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ABSTRACT 
 

 
APPLICATION OF MODEL REDUCTION TOOLS IN ANALYSIS OF WIND-

INDUCED PRESSURES ON LOW-RISE BUILDINGS 

 

Recent advances in laboratory and field measurement techniques and numerical 

simulations of wind-induced loading on buildings and structures made possible 

generation of large data sets, suitable for database-assisted wind-resistant design.  In 

parallel, data reduction tools have been developed to aid storage, management and 

accessibility issues associated with large datasets/databases.   In the presented research, 

application of such tools in analysis of stationary and non-stationary wind-induced 

pressures on a generic low-rise building is discussed.  Both stationary and non-stationary 

cases are addressed.   

In stationary analyses, Proper Orthogonal Decomposition (POD) and Method of 

Snapshot (SPOD) were used to identify the most energetic spatio-temporal structures of 

the pressures.  Linear Stochastic Estimation (LSE) and Gappy POD (GPOD) were 

employed to generate the pressures at specified target locations via extrapolation of the 

pressures provided at chosen reference locations.  Optimized reference positions were 

determined using algorithm-based and empirical approaches.  In non-stationary analyses, 

Wavelet De-noising and Two-Stage-Moving-Averaging were applied to decompose the 

non-stationary pressure into time-varying mean, standard deviation and normalized 

fluctuation.  The techniques developed for stationary pressures were adapted for non-

stationary cases.   
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In analysis of the stationary data, the extrapolation techniques (GPOD and LSE) 

were found to reduce the data more efficiently than the modal reduction tools (POD and 

SPOD).  In pressure extrapolation, LSE provided more accurate pressure predictions than 

GPOD.  A hybrid approach combining the use of GPOD, with algorithm-based reference 

positions selection, and LSE extrapolation enabled the most efficient capturing of the 

primary and secondary spatio-temporal features of the pressure.  This technique is 

recommended for analyses focused on development of reduced models of wind pressures 

induced on low-rise buildings. 

In the non-stationary investigations, the hybrid GPOD-LSE technique, developed 

in analysis of the stationary pressures and modified for the non-stationary cases, led to 

accurate pressure predictions and model reductions.  This methodology appears to be a 

suitable tool for similar analyses of non-stationary wind-induced pressures on low-rise 

buildings. 

Follow-up investigations of stationary and non-stationary cases are recommended 

to assess potential for further optimization of the developed techniques and their 

application in analyses of wind-induced loading on other buildings and structures. 
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Chapter 1 Introduction 
 
 

As the technology of building surface pressure measurement improves, interest in 

database-assisted design (DAD) of structures under wind effect has been growing.  The 

detailed pressure measurement data usually requires large computer memory and 

advanced database management.  These disadvantages had been addressed in the past, 

and efforts have been expended to reduce the size of generated data.  In wind 

engineering, some model reduction techniques have been employed in analysis of 

turbulent wind and wind-induced loadings on buildings and other structures.  

Most of the wind engineering investigations of wind loading on buildings and 

structures are based on the model experiments conducted in wind tunnel laboratories.  In 

typical settings, pressure time series measured on surfaces of building models are 

stationary, which means that the statistical parameters of the data do not vary over time.  

Most of the tools for data reduction have been developed for such (stationary) cases.  

However, buildings in the real world are not always exposed to stationary environments 

and a question arises about the applicability of the stationary tools for non-stationary 

situations, such as wind field and wind loading associated with wind downbursts or 

passage of gust fronts. 

In this thesis, both stationary and non-stationary pressure time series are analyzed.  

For stationary cases, Proper Orthogonal Decomposition (POD), Method of Snapshot 

(SPOD), Gappy POD (GPOD) and Linear Stochastic Estimation (LSE) have been 
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selected as analysis tools.  Overall, the involved reduction schemes use statistical 

relationships derived from high resolution pressure records, in search of the maximum 

reduction in the data sets, while still preserving the data fidelity at a level suitable for 

reliable practical analyses.   

POD and SPOD belong to modal reduction category, as they are applied to 

decompose a given data set into several modal components, and the original system can 

be reduced and represented by the sum of a few dominant modes.  Though it requires 

storing of principal coordinates, which are event and time dependent, such reductions 

have been shown in the literature to be reliable.  LSE and GPOD belong to extrapolation 

tools, which generate the instantaneous target quantities – wind-induced pressures in the 

present case – by extrapolating the instantaneous quantities defined over reference fields.  

The statistical parameters required to be stored by extrapolation tools are time 

independent and the fidelity of the reduced models depends on the analyzed systems.   

To reach efficient data reduction, extrapolation tools are typically employed.  The 

fidelity of a reduced model was found to be dependent on the reference locations used in 

such extrapolations.   Locations undergoing high energetic pressures, identified by using 

either POD or SPOD, were proposed for reference tap placements.  However, there are 

questions regarding the best way to extrapolate pressures in applications employing the 

mentioned above techniques (POD, SPOD, GPOD and LSE).  One of the goals of the 

current research was to compare the pros and cons of these techniques, and to establish an 

optimal approach for extrapolation of wind pressures induced on building surfaces.   

Wavelet De-noising and Two-Stage-Moving-Averaging were applied to deal with 

non-stationary problems.  Each decomposed non-stationary element – time-varying 
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mean, time-varying standard deviation and normalized fluctuation – were treated as 

stationary.  The extrapolation methods developed for stationary problems were adapted to 

accommodate the non-stationary aspects.  The reduced models were compared with their 

counterparts obtained using stationary assumptions to evaluate the effectiveness of the 

proposed non-stationary pressure extrapolations.   

The thesis is organized as follows.  The motivation and a brief overview of the 

presented research has been presented in Chapter 1.  In Chapter 2, the review of 

background information on the employed techniques is provided.  Chapter 3 discusses the 

analyses carried out in this research and the results.  The conclusions drawn from the 

described research and recommendations for future investigations are presented in 

Chapter 4.  Detailed mathematical derivations referred to in the main body of this thesis 

are presented in Appendix.  
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Chapter 2 Theoretical Background 
 
 
2.1 Introduction 

In this chapter, the theoretical background on the model reduction methods 

selected for the research described in this thesis is presented.  The discussed methods are 

divided into two categories: (I) Methods for stationary cases; and (II) Methods for non-

stationary cases.  Category I includes: Proper Orthogonal Decomposition (POD), Method 

of Snapshot (SPOD), Gappy POD (GPOD) and Linear Stochastic Estimation (LSE).  The 

first three methods can be classified as POD related.  The LSE and GPOD are data 

extrapolating tools which can be used to calculate instantaneous quantities at specified 

(target) positions, using values defined at other (reference) positions.  There is a relation 

between LSE and POD modal contents.  As is shown in Chapter 3, reconstruction of 

POD results (e.g. principal coordinates) by applying LSE and Gappy POD allows for 

assessment of the accuracy of the two methods.     

Methods suitable for analyses of non-stationary data - Category II methods – 

considered in this thesis include: Wavelet De-noising Technique (WDT); and Two-Stage 

Moving Averaging (TSMA).  The analysis procedures proposed for non-stationary 

pressure extrapolations are described.  
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2.2 Proper Orthogonal Decomposition (POD) 

The main objective of the Proper Orthogonal Decomposition (POD) technique is 

to establish a deterministic eigenvector function )(x which is best correlated with all 

the elements of the ensemble of a random field (Bienkiewicz et al. (1993)).  Given a 

random wind-induced pressure coefficient ),( xtCp , the pressure fluctuation coefficient 

௣ᇱܥ	 ,ݐ)  :is calculated as follows (ݔ

௣ᇱܥ ,ݐ) (ݔ = ,ݐ)௣ܥ	 (ݔ −  1-2.2  	(ݔ)௣̅ܥ

where ܥ௣̅(ݔ)	  is the mean pressure coefficient at location ݔ , averaged over time 

duration	ܶ.  The maximum of the projection of 	ܥ௣ᇱ(ݐ,  is sought.  An integral		(ݔ)Φ		on (ݔ

form of this operation is as follows:  

  max)(),(' dxxxtC p  2.2-2 

Enforcement of this condition, in the mean-square sense, leads to an eigenvalue problem: 

     sR  2.2-3 

where 	[ܴ௦] is the zero-time-lag spatial covariance matrix, 

),(),(1=) ,( '

1

'
ji

s
jpi

T

t
p xtCxtC

T
xxR 



 2.2-4 

   is the eigenvector and 	λ  is the eigenvalue.  Typically the eigenvectors are 

normalized as follows: 

1),(2 
x

xn  2.2-5 

They are used as the POD basis functions in a series expansion of the pressure 

 
np xnntaxtC ),(),(),('  2.2-6 

where the principal coordinates are  
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







x

x
p

xn

xnxtC
nta

),(

),(),(
),( 2

'

 2.2-7 

It can be shown that the principal coordinates are independent 





T

t
mnnmtanta

T 1
),(),(1   2.2-8 

where m n  is Kronecker operator.  The eigenvalue, ߣ௡ , indicates energy of the system 

represented by the 		݊୲୦		basis modal eigenvector (Sirovich (1987)).  The ratio of 	݅୲୦ 

mode cumulative energy to the total energy,		ܧ௜ , can be calculated as follows: 





n
n

i

n
n

iE



1  2.2-9    

2.3 Method of Snapshots (SPOD) 

Method of Snapshots (SPOD) was introduced by Sirovich (1987) as a way to 

determine POD modes for larger spatial problems.  In this section, only a brief 

description of the mathematical formulation of this method is given.  The concept of this 

method is similar to that of the POD analysis except that SPOD starts with the temporal 

covariance of the random pressure field.  First, the temporal “snapshots” of pressure  

,ݔ)௣ܥ  ߬. The pressure mean and fluctuation are		are recorded with uniform time step 	(ݐ

determined: 





T

t
pp xtC

T
xC

1
),(1)(  2.3-1 

௣ᇱܥ ,ݐ) (ݔ = ,ݐ)௣ܥ	 (ݔ −  2-2.3 	(ݔ)௣̅ܥ
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where		ܶ denotes the total number of snapshots, and		ݐ = 1, 2, … , ܶ		is a snapshot counter.  

The time step		߬		needs to be greater than the overall correlation time (Sirovich (1987)).  

The temporal covariance of the snapshots is: 

),(),(1),( '

1

' xtCxtC
T

jiR jp

X

x
ip

t 


  2.3-3 

where x  denotes each tap location, X denotes total number of locations. 		[ܴ௧]		 is a 

temporal covariance matrix of dimension 	(ܶ	 × 	ܶ) .  The eigenvalues n  and the 

temporal eigenvectors ),( nt  are then calculated.  The eigenvalues are exactly the same 

as those obtained from the spatial covariance matrix obtained using POD.  Thus the 

energy content of each mode calculated from SPOD and POD is the same.  The (POD-

based) spatial eigenvectors are next calculated as the linear combinations of the temporal 

eigenvectors and the pressure snapshots: 

),(),(),( '

1
xtCntxn p

T

t



   2.3-4 

Finally the SPOD principal coordinates are obtained by substituting the calculated spatial 

eigenvectors ),( xn in Eq. 2.2-7.  It should be noted that the length of the spatial 

eigenvectors obtained from SPOD method is proportional to the relative energy content 

associated with a particular mode: 

 








n
n

i

n x

x

xn

xi




),(

),(

2

2

 2.3-5 

In contrast, the length of the eigenvectors calculated during POD is of unit length, see Eq. 

2.2-5.  The temporal covariance matrix involved in the SPOD analysis is usually of large 

size.  Thus, solution of the eigenvalue problem associated with this matrix is computer-
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time intense.  In such cases, data analysis based on the POD technique is more 

convenient.  Both the SPOD and POD have the ability to provide insights regarding the 

physical phenomena associated with the analyzed datasets, in our case – the wind induced 

external building pressures.  The obtained eigenvalues and eigenvectors indicate, 

respectively, the overall and local spatial levels of contribution of each mode to the 

fluctuation levels of the analyzed dataset of the building pressures. 

2.4 Gappy POD (GPOD) 

2.4.1 Description of GPOD 

Gappy POD (GPOD) is described in detail by Willcox (2006).  A brief overview 

of this method is presented in this section.  GPOD can be classified as an extrapolation 

tool which can be used to predict the instantaneous random field (wind-induced pressure 

in the present case) at target (desired) locations using instantaneous values acquired at 

reference (specified) locations.  The statistical relationship between the values at target 

and reference locations is used in this extrapolation.   

Assume that the POD-based spatial eigenvectors (determined either indirectly 

from SPOD or directly from POD) have been already obtained from analysis of the full 

dataset – wind-induced pressures at all pressure tap locations.  If the pressure data 

acquired at some tap locations are discarded, the resulting data set is incomplete and the 

data (set/system) is denoted as “Gappy”.  Hereafter, the locations at which the data have 

been discarded are labeled as the target locations and the remaining locations (with the 

retained data) are called the reference locations.  The main step in GPOD is the retrieval 

of the instantaneous POD/SPOD principal coordinates via the “Gappy” spatial 

eigenvectors and instantaneous pressures. The extrapolated instantaneous pressures on 
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target locations are subsequently obtained as the linear function of known basis 

eigenvector   and the reconstructed principal coordinates		 ොܽ. 

The formulation of GPOD to retrieve principal coordinates is presented in detail 

in Section A1 of the Appendix.  The instantaneous pressure fluctuation at each of the 

reference taps 	ܥ௣ᇱ ,ݐ) (୰ୣ୤ݔ  can be approximated by using the POD reconstruction 

involving the POD (spatial) eigenvectors and principal coordinates (Eq. 2.2-6).  By 

taking derivatives of squared error (discrepancy) between the original pressure and its 

approximation with respect to each modal principal coordinate on all reference locations 

and an instant		ݐ, the following result is obtained:    

}[ܯ] ොܽ} = {݂}  2.4-1 

where 

),(),():,():,(),( ref
1

refref
T

ref

ref

ref

xjxijijiM
X

x
 



 2.4-2 

݂(݅) = Φ(݅, :୰ୣ୤ ,ݐ)௣ᇱ୘ܥ( :୰ୣ୤ )  2.4-3 

ොܽ(݅) = ොܽ(ݐ, ݊ = ݅) =		optimized principal coordinate 		݅.  2.4-4 

where 		Φ(݅, :୰ୣ୤ )Φ୘(݆, :୰ୣ୤ )		 in Eq. 2.4-2 denotes the inner products of “Gappy” 

eigenvectors.  The		Φ(݅, :୰ୣ୤ ,ݐ)௣ᇱ୘ܥ( :୰ୣ୤ )	 in Eq. 2.4-3 denote the inner products of Gappy 

eigenvectors and Gappy pressure fluctuation evaluated at time		ݐ		.  Note that the problem 

domain in solving Eq. 2.4-1 is confined to time 	ݐ	 and the reference spaces.  [ܯ] is a 

function of locations, while		{݂}		is a function of both locations and time.  The optimized 

principal coordinates  â  can be used in Eq. 2.2-6 to reconstruct the pressure at target 

locations: 

 
n ettpettettp xCxnntaxtC )(),(),(ˆ),(ˆ

argargarg  2.4-5 
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Thus the extrapolation of the Gappy data set is completed.  There is a limit in the Gappy 

reconstruction method.  The total number of modal principal coordinates that are 

calculated cannot exceed the total number of the reference taps. 

In GPOD, locations appropriate for the placement of reference taps were 

discussed by Willcox (2006).  The accuracy of the reconstructed principal coordinates is 

found to be greatly affected by the orthogonality of the matrix	[ܯ].  If all tap locations 

are used,		[ܯ]		is the identity matrix and the principal coordinates can be reconstructed 

accurately.  If only some reference taps are used, the Gappy inner products of 

eigenvectors form non-zero values in the off-diagonal entries of 		[ܯ]		 and the 

orthogonality is lost.  Therefore, the principal coordinates cannot be reconstructed 

accurately in the Gappy situation.  Overall, the reference locations should be selected so 

that the orthogonality is preserved in		[ܯ]		to the possible extent (i.e. the diagonal entries 

in		[ܯ]		are relatively large and off-diagonal entries in		[ܯ]		are relatively small). 

To achieve the above goals, the condition number of		[ܯ] needs to be minimized.  

The condition number of the square matrix		[ܯ]		is defined as the multiplication of the 

matrix norm of 	[ܯ]	 and the matrix norm of inversion of		[ܯ]. 

(ܯ)ߢ =  ଵ‖  2.4-6ିܯ‖‖ܯ‖

where the matrix norm		‖ܯ‖		is the square root of largest eigenvalue of			[ܯ]	[ିܯଵ]: 

‖ܯ‖ = ඥߣ୫ୟ୶(ିܯܯଵ)  2.4-7 

A discussion of the condition number is described in the mathematics text (Kreyszig 

(1999)).  An algorithm for selection of the reference taps is discussed next. 
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2.4.2 Algorithm for Reference Tap Selection  

The algorithm proposed by Willcox (2006) for reference tap selection is as 

follows: 

I. Selection of the first reference tap location:  Consider the first 		ܰ  modes that 

capture a significant level of the system’s energy, say 95%.  Loop over all 

possible placement locations		ݔ and update the reference tap layout		∶	୰ୣ୤
(ଵ) =   .[ݔ]

Next, evaluate		ቂܯ௫
(ଵ)ቃ	for all the possible locations:  

 Nji,j iji,M x  ..., 1,2,       ) : , () : ,  ()( (1)
ref

T(1)
ref

(1)   2.4-8 

 Choose the first reference tap location 	r1	 that maximizes the “modal variation”, 

which is the summation of diagonal entries minus the summation of off-diagonal 

entries of		ቂܯ௫
(ଵ)ቃ.  

II. Selection of second reference tap location:  With the first tap location set, loop 

over all possible remaining placement locations		ݔ	ݔ)  ≠ r1).  For each location, 

update the reference tap layout		∶	୰ୣ୤
(ଶ) = [r1		ݔ], evaluate		ቂܯ௫

(ଶ)ቃ	:  

 1,2       ) : , () : ,  ()( (2)
ref

T(2)
ref

(2)
x  ji,j iji,M  2.4-9 

 Evaluate the condition number of 		ቂܯ௫
(ଶ)ቃ		by using Eq. 2.4-6 and choose the 

second reference tap location		r2			that minimizes		ߢቀܯ௫
(ଶ)ቁ. 

III. Repeat step II for all the remaining tap locations:  With the defined		݊ − 1	taps, 

loop over all possible remaining placement locations		ݔ) ݔ ≠ 	r1, r2, … , r݊ − 1).  

For each location, update the reference tap layout 
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		∶	୰ୣ୤
(௡) = [r1 r2 … r݊ − 1 ,݊)add the leading eigenvector Ф ,[ݔ :୰ୣ୤

(௡) )  and 

calculate		ቂܯ௫
(௡)ቃ:  

 nji,j iji,M nnn  ..., 1,2,       ) : , () : ,  ()( )(
ref

T)(
ref

)(
x   2.4-10 

 Evaluate the condition number of 		ቂܯ௫
(௡)ቃ		by using Eq. 2.4-6 and choose the		݊୲୦	 

reference tap location		r݊	  that minimizes		ߢቀܯ௫
(୬)ቁ.  

2.5 Linear Stochastic Estimation (LSE) 

2.5.1 LSE Method 

The detailed derivation of LSE is reviewed by Chen et al. (2003). Only brief use 

of this technique is described in this section.  LSE is based on the assumption that a 

random field can be considered as a linear combination of some other random variables 

which are known and correlated.  Applying this to a surface pressure field, the pressure 

time series at a target tap location ),(ˆ
targetxtC p  can be estimated using pressure time 

series at other (denoted reference) tap locations, ),( refxtCp : 

)(),()(),(ˆ
target0ref

1
targettarget

ref

ref
xbxtCxbxtC

refX

x
pxp  



 2.5-1 

The key step in LSE is the determination of the coefficients		ܾ’s.  By taking derivative of 

the mean square residual error (between the approximation and the original pressure) 

with respect to )( targetref
xbx  and bias )( target0 xb , the equations for ܾ’s, involving spatial 

covariance of the random pressure are formulated.     
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In this thesis, the formulation is extended to more than one target and reference 

locations.  The following equation governing the reference contribution constants is 

obtained: 

     ss RRB 0
1

  2.5-2 

where  B  is a matrix that stores the		݅୲୦ reference tap contribution constant for		݆୲୦ target 

field in		ܤ(݅, ݆), [ܴ௦]		is the spatial covariance matrix with elements ܴ௦(݅, ݆) representing 

covariance between pressure fluctuations at 		݅୲୦and 		݆୲୦	reference spaces.  [ܴ଴௦]		is the 

spatial covariance matrix with elements 		ܴ଴௦(݅, ݆)  representing covariance 

between		݅୲୦		reference space and		݆୲୦	target field.  For a case with total numbers refX  and

targetX of the reference and target locations, Eq. 2.5-2 is explicitly expressed below:  
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 2.5-3 

After  B is computed, the target bias constants are obtained as follows: 

   BCCB refpettp )(:)(: arg0   2.5-4 

where  0B  consists of  elements (݆)଴ܤ		  representing 		݆௧௛ 	 target field bias constant.  

Finally the extrapolation equation for the target pressure field (2.5-1), for time  is		ݐ		

computed: 



14 
 

   0ref
'

target ):,():,(ˆ BBtCtC pp   2.5-5 

where ):,(ˆ
targettC p denotes the instantaneous pressure at time		ݐ		for		݆୲୦	target location. 

LSE has been proven to be a convenient statistical extrapolation tool, when used 

in basic research and engineering applications.  It has been pointed out [10] that in 

implementations of this method, the reference fields should be selected with caution due 

to the fact that the mean square error of the linear estimate of ),( targetxtCp  is large when 

),( targetxtCp  is uncorrelated with ),( refxtCp , e.g. when there is a large separation between

targetx and refx .   

2.5.2 Relation between LSE and POD 

Consider pressure time series ),( 1xtCp and ),( 2xtCp  at two locations 	ݔଵ	and		ݔଶ. 

POD analysis had been applied to decompose these data into two modal contents: 
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After subtracting the mean		ܥ௣		from both sides, the above equations can be inverted to 

obtain the POD modal principal coordinates as linear functions of the instantaneous 

pressure.  Therefore LSE technique can be applied to retrieve POD principal coordinates 

(Cohen et al. (2006)):   

)(),()(),(ˆ 0
1

ndxtCndnta ref

X

x
px

ref

ref

ref
 



 2.5-6 

Eq. 2.5-6 is actually in the form of Eq. 2.5-1 with different target quantities ොܽ(ݐ, ݊)	and 

different linear constants		݀’s. 
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The above reconstruction will be compared later with that using GPOD (Eq. 

2.4-1).  It should be noted that the better reconstructed ),(ˆ nta can be anticipated if the 

reference pressures ),( refxtC p are more correlated with modal principal coordinates

),(ˆ nta .  The local maxima and minima of spatial eigenvectors indicate not only higher 

energy distribution but also higher correlation between pressures and principal 

coordinates.  A heuristic approach proposed by Cohen et al. (2006) suggests that the 

reference taps should be placed at locations of the peaks of the spatial eigenvectors.  Note 

that in Eq. 2.5-6 the total number of principal coordinates being reconstructed is not 

limited to the total number of reference taps.  By combining all the reconstructed 

principal coordinates 		 ොܽ(ݐ, ݊)	and the known basis eigenvectors		Ф(݊,  the rounded ,	(ݔ

pressure extrapolation (combination of Eq. 2.5-6 and 2.4-5) is equal to the direct pressure 

extrapolation (Eq. 2.5-1).     

2.6 Tools for Analysis of Non-Stationary Wind-induced Pressures 

2.6.1 Introduction 

Applications of the techniques described in the previous section are limited to 

stationary data sets.  However, non-stationary situations are what the real world provides.  

In such cases, the statistical properties vary with time.  In analysis of wind loading, the 

time series of the wind pressure coefficients can be normalized using the time-varying 

mean and standard deviation:  

 
),(

),(),(
),(

xt
xtxtC

xtz
p

pp
p 


  2.6-1 
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where ),( xtp , ),( xtp  and ),( xtzp  respectively denote time-varying mean, standard 

deviation and the normalized fluctuation of the pressure coefficient. 

          In the following subsection, methods for obtaining the time-varying mean and 

standard deviation are presented.  Once these non-stationary quantities are obtained, 

SPOD is applied to aid identification of the physical phenomena and schemes for 

reference locations selection.  

2.6.2 Wavelet De-noising & Two Stage Moving Averaging  

The non-stationary decomposition techniques discussed by Chen and Letchford 

(2005) are reviewed herein. Time-varying mean is obtained by applying Wavelet 

Shrinkage (Donoho et al. (1995)). The following standard nonparametric regression 

model involving an unknown regression function )(tp  is used (Donoho et al. (1995)): 

TttttC pp ,...,1)()()(    2.6-2 

where )(tCp  is the observed non-stationary data, )(t is an identically independently 

distributed (i.i.d.) Gaussian white noise and t  denotes the time instant. The main 

objective is to find the unknown function )(tp  based on the noise-contaminated 

observation )(tCp .  To accomplish this task, a nonlinear wavelet method, termed wavelet 

shrinkage or thresholding (Chen and Letchford (2005), Donoho et al. (1995)), is 

employed.  It consists of the following three steps: Decomposition, Determination of 

Threshold Detail Coefficients and Reconstruction (Chen and Letchford (2005), Misiti et 

al. (1996)). 
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Implementation of the wavelet shrinkage procedure requires selection of a type of 

wavelet and a wavelet decomposition level		ܬ.  The Daubechies’ wavelets of the 2 to 10 

orders were found to be good choices (Chen and Letchford (2005)).  The decomposition 

level		ܬ	 corresponds to the maximal window width j2 .  Selection of proper		ܬ	 is crucial. 

The idea of one-level simple discrete wavelet decomposition (Misiti et al. (1996)) 

is illustrated in Figure 1.  Wavelet transform technique filters the original non-stationary 

time series into its low-frequency and high-frequency components via low-pass and high 

pass filters, respectively.  Similarly, a multilevel wavelet transform can be employed in 

the signal decomposition, as is illustrated in Figure 2.  The signal de-noising is visualized 

in Figure 3.  The Wavelet Tool Box (Misiti et al. (1996)) in MATLAB developed by The 

MathWorks Inc. and a  MATLAB function proposed by Chen and Letchford (2005) was 

employed to implement de-noising using the wavelet shrinkage approach (see Section 

A2. in Appendix). 

After the time-varying means are determined, the zero-mean non-stationary 

fluctuations are obtained by subtracting the time-varying mean from the original time-

varying pressure.  A two-stage-moving-averaging described by Nau et al. (1982) is 

employed on the zero-mean non-stationary fluctuations to calculate the time-varying 

standard deviations of the pressure. For the averaging, this method first sets a time 

window which is consistent with wavelet de-noising window width		2௝.  Effectively, a 

weighting function (e.g. a half cosine wave) is applied before the variance of the zero-

mean non-stationary fluctuation in the specified window centered on an instant  is		ݐ		

calculated.  The window is moved over the length of the time series of the zero-mean 

non-stationary fluctuation and the variance envelope is obtained.  It has been addressed 
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by Nau et al. (1982) that the computed envelope is overly smooth and locally biased.  In 

order to overcome this drawback, a method for “correcting” the single-stage weighted 

moving average has been proposed by multiplying the instantaneous variance by an 

instantaneous correcting factor. This factor is obtained by applying a moving averaging 

techinique on the ratio of the squared zero-mean non-stationary fluctuation and the 

instantaneous variance.  

2.6.3 Modified Algorithm for Non-stationary Reference Tap Selection 

The reference pressure taps are selected for the non-stationary data in a way 

similar to that used for stationary cases discussed earlier in this thesis.  The SPOD 

eigenvectors	(Φఓ , Φఙ , and	Φ௭)of each non-stationary element ( ),( xtp , ),( xtp  and 

),( xtzp ) were utilized to find the reference taps.  By treating each non-stationary element 

as an independent stationary event, the layout of reference taps can be defined.  However, 

each non-stationary element may yield different layouts of reference taps (i.e.		r݊ߤ ≠

r݊ߪ ≠ r݊ݖ).  So modifications of tap selection algorithm described in Section 2.4.2 are 

sought to yield a reference tap layout optimized for the three non-stationary elements.  

The first tap		r1		is selected by considering the largest sum of modal variations of 

three non-stationary elements.  However, eigenvectors of each non-stationary element 

may not be of the same level of magnitude and the direct sum of modal variations will be 

dominated by elements with larger eigenvector magnitude.  In order to ensure each non-

stationary element is equally weighted, the eigenvectors of each non-stationary element 

(Φఓ , Φఙ , and	Φ௭) are normalized by the length of its first mode.  The steps involved in 

this procedure are listed below: 
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I. Normalize the eigenvectors of each non-stationary element by the length of its first 

mode. 

II. For a candidate location	ݔ , utilize the normalized eigenvectors to evaluate the 

matrices	ቂܯ௫
ఓ(ଵ)ቃ, ቂܯ௫

ఙ(ଵ)ቃ	and	ቂܯ௫
௭(ଵ)ቃ.  Calculate the modal variation of each non-

stationary element and sum of the three modal variations.   

III. Select the first reference tap 	r1	 that corresponds to the largest sum. 

For the selection of the remaining taps, a similar strategy to find a optimized 

location is to look at the smallest sum of condition numbers of each non-stationary 

element.  However, the condition number reflects the global (modal) and local (energy) 

distribution (Eq. 2.3-5), and direct summation of condition numbers would be dominated 

by elements with lower system complexity.  The taps identified during this selection 

could correspond to unimportant modes of lower complexity elements (e.g. time-vary 

mean and time-varying standard deviation).  To overcome this limitation, a threshold 

mode numbers ݊୲୦
ఓ 	 and 	݊୲୦ఙ 	 for the time-varying mean and time-varying standard 

deviation, respectively, are defined based on the related level of cumulative energy, say 

90%.  When choosing the optimized tap		r݊, the condition number of time-varying mean 

was calculated from ቂܯ௫
ఓ(௡)ቃ of locked dimension	(݊୲୦

ఓ × ݊୲୦
ఓ ), with the total number of 

taps 	݊	 exceeding the threshold mode number		݊୲୦
ఓ .   The same scenario is applied for the 

time-varying standard deviation.  The resulting modified algorithm for selecting rest 

reference taps is summarized below: 

I. For choosing	r݊, where		݊ = 2, 3, …		:  Define the threshold mode number		݊୲୦
ఓ  and 

	݊୲୦ఙ  that are associated with a level of cumulative energy, say 90%, for time-

varying mean and time-varying standard deviation, respectively. 
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II. Set a candidate location ݔ  for 		r݊  in reference tap 

layout		:୰ୣ୤
(௡) = [r1 r2 … r݊ − 1    .[ݔ

III. Utilize the Gappy eigenvectors to form ቂܯ௫
ఓ(௡)ቃ, ቂܯ௫

ఙ(௡)ቃ		and		ቂܯ௫
௭(௡)ቃ		: 

௫ܯ  
ఓ(௡)(݅ఓ , ݆ఓ) = Φఓ(݅ఓ , :୰ୣ୤

(௡) )Φఓ୘(݅ఓ , :୰ୣ୤
(௡) )	  2.6-3 

 where 	݅ఓ , ݆ఓ = 1,2, … , ݊ if 	(݊ ≤ ݊୲୦
ఓ ) , or  	݅ఓ , ݆ఓ = 1,2, … , ݊୲୦

ఓ  if 	(݊ > ݊୲୦
ఓ ). 

௫ܯ 
ఙ(௡)(݅ఙ , ݆ఙ) = Φఙ(݅ఙ , :୰ୣ୤

(௡) )Φఙ୘(݅ఙ , :୰ୣ୤
(௡) )	   2.6-4 

 where 	݅ఙ , ݆ఙ = 1,2, … , ݊ if 	(݊ ≤ ݊୲୦ఙ ) , or 		݅ఙ , ݆ఙ = 1,2, … , ݊௧௛
ఓ  if 	(݊ > ݊୲୦ఙ ). 

௫ܯ 
௭(௡)(݅௭ , ݆௭) = Φ௭(݅௭ , :୰ୣ୤

(௡) )Φ௭୘(݅௭ , :୰ୣ୤
(௡) )	   2.6-5 

 where 	݅௭ , ݆௭ = 1,2, … , ݊ for all 	݊.  

IV. For a trial layout		:୰ୣ୤
(௡)	, calculate the summation of condition numbers: 

௫ܯቀߢ	
(௡)ቁ = ௫ܯቀߢ

ఓ(௡)ቁ + ௫ܯቀߢ
ఙ(௡)ቁ + ௫ܯቀߢ

௭(௡)ቁ  2.6-6    

V. Loop over possible ݔ	  and choose r݊  so that the ߢቀܯ௫
(௡)ቁ  in Eq. 2.6-6 is 

minimized.  Return to Step II and proceed with the subsequent steps of the next 

reference tap selection. 

2.6.4 Non-stationary Pressure Extrapolation 

Once the reference taps are defined, extrapolation tools can be applied for data 

reduction.  LSE method is applied in extrapolation since it leads to more accurate 

predictions (based on observations presented later in Section 3.4.2).  By treating each 

non-stationary element as a stationary pressure time series, the linear coefficients 

ఓ[ܤ]) , ఓ[଴ܤ] , ఙ[ܤ] , ఙ[଴ܤ] , ௭[ܤ] ,  ௭) are first evaluated.  Only the reference taps are[଴ܤ]

retained in the pressure extrapolation phase.  With the new non-stationary 



21 
 

pressures ,ݐ)௣ܥ (୰ୣ୤ݔ  measured at those reference taps, the non-stationary 

elements ,ݐ)௣ߤ	)	 ,(୰ୣ୤ݔ ,ݐ)௣ߪ ,ݐ)௣ݖ	and	୰ୣ୤)ݔ (	(୰ୣ୤ݔ   are decomposed and their target 

counterparts are extrapolated by using techniques discussed in Section 2.5.1:  

  targetref
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Finally the non-stationary pressures ܥመ௣(ݐ,   :୲ୟ୰୥ୣ୲) at target locations are determinedݔ

),(ˆ),(ˆ),(ˆ),(ˆ
targettargettargettarget xtxtxtzxtC pppp    2.6-10 

The procedures discussed in Sections 2.6.1 through 2.6.4 and employed for the 

non-stationary extrapolation are summarized as two steps which are schematically shown 

in Figures 4 and 5.  In the first step (Figure 4), the non-stationary pressures measured at 

all tap locations are decomposed into three non-stationary elements (Section 2.6.2).  Each 

non-stationary element is treated as a stationary event and SPOD (Section 2.3), GPOD 

reference tap selection (Section 2.6.3) and LSE (Section 2.5.1) are applied.  The linear 

coefficients ([ܤ]ఓ, ఓ[଴ܤ] , ఙ[ܤ] , ఙ[଴ܤ] , ௭[ܤ] , (௭[଴ܤ]  of three non-stationary elements are 

first evaluated and saved.  On the second step (Figure 5), the new non-stationary 

pressures measured at those reference taps		ܥ௣(ݐ, -୰ୣ୤) are decomposed into three nonݔ

stationary elements	(	ߤ௣(ݐ, ,(୰ୣ୤ݔ ,ݐ)௣ߪ ,ݐ)௣ݖ	and	୰ୣ୤)ݔ  ).  The corresponding target	୰ୣ୤)ݔ

quantities ( ,ݐ௣൫ߤ̂	 ,୲ୟ୰୥ୣ୲൯ݔ ,ݐො௣൫ߪ ,ݐ௣൫ݖ̂	and	୲ୟ୰୥ୣ୲൯ݔ (	୲ୟ୰୥ୣ୲൯ݔ  are extrapolated by using 

LSE with parameters obtained in the first step.  Finally the non-stationary pressures 



22 
 

,ݐ)መ௣ܥ -୲ୟ୰୥ୣ୲) at target locations are determined by combining the extrapolated three nonݔ

stationary elements. 
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Chapter 3 Experimental Setup, Data Analysis and Discussion  
 
 
3.1 Chapter Overview 

First, the experimental setup used to generate the wind pressure data is described. 

Next, implementation of the data analysis techniques discussed in Chapter 2 is illustrated.  

During the first phase of the data analysis, stationary cases were analyzed first.  

Subsequently, non-stationary wind pressure data were processed.   

3.2 Experimental Setup 

A generic low-rise industrial building with prototype planar dimensions of 200 ft. 

× 100 ft. and a building height of 40 ft. was selected.  The wind-induced pressures on the 

external surface of the building were obtained during wind tunnel testing at the Wind 

Engineering and Fluids Laboratory (WEFL) at Colorado State University (CSU) as 

described by Endo (2011).  The testing was performed at a geometrical scale of 1:150, 

using a building model furnished with 990 pressure taps.  The geometry of the model and 

the tap locations are schematically shown in Figure 6.   It can be seen that the taps are 

uniformly distributed over the building surfaces.  As a result, approximately equal 

tributary areas are associated with each tap.  Such a tap layout simplifies spatio-temporal 

analysis of the time series of the acquired pressures.  The overall view of the building 

model installed in the wind tunnel test section is shown in Figure 7.   
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The structural frames of the building employed in analysis presented in this thesis 

are schematically displayed in Figure 8, where they are labeled as 1st row frame and 15th 

row frame.  The pressure tap locations and numbering employed for these frames are 

indicated in Figure 9.  Wind pressures induced at these locations (for the two frames) 

were employed in analysis.  The wind directions considered were 0, 45 and 90 degrees, 

see Figure 8.  The pressure time series were nearly simultaneously measured at all the 

990 taps using the Electronically Scanned 1024-channel Pressure Measurement System 

developed at WEFL.   The pressures were acquired at a sampling rate of 332 samples per 

second (332 Hz).  Approximately 87-second long data records (29,000 data points per 

channel) were acquired.  Pressure measurement system and the related instrumentation 

employed in the wind tunnel testing are described in detail by Endo (2011).  

3.3 Data Analysis using POD and SPOD  

In this section, the application of POD (introduced in Section 2.2) and snapshot 

POD (SPOD) (outlined in Section 2.3) is described.  Time series of the wind pressures 

induced by 90o wind on the 15th row frame are considered.  The eigenvalues, basis 

eigenvectors and principal coordinates obtained from POD and SPOD are compared. The 

effects of snapshot time (߬ = 4		and		߬ = 40) on POD and SPOD eigenvalues and basis 

eigenvectors are investigated.   

The eigenvalue problem implied by POD and SPOD is considered first.  Both the 

methods result in the same modal eigenvalues ௜ߣ		 		 .  These values and the relative 

cumulative energy		ܧ௜ 		are shown in Figure 10.  It can be seen that the effects of the 

snapshot time		߬		are negligible.  The eigenvalues and the cumulative energy information 
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can be used to assess the complexity of the analyzed system:  the lower the number of the 

first modes that are needed to capture most of the system’s energy, say 90%, the simpler 

the system is.  It can be seen in Figure 10 that the first 8 modes contain 90% of the data 

set energy, while the first 11 and 18 modes contain respectively 95% and 99% of the 

energy. 

All 27 modal basis eigenvectors Φ obtained from POD and SPOD (for snapshot 

time 	߬ = 4) are shown in Figure 11.  As mentioned in Section 2.3, the POD basis 

eigenvectors are typically normalized so that the length of each of the vector is unity.  On 

the other hand, the length of each modal SPOD basis eigenvector is proportional to 

relative energy (Eq. 2.3-5).  Figure 12 shows the standard deviation of principal 

coordinates obtained using POD (left vertical axis) and SPOD (right vertical axis).  As 

can be seen, the POD values decrease with the increasing mode index, while the SPOD 

values are mode independent.  Moreover, the standard deviations of the SPOD principal 

coordinates are about 1/10 of those associated with the POD coordinates.  Thus in POD 

analysis, the relative modal energy distribution is expressed by the principal coordinates, 

while the modal vectors have the same length.  The opposite is true for the SPOD case.  

The (spatial) eigenvectors carry information regarding the modal energy distribution, 

while the energy levels exhibited by the principal coordinates are mode independent.  In 

other words, the SPOD (spatial) eigenvectors reflect both global (modal) and local 

(spatial) energy distributions. 

The POD and SPOD basis eigenvectors (or modal shapes) of the first three modes 

obtained for snapshot times 	߬ = 4	 and 	߬ = 40	 are shown in Figures 13 through 15.   

The first mode indicates the most energetic area in the region spanning from tap		ݔ = 7 
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through		ݔ = 10, which is the flow separation zone near the windward roof edge (eave).  

The second energetic area is located on the windward wall, especially near the roof edge. 

Larger values of the modes are observed for the SPOD modal shapes obtained using the 

data with shorter sampling times (more snapshot data, see Eq. 2.3-4).  When the SPOD 

basis eigenvectors are normalized by their length, the shapes of the POD and SPOD 

modes are identical.   

As mentioned in Section 2.3, the snapshot time		߬	 needs to be larger than the 

correlation time.  However, the increased snapshot duration leads to the results of lower 

fidelity, as shown in POD modal shapes in Figure 13 through 15.  To ensure the fidelity 

of the analyses carried, while reasonably limiting the required computational time, 

	߬ = 4	 was chosen as the base data sample duration, in the analyses presented hereafter. 

In analyses carried out for the 1st row frame, SPOD was applied for wind 

directions of 0o, 45o and 90o.  For references in subsequence analyses, cumulative energy 

is displayed for these cases, in Figure 16.  It can be seen that the 90o wind direction 

system needs first 9 modes to capture 90% of total energy while only the first 8 modes 

are needed for 0o wind direction.  Thus it is the most complex systems among the wind 

direction cases considered for 1st row frame.  The 45o wind system requires first 5 modes 

to capture 90% of total energy, indicating the system of intermediate complexity.   

3.4 Application of Extrapolation Tools – GPOD and LSE 

3.4.1 Reference Tap Selection 

After SPOD analysis had been done, the required parameters are obtained for 

matrices [ܯ] and {݂} needed in Eq. 2.4-1 to calculate ),(ˆ nta .  It should be noted that the 
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accuracy of the reconstructed principal coordinates ),(ˆ nta , is affected by the condition 

number )(M of the matrix		[ܯ].  As discussed in Section 2.4, this factor is taken into 

account when a set of the reference taps is established.  The algorithm described in 

Section 2.4.2 was first applied on 15th row frame, 90o wind direction.  Subsequently, the 

cases of 1st row frame for three wind directions were considered.  The layout of reference 

taps defined by GPOD algorithm is compared with the layout of the empirically selected 

taps.   

Following the algorithm discussed in Section 2.4.2, the selection of the first 

reference tap is governed by maximization of modal variation, which is the difference 

between the sum of the diagonal elements and the sum of the off-diagonal elements of 

matrix 	ቂܯ௫
(ଵ)ቃ .  For tap number ݔ  assumed as a candidate for the (27 ,… ,2 ,1=ݔ ) 

reference tap		r1, the reference tap was updated in a single row matrix 		∶	୰ୣ୤
(ଵ) =  The  .[ݔ]

first eleven modes were found to contain 95% of the energy of the analyzed pressure field 

(see Figure 10).  Therefore,	ቂܯ௫
(ଵ)ቃ comprising of first eleven modal eigenvectors was 

formulated and used.  The entry (݅, ݆) in matrix	ቂܯ௫
(ଵ)ቃ, of dimension (11 x 11), was 

calculated using Eq. 2.4-8.  The modal variation of 		ቂܯ௫
(ଵ)ቃ		is plotted in Figure 17 as a 

function of the candidate tap		ݔ.  The maximum occurs at		ݔ = 11.  Thus tap 	ݔ = 11	was 

selected as the first reference tap,		r1.  It can be seen that		r1 is located in the region of 

the high magnitude of the first SPOD eigenvector of the data, displayed in Figure 13.  

The second reference point		r2	 was found as follows.  The (2	 × 	2) modal matrix 

	ቂܯ௫
(ଶ)ቃ  comprising of the first and the second modal eigenvectors 	(݅, ݆ = 1, 2)  was 
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evaluated by using Eq. 2.4-9 at the reference locations 		∶	୰ୣ୤
(ଶ) = [r1		ݔ], where		r1 was 

selected in the previous step and ) ݔ	27 … ,2 ,1=ݔ, and  ݔ ≠ r1 ) was a candidate for the 

reference point		r2.  The condition number of 	ቂܯ௫
(ଶ)ቃ was calculated next and it is plotted 

in Figure 17 as a function of		ݔ.  It can be seen that the smallest values of 	κቀܯ௫
(ଶ)ቁ occur 

on the windward wall - taps		ݔ = 1		through		ݔ = 6.  A representative location in this 

region, tap		ݔ = 3, was selected as the reference tap		r2.   

The third reference location		r3		was determined in a similar manner.  The already 

determined reference locations		r1 and		r2 and a candidate tap 27 ,… ,2 ,1=ݔ ) ݔ, and  

ݔ ≠ r1, r2 ) for r3 were used to calculate the matrix ቂܯ௫
(ଷ)ቃ.  The matrix 	ቂܯ௫

(ଷ)ቃ  of 

dimensions		(3	 × 	3), comprised of values of the first three modal eigenvectors (݅, ݆ =

1, 2, 3), was evaluated by using Eq. 2.4-10 at three locations 		∶	୰ୣ୤
(ଷ) = [r1		r2		ݔ].  The 

condition number of 	ቂܯ௫
(ଷ)ቃ	is displayed in Figure 17, as a function of candidate tap		ݔ.  It 

can be seen that the minimum value occurs at		ݔ = 7.  Thus tap		ݔ = 7	was selected as the 

reference tap		r3.  Note that		r2	and		r3 were located in regions of high magnitude of the 

2nd and 3rd eigenvectors displayed in Figure 14 and 15, respectively.  The subsequent 

reference locations were determined in a similar manner until the remaining reference 

taps (r4	~	r27) were selected.  Figure 18 shows the locations of the reference taps 	r1	 

through 	r8	,	for the 90o wind, selected for 15th
 row frame.  It can be seen that most of 

these taps are located in energetic regions of the wind-induced pressure – namely in the 

flow separation zone on the roof (ݔ =	7	~ 12).  The locations of the first eight reference 

taps found for 1st row frame, and wind directions of 0o, 45o and 90o, are shown in Figure 

19.    
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In addition to the above algorithm-based locations of the reference taps, eight 

approximately uniformly distributed taps, denoted herein as empirically selected 

locations, were chosen.  The locations of these eight empirically selected reference taps 

are shown in Figure 20.  They were used in comparative analyses carried out for 1st and 

15th row frames.   Taking into account fact that for most wind directions (i.e. 45o and 90o) 

the spatio-temporal structure of the pressure induced on the windward portion of the roof 

and windward wall is complex, the first reference tap		r1	 was empirically selected near 

the windward roof eave (ݔ = 8) and the second reference tap		r2	 was chosen on the 

windward wall (ݔ = 6).  The subsequent reference six taps were approximately evenly 

distributed on the windward and leeward walls and on the roof portions of the frame.     

3.4.2 Reconstruction of Principal Coordinates  

In this section, reconstruction of principal coordinates ( , )a t n  for the 90o wind on 

15th row frame using GPOD and LSE techniques is discussed.  The exact coordinates 

were calculated using SPOD method.  Predictions involving the measured pressure time 

series at up to eight reference locations (	r1 through		r8	) were carried out for all the 27 

modes of the SPOD decomposition.  GPOD algorithm-based (A.B.) and empirically 

selected (E.S.) reference taps were employed.       

In the GPOD approach, the reconstructed (approximated) coordinates ),(ˆ nta  

were computed by solving Eq. 2.4-1.  In this analysis, the total number of the retrieved 

modes 		݊		 (i.e. 	ܽ(1, ,(ݐ ܽ(2, ,(ݐ … , ܽ(݊,  should not exceed the total number of the ((ݐ

reference taps 		ܰ  (i.e. :୰ୣ୤ = [r1 r2 … rܰ] ).  As mentioned in Section 2.4, the 

reference tap layout may greatly affect the reconstruction accuracy. Therefore only 
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algorithm-based reference taps were employed herein in GPOD reconstruction.  In LSE 

analysis, ˆ( , )a t n were determined from Eq. 2.5-6.  Note that in this approach the number 

of retrieved modes is not restricted by the number of the reference taps.  Both the 

algorithm-based (A.B.) and empirically-selected (E.S.) reference taps were used in the 

LSE method. 

To compare the principal coordinate reconstruction results of GPOD and LSE 

analyses, the residual error associated with mode n  , defined below, was used 
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where the numerator is the time averaged residual and the denominator  is the		(݊)ߪ		

standard deviation of ( , )a t n .   

The residual errors associated with 1st, 3rd, 5th and 7th modes are displayed in 

Figure 21 as functions of the number of the reference taps (i.e.  

     r8r21r...,,2r1,1r:ref r  ) used in the reconstructions.  It can be seen that the 

principal mode reconstructions improve as the number of the reference taps is increased.  

The GPOD is unable to retrieve the 	݊୲୦	mode when the total reference tap number is 

lower than		݊.  So, the GPOD residual errors of ݊୲୦mode in Figure 21 are displayed only 

when this condition is satisfied.  The standard deviations of the corresponding 

reconstructed principal coordinates presented in Figure 21 are shown in Figure 22.  It is 

observed in Figure 22, that the reconstructed ),(ˆ nta  obtained using GPOD were larger in 

magnitude than the exact values of the principal coordinates ),( nta .  As the number of 

the employed reference taps was increased, this overestimation was reduced.  For LSE 

method, Figure 21 shows that reconstructions are generally better than those obtained 



31 
 

using GPOD.  Figure 22 shows that the reconstructed coordinates were in general 

underestimating the true coordinates ),( nta  and that this underestimation was reduced 

when the number of the reference taps was increased.   

In LSE, steeper drops in the residual error (Figure 21) and steeper rises of 

reconstructed principal coordinates’ standard deviation (Figure 22) of 		݊୲୦	  mode 

occurred when		݊		algorithm-based reference taps were used.  For empirically selected 

taps, similar trends are observed for 1st, 3rd and 7th modes.  However the 5th mode was not 

significantly improved when first 5 taps were used.  Improved convergence (steeper drop 

in the residual error) in reconstruction of ),(ˆ nta  is due to larger correlation between 

)r,( ntCp and ),( nta .  The high correlation positions coincide with positions with high 

eigenvector amplitudes.  The GPOD algorithm automatically labeling		݊୲୦	tap 	ݎn			among 

high magnitude locations of 	݊୲୦	eigenvector ensures that the first		݊		reference taps are 

used to extrapolate pressures that capture first 		݊		modes.  On the other hand, the 

reference taps empirically selected (e.g. by choosing energetic locations on the building 

surface) may not sufficiently capture the modal energy of the pressure. 

The relative inaccuracy, overestimation and limited number of modes of GPOD 

reconstruction of principal coordinates will lead to inaccurate extrapolation of the 

pressure.  The tap selection algorithm embedded in GPOD method is useful to identify 

the energetic locations in order.  The relatively accurate results of LSE reconstruction 

lead to possible benefits of the use of a combination of GPOD tap selection and LSE 

extrapolation.   Since the reference taps are labeled in energetic order, it is expected that 

that the decision regarding the sufficient number of taps to ensure accurate pressure 
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extrapolations can be made based on the assessment of the system complexity, e.g. as 

displayed by the cumulative energy	ܧ௜. 

3.4.3 Extrapolation of Wind-Induced Pressure 

In this section, pressure extrapolations using the algorithm-based (A. B.) (Figures 

18 and 19) and empirically selected (E. S.) reference taps (Figure 20) are described.  

Locations on the 15th and 1st row frames are considered.  The pressures at the target 

locations are extrapolated from measured pressures at the reference locations using LSE 

(Eq. 2.5-1) with 1, 3, 5 and 8 reference taps.  The first		݊		reference taps are selected 

as		:୰ୣ୤ = [r1 r2 … r݊].   

To assess the accuracy of the extrapolated pressure, means, standard deviations, 

peaks and residual errors of the extrapolated pressures are evaluated.  The mean and 

standard deviation of measured pressures are shown in Figure 23 and 24 for the cases 

considered in the extrapolation analyses. Figure 25 shows the observed and estimated 

peaks.  The pressure peak estimates were obtained using methodology described by Endo 

(2011).  The residual error of the pressure extrapolation is defined as follows: 
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where x  denotes the tap location, T  represents the total number snapshots recorded, 

denotes the standard deviation of exact pressure and pĈ  represents the extrapolated 

pressure.  Since mean pressures were accurately predicted during extrapolations, the 

presented comparisons were restricted to the pressure standard deviations and peaks.   
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For a representative case of 90o wind and 15th row frame, the standard deviations, 

peaks and residual errors of the extrapolated and original (measured) pressures are 

displayed in Figures 26 through 28, respectively.  The pressure standard deviations and 

peaks showed that the extrapolated pressures at locations between reference taps were 

generally underestimated.  The residual errors at locations adjacent to the reference taps 

are smaller (pressures are better approximated) than locations far from the reference taps.  

When the lower number of the reference taps (e.g. 1 and 3 taps) were used, the 

extrapolations utilizing the algorithm-based and empirically selected layouts duplicated 

the major feature of energetic (significant) pressures.  By increasing the reference tap 

number (e.g. 5 and 8 taps), secondary energetic features of the pressure were also 

captured.  Thus, as expected, an increase in the number of the reference taps improves the 

accuracy of the pressure extrapolations. 

Similar results for 1st row frame, the standard deviations and peaks of 

extrapolated pressures, for 90o, 45o and 0o wind directions, are shown in Figures 29 

through 34, respectively.   It can be seen that when lower number of the reference taps 

were used (e.g. 1 and 3 taps), the primary energetic pressure features were captured by 

using algorithm-based layouts while they were not captured when empirically selected 

reference layouts were employed.  These differences were more pronounced for 90o and 

0o wind directions.  When higher number of the reference taps were used (e.g. 5 and 8 

taps), both the algorithm-based and empirically selected reference taps worked well for 

45o and 0o wind directions.  However, the evenly spaced reference taps (selected 

empirically) led to significant underestimation of the pressure in the primary energetic 



34 
 

region (tap ݔ = 7	to 12) for 90o wind direction, where the algorithm-based taps were 

heavily packed.    

As mentioned in Section 3.4.2, the number of the total algorithm-based reference 

taps needed can be related to the system complexity, as measured by the cumulative 

energy ௜ܧ		 .  If this level is set to 90%, the required numbers of the reference taps, 

established based on prior SPOD analyses (see Section 3.3), are 8 for 90o-wind-15th-row 

case and for 0o-wind-1st-row case, 5 for 45o-wind-1st-row case, and 9 for 90o-wind-1st-

row case.  Examination of the standard deviations and peaks of the extrapolated pressures 

and comparisons with the corresponding values extracted from the original pressures, in 

Figures 26 through 34, confirms these assertions.   

3.5 Non-stationary Analysis 

3.5.1  Introduction to Non-stationary Events 

The tools for tackling non-stationary problems introduced in Section 2.6 are 

applied in this section.  Analysis of the pressures acquired at tap locations on the 1st row 

frame, for wind directions 0o, 45o and 90o was of main focus.     

The 1st row frame non-stationary case was artificially created by combining three 

segments of the pressure time series obtained for three wind directions: (1) first 1/3 

portion of the pressure time series obtained for wind direction of 0o (time series index ݐ = 

1 through 9666); (2) second 1/3 portion of the pressure time series obtained for wind 

direction of 45o (time series index 9667 = ݐ through 19332); and (3) third 1/3 portion of 

the pressure time series obtained for the wind direction of 90o (time series index t=19333 

through 29000).     
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For the 1st row frame non-stationary case, Figure 35 compares the means and 

standard deviations of the non-stationary and stationary cases.  The mean value of non-

stationary case is observed as passing between the values for the three stationary cases.  

However, the standard deviation for the non-stationary case is for the most part higher 

than for the stationary cases.  

 The wavelet de-noising and two-stage moving averaging techniques, as described 

in Section 2.6, were applied to filter out the time-varying means, the time-varying 

standards deviation and the normalized fluctuations.  Then SPOD was applied to the three 

parts of the generated non-stationary time series.  With the SPOD basis eigenvectors 

obtained, the modified GPOD algorithm described in Section 2.6.3 was applied to specify 

the reference tap placement.  Finally, the pressure extrapolations were carried out using 

the proposed techniques summarized in Figures 4 and 5.  Extrapolated results using non-

stationary consideration (Figures 4 and 5) are compared with results obtained from 

stationary assumption.  The means, standard deviations, peaks and residuals of 

extrapolated pressures were calculated and used to compare the difference between the 

results of the analyses based on the stationary assumption and non-stationary 

considerations of the pressure time series. 

3.5.2 Time-varying Mean, Time-varying Standard Deviation and Normalized 

Fluctuation 

In this section, the non-stationary pressure time series introduced in previous 

section are decomposed into its three non-stationary elements – time-varying mean	ߤ௣(ݐ), 

time-varying standard deviation	ߪ௣(ݐ) and normalized fluctuation	ݖ௣(ݐ).  To accomplish 
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these tasks, the wavelet de-noising and two-stage moving averaging techniques as 

described in Section 2.6.2 were applied.   To filter out time varying mean, a set of de-

noising parameters was first determined: (1) The decomposition-level (	݆ = 9	), which 

corresponds to the time window width	2௝ = 2ଽ = 512	;  (2) Birge–Massart parameter 

ߙ = 3; and (3) Type of wavelet (‘db4’).  Note that decomposition level j is crucial in de-

noising, as a wider window leads to smoother de-noising results, i.e. the time-varying 

mean.  After preliminary trials, the level 	݆ = 9	 was established to be optimal – sensitive 

enough to capture significant features associated with the stationary pressure time series 

at different approaching wind directions.  After the time-varying mean was determined, 

two-stage moving averaging was applied to the zero mean non-stationary time 

series, (ݐ)௣ݔ		  ( ௣ݔ = (ݐ)௣ܥ − (ݐ)௣ߤ ), to calculate the time-varying standard 

deviation	ߪ௣(ݐ).  Finally the normalized fluctuation 	ݖ௣(ݐ) was obtained using Eq. 2.6-1. 

The time-varying mean and standard deviation envelopes at tap ݔ = 21 on 1st row 

frame are compared in Figure 36 with the stationary mean, stationary standard deviation 

envelopes and non-stationary pressure time series.  In Figure 37, the time-varying 

quantities are compared with stationary quantities (for different potions of the time series) 

at different locations.  Good agreement between the time-varying and stationary 

quantities can be observed.   

SPOD was applied for the three non-stationary elements.  Using the data obtained 

for snapshot time (߬ = 4) employed in stationary analyses, each non-stationary element 

was decomposed into 27 modes.  The cumulative energy iE  is shown in Figure 38 and 

Table 1.  It can be seen that 	ߪ௣(ݐ) fluctuates more than		ߤ௣(ݐ), and that 	ݖ௣(ݐ) fluctuates 
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more than	ߪ௣(ݐ).  As depicted in Figure 38 and 37, the normalized fluctuation is the main 

element that captures the non-stationary aspect of the system’s energy. 

The first two SPOD eigenvectors of each non-stationary element are shown in 

Figure 39.  Locations of high eigenvector magnitudes indicate the high degree of 

fluctuation of the time series in these areas.  The low degree of fluctuation of time-

varying mean at tap		ݔ = 8	, when compared with time-varying mean at tap	ݔ = 21, is 

observed.  This is in agreement with the time series exhibited in Figure 37.  For time-

varying standard deviation, the first modal shape implies a small fluctuation at tap	ݔ =

7	and relatively high fluctuation at tap		ݔ = 21	, and the time series of these two locations 

are shown in Figure 37.  Since the mean and standard deviation of a stationary pressure 

time series reflect the building geometry (or approaching wind angles), the modal shape 

of time-varying mean and time-varying standard deviation thus indicate the directional 

sensitivity of a location on building surface.  The first two modal shapes of the 

normalized fluctuation are smooth - flat shapes.  This topology is expected since these 

modes represent properties of normalized time series of the pressure.  

3.5.3 Reference Tap Selection for Non-stationary Data 

The reference taps were selected for the non-stationary pressure time series by 

using modified GPOD algorithm described in Section 2.6.3.  The SPOD eigenvectors of 

each non-stationary element obtained in Section 3.5.2 were utilized to find the reference 

taps.   

The first tap r1	 is selected by considering the largest sum of modal variations of 

three non-stationary elements.  In order to ensure contribution of each non-stationary 
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element, the eigenvectors of each non-stationary element (Φఓ , Φఙ , and	Φ௭) were first 

normalized by the length of its first mode.  For tap number		(27 ,… ,2 ,1=ݔ ) ݔ assumed 

as a candidate for the reference tap		r1, the reference tap layout was updated		∶	୰ୣ୤
(ଵ) =   .[ݔ]

Evaluate matrices 	ቂܯ௫
ఓ(ଵ)ቃ, ቂܯ௫

ఙ(ଵ)ቃ	and	ቂܯ௫
௭(ଵ)ቃ by using similar way presented in Eq. 

2.4-8.  The modal variation of each non-stationary element and the summation along 

candidate locations ݔ  are shown in Figure 40.  The optimized first non-stationary 

reference tap, of 1st row frame, is chosen to be		ݔ = 21, which corresponds to largest 

summation of modal variations.  The result can be checked with the first eigenvectors of 

each element shown in Figure 39, in which tap ݔ = 21		is located at a optimized location 

with high amplitudes of each first eigenvector. 

For the selection of the second tap		r2, a similar strategy to find a optimized 

location is to look at the smallest sum of condition numbers of each non-stationary 

element.  The threshold mode numbers 		݊୲୦
ఓ 		and 	݊୲୦ఙ 		for the time-varying mean and 

time-varying standard deviation, respectively, are first selected based on the related level 

of cumulative energy, say 90%.  Based on Table 1, 	݊୲୦
ఓ  was set to 2 and 	݊୲୦ఙ 	was equal to 

3.  It was observed that current selection number (݊ = 2) did not exceed any threshold 

mode number (݊୲୦
ఓ = 2, ݊୲୦ఙ = 3).  So the matrices 	ቂܯ௫

ఓ(ଶ)ቃ, ቂܯ௫
ఙ(ଶ)ቃ	and	ቂܯ௫

௭(ଶ)ቃ		were of 

size		(2 × 2)		and calculated using Eqs. 2.6-3, 2.6-4 and 2.6-5 with a trial reference tap 

layout		∶	୰ୣ୤
(ଶ) = [r1		ݔ].  The condition numbers		ߢቀܯ௫

ఓ(ଶ)ቁ, ߢቀܯ௫
ఙ(ଶ)ቁ, ߢቀܯ௫

௭(ଶ)ቁ and the 

summation of the three, ௫ܯቀߢ		
(ଶ)ቁ, are shown in Figure 41, as function of candidate 

locations ݔ		 .  The reference location r2   was chosen to be ݔ		 = 4	 , based on the 

minimization of		ߢቀܯ௫
(ଶ)ቁ.  Examination of the second eigenvectors in Figure 39 of each 
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non-stationary element revealed that 		r2	was located at a optimized location of high 

eigenvector amplitudes.  Following the procedures described in Section 2.6.3, the 

remaining reference tap placing order (	r3	to	r27	) was established.  The positions of the 

first five identified taps, 		r1		through		r5		, are indicated in Figure 42, for the 1st row 

frame and non-stationary case. 

3.5.4 Comparison of Different Assumptions on Non-stationary Extrapolation  

In this section, the non-stationary extrapolation results using the reference taps 

specified in the previous section (Figure 42) are discussed.  The statistical parameters 

obtained by applying the proposed non-stationary consideration (Figures 4 and 5) and the 

stationary assumption were employed for extrapolations.  Stationary assumption means 

the statistical parameters used for extrapolation were obtained by treating the non-

stationary data as stationary and the extrapolation follows the procedure described in 

Section 2.5.1.  Because the non-stationary data were obtained by composite stationary 

time series measured for three different wind directions, the statistical parameters 

obtained from non-stationary data were expected to be used for extrapolation if the 

incoming pressures belong to one of three stationary winds.  Thus, the pressures at target 

locations ܥመ௣(ݐ,  ୲ୟ୰୥ୣ୲) were extrapolated from reference pressures obtained by stationaryݔ

winds of 0o, 45o and 90o directions.  The comparisons of the non-stationary consideration 

and the stationary assumption are schematically shown in Figure 43.   

The pressure means, standard deviations, peaks (discussed in Section 3.4.3) and 

residual errors of extrapolated pressures defined in Eq. 3.4-2 are shown in Figure 44, 45 

and 46, for 90o, 45o and 0o wind directions, respectively.  The mean pressures were 
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accurately predicted in the extrapolated pressures using non-stationary consideration.  

Mean pressures of 90o and 45o winds were also predicted well by applying the stationary 

assumption, but little difference was found in predicting the mean pressures of 0o wind 

direction.  For standard deviations and peaks of extrapolated pressures, the stationary 

assumption led to closer predictions than non-stationary consideration at target locations 

for 90o and 0o wind directions.  However this was not always true when looking at target 

tap		ݔ = 8 of 45o wind direction. 

For the residual errors of three wind directions, the extrapolated pressures were 

generally more accurately predicted if the non-stationary consideration was applied.  This 

observation was apparently showed at locations		ݔ = 8		through	13 of 0o wind direction.  

It is reasonable since there are three sets of linear statistical parameters 

(i. e.		[ܤ]ఓ , ఓ[଴ܤ] , ఙ[ܤ] , ఙ[଴ܤ] , ௭[ܤ] ,  ,௭) obtained in the non-stationary consideration[଴ܤ]

which are expected to extrapolate pressures at the target taps more accurately than one set 

of linear statistical parameters obtained in stationary assumption.  Thus, the proposed 

method (summarized in Figure 4 and 5) appears be a viable tool for use in data 

extrapolations for non-stationary cases. 
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Chapter 4 Conclusions and Recommendations 
 
 

In the research described in this thesis, analysis and reduction of stationary and 

non-stationary wind-induced pressures on a generic low-rise building was carried out.  

The main aspects and findings of the research efforts focused on the stationary pressure 

data are summarized as follows:  

 Wind induced pressures were analyzed by modal decomposition tools (POD and 

SPOD) in order to identify the best correlated energetic pressure structures. 

 Basis eigenvectors obtained using SPOD were used because its length reflects modal 

energy and its shape reflects spatial allocation of modal energy.   

 The overall objective of the study was to establish an efficient method for reduction 

of the amount of data used to describe the wind pressures induced on external 

surfaces of low buildings, while preserving the data fidelity suitable for wind 

engineering analyses.  

 The extrapolation tools (GPOD and LSE) were found to be more efficient than the 

modal reduction tools (POD and SPOD) in data reduction.  This conclusion is in 

agreement with related findings reported in literature. 

 When compared with LSE, GPOD was found to be less accurate.  The number of the 

modal contents that can be reconstructed by using GPOD is also limited by the 

number of the reference taps.    
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 The algorithm-based reference tap selection embedded in GPOD was found to lead to 

more accurate extrapolation of the wind pressure data than the empirical selection. 

 A hybrid approach comprising of use of GPOD algorithm-based reference tap 

selection and LSE extrapolation is suggested for development of reduced models of 

wind pressures induced on low-rise buildings. 

 By increasing the number of the algorithm-based reference taps, it was possible to 

significantly improve the accuracy of the pressure extrapolation.  In addition to the 

primary energetic features, also secondary features of the pressure pressures were 

captured. 

 The number of the algorithm-based reference taps needed to ensure accurate 

reconstruction of the pressures was related to the spatio-temporal complexity of the 

pressures, which is exhibited by the cumulative energy revealed by modal 

decomposition. 

  The main outcomes of the investigations carried out for non-stationary cases are 

summarized as follows: 

 Non-stationary time series of wind induced pressures were decomposed into three 

elements: the time-varying mean, the time-varying standard deviation and the 

normalized fluctuation.   

 Use of hybrid GPOD-LSE extrapolation developed for the stationary cases was found 

to be suitable for analysis and model reduction for non-stationary time series of wind-

induced pressures. 

 The non-stationary extrapolations generated using the proposed method was 

compared with extrapolations obtained using stationary assumption employed for 
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non-stationary data.  It was found that the proposed method led to more accurate 

extrapolations of the non-stationary pressures. 

 The methodology for extrapolation of non-stationary wind pressures, as proposed in 

this thesis, appears to be a suitable tool for similar analyses of other non-stationary 

data.     

The recommendations proposed for the follow-up research are summarized as 

follows:   

 If the pressure time series are of small spatial dimension, the length of the basis 

eigenvectors obtained using POD can be rescaled to be proportional to modal energy 

(indicated by eigenvalues).  Thus modal and spatial energy information indicated by 

eigenvectors is representative of full time series (rather than snapshots).    

 The rescaled POD basis eigenvectors can be used in reference tap selection algorithm. 

More precisely located reference taps can be anticipated. 

 The non-stationary pressure time series, which were artificially combined by different 

sections of stationary data, were used for the proposed non-stationary extrapolations.  

To validate the proposed method, more realistic non-stationary data (e.g. measured 

during field experiments) should be used. 
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Table 1: Cumulative energy of non-stationary elements  

 Cumulative 
 energy 

Non-stationary 
elements 

90% 95% 99% 

Varying Mean N/A 2nd 3rd 

Varying STD 3rd 5th 9th 

Norm. Fluctuation 9th 13th 21th 
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Figure 1: Single level wavelet decomposition (after [14]) 
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Figure 2: Multi-level wavelet decomposition (extracted from [14] ) 

 
 
 

 
Figure 3: The original signal (red) and the de-noised signal (blue) (extracted from [14]) 
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Figure 4: First step of proposed non-stationary extrapolation algorithm  
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Figure 5: Second step of proposed non-stationary extrapolation algorithm 
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Figure 6: Geometry of the building model and tap locations 
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Figure 7: Model inside wind tunnel test section 
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Figure 8: Wind direction definition and locations of analyzed structural frames  

 
 
 
 
 
 
 

 

 
Figure 9: Numbering of pressure taps on structural frames 
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Figure 10: Eigenvalues and the relative cumulative energy of wind induced pressures, 

obtained for 90o wind on 15th row frame 
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Figure 11: POD and SPOD basis eigenvectors, obtained from pressure snapshots 

(τ = 4) of 90o wind, 15th row frame 
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Figure 12: Standard deviation of POD and SPOD principal coordinates of τ = 4 

snapshots, 90o wind and 15th row frame 
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Figure 13: POD and SPOD 1st basis eigenvectors for 90o wind, 15th row frame 
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Figure 14: POD and SPOD 2nd basis eigenvectors for 90o wind, 15th row frame 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Φ
(n

=
2 

, x
)

x

POD 2nd mode

τ = 40

τ = 4

-30

-25

-20

-15

-10

-5

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Φ
(n

=
2 

, x
)

x

SPOD 2nd mode

τ = 40

τ = 4



57 
 

 
Figure 15: POD and SPOD 3rd basis eigenvectors for 90o wind, 15th row frame 
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Figure 16: Effects of wind directions on relative cumulative energy of three wind 

directions, 1st row frame 
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Figure 17: Modal variations used in 1st reference tap selection and condition numbers 

used in 2nd and 3rd reference tap selection, 90o wind, 15th row frame 
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Figure 18: First 8 algorithm-selected reference taps, 90o wind, 15th row frame  
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Figure 19: Effect of wind directions on first 8 algorithm-based reference taps, 1st row 

frame 
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Figure 20: First 8 empirically selected reference taps for analyses of 1st and 15th row 

frames 
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Figure 21: Effects of number of reference taps on modal residual errors, modes		݊ =

1, 3, 5	and	7, 90o wind, 15th row frame 
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Figure 22: Effects of number of reference taps on standard deviation of reconstructed 

principal coordinates, modes		݊ = 1, 3, 5	and	7, 90o wind, 15th row frame 
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Figure 23: Means of wind-induced pressure  
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Figure 24: Standard deviations of wind-induced pressure 
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Figure 25:  Observed pressure and estimated peaks of wind-induced pressure 
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Figure 26:  Effects of reference tap selection and number of taps on pressure standard 

deviation, of 90o wind, 15th row frame 
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Figure 27:  Effects of reference tap selection and number of taps on estimated pressure 

peaks, 90o wind, 15th row frame 
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Figure 28: Effects of reference tap selection and number of taps on residual errors of 

extrapolated pressure, 90o wind, 15th row frame 
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Figure 29:  Effects of reference tap selection and number of taps on pressure standard 

deviation, 90o wind, 1st row frame 
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Figure 30: Effects of reference tap selection and number of taps on estimated pressure 

peaks, 90o wind, 1st row frame 
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Figure 31:  Effects of reference tap selection and number of taps on pressure standard 

deviation, 45o wind, 1st row frame 
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Figure 32:  Effects of reference tap selection and number of taps on estimated pressure 

peaks, 45o wind, 1st row frame 

-6.5

-5

-3.5

-2

-0.5

1

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pe
ak

s  
of

  C
p(

t,x
)

x

1 Ref. taps Original Estimated
LSE (A. B. taps)
LSE (E. S. taps)

-6.5

-5

-3.5

-2

-0.5

1

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pe
ak

s  
of

  C
p(

t,x
)

x

3 Ref. taps Original Estimated
LSE (A. B. taps)
LSE (E. S. taps)

-6.5

-5

-3.5

-2

-0.5

1

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pe
ak

s  
of

  C
p(

t,x
)

x

5 Ref. taps Original Estimated
LSE (A. B. taps)
LSE (E. S. taps)

-6.5

-5

-3.5

-2

-0.5

1

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pe
ak

s  
of

  C
p(

t,x
)

x

8 Ref. taps Original Estimated
LSE (A. B. taps)
LSE (E. S. taps)



75 
 

 
Figure 33:  Effects of reference tap selection and number of taps on pressure standard 

deviation, 0o wind, 1st row frame 
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Figure 34:  Effects of reference tap selection and number of taps on estimated pressure 

peaks, 0o wind, 1st row frame 
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Figure 35: Mean and standard deviation of stationary (dashed lines) and non-stationary 

(solid line) cases 
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Figure 36:  Time-varying mean and standard deviation envelopes, 

stationary mean and stationary standard deviation envelopes, 
and pressure time series of non-stationary (0o-45o-90o) wind, 1st 
row frame. 
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Figure 37: Time-varying mean at taps		ݔ = 21	and	8 (first row), time-varying standard 

deviation at taps		ݔ = 21	and	7 (second row), and normalized fluctuation at 
taps		ݔ = 21	and	5 (third row) 
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Figure 38: Cumulative energy of three non-stationary elements 
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Figure 39: First two SPOD modal shapes of three non-stationary elements 
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Figure 40: Modal variations of each non-stationary elements and the summation on 

candidate locations for 1st reference tap  
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Figure 41: Condition number of each non-stationary element and the summation on 

candidate locations for 2nd reference tap 
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Figure 42: First 5 chosen reference taps on 1st row frame under non-stationary wind   
 
 
 
 
 

 

 
Figure 43: Non-stationary pressure extrapolations using different methods 
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Figure 44:  Effects of extrapolation methods on means, standard deviations, estimated 

peaks and residual errors, 90o wind, 1st row 
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Figure 45:  Effects of extrapolation methods on means, standard deviations, estimated 

peaks and residual errors, 45o wind, 1st row 
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Figure 46: Effects of extrapolation methods on means, standard deviations, estimated 

peaks and residual errors, 0o wind, 1st row 
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A1.  POD on Gappy Data (Section 2.4.1) 

The pressure fluctuation at a reference location		ܥ௣ᇱ ,ݐ)  can be represented by	୰ୣ୤)ݔ

the POD reconstruction function, using the POD spatial eigenvectors and principal 

coordinates:  

 
n

p xnntaxtC ),(),(),( refref
'  1 

The domain of analysis is confined to time 	ݐ		  and pressure coefficients at reference 

taps		ݔ୰ୣ୤.  The discrepancy between the original pressures and their approximation (1) is 

expressed as follows: 

2

1

' )),(),(),(( 



i

n
refrefp xnntaxtC  2  

This error is minimized with respect to the principal coordinates by computing 

derivatives of (2) with respect to the principal coordinates and setting them to zeros: 
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After rearrangement, (3) can be written as follows: 

),()(),(),()( '

1
xjxCxjxnna p
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 4 

If reference taps are limited to three locations, ݔଵ,  ଷ, and the first modal principalݔ		 and	ଶݔ

coordinate ܽ(݆ଵ) is taken in (3), (4) can be expanded for location		ݔଵ	: 

)(),()(),(),()(),(),()(),(),( 1
'

11313112121111111 xCxjnaxnxjnaxnxjnaxnxj p
 5 

When locations		ݔଶ	and		ݔଷ		are considered, the following two equations are obtained, for 

this case: 
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Summation of (7) through (9) leads to the following equation: 

 

			{Φ(݆ଵ, ,ଵ)Φ(݊ଵݔ (ଵݔ + Φ(݆ଵ, ,ଶ)Φ(݊ଵݔ (ଶݔ + Φ(݆ଵ, ,ଷ)Φ(݊ଵݔ   ܽ(݊ଵ)	ଷ)}ݔ
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Φ(݆ଵ, (ଵݔ)௣ᇱܥ(ଵݔ + Φ(݆ଵ, (ଶݔ)௣ᇱܥ(ଶݔ + Φ(݆ଵ, ௣ᇱܥ(ଷݔ  8  (ଷݔ)

 

It can be expressed in a compact form using matrix notation – the first equation of the 

matrix equation (9).  When a similar operation is repeated for the remaining principal 

coordinates		ܽ(݆ଶ) and		ܽ(݆ଷ)	, two additional equations – the second and the third row of 

the matrix equation (9) are obtained:   
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Equation (9) can be expressed as follows: 

    ˆM a f   10 
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where the (݅, ݆) elements of matrix  M and vector  f  are, respectively: 

,݅)ܯ ݆) = Φ(݅, :୰ୣ୤ )Φ୘(݆, :୰ୣ୤ )  11  

݂(݅) = Φ(݅, :୰ୣ୤ ᇱ௣ܥ(
,ݐ)் :୰ୣ୤ )  12 

ොܽ(݅) = ොܽ(ݐ, ݅) = the		݅୲୦		mode reconstructed (POD) principal coordinate  13 

Φ୘(݅, :୰ୣ୤ ) and ܥᇱ௣
୘(ݐ, :୰ୣ୤ ) respectively denote the transpose of		݅୲୦	mode eigenvectors 

and pressure (at instant ݐ), at all reference taps.  It should be noted that [ܯ] is a function 

only of space and f  is a function of both space and time.  
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A2.  MATLAB Script for Wavelet De-noising (Section 2.6.2) 

function XD = MEAN_BMS(X, wvnam, J) 

% X is the input signal with T data points. 

% XD is the time-varying mean. 

% wvnam is wavelet name, e.g. ‘db4’. 

% J is the decomposition level. 

% alpha is the parameter for the Birge–Massart strategy. 

alpha = 3.0; 

T =length(X); 

XD=zeros(size(X)); 

[C, L] = wavedec(X, J, wvnam); % decompose. 

[thr, nkeep] = wdcbm(C, L, alpha); % the Birge–Massart strategy for thresholds. 

[XD, cxc, lxc, perf0, perfl2] = wdencmp(‘lvd’, C, L, wvnam, J, thr, ‘s’); % threshold and 

reconstruction. 

 

 

 

 

 

 


