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ABSTRACT 

The aim of this report is to formulate a set of approximate equations 

which can be applied to the numerical modeling of precipitating, deep, 

convective, mesoscale systems in the atmosphere. 

In Chapter 2, a set of approximate equations describing deep con­

vection in a moist atmosphere is derived. Liquid water is parameterized 

into only two categories: cloud water and rain. It is shown that the 

natural dependent variable appearing in the equation for the conservation 

of energy is the potential temperature eL, introduced by Betts (1973). 

In Chapter 3, dimensional arguments are used to obtain a parameter­

ization scheme for the precipitation in mesoscale convective models. By 

following Kessler (1967), the liquid water is divided into two categories: 

cloud water and rain. The physical basis of the Marshall-Palmer spectrum 

is discussed in order to predict the parameters associated with rain 

drops. The parameterization is consistent with the turbulent nature of 

the motion in clouds and it is valid in deep convection. 

In Chapter 4, the equations derived in Chapter 2 and 3 are averaged, 

and a system of equations describing the mean behavior of a precipitating, 

deep, convective mesoscale system is developed. A second-order closure 

approximation is made for turbulence quantities so that equations are 

obtained for the first two moments of the dependent variables. 
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1. INTR)DUCTION 

One of the most difficult meteorological systems to numerically 

model is the moist, deep, convective, mesoscale system. A numerical model 

of such a system should simulate the processes of condensation on cloud 

droplets, formation of precipitation by warm-cloud and ice-phase pro­

cesses, the time and spatial distribution of total water substance including 

its redistribution by precipitation and evaporation of precipitation in 

the sub-cloud layer. These processes influence the dynamics of a meso­

scale corvective system through the latent heat of condensation and freez­

ing and through water loading. by altering the buoyancy field of the meso­

scale convective system. Furthermore, the time scale of this sjstem ;s 

often sufficiently long (two to six hours) for radiational processes to 

be imporo;ant. 

A ml~soscal e convective system frequently evolves from a turbul ent 

planetarJ boundary layer to a moist cumulus layer. to precipitating cumulus 

congestu:;. to isolated cumulonimbi. and perhaps ultimately to precipitating 

squall 1 ines; these, in turn, interact with regional and synoptic scale 

meteorol)gical systems. Thus a broad range of meteorological eddies 

should b: considered. Even the most advanced-level computers, however, 

permit the explicit representation by numerical prediction techniques of 

eddies over a scale range of only two orders of magnitude. Thus, for 

example. even the next generation computers. such as the NCAR/CRAY system. 

will only permit an explicit representation of mesoscale convective systems 

over a rorizontal-scale range of 1.0 to 100.0 km. 

The major problems in modeling cumulus/mesoscale (horizontal scales 

of 1.0 tJ 100.0 km) systems are thus assocaited with interfacing model 
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predictions on these scales with regional- and synoptic-scale meteorological 

systems and parameterization of cloud microphysical processes ard cumulus­

scale eddies (horizontal scales of 0.01 to 1.0 km) on the cumulus/meso­

scale. The major thrust of this report is toward the latter, namely: 

the parameterization of cumulus - and sub-cumulus-scale eddies and the 

parameterization of cloud microphysical processes. 

In Chapter 2 we discuss the general formulation of an apprcximate 

set of momentum, thermodynamic energy, and water continuity equations. 

The objective is to formulate a system with as few dependent variables 

as possible and to choose thermodynamic variables which minimize both 

the computational effort and the likelihood of obtaining errors in the 

numerical evaluation of the thermodynamic energy equation. 

In Chapter 3, a simple, first-order warm-cloud prec;pitaticn param­

eterization is derived. The derived system has the virtue of being 

consistent to a first-order level throughout and. moreover, can be easily 

adapted to the second-order turbulence theory discussed in Chapter 4. 

In Chapter 4, the system of equations is averaged and a second­

order turbulence model is derived. The intended application of the tur­

bulence model is to the parameterization of thermal- and cumulus-scale 

eddies (0.01 to 1.0 km) which may develop from a planetary boundary layer 

mesoscale system or be imbedded in a cumulonimbus/mesoscale con~ective 

system. The turbulence theory represents the first such theory in which 

turbulent energy and eddy momentum transport can be generated b) cloud 

diabatic processes (condensation and evaporation) as well as thE loading 

of cloud condensate. 



2. GHiERAL FORMULATION 

2.1 Introduction 

Thl!re has been a considerable amount of work on the development of 

a consi~;tent approximation scheme which models the variations of the 

thermodynamic variables in the atmosphere in a reasonably realistic and 

yet computationally simple manner. Particular attention has been given 

to the elimination of unnecessary sound waves from models of convection 

(Ogura and Phillips, 1962). Dutton and Fichtl (1969) also analyze the 

momenturl equations and the energy equation for the behavior of a dry 

atmosphf!re. The present work follows that of Dutton and Fichtl in order 

to deri\le a consistent set of equations which is applicable to deep con-

vection in a moist atmosphere. Ice is not included explicitly in the 

parameterization of precipitation~ restricting the precipitation to 

supercooled rain. With the development of an appropriate parameterization, 

however" the ice phase could be included in the equations in a manner 

similar to that of rain. 

2.2 Decomposition of thermodynamic variables 

We consider the motion in a three-dimensional region using the 

Cartesian co-ordinates (xl' x2' x3 ) where x3 increases vertically upward. 

Each thermodynamic variable is decomposed into its reference state (de­

noted by the subscript 0) and a deviation from the reference state (de­

noted by a prime). The reference state variables are functions of x3 

only. Thus the pressure, temperature and density at any point are 

respectively 

p = p (x,) + p'(x t)·, -0 ~ ~_, 

(2.1) 

3 
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where t is time. The fundamental assumption of the analysis is that any 

induced deviation from a reference state is small; for example 

Ipl/p I « 1. 
o (2.2) 

Consequently Dutton and Fichtl (1969) always neglect the ratio of a 

deviation to a reference state quantity when compared with unity. This 

is equivalent to ensuring that only the leading order terms in the de­

viation quantities are retained in the (pc' Pr ) model equations. There 

is no reference state for condensate water, however, because fluctuations 

in water densities are comparable with their overall magnitude. 

In order to satisfy (2.2), the reference state pressure is taken to 

be hydrostatic, i.e. 

where g is the gravitational acceleration. We further assume that the 

air can be treated as a perfect gas and that the reference state air 

is dry; thus 

where Ra is the gas constant for dry air. By specifying the reference 

state of the temperature. 

(2. 5) 

and the surface pressure Po prior to the formation of an active dis­

turbance, equations (2.3) - (2.4) can be used to find Po and Po' 

Generally only a small error will be introduced by taking Po to be the 

initial observed pressure field (which includes the effects of water 



5 

vapor) rather than calculating it formally. The function To (x3) 

could be determined from a suitable sounding of the atmosphere. We note, 

however, that the use of explicit functional forms (polynomials, say) for 

the reference state variables and their derivatives would result in some 

convenience in the numerical computation of the behavior of the disturbed 

atmosphere. 

2.3 Potential temperature 

The potential temperature e is defined by 

R Ie 
e = Ten Ip) a pa 

~r 
(2.6) 

where Pr = 1000 mb and Cpa is the specific heat at constant pressure for 

dry air. The reference state of e is given from (2.3) - (2.5) and (2.6) 

as 

R Ie 
B = T (p /p ) a pa 

o 0 -r 0 
(2.7) 

It is convenient to use e rather than the absolute temperature as a var­

iable in the model equations. Thus, to the first order in deviatio I 

quantities, we may write 

T'lT = 6'/e + (R Ie )pl/p 
o 0 a pa - 0 

(2.8) 

Because deep convection i~ considered. the pressure deviation must be 

included in (2.8) (Dutton and Fichtl, 1969). 

2.4 Saturation vapor density 

When considering the conservation of water in Section 2.6 below, 

it is necessary to calculate the saturation vapor density Ps for the 

atmosphere. This is related to the saturation vapor pressure es by the 

equation of state 
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e
s 

= R p T (2.9) v s 

where Rv is the gas constant for water vapor. The latent heat of vapor­

ization L is related to es by the Clausius-Clapeyron equation 

d e / d T = L e /(F: l' 2) s s· , 'v- . (2.10) 

Taking L to be constant, we find from (2.9) - (2.10) that to the first 

order in TI/To 

(~/(R T ) - 1) (T! / T )} v 0 0 
(2.11) 

and 

The constants esr ' as' Ts [as = L/(RvTs)] are chosen to give a good 

approximation to the observed values of eso . Although the method of 

approximation is to neglect the ratio of a deviation to a reference state 

quantity when compared with unity, the term in T I /T 0 is retained formally 

in (2.11) because L/RvTo is of order 20 rather than unity. This is also 

consistent with the policy of retaining no more than the leading terms in 

deviation quantities. Ogura and Phillips (1962) assert that the higher 

order terms are required in (2.11) - in fact they take the exponential 

of TI/To. However, even for deep convective storms, where the deviation 

term in (2.11) may become as large as 1%, the present representation 

ought to be adequate. It must be recognized, however, that the limits 

of the above approximations may be approached in the tops of severe 

storms where Sinclair (1973) reported values of ITI/Tol exceeding 5%. 
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With L = 2.5154 x 1010 erg gm- 1, P = 12.272 mb, a = 19.2484 and Ts = s s 

283.16 K, there is less than 1.7% error in the expression for Pso used 

in (2.' 1) over the range -30°C < T < 20°C; L varies by less than 2.5% 
- 0-

over tid s ra nge. 

U~;ing (2.8) to eliminate the absolute temperature, we obtain from 

(2.11) the saturation vapor density correct to the first order in de-

viatioll quantities: 

+ (R Ie )p'/n J} . (2.12) 
a pa ~ 0 

2.5 ECluations of motion 

If ui is the velocity in the xi-direction then Dutton and Fichtl 

(1969) show that the equation of mass conservation for deep convection 

reduce~ to 

(l(p u.)!3x. = 0 . 
o ~ J 

The full equation for the conservation of momentum is 

Pdll_i /dt - PE~.!,'rfk u
J
' + dn','''x. + pIg. ~.J :.... • o"l 0 . ~ = ].1 lj 

1 2 
+ 3 d uj/axidXj} , 

f n 2 
1 \ U" . l 

(2.13) 

{2.14} 

where f is the Corio1is frequency vector and ~ is the viscosity of the 

air. Equation {2.3} has been used to eliminate the contribution of the 

reference state hydrostatic pressure. The neglect of p'jp compared o 

with unity implies that p can be replaced by p in the first two terms o 
of (2. H). 

Dutton and Fichtl (1969) assert that the full contribution of the 

viscous terms ought to be retained for deep convection. However, ui 
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can be decomposed into a mean part and a random fluctuation about the 

mean. If we apply the Dutton and Fichtl analysis to the formulation of a 

deep convection model with explicit vertical resolution of 2.0 km or 

greater, then the vertical length scale of the predicted mean corresponds 

to deep convection, while that of the fluctuating component corrE'sponds 

to shallow convection. Thus the turbulent fluctuating velocity ;s 

incompressible. On the other hand, the Reynolds number of the mE~an motion 

is so large that the effect of molecular diffusion on it can be neglected. 

Since molecular diffusion will only affect the turbulent fluctuating 

part of the motion field which is assumed incompressible, it is therefore 

consistent to ignore the contribution of the 1/3 a2u./ax.x. term in (2.14). 
J , J 

The momentum equation for the total flow for deep convection may there-

fore be written in the form 

du./dt - E •. kfk u~ + ~-1 apI/ax. + (~I/p )g 8 . .., = \) 'i] 2 u .• 
1 1J J 0 1 0 10 ~ l' 

(2.15) 
where vm is the molecular diffusivity of momentum. The equations for the 

mean flow will be developed in Part II. 

2.6 Conservation of water 

The total water density Pi. in the atmosphere cons i sts of th(~ water 

vapor density P~ together with the total liquid water density P~:' thus 

p1- = pI + "I 
L V t-'w 

(2.16) 

Primed quantities are used to signify that these water densities are 

deviation quantities because the reference state of the atmosphel~e is 

dry. (If ice is present then it contributes to pl.) Because of the w 
complexity of calculating the complete development of the water droplet 

spectral density, it is usual (following Kessler, 1967) to param(~terize 
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the pre:ipitation process by decomposing the total liquid water into 

cloud water (pi) and rain (pi) such that c r 

pI = pI + p' 
W C r' 

(2.17) 

where the cloud water is assumed to move with the air while rain falls 

at an appropriate terminal velocity relative to the air. The amount of 

supersaturation in clouds is observed to be small. Hence we assume that 

any water vapor in excess of the saturation vapor density condenses 

instantaneously into cloud water; i.e. 

p' = (p t' - P' - P ) H (p I - pi _ P ) 
C . r s t r s 

where H(x) is the Heaviside unit step function. 

The equations for the conservation of total water and rain are 

readily found to be 

y2p' 
t ' 

api/at + aCu.p')/2x. - aM/ax = v V2 p' + S +S -s 
r Jr ] 3 r rca e 

(2.18) 

(2.19) 

(2.20) 

where v t and vr are the effective molecular diffusivities of total water 

and rain, respectively M ;s the downward flux of rain relative to the 

air; Sc is the rate of conversion of cloud water into rain (llautoconver­

sionll); Sa is the rate of increase of rain due to the accretion of rain 

with cloud water; Se is the rate of evaporation of rain. The last four 

quantities must be determined from some parameterization of the precipi-

tation process. In any parameterization scheme, these terms are given 

as functions of the ensemble or grid point average of p~, p~, P~ and ps 

together with some reference state variables. We note that P~ and P~ 
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can be eliminated from (2.18) - (2.20) so that the conservation of water 

can be described in terms of the three variables Pt, P~ and P~. 

2.7 Equation of state 

The constituent gases of the atmosphere are assumed to be two perfect 

gases: dry air and water vapor. If Pa and P~ are the respective partial 

pressures of dry air and water vapor then the equations of state for the 

gases are 

Pa = R p T a a and e' = R pIT 
v v v ' 

(2.21) 

where Pa = P - Pt is the dry air density. Thus the equation of state for 

the combination of the gases is 

P = (o-r')P l' I, ...... ' + ('D I'D )",1 / (", I)} ~ - - "". . • --. _ !-'". fJ - r- _ • 
-: ~.. v Cl. v '-

(2.22) 

Using (2.1), (2.4). (2.8), (2.16) and (2.17), we find that to the first 

order in deviation quantities equation (2.22) yields 

p'/p = CI-R Ie )(p'/p) - 8'/8 - CR IR -l)(p!/p ) o a pa 0 0 vaL 0 

(2.23) 
+ (R /R )(p'+p')/p . 

V a c r 0 

Equation (2.23) allows the density deviation, which is required ill the 

momentum equation (2.15), to be calculated. 

It should be noted that the density deviation p' is the total density 

deviation including air, water vapor and condensate. It is assum~d that 

the condensate is falling at terminal velocity and, therefore, transmit­

ting its weight to the air. 

2.8 Thermodynamic energy equation 

The application of the first law of thermodynamics to a unit mass 

of dry air containing water vapor and condensate gives 



11 

{c dT­pc (R Tip )dD 1 + (pT/ p ){e dT - (R T/D')dp'} 
a. - a ~ a J v a pv v" v v ( 2.24 ) 

+ (o'/p )e dT = TdS . w a w 

where C)v is the specific heat at constant pressure for water vapor; 

Cw is tle specific heat of liquid water; S is the entropy of the gas. 

It is a;sumed in (2.24) that the gases and liquid water are in thermal 

equilib'ium. The entropy of the system is increased by the condensation 

of wate' vapor and by the molecular diffusion of heat into the system. 

We therl!fore have 

dS/dt = (L/-:;:') {d(p'/e )/dt - -.l ... n w . a ~J . -~ 
(2.25) 

where Q is the rate of change of the rain mixing ratio due to the rain 

falling relative to the air, and D represents the effects of molecular 

diffusi(n. The function Q is determined from the precipitation parameter-

ization, 

Eqlation (2.21), (2.24) and (2.25) can be manipulated readily to 

yield 

(e IT)dT/at - CR/p)dp/dt - dCLp'/Tp )/dt + LQ/T = D 
P w a ' (2.26) 

where C = C {l + (C Ie) ( p , / 0 ) - ( LI e T 
-) pa pv pa V' a pa 

e /e )(p'/p)}, 
w pa w a 

R = _Po, {, + {-, IT" )(-'/0 )-t 
• ..l.. ~;\ J;, f..! . r . 
a v a v a 

Now bott Cpv/Cpa and Rv/Ra are of order 2 while (L/CpaT -Cw/Cpa ) is 

of order 5. Moreover, the two deviation terms in the expression for Cp 
are of opposite sign. We therefore neglect the deviation terms in cp 
and R be:ause they are small compared with unity. Also we have 
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T-1dT = d(£nT) = d(£n(T +T')) 
o 

= d(£nT + Qn(l+T'/T )) 
o 0 

= d(£nT ) + d(T'/T ) o 0 

to the first order in the deviation. Thus, by using (2.7), (2.8) and 

(2.17), neglecting second order terms in the deviations and including 

molecular diffusion explicitly, the equation for the conservation of 

energy in deep convection reduces to 

dCB'/e )/dt + u.3(£nB )/ax. + (Lie T)Q L 0 <I C ~ pc:. 0 
(2.27) 

where e' /6
0 

= 6 L' / e + (L/ C T) ( p , + P , ) 10 
o pa 0 cr· 0 

(2.28) 

and ve is the effective molecular diffusivity of heat. We note tlat the 

temperature eL, first introduced by Betts (1973), is in fact the 1aturally 

occuring dependent variable in the energy equation. If ice were included 

in the system then additional terms, involving the latent heats of fusion 

and sublimation, must be included in (2.25). These terms would i1 turn 

produce extra terms in (2.28); that is, 8L would be generalized. 

2.9 Conclusion 

We now have a consistent set of equations which ought to des:ribe 

validly the behavior of a moist atmosphere in deep convection. F)r 

three-dimensional motion, there are seven differential equations [namely 

(2.13), (2.15), (2.19), (2.20) and (2.27)] for the dependent varhbles 

~, pi, Pt' P~ and 8L. The cloud water density P~ is specified by the 

functional equation (2.18), while the secondary variables Ps' pi lnd e l 
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are relai.ed linearly to the primary dependent variables by equations 

(2.12), 12.23), and (2.28). 

The differential equations represent the conservation of dynamic 

variable~, if we introduce the variables 

m . = p u. an d r I = P e' Ie. 
1. Ol eto 

(2.29) 

It is sel!n that m is the momentum vector while r is a potential density. 

Then the complete set of model equations is 

am./3x. = 0 , 
] ] 

+ (Lie T) p Q = v V2 r' 
pa 0 0 e ' (2.30) 

ap'/at + a(u.p')/ax. - aM/ax g = v 'l/2 Pr' + Sc + S - S r ]r ] rae 

:,)' = (p' - p' - p )H(p' - p' - p ) c t r s t r s' 

with the secondary variables ~, Ps and pi given in terms of the primary 

variable; by 

u. = m./p 
l l 0 

Ps = (pso/po) {p + (L/R T - 1) [r' + (p' /e T) o v 0 pa 0 

+ (Lie T )(p' + Pr')] } , pa 0 c 

(2.31 ) 



p' = 

14 

(1 - R IC )(p'/R T ) - r' - (R IR - l)p' a pa a 0 vat 

- (L/C T - R IR )(p' + p') pa 0 v a cr' 

Any other thermodynamic variable can be derived from this set of =quations. 

The dependent variables in these model equations are random functions 

of time and space because the motion is invariably turbulent. Any 

solution of the system clearly involves some averaging process (for 

example, an average over a finite-difference mesh or an ensemble average). 

In Chapter 4 of this work, we therefore consider a second-order closure 

approximation scheme for the first two moments of the dependent variables. 



3. PARj~METERIZATION OF RAIN 

3.1 Introduction 

With the development of rather sophisitcated numerical models of the 

dynamics of the atmosphere (for example, Deardorff, 1974a,b and Chapter 4 

of this paper), there is a need for precipitation parameterization schemes 

which are compatible with such models. Computation time and storage 

limitations appear at present to preclude the calculation of the behavior 

of the complete water drop spectral density in any cloud model which 

accounts for the fluid motion in a realistic manner. Hence there have 

been presented several parameterization schemes which allow precipitation 

to be included in a cloud model with a relatively small increase in over­

all computation time and storage. 

Most schemes are based essentially on the work of Kessler (1969) 

which divides the total liquid water into two parts: cloud water, which 

is assumed to move with the air, and rain, which is allowed to translate 

relative to the air. Berry (1968) gives some justification to this 

division by showing that the nature of the collision process between 

drops produces a natural break in the spectral density at a radius of 

about 40 wm. The second assumption of Kessler is that the spectral den­

sity of the rain is given by the Marshall-Palmer spectrum. These two 

assumptions are made in the present parameterization. However, the physical 

basis of the Marshall-Palmer spectrum is examined in order to determine 

the behavior of the parameters associated with it, and this leads to 

slightly different results from those of Kessler. 

Perhaps the most arbitrary feature of Kessler1s parameterization is 

the assumed form of the rate of conversion of cloud water directly into 

15 
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rain (liautoconversion ' ). An alternate expression for this, which has 

been used by Liu and Orville (1969) and Simpson and Wiggert (1969) is 

given by Berry (1968) who estimates the time T required for the sixth­

moment radius of the spectral density to reach 40 ~m under the action 

of droplet coalescence. His calculations are made for a liquid water 

density of 1 gm m- 3, and then he generalizes his formula to an arbitrary 

water density. Cotton (1972) found that the Berry (1968) parameterization 

consistently resulted in the formation of precipitation too low in the 

cloud. He suggested that since the precipitation formation process takes 

a certain amount of time for the droplet population to broaden to the 

extent that rapid conversion takes place, one should parameterize the 

auto-conversion rate to be a function of liquid water content and the 

lage l of a parcel of droplets. Using the Berry (1967) stochastic drop-

let collection model, he developed a set of empirical auto-conversion 

formulas which described the auto-conversion rate as a function of liquid 

water content and the Lagrangian lage l of the droplet population. Un­

fortunately. the need to estimate the Lagrangian time sCale of a population 

of droplets is particularly inconvenient in multi-dimensional models. 

In addition, the formulation of the time dependence in the parameterization 

scheme was deduced from constant liquid water content stochastic collection 

numerical experiments which have questionable applicability to the atmos­

phere. In the present work, we assume that the cloud water spectral den-

sity has an asymptotic self-similar form and so the rate of conversion 

can be deduced from dimensional arguments. 

Berry and Reinhardt (1974) use detailed calculations of the temporal 

development of the droplet spectral density due to coalescence in order 

to obtain a parameterization of rain. Their scheme is consequently 
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more sophisticated than any dimensionally-based scheme such as the present 

one. However, they require the calculation and storage of three time­

dependent variables (namely, the rain density and two characteristic mass 

scales). whereas the simpler schemes involve only the rain density. The 

physical limitation of their parameterization is that the effect of 

neither evaporation nor drop disintegration is included. It is not 

obvious that these effects can be parameterized simply by the addition 

of further terms to their equations. 

3.2 Water cons~rv~tion equations 

Following Kessler (1969), we divide the total liquid water density 

Pw into two components such that 

where Pc is the cloud water density and Pr is the rain density. Cloud 

water is assumed to follow fluid particle paths while rain has a down-

ward motion relative to the fluid due to its greater terminal velocity. 

The total water density Pt is the sum of the total liquid water density 

and the water vapor density Pv' i.e. 

(3.2) 

Because the degree of supersaturation in clouds is observed to be small, 

it is usual to assume that any water vapor in excess of the saturation 

vapor density condenses instantaneously into cloud water; thus 

p = CP -p -p ) H (p -p -p ) c t r s t r s 
(3.3) 

where ps is the saturation vapor density and H(x) is the Heaviside step 

function. The Heaviside step function ;s defined as 

H(x) = {"l x ~ 01 o x < 0 
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In a Cartesian coordinate system (xl' x2' x3) with x3 increasing 

vertically upward, the conservation of total water is given by the 

equation 

a 
ax. 

] 

( V ) aM = v ~2p 
'-iPt - ~ t' t 

.J 0 3 

(3.4) 

where Vj is the air velocity in the xj-direction; M is the downward flux 

of rain relative to the air; v t is the effective molecular diffusivity 

of total water; t is time. Equation (3.4) implies that there are no 

sources or sinks of total water. The flux out of any given volume is 

induced only by the fluid and molecular motions, except that the rain 

also falls under the influence of gravity. 

The conservation of rain is given by 

aPr 
+ a (V.p ) aM = v 72~ + S + ~ 8 (3.5) 

dt 
-

aX 3 ox. ] r r .... r c a e 
] 

where vr is the effective molecular d i ffus i v ity of ra in; Sc is the rate 

of conversion of cloud water into rain; Sa is the rate of increase of 

rain due to the accretion of rain with cloud water; Se is the rate of 

evaporation of rain. The last three terms of (3.5) represent the sources 

and sinks of rain. 

The equation for the conservation of energy includes the source due 

to the release of latent heat by the condensation of water. It is there-

fore necessary to have an expression for the rate of condensation of 

water R following a fluid particle; that is 

_ dpw _ 
Rc - crt - Rr 

where Rr is the rate of change of rain density due to its settling 

at terminal velocity. 

(3.6) 
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Equations (3.1) - (3.6) together with the equations for the con-

servation of mass (or volume), momentum and energy and the equation of 

state form a closed system provided that the terms M, Sc' Sa' Se and 

Rr can be expressed in terms of the other variables. Physical and dimen­

sional arguments are used below in order to derive such expressions. 

Because the motion in a cloud is turbulent. all the dependent variables 

are random and hence the parameterized terms also are random. This random 

nature is taken into account in the present parameterization. 

3.3 Conversion of cloud water into rain -------------

The term Sc in (3.5) accounts for the initial generation of rain by 

the coalescence of two cloud water droplets to yield a rain drop. This 

process may therefore be expressed in the form 

(3.7) 

where fc is the mean collision frequency for cloud water droplets which 

become rain drops after colliding, H{x) is the Heaviside unit step function 

and so Pcm is a minimum mean cloud water density below which there is no 

conversion. The overbar denotes the mean value of a random variable. 

(Because the dependent variables are generally random functions of both 

time and position, the mean value is interpreted strictly as an ensemble 

average.) Since fc and H(pc - pcm ) are average quantities. the random 

fluctuations of Sc are proportional to those of Pc' and so moments and 

covariances involving Sc are determined easily. 

Because the boundary between cloud water and rain drops occurs at 

a radius of about 40 ~m, condensation plays a negligible role in the final 

conversion process which is controlled by droplet coalescence. The 

initial development of the droplet distribution is, however, due to 
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condensation alone and so there is no conversion until the droplets are 

large enough for coalescence to be significant. We assume that this 

transition occurs when the mean droplet radius is equal to rcm' Hence 

P = (4n/3)p r3 ~! (3.8) 
em wt em e 

where Pwt is the density of water and Nc is the mE'an cloud water d~oplet 

concentration. The effect of coalescence on the droplet distribution 

becomes comparable with that of condensation when the droplets are larger 
-3 than about 10 ~m (Manton, 1974). When rcm = 10 ~m, Nc = 100 cm 3nd 

Pwt = 1.00 gm cm-3, (3.8) gives a critical mean cloud water density of 

0.42 gm m-3 which is comparable with the value of 1 gm m-3 suggest~~d 

by Kessl er (1967). 

We assume that, once the mean cloud water density is greater than 

Pcm ' the cloud water spectral density attains an asymptotic self-similar 

form so that the mean collision frequency can be written as 

(3.9) 

where rc is the mean cloud droplet radius, Ec is the mean collection 

efficiency for droplets involved in the conversion process and Vc is 

the mean relative terminal velocity of the droplets. 

Any cloud droplet can be converted into a rain drop and so t~e 

characteristic scales in (3.9) are representative of the whole cloud 

water spectral density. Thus the relative velocity Vc is charactE;rized 

by the terminal velocity of a droplet of radius rc' and this is given 

adequately by Stokes law: 

v = (2/9)(p t gr2/u ) ewe 0 
(3.10) 
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where P\lt is the density of water, 9 is the gravitational acceleration, 

and ~o ·s the viscosity of the air. [Subscript a on a thermodynamic 

variablE~ indicates that it is a reference state value in the sense of 

Dutton lind Fichtl (1969) and it is therefore not a random variable.] 

The meall mass of a cloud water droplet is p IN. Thus the characteristic c c 

radius I'C is given by 

~3 = C3/4'IT)(P" Ip N). 
C C Kt C 

(3.11) 

The col ector droplet in any collision which produres conversion has a 

radius iJetween 20 fjm and 25 ]Jm. The behavior of the linear collision ef-

ficiencJ for such droplets is shown by Scott and Chen (1970). By averaging 

those ditta, and assuming that the mean coalescence efficiency is unity, it 

is founi that the mean collection efficiency for droplets associated 

with c01version may be represented by 

E = 0.55 . 
C 

(3.12) 

Putting (3.10) - (3.12) into (3.9), we see that the mean collision 

frequen:y is 

(3.13) 

4; 11 
with a 1 = (2/9)(3/4) 3 F. I~ 3 0 OS -c" = . 7. 

Thus the rate of conversion depends weakly upon the cloud water droplet 

concentration; the fewer the number of droplets for a given cloud water 

density, the larger is the mean droplet size and hence the larger the 

conversion rate because fewer consecutive collisions are required for 

a droplet to be converted. We assume that Nc ;s an environmentally 
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determined parameter which can be climatologically derived. The (on-

version rate increases also with decreasing viscosity, that is as the 

terminal velocity increases. This variation is not large: IlO decreases 

by about 12% as the temperature decreases from 200C to -200C. 

T k ' N 100 -3 1 72 10-4 -1 -1 .. 00 a lng c = cm, IlO = . x gm cm sec 'Pwt = 
gm cm-3 and g = 980 cm sec-2, we find that the mean conversion rate when 

p is greater than 0.42 gm m-3 is c 

- -4 7/ S = 7.00xlO - 3 -3 -1 C Pc gm m sec (3.14) 

where Pc is in gm m-3 . The present conversion rate, given by (3.'4), is 

proportional to p//3 and so it increases more rapidly than that of 

Kessler (1967) for which Sc ~ Pc' Liu and Orville (1969) suggest that 

Kessler's critical cloud water density, below which S is zero, mily be c 
taken as zero and this gives 

C -3 -3-1 
~c = 10 Pc gm m sec (3.15) 

By comparing (3.14) with (3.15), it is seen that (3.14) gives lowf!r 

values for Sc than does (3.15) only when Pc is less than 1.31 gm 11-
3 . 

The present parameterization therefore produces an initially more gradual 

conversion rate than does Kessler's; but at high cloud water densities it 

produces a much more rapid conversion. Thus the cloud water dens·ty is 

prevented from becoming excessively large. Soong and Ogura (19731 note 

that if the rate constant in Kessler's formulation is reduced mucll below 

10-3 sec- l then excessive values of Pc are found at cloud top in !lodel 

calculations. 
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3.4 Mar;hall-Palmer spectral density 

Obsl~rvations of rainfall show that the rain drop spectral density, 

~(r) where r is the drop radius, tends to behave exponentially (Marshall 

and Palmer, 1948), and it therefore may be written in the form 

(3.16) 

where N is the rain drop concentration and r is a characteristic radius r m 
for the jistribution. Because the rain drop concentration is generally 

quite low, the spectral density cannot strictly be defined in a statistically 

meaningful manner as a local random variable. Indeed, the agreement between 

observed spectral densities and (3.16) increases with the sample volume of 

the observations (Cotton, 1975c). However, we assume that a meaningful 

estimation of $ can be obtained from an average over a volume with a 

length scale that is small compared with the length scale of the turbulent 

fluctuations. Thus $ is treated as a locally random variable. (If it 

is assumed that $, and hence the following parameterization, can be inter­

preted only in an average sense then p must be replaced by p in all r . r 

the equations below). 

From (3.16), the rain density is 

p =foo (4TI/3) r 3 P t $(r )dr = 8np t M r3 r 0 p w p p w rm (3.17} 

It is usual to assume that Nr/rm is a constant determined by the environ­

ment: kessler (1967) suggests a value of 107m-4. Equation (3.42) then 

implies that rm is proportional to PrO. 25 , and therefore that there is 

no constant characteristic length scale associated with the formation of 

the disiribution. But this is not so. [We note that Cotton (1975) points 

out thai there is apparently no physical foundation for the constancy of 

N/rm·]. 
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Experiments by Blanchard and Spencer (1970) suggest that the Marshall-

Palmer distribution is an asymptotic spectral density produced by a ba1-

ance between coalescence, tending to increase the size of an individual 

drop, and drop breakup, tending to reduce the drop size. Breakup occurs 

when the surface tension force, which keeps a drop coherent, becomes 

less than the aerodynamic or collision forces acting on the drop. Hence 

there is a maximum drop radius rb for which these forces balance; that is 

(3.18) 

where Yo is the surface tension of water. Po is the air density, Vb is 

the terminal velocity of the drop and e is the drag coefficient. The 

term on the right hand side of (3.19) represents both the aerodynamic 

force on a drop and the rate of change of momentum during a collision 

between two drops. The terminal velocity of rain drops is discussed 

in Section 3.5 below. it thus follows that PoVb2e ~ Pwtgrb' Thus there 

is a constant radius associated with the rain distribution, namely 
L 

rb - (Yo/pwtg)~· If (3.16) does represent an asymptotic self-similar 

spectral density then we expect rm to vary with rb and hence 

11 
r = a (Y /p .g) 2 m 2 0 WT 

(3.19) 

where a2 is a constant. The surface tension of water is a rather weak 

function of temperature (Yo decreases by about 4% as the tempera":ure 

increases from -loDe to loDe) and of dissolved impurities (a 10% solution 

of NaCl increases Yo by about 4%). We therefore expect rm to be a constant, 

essentially independent of the detailed environment. 

Considering the data of Hudson (1963) and Mueller and Sims 1966), 

Blanchard and Spencer (1970) show that the spectral densities of rain 
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-1 falling at about 200 mm hr are essentially independent of geographical 

location; i.e. the distribution is not affected by local environmental 

changes. They also plot the logarithm of ~ as a function of r for rain­

fall rates between 25 mm hr- l and 1550 mm hr- l . For r greater than about 

1 mm, all the distributions are roughly linear and parallel. But we see 

from (3.16) that -l/rm is proportional to the slope of these distributions, 

and so it is found that rm is approximately 0.27 mm. Taking Yo = 74.22 

dyne cm- l , we see that the constant associated with the characteristic 

radius of the rain spectral density is 

(3.20) 

For precipitation rates in the range 90 to 722 mm hr- l , Blanchard 

and Spencer find that the median volume diameter of the rain distributions 

is essentially constant and equal to 3.2 mm. The median volume radius 

for the spectral density (3.16) is 3.67 rm which yields a median volume 

diameter of 2.0 mm when r = 0.27 mm. The reason for the discrepancy m 
between the observed median volume diameter and that obtained from the 

slope of the distributions is that the observed high rainfall spectra 

do not follow (3.16) at radii less than about 1 mm. The observed spectral 

density of small drops is much less than that given by the Marshall-

Palmer spectrum. Although this phenomenon might be real (due to collection 

by the larger drops), it is possibly a result of the method of measure­

ment. Cotton (1975c) states that photographic and impaction techniques 

tend to underestimate the number of small drops present in a sample. 

It appears that the distribution (3.16) with rm given by (3.19) 

and (3.20) ought to give a representation of the asymptotic spectral 

density \ihen drop breakup is the dominant controlling mechanism. 
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Blanchard and Spencer (1970) state that breakup becomes effectivE! once 

there are drops with radii greater than about 1.5 mm and that this occurs 

for rainfall rates greater than about 25 mm hr- l . Using the expr'ession 

(3.23) derived in Section 3.5 below relating the rain mass flux to the 

rain density, we note that this lower limit to the validity of the present 

parameterization corresponds to a rain density of about 1.17 gm m-3. 

3.5 Mass flux of rain 

In order to obtain expressiqns for M in (2.5) and R in (2.6), 
r 

the terminal ve1oci.ty of rain drops must be determined. When a drop 

of radius r falls at its terminal velocity V, the weight of the drop is 

balanced by the aerodynamic drag. This is represented by the equation 

where the drag coefficient C is a function of the Reynolds number', 

2PoVr/ llo' The Reynolds number of the motion is very large and so we 

expect, as a first approximation at least, V to be independent of viscosity; 

that is, we expect C to be constant (Spilhaus, 1948). For drops with 

radii in the range 0.5 mm to 2.9 mm, the data of Gunn and Kinzer (1949) 

yield an average value for C of 0.587. Thus the terminal velocity of 

rain drops is given approximately by 

(3.21) 

with (13 = 2.13. Equation (3.21) predicts the terminal velocity \'1ith an 

accuracy of at 1 east 10% over the stated range which includes an the 

rain in the data of Blanchard and Spencer (1970) that fit the aS~(mptotic 

distribution (3.16). The equation accounts for the increase in terminal 

velocity with decreasing density which could be significant in a deep cloud. 
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ThE' rain mass flux relative to the air is 

M = !(XlO' (47T/3)r3 
P t V(r)c/>(r )dr 

. P w P P 
(3.22) 

Putting (3.16), (3.17) and (3.21) into t3.22), WP. readily find that 

(3.23) 

where V = l.6 r ( 4 • 5) V (r
m

) = l.. 94 V ("'-~ ). o m 

We see that the effective terminal velocity of the rain V is independent 
. 0 

-3 -3 of the rain density. When rm = 0.27 mm and Po = 1.28 x 10 gm cm , 

this velocity is 5.93 m sec-1. Kessler (1967), assuming Nr/rm to be 

constant, finds the effective terminal velocity to be given by 5.15 

PrO.125 m sec- l (with Pr in gm m-3), and this coincides with the present 

result when Pr = 3.09 gm m-3. However, Kessler1s velocity varies slowly 

with Pr : it increases from 5.15 m sec- l to 7.49 m sec- l as Pr increases 

from 1 Sm m- 3 to 20 gm m-3 

The rate of change of rain density due to the motion of the rain 

relativE~ to the air is 

(Xl 3 
Rr = !o V(r )"x

d {(47T/3)r P t c/>(r )dr } 
P 0 3 P W P P 

Because rm is essentially constant, the differential operator is readily 

interchanged with the integral and we find from (3.16), (3.17), (3.21) 

and ( 3 . 22) tha t 

R = V ap lax 3 • 
r 0 r 

(3.24) 
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3.6 Accretion of cloud ~ater by rain 

The rate of increase in mass of a single rain drop of radius r due 

to the collection of cloud water is (Kessler, 1967) 

2 
rna = 'TTr E Vp 

p cr c (3.25) 

where Ecr is the effective collection efficiency between the rain drop 

and cloud water droplets which are assumed to have zero terminal velocity 

relative to that of the rain drop. Kessler suggests that Ecr may be 

approximated by 

(3.26) 

independent of r. Hence the total rate of increase in rain densities 

due to accretion is found from (3.16), (3.17), (3.21). (3.25) and (3.26) 

to be 

(3.27) 

where a =!a E r (3. 5) = O. 881+. 
4 8 3 cr 

Equation (3.27) implies that Sa is simply proportional to the product 

of the cloud water and rain densities; in particular, with Po = 1.28 x 

10-3 gm cm-3 

S = 4.71xlO- 3 P P -3 -1 a c r gm m sec 

. -3 
whe~e p. and pare ln gm m This may be compared with Kessler s (. r 

expression. namely 

-3 0.875 -3 -1 
s~ = 5.22xlO PcP r gm m sec (3.28) 
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We see that the present result gives lower accretion rates than does 

-3 Kessler's when Pr is less than 2.28 gm m ; however, the differences are 

not lar£e at moderate rain densities. 

By decomposing the densities into their respective mean values and 

fluctuations about their means, the mean accretion rate is given simply 

from (3.27) by 

I, 1/ 
(p /fJ~ ) 2 (e/r ) 2 

wt 0 'c m (p p + ptpr)/p t ere r w 

where ~~ is the covariance of the cloud water 3nd rain densities. 

Similarly, higher order moments and covariances can be evaluated readily 

in terms of the covariances of the dependent variables. The moments of 

Sa for parameterizations involving non-integral powers of Pr , such as 

Kessler's, cannot be determined without the addition of assumptions 

regarding the probability distributions of Pr and Pc' 

3.7 Evaporation of rain 

The rate of change of radius of a rain drop due to evaporation as 

it falls relative to the air is (Mason, 1957) 

where a ;s the supersaturation of the ambient air; Re is the Reynolds 

number of the relative motion; L is the latent heat of vaporization of 

water; K is the thermal conductivity of air; Rv is the gas constant for 

water vaJor; T is the temperature; D is the diffusivity of water vapor 

in air; p is the saturation vapor pressure at temperature T. The venti­s 

lation coefficient is approximated by 

F = 0.21 (3.29) 
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for Re ~ 200, that is for r > 0.45 mm. Moreover, (3.21) implies that 
3/2 1 Re is proportional to r and hence RFe~ » 1 for rain drops. Using 

the equation 

cn = (0 - p )r T "s . v s v 

and assuming that deviations from the reference states of thermodynamic 

variables are small (Dutton and Ficht1, 1969), we find that the rate 

of change of mass of a rain drop due to evaporation may be approximated 

by 

(3.30) 

where D = D /(l+L 2D P /K R 2T 3) • 
eo 0 0 O·SO 0 v 0 

The rate of decrease in rain density due to evaporation is given 

from (3. 16), (3. 17), (3.21). (3.29) and (3.30) by 

Jex> 1/4 2 3 2 1/4 2 
Se = - 0 me(rp)~(rp)dr = o.s(pwt/po) (po rm g/~o) (Deo/rm) 

(3.31 ) 

where 
1 

0. S = ( a 3 / 2) 12 rf ( 2 • 75) = O. 349 • 

The rate of evaporation is seen to be proportional to (ps-pv)Pr' that is 

to integral powers of the random dependent variables. The moments of Se 

can therefore be calculated easily in terms of the moments of Ps ' Pv and 

Pro The effective diffusivity Deo increases from 0.113 to 0.187 cm2 sec-1 

as the temperature decreases from OoC to -2ooC in a standard atmosphere. 

Thus, for deep convection at least, the variation of Deo ought to be taken 

into account. 
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Wilen 0 = 0.113 cm sec-1 P = 1.28 x 10-3 gm cm-3 and ~o = eo 0 

1.72 x 10-4 gm cm- l sec-1, (3.31) yields 

S = 2.91xIO-- en -p)~ ~m -3 e r- S v," r o· m 
-1 

sec 

with P., P and p in gm m-3 On the other hand, Kessler (1967) uses 
!l v r 

the parameterization 

Because the present result expllcitly accounts for the Reynolds number 

dependence of the evaporation rate from a falling drop. it produces higher 

values for Se when the rain density is greater than 5.97 gm m-3. 

3.8 Conclusion 

Physical and dimensional arguments are used above to obtain a 

parameterization of the effects of rain on the dynamics and thermodynamics 

of a cloud model. In particular, it is shown that at high rain densities 

the chc.racteristic radius rm of the Marshall-Palmer rain drop spectrum 

is a constant. Comparison with the results of Kessler (1967), who assumes 

that rrn is not constant, shows that the present parameterization yields 

lower Y'ates of accretion and evaporation at rain densities less than a 

few gm m- 3. 

An expression for the rate of conversion of cloud water into rain is 

derived and is found to be proportional to the 7/3-power of the mean cloud 

water density Pc' Thus it increases more rapidly than the rate suggested 

by Kessler which is linear in Pc' The present parameterization includes 

the effect of the cloud water droplet concentration. 



4. THE AVERAGE EQUATIONS 

4.1 Introduction 

There has been much progress in the development of finite-difference 

numerical models of turbulent flows. The simulation of turbulenc'~ is 

achieved by choosing a spatial mesh size which is somewhat smaller than 

the scale of the energy-containing eddies. By assuming that the Jnresolved 

(sub-grid scale) fluctuations lie in the Kolmogorov inertial sub-range of 

fluctuations, the known properties of the latter can be used to predict 

the behavior of the former (Lilly, 1967). Both first order (Dearjorff, 

1972) and second order (Deardorff, 1974a) closure approximations have 

been used in the simulation of atmospheric turbulence. 

Measurements in the atmosphere during strongly unstable conditions 

show the existence of plumes or thermals with horizontal scales of about 

200 m (Warner and Telford, 1967). This suggests that it is necessary to 

select a spatial mesh size no larger than some tens of meters in order to 

have the sub-grid scale fluctuations in a numerical model lie within the 

inertial sub-range. [we note that the existence of a turbulence spectral 

density proportional to K-
5/ 3 is necessary but not sufficient faY' the 

existence of isotropic turbulence (Weiler and Burling, 1967).] On the 

other hand, there is some evidence that the development of a cumulus 

cloud field is strongly coupled with the prevailing mesoscale (and perhaps 

synoptic scale) system [Pielke (1974), Cotton (1975a,b), Cotton, Pielke 

and Gannon (1976)J. This implies that the motion in a region wi·:h a 

horizontal scale of some tens of kilometers must be studied in Ol'der to 

resolve this coupling. Computation time and storage limitations make it 

impossible at present to use a finite-difference mesh fine enough to 

32 
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resolve the small scale turbulence in a region large enough to resolve 

the coupling between the mesoscale and cloud scale systems. 

As \llith most practical problems in turbulence, however, it is not 

really necessary to predict the detailed structure of the turbulence in 

the cloud field. Prediction of the mean values (and perhaps the variances) 

of the dependent variables is itself a worthwhile objective. Since the 

work of Reynolds (1901), most advances in the solution of practical prob­

lems in r:urbulence have come from attempts to predict the mean motion 

rather than the complete random field. In this chapter, model equations 

for the first two moments of the dependent variables are derived from 

the set of approximate equations discussed in Chapter 2. A second order 

closure approximation is used to predict the behavior of the turbulence 

covariances. 

Since it is believed that the scale range of 0.1 to 1.0 km is a 

region of strong kinetic energy generation and transport in a precipitating, 

moist convective system, the use of both a simple first order closure 

approximation and coarse horizontal resolution as is frequently done [see 

Takada ("1971), Schlesinger (1973a,b; 1975), Wilhelmson (1974) and Miller 

and Pearce (1974)J is highly inadequate for the simulation of such systems. 

A large cloud system often penetrates most of the troposphere and so 

the process to be modelled is deep convection in the sense that the depth 

of the convection layer is comparable with the scale height of the atmos­

phere. By following Dutton and Fichtl (1969), the model equations derived 

in Chapter 2 are valid in deep convection. Although the equations are for 

use in a deep convection model, ice is not included in the parameterization 

of the precipitation at this time. This restricts the precipitation to 

at most ~:upercooled rain. With the development of an appropriate 
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parameterization, however, the ice phase could be included in the equations 

in a manner similar to that of rain [see for example, Wisner, et.al., 

(1972); Cotton, (1972)J. 

Itis seen in Chapter? that the behavl()r of a moist atnll'<:p:,ere 

can be described in terms of the momentum vector ~ the pressure p, the 

density variable r, the total water density Pt' the rain density Pr and 

the cloud water density pc. It should be noted that the prime notation 

on rl, p', p', Ptl will be replaced by r. p , P , Pt in this section. r c r c 

The potential density variable r is related to the potential temperature 

e by 

r = poel/B - (Lie T )(p +p ) 
o pa 0 c r 

(4. , j 

where P is the total density of the air, L is the latent heat of vaporization 

of water, Cpa is the specific heat at constant pressure for dry air, T 

is absolute temperture. The subscript 0 denotes the reference state of 

a thermodynamic variable, while a prime denotes the deviation of the 

local mean of a thermodynamic variable from its reference state. [We 

see from (4.1) that eor/po is the deviation of the temperature variable 

8L introduced by Betts (1973}.J If the reference state temperature To(x3) 

is specified from some horizontal average of the atmosphere then Po' Po 

and 8
0 

,re given by 

Po = R p T a 0 0 

R Ie 
e = T (p Ip ) a pa 
o 0 r 0 

(4.2) 
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where (xl' x2' x3) are Cartesian coordinates with x3 increasing vertically 

upward; 9 is the gravitational acceleration; Ra is the gas constant for 

dry air; p = 1000 mb. The model equations are found to be 
r 

dm./ax. = 0 
J ] 

(4.3) 

am./at + a(u.m.)/8x. - E. ·kfkffi • + dDI/dX. + P'gOl'3 l ] l ] lJ ] • l (4.4) 

dr/at + aCu.r),!'dx. + ms "'(0 e )/'" . - 0 l.·n oX 3 + (L/ C T) ~ Q 
J J 0 pa 0 i-'o 

(4.5) 
- \) r,2r - e v , 

(4.6) 

Pc = (pt -P-y-,-P )He Pt -p -P ) 
~ S r s ' 

(4.8) 

where t is time; H(x) is the Heaviside unit set function; f is the Coriolis 

frequenc~1 vector; M and Q account for the relative motion between the air 

and the rain; Sc' Sa and Se represent the conversion of cloud water into 

rain, the accretion of rain with cloud water and the evaporation of rain; 

'Vm' 'V
8

, ')t and 'Vr are effective molecular diffusivities. The velocity 

vector ~" the density deviation p' and the saturation vapor density Ps 

are given by 

u· = m./p 
l l 0 

(Lie T -R /R )(p +0 ), 
pa 0 v a c' r 

(4.9) 

(4.10) 
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Ps = qsa {po + (L/R T -l)[r + (pIle T) + (L/e
p 

T )(p +p )J} v 0 pa 0 _ a 0 c r 

where the reference state saturation mixing ratio ;s 

qso = CP Ip ) exp{a (l-T IT )} s 0 s S 0 

P s = 12.272mb, as = 19.2484 and T = 283.16 K. s 

(4.11) 

The dependent var;ablps in (4.2) - (4.11) are random functions of 

space and time. In order to derive equations for the mean values of 

these variables we decompose them into their mean values and turbulent 

fluctuations about their means. For example, the momentum ;s written as 

m· = ffi. (x,t) + m· "(x,t) 
1 1 - 1-

where an ol.orbar denotes the ensemble average of a quantity and a double 

prime denotes a random fluctuation about the mean. 

It should be noted that we are interpreting the averaging operator 

as an ensemble average as opposed to the subgrid scale averaging operator 

employed by Deardorff (1974b). As long as the observed mean flow over the 

scales of interest vary relatively smoothly in space and time, a dis-

tinction between the two averaging operators is of little consequence. 

However, a cumulus-convective environment is often characterized by large 

variability both on the scales one wishes to represent as a mean flow and 

on the fluctuating field. Using a grid scale averaging operator then 

places an often impossible burden on the finite difference operator which 

must represent such a highly variable field on the scale of one or two 

times the truncation scale. Use of the ensemble averaging operator, on 

the other hand, allows the modeller to choose a grid size small enough 
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to resolve such a variable mean field. The turbulence is then defined 

and modelled with respect to such an observed mean field and not with 

respect to the chosen grid resolution of the numerical scheme. 

Certainly the application of an ensemble averaging operator to a 

numerical model on the cumulus/mesoscale is a new one. Perhaps the most 

similar application of an ensemble-averaging operator is that of Arakawa 

and Shubert (1974) who applied it to the parameterization of the effects 

of cumulus-cloud on the large-scale environment. In our application, the 

ensemble average may be thought of as the average of cumulus-cloud prop­

erties (including their variances and covariances) which have been observed 

for a given set of mesoscale properties, such as convergence, static 

stability, vertical shear of the horizontal wind, and surface-layer fluxes 

of heat, moisture and momentum. Each set of these properties (which so 

define an ensemble realization) would be expected to yield a different 

family of turbulence characteristics. It is, thus, not the intent of this 

modeling effort to represent explicitly, by numerical prediction techniques, 

individual cumulus towers. Instead, only the gross statistical effects 

of such cumulus towers (i.e. fluxes, kinetic p~ergy) on the mesoscale 

environment are sought. Regardless of whether the cumulus clouds grow 

as distinct, visible entities in a weak mesoscale convergence field or as 

imbedded towers in a cumulonimbus-mesoscale system, only the gross sta­

tistical properties are desired. 

Because deep convection is considered, the length scales of mean 

and fluctuating quantities are different. Clearly the vertical scale for 

mean variables is the total depth of the solution domain which is comparable 

with the scale height of the atmosphere. On the other hand, the length 
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scale of the turbulent fluctuations in the atmosphere is generally no 

larger than a few hundred meters. We therefore assume that mean quantities 

satisfy the restrictions of deep convection while fluctuations behave 

like disturbances in shallow convection, in the sense of Dutton and Ficht1 

(1969). The primary consequences of this are that the turbulent velocity 

fluctuations may be treated as incompressible and that the fluctuating 

pressure can be neglected when compared with the fluctuating density. 

Thus the term uj
ll apo/axj can be neglected in (4.3) and (4.4) yielding 

a 
ax. 

J 

am. / ax. =: 
J J amJ./ax. + p au.lI/ax., 

J 0 J J 

( ) ~ m. ~ + aU i - apo u.m. m - + u u J 1 1 ax . a .. --j J Xj 1 J aX j 

Similarly, pll is neglected in (4.10) and (4.11) so that 

(4.12) 

pI! __ I'" 
(Rv/Ra-l)P t " - (Lie T -R IR )(p I'+p ") (4.13) 

pa 0 v a C I" ' 

(4.14) 

Equations (4.12) - (4.14) are use~ in the determination of the covariances 

of the random variables. 

The quantities M, Q, SC' Sa and Se appearing in (4.6) - (4.7) are 

derived from some parameterization of the precipitation process. Such a 

parameterization, which takes into account the random nature of the 

dependent variables and is valid for deep convection, ;s given in Chapter 

3. By interpreting the spectral density of the rain drops as a strictly 

averaged quantity, it is found that 

M = V ~ Q = V a(~ /p )/ax or' 0 r 0 3, 
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(4.15) 

Deo = D /(1+L 2 D P q /K R 2T 3) o 0 0 SO 0 V 0 

Pwt is the density of water, Nc is the mean concentration of cloud water 

droplets, rm = 0.027 cm is a characteristic radius associated with the 

breakup of rain drops, rcm = 10 ~m is a critical droplet radius below 

which the droplet distribution is controlled by condensation alone, ~ is 

the viscosity of air, K is the thermal conductivity of air and D is the 

diffusivity of water vapor in air. Equations (4.2) - (4.15) form a 

closed system from which the first two moments of the dependent variables 

are now calculated. 

4.3 Mean values of dependent variables 

The Reynolds number of the mean motion ;s very large and so the 

effects of molecular diffusion on the mean dependent variables can be 

neglected. Using (4.9) - (4.11) and (4.15), we now take the mean values 

of equations (4.3) - (4.7) to obtain 

am. / ax. = 0 , 
J J 

(4.16) 
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dm./at + a(ll. m.)/dx. + a(u."m. Ii )/3x. - EiJ.kfk m. 
1 J 1 J J 1 J J (4.17) 

+ ap'/axi + pr g 8
i3 

= 0 , 

dr/at + aCli. r)/ax. + aCu."r")/dx. + m 
J J J J" 3 

(4.18) 

+ (L/C T)o v a(p~/PO)/ax3 = 0 , pa 0 . 0 0 .L 

ap+/at + aCli. p+)/ax. + d(U. II 0 ")/ax. - aeV
o

-P
r

)/dX
3 

= 
... J \. ] J ·t J 0, (4.19) 

Pc Hep -p ) + B (Dip )-p e em 0 . r wt e C (p Ip )(p +p +p _15' ) (4.20) 
o r wt c r s t' 

where u. = ill. I p 
110 

p' = (l-R IC )(p'/R T ) - r - (R /R -l)p a pa a 0 vat 

(L/C T -R IR ) x (pc+Pr) , pa 0 v c 

a 
~so {po + (L/R T -1) [r + (p'/C T) 

v 0 pa 0 

+ (Lie T )(0 +p )J} pa 0 . c r 

(4.21) 

(4.22) 

(4.23) 

Although each density Pt , Pr and Ps is strictly non-negative, the 

difference Pt-Pr-Ps can have any real value. In order to determine the 

moments of Pc' we therefore introduce the assumption that the zero-mean 

random variable pt"_p/-PS" is normally distributed with variance 

a 2 = Cp "_p "_p 11)2 
C t r s . 

(4.24) 

Thus the average value of (4.23) yields 
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where h I { - - - 1'2 = -2 1 + erf[(p -p -p )/? a J} t r s - c . 
(4.26) 

The function h behaves as a Heaviside unit step function as ac approaches 

zero; i.e., h = H(pt-Pr-ps) as ac ~ O. By accounting for the turbulent 

fluctuat·'ons~ equation (4.25) implies that the mean cloud water density 

is non-ZE~ro (but small) even when the air is not saturated in the mean. 

Figllre 1 illustrates the dependence of p/ac on (Pt - Pr - ps)/ac ' 

Also shO\m in Figure 1 is the variation of h as a function of CP~ - Pr -

ps)/oc' The function h, which may be interpreted to represent the prob­

ability of cloud at a given point, is a unique function of CPt - Pr -

ps)/ac ' Figure 2 illustrates the predicted variation in average cloud 

liquid water mass density Pc as a function of ac and for various values 

of the average saturation deficit or excess x. For a cloud which is exactly 

saturated on the average (X' = 0), the theory predicts that Pc varies 

linearly with ac ' As the cloudy region becomes increasingly subsaturated 

(x < 0), Pc remains near zero until 0c becomes sufficiently large after 

which Pc again varies linearly as a function of ac ' The same behavior 

can be seen for a cloud with an average saturation excess (i > 0) except 

that Pc : i for small values of ° and varies linearly with a for larger c c 

values of ac' 

Equations (4.16) to (4.26) completely specify the average behavior 

of a precipitating convective system provided that the pressure per-

turbation field is diagnosed and the turbulent covariances and variances 

are modelled. The conventional technique for evaluating the pressure 

field in three dimensions for an anelastic system is to take the divergence 

of (4.17) and solve for p'using either numerical techniques such as 

relaxation or some form of direct method of inverting an elliptic equation. 
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Swarztrauber (1976) has recently reviewed a number of such direct method 

techniques including cyclic reduction, Fourier analysis and a combination 

of the two for a vari ety of boundary conditions. In the present work, 

the turbulence covariances and variances are modelled by formin~ equations 

for the second moments and then closure is obtained by relating the 

third moments to the first and second. 

4.4 Turbulent fluxes 

The second moments appearing in the mean equations (4.16) - (4.19) 

are the turbulent fluxes of momentum, potential density, total water and 

rain. Equations for these covariances are readily found from (4.3) -

(4.7) and (4.9) - (4.15) to be 

deuk"m1,")/at + deu], uk"m1·")/dX. - (E .. f m."u}" + 
] l]n n ] ~ 

Ek · f m."u.") + m "u." au./ax. + m."u." aUk/ax]. + In n ] 1 k] 1 ] 1 ] 

+ d(p"U.")/ax - p"(du."/Clx + au "/ax.) + g(p 11 U "0 + 1 k 1 k k 1 i k3 

P"Uk "01'3) = - 2p v (dU. I1 /aX.)(dUk
l1 /aX.) , 

o m 1 ] ] 
(4.27) 

aeu."r")/Clt + acu. u."r ll )/dx. - E. 'kfk u."r" + r"u." au./ax. 
1 J 1 J 1J '- J J 1 J 

-1 
+ P o 

-1 a(p"r ll )/ax. - P p"Or"/ax. + (g/p ) 
1 0 1 0 

(4.28) = - (v +v ) (au." / ax. )( aI''' / ax . ) . mel J J' 





r"p " 
1'" 
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(R IR -1) 
v a 

C n2 
L: 

(p np II + P lip ") 
c t r t ' 

- (Lie T -P IR ) pa 0 v a 

(R IR -1) p IIp T! - (Lie T -R IF. ) Vat . r pa 0 v a 

(,. !! ~ ,t + 
't-o

' c "'-r 
" ,,2, 
I~' J .. 

r 

(4.35) 

(4.36) 

As in all equations for average quantities, the molecular diffusion of 

the turbulent fluxes is neglected in equations (4.27) - (4.30). 

In order to obtain a closed system of equations, we require all the 

terms in the equations to depend upon only first or second moments of the 

variables. Turbulent dissipation occurs at scales small enough for 

local isotropy to apply, and yet the rate of dissipation is controlled by 

the large scale motions. Thus, followi~g Lumley (1970) and Mellor (1973), 

we take 

(4.37) 

(au."/ax.)(as H /dX.) = 0 , 
l J ] 

where q2 = ~. T is proportional to the external time scale of the 
i ' 1 

turbulence; s" denotes any fluctuating scalar variable. 

The action of the pressure fluctuations working against the fluctu­

ating rate of strain causes the turbulence to approach a state of isotropy. 

Rotta (1951) shows that this can be modelled simply in the form 



and so analogously we take 

- p"arll/Clx. = 
l r "" ") U· • :i. • 
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- p"ClD,!!/aX. (/) 
1: l = Po T3 

- :;:."00 "/2x: = (r:; /'"[ ) r, ""J." r ~ 0 4 ~r l 

p-j-" U ." _ l 

(4.39) 

where Ti (i = 1, ... ,4) is proportional to the internal time scale of the 

turbulence. Lilly (1967) suggests that a term proportional to the mean 

rate of deformation ought to be added to the right hand side of (4.38). 

However, this term is derived on the basis of rapid deformation theory 

which is not obviously applicable to atmospheric flows where the defor­

mations are controlled internally. Rapid deformations could be produced 

perhaps by rapid variations in the mean stratification. Indeed, Deardorff 

(1974b) finds that such additional terms become important near inversions 

in the atmosphere. On the other hand, Lumley and Khajeh-Nouri (1973) 

give some theoretical basis to the suggestion that the pressure - strain 

rate correlation does not depend explicitly upon the mean strain rate. 

Moreover, Mellor (1973) includes a mean strain rate term in (4.38), 

but he finds that the constant of proportionality is very small when 

his model is adjusted to predict the behavior of the atmospheric equi-

librium surface layer. 

The third order turbulent transport terms in the equations for the 

second moments are analogous to the Reynolds stress terms in the equations 

of mean motion. In equilibrium situations, the turbulent transport terms 

in (4.27) and (4.28) can possibly be neglected (for example, Mellor, 1973). 

Deardorff (1974a) finds that, although they contribute significantly to 

the budgets of turbulent energy and of the mean square fluctuations in 

temperature and water vapor, they are not important terms in the equations 
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for the turbulent fluxes. We approximate the turbulent transport terms 

in (4.27) by 

p a(U."U " u .")/Clx. + Cl(p"Uk ")/Clx1· + a(p" U1·1)/aXk = o 1 k ] ] 
(4.40) 

where T is the external time scale of the turbulence and cl is a constant. 

This representation corresponds simply to the diffusion of turbulent 
2" energy with an effective diffusivity of cl q T. There is an equal contri-

bution to each component of ~ which implies that the pressure-velocity 

correlation terms dominate the left hand side of (4.40). Turbulent trans-

port is neglected in the velocity covariance equations; similarly, we 

take 

-1 
a(u. l u."s")/8x. + p a(p ft s")/8x. = o. 

] 1 ] 0 1 
(4.41) 

The closure approximations (4.38) - (4.41) completely specify the 

dissipation and third order terms in (4.27) - (4.30) provided that the 

turbulent time scales are suitably given (as shown in Section 4.6 below). 

The present closure scheme can be modified readily to obtain diagnostic 

equations for the turbulent fluxes of heat and water and for the velocity 

covariances. This is achieved by neglecting the time derivative terms 

which correspond to assuming that the turbulent fluxes are in complete 

local equilibrium, in the sense that the local production terms precisely 

balance the local dissipation terms. In any case, alternate turbulence 

parameterization schemes can be adopted without changing the essence of 

the equations. 
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Both the variables Pt""Pr'-ps
ll and ui " can have any real value. 

Thus, consistently with the treatment of Pc in Section 4.3 we assume that 

the joi nt probabil ity di stribution functi on of Pt"-p/-ps" and ui " is 

bivariate normal. The turbulent flux of cloud water is therefore found 

from (4.8) and (4.26) to be 

P "u." = Cp "u." - p "u." - p " .")h C 1 t 1 r 1 s u l ' • 
(4.42) 

4.5 Scalar covariances -------

We now have equations for the mean value and the turbulent fluctuation 

of each dependent variable. Equations (4.24) and (4.34) - (4.10), how-

ever, involve the covariances of the scalars r, Pt' P and p. The r c 
covariance equations for r, Pt and Pc are obtained from (4.5) (4.7) 

and (4.14) - (4.15); thus, neglecting molecular diffusion, 

aCr,,2)/at + aCli. r,,2)/ax. - r,,2 u g aC£nPo)/axg 
] J 

= (4.43) 

(4.44) 

2 p "u." ap lax. + a(u."p ,,2)/ax. = - 2v (dp "/ax.)2 + 
rJ r J J r ] r r ] 

_ 2.lJ • ..,Co /e _) 4/3 
v C tiL 

!'\ !l_~. " FI(t -r:. ) + 2B (-p /p t) ,... .-' ~ r· c to- em 0 r w P "p " -c r 
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The covari ances of Pc II with the scalars r", Pc" and p/ are 

specified by assuming that Pt" - Pr" - Ps" and the fluctuations in each 

scalar s" have a joint probability distribution function which is 

bivariate normal. This cannot be strictly correct because the scalar 

fluctuations are bounded below by the negative of their mean values 

(that is s" ~ - s because s > 0). However. provided that the standard 
~ 

deviation of s" [(s,,2)~] is not much larger than the mean value of s (5), 

the error associated with this approximation is expected to be small. 

Thus we find from (4.8) and (4.26) that 

P "I''' = (r"o II - r"p " - r"p ")h , c ·t I' S 

p "p " = (p ,,2 
C t t P "n ")h t fJ S 

p "p " = (p "p " _ P ,,2 _ P "p ")h • 
err t l' I' 8 

The variance of Pt" - Pr " - Ps" is seen from (4.4) and (4.24) to be 

a 2 = P 112 + P ,,2 + P ,,2 
C t r s 

2 p "p II - 2 
t r Pt"Ps" + 2 P:-"P~" 

where p ,,2 = q2 CL/RvTo-l)
2 

t'r lt2 + 2(L/C T )(r"o " 
8 80 pa 0 . C 

+ r· 1I p ") + ( L! C T) 2 (0 ,,2 + 2 0 "p " + p ,,2 )}. 
I' .' \ pa 0 . C err 

(4.54) 

(4.55) 

The variance of Pc can be calculated from the assumption, used in (4.25), 

that Pt ll 
- p II P II is normally distributed with variance 0c2 It is r - s 

found that 
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1/ 2 
+ (2TI)- 2 0 Cp -0 -0 ) exp {-Cp -0 -0 ) 120 2} _ p2 

C t r s t 'r s c . 
(4.56) 

4.6 Time scales of turbulence 

The parameterization of the dissipation and third order terms in the 

equations for the second moments of the dependent variables involves the 

introduction of turbulent time scales. Although the internal and external 

scales of turbulence are actually distinct (for example, Lumley and 

Khajeh-Nouri, 1973), we assume that the turbulence can be characterized 

by a single time scale T. Thus the external time scales Ti' appearing in 

equations (4.37) and (4.52), are given by 

T. = T/a. Ci = 1, ... ,7) 
l l 

(4.57) 

where ai is a constant. The turbulent transport terms (4.39) and (4.53) 

also involve the external time scale T together with the constants 

ci (i = 1, ...• 7). The internal time scale of the turbulence occurs in 

the pressure correlation terms (4.38) - (4.39), and so we take 

T. = T/b. (i = 1, .•. ,4) 
l l 

(4.58) 

where bi is a constant. 

Lumley (1970) suggests that T = q2/s where s is the rate of dissipation 

of turbulent energy per unit mass. But this involves the introduction 

of a further partial differential equation for £. When modelling an 

equilibrium boundary layer flow, it is common (for example, Mellor, 1973) 
2 -k: to take T proportional to x3 (q ) 2. However, such approximations 

cannot be applied justificab1y to more general flows. In the absence 

of any density stratification, T would possibly be determined by the 

mean strain rate. Thus a scalar invariant form for T, which accounts 



52 

for the effect of stratification, is given by 

-2 - 2 2 T = (du./ax.) \/J en) 
1 ] 

(4.59) 

where n = - pllUS
Il g/(m~'u'" du.ldX.) and W,,2(O) = 1. 

1 ] 1 J 

The dimensionless parameter n is seen from (4.1) to be the ratio of the 

rate of suppression of turbulence by the density stratification to the 

rate of production of turbulent energy by the working of the Reynolds 

stresses against the mean rate of strain field. We expect the turbulent 

time scale to decrease with increasing instability, and so the dimension-

less function ~ ought to be a monotonic decreasing function of n. 

The form of ~(n) and the constants a., b. and c,. are obtained by , , 
comparing the predictions of the model equations with observations of 

the constant flux surface layer in the atmosphere. When applied to a 

constant flux layer, the present model is similar to that of Manton and 

Cotton (1977), except that turbulent diffusion is neglected in the latter. 

The transport of scalar quantities in a turbulent flow involves a common 

mechanism, namely the direct mixing of air masses (Monin and Yaglom, 

1971). This similarity of the behavior of scalars suggests that 

a 2 = as = alf = as = a 6 = a, , 

b 2 = b a = b 4 
(4.60) 

C 2 = c a = C 4 = C s = c 6 = c 7 

Under neutral stability conditions, So and Mellor (1972) and 
2 Klebanoff (1955) observe that -ulliu//q equals 0.16 when the steady mean 

wind is in the xl-direction; Champagne et.a1. (1970) find a value of 
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0.17. The mode' is consistent with the observations of So and Mellor if 

(4.61 ) 

Businger et.al. (1971) find that (ul"u/ ap/ax3)/(plu3" aul /ax3) approaches 

0.74 as pllU/ approaches zero, which implies that 

b2 = 1.25 • (4.62) 

As p1lU3
11 -+ + cx>, Businger et.al. observe that the limiting Richardson 

number (-g dP/ax3}/po (aul /ax3)2, above which turbulence is suppressed 

by the stable stratification, is equal to 0.21 and that (u l
l u3" ap/ax3)/ 

(pIlU/ aul /ax3) approaches unity. Thus n has a limiting value of 0.21 

in steady equilibrium conditions, and the model then yields 

a2 = 0.78 . (4.63) 

The diffusion constant cl and c2 are found by requiring the model to 

agree with the observations of Wyngaard et.a1. (1971) under steady 

unstable conditions. In particular, they find that as p1U 3" -+ - 00, 

U ,,2 
3 

p" 2 

g p"Z/m 3"u 3" dP/dX
3 

= 1 , 

where the von Karman constant K = 0.35. These results agree with the 

predictions of the model equations when 

C 1 = 0.48 and c
2 

= 3.37. (4.64) 
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The assumed values of the constants in (4.60) - (4.64) are not suf-

ficient to specify completely the time scale function W. However, its 

limiting behavior in stable and unstable conditions is determined. It 

is found that 

~2 = 0.44 when n = 0.21 

and (4.65) 

$2 ~ _ 3.85n as n + - 00 • 

Although n is never greater than 0.21 under steady equilibrium conditions, 

it could presumably attain any real value during general unsteady con­

ditions. A monotonic decreasing function satisfying (4.59) and (4.65) is 

{

1-3.8Sn, n ~ 0 . 
¢2 = 

exp (-3.91n), n > 0 

(4.66) 

The turbulent time scale T is given by (4.59) and (4.66) provided 

that (aui /ax j )2 is finite. If the air is stably stratified and there 

is no mechanical generation of turbulence, then any turbulence is sup­

pressed rapidly. Hence we take, consistently with (4.66), 

liT + 0 as 
- 2 (aU./dX.) + 0 with n > O. 

1 J 
(4.67) 

On the other hand, turbulence can be sustained by an unstable stratification 

in the absence of any mechanical generation; that is in free convection. 

The asymptotic form of T as n + - 00 is found from (4.59) and (4.66) by 

replacing the turbulent fluxes in n by their equivalent eddy diffusivity 

representations. Hence we take 
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(4.68) 

u."u. 1I = - K (a~./ax. + dU./aX.) , 
l J m l J J l 

where Kb and ~ are the turbulent diffusivities of mass and momentum. 

In a constant flux surface layer, the model equations predict that 

(4.69) 

Thus, from (4.59), (4.65), (4.68) and (4.69), we find that for free con-

vection 

cau./ax.)2 ~ 0 with n < o. 
l J 

(4.70) 

We assume that (4.70), derived for a constant flux layer, is valid for 

all free convection situations. Equations (4.59), (4.66), (4.67) and 

(4.70) specify the turbulent time scale under all conditions. 

4.7 Conclusion 

Equations (4.16) - (4.26), (4.27) - (4.42), (4.43) - (4.56) and 

(4.57) - (4.70) form a closed system which describes the first two moments 

of the dependent variables in deep convection. When the mean motion is 

three-dimensional, there are 28 partial differential equations; only 

27 of these contain time derivatives since only the spatial derivative 

of pr occurs in (4.17). However, if the turbulent fluxes of heat and 

water and the velocity covariances are assumed to be in complete local 

equilibrium (as discussed in Section 4.4), then these variables are found 

diagnostically and the number of partial differential equations involving 

time derivatives is reduced to 15. 
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The algebraic equations for the moments involving Pc are non-linear 

and so they cannot be solved explicitly. Hence an iterative procedure 

must be used to obtain these variables. The turbulent time scale T. 

given by (4.59) and (4.66), is a non-linear function of the turbulent 

mass flux and the velocity covariances. Therefore, if diagnostic 

equations are used to find the turbulent fluxes then the solution pro­

cedure must be iterative. 



5. CONCLUDING REMARKS 

In Chapters 2, 3 and 4, we have derived a set of approximate equations 

for modeling precipitating. moist, deep convection. The intended ap­

plication of this system of equations is to the modeling of mesoscale 

convective systems having horizontal scales of 1.0 to 100.0 km. In 

Chapter 3, we have derived a first-order parameterization of warm-cloud 

precipitation processes. This system must be generalized to an ice-

phase system in the future. In Chapter 4, the system of equations is 

averaged and closed with a second-order, turbulent transport model. 

The turbulent transport model is designed to parameterize the effects 

of thermals and cumulus towers on the mesoscale. Such cumulus towers 

can be either isolated towers growing from a weak-planetary-boundary­

layer. mesoscale disturbance or be imbedded within an intense mesoscale 

cumulonimbus system. The turbulence parameterization is being tested 

in simple, one-dimensional, horizontally homogeneous models before it 

is coded into the fully three-dimensional system. An objective of 

the first stage of evaluation is to determine the relative merits 

(computational expediency versus accuracy) of the fully time-dependent, 

turbulence-transport equations versus a semi-diagnostic system. 
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