one 30­
day mean period to another, particularly for the highest
resolution integrations.

Although we have no evidence that integration with
yet higher resolution would not yield different energy
distributions from those we have observed, the tend­
ency toward similarity among those experiments with
at least twelve planetary waves as evidenced from Figs.
6-10 lend credence to the observation, at least for the
model considered in this investigation, that a mod­
erately successful description of the general circulation
can be achieved with a truncation including at least
twelve planetary waves and eight latitudinal degrees
of freedom.

8. Long-range prediction

The ability of a model with given space truncation
to satisfactorily describe properties of the general cir­
culation does not necessarily imbue it with a similar
capability for detailed time prediction of those proper­
ties. To assess this capability of our model as a function
of truncation, we describe some of the parameters dis­
cussed in the previous section in terms of their detailed
time behavior for the first 25 days of integration (days
36 -60) for all nine experiments.

For the gross energetics of the model we may refer
to Fig. 4, confining our attention to the first 25 days.
The total energy shows very similar time behavior for
the first 15 days among the last five experiments after
which truncations 1408 and especially 1608 show a
pronounced leveling-off tendency from energy growth.
A similar conclusion may be drawn from the develop­
ment of the available potential energy, although fluc­
tuations from steady growth begin to appear. These

tluctuations become considerably more pronounced in
the total kinetic energy where significant deviations
from similarity begin to appear beyond 15 days except
for experiments 1410 and 1610, which behave identi­
cally (in this parameter) for almost 25 days. A notable
exception is the performance of case 1608; since there
is no systematic reason for this erratic behavior, we
must acknowledge the possibility of computer error.

For the detailed variation in the zonal and eddy
available potential energy, let us refer to the first 25
days on Fig. 5. Because of its relative amplitude, the
zonal APE behaves much as the total APE discussed
above. The eddy APE begins to show significant varia­
tion after 10 clays of integration in the last fjve experi­
ments with only truncations 1410 and 1610 following
one another closely for over 20 days. Case 1608 again
displays uncharacteristic behavior.

Because of their importance in describing the How
field, we have displayed the zonal KE and eddy KE
on an expanded time scale (35-60 days) in Fig. 11.
In terms of nondimensional units, the zonal KE time
variation is described similarly for about 10 days by the
last five experiments, after which significant deviations
appear in all but truncations 1410 and 1610. A similar
observation may be made for the eddy KE, despite the
fact that the second relative maximum does appear in
all experiments, but unfortunately at different inte­
gration times. Although of little consequence to the
prediction of the general circulation the latter disparity
could undoubtedly lead to significant differences in the
long-range prediction results of the various cases. In­
cluded on Fig. 11 is the time distribution of zonal and
eddy KE as normalized to the total KE. Comparison of
the nondimensional to normalized curves shows that
over the 25-day integration period the zonal KE in­
creases but the relative energy in the zonal field de­
creases, implying that the waves are receiving relatively
more energy than the zonal flow; all cases reproduce
this feature, but not with comparative similarity except
again for cases 1410 and 1610.

The detailed structure of the zonal field may be seen
from the behavior of components "Y= 1, 3, 5 and their
sum. Their nondimensional kinetic energy time varia­
tions for the first 25 days are given in Fig. 12. Although
the fluctuations in component "1= 1 are extremely
smooth and compare favorably for all models, the com­
ponent of primary significance and which accounts for
most of the total zonal amplitude is "Y=3 (this has al­
ready been established from Fig. 7). We again note that
satisfactory comparative behavior of the last five experi­
ments ends after 15 days except for 1410 and 1610,
which continue to correspond for over 20 days. The
pronounced energy decrease in the lower resolution
experiments as compared to an increase in the higher
resolution ones emphasizes our earlier observation of the
dramatic difference in solution as a function of trunca­
tion, especially since "Y=3 is one of the primary forced
components.
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Fig. 13 depicts the variation of the available potential
energy for the same zonal components shown in Fig.
12. The conclusions for potential energy are similar to
those discussed above for kinetic energy, but we note
that growth of the "I = 1 component is quite pronounced
and toward the end of the 2S-day period has greater
amplitude than the "1=3 component. Again we see that

only cases 1410 and 1610 correspond closely beyond
about 10 days of integration, and that truncation lWR
shows comparatively erratic behavior.

Finally, we describe the time dependence of the total
kinetic energy in each of the first six planetary waves,
elTectivelya detailed breakdown of the eddy KE curves
shown in Fig. 11. These variations have been plotted
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on Fig. 14 in terms of percent of total KE for all nine
experiments. Confining our attention again to only the
last five experiments, it is apparent that significant
growth of energy in any of these six waves does not oc­
cur for the first ten days, which may account for the
satisfactory comparative behavior in this time range
of the cumulative properties already discussed. How­
ever, beyond ten days the integrations of cases 1410
and 1610 compare quite favorably for at least another
ten days, whereas the other experiments show pro­
nounced variations one from the other.

9. Conclusions

In order to establish the dependence of numerical
nonlinear integrations of an atmospheric model on
space truncation, a two-level, quasi-geostrophic, fixed
stability model with heating, momentum diffusion, and
internal and external stress was integrated in time for
at least 95 days for nine different truncations. The
model was represented in spectral form and the trunca­
tion was established spectrally rather than in the point
domain. To avoid confusion with regard to initial con­
ditions, all truncations were initiated with the forced
zonal distribution generated from rest at which wave
activity (nonlinearity) first appeared.

The analysis of the integration results were presented
separately for the general circulation and for IO!1g­
range prediction since the former deals with time­
averaged properties while the latter requires expositio!1
of exact time variations. Discussion of a system's
behavior was confllled to the energetics save for a brief
display of the zonal t10w and its latitudinal dependence.
Comparisons were made of the integrations with all
nine truncations experiments ranging from six to six­
teen planetary waves and from five to ten degrees of
latitudinal freedom. Perhaps the most pronounced
feature of the calculation was the lack of increase in
shortwave activity with increasing resolution; this
feature was also observed by llanabe el al. (1970),
although they showed pronounced increase in the energy
level of the longer waves wit h increased resolution,
clearly not seen in our experiment. Although solutions
for different truncations varied broadly, little activity
was seen (in any experiment) outside of the wave regime
defined by the lowest resolution experiment. We arc
thus led to the conclusion that the additional degrees
of freedom added by increasing resolution are not an
energy drain but act rather in a catalytic fashion to re­
distribute energy among the larger wave component.

Twelve planetary waves arc a minimum number
which must be included in our model to give a reason­
able description of the general circulation, although
fourteen or even sixteen would be preferable. Concur­
rently, at least eight degrees of freedom in latitude should
be included. One must interpret this result with some
caution, however. Our model is forced only in the lowest
zonal components; should one include forcing in shorter
waves as exemplified by latent heat release, the above

conclusion on truncation for a general circulation model
could well be invalidated.

Regarding long-range prediction, our integrations
suggest that for adequate prediction to 20 days at least
sixteen planetary waves are required with a minimum
or eight latitudinal degrees of freedom. This limit is
unfortunatelv at the maximum resolution range of our
experiments,' and calculations with more d~grees of
freedom could show further variations in the solution
over the first 20 days. Neverthe1ess, the last two experi­
ments (highest resolution) are satisfactorily comparable
over this integration period. Because the wave activity
at the initiation of our integration is infinitesimal,
phase considerations are not of great consequence for
some days into the integration. The results of the cal­
culations are nevertheless pertinent since we must as­
sume a "true" solution toward which the solution to
higher resolution models tencl. Were our model to be
used with observed finite-amplitude initial data, how­
ever, we have no assurance that the resolution require­
ments stated above would be adequate to yield satis­
factory integrations for as long as 20 days.

The broad variations in integration results as de­
pendent on space (spectral) truncation noted in this
paper imply the need for similar experiments with
models containing different forcing, especially if that
forcing covers a broad wave range.

Aclwowledgmeills. This research has been supported
by the Atmospheric Sciences Section, National Science
Foundation, under Grant GA-1l637 to Colorado State
University. Computer time and assistance has been
donated by the Geophysical Fluid Dynamics Labora­
tory, Princeton, and the National Center for Atmo­
spheric Research, Boulder.

APPENDIX

Model Data

1. Stress, diffusion and stability constants

cl=0.5X1O-6 secl

c2=2X1O-6 sec1

A = 10" m2sec·-l

82 = 3X 10-12 m-2

/0= 10-4 sec1

2. Heating coefficients

cplz2 = -161).95 Iy day-l
cp h1=-14.02ly day-l

3. Initial data (day 36 in nondimensional units)

7 f T

1 -0.91435XlO-2 -0.54225 X 10-2

3 -0.11037 X lO-l -0.650l0X1O-2

5 -0.58016X1O-3 -0.33502 X 10-3

7 0.57S 10- 6 O.S025X10-r.
9 -0.lXlO-6 0.12XlO-5

11 -O.5XlO-6 -0.16XlO-r,
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For all 'Y, 1:::;11':::;6 and l11'=I1'-1+2j(1:::;j:::; 5)
f1'(real) ",:dO--·1 T1'(real)"'" 10-5

f1'(imag.)"", 10-5 T1'(imag.)"", 10-5
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