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ABSTRACT

STATISTICAL MODELS FOR DEPENDENT TRAJECTORIES WITH APPLICATION TO

ANIMAL MOVEMENT

In this dissertation, I present novel methodology to study the way animals interact with each

other and the landscape they inhabit. I propose two statistical models for dependent trajectories

in which depedencies among paths arise from pairwise relationships defined using latent dynamic

networks. The first model for dependent trajectories is formulated in a discrete-time framework.

The model allows researchers to make inference on a latent social network that describes pairwise

connections among actors in the population, as well as parameters that govern the type of behavior

induced by the social network. The second model for dependent trajectories is formulated in a

continuous-time framework and is motivated primarily by reducing uncertainty in interpolations

of the continuous trajectories by leveraging positive dependence among individuals. Both models

are used in applications to killer whales. In addition to the two models for multiple trajectories,

I introduce a new model for the movement of an individual showing a preference for areas in a

landscape near a complex-shaped, dynamic feature. To facilitate estimation, I propose an approx-

imation technique that exploits of locally linear structure in the feature of interest. I demonstrate

the model for the movement of an individual responding to a dynamic feature, as well as the ap-

proximation technique, in an application to polar bears for which the changing boundary of Arctic

sea ice represents the relevant dynamic feature.
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Chapter 1

Introduction

1.1 Motivation

In this dissertation, the scientific questions I answer involve the way animals move and make

use of the space around them. I make the assumption that the actions of individuals are based pri-

marily on information they have about their environment and other individuals of the same species

(conspecifics), and I endeavor to learn how individuals make use of that information. Especially

with regard to environmental factors, questions about space use have been a subject of research for

decades, and a considerable body of literature has been produced containing many valuable dis-

coveries (e.g., Manly et al. 2002; Hooten et al. 2017a). By comparison, attempts to understand the

types of interactions that take place among multiple individuals are in their infancy, largely due to

the high demand on data quality and computational resources associated with such analyses. Data

that contain information about interactions between individuals in a population must, of course,

be gathered for multiple individuals, typically on a fine time scale, and with a reasonably high de-

gree of precision. Neither the volume of data, nor the methodological tools, nor the computational

resources required to analyze them have been available until recently. However, improvements in

technology have led to the development of telemetry devices that can gather extremely fine-scale

data, fundamentally changing both the types of questions posed by researchers, and the analytic

tools developed to handle such dense data sets (e.g., Prange et al. 2006; Rutz and Hays 2009;

Cagnacci et al. 2010; Davis et al. 2012).

Accurately modeling the dependence among multiple interacting trajectories is of value whether

one views the interactions as processes of fundamental interest, or random effects capturing un-

explained dependence in the data, perhaps arising due to unobserved environmental factors. In

Chapter 2, I introduce a model for dependent movement intended to capture effects directly related

to dynamic social connections in killer whales near the Antarctic peninsula. The model allows
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researchers to learn about a dynamic social network that describes pairwise relationships among

the killer whales, as well as the way those connections are manifested in behavior. In contrast, the

model described in Chapter 3 is motivated by an interest in accounting for dependence among tra-

jectories to improve predictions of the true locations of individuals during long intervals between

measurements. In both models, I make use of a latent, unobserved social network to characterize

pairwise dependence between individuals, but in Chapter 3 the latent social network is not of direct

scientific interest. Rather, it is a flexible component in the model used to capture dependence for

the purposes of interpolation.

The data used to learn about animal movement typically take the form of remotely gathered, or

telemetered, observations of the location of an individual. Observations can be made in a wide vari-

ety of ways, however, most standard techniques require a transmitter attached to an individual that

can be remotely sensed by a secondary device such as a hand-held receiver or satellite (White and

Garrott 1990; Millspaugh and Marzluff 2001; Davis et al. 2012). The options available to wildlife

biologists depend on factors including the size of the species of interest, its habitat, the desired

observation frequency, and the battery life of the transmitter. Myriad techniques and devices have

been developed, each with benefits and drawbacks, and each involving a usually non-negligible

amount of measurement error (e.g., Hays et al., 2001). While it would often be convenient from a

modeling perspective to have observations made at regular time intervals, generally the conditions

under which observations are made do not permit such designs. Rather, measurements are made

whenever environmental and technological constraints allow.

The contributions made by work presented here arose from a need to further the methodological

tools available to scientists studying animal movement. As a general rule, I sought to develop

models and inferential procedures that incorporate scientifically and mechanistically motivated

features and could be operationalized on modest, widely available computing hardware.
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1.2 Distributions for dependent variables

The path an individual takes through a landscape can be modeled as a, possibly infinite, col-

lection of random variables indexed in time. Part of the challenge to modeling animal movement

comes from the fact that these random variables are not independent. Rather, two locations that

are close together in time will covary because an individual at time t is limited in how far it can

be from its location at time t + ∆t by the amount of time that has passed in the interim. Thus, it

is reasonable to expect the strength of dependence between two random variables corresponding

to the location of an individual at times t and t + ∆t to be a function of how far the individual is

conceivably able to move during an interval of length ∆t. This temporal dependence, and how it

may change in time or in response to different environmental factors is the basis of much ongoing

research. When the locations of multiple interacting individuals are considered, the possibility for

even more complex dependence structures arises. Two of the tools commonly used by statisticians

to account for the dependence structure present in animal movement data are Gaussian processes

(GPs) and resource selection functions (RSFs).

While I have written this introductory chapter so that it is broadly accessible and qualitative

in nature, I nevertheless use mathematical notation to help make some concepts precise. Let s(t)

denote the random variable giving the location of an individual in space at time t, where t a member

of some temporal indexing set T . For example, one might use T = {1, . . . , 365} to index days

in a year, and define s(t) to be a two-dimensional vector representing the location of an individual

in latitude and longitude on the tth day of the year. A collection of random variables, particularly

those with an ordered index such as time, are often referred to as a stochastic process.

Among the many distributions that have been used to describe stochastic processes, by far the

most widely used is the multivariate Gaussian distribution. Much of its popularity is attributable

to two convenient characteristics. First, the multivariate Gaussian is one of very few paramet-

ric families of multivariate distributions whose density function can be evaluated exactly using a

closed-form expression. This makes it possible to fit multivariate Gaussian distributions to ob-

served data and make inference about parameters of interest using a variety of standard estimation

3



procedures. Second, the multivariate Gaussian distribution characterizes dependence among all the

random variables s(t), t ∈ T using one parameter for each pair of quantities s(t) and s(t∗), t ∈ T .

This is a strikingly simple parameterization of a multivariate distribution when one considers that

the multivariate Bernoulli distribution, which describes dependent random variables that take on

only values of 0 or 1, requires a parameter for every possible pair of random variables, every pos-

sible triple, every possible quadruple, and so on, up to the total number of values in the indexing

set T to uniquely specify a member of the parametric family. Such a dense parameterization is

daunting both from a computational perspective, as well as an interpretive one. It is usually much

more intuitive for one to think about dependence between a pair of random quantities than among

groups of arbitrary size. For instance, in the case of animal movement, it is natural to suppose that

the dependence between two locations s(t∗) and s(t) is related to the amount of time that passes

between t∗ and t. It is less clear what is meant by a parameter describing the dependence among

random variables corresponding to three or more times.

The convenience of the multivariate Gaussian distribution as a tool for modeling dependent

random variables, such as consecutive locations of an animal in space, comes with some limita-

tions. One of the most fundamental weaknesses of the multivariate Gaussian distribution is that it

only describes random variables with real support. That is, for each variable, non-zero probability

is assigned to every value on the real line. For random variables that are, for example, constrained

to be positive or integer-valued, the multivariate Gaussian is fundamentally inadequate. In many

cases, a “link” function that maps the real line to the proper support of the random variables can

effectively address this mismatch. However, for the case of an animal constrained to move in a

subset of the real plane, perhaps by a fence or large body of water, a convenient link function is

not typically available. Indeed, although it is not directly addressed in this dissertation, models for

the movement of individuals in bounded landscapes is a subject of challenging, ongoing research

(e.g., Brillinger 2003; Brost et al. 2015; Hanks et al. 2017). Another weakness of the multivari-

ate Gaussian distribution is its limited ability to model extremely unusual events (e.g., de Haan

and Ferreira, 2006). Gaussian distributions imply a specific form for the probability of outcomes
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far from the center of the distribution that do not always comply with the observed behavior in

the data. Finally, while multivariate Gaussian distributions do have the benefit of a closed-form

probability density function, evaluating the function often requires inverting a dense, potentially

massive covariance matrix. Inverting an n × n matrix is an operation for which the number of

individual calculations grows proportional to n3. For values of n greater than a few thousand, the

limitations of modern computing hardware result in a significant obstacle to model fitting. Yet

even with these significant shortcomings, multivariate Gaussian distributions represent a flexible

family of probability measures, and I use them throughout this dissertation.

If the collection of random variables s = (s1, . . . , sn)
′ arises from a multivariate Gaussian

distribution with mean µ = (µ1, . . . , µn)
′ and covariances cov(si, sj) = Σij , then the probability

density function is given by

[s|µ,Σ] = |2πΣ|−1/2 exp

{
−
1

2
(s− µ)′Σ−1(s− µ)

}
, (1.1)

where Σ is a matrix whose (i, j)th element is Σij , and the square brackets denote a probability

density. The particular form of the Gaussian density function is helpful to see because it highlights

the fact that the entire dependence structure of the n random variables can be completely described

by the covariance matrix Σ, yet also reveals one of the frailties of the multivariate Gaussian distri-

bution. Namely, to evaluate the density, one must compute the matrix inverse Σ−1. We discuss a

few of the most common approaches to mitigating this computational challenge in Sections 1.2.1

and 1.2.2.

Depending on the type of random phenomenon one is modeling, the index on the random

variables may be discrete or continuous. Discrete indices may be unordered, such as labels for

each individual in a population of animals, or ordered, such as times corresponding to regular

(e.g., hourly or daily) intervals between locations. Continuous indices almost always come with a

natural ordering. The most common continuous indices correspond to time and/or space (e.g., the

temperature of water in a lake might be indexed both in time, and three continuous spatial indices).

A collection of random variables may have multiple indices of differing types. For example, one
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may denote by si(t) the location of a discretely-indexed individual i at continuously-indexed time

t.

In the case of animal movement, indices typically correspond to either times or individuals, and

in the case of the former, may be discrete or continuous. While it is often more natural to think of

the movement of an individual as a continuous random process, there are advantages to modeling

it using a discrete temporal index, and sometimes such models can adequately describe the most

salient features of continuous movement.

When at least one index of a multivariate Gaussian distribution is continuous, the collection

is often called a Gaussian process (GP) (e.g., Cressie, 1991). Some authors reserve this term ex-

clusively for continuously-indexed processes, but I use it for ordered, discretely-indexed Gaussian

distributions as well. In the next two sections, I provide a short background of discretely and

continuously-indexed GPs in the context of animal movement.

1.2.1 Gaussian processes: continuous index

When specifying mechanistically-motivated models for animal movement in two dimensions,

it is common to model the true path taken by an individual using two processes continuously-

indexed in time corresponding to two orthogonal spatial coordinates such as latitude and longi-

tude. Typically, it may be assumed that the probability of a particular path should be the same

regardless of our choice of coordinate system; thus, the two processes are taken to be independent

and identically distributed. It is also common to simplify mathematical notation by considering a

single dimension of movement when describing a model, which I do throughout this dissertation,

because generalizing the model to two dimensions is straightforward.

Let s(t) denote the location of an individual in a single spatial dimension at time t ∈ T , and

assume for simplicity that T is an uninterrupted interval of the real line, [0, T ], representing time.

One might begin constructing a model for s(·) by incorporating the fact that movement processes

must be continuous. This means that as ∆t → 0, it must be that s(t + ∆t) → s(t). One way to

define a process with this characteristic is by using a random walk. Suppose an individual begins

6



Figure 1.1: Realizations of stochastic processes in two dimensions corresponding to left: Brownian motion,
middle: integrated Brownian motion of Johnson et al. (2008a), and right: smoothed Brownian motion of
Hooten and Johnson (2017)

at location s(t) and over the course of a short interval of time ∆t, takes a random step to arrive

at new location s(t + ∆t). If there is nothing on the landscape to cause the individual to prefer

one direction over the other, then the step might occur in either direction with equal probability.

The length of the step may also be random in length, however the probability of a very large step

should be very low. Additionally, the average step length should be a function of the length of time

∆t, as an individual will be able to travel farther during longer intervals. One possible model that

incorporates all these features is defined by

s(t+∆t) = s(t) + ε(t), ε(t) ∼ N(0,∆tσ2). (1.2)

This model for movement assumes that, at each time t, an individual takes a random step com-

ing from a Gaussian distribution centered on zero with variance ∆tσ2. Centering ε(t) on zero

corresponds to the case when the animal shows no directional preference, because the Gaussian

distribution is symmetric. The variance of the distribution is proportional to ∆t, where the propor-

tionality is determined by a parameter σ2 that controls how large the expected step length is for

a given ∆t. If we take the limit ∆t → 0, the distribution for s(·) is known as Brownian motion,

sometimes also called a Wiener process.
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Brownian motion represents the foundation on which many movement models in the litera-

ture are based (e.g., Dunn and Gipson 1977; Blackwell 1997; Brillinger and Stewart 1998; Jonsen

et al. 2005; Johnson et al. 2008a; Hooten and Johnson 2017), and is an example of a GP with

cov (s(t∗), s(t)) = σ2 min(t∗, t). Brownian motion satisfies many of our fundamental require-

ments for models of animal movement, however, it has limitations. One weakness has to do with

accurately modeling the physics associated with movement. It can be shown that realizations of

paths defined by Brownian motion do not have well-defined first derivatives at any point in time,

which means that one cannot define the instantaneous velocity of a physical body following Brow-

nian motion. Visually, this characteristic of the process appears as a “roughness” in the paths

(left plot in Figure 1.1). One way to define continuous GPs that do not have this roughness is to

let Brownian motion define the velocity, rather than the position process of an individual (John-

son et al., 2008a). Let v(t) denote the velocity of an individual at time t. For a given starting

position s(0), the position at time t can be computed by integrating the velocity process (i.e.,

s(t) = s(0) +
∫ t

0
v(τ)dτ ). If v(·) is defined as Brownian motion, it can be shown that µ(·) is a

Gaussian process, now with cov (s(t∗), s(t)) = t∗tmin(t∗, t) and well-defined velocity for all t

(middle plot in Figure 1.1). Other modified Brownian processes can be obtained by smoothing

Brownian motion with various kernel functions (right plot in Figure 1.1) (Hooten and Johnson,

2017).

In applications other than animal movement, GPs are frequently defined by direct specification

of the covariance function. Flexible families of covariance functions, such as the Matérn class

(e.g., Cressie, 1991), can capture a wide variety of the features observed in spatio-temporal data,

although, the parameters for these families are not always directly interpretable. Interpretable

covariance parameters may or may not be of high priority depending on the research goals of an

analysis. Fitting the model to data generally requires inverting a matrix defined by evaluations

of the covariance function at a finite number of indices, regardless of how a parametric family of

covariance functions is defined. As mentioned above, this calculation can be quite demanding, and

the size of the calculation grows rapidly with the size of the indexing set.
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Several approaches have been devised to address the computational demands of fitting

continuously-indexed GPs to data. In general, the motivation for each technique can be described

as an attempt to exploit the properties of certain classes of covariance matrices that facilitate ma-

trix inversion. For instance, matrices in which many elements are assumed to be zero (Furrer

et al., 2006), and matrices that can be decomposed into a product of matrices of low dimension (or

low “rank”) (e.g., Vecchia, 1988; Banerjee et al., 2008; Cressie and Johannesson, 2008; Rue et al.,

2009; Datta et al., 2016) are easier to invert compared to the general case. By constraining attention

only to GPs whose covariance functions conform to certain structural requirements, it is possible

to significantly improve the computational efficiency of model fitting. Such constraints are usually

motivated either by claiming that one has good reason to make strong assumptions about covari-

ance structure a priori, or by proposing to approximate the true covariance function with one from

the sub-class. Often, one can show that the error introduced by a given approximation is modest

(e.g., Banerjee et al., 2013a). Regardless of the argument employed, the practical implication is

that inference proceeds by limiting attention to a sub-class of GPs with convenient computational

characteristics.

In Chapter 3, I use continuously-indexed GPs to model the movement of four interacting killer

whales near the Antarctic peninsula over a period of five days in February 2014. The decision

to use a continuous index for time was motivated by several factors. First, movement is most

naturally thought of as a continuous-time stochastic process. No discrete set of times can ever

completely describe the movement of an individual, because between two consecutive time points

there is always another one for which the individual must have occupied some intermediary loca-

tion. Mathematically, the index of the true movement process is “dense,” a feature captured by an

interval of the real line, but not by any discrete index. Second, and related to the first point, the

telemetered observations used in the application were made at irregular intervals. In some cases,

when observations of an individual are made at fixed, equally-spaced time points, and when there

is no scientific interest in estimating the location of an individual between those time points, a
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discrete-time model is a natural consideration. Neither of these conditions were satisfied for the

research presented in Chapter 3.

Even for the case of just four individuals studied over five days, the computational demands of

model-fitting were substantial. It would not be possible to implement the same analysis for a group

of even a few dozen individuals over a comparable time scale without significant modifications.

We discuss potential approaches for addressing computational challenges to scaling inference up

to larger data sets in Chapter 5.

1.2.2 Gaussian processes: discrete index

Thus far, the use of GPs to model animal movement has been motivated by the ability of

GPs to concisely summarize the dependence structure in a random process through the collection

of pairwise relationships contained in the covariance matrix, Σ. When fitting a GP model to

data, however, it is the inverse of the covariance matrix, commonly called the precision matrix,

that represents the more practically relevant object. If it were possible to specify a GP through

the precision matrix directly, the computational expense of inverting the covariance matrix could

be saved, and model fitting would be a far more efficient procedure. In the case of continuous

indices, the relationship between covariance and precision matrices is understood only for special

cases (Lindgren et al., 2011), which do not apply to the models discussed in this dissertation.

In contrast, elements of precision matrices corresponding to discretely-indexed GPs have a clear

interpretation, and it was shown by Besag (1974) that one can uniquely specify a GP through

careful parameterization of the precision matrix.

Let s ≡ (s1, . . . , sn)
′ be a random vector arising from a GP with precision matrix Q ≡

Σ−1and mean µ ≡ (µ1, . . . , µn)
′. Further, let [si|s−i] denote the probability density of the vari-

able si conditioned on the values of all other elements in the random process, s−i, where s−i ≡

(s1, . . . , si−1, si+1, . . . , sn)
′. The so-called “full conditional” distribution is Gaussian with mean

and variance given by
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Figure 1.2: Graphs representing neighborhood structure in discretely-indexed GP with index representing
left: time and right: individual.

E (si|s−i) = µi −Q−1
ii

∑

j 6=i

Qij (sj − µj) (1.3)

var (si|s−i) = Q−1
ii (1.4)

(Rue and Held, 2005b). Equations (1.3) and (1.4) reveal an important feature of the precision

matrix, which is that the element Qij is 0 if and only if si|s−i is conditionally independent of sj .

The non-zero off-diagonal elements of a precision matrix correspond to edges in a network or graph

that describes the conditional dependencies among the elements of s. The network interpretation

offers a natural way to model GPs when the notion of a “neighborhood” exists for each element

si. When discretely-indexed GPs are specified based on the conditional dependence structure, they

are often referred to as Gaussian Markov random fields (GMRFs).

For the case of a discrete temporal index, the neighborhood of si might consist of the elements

si−1 and si+1, or some other small group of temporally proximate variables. For the case of an

unordered discrete index corresponding to individuals in a population, conditional dependencies

may reflect ties within the population corresponding to, for example, social relationships. The

plots in Figure 1.2 show graphical representations of conditional dependencies in which nodes

or vertices represent indices, and line segments or edges connect variables that are conditionally

dependent.

Discrete-time processes represent an attractive modeling approach to researchers because they

allow one to construct mechanistically-driven models that can capture a wide variety of behav-

11



iors. Often, discrete-time model specifications admit efficient estimation procedures, although in

the case of animal movement, the price for such computational benefits is usually an assumption

that telemetry observations are made at regular intervals and without measurement error. These

assumptions are frequently unrealistic in practice, although there are special situations where the

strict requirements are satisfied (Langrock et al., 2012). In other cases, as I discuss in Chapters 2

and 4, two-stage estimation procedures can bridge the gap between discrete-time process models

and irregularly observed data contaminated with non-ignorable measurement errors (Hanks et al.

2015a; Scharf et al. 2017).

In Chapter 2, I use a discrete-time model to analyze the joint movement of seven killer whales

(different from those analyzed in Chapter 3). The goal of the research was to learn about a social

network that explained dependence among the paths, as well as the way in which those connections

influenced movement. I used a discrete-time stochastic process to model the collection of all paths,

because the discrete-time framework admitted a simple parameterization that accommodated a

wide variety of behaviors, including “attractive” movement, “repulsive” movement (such as might

be observed among highly territorial individuals), and “aligning” movement (i.e., movement along

parallel trajectories). In Chapter 4, I model the movements of polar bears in the Chukchi and

Beaufort Seas over the course of 9 years using a discrete time index that aligns with auxiliary data

describing the shape and extent of seasonally shifting sea ice.

1.2.3 Models for resource selection

Some of the most important scientific questions that can be answered through the analysis of

animal movement concern the ways in which individuals use available resources in the landscape

(Manly et al., 2002). Answers to these questions can help researchers determine which types

of habitat are critical to sustaining healthy populations of sensitive species (Wilson et al., 2016),

where corridors may exist that facilitate movement between desirable habitats, and where barriers

may be inhibiting movement (Chetkiewicz and Boyce, 2009).
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In the resource selection framework, the probability density function for the location s(t) is

modeled as proportional to the product of two functions f and g such that

[s(t)|θ(t),φ(t)] = f
(
s(t)|θ(t)

)
g
(
s(t)|φ(t)

)
K−1(t), (1.5)

where

K(t) ≡

∫

D

f
(
s∗(t)|θ(t)

)
g
(
s∗(t)|φ(t)

)
ds∗(t) (1.6)

(e.g., Manly et al. 2002; Lele and Keim 2006; Hooten et al. 2017a). The proportionality constant

K−1(t) is defined so that the probability of observing the individual anywhere in the entire domain

D is 1, ensuring that [s(t)|θ(t),φ(t)] is a proper density function.

The function f defines the availability of the location s(t) and its inclusion represents an un-

derstanding that not all locations in the landscape are equally accessible at time t. Often, the

availability function is used to account for the fact that an individual can only travel a finite dis-

tance between consecutive observations, in which case f
(
s(t)|θ(t)

)
will be largest when s(t) is

close to the recently visited location, s(t−∆t). The availability of a location is generally allowed

to depend on some time-varying parameters θ(t), which are often unknown and must be estimated

from the data (e.g., Arthur et al., 1996). Availability is determined by constraints to movement or

other individual-based features, such as an animal’s home range, and taken to be independent of

the environmental features near s(t).

The function g is called the resource selection function (RSF) and defines the inherent pref-

erence an individual has for the point s(t) independent of its availability. The RSF is therefore

largest for locations that correspond to the most desirable habitat. It is important to note that the

preference an individual has for a location is not necessarily the same as the value of that point,

in the sense that increased use of preferential parts of the landscape do not always correspond to

increased fitness or health (e.g., Hobbs and Hanley, 1990). RSFs may depend on another collection

of time-varying parameters, φ(t), which may also be unknown. Modeling space use as a product of
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individual-based factors and location-based factors provides researchers with an intuitive approach

to learn about the way individuals select particular regions of the landscape (Manly et al., 2002).

The proportionality constant K(t) in (1.5) must be evaluated as part of any estimation proce-

dure. In general, closed form expressions for the K(t) are not available, and one must compute

it numerically by evaluating (1.5) over a fine grid of values for s∗(t), at every time t. Moreover,

many inferential procedures require repeated evaluation of the constant of proportionality for a

larger number of parameter combinations, which can make the time required to fit the movement

model grow to lengths that effectively render inference inaccessible.

Many approximations have been proposed that trade exact inference for computational tractabil-

ity. One approach involves discretizing the spatial domain D into a finite number of cells, and

modeling the number of times each cell is visited as either a Bernoulli or Poisson random vari-

able. In this framework, one can define the RSF as a transformation of a linear combination of

spatially-references covariates, in which case the RSF model can be recast as a generalized linear

model (GLM; McCullagh and Nelder 1983) and standard software can be used to estimate the

parameters in g (e.g., Warton and Shepherd 2010; Johnson et al. 2013). Another approach is to

use an equally-spaced quadrature to directly approximate the integral in (1.6) (e.g., Warton and

Shepherd 2010; Aarts et al. 2012; Brost et al. 2015). In Chapter 4, I introduce a model that builds

on the existing literature by including dynamic environmental features with complex shapes in the

RSF, g. In addition, I introduce a novel approximation technique used to evaluate the necessary

proportionality constant that is suited to our particular class of RSFs.

1.3 Overview

In Chapter 2, I introduce the first of two models for a collection of dependent trajectories. The

methods developed in Chapter 2 represent one of the first attempts made in the statistical literature

to model unknown dependencies among trajectories. The model is hierarchical, and dependence is

specified using a latent network that can be interpreted as social relationships among the observed

individuals.
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In Chapter 3, I introduce an alternative model for dependent trajectories in a continuous, rather

than discrete-time framework. The model is developed using a formulation referred to in the spa-

tial statistics literature as a “process convolution.” Process convolutions are stochastic processes

with sophisticated dependence structures constructed using weighted averages of simpler, under-

lying processes, and have been used to model temporal, spatial, and spatio-temporal processes for

over seventy years (Doob, 1944). I generalize the process convolution framework by allowing for

multiple iterative stages of convolutions, which can then be used to derive processes for popula-

tions of animals with dependence both in time and across individuals. The new model construction

framework, termed “process convolution chaining,” allows researchers to specify mechanistically-

motivated models for dependence through a compartmentalized sequence of weighted averages.

In Chapter 4, focus shifts away from interactions among conspecifics to resource selection. I

introduce a model for resource selection that depends explicitly on seasonal, or phenological, fea-

tures in the landscape, and develop an approximation technique that is used to obtain approximate

inference about parameters of interest. I apply the method to the study of polar bears, whose pat-

terns of movement reflect a preference for habitat near the shifting boundary between sea ice and

ocean.
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Chapter 2

Dynamic Social Networks Based on Movement

2.1 Introduction

Dynamic social networks are an important topic of study among ecologists for a variety of

species and ecological processes (Pinter-Wollman et al. 2014; Krause et al. 2007; Croft et al. 2008;

Wey et al. 2008; Sih et al. 2009). Social networks can help explain a myriad of behavioral activi-

ties in a population, including the characteristics of animal movement. Therefore, it is common to

define social networks based on directly observable behavior such as the duration of time animals

spend in close proximity to one another (e.g., African elephants, Loxodonta africana, Golden-

berg et al. 2014), discrete counts of interactions (e.g., yellow (Papio cynocephalus) and anubis

baboons (Papio anubis) Franz et al. 2015), or discrete counts of close encounters (e.g., barn swal-

lows (Hirundo rustica erythrogaster) Levin et al. 2015). Challenges for researchers interested in

studying animal social networks include expensive data collection procedures, and potential biases

due to opportunistic observation.

Killer whales (Orcinus orca), like many marine mammals, are complex and highly social crea-

tures (Baird and Whitehead 2000; Williams and Lusseau 2006; Parsons et al. 2009; Pitman and

Durban 2012). To better understand the behavior of killer whales, we seek to characterize their so-

cial relationships. Unfortunately, direct observation of killer whale interactions is challenging; it is

not uncommon for individuals to travel 50km a day and to range over thousands of kilometers in a

season (Andrews et al. 2008; Durban and Pitman 2012). Furthermore, observation of killer whales

at close proximity has been found to significantly influence their movement behavior (Williams

et al. 2002), which could directly affect measurements of social connectivity. In contrast, satellite

tracking tags have been used to gather movement data for killer whales over several months (An-

drews et al. 2008; Durban and Pitman 2012), and there is little evidence to suggest that tags alter

behavior. Thus, a potential alternative to costly personal observations are telemetry data, which
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contain rich movement information at the individual level, and can be collected in remote areas at

a much lower cost.

The suite of models for animal telemetry data is vast and rapidly changing, including both

continuous- and discrete-time approaches (see McClintock et al. 2014 for a review). Yet there are

only a few models that explicitly account for interactions among individuals in the population (e.g.,

Morales et al. 2010; Codling and Bode 2014; Langrock et al. 2014; Russell et al. 2016). Moreover,

methods are lacking that attempt to characterize pairwise connections between all members of the

population. We propose a model for movement that incorporates plausible mechanistic effects

on movement due to an underlying social network. Our model allows us to infer the specific

characteristics of interaction in a given population and the underlying dynamic social network

itself.

In our proposed discrete-time continuous-space model, we assume there exists an underlying

(latent) dynamic social network among the individuals in the population. Conditional on the net-

work characteristics and the positions of animals in the previous time step, the expected positions

of individuals at the next time point are modeled jointly using a Gaussian Markov random field

(GMRF) (Besag 1974; Besag and Kooperberg 1995; Rue and Held 2005b). The model is tempo-

rally Markovian for both the animal positions and the social network. In our model, the underlying

social structure influences movement through two channels: an attractive effect and an alignment

effect. These channels of interaction allow us to model a wide variety of behaviors, and they have

a precedent for use in the context of interaction behavior (Lemasson et al. 2013). The connec-

tion between the underlying social network and position is an example of a hidden Markov model

(HMM). HMMs represent a flexible class of hierarchical models popular in analyses of wildlife

data (see, for example, Langrock et al. 2012) in which an observable process (in our case, position)

is driven by an unobserved Markovian process (the underlying social network).

We introduce the details of our proposed method in Section 2.2. We demonstrate and assess

inference from the model with simulated data in Section 2.3. In Section 2.4, we analyze data

for seven killer whales tagged concurrently near the coast of the Antarctic Peninsula. Within the
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tagged sample, there are three genetically distinct types of killer whale (Pitman and Ensor 2003;

Morin et al. 2015) characterized by their size, coloration, and diet. The spatial distributions for

each type overlap, and while strong social interaction is typical within each type, there have been

no observed social associations among animals of different types. We demonstrate that inferences

from our method are consistent with this history of observation. Furthermore, we find strong

evidence for dynamic social connections forming and dissolving within each type, but no indication

of connections between types. Finally, in Section 2.5, we discuss potential extensions for the

model, including the incorporation of environmental covariates and approaches for mediating the

large computational demands for the model when the study sample is large.

2.2 Methods

We propose new methodology based on a general hierarchical modeling framework that ac-

commodates measurement, process, and parameter uncertainty (Berliner 1996). We introduce the

GMRF that describes animal movement in Section 2.2.1 and describe our method for modeling the

dynamic social network in Section 2.2.2. Then in Section 2.2.3, we detail how we account for the

fact that telemetry data are typically measured at individual-specific, irregularly spaced times with

error.

2.2.1 Position process

A GMRF is a description of a Gaussian random vector where conditional dependence between

elements is specified based on a neighborhood structure (Rue and Held 2005b). For example, data

occurring at regular intervals in time, or on a lattice in space, are often modeled with GMRFs

because natural neighborhoods exist for each datum (e.g., the preceding measurement in time, or

the four closest spatial locations). Thus, GMRFs present a natural mathematical structure for mod-

eling trajectories of connected individuals, as they provide a way to model dependence between

connected or “neighboring” individuals.
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We expect that social structure among individuals will influence their movement with respect

to one another. Let µi(t) denote the position of individual i at time t. Assuming we know the

population social structure (i.e., which individuals are socially affiliated with which other individ-

uals), we model the movements of all individuals simultaneously using a GMRF involving two

social behavioral mechanisms: one related to attraction toward the mean position of connected in-

dividuals, and the other related to alignment, or movement parallel to the paths taken by connected

individuals. Although our model is flexible enough to capture attraction or repulsion, as well as

alignment or anti-alignment, in most cases, we expect to infer assortative relations whereby in-

dividuals that are socially connected move “together." For this reason, we discuss movement of

connected individuals as aligned and attractive.

Attraction and alignment mechanisms are critical features of the mean positions of each in-

dividual at regular synchronous time steps. Models for locations on regular intervals have been

developed by several others, including Brillinger and Stewart (1998), Jonsen et al. (2005), and

Forester et al. (2007). We define the social relations in terms of a dynamic binary network W(t)

indexed at times t = 1, . . . , T , where entry wij(t) = 1 indicates a connection between individuals

i and j at time t and wij(t) = 0 indicates a lack thereof.

We specify a GMRF conditionally, from the perspective of a single individual at a given time.

The mean position of each individual i at time t conditioned on all other individuals’ positions at

time t, denoted µ−i(t), and all positions at the previous time, µ(t−1), follows a normal distribution

with mean

E
(
µi(t)|µ−i(t),µ(t− 1),W(t),W(t− 1), α, β, σ2, c

)
=

µi(t− 1) + βµ̃i(t− 1)︸ ︷︷ ︸
attraction

+
∑

j 6=i

α
wij(t)

wc
i+(t)

(
µj(t)− (µj(t− 1) + βµ̃j(t− 1))

)

︸ ︷︷ ︸
alignment

(2.1)

and precision
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Prec
(
µi(t)|W(t), σ2, c

)
= σ−2wc

i+(t)I2. (2.2)

Focusing on (2.1), we model the expected location of individual i as the sum of three terms:

the individual’s location in the previous time period, µi(t − 1); an attraction term capturing the

tendency for the individual to move toward other individuals it is socially connected to; and an

alignment term accounting for groups of interconnected individuals moving in the same general

direction.

The term µ̃i(t), in the attraction component of (2.1), is a unit vector pointing from individual

i’s position µi(t) to the mean position µi(t) of all the individuals it is connected to in W(t) (i.e.,

its ego-network):

µi(t) ≡
n∑

j 6=i

wij(t)

wc
i+(t)

µj(t) (2.3)

µ̃i(t) ≡





µi(t)−µi(t)
||µi(t)−µi(t)||2

,
∑

j 6=i wij(t) > 0

0,
∑

j 6=i wij(t) = 0.

(2.4)

The parameter β controls the strength of the attractive effect of a social connection. On average,

individual i moves a distance β in the direction µ̃i(t) during each time step.

In the above expression, wc
i+(t) is the size of individual i’s ego-network at time t if the individ-

ual has at least one connection (i.e., wc
i+(t) =

∑
j 6=i wij(t)), and equal to a constant wc

i+(t) = c > 0

otherwise. We require c to be strictly positive so the precision in (2.2) is non-zero for unconnected

individuals.

The alignment term in (2.1) quantifies the mean displacement in position from t − 1 to t for

only those individuals that individual i is socially connected to, and after accounting for attraction.

Although the sum is over all individuals j, the social network indicators wij(t) eliminate the effects

of an individual’s direction if it is not connected to individual i. The parameter α controls the

strength of the aligning effect, with 0 corresponding to no alignment, and α → 1 corresponding

to perfect alignment. The case α = 1 corresponds to an intrinsic conditional autoregressive model
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with an improper covariance matrix. However, we limit our consideration to α < 1, precluding

this special case.

Finally, the expression for the precision in (2.2) has the property that individuals who are more

socially connected (i.e., have larger ego-networks wc
i+(t)), have larger precision. The proportional

relationship between precision and wc
i+(t) is required for a valid GMRF, and aligns with our intu-

ition that, conditioned on the position of all other individuals, the movement of an individual with

few or no social connections is more difficult to predict than one that experiences strong attrac-

tion and alignment toward a large group of individuals. The parameter c can be thought of as the

effective size of the ego-network for an unconnected individual with regard to precision.

The specification of the model in (2.1) and (2.2) properly defines a GMRF where the elements

of the precision matrix at time t are

Qij(t) =





−αwij(t)σ
−2I2, j 6= i

wc
i+(t)σ

−2I2, j = i.

(2.5)

Therefore, we can write the multivariate version of the model for t = 2, . . . , T as

[µ(t)|µ(t− 1),θ] = N(µ(t− 1) + βµ̃(t− 1), Q(t)), (2.6)

where we have concatenated the model parameters (α, β, p1, φ, σ
2, c,W) into a single vector θ

(note: p1 and φ are parameters associated with the dynamic network W and are introduced in

Section 2.2.2).

Notice that, for the joint distribution in (2.6), the attraction effect remains in the mean structure

because the attraction force for an individual is toward the previous location of the individuals in

the ego-network. However, the alignment effects are accounted for in the precision matrix because

alignment is characterized by simultaneous movement of grouped individuals in the same direction.

Figure 2.1 shows the alignment and attraction effects graphically.
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The model for movement based on the normalized vector µ̃i(t), instead of µi(t)−µi(t), reflects

a mechanistic understanding that attractive movement is often restricted by the distance an animal

can reasonably travel in a given time step. We assume the maximum distance an individual is

capable of moving during one time step to be approximately constant. Thus, when the gap between

an individual and the center of its ego-network is large compared to its step size, an animal feeling

an attractive pull will appear to take several steps of similar length in that direction.

If we had used the difference µi(t)−µi(t) instead of µ̃i(t) in the attraction component of (2.1),

the attractive pull an individual experienced when its ego-network was far away could be far greater

than the distance it was able to travel in a single time step. To see this, note that the interpretation

of β in (2.6) would change to reflect the average proportion of the gap between an individual and

the center of its ego-network covered during each time step. A value of β = 0.5 would imply that

an animal closes half the distance between itself and the center of its ego-network, regardless of the

size of that gap. In some cases, the proportional gap coverage model may be more appropriate. In

our application with killer whales, it is reasonable for connections between animals to form across

relatively large gaps in space relative to the distance an animal might be able to cover in a single

time step. Thus, the former interpretation is the most appropriate for our application.

In (2.1) and (2.3) we define the vector µi(t − 1) using the status of the social network at time

t− 1. Another possibility is to define µi(t− 1) using the social network at the current time t as

µi(t− 1) ≡
n∑

j 6=i

wij(t)

wc
i+(t)

µj(t− 1). (2.7)

In practice, the differences that arise in the estimated social network depending on this model-

ing decision will only be noticeable near times when a connection status changes (i.e., whenever

w(t) 6= w(t − 1)). Hence, when the estimated social network is slowly varying, like the one we

observe in our application, we expect that these two definitions will result in essentially identical

inference. However, for applications when the frequency of changes in social connections is high
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relative to the scale at which telemetry observations are made, the impact of the decision of how to

define µ may be more significant.

residual
μi(t)

μi(t-1)

ego-networki(t-1)

β-effect

α-effect

ego-networki(t)

μi(t-1)

μi(t)

Figure 2.1: This schematic illustrates the two channels through which the dynamic social network influ-
ences movement. The dashed lines represent where the ego-network of individual i would be expected to
be at time t under attraction alone, and the parallel dotted lines represent the alignment between individual
i and the average of the differences µj(t)− (µj(t− 1) + βµ̃j(t− 1)).

2.2.2 Dynamic social network

We model the dynamic process that gives rise to W(t) as a collection of pairwise independent

Bernoulli random variables with a Markovian dependence in time, where

wij(1) ∼ Bern(p1) (2.8)

wij(t)|wij(t− 1) ∼





Bern(p1|0), wij(t− 1) = 0

Bern(p1|1), wij(t− 1) = 1

t = 2, . . . , T. (2.9)

23



The parameter p1 is the probability of a social connection between any two individuals at time

t = 1, p1|0 is the conditional probability that a pair of individuals who are not connected at t − 1

become connected at time t, and p1|1 is the conditional probability that a pair connected at time

t − 1 remain connected at time t. Thus, our model for µ can be thought of as a HMM, where the

latent social network W takes on the role of the hidden Markovian process. Though the model

for the dynamic social network could be used exactly as specified in (2.8) and (2.9), we make

two refinements that reduce the number of parameters we are required to estimate, and facilitate

solicitation of priors.

First, we take advantage of the fact that, in many cases, it is reasonable to assume the mean

density of a study population’s dynamic social network remains constant in time. This is equivalent

to requiring that the stationary distribution of the Markov process governing the overall network

density match the expected density at time t = 1. Recall that we model the conditional distributions

of the edges, w(t)|w(t−1) as independent Bernoulli random variables. Thus, the expected density

of the network at time t is equal to the marginal probability of an edge between any two vertices,

Pr(wij(t) = 1). The Markov process controlling network density is therefore the same as the

process for the sequence of social connections wij . Requiring that the initial density, p1, match the

stationary distribution of the Markov process is equivalent to the condition

p1 =
p1|0

p1|0 + 1− p1|1
. (2.10)

Condition (2.10) implicitly reduces the number of parameters to be estimated from three to two.

The second refinement we make is a reparameterization that allows for more intuitive inter-

pretation of model parameters, and hence, facilitates the solicitation of priors. We define a new

variable, φ, that controls the temporal stability of the dynamic network via

p1|0 ≡ (1− φ)p1, (2.11)
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which implies we can write p1|1 = 1− (1−φ)(1− p1). As φ varies from 0 to 1, the social network

transitions smoothly from complete temporal independence, to complete temporal dependence

(i.e., a static network where no edges form or dissolve in time). This can be expressed mathemati-

cally as lim
φ→0

p1|0 = lim
φ→0

p1|1 = p1 and lim
φ→1

(
1− p1|0

)
= lim

φ→1
p1|1 = 1. Thus, φ can be thought of as a

measure of the temporal range of dependence in the network. Under the parameterization using p1

and φ, researchers can construct priors for the network density and stability independently of one

another.

2.2.3 Measurement error and time alignment

Our model can be used to make inference about the posterior distribution of the model param-

eters θ conditioned on the mean position process µ (denoted [θ|µ]). However, in practice, we

are rarely able to observe µ directly. Rather, we observe noisy measurements of position at asyn-

chronous, irregularly occurring times, which we denote s, and the inference we wish to make is

for the posterior distribution conditioned on observed data, not µ. Let si(τi) denote the observed

position of individual i at time τi, and [s|µ] the joint density of all observed locations conditioned

on the unobserved processes µ. The top level of our hierarchical model provides a connection

between the locations µi(t), which occur at regular synchronized times, and the observations si(t).

We could obtain the desired posterior distribution by evaluating the integral

[θ|s] =

∫
[θ|µ, s] [µ|s] dµ, (2.12)

using Markov chain Monte Carlo (MCMC), provided we could sample from the distribution [µ|s].

Unfortunately, because of the inherent complexities in the irregular, asynchronous observation

times and the high dimensionality of the vector µ, sampling from this distribution becomes com-

putationally infeasible when a study population contains more than a few individuals and a few

dozen observation times per individual. We address this issue by making use of a multiple impu-

tation procedure employed by Hooten et al. (2010) and Hanks et al. (2015b, 2011), paired with a

continuous-time correlated random walk model from Johnson et al. (2008a). Multiple imputation
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offers a computationally efficient way to account for asynchronous, noisy position measurements

while still permitting us to use a discrete-time, step-aligned structure for movement informed by

a dynamic social network. We outline the procedure briefly below, and refer the reader to Hooten

et al. (2010) and Hanks et al. (2011) for further details.

The premise of the multiple imputation strategy assumes the existence of a distribution that is

very similar to [µ|s] from which we can sample paths easily. If we can define such a distribution,

which we call [µ∗|s], then we can closely approximate the integral in (2.12) by

[θ|s] ≈

∫
[θ|µ = µ∗] [µ∗|s] dµ∗. (2.13)

We can evaluate the integral in (2.13) up to a constant of proportionality by drawing a realization

from [µ∗|s] at every iteration of our MCMC algorithm, and updating model parameters θ condi-

tioned on the realization.

Johnson et al. (2008a) introduced a continuous-time correlated random walk model for move-

ment with measurement error that relies on an Ornstein-Uhlenbeck process for velocity, and treats

the observed paths for each individual as conditionally independent (i.e., [si|µ∗] = [si|µ
∗
i ]). Con-

tinuing with the same model, Johnson et al. (2011) provided an approach for sampling from the

posterior predictive path, [µ∗
i |si], which we use to evaluate the integral in (2.13).

We approximate the desired posterior using the following two-step procedure:

1. Draw K different realizations from [µ∗|s] using the R package crawl (Johnson et al.

2008a).

2. At each iteration of the MCMC sampler, draw one of the K samples and condition on µ∗ for

parameter updates.

Choosing too small a value for K will result in inference for the social network that does not prop-

erly account for the uncertainty in µ arising due to measurement error and temporal asynchronicity,

and can potentially be biased depending on the particular draws from [µ∗|s]. In practice, we found

a sufficiently large K in our application to be on the order of 50, as parameter estimates were
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essentially unchanged for larger K. By making use of the two-stage sequential procedure, we are

fitting a close approximation to the full Bayesian hierarchical model.

2.2.4 Priors

To demonstrate the value of our model when little is known a priori about the social ties in a

study population, we specify diffuse priors for most parameters in both the simulation and applica-

tion. We select conjugate parametric families whenever possible. The priors used in our simulation

and application are shown in the right columns of Tables 2.1 and 2.2. While more informative pri-

ors could be used when expert knowledge is available, we found most parameters to be insensitive

to the choice of hyperparameters. The one exception is the network stability parameter φ (see

Section 2.2.2). The stability of the network determines the range of temporal dependence in the

dynamic social network. Similar to analogous range parameters in the geostatistical setting (see,

for example, Chapter 6 of Gelfand et al. 2010), φ can prove difficult to estimate from the data. In

our application (Section 2.4), we used an informative prior that implies a strongly stable network

because we expected the social network to change slowly relative to the time scale at which the

telemetry data were gathered.

2.3 Simulation

The primary parameters of scientific interest are in the network W. Thus, we evaluate the qual-

ity of our model by assessing its ability to recover the network. A baseline model for comparison

is one using only proximity as a criterion for social connectivity. We consider the proximity-based

network defined by

WR
ij (t) = I||µi−µj ||2<R. (2.14)

Though it does not explicitly incorporate the behaviors of attraction and alignment, defining the

network using (2.14) is computationally cheap and closely mirrors the way some data are collected

in the field (Levin et al. 2015; Goldenberg et al. 2014). The proximity-based approach therefore

27



represents a viable alternative against which we can compare our model. However, failing to

consider attraction and alignment effects, as well as temporal stability in a dynamic social network

can lead to spurious associations that arise when two unconnected individuals happen to pass each

other by chance. Our simulation shows that our model is able to avoid such pitfalls.

In the following simulation, we generate directly from the proposed process model and fit the

model using paths µ. We use parameter values (shown in Table 2.1) that generate paths closely

resembling the data in our application for killer whales. Details of the methods we used to fit

the model, and the R code used to produce this simulation study is provided in Appendix A. We

used the posterior mean of W as a summary of the network, and investigated a variety of radii R

with the proximity-based network, WR, to define a suite of alternatives. Because we know the

true mean density of the network, p1, we select the proximity-based network for which the radius

yields a mean density as close as possible to the true value. Choosing a radius that recovers the

true mean density would not generally be possible, thus, we compared our model to a particularly

favorable proximity-based alternative. However, we found that proximity alone provides a poor

estimate of the true network relative to our proposed dynamic network model.

Figure 2.2 shows estimates of W for a random selection of pairs. Included on each plot are

the true network (dashed), the posterior mean from the model fit (solid), and the proximity-based

estimate (dotted). Although the posterior mode of wij(t) would be a natural choice for a predic-

tion of the true dynamic social network, we plot the posterior mean because it provides a visual

description about uncertainty in our predicted network. For example, posterior means of wij(t)

near 0.5 indicate larger uncertainty about the true connection status of individuals i and j at time

t than posterior means near 0 or 1. The pairs 1-5 (top left) and 1-6 (bottom right), show how the

proximity-based network can both find spurious connections, and fail to identify connected be-

havior when it takes place over too large a distance. Table 2.1 shows 95% credible intervals for

all parameters in the model except W. All credible intervals capture the true parameter values,

except those for φ. We observed moderate systematic bias in the posterior distribution of φ toward

zero, however posterior inferences for W were robust despite the bias in φ. In most applications
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we expect that the primary questions of scientific interest concern the network W, and φ can be

treated as a nuisance parameter.

Table 2.1: Marginal posterior medians and 95% credible intervals for model parameters. True values for
the simulation were chosen to yield plausible movement paths. The right column describes the prior distri-
butions used.

posterior prior
parameter true median (2.5%, 97.5%) density

α 0.9 0.92 (0.77, 0.96) Unif(−1, 1)
β 0.5 0.46 (0.37, 0.55) N(0, 103)
p1 0.2 0.15 (0.0096, 0.21) Unif(0, 1)
φ 0.95 0.84 (0.78, 0.90) Beta(17.2, 1.5)
c 0.33 0.30 (0.24, 2.36) IG(1.5, 3.5)

σ2 1 0.92 (0.74, 7.91) IG(10−1, 10−3)

Any study of a social network is ultimately based on a definition for connection specific to

the population of interest. Thus, it is incorrect to say that the proximity-based network fails to

capture the true network. Rather, the proximity-based network simply does a poorer job describing

the connections that influence movement than the network based on our proposed model. It is

impossible to perfectly define a given social network, but if there is reason to believe that a study

population might exhibit the commonly observed behaviors of attraction and alignment, then our

model offers a way to study it. We have shown that ignoring these mechanisms can result in

misleading inference.

2.4 Killer whales

We analyzed observed data for seven individuals near the Antarctic Peninsula over the course of

a week in February 2013 (for a description of the tags and study area see Durban and Pitman 2012;

Andrews et al. 2008). Geographic positions were measured using Argos transmitter tags. Within

the study area, three genetically distinct types of killer whales (termed A, B1, and B2) are known

to exist (Durban et al. 2017; Morin et al. 2015; Pitman and Ensor 2003) and are characterized

primarily by their size, coloration, and diet. Type A killer whales are the largest and feed primarily
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on Antarctic minke whales (Balaenoptera bonaerensis) (Pitman and Ensor 2003). Of the two type

B killer whales, B1 is larger and is distinguished by a diet consisting primarily of ice seals (Durban

and Pitman 2012). Finally, type B2 killer whales are distinguished by an observed diet of penguins

and likely also fish during deep dives (personal communication J. W. Durban 2015; Pitman and

Durban 2010). Although all types of killer whales have been observed exhibiting social behavior

within type, association between types has not been observed. The study sample of seven tagged

whales consisted of three whales of Type A, one of type B1 and three of type B2.

Credible intervals for all parameters except the network W are shown in Table 2.2. When

we examine the mean step size across all individuals and times, we found it to be several times

larger than the contribution of attraction, suggesting only a moderate attractive effect. The fit also

suggests a strong alignment effect evidenced by the posterior median for α near 1. Therefore,

we conclude that connectivity in this population of killer whales manifests itself predominantly

as movement in parallel, with some additional tendency for connected individuals to move toward

one another.

Table 2.2: Marginal posterior medians and 95% credible intervals for model parameters when fit to the
killer whale tagging data. The values reflect a strong alignment effect (α), weak attraction effect (β), and a
stable (φ), sparse (p1) social network. The right column describes the prior distributions used.

posterior prior
parameter median (2.5%, 97.5%) density

α 0.88 (0.40, 0.94) Unif(−1, 1)
β 0.022 (0.012, 0.030) N(0, 103)
p1 0.11 (0.005, 0.20) Unif(0, 1)
φ 0.95 (0.90, 0.98) Beta(100, 100

9
)

c 0.35 (0.24, 2.87) IG(1.5, 3.5)
σ 0.0033 (0.0026, 0.025) IG(10−1, 10−3)

The credible intervals for p1 and φ suggest that the network is very stable, but also fairly sparse.

Enduring connections are directly visible in Figure 2.3. The left column shows all pairwise dynam-

ics between the three individuals of type B2, and the right column shows all pairwise dynamics

between the three individuals of type A. All three individuals of type B2 show strong connection
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through the study period and, in fact, all three of these individuals moved as a group during this

time. The only social interaction involving individuals in type A occurred during the first few days

of the study period between individuals 5 and 6. There was strong evidence for complete inde-

pendence between all individuals not in the same type (see Figures A.1 and A.2 in the appendix),

consistent with expert knowledge. Of the 15 inter-type connections in W, there were no posterior

means above 0.5 at any time in the study period. A visualization of the movement and estimated

social connections between these individuals can be found in Appendix A.

As in the simulation (Section 2.3), we investigated an alternative definition for the social net-

work, based purely on proximity, given by (2.14). To account for the uncertainty in µ, we con-

structed the proximity-based network defined by a particular choice of R for each of the K draws

from [µ∗|s] used for multiple imputation (see Section 2.2.3), and averaged across these networks.

The primary means of communication at a distance between killer whales is acoustic signaling.

Therefore, we selected values for R based on the typical distances across which killer whales are

known to communicate acoustically. Miller (2006) observed killer whales in the Pacific Northwest

and estimated signals between individuals were detectable at distances of 5-15km. This range is

consistent with expert knowledge about the killer whales in our study region. We inspected the

corresponding dynamic social networks for radii between 5-15km and found little variation in the

resulting networks. Figures 2.3, A.1, and A.2 show the proximity-based network for R = 10km.

While we observed some similarities in the proximity-based and model-based networks, there

are several notable discrepancies. For instance, all proximity-based networks for radii between

5-15km included numerous connections between individuals of different types (Figures A.1 and

A.2). The presence of inter-type connections conflicts with expert knowledge that killer whales

of differing types do not form social bonds, suggesting that the proximity-based network may be

defining spurious social ties. Moreover, because the proximity-based network does not account

for temporal stability in social connections, we observe instances of implausibly rapid oscillation

in connection status (Figure A.2). The proximity-based networks and our model-based network

provide similar inference for within-type ties (Figure 2.3), but our model-based approach also
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provides rigorous uncertainty estimates. A researcher might arguably make an ad hoc adjustment

to the network and simply discard all inter-type connections on the basis of prior knowledge,

thereby arriving at the same conclusion regardless of which rule was used to define the social

network. However, the feasibility of such an approach is unique to this study for two reasons.

First, supplementary individual-level information, such as killer whale type, is often unavailable.

Second, in many populations, the relationship among covariates and social connections is largely

unknown, prohibiting covariate-based pruning of the proximity network.

2.5 Discussion

Existing methods for measuring and studying dynamic social networks in animal populations

typically involve ad hoc definitions for connectivity based on direct observation of study popula-

tions. Our model offers a flexible, but interpretable, hierarchical framework that allows researchers

to rigorously study dynamic social networks informed by relatively inexpensive telemetry data.

Moreover, our proposed model can easily be coupled with existing analyses on dynamic networks.

Fundamentally, the study of dynamic social networks often begins with descriptive statistics such

as network density, node degree, transitivity, and others (Pinter-Wollman et al. 2014). All of these

common summaries can be obtained as derived quantities in our Bayesian framework with esti-

mates of uncertainty. More sophisticated models for dynamic networks (e.g., Sarkar and Moore

2006; Durante and Dunson 2014; Sewell and Chen 2015) can take the posterior mode of W as

input, or be incorporated as part of a larger hierarchical modeling structure.

We have shown, through simulation, that our proposed model is able to capture information

about a population’s social structure in a way that a simplistic proximity-based measure cannot,

both by avoiding spurious connections and detecting interactions that occur over large distances.

Through an application on killer whale movement, we showed that the model captures connec-

tions consistent with expert knowledge based on non-quantitative observation, and can therefore

be relied upon to deliver credible and practical inference.
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When auxiliary covariates are available on the individuals, the proposed model can be extended

to include such data. A potential generalization is to allow the spatial covariates to influence the

mean position process of each individual, µi(t), linearly. If we denote the matrix containing spatial

covariates XC(t), we arrive at a familiar additive form

[µ(t)|µ(t− 1),θ,γ] = N


XC(t− 1)γ︸ ︷︷ ︸

covariate effect

+XW (t− 1)β︸ ︷︷ ︸
attraction

, Q(t)︸︷︷︸
alignment


 (2.15)

where XW (t− 1) is defined as the matrix with columns µ(t− 1) and µ̃(t− 1), and β ≡ (1, β)′.

One limitation of our model is that it is computationally intensive for large study samples. The

number of parameters in our model grows at a rate of
(
n
2

)
T as the number of individuals, n, and

number of time points, T , increase. The most dominant factor in computation time is typically

n, and when the number of individuals grows beyond a few dozen, fitting the model on a laptop

computer using MCMC becomes infeasible. One way to decrease the computational cost of fitting

the model is to introduce additional structure on W. We suggest two possible approaches.

The first way to introduce structure to W is to define a maximum radius of interaction, Rmax,

beyond which the probability of a social connection is zero. For example, the radius might be

chosen to be the maximum distance at which two individuals are able to detect one another. After

modifying the conditional distribution of wij(t) based on Rmax, it is no longer necessary to update

all wij(t) in each step of the MCMC algorithm, only those for which ||µi(t) − µj(t)|| < Rmax.

If Rmax is small relative to the spatial extent of the trajectories, this proximity-based modification

offers a substantial reduction in the computational cost of fitting the model. This idea is somewhat

related to covariance tapering for spatially referenced Gaussian random variables. Furrer et al.

(2006) decrease the computational burden of interpolating, or kriging, by deliberately introducing

zeros into the covariance matrix. In our setting, we would introduce zeros into the precision matrix.

Another way to alleviate the computational burden is to enforce structure directly on W to

reduce number of parameters in the model. For instance, it may be reasonable to assume that the

social connections in a given population form as complete subgroups or cliques. In this case, the
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network describes a clustering process with only nT parameters. Though motivated by straightfor-

ward mechanisms, both of these approaches to reducing the computational burden are non-trivial

to implement. In the first case, setting a maximum radius of interaction complicates the enforce-

ment of stability in the density of the network (introduced in Section 2.2.2) and offers modest or

no gains when Rmax is large relative to the spatial extent of the individual paths. In the second case,

updating the clustering process W requires the exploration of a very large space (of cardinality

equal to the Bell number Bn) for every t.

Although further developments are required before data for large populations of individuals

can be accommodated, our framework provides a strong foundation for modeling relationships

between movement and social networks.
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Figure 2.2: A subset of the complete estimated dynamic network for the simulated data on six individuals.
The titles correspond to the ith and jth individuals in wij(t). The dashed line is the true network, the solid
line is the posterior mean from the proposed Bayesian model, and the gray region represents one standard
deviation above and below the posterior mean. The dotted line shows the network defined by W

R, where
individuals are deemed connected whenever they are separated by a distance less than R (see Section 2.3).
(Note: The lines are offset slightly near 0 and 1 for visual clarity.)
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left column is all pairs of killer whales of type B2 (labeled 2, 3, 4), and the right column is all pairs of killer
whales of type A (labeled 5, 6, 7). The solid line in each plot shows the posterior mean for wij and the
gray region represents one standard deviation above and below the posterior mean. The dotted line shows
the network defined by W

R, where individuals are deemed connected whenever they are separated by a
distance less than R. (Note: The lines are offset slightly near 0 and 1 for visual clarity.)
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Chapter 3

Process Convolution Approaches for Modeling

Interacting Trajectories

3.1 Introduction

Models for continuous random processes using kernel convolutions are known in much of

the spatial and spatio-temporal statistical literature as “process convolutions” (e.g., Higdon, 2002;

Calder, 2007; Bolin and Lindgren, 2013). Also referred to as spatial moving averages (e.g., Cressie

and Pavlicová, 2002), process convolutions first arose as a means for constructing valid covariance

matrices for Gaussian processes (GPs), while relaxing the typical assumptions of stationarity and

isotropy (e.g., Barry and Ver Hoef, 1996). One application area for process convolutions that

has driven much of their recent theoretical development is for random processes taking place on

stream networks (Ver Hoef et al., 2006). Stream networks occupy sub-manifolds of physical space

on which specialized measures of distance often complicate enforcement of non-negative defi-

niteness in covariance functions and have an inherent need for anisotropic dependence structures

to accommodate the effects of direction in stream flow. Process convolutions offer an approach

to modeling dependence that addresses both of these issues. We employ process convolutions to

model the dependence observed in the trajectories of interacting animals.

A wealth of data arising from measurements of trajectories has spurred the development of

many new statistical models for individual-based movement processes. These models have been

used to study the individual movement patterns of a wide variety of animals, and scientific ques-

tions of interest are often focused on which exogenous environmental factors drive movement

(Potts et al., 2014). A fundamental commonality of research related to animal movement is a

need for accurate and precise knowledge about the paths traversed by each individual, leading to

the development of many models used for reconstructing the true underlying movement processes
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from telemetry data (e.g., Fleming et al., 2016). Several excellent models for telemetry data have

been proposed in both discrete- and continuous-time formulations that have sought to address the

significant challenges making prediction of the true paths difficult (for a review, see McClintock

et al., 2014; Hooten et al., 2017a). Telemetry devices are often subject to environmental conditions

and technological limitations that restrict their ability to deliver precise measurements of location

at dense temporal resolutions. Thus, many analyses of animal movement must account for both

measurement error and irregular temporal observations when estimating the true path traversed by

an individual. In some cases, it may be reasonable to assume that the data include independent

Gaussian noise; however, for many telemetry devices, it is necessary to account for complex, non-

Gaussian forms of measurement error (Brost et al., 2015; Buderman et al., 2016). Irregularity in

the frequency of telemetry observations can complicate the implementation of discrete-time mod-

els (although see Scharf et al., 2017, for one solution using a multiple-imputation procedure) and

potentially lead to large uncertainty during time intervals with few or no observations.

Ecologists are also interested in the extent to which individuals in a population move in direct

response to each other. Particularly in the case of large mammals, complex and dynamic social

connections within a population can play a critical role in the movement behavior of individuals

(e.g., Williams and Lusseau, 2006; Goldenberg et al., 2014; Scharf et al., 2016). For example, two

individuals with a strong social connection may exhibit similar movement patterns and visit the

same locations, resulting in positive dependence between their respective paths. Inference about

the social ties within a population, and how those ties change over time, can provide valuable

information about the behavioral ecology of a population. However, there are few existing meth-

ods available that explicitly account for interactions among individuals (e.g., Haydon et al., 2008;

Codling and Bode, 2014; Langrock et al., 2014; Russell et al., 2016; Scharf et al., 2016). Especially

when direct observation of a species is infeasible, careful analysis of data gathered from telemetry

devices can reveal useful information about a population’s social structure (Scharf et al., 2016).

We propose a joint model for the movement of multiple individuals that expands the suite of

statistical methodology available for studying animal movement. Our approach allows researchers
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to study dependence among the paths of a population of individuals that arises as the result of so-

cial interactions. Also, by taking into account the dependence among individuals in a population,

our approach has the potential to reduce both bias and uncertainty in reconstructing trajectories

in the study population compared to models that treat individuals independently. We obtain im-

provements in path reconstruction by modeling the true movement processes of the population

conditioned on an unobserved, dynamic social network. The inferred network provides a descrip-

tion of social ties within a population and how those ties change in time.

In what follows, we present a generalized approach to process convolutions in which a ran-

dom process is decomposed into a sequence of one or more smoothing kernels that are convolved

with a white noise process. Multiple stages of smoothing allow us to model dependence in time

and between individuals separately, resulting in a multivariate Gaussian process that captures the

combination of effects. It is important to note that, while the kernels responsible for inducing tem-

poral and path-wise dependence are constructed separately, the resulting covariance function is not

separable in the geostatistical sense.

We provide a detailed introduction to our generalized approach to process convolutions in

Sections 3.2.1 and 3.2.2 and construct our joint model for movement in Sections 3.2.3 and 3.2.4.

After discussing the implementation details in Section 3.3, we demonstrate path reconstruction in

a simulation study in Section 3.4. We apply our model to the study of telemetry data arising from

the movement of killer whales in Section 3.5 and close with a summary of our findings and future

directions.

3.2 Methods

3.2.1 A multiple-kernel convolution framework

We first outline a new flexible framework for the development of Gaussian process models

based on a synthesis of ideas from geostatistics, multivariate time series, and trajectory modeling.

Our hierarchical framework relies on the kernel convolution approach for modeling random pro-

cesses, known, in the spatial and spatio-temporal statistical literature, as “process convolutions”
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(e.g., Higdon, 2002; Calder, 2007; Bolin and Lindgren, 2013). A mean zero random process µ(·)

is called a process convolution if it is constructed by convolving a continuous random process,

dB(·), with a kernel function, h, over a domain, T , so that

µ(t) =

∫

T

h(t, τ)dB(τ). (3.1)

If the random process dB(·) is Gaussian, the resulting process µ(·) will also be Gaussian with

covariance function

Cov (µ(t), µ(t∗)) =
∫

T

∫

T

h(t, τ)h(t∗, τ ∗)Cov (dB(τ), dB(τ ∗)) . (3.2)

It is common to define the process dB(·) to be Gaussian white noise, which yields the simplified

covariance function

Cov (µ(t), µ(t∗)) =
∫

T

h(t, τ)h(t∗, τ)dτ (3.3)

(although see Nychka et al. (2015) for an example of a spatial process convolution where dB(·)

has covariance specified through a Gaussian Markov random field). A process convolution with

kernel function h(·, ·), as in (3.1), represents a smoothing of the process dB(·), and the kernel is

therefore often referred to as a smoother. In what follows, we refer to h as both a kernel function

and a smoother, interchangeably.

The function defined in (3.3) is guaranteed to be non-negative definite, and therefore a valid

covariance function, if
∫
T
h(t, τ)dτ < ∞ and

∫
T
h2(t, τ)dτ < ∞ for all t (Higdon, 2002). In

many applications, it may be easier to specify the proper form of dependence in a GP through the

form of a kernel smoother rather than that of a covariance function. For example, by constructing

process convolutions with asymmetrical kernels, Ver Hoef et al. (2006) accounted for directional

dependence in spatial processes arising on stream networks, where directional flow plays a crucial

role. For certain choices of h, it is possible to express the covariance function analytically (e.g.,

40



Higdon, 2002; Paciorek, 2003; Ver Hoef and Peterson, 2010), although this is not necessary for

non-negative definiteness. In the cases where an analytic solution to (3.3) is not available, one

can evaluate the integral numerically. The class of covariance functions constructed using kernel

convolutions is general, containing many of the parametric families commonly used in geostatis-

tical settings (e.g., exponential, Gaussian, spherical), as well as more flexible dependence struc-

tures. For example, Higdon (1998) and Paciorek (2003) showed that process convolutions allow

researchers to model both anisotropic and non-stationary dependence by letting h(t, τ) vary with

both |t− τ | and t. In principle, any covariance function evaluated over a discretized domain has a

process convolution representation on the same discretized grid, where the kernel function’s values

over the grid may be defined using a decomposition of the covariance matrix (e.g., Cholesky).

Hooten and Johnson (2017) used process convolutions to develop new models for trajectories

by convolving a Wiener process, rather than white noise, with different kernel functions. Using

Wiener process convolutions, they specified realistic models for animal movement without the

characteristic “roughness” found in Brownian motion and defined a framework that incorporated

other existing models for movement, such as that in Johnson et al. (2008a). Brownian motion

itself can be thought of as a process convolution where the kernel is a step function given by

h(bm)(t, τ) ≡ 1{τ≤t} and the process is Gaussian white noise. Thus, the Hooten and Johnson

(2017) framework can be viewed as a nested smoothing procedure, where the position at time t is

µ(t) =

∫

T

h(t, τ)

(∫

T

h(bm)(τ, τ̃)dB(τ̃)

)
dτ. (3.4)

To account for Brownian motion with an initial position far from the origin, one may define the

process dB(·) to be a continuous white noise process for all t > 0, with arbitrary initial variance

so that dB(0) ∼ N (0, σ2
0). Hooten and Johnson (2017) provided several examples of possible

kernel functions and demonstrated a computationally efficient procedure to incorporate temporal

non-stationarity into the kernel, allowing them to fit highly flexible models to telemetry data arising

from animal movement trajectories.
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It is possible to write the two-stage process convolution in (3.4) in terms of a single effective

smoothing kernel h̃(t, τ̃) =
∫
T
h(t, τ)h(bm)(τ, τ̃)dτ using Fubini’s theorem to change the order of

integration. Moreover, the equivalent, single-stage representation for µ(·) is not limited to two-

stage smoothing processes. One may specify any number of kernel functions and the resulting

multi-stage kernel convolution can be written in terms of a single effective kernel. This nested

structure motivates a novel model-building approach in which an arbitrarily large collection of

convolution kernels is used to specify a valid GP. We refer to a stochastic process resulting from

the iterative convolution of a chain of kernels h(1), . . . , h(L) as a “process convolution chain” (PCC)

and write it in its expanded form as

µ(1)(τ1) =

∫

T

h(1)(τ1, τ0)dB(τ0)

µ(2)(τ2) =

∫

T

h(2)(τ2, τ1)dµ
(1)(τ1)

...

µ(L)(τl) =

∫

T

h(L)(τL, τL−1)dµ
(L−1)(τL−1).

(3.5)

The underline in stages 2 ≤ l ≤ L (i.e., µ(l)(τl)) distinguishes the PCC composed of all kernels
{
h(k) : k ≤ l

}
from that of convolving h(l) with the process dB(·) directly (written µ(l)(τl)). We use

analogous superscripts for the covariance function of a given process (e.g., Cov(µ(l)(t), µ(l)(t∗)) =

C(l)(t, t∗)). A collapsed version of a PCC using a single effective kernel and the white noise

process dB(·) can be written as

µ(l)(τl) =

∫

T

h(l)(τl, τ0)dB(τ0) (3.6)

if we define the effective kernel as

h(l)(τl, τ0) ≡

∫

T

. . .

∫

T

h(l)(τl, τl−1) . . . h
(1)(τ1, τ0)dτ1 . . . dτl−1. (3.7)
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To simplify notation, we write h̃ = h(L) for the effective kernel constructed from the entire chain,

µ̃ for the full process µ(L), and C̃ for the corresponding covariance function. In general, the kernels

h(k) are not commutative, in the sense that

∫

T

∫

T

h(l1)(t, τ)h(l2)(τ, τ0)dB(τ0) 6=

∫

T

∫

T

h(l2)(t, τ)h(l1)(τ, τ0)dB(τ0). (3.8)

Thus, both the forms of the kernels and their order are important when specifying a PCC.

Specifying a GP through an ordered chain of smoothers allows for considerable flexibility. For

example, if we specify a chain of size L = 1 with kernel function h(1)(t, τ1) ≡ 1{τ1<t}, we recover

simple Brownian motion. If we increase the length of the chain by including a second kernel,

h(2)(t, τ2) = (1+ τ2−t
φ

)1{−φ<τ2−t≤0}, we recover a structure used by Ver Hoef and Peterson (2010)

for modeling dependence in stream networks (also mentioned in Hooten and Johnson, 2017, Figure

2, row 3). Another specific case of PCCs are so-called (k − 1)-fold integrated Wiener processes

(Shepp, 1966; Wecker and Ansley, 1983; Rue and Held, 2005a), which use L = k−1 kernels of the

form h(l)(t, τ) = (t−τ)/(l−1) and allow one to model GPs with exactly m continuous derivatives.

The multi-stage decomposition is similar in spirit to the way random processes with multiple de-

pendence scales are decomposed additively in multi-resolution processes (Higdon, 2002; Nychka

et al., 2015; Katzfuss, 2017). The difference is the convolution chain approach combines model

components using convolutions, rather than additively.

In what follows, we construct convolution kernels that allow us to specify multivariate GPs.

These provide a powerful tool for modeling multiple trajectories arising from interacting individu-

als. We return to this specific application of PCCs in Section 3.2.3.

3.2.2 Finite representation

The joint distribution of µ̃ ≡ (µ̃(t1), . . . , µ̃(tn))
′ for t ≡ (t1, . . . , tn)

′ ⊆ T is mean-zero

Gaussian with covariance function C̃(t, t∗) =
∫
T
h̃(t, τ)h̃(t∗, τ)dτ for any t, t∗ ∈ t (if the integrals

of h̃ and h̃2 exist). When this integral cannot be computed analytically, one can perform the

integration numerically by selecting a fine grid of values τ ≡ (τ0, . . . , τm)
′ from the domain T ,
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and evaluating the discrete sum
∑m

i=2 h̃(t, τi)h̃(t
∗, τi)∆τi, where ∆τi = τi−τi−1. In the discretized

setting, the process convolution may be written as a matrix product µ̃ = H̃ε0, where the jth row

of H̃n×m is the function h(tj, τ) evaluated at all τ ∈ τ , and ε0 ≡ (ε0(τ1), . . . , ε0(τm))
′ with each

ε0(τi) ∼ N(0,∆τi). Assuming the grid times τ are equally spaced with intervals of size ∆τ , the

joint distribution of µ̃ can be expressed using matrix notation as

µ̃ ∼ N
(
0,∆τH̃H̃′

)
. (3.9)

As the density of the grid grows to infinity (m → ∞), the outer product in (3.9) approaches the

covariance defined by the continuous integral over T . The granularity of the grid (i.e., the size

of m) required to adequately approximate the integral will generally depend on the characteris-

tics of h̃. Alternatively, one can follow the approach of Higdon (2002), who used finite process

convolutions (also called discrete process convolutions in Calder, 2008) as an approximation, and

choose m < n to yield a fixed-rank model for the continuous process. Fixed-rank models can offer

computational efficiency and provide an adjustable level of implicit regularization (Wikle, 2010).

3.2.3 A process convolution chain for dependent movement

Social smoothing

We construct a novel model for animal movement using the PCC approach within a Bayesian

hierarchical modeling framework. To describe the basic procedure, we first consider paths in

one dimension. The model we describe can be readily extended to movement in two or more

dimensions, and we demonstrate that in the example that follows. We use a three-stage (L = 3)

PCC that includes a specialized kernel function constructed to induce dependence among the paths

of p different individuals. The inter-path dependence that arises is based on a weighted, undirected,

latent social network (e.g., Goldenberg et al., 2010).

Let the random variable µi(t) represent the position of individual i at time t, and let wij(τ) ∈

[0, 1] denote the connection weight between individuals i and j at time τ , with wii(τ) ≡ 1 and

i, j ∈ {1, . . . , p}. We propose a “social” smoothing kernel of the form
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h
(soc)
ij (τsoc, τ) ≡ 1{τ=τsoc}

wij(τsoc)

|wi·(τsoc)|
, (3.10)

|wi·(τsoc)| ≡

p∑

j=1

wij(τsoc). (3.11)

We write the kernel in (3.10) with explicit dependence on arbitrary time τ for completeness, but

will hereafter suppress the second argument for brevity. To provide intuition for the effect of

convolving with the social smoothing kernel, we first consider the case of a multivariate process

with two individuals. We assume that, for the process µ(·) ≡ (µ1(·), µ2(·))
′, the variables µ1(τ)

and µ2(τ
∗) are independent a priori for all τ and τ ∗. After social smoothing, the resulting process

for individual 1 is defined by

µ
(soc)
1 (τsoc) ≡

2∑

j=1

∫

T

h
(soc)
1j (τsoc, τ)µj(τ)dτ (3.12)

= h11(τsoc)µ1(τsoc) + h12(τsoc)µ2(τsoc) (3.13)

=
µ1(τsoc)

1 + |w12(τsoc)|
+

w12(τsoc)µ2(τsoc)

1 + |w12(τsoc)|
. (3.14)

From (3.13) and (3.14), it is clear that µ(soc)
1 (τsoc) is a weighted average of the independent vari-

ables µ1(τsoc) and µ2(τsoc), where the weights are equal to h11(τsoc) and h12(τsoc), respectively.

When the network connection is strong (i.e., w12(τsoc) ≈ 1), the two weights h11(τsoc) and h12(τsoc)

will be approximately equal, and the effect of the kernel is to “squeeze” the previously indepen-

dent paths toward a scaled version of their mutual mean. When the network connection is weak

(w12(τsoc) ≈ 0), the weights will be close to 1 and 0 respectively, and the processes will be un-

affected by the kernel, retaining the a priori independence between individuals. These effects are

visible in the simulated process shown in the top plot of Figure 3.1.

The social smoothing kernel we propose is motivated by an interest in describing a mechanis-

tic, interpretable driver of dependent movement. Specifically, it is useful for modeling the paths

of individuals who have a tendency to move toward, and alongside, other individuals with whom

they share connections. This type of dependence is ubiquitous in animal movement, but is by no
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means the only meaningful type of interaction. As an alternative, consider the movement of two

highly territorial animals with overlapping territories in which observed paths would appear to

“avoid” each other. To model mutual avoidance, we require a social kernel that “spreads apart”

two otherwise independent paths when a strong social connection is present. In what follows, we

focus on the particular kernel defined in (3.16), but we emphasize that PCCs, with suitably con-

structed kernels, offer a flexible way to specify models for a wide range of possible behavioral

mechanisms. Additionally, our choice of social smoothing kernel is most appropriate when social

connections among individuals vary slowly relative to the movement processes. When relation-

ships among individuals are allowed to vary too rapidly, it may become difficult for the model to

distinguish between brief encounters that arise due to social effects, and those that arise as part of

the stochasticity inherent in Brownian motion.

Equipped with the social kernel given in (3.16), we outline the first two stages of our full three-

stage PCC model for the dependent movement of p individuals. We begin with Gaussian white

noise and smooth at the first stage convolving h
(bm)
ij (t, τ) ≡ 1{τ≤t}1{i=j} with dB(·) to generate

p independent instances of Brownian motion, denoted µ
(bm)
i (·), each with its own initial position.

At the second stage, we apply the social smoothing kernel defined in (3.10) to the collection of

all p processes, µ(bm)(t) ≡ (µ1(t), . . . , µp(t))
′. Smoothing with the social kernel returns weighted

averages of the Brownian processes, where the weights are proportional to the latent social weights

wij(t). Thus, two individuals i and j for whom wij(t) is close to 1 will tend to have smoothed

locations µ
(soc)
i (t) and µ

(soc)
j (t) that are close together in space. A third and final stage in the

PCC, introduced in the following section, ensures that the random process has the proper temporal

smoothness required for modeling animal movement.

Inertial smoothing

Marginally, the individual paths µsoc
i generated from the two-stage PCC constructed from h(bm)

and h(soc) are each an instance of Brownian motion. However, Brownain motion is unsuitable for

direct modeling of animal movement because the instantaneous velocity of a particle traversing a

Brownian path is discontinuous, and therefore the acceleration is not well defined. Discontinuities
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in the first derivative of the path processes imply that individuals are capable of instantaneous

changes in their velocities and is inconsistent with the physical laws governing the mechanics of

massive bodies (e.g., Feynman et al., 1963).

Several process convolutions have been explored that impart specific smoothness properties on

a GP. For example, Shepp (1966), Wecker and Ansley (1983), and Rue and Held (2005a) discuss

applications of (k − 1)-fold integrated Wiener processes, which ensure the existence of k − 1

continuous derivatives. Johnson et al. (2008a) constructed a model for the movement of individual

harbor and northern fur seals by specifying an Ornstein-Uhlenbeck process for the velocity, rather

than the position. Hooten and Johnson (2017) modeled the true locations of an individual animal

using a two-stage PCC in which the second kernel function is Gaussian, and Buderman et al. (2016)

used a similar model with cubic splines as their kernels. In all of these examples, smoothness is

imparted to a process through convolution with a kernel either implicitly or explicitly. We introduce

a final stage of smoothing to yield paths that are guaranteed to be continuously differentiable.

Enforcing the existence of a continuous derivative for the movement processes ensures that

individuals have an interpretable acceleration at every time t. Therefore, we refer to the final

kernel function as an “inertial” smoother because its purpose is to generate paths with the phys-

ical properties required to obey the laws of classical mechanics. We specify a kernel from the

Matérn family of correlation functions (Cressie, 1991) with an unknown range parameter, φinl,

and smoothness ν = 1 as the inertial smoother. The effect of this final kernel, h(inl)
ij (t, τ) ≡

|τinl−τsoc|
φinl

K1 (|τinl − τsoc|/φinl)1{i=j}, where K1 is a modified Bessel function, is visible in the

bottom plot of Figure 3.1. As we did for the social smoothing kernel, in what follows we suppress

the superfluous index and write h(inl)(·, ·).

The full three-stage process convolution chain

The expanded specification of the full three-stage PCC is given by

µ
(bm)
i (τbm) =

∫

T

h(bm)(τbm, τ0)dBi(τ0) (3.15)
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Figure 3.1: An example of a one dimensional GP arising from a three-stage social PCC for two individuals
(light and dark). All three intermediate stages of smoothing are shown, beginning with Brownian motion
(top, dotted), followed by “social” smoothing (top and bottom, dashed), and finally “inertial” smoothing
(bottom, solid). The thick gray line in the top plot is proportional to the strength of the social tie w12(t) at
all times t, where the extent of the y-axis corresponds to a range of [0, 1]. The thick gray line in the bottom
plot is proportional to the inertial smoothing kernel h(inl)(t) for a fixed value of τ .
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µ
(soc)
i (τsoc) =

p∑

j=1

h
(soc)
ij (τsoc)µ

(bm)
j (τsoc) (3.16)

µ̃i(τinl) = µ
(inl)
i (τinl) =

∫

T

h(inl)(τinl, τsoc)µ
(soc)
i (τsoc)dτsoc. (3.17)

One of the primary benefits of using a PCC framework is that it allows one to decompose complex

dependencies into an iterative sequence of relatively simple mechanisms. Positions of multiple

individuals can, in general, exhibit dependencies in both time and among individuals, and the

characteristics of these dependencies may themselves be dynamic. We construct a PCC using ker-

nels that compartmentalize the mechanisms generating the complex dependencies in the collective

movement of interacting individuals. The first stage of smoothing is in time, and not across individ-

uals, so that µ(bm)
i (τbm) and µ

(bm)
j (τbm) are independent for i 6= j. The second stage of smoothing

is across individuals, and not in time, in the sense that h(soc)
ij (t, t∗) = 0 for t 6= t∗. The final stage

of smoothing is in time only.

Restricting individual smoothing components to operate in only one “dimension” at a time (in

this case, either temporal or social) is not necessary. However, a primary motivation for construct-

ing GP models in the PCC framework is to decompose a complex mechanism into components

that are easier to understand separately. Therefore, it is natural to form PCC models with kernel

functions that operate in a limited number of dimensions simultaneously.

Let si(t) denote the observed position of individual i ∈ {1, . . . , p} at time t ∈ T . We model

the true, unobserved position of individual i at time t proportional to µ̃i(t) and add a measurement

error process, εi(t), to yield the data model

si(t) ≡ σµµ̃i(t) + εi(t). (3.18)

The parameter σµ scales the random process µ̃(·) to account for the overall spatial domain of the

locations. We model the measurement error εi(t) as i.i.d. mean-zero Gaussian random variables

with variance σ2
s , although more complex measurement error processes could also be used (e.g.,

Brost et al., 2015; Buderman et al., 2016).
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3.2.4 Process prior for the dynamic social network

The general model for dependent movement is highly parameterized. To evaluate the covari-

ance ∆τH̃H̃′ for a grid of m times, one must estimate
(
p
2

)
m parameters associated with the so-

cial network that drives the second stage of the PCC. As we describe in Section 4.3.5, we fit the

proposed model to data within a Markov chain Monte Carlo (MCMC) paradigm, which requires

repeated inversion of a large, dense covariance matrix. Without further structure for wij(·), esti-

mating the underlying network would be computationally infeasible. We increase computational

efficiency by leveraging reasonable assumptions about the underlying network to constrain the

space of possible latent social networks, thereby reducing the effective number of parameters in

the model. We impose constraints on the network’s marginal complexity at each fixed time as well

as the smoothness of its temporal evolution.

Our approach makes use of recently developed methods for modeling dynamic stochastic net-

works. To reduce the dimensionality of the latent network at a fixed time, we follow the approaches

of Hoff et al. (2002), Hoff (2008), and Durante et al. (2014), who modeled social connections using

a latent space. Latent space models for stochastic networks proceed by defining network connec-

tions through functions of the locations of particles in a latent d-dimensional “social” space. As

an example, consider the following latent space model for the edges in a weighted, undirected,

dynamic social network. Suppose the latent variables µ
(w)
i (t), µ(w)

j (t), and µ
(w)
k (t) are positions

in R
2, and edge weights are defined by wij(t) = e−dij(t), where dij(t) is the Euclidean distance

between µ
(w)
i (t) and µ

(w)
j (t). Defining edge weights based on the distance between particles in

a latent space induces positive dependence among the connections wij(t), because the latent dis-

tances are constrained by the characteristics of the latent space and the measure of distance. That

is, if dij(t) and djk(t) are small, resulting in edge weights wij(t) and wjk(t) that are close to 1,

the triangle inequality implies dik(t) must also be small, and wik(t) will also be close to 1. There-

fore, latent space approaches for modeling social networks can be understood as a way to induce a

tendency to complete triangles in a network. This phenomenon is often observed in human social

networks (e.g., friends of friends tend to themselves be friends) (Hansell, 1984), and is also reason-

50



able for many applications to animal social networks. A latent space approach to constraining the

underlying social network has the computational advantage of reducing the number of parameters

to estimate by a factor of p, because we only need to estimate p latent paths instead of
(
p
2

)
pairwise

relationships.

We define the latent social connection between individuals i and j at time τsoc using the latent

positions and an appropriately chosen functional g by

wij(τsoc) ≡ g
(
µ

(w)
i (τsoc),µ

(w)
j (τsoc)

)
. (3.19)

In general, the type of network desired for the application (e.g., binary, weighted) may inform

the particular choice for g. As discussed in Section 3.2.3, we construct the kernel h(soc)
ij under

the assumption that the weights in the social network have support [0, 1]. The compact support

of wij(·) motivates our choice of g, defined by g(x,y) ≡ e−‖x−y‖22 . The functional g maps two

vectors in the latent space to the unit interval (0, 1] and follows the methods used for latent space

network modeling by Hoff (2008) who showed that this construction induces positive dependence

in the edges wij(·).

Defining the weights in the social smoother through the relative positions of actors in a latent

space reduces the dimensionality of the dynamic social network marginally at each time. In addi-

tion, we constrain the evolution of the weights in time to further reduce dimensionality and reflect

an assumption that social connections among individuals should be stable in time. One approach

for constraining the temporal smoothness in wij(τsoc) is to enforce temporal smoothness in the

locations of the latent actors (e.g., Sarkar and Moore, 2006; Sewell and Chen, 2015). We model

the location of the actors in the latent social space using another process convolution with kernel

h(w)(·, ·) as

µ
(w)
i (τw) ≡

∫

T

h(w)(τw, τ)dB
(w)
i (τ), (3.20)

h(w)(τw, τ) = σwe
−(τ−τw)2

φ2w , (3.21)
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where dB
(w)
i (·) are instances of two-dimensional Brownian motion, now used to define the posi-

tions in the latent social space. The parameter σw controls the dispersion of the latent paths µ(w)
i

and is therefore related to the overall density of the social network, with smaller σw corresponding

to higher connectivity. The parameter φ2
w controls the tortuosity of the trajectories through the

latent social space, and is related to the temporal stability of the network over time, with larger val-

ues of φ2
w corresponding to a more stable network. As described in Section 3.2.2, we approximate

the continuous stochastic processes µ
(w)
i (·) using a set of independent normal random variables

anchored at a finite number of knots yielding

µ
(w)
i ∼ N

(
0, σ2

w∆tH̃′
wH̃w

)
. (3.22)

3.3 Model implementation

We obtain realizations from the posterior distribution of the model parameters using a Markov

chain Monte Carlo (MCMC) algorithm. In this section, we briefly discuss the most relevant fea-

tures of model implementation. A more detailed description, including our choice of priors and

hyperparameters, is available in Appendix B.

We specify independent normal priors for the initial-location parameters and a conjugate hy-

perprior on the population-level variance so that µ0i ∼ N(0, σ2
0) and σ2

0 ∼ IG(a0, b0). Additionally,

we integrate the true location process µ̃ out of the likelihood, which allows us to avoid sampling

the continuous movement process directly. This is a common technique used in spatial statistics

(e.g., Gelfand et al., 2003; Finley et al., 2015) to improve mixing for the remaining parameters

in the model. The underlying movement process µ̃ can be recovered post hoc using composition

sampling (Finley et al., 2015). The resulting integrated model formulation is

si(t)|εw, φinl, σ
2
s , σ

2
µ, σ

2
0 ∼ N (0,Σ) (3.23)

Σ ≡ σ2
sI+ σ2

µ∆τH̃′H̃, (3.24)
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where the parameters φinl, σ2
0 , and εw enter the density through the definition of H̃ in (3.15) -

(3.17). To update each latent-space path, µ(w)
i , we employ a Metropolis-Hastings algorithm.

3.4 Simulation

As the dependence between individuals in a population weakens (i.e., wij(t) → 0 for all t,

i 6= j), our proposed model simplifies to one that considers each path independently, but shares

information about all non-social parameters across individuals. The PCC model constructed from

a fixed, empty social network presents a natural baseline for comparison with our full model for de-

pendent movement. Estimating the latent social network that gives rise to the dependence among

paths represents the majority of the computational effort to fit our proposed model, and grows

rapidly with the number of individuals under study. Thus, there is a natural incentive to model

movement under the assumption of path-independence unless it can be shown to be deficient. We

compare the performances of the full model for dependent movement (IP-DEP) with the special

case of the model under the assumption of inter-path independence (IP-IND). In many cases, we

find that accounting for the dependence among individuals results in significantly improved recon-

struction of the true underlying paths.

Telemetry devices are subject to a wide range of environmental conditions that frequently result

in large intervals of time during which no observed locations are recorded. Estimates of the true

locations, µ̃, during long gaps between observations are often accompanied by large amounts

of uncertainty that present a challenge for researchers studying animal behavior. In simulation,

we show that the presence of moderate to strong dependence among observed paths provides an

opportunity for improvement in path reconstruction when we take into account the joint distribution

of all observed individuals. To illustrate the potential gains, we consider a simple setting of two

individuals in which the connection status, w12, is constant over the period of observation. We

assume regular, uninterrupted observations for individual 1, but a gap in time, Tg, exists in the

observed sequence of telemetry locations for individual 2.
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We evaluate the quality of a given model for path reconstruction in terms of both accuracy and

precision. To assess the accuracy of a path reconstruction, we define a loss function termed the

“squared path error” (SPE) that quantifies the agreement between a specific path reconstruction µ̂

and the true path µ̃true as

SPE(µ̂; Tg, µ̃true) =
1

|Tg|

∫

Tg

‖µ̃true(tg)− µ̂(tg)‖
2
2dtg. (3.25)

We define the reconstruction µ̂ to be the posterior mean for µ̃ so that (3.25) represents a measure of

how accurately the center of the posterior distribution matches the true underlying path. To assess

the precision associated with a model, we compute the radii for circular 95% credible regions

surrounding each point in the path µ̂(tg) and average across the entire temporal gap in observations,

Tg, to yield an overall summary of precision we term the average circular 95% credible region

radius (ACRR0.95).

To provide a general sense of when accounting for path dependence results in the greatest gains

in path reconstruction, we vary the strength of dependence, w12, the proportion of the study interval

made up by the observation gap, |Tg|/|T |, and the tortuosity of the paths, and use SPE in tandem

with ACRR0.95 to compare the performance of IP-DEP and IP-IND. We vary tortuosity through

the range parameter φinl that appears in the inertial smoother, with smaller values corresponding

to more tortuous paths on average. For each combination of w12, Tg, and tortuosity, we used the

five step procedure:

(1) Simulate a realization of µ̃true and s from our proposed model.

(2) Fit both the dependent and independent-paths models to s.

(3) Sample 1000 paths from each of the two posterior distributions using composition sampling.

(4) Compute the path error defined in (3.25) for the posterior mean.

(5) Use the same 1000 draws from the posterior to compute the average radius of a circular 95%

credible region surrounding a point µ2(tg).
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We repeat the procedure 20 times for each combination of parameters to obtain an estimate of the

variability between realizations of the simulated paths. Values for the parameters use to simulate

each path as well as all prior distributions and hyper parameters are provided in Table B.1.

To facilitate direct comparison between the two models under consideration, we examined the

ratios of SPE and ACRR0.95 for IP-DEP and IP-IND, defining ratios such that the relevant value for

IP-DEP appears in the denominator and values greater than 1 show support for IP-DEP. Figure 3.2

displays the ratios of SPE (top row) and ACRR0.95 (bottom row) under all combinations of values

for the parameters w12, |Tg|/|T |, and φinl (tortuosity). Individual plots show the median ratio

across all simulations for high (solid, red) and low (dashed, blue) tortuosities, with an associated

polygon delineating the 25% and 75% quantiles across simulations. Columns organize the plots

by gap size, and the strength of the social connection w12 increases along the x-axis within each

individual plot.

Several general observations can be made about the circumstances under which fitting the full

model for dependent movement offers the greatest improvements in path reconstruction. First,

both precision and accuracy improve near monotonically with increasing w12. Second, the greatest

gains come when the gap size is moderate to large (columns 3 and 4). When the gap is brief

(column 1), the difference between the reconstructed paths for each model is modest. Finally, the

gains in performance for the full model are slightly greater for the case of high tortuosity. In our

simulation study, more tortuous paths are characterized by a shorter range of dependence in time;

thus, increasing tortuosity is similar to increasing the size of the observation gap.

3.5 Killer whales

We analyzed telemetry data for four killer whales near the Antarctic Peninsula (see Figure 3.3)

over the course of five days in February 2014. Geographic positions were measured using Argos

telemetry tags (for a complete description of the tags and study area see Andrews et al., 2008;

Durban and Pitman, 2012). Although multiple types of killer whales have been described in this

55



1
3

5
7

S
P

E
 r

a
ti
o

high tortuosity

low tortuosity

25-75% quantiles

0.05 0.17 0.28 0.4
1

3

A
C

R
R

0
.9

5
 r

a
ti
o

0.4 0.6 0.8 1.0

strength of tie (w12)

0.4 0.6 0.8 1.0

strength of tie (w12)

0.4 0.6 0.8 1.0

strength of tie (w12)

0.4 0.6 0.8 1.0

strength of tie (w12)

proportion of data removed (Tg T )

Figure 3.2: Path errors. The top row of plots shows the ratios of SPE for the independent (IP-IND) to full
(IP-DEP) models (thus, larger ratios correspond to the full model outperforming the alternative). The bottom
row shows the analogous ratios of ACRR0.95. Each column represents a fixed value for the proportion of
the study interval made up by the gap in observations (|Tg|/|T |). Within each plot, the strength of the
social connection increases along the x-axis. The lines represent the median value of all ratios across the
20 simulations, and the associated polygons represent the 25% and 75% quantile boundaries. Finally, the
solid lines correspond to simulations with high tortuosity in the true paths, while dashed lines correspond to
simulations with low tortuosity.
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area, all four tags were deployed on individuals from the same population of the most common

type of “B2” killer whales (Durban et al., 2017).

It is immediately apparent from the data that individuals 1 and 2 (Figure 3.3, bottom left) show

potential evidence of a close connection. In addition, there is some ambiguity about the relationship

between individuals 3 and 4 (Figure 3.3 top right), because they occupy approximately the same

spatial region during the study period. In contrast, there is little reason to suspect dependence

between the two pairs of individuals. We analyzed the movement of all four individuals jointly,

which allowed for pooling of information about measurement error across the entire group, and

provided an opportunity for basic model validation. By fitting a model for the joint movement of

all four individuals with a fully flexible latent network structure, we were able to check for the

presence of potentially spurious network connections, because we have a strong, a priori, belief

that the underlying network should exclude connections between the two subgroups.

The top plot of Figure 3.4 shows the observation times for the killer whales in our study, with

darker regions corresponding to a denser rate of telemetry measurements in time. Two different

day-long gaps in observation occur for individual 1 (Figure 3.4), a consequence of the original

study design used in the deployment of the telemetry tags which sought to balance the need for

temporally dense observations with limitations on in the battery life of the tags by collecting mea-

surement only every other day for select individuals. The observation times for the other three

individuals cover these gaps, suggesting that modeling the four paths jointly could allow for more

precise and/or accurate estimates of the true path taken by individual 1 if moderate to strong de-

pendence exists between it and any of the other three whales.

As in the simulation study (Section 3.4), we investigated path reconstructions generated by our

proposed full model for dependent movement (IP-DEP), as well as the analogous model under

an assumption of inter-path independence (IP-IND). We found that the full model generates path

reconstructions in which the uncertainty about the position of individual 1 is dramatically reduced,

compared to the reconstructions generated under the assumption of inter-path independence as

measured by 95% circular credible interval radii (bottom plot of Figure 3.4). Circular credible
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regions for the true position of the whale during the two large gaps in observation occuring on

February 12th and 14th for the IP-IND model have large radii, sometimes exceeding 75km. In

contrast, circular credible regions for the true position based on the IP-DEP model are on par with

the uncertainties for individuals for which we have dense observations. Despite the uncertainty

about the latent social network, the IP-DEP model offers a substantial reduction in uncertainty

about the true path taken by individual 1.

Individual

1

2

3

4

-6
5
.4

-6
3
.2

la
ti
tu
d
e

Figure 3.3: Observed telemetry data and joint posterior distribution of the true paths of all individuals (µ̃).
The solid lines represent the posterior mean, and the semi-transparent lines are draws from the posterior
distribution to illustrate uncertainty in the path reconstruction. The points are the observed locations from
the Argos satellite system. The colors correspond to the four individuals in the study, and match those used
in Figure 3.4. The subplot shows the latitude of each individual over time. Map created with Kahle and
Wickham (2013). Map data c©2017 Google.
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The posterior distributions for the network relationships are shown in Figure 3.5. We can see

strong evidence for a significant relationship between individuals 1 and 2, however there is weak

evidence of a meaningful social connection between individuals 3 and 4. Similarly, there is no

evidence of connections existing between any other pairs of individuals. Credible intervals for

other model parameters, as well as the specified prior distributions and hyperparameter values are

provided in Table B.2.
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Figure 3.4: TOP: Observation times for the three killer whales. Darker regions correspond to denser obser-
vation times, or equivalently, shorter gaps between observations. BOTTOM: 95% circular credible region
radii at each time point for all four individuals. The dashed outer line shows the radii for the independent
model, and the solid polygons show the radii for the full model.
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stage two of the proposed PCC model (IP-DEP). Each plot shows the time-evolution for a specific pair of
killer whales indexed by row and column.

3.6 Discussion

Appropriate models for dependent, multivariate data are application-dependent. Gaussian pro-

cesses offer a flexible, parsimonious tool for analyzing complex data, such as those that arise from

measuring the movement of animals, if one can specify a valid form for the covariance. The need

for covariances that are mathematically sound, realistic, and interpretable has motivated decades of

research with a vast array of applications because satisfying all three of these goals simulataneously

is challenging. Our proposed PCC framework represents a novel perspective in the construction

of covariance functions. Through an application involving the movement of killer whales, we

demonstrated that the PCC framework can be used to create sophisticated covariance functions

that account for several important mechanisms, without resorting to unrealistic assumptions such

as separability.

The joint movement of interacting individuals can be viewed as a multivariate temporal pro-

cess. Methods for interpolating multivariate spatial and spatio-temporal processes, also called

“cokriging,” have been studied for several decades (e.g., Myers, 1982; Cressie, 1991). The pri-
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mary challenge has been to develop models for multivariate processes that accurately capture the

complex forms of data within each process, as well as across processes, while ensuring the result-

ing cross-covariance structure is valid (symmetric and non-negative definite). While not explicitly

framed as a PCC, Ver Hoef and Barry (1998) proposed a model for cokriging that shares important

connections with our proposed model for the joint movement of interacting animals. Ver Hoef and

Barry (1998) also approach the problem of specifying a valid, mechanistically motivated cross-

covariance structure for multivariate processes through the use of kernel convolutions, allowing

the authors to relax unrealistic assumptions about the covariance structure. Similar to the way de-

pendence among individuals arises through the application of a social smoothing kernel (Section

3.2.3), Ver Hoef and Barry (1998) induced dependence in a multivariate process by smoothing

across variables. The cross-covariance in Ver Hoef and Barry (1998) also accommodates spatio-

temporal lags in the dependence among variables. This generalization may also be a useful feature

in future models for animal movement, where a temporal lag may allow researchers to capture the

effect of animals following one another.

The particular model we constructed for animal movement cannot be used to understand all

forms of dependence that may exist among interacting individuals. Rather, it has been tailored to

the case in which interactions among animals manifest themselves as movement along proximally

close trajectories. Animals may also exhibit other forms of dependence, such as a tendency to repel

in the case of strong territorial behavior, that would not be well-described by the same covariance

function. The PCC framework allows researchers to define and order kernels as necessary to ap-

propriately model the mechanisms under study. Under a different ordering, the same three kernels

we employed result in another useful covariance function for the study of particle movement. We

briefly discuss this alternative to highlight the flexibility offered by the PCC framework and pro-

vide some intuition for the role certain kernel functions play in the characteristics of the resulting

random process.

As mentioned in Section 3.2.1, choosing the ordering of the kernels in a PCC represents a

meaningful modeling decision when kernel convolutions do not commute. In our proposed model
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for dependent movement, the second and third stages of smoothing commute, while the first and

second do not. We can interpret the commutativity between the social and inertial smoothers

mechanistically, by noting that it does not matter whether the effect of the latent social connections

operates on the raw, Brownian paths, or the temporally smoothed paths. In contrast, if we socially

smoothed white noise and then used the kernel associated with Brownian motion, a very different

form of dependence results. This alternative ordering (h(soc) → h(bm) → h(inl)) presents another

plausible mechanism through which dependence might arise in paths taken by multiple particles.

When applied to the velocity of a particle, smoothing with the step function kernel h(bm) returns

the associated position process (after taking into consideration the appropriate initial location of

the particle). Therefore, Brownian motion can be thought of as a random position process in which

the velocity of the particle during each infinitesimal span of time is a realization from a Gaussian

white noise process. In our proposed PCC model for dependent movement, the social smoother

has the effect of “shrinking” the positions of strongly-connected particles toward each other. If

we instead employed the social smoother before the step function kernel, the result would be to

“shrink” the velocities of the particles together, rather than their positions. Thus, we would be

inducing a tendency for particles to move in similar directions, though not necessarily a tendency

to be in similar locations. Such an effect would be visible in the particles as movement in parallel,

perhaps with a considerable distance between connected particles.

A PCC approach to constructing covariance functions for GPs allows for broad flexibility in

model development, offering researchers a highly customizable framework that can be used in

a wide variety of applications. We demonstrated the value of this approach with an application

to animal movement, however PCCs can be used to model a broad range of random processes.

Rather than relying on parametric families of covariance functions, PCCs encourage the use of

interpretable, intuitive, and problem-specific convolution kernels, allowing for direct incorporation

of scientific knowledge.
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Chapter 4

Accounting for Phenology in the Analysis of Animal

Movement

4.1 Introduction

For decades, analysis of the movement of animals has been an important source of scientific

understanding and discovery in ecology (Hooten et al., 2017a). Observations of animal trajectories

using telemetry devices, such as radio collars, have provided researchers with information about the

way animals interact with their environment (e.g., Manly et al. 2002; Johnson et al. 2008a) and each

other (e.g., Niu et al., 2016; Scharf et al., 2016). In the case of the former, one of the most common

approaches used by ecologists is to analyze the frequencies with which animals use certain types

of habitats relative to the distribution of habitat types available to them. Such analyses typically

make use of a so-called “use-availability” framework in which the probability of an individual

using a particular location is modeled as a weighted combination of all available locations (e.g.,

Northrup et al., 2013). The weights are then referred to as the resource selection function (RSF),

and provide insight into which portions of a landscape are most desirable to the study species. What

constitutes an available location depends on the characteristics of the particular species under study

and the rate at which telemetry observations are gathered. Typically, however, the degree to which

a location is available is a function of how far an animal can reasonably be expected to move

between observation times, and/or the size of the home range of the individual (e.g., Christ et al.

2008; Brost et al. 2015).

For many species, specific geographical features in the landscape can have a strong effect on

where individuals choose to move. Such features are sometimes well-summarized by a single point

(e.g., dens or kill sites), but may also correspond to higher-dimensional subspaces (e.g., rivers or

lakes). Their locations may be relatively static in time (e.g., coastlines or home-range centers), or
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may be dynamic (e.g., sea ice extent or areas of high-quality forage for herbivores). While not

always framed in the context of resource selection, these landscape features can nevertheless be

thought of as resources, and the behavior of animals may demonstrate selection for (or against)

points near the feature. We introduce a novel contribution to the suite of models available for the

analysis of animal movement that incorporates active selection for features in a landscape that may

have complex and dynamic shapes.

Our modeling framework is motivated by the study of polar bear (Ursus maritimus) movement.

Polar bears spend much of their time on sea ice over shallow, biologically productive water where

they depredate seals. During the sea ice melt season, the part of the year when sea ice first breaks up

and contracts toward the pole, then freezes and expands southward again, polar bears spend much

of their time at the interface between sea ice and the ocean (Durner et al. 2009; Rode et al. 2015;

Atwood et al. 2016). The changing distribution and characteristics of sea ice throughout the late

spring through early fall means that the location of desirable ice-edge habitat is constantly shifting.

As climate change alters the rate at which sea ice thaws and freezes, as well as the size of its

minimum and maximum extents, there is increasing concern about how polar bears are responding

to these dramatic shifts in their environment (Rode et al., 2014).

Our goal was to develop a model for the movement of polar bears that explicitly incorporates

the effect of the changing sea ice and can be used in a variety of hierarchical models to better

understand polar bear ecology. In Section 4.3, we use our proposed model to answer a particular

question posed by wildlife managers who seek to summarize the spatial boundaries of two sub-

populations of polar bears from the Beaufort and Chukchi seas.

4.2 Model Development

4.2.1 Feature preference

To account for an individual’s preference for areas in a landscape near (or far from) a particular

feature of interest, we model the true, unobserved locations of each individual using a spatio-

temporal point process approach (Hooten et al., 2017a). We define the probability density for
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each unobserved location as proportional to a product of two parametric components describing

the availability and desirability of every point on the landscape. The desirability of a particular

point is defined based on its Euclidean distance to the feature of interest. Estimates of the relevant

parameters provide a summary of how strong an effect the feature has on the behavior of the

observed individuals. We model availability similar to Hjermann (2000), Christ et al. (2008),

Johnson et al. (2008b), and Brost et al. (2015) who used radial distributions centered on the most

recently-observed location to define the continuously-valued availability at each point in time.

Let µ(t) be the location of an individual at time t ∈ {1, . . . , T}, where we will assume for

now that observation times are equally spaced with no missing values. Define the conditional

probability density for µ(t) as

[
µ(t)|µ(t− 1), σ2

µ,M(t), τ 2
]
∝





N
(
µ(t);µ(t− 1), σ2

µI2
)
g(µ(t);M(t), τ 2), t > 1

g(µ(1);M(1), τ 2), t = 1

(4.1)

where we use square brackets to denote a general probability density function, and N(·; ·, ·) to

denote the Gaussian density function in particular. For t > 1, the conditional distribution is pro-

portional to the product of two components, the first of which is the density of a bivariate Gaussian

distribution centered on the previous location of the individual, and defines the availability of each

point on the landscape as in Christ et al. (2008). The availability component induces positive

auto-correlation in the joint process µ ≡ (µ(1), . . . ,µ(T ))′, with larger values of σ2
µ resulting in

processes with greater distances between consecutive locations and faster, more erratic movement.

The function g is a RSF that controls the effect of a particular feature in the landscape on an

individual’s movement. Let M(t) denote the set of points that make up the feature of interest (e.g.,

the interface between sea ice and ocean). We define the function g as

g(µ(t);M(t), τ 2) = exp

{
− min

x∈M(t)
‖µ(t)− x‖22/2τ

2

}
, (4.2)
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(where ‖ · ‖2 is the ℓ2 or Euclidean norm) so that the value of g is highest along M(t), and reduces

to zero as µ(t) moves away from M(t). The value of τ 2 controls the range at which g effectively

reduces to zero. We show in Section 4.2.2 why this particular parametric form for the RSF leads

to computational efficiencies in parameter estimation.

We defined g such that it achieves its largest values at locations µ(t) near M(t) so that the

conditional density given in (4.1) has probability mass concentrated near M(t). Specifying g in

this way provides a method for modeling movement that exhibits preference for the region of the

landscape near the feature of interest. Alternative specifications could also be used to model the

movement of individuals displaying preference for portions of the landscape far from the feature

M(t).

The model for the discrete-time process µ provides a useful tool for modeling the movement of

an individual responding to a one-dimensional feature on a landscape. In Section 4.3, we apply the

model to the movement of polar bears with the ultimate goal of clustering individuals into disjoint

sub-populations based on space use. By including availability and resource selection as part of a

larger hierarchical structure, we were able to account for polar bears preference for habitats that

facilitate the depredation of seals, which, if ignored, might result in biased inference about sub-

population membership.

The conditional density in (4.1) is only defined up to a constant of proportionality that must be

computed as part of any conventional estimation procedure. In Section 4.3, we employ a Bayesian

hierarchical methodology and fit our model for polar bear movement using Markov chain Monte

Carlo (MCMC), which requires computation of the normalizing constant several times at each iter-

ation of the algorithm. For a general feature, M(t), the normalization constant is not analytically

tractable. Thus, numerical integration is required to fit the model to data, the computational cost of

which precludes such an approach in our application. In the RSF literature, the normalization con-

stant has typically been approximated using either a coarse spatial discretization (e.g., Warton and

Shepherd 2010; Brost et al. 2015), or a randomized scheme based on an “availability sample” (e.g.,

Northrup et al., 2013). In the next section, we introduce a novel approach for computing the nec-
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essary normalization constant in which we approximate the RSF in a way that induces conjugacy

in the distributional form for µ(t) and greatly reduces the computational cost of model fitting.

4.2.2 Linearization approximation

We implement a novel approximation technique that assumes locally linear structure in the

shape of M(t), allowing for efficient approximation of the true conditional density of µ(t). To

motivate our approximation, note that, for the special case when M(t) is a straight line, the RSF

as defined in (4.2) can be written in a form similar to that of a bivariate Gaussian density function

with a rank-deficient covariance matrix.

Resource selection function for straight lines

First, consider the case of a vertical line, M̃(t), in the real plane so that M̃(t) ≡ {(x, y) ∈ R
2 :

x = h}. For this case, we have

g(µ(t);M̃(t), τ 2) = exp

{
−
1

2
(µ(t)− (h, y)′)

′
Q(τ 2) (µ(t)− (h, y)′)

}
,

Q(τ 2) ≡



τ−2 0

0 0




for all real-valued y.

To allow for M̃(t) that are straight, but not necessarily vertically oriented, we rotate the coor-

dinate system through an angle θ. Let R(θ) be the rotation matrix defined as

R(θ) ≡



cos θ − sin θ

sin θ cos θ


 ,

and let θ be defined such that R′(θ)M̃(t) = {(x, y) ∈ R2 : x = h} for some real-valued h. Note

that the inverse of a rotation matrix, R−1(θ) = R(−θ), is also equal to its transpose, R′(θ). The

RSF defined in (4.2) is invariant under rigid transformations such as rotations, therefore
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g(µ(t);M̃(t), τ 2) = g(R′(θ)µ(t);R′(θ)M̃(t), τ 2)

= exp

{
−
1

2
(R′(θ)µ(t)−R′(θ)(h, y)′)

′
Q(τ 2) (R′(θ)µ(t)−R′(θ)(h, y)′)

}

= exp

{
−
1

2
(µ(t)− (h, y)′)

′
R(θ)Q(τ 2)R′(θ) (µ(t)− (h, y)′)

}
.

Linearizing complex landscape features

The resulting form for
[
µ(t)|µ(t− 1),M̃(t)

]
is proportional to the product of two Gaussian

distributions, one of which is improper. Provided τ 2 < 0, the product in (4.1) is a proper bivariate

Gaussian distribution with mean, µ∗, and covariance, Σ∗, given by

Σ∗ ≡
(
σ−2
µ I2 +R(θ)Q(τ 2)R′(θ)

)−1

µ∗ ≡ Σ∗
(
σ−2
µ µ(t− 1) +R(θ)Q(τ 2)R′(θ)m̃

)
,

where m̃ is any point in M̃(t). The distributional form of µ(t)|µ(t− 1),M̃(t) implicitly defines

the appropriate normalization constant in (4.1). Thus, if there exists some straight line M̃(t) that

represents a close approximation to M(t) near µ(t− 1), g(µ(t);M̃(t), τ 2) may provide a reason-

able approximation for g(µ(t);M(t), τ 2) that alleviates the computational burden of repeatedly

calculating the necessary normalization constant. A natural candidate for M̃(t) is the line that is

tangent to M(t) at the point on M(t) closest to µ(t− 1), because this is the portion of the feature

that contributes most to the conditional distribution of µ(t).

Let m(t) be the point in M(t) nearest to µ(t− 1), and let M̃(t) be the set of points that lie on

the line tangent to M(t) at m(t). Figure 4.1 shows a schematic illustrating how the product of the

Gaussian components in (4.1) result in another Gaussian distribution. The dashed line represents

an example of the edge of a one-dimensional feature of interest, and the solid line represents the

linearized edge.

For M̃(t) to result in an adequate approximation of the RSF, the linearized feature need only

resemble the true feature in the vicinity of µ(t − 1). Outside of the immediate neighborhood of

µ(t − 1), the availability distribution will be essentially zero, reducing the impact of errors in the
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M(t)

Figure 4.1: The product of the two densities in the left plot (one of which is improper) result in the density
shown in the right plot.

RSF approximation. Therefore, the linearization approximation is justifiable if it is reasonable to

assume that, for the scale at which locations are measured, the edge of the feature of interest can

be considered approximately linear.

4.3 Application

4.3.1 Goals and previous work

There are a total of 19 recognized polar bear sub-populations in the circumpolar Arctic (Fig-

ure 4.2, Obbard et al., 2010). However, the boundaries that delineate the sub-populations are

challenging to precisely define because there are few barriers to movement for polar bears, and

the changing extent and drift of the sea ice leads to periods of the year when individuals from

different sub-populations may use overlapping portions of the landscape. Nevertheless, there are

important reasons to determine a clear delineation of the sub-population boundaries. For exam-

ple, wildlife management agencies such as the U.S. Fish and Wildlife Service (USFWS) use sub-

population boundaries to help guide management decisions for polar bears, which are currently

listed as ‘threatened’ under the Endangered Species Act (U.S. Fish and Wildlife, 2016). There

is also evidence that polar bears from different sub-populations are responding to climate change

with differing degrees of success (Rode et al., 2014; Ware et al., 2017). In what follows, we focus
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Figure 4.2: Sub-population boundaries of polar bears (Obbard et al., 2010; U.S. Fish and Wildlife, 2016).
Sub-population abbreviations are: Southern Beaufort Sea (SB), Northern Beaufort (NB), Kane Basin (KB),
Norwegian Bay (NW), Lancaster Sound (LS), Gulf of Boothia (GB), M’Clintock Channel (MC), Viscount
Melville Sound (VM), and Western Hudson Bay (WH).

on estimating a sub-population boundary between the Chukchi Sea (CS) and Southern Beaufort

Sea (SB) sub-populations.

Previous efforts to determine sub-population boundaries provided important initial estimates;

however, the substantial physical changes taking place in the Arctic ecosystem mean that boundary

estimates have the potential to become outdated quickly. Amstrup et al. (2005) used a multi-

stage non-parametric clustering procedure to estimate boundaries based on utilization distributions

estimated from telemetry observations. While the methods employed provide a probabilistic basis

for inference, there are three primary opportunities for continued development.
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First, Amstrup et al. (2005) did not make use of all observations. They discarded observations

with measurement error classes deemed insufficiently precise, and thinned observations so that

only one location is used per bear per 6-day duty cycle. Thinning the data represents an effort

to diminish the dependence between consecutive observations so that locations can be treated as

independent in the analysis. In our analysis, we directly incorporated the dependence between

consecutive observations. We also modeled the wide variety of measurement error structures in

the data allowing us to include all observations.

Second, the Amstrup et al. (2005) analysis did not provide probabilistic estimates of sub-

population membership for each observed individual. Our analysis allowed us to compute the

probability of sub-population membership for each polar bear, with estimates of uncertainty. More-

over, our methodology allowed us to estimate the sub-population membership probabilities for a

newly observed individual, conditioned on the data used to fit the model.

Finally, Amstrup et al. (2005) did not directly incorporate the effect changing sea ice had on the

observed locations of polar bears. Estimates of space use for each sub-population were summarized

across all seasons, potentially confounding the roles of sea ice and sub-population boundaries. In

contrast, we directly incorporated the effect of sea ice extent on movement with a RSF. Our novel

linearization approximation allowed us to obtain inference from the resulting mechanistic model

using an efficient sampling algorithm.

We analyzed telemetry observations of N = 279 polar bears made by the USFWS and the U.S.

Geological Survey (USGS) over the course of 2008–2016 with the goal of estimating the boundary

between the CS and SB sub-populations.

4.3.2 Movement process model

With the exception of mothers denning on land, most polar bears remain on the ice in the sum-

mer, following it north as it retreats away from continental land masses. Polar bears are specialist

carnivores that use areas near the interface of sea ice and ocean to hunt seals during the sea ice

melt season (Durner et al., 2009). However, polar bears do occasionally remain on land through
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the warmest part of the year and, in fact, Atwood et al. (2016) concluded that there is evidence the

number of individuals exhibiting this behavior is increasing.

Two of the primary characteristics of polar bear movement are a tendency for most individuals

to prefer portions of the landscape near the edge of the sea ice, and a tendency for individuals to

occupy a general spatial region corresponding to the particular unobserved sub-population to which

an individual polar bear is a member. To address the effect of the sea ice, we specified a model for

movement that incorporates preference for areas near the sea ice boundary as it changes in time.

We accounted for polar bears that remain on land during the summer by also including coastline as

a feature on the landscape associated with increased rates of use, because individuals that spend the

summer on land tend to remain on islands and/or near the coastline for most of the season (Rode

et al., 2015). By accounting for habitat variability, we minimized the possibility of clustering bears

into sub-populations that confound true sub-population spatial regions with movement responding

to changing sea ice.

We used a Bayesian hierarchical model, and specified models for both measurement error and

the true unobserved movement process in a single coherent framework. We used a discrete-time

approach to specify a model for polar bear movement, in which the conditional probability den-

sity for the location of an individual is proportional to a product of components corresponding

to resource availability and selection. The discrete-time approach was motivated by the scale at

which we have measurements of Arctic sea ice, which features as a direct effect in our model for

movement. We used estimates of the extent of sea ice provided by the National Snow and Ice Data

Center (Fetterer et al., 2010) that are available at daily intervals; thus, we modeled movement as a

discrete-time stochastic process on a daily scale.

Let µi(t) denote the location of individual i ∈ {1, . . . , N} at time t ∈ Ti, where Ti is a

consecutive set of times from the reference set T = {1, . . . , T}, and let zi be a binary random

variable that is 1 if individual i belongs to the CS sub-population, and 0 if it belongs to the SB

sub-population. Additionally, denote by M(t) the set of points in the plane defined by the union

of coast line, and the edge of the sea ice. We modeled the conditional distribution of µi(t) as
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[
µi(t)|µi(t− 1), σ2

µ,µCS,µSB, σ
2
ac, zi, τ

2
]
∝





N
(
µi(t);µi(t− 1), σ2

µ

)
N
(
µi(t);µ

zi
CS + µ1−zi

SB , σ2
acI2
)

× g(µi(t);M(t), τ 2), t > min(Ti)

N
(
µi(t);µ

zi
CS + µ1−zi

SB , σ2
acI2
)
, t = min(Ti).

(4.3)

Each component in (4.3), t > min(Ti) captures a different feature of the movement process.

Namely, these are (1) the temporal dependence between locations on consecutive days, (2) the

association of each individual bear with a sub-population-level central place, and (3) a RSF that

appropriately weights locations near a coastline or the edge of the sea ice. The first two terms can

be thought of as a two-component availability function that incorporates movement constraints and

a sub-population activity center, similar in many respects to the modeling specification of Christ

et al. (2008) and Johnson et al. (2008b). The third term is a RSF that models the preference polar

bears exhibit for habitat near either a coastline, or the sea ice boundary.

The model for movement specified in (4.3) also captures a documented secondary effect that

changing sea ice has on polar bears (Durner et al., 2017). Especially in the summer months, polar

bears that remain on the sea ice expend a substantial amount of energy merely keeping up with the

retreating ice sheet. Increased rates of sea ice retreat associated with global climate change have

been estimated to impose an energetic cost on polar bears of 1–3 additional seals per year compared

to historic norms (Durner et al., 2017). Sea ice does not retreat at a uniform rate at all points along

the boundary. Rather, the change in shape is highly variable with some regions retreating more

slowly than others (Steele et al., 2015). Our proposed RSF-based movement model has the effect

of placing higher probability mass on paths that track with regions of the ice that have the slowest

daily rates of change. Our model therefore captures an inherent incentive for polar bears to travel

along those portions of the ice that minimize their expected energy expenditure associated with

keeping pace with the changing ice.
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4.3.3 Activity centers and sub-population membership

The second component in (4.3), for t > min(Ti), and first component for t = min(Ti) is a

bivariate Gaussian distribution centered on one of two central places, µSB and µCS , corresponding

to the centers of the SB and CS sub-populations, respectively. The variance parameter, σ2
ac, controls

the strength of the effect the sub-population center has on the movement of each individual. As

σ2
ac increases, individuals are allowed to range farther from their central place.

The binary random variables, zi, indicate the particular sub-population with which individual i

associates. We specified prior distributions for each zi such that

zi ∼ Bern(pi), pi ∼ Beta(α, β).

The global Beta-distributed hyperprior we specify for each pi allows for the inclusion of informa-

tive priors that shrink the probabilities of sub-population membership toward 0 and 1, encouraging

separation between the two sub-populations.

4.3.4 Measurement error

Telemetry observations of polar bears made by the USFWS and the USGS employed a variety

of different tracking device types, yielding data contaminated with measurement errors of varying

severities. In each case, we modeled the observed locations as centered on the true, unobserved

location of the individual with an additive measurement error process as

si(t
∗) = µi(t

∗) + εi(t
∗), t∗ ∈ (1, T ) ,

where the distribution for εi(t∗) depends on the particular device used to make the observation

si(t
∗), and we allowed measurements to be made at any point on the continuous interval (1, T ).

We return to the misalignment between this continuous-time scale and the discrete scale used to

model the movement process in Section 4.3.5.
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The simplest of the three measurement error structures is that associated with GPS devices,

which generate small measurement errors that are well-modeled by a circular Gaussian distribution

as

εGPS(t
∗) ∼ N(0, σGPS2I2) , σGPS ∼ Unif

(
0, 108

)
.

We specified the upper bound on the uniform prior distribution based on the spatial extent of the

area used by all polar bears. The upper bound corresponds to a measurement error distribution that

is nearly uniform over the size of the study area.

The second and third types of measurement errors are those associated with Argos-type trans-

mitters (Service Argos, 2016). Argos devices use polar orbiting satellites to record the location

of the device and have the advantage of providing values to researchers in real time. However,

the satellite-based location estimates are often made with a substantial amount of error, and the

structure of the errors can be highly non-circular (Costa et al., 2010). The severity of Argos mea-

surement errors are related to the direction of satellite travel, leading to elliptical error distributions

with an orientation that varies with each observation. Service Argos provide categorical error-class

labels (3, 2, 1, 0, A, B, or Z) that correspond to measurements made with increasing severity levels.

Recently, Argos has included estimates of the maximum and minimum axis lengths, and angle of

rotation for the error ellipse associated with each observation (e.g., McClintock et al., 2015).

For Argos observations that lack auxiliary ellipse information, we use the provided classes to

model the measurement error process as

εArgos,I(t
∗) ∼ N

(
0, σ2

Argos,kI2
)
, σArgos,k ∼ Unif

(
0, 108

)

where k = {3, 2, 1, 0, A,B, Z} indexes unique variance parameters for each Argos error class. For

an alternative treatment of Argos error structure in the absence of auxiliary ellipse information, see

Brost et al. (2016) and Buderman et al. (2016).
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For Argos observations with auxiliary ellipse information, we model the measurement error

process as

εArgos,II(t
∗) ∼ N

(
0, σ2

Argos,IIΣ(t∗)
)
, σArgos,II ∼ Unif

(
0, 108

)

where Σ(t∗) is a scaled covariance matrix corresponding to a bivariate Gaussian distribution with

elliptical contours that match the ratio of axis lengths and angle of rotation provided by Argos for

each observation time.

4.3.5 Estimation

Process imputation: Stage 1

Our proposed model for the movement and measurement error process are based on discrete-

and continuous-time scales, respectively. To reconcile this difference, we employed a two-stage

estimation procedure called “process imputation” (e.g., Hooten et al., 2010; Hanks et al., 2011;

Scharf et al., 2016, 2017). The procedure is based on the well-established method of multiple im-

putation for missing values (Rubin, 1996), and fits within a larger MCMC algorithm. In essence,

it consists of first fitting a flexible, continuous-time model to the telemetry data and making a

finite number of draws from the posterior distribution of the true continuous process at times

{1, . . . , T}. The realizations from the first stage are selected uniformly at random and treated

as the true discrete-time paths in the second stage of the process imputation procedure. Sampling

uniformly from the collection of first-stage realizations propagates the measurement error incor-

porated in the first stage through to the second stage.

Using the process imputation procedure allows us to account for misaligned time scales in the

measurement and movement processes, account for measurement error, and ease the computational

demand of model fitting in exchange for a small amount of approximation error in the overall

estimation procedure. We refer the reader to Scharf et al. (2017) for a more detailed treatment of

the procedure, and justification of its use.
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We used the Ornstein-Uhlenbeck (OU) movement model of Johnson et al. (2008b), imple-

mented in the R package crawl (Johnson, 2016), as the first stage of a process imputation es-

timation procedure. Johnson et al. (2008b) model the velocity of an individual using Brownian

motion, integrating the velocity process over time to yield the movement process. The OU model

has been shown to perform well as a first-stage model for process imputation (Scharf et al., 2017),

and accommodates a broad range of measurement error models. In stage one, we fit each indi-

vidual separately, using the measurement error structures defined in Section 4.3.4 as appropriate

for each individual’s device type, and drew K = 24 realizations of the continuous path evaluated

on the daily discrete-time scale for all days falling between the first and last observation times.

Additional details associated with model fitting are provided in the Supplementary Materials.

Process imputation: Stage 2

Conditioned on the true discrete-time locations, µ ≡ (µ′
1, . . . ,µ

′
N)

′, we estimated the posterior

density, [θ|µ], for model parameters θ ≡
(
σ2
µ, σ

2
ac, τ

2, z,p,µSB,µCS

)′
with a MCMC algorithm,

using standard Metropolis within Gibbs samplers for each parameter. We used visual examination

of trace plots, as well as Gelman-Rubin statistics and estimates of effective sample size to assess

convergence. A single chain of length 104 was generated, with the first half discarded as burnin.

Full conditional distributions and additional model fitting details may be found in the Supplemen-

tary Material.

Pre-computation

In addition to providing a method for reconciling the time domains at which observations are

made and the movement process is modeled, the process imputation procedure provides oppor-

tunities for improvements in computational efficiency as well. In the second stage of our fitting

procedure, all parameter updates are conditioned on one of K known draws from the distribution

of true paths generated in stage 1. Hence, there are only K possible values of mi(t), the location

on M(t) closest to µi(t − 1), which we can compute and store before running the MCMC algo-

rithm. Computing mi(t) requires evaluating the distance between µi(t) and every point in M(t),
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Table 4.1: Posterior medians and equal-tailed credible intervals for all model parameters, as well as prior
distributions and hyper-parameters.

posterior summary prior
parameter median (2.5%, 97.5%) density

σ2
µ 1780 (1680, 1880) Unif(0, 108)

σ2
ac 251000 (211000, 307000) Unif(0, 108)
τ 2 205000 (113000, 368000) Unif(0, 108)
zi see Figure 4.3 Bern(pi)
pi see Figure C.2 Beta(0.1, 0.1)

and must be done for all N = 279 individuals and all Ti, i = 1, . . . , N time points. Pre-computing

all possible values of mi(t) reduces the number of times we must perform the complete search

from 104 (the number of iterations used in the MCMC algorithm) to 24 (the number of imputed

paths) resulting in a substantial decrease in the time required for estimation.

4.3.6 Results

Using the two-stage approach, we fit the model to all observations made by USFWS and USGS

during 2008–2016. Table 4.1 provides the posterior medians and equal-tailed 95% credible inter-

vals for each variance parameter, as well as relevant prior distributions and hyperpriors. Figure 4.3

shows the posterior mean of each zi grouped by the agency that tagged the individuals. Posterior

means of the class indicator variables can be interpreted as the posterior probabiltiy that individual

i is a member of the Chukchi sea sub-population.

To meet our stated goal of producing a meaningful spatial delineation of the two sub-populations

from which our study animals were drawn, we use a derived quantity related to the infered loca-

tions of the sub-population activity centers. If we consider the observation of a single new location,

µJ+1(t), and integrate across all arbitrary features, effectively removing the effect of the RSF, it

can be shown that the posterior probability that zJ+1 = 1 is given by

Pr
(
zJ+1 = 1|µJ+1(t), σ

2
ac,µCS,µSB

)
=

pJ+1N(µCS, σ
2
acI2)

pJ+1N(µCS, σ
2
acI2) + (1− pJ+1)N(µSB, σ

2
acI2)

.
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Figure 4.3: Posterior means for each zi, organized by the agency responsible for tagging the individual.
Darker points reflect posterior means closer to 0 (SB, orange) and 1 (CS, purple).

In the case where pJ+1 = 0.5, the contour corresponding to Pr(zJ+1 = 1) = 0.5 is defined by

the points in the plane where the two normal densities are equal. Because the two densities share

a common covariance, σ2
acI2, it is straightforward to show that this contour coincides with the set

of points that are equidistant from the two activity center means, or the perpendicular bisector of

the points µCS and µSB. By computing the perpendicular bisector at each iteration in the MCMC

algorithm, we can infer its posterior distribution, a summary of which provides wildlife managers

with a way to delineate the boundary between the two sub-populations.

Figure 4.4 shows a map of the region encompassing the Chukchi and southern Beaufort seas. In

the background, weekly measurements of sea ice extent for February–September 2008 are shown

as light blue polygons, with the darkest polygon corresponding to open ocean, the second darkest

polygon to February 1st, and the lightest polygon to September 30th. Orange and purple lines show

the paths drawn in the first stage of the process imputation framework. The colors correspond to

the posterior means of zi, with dark orange hues corresponding to values close to 0, white to values

close to 0.5, and dark purple to values close to 1. The solid black line corresponds to the posterior
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Figure 4.4: The orange and purple lines represent trajectories drawn from the process imputation distribu-
tions (Section 4.3.5) of all polar bears from 2008–2016. Orange lines correspond to polar bears associated
with the Southern Beaufort Sea sub-population, and purple lines correspond to bears associated with the
Chukchi Sea sub-population. The darkness of the color corresponds to the probability we assign to a given
sub-population. The black line shows the posterior mean of the boundary where, marginally, the probability
of sub-population membership is balanced (Section 4.3.6). The dashed lines show pointwise equal-tailed
95% credible intervals perpendicular to the mean boundary. The large polygons with thin black borders
show the current sub-population delineations (CS, SB, and NB from left to right; see Figure 4.2).

mean of the slopes and intercepts of the perpendicular bisector computed at each iteration of the

MCMC algorithm. The dashed lines show equal-tailed 95% pointwise credible intervals computed

orthogonal to the solid line. The inferred boundary suggests only a slight shift from the currently

accepted sub-population delineation, denoted by the large polygons with thin black lines (also

shown in Figure 4.2), although our methods for computing the boundary are quite different from

those used in previous analyses (Amstrup et al., 2005) and based on newly acquired data.
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4.4 Simulation Study

The linearization approximation implemented in the estimation procedure (Section 4.2.2) in-

troduces approximation error into the likelihood calculation unless the shape of the linear boundary

is exactly a straight line. In many applications, the shape of a particular feature may be quite com-

plex at the scale of the entire landscape, but well-approximated by a linear shape at the scale of

movement increments. If the boundary of the feature is straight enough in the relevant vicinity of

the individual reacting to it, then it is reasonable to assume that the approximation error will not

adversely affect estimation.

To check the assumption of local linearity, we investigated differences between data simulated

from the exact and approximated movement models. We used the same observed union of sea ice

boundary and coastline from 2008 that we used in our analysis of the movement of polar bears

(Section 4.3), and the posterior medians of model parameters σ2
µ and τ 2 to simulate 16 paths over

all 366 days from both the exact and approximate movement process models. For the purposes

of the simulation study, we disregarded the effect of sub-population activity centers, effectively

taking the limit of the movement model in Section 4.3 as σ2
ac → ∞. We then compared the

distributions of three summary statistics: (1) the distance between each simulated location and the

nearest point on M(t), (2) the distance between consecutive locations, and (3) the turning angle

between consecutive locations. The first statistic was chosen to reveal important discrepencies in

the way the exact and linearized models account for the effect of the RSF. The second and third

statistics are commonly investigated quantities in animal movement studies.

Figure 4.5 shows kernel density estimates of the distributions for each statistic. Each of the

narrow, faint lines represents the distribution of a statistic for a single individual. The thick, dark

lines represent distributions taken across all simulated individuals. The strong similarity between

the solid and dashed lines suggest that our linearization method is providing an adequate approxi-

mation to the true likelihood.
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Figure 4.5: Distributions of three summary statistics for paths simulated from the exact (solid) and ap-
proximate (dotted) movement models. Thin, faint lines show the distribution of each statistic for each of
16 simulated individuals over 366 days. Thick, dark lines show the distribution of each statistic across all
individuals and times.
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4.5 Discussion

Our novel approximation method based on the linearization of a potentially time-varying spatial

feature, M(t), reduces the computational burden of fitting models in the common RSF framework,

allowing researchers increased flexibility in the types of RSFs they can specify in mechanistically-

driven models for movement. We demonstrated our approach in an application involving the move-

ment of polar bears as they respond to seasonal shifts in sea ice over the course of 2008–2016.

There has been a recent interest in research focused on the so-called “greenwave” hypothesis (e.g.,

Aikens et al., 2017), which posits that herbivorous animals align their movement with bands of

high-quality forage that shift throughout spring as different elevations and latitudes experience

phenological changes. Our modeling approach represents a way to validate the hypothesis if in-

formation about the shape of the greenwave is known, or potentially estimate the location of the

posited band of high quality forage based on the observed movement patterns of herbivores.

The linearization approximation methodology can also be extended to higher-dimensional

spaces and features. For instance, in marine environments, RSFs based on two-dimensional fea-

tures, such as isotherms, may be locally approximated using rank-deficient Gaussian distributions

corresponding to infinite planes. One-dimensional features in three-dimensional spaces, such as

wind or ocean currents, can also be approximated with improper distributions, where the rank of

the covariance matrix is deficient by a degree of 2. In practice, researchers may need to evaluate the

appropriateness of a linearization approximation; however, in many cases, our methodology offers

a way to include complex drivers of movement that might otherwise have been computationally

inaccessible.
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Chapter 5

Conclusion

I have described two approaches for jointly modeling the trajectories of a population of interact-

ing individuals, and a novel approximation technique that makes approximate inference available

for RSF-based models incorporating complex environmental features. Several proposed extensions

were discussed in the closing sections of Chapters 2-4. I conclude with additional ideas for future

work not already addressed in previous chapters.

5.1 Models for dependent trajectories

The primary limitations of the models I developed to describe the trajectories of interacting

individuals are computational. At present, implementation is limited to studies involving on the

order of a dozen individuals on a temporal grid of hundreds of time points. Many data sets related

to animal movement can include hundreds of individuals over time domains requiring much finer

grids. To quote Lindgren et al. (2011), ‘Although the computational power today is at an all time

high, the tendency seems to be that the dimension n is always set, or we want to set it, a little

higher than the value that gives a reasonable computation time.’ The computational bottleneck

in our estimation procedure involves the need to repeatedly invert the large, dense covariance

matrix that describes the Gaussian process modeling the true continuous movement process. Two

potentially fruitful directions for future research involve (1) approximating the covariance inversion

using randomized matrix decomposition techniques (Halko et al., 2011), and (2) modifying the

model such that we avoid the need to invert the covariance matrix at all. I present preliminary

considerations related to each.

5.1.1 Randomized matrix decompositions

Frequently in spatio-temporal modeling and, in particular, for models presented in Chapters 2

and 3, covariance matrices are of the form Σ = σ2I + C, where C is a dense covariance matrix
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that describes the dependence in an unobserved process, and σ2 describes the variance of the

measurement error process, which is independent in time. When Σ is dense and of rank n, the

computational complexity of inverting Σ is O(n3). However, if C can be decomposed into the form

Un×mDm×mV
′
n×m, the complexity reduces to O(n2m) through use of the Sherman-Morrison-

Woodbury matrix identity (Hager, 1989).

A common approach both to reducing the dimensionality and computational complexity of a

statistical model is to replace large matrices with low-rank approximations. For the case of covari-

ance matrices, the approximation produced using the first m eigen-vectors and -values is optimal

under multiple matrix discrepancy norms by the Eckart-Young-Mirsky theorem (Eckart and Young,

1936). Moreover, it is well-established that matrices considerably less than full rank often provide

high quality approximations. Thus, a natural approach to reducing the computational demand of

fitting the models proposed in Chapters 2 and 3 involves replacing the exact covariance matrix,

C, with its optimal rank-m approximation, where m is chosen to be as large as computational

resources allow.

The problem with an optimal low-rank approximation approach is that computing the exact

eigen-decomposition of C has the same complexity as computing the inverse. However, several

algorithms have been developed that use random projections to rapidly approximate the first m

eigen-vectors and values. Theoretical results have been derived that place probabilistic bounds on

the discrepancy between these approximate decompositions and their exact counterparts (Halko

et al., 2011). Randomized matrix decompositions have already been implemented successfully in

the spatial statistics literature (e.g., Banerjee et al., 2013b), and may present an opportunity that

makes approximate inference available for large data sets.

5.1.2 Modeling the precision matrix

Another way to address the computational burden of inverting large dense covariance matri-

ces is to develop statistical models that directly construct the inverse, or precision matrix, thereby

avoiding the computationally expensive calculation altogether. This philosophy underpins the suc-
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cessful modeling approach represented widely in the spatial and spatio-temporal literature of using

Gaussian Markov random fields (GMRFs) to describe stochastic processes (e.g., Rue and Held,

2005b). GMRFs are models for Gaussian random vectors in which the precision matrix is specified

to reflect conditional dependence based on a neighborhood structure and, hence, were originally

designed for processes existing on a regular lattice of locations and/or time points. The Markovian

assumption usually implies that the precision matrix is sparse, leading to further computational

benefits. For the case when locations do not occur on a lattice, triangulations of the spatial and/or

temporal domain can provide a useful notion of a neighborhood structure (Lindgren et al., 2011).

GMRFs have been successfully used to model dependence in time and space; however, we are

not aware of any application of GMRFs to the case of multiple, dependent trajectories. Process con-

volution chains provide a way to account for dependence in time and across individuals separately

without assuming a separable covariance structure. No such chaining procedure is immediately

obvious for modeling precision matrices, but the development of analogous methodologies could

provide valuable tools with excellent computational properties.

5.2 Resource Selection Functions

In the application to polar bears, we make the assumption that the parameter characterizing po-

lar bear preference for space near ice edges and coastlines, τ 2, is constant in time. This assumption

ignores findings in previous work that concluded polar bears show strongest preference for space

near the ice edge in the fall and summer (Durner et al., 2009), and could be relaxed by allowing τ 2

to vary in time. We also assume that the sub-population centers are constant in time. Auger-Méthé

et al. (2016) recently showed that drifting pack ice, which can move several kilometers a day, can

complicate estimation of individual activity centers. Further, changing conditions in the arctic due

to climate change may result, or may have already resulted, in shifting sub-population boundaries.

Future research could incorporate dynamic sub-population centers by allowing the activity center

variances, σ2
ac to vary in time as well.
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The primary limitation in the proposed linearization approximation for RSFs is the inflexibility

of using a straight line at each timepoint to approximate a general surface. However, the conjugacy

induced by the linearized surface requires that the RSF be represented by the density of a (possibly

improper) Gaussian distribution, and this constraint cannot be readily relaxed. When the assump-

tion of local linearity causes non-ignorable approximation error, our current approach cannot be

used.

Another limitation of the linearization technique in Chapter 4 is the assumption of a Gaussian-

like function form for both the availability and resource selection functions. While the form of the

availability function we specify is common in the literature, the RSF is not, and there are many

applications where the functional form would represent a clear misspecification. The symmetry of

the Gaussian distributional form, for example, implies that we cannot use it to model an individual’s

preference for areas of the landscape near a coastline, but restricted to land.

One way to generalize our method would be to use mixtures of (possibly improper) Gaussian

distribution functions to represent a feature of interest in the landscape (McLachlan and Peel,

2004). Mixtures could, in principle, contain components corresponding to points (using proper

Gaussian densities), lines, and higher dimensional hyperplanes for movement in d > 2 dimensions,

and would allow for greater flexibility in the form of the RSF that could accommodate multi-

modality and asymmetry.

5.3 Conclusion

The study of animal movement can reveal a wealth of useful information about ecology of a

population, and the behavior of groups and individuals therein (Turchin 1998; Hooten et al. 2017a;

Hooten et al. 2017b). As technological advances allow for increasingly sophisticated telemetry

measurements to be made, we will be able to learn even more from remotely sensed data, provided

we develop the methodological tools needed to analyze such dense data sets (Kays et al., 2015).

As research continues, collaboration among statisticians, ecologists, and wildlife biologists

will remain a critical link. As the volume of data we hope to analyze continues to grow, it is
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inevitable that computational demands will require researchers to make strong assumptions, sim-

plifications, and approximations about the processes observed in nature. Only by leveraging the

collective knowledge base spread among a wide range of related fields can those important aspects

of statistical and mathematical modeling be adequately addressed.

Some of the work I have presented here might be described as a new solution to an old problem.

Chapter 4 centers around a RSF-based movement model, for which the primary novel contribution

addresses an intractable normalizing constant. Complementary to these types of advances, some

of the work I present addresses more nascent scientific questions that are less clearly defined in

the scientific literature. The models for dependent trajectories in Chapters 2 and 3 were originally

motivated by asking what one could learn from movement data as much as by what one expected

to learn from them. The data used in the applications within those chapters were not gathered with

the intent that they would be scrutinized for evidence of dynamic social connections, yet the results

of my analysis show that such knowledge is learnable from movement data. Part of the impact of

this work may be that behavioral biologists now view remotely-sensed location observations as a

more affordable, non-invasive way to study complex social behavior, which may, in turn, guide the

types of questions they hope to answer. As discussed in Section 4.5, the findings in Chapter 4 may

have a direct impact on the design of future deployments of telemetry devices.
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Appendix A

Supplemental Material for Chapter 2

For all fits, we acquire 200,000 iterations on a single computing node, discard the first 100,000

draws as burnin, and thin by a factor of 5 to yield a sample of size 20,000.

We employ diffuse priors for most parameters in both the simulation and application.

A.1 Priors

Prior distributions are selected to be conjugate where possible.

σ2 ∼ IG(aσ, bσ) (A.1)

[α] ∝ (1 + α)αα−1(1− α)βα−11(−1,1)(α) (A.2)

This is the kernel for the density of a random variable X = 2Y − 1 where Y ∼ Beta(αα, βα). It is

the same shape in a sense as the Beta, but spread over the support [−1, 1], so that we allow for the

possibility of anti-alignment. See Section A.1 for details.

β ∼ N(0, σ2
β) (A.3)

c ∼ IG(ac, bc) (A.4)

φ ∼ Beta(αφ, βφ) (A.5)

p1 ∼ Beta(αp1 , βp1) (A.6)

Prior for the strength of the alignment effect

The relevant support for α is the real interval (−1, 1). Negative values for α correspond to the

case when connected individuals tend to move in parallel, but opposite, directions. We generally

expect α to be positive, but to allow for the possibility of anti-alignment behavior we specify a

prior on the full support. To specify a flexible family of prior distributions with support (−1, 1),
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we shift and scale a Beta distribution to align with (−1, 1). In fitting our model with an MCMC

algorithm, α is sampled with a Metropolis-Hastings step, therefore we only need the kernel of the

full-conditional

[α|αα, βα] ∝ (1 + α)αα−1(1− α)βα−1I(−1,1)(α). (A.7)

A.2 Full conditionals

Define the following variables as:

n ≡ number of individuals in study population (A.8)

T ≡ number of discrete time steps in mean position process (A.9)

It is convenient to also define

K(t) ≡ (Wc
+(t)− αW(t))⊗ I2 (A.10)

so that

Q(t) = σ−2K(t). (A.11)

σ: variability of mean step process

Gibbs step.

σ2|· ∼ IG(a∗, b∗) (A.12)

a∗ ≡ aσ + nT (A.13)

b∗ ≡ bσ +
1

2

T∑

t=2

(µ(t)− µ(t− 1)− βµ̃(t− 1))′ K(t) (µ(t)− µ(t− 1)− βµ̃(t− 1)) (A.14)
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W: network

Gibbs step.

Pr(wij(1) = 1|·) ∝ [µi(2)| . . . , wij(1) = 1]
[
µj(2)| . . . , wij(1) = 1

]
(A.15)

× p
wij(2)

1|1 p
1−wij(2)

0|1 p1 (A.16)

Pr(wij(1) = 0|·) ∝ [µi(2)| . . . , wij(1) = 0]
[
µj(2)| . . . , wij(1) = 0

]
(A.17)

× p
wij(2)

1|0 p
1−wij(2)

0|0 (1− p1) (A.18)

(A.19)

Pr(wij(t) = 1|·) ∝ [µi(t)| . . . , wij(t) = 1]
[
µj(t)| . . . , wij(t) = 1

]
(A.20)

× [µi(t+ 1)| . . . , wij(t) = 1]
[
µj(t+ 1)| . . . , wij(t) = 1

]
(A.21)

× p
wij(t+1)

1|1 p
1−wij(t+1)

0|1 p
1−wij(t−1)

1|0 p
wij(t−1)

1|1 (A.22)

Pr(wij(t) = 0|·) ∝ [µi(t)| . . . , wij(t) = 0]
[
µj(t)| . . . , wij(t) = 0

]
(A.23)

× [µi(t+ 1)| . . . , wij(t) = 0]
[
µj(t+ 1)| . . . , wij(t) = 0

]
(A.24)

× p
wij(t+1)

1|0 p
1−wij(t+1)

0|0 p
wij(t−1)

0|1 p
1−wij(t−1)

0|0 (A.25)

(A.26)

Pr(wij(T ) = 1|·) ∝ [µi(T )| . . . , wij(T ) = 1]
[
µj(T )| . . . , wij(T ) = 1

]
(A.27)

× p
1−wij(T−1)

1|0 p
wij(T−1)

1|1 (A.28)

Pr(wij(T ) = 0|·) ∝ [µi(T )| . . . , wij(T ) = 0]
[
µj(T )| . . . , wij(T ) = 0

]
(A.29)

× p
wij(T−1)

0|1 p
1−wij(T−1)

0|0 (A.30)

α: alignment/anti-alignment

M-H step. Kernel of full conditional density is

[α|·] ∝ exp

{
−

1

2σ2

n∑

i=1

T∑

t=2

wi+(t)
(
hi(t)− αhi(t)

)′ (
hi(t)− αhi(t)

)
}

(A.31)

× (1 + α)αα−1(1− α)βα−11(−1,1)(α) (A.32)
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where

hi(t) ≡ µj(t)− µj(t− 1)− βµ̃j(t− 1) (A.33)

hi(t) ≡
∑

j 6=i

wij(t)

wc
i+(t)

hj(t) (A.34)

and hi(t) = 0 if animal i is completely unconnected at time t. Proposal distribution is normal:

N
(
αiter−1, σ

2
α-tune

)
(A.35)

β: attraction/repulsion

Gibbs step.

β|· ∼ N(µ∗
β, σ

∗
β
2) (A.36)

σ∗
β
2 ≡

(
T∑

t=2

µ̃(t− 1)′Q(t)µ̃(t− 1) +
1

σ2
β

)−1

(A.37)

µ∗
β ≡ σ∗

β
2

(
T∑

t=2

µ̃(t− 1)′Q(t) (µ(t)− µ(t− 1)) + µβ

)
(A.38)

φ: network stability

M-H step. Kernel of full conditional density is
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[φ|·] ∝ (p0|0)
g0|0(p1|0)

g1|0(p0|1)
g0|1(p1|1)

g1|1(φ)αφ−1(1− φ)βφ−1 (A.39)

g0|0 ≡
∑

i<j

T∑

t=2

(1− wij(t− 1))(1− wij(t)) (A.40)

g1|0 ≡
∑

i<j

T∑

t=2

(1− wij(t− 1))wij(t) (A.41)

g0|1 ≡
∑

i<j

T∑

t=2

wij(t− 1)(1− wij(t)) (A.42)

g1|1 ≡
∑

i<j

T∑

t=2

wij(t− 1)wij(t) (A.43)

with proposals coming from a Beta distribution centered on φiter−1:

Beta
(
βφ-tuneφiter−1

1− φiter−1

, βφ-tune

)
(A.44)

p1: network density

M-H step. Kernel of full conditional density is

[p1|·] ∝ (p1)
∑

i<j wij(1)(1− p1)
∑

i<j(1−wij(1))(p0|0)
g0|0(p1|0)

g1|0(p0|1)
g0|1(p1|1)

g1|1

× (p1)
αp1−1(1− p1)

βp1−1

(A.45)

with proposals coming from a Beta distribution centered on p1iter−1:

Beta
(
βp1-tunep1iter−1

1− p1iter−1

, βp1-tune

)
(A.46)

c: precision for unconnected animals

Gibbs step.

c|· ∼ IG

(
ac +

n∑

i=1

T∑

t=2

1{wi+(t)=0}, bc +
1

2

n∑

i=1

T∑

t=2

1{wi+(t)=0}hi(t)
′hi(t)

)
(A.47)
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A.3 Hyper-/tuning-parameters

Table A.1: Simulation

parameter hyper parameters tuning
α αα = 1 βα = 1 σ2

α−tune = 0.12

β µβ = 0 σ2
β = 1000 conjugate

p1 αp1 = 1 βp1 = 1 βp1−tune = 24
φ αφ = 100 βφ = 100

9
βφ−tune = 7

c ac = 3.5 bc = 1.5 conjugate
σ aσ = 0.1 bσ = 0.001 conjugate

parameter hyper parameters tuning
α αα = 1 βα = 1 σ2

α−tune = 0.012

β µβ = 0 σ2
β = 1000 conjugate

p1 αp1 = 1 βp1 = 1 βp1−tune = 10
φ αφ = 100 βφ = 100

9
βφ−tune = 5

c ac = 3.5 bc = 1.5 conjugate
σ aσ = 0.1 bσ = 0.001 conjugate

Table A.2: Killer whales

A.4 Dynamic Social Network between killer whale types
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Figure A.1: A selection of the
(
7
2

)
= 21 possible pairs of individuals in the killer whale study sample. The

plots displayed are for all inter-type pairs of killer whales of type B2 (labeled 2, 3, 4) and A (labeled 5, 6,
7). The solid line in each plot shows the posterior mean for wij and the gray region represents one standard
deviation above and below the posterior mean. The dotted line shows the network defined by W

R, where
individuals are deemed connected whenever they are separated by a distance less than R. No posterior
means above 0.5 were predicted for inter-type connections. (Note: The lines are offset slightly near 0 and 1
for visual clarity.)
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Figure A.2: A selection of the
(
7
2

)
= 21 possible pairs of individuals in the killer whale study sample. The

plots displayed are for all inter-type pairs of killer whales between the sole individual of type B1 (labeled 1)
and those of type B2 (labeled 2, 3, 4) and A (labeled 5, 6, 7). The solid line in each plot shows the posterior
mean for wij and the gray region represents one standard deviation above and below the posterior mean. The
dotted line shows the network defined by W

R, where individuals are deemed connected whenever they are
separated by a distance less than R. No posterior means above 0.5 were predicted for inter-type connections.
(Note: The lines are offset slightly near 0 and 1 for visual clarity.)
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Appendix B

Supplemental Material for Chapter 3

B.1 Model specification

Data model

Each orthogonal spatial direction (longitude and latitude) is modeled independently using the

same specification.

s ∼ N
(
0, σ2

s

(
I+ σ2

µ/s∆τH̃′ΣdBH̃
))

H̃ = H(inl)(φinl)H
(soc)(dBw, φw, σ

2
w)H

(bm)

ΣdB(t, τ, i, j) = 1{t=τ}

(
σ2
01{t=0} + 1{t>0}

)
1{i=j}

H(bm)(t, τ, i, j) = 1{τ<t}1{i=j}

H(soc)(t, τ, i, j) = 1{τ=t}
wij(t)

|wi·(t)|

H(inl)(t, τsoc, i, j) ≡
|t− τsoc|

φinl

K1 (|t− τsoc|/φinl)1{i=j}

Process model (integrated out for model fitting)

τ ≡ (τ1 = 0, τ2, . . . , τm−1, τm = 1)′

∆τi ≡ τi − τi−1, 1 < i ≤ m

dB(τi) ∼





N (0, σ2
0) ; i = 1

N (0,∆τi) ; i > 1

dB = (dB(τ1), . . . , dB(τm))
′

µ̃ = H(inl)H(soc)H(bm)dB = H̃dB
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Prior model

φinl ∼ Gamma (αs, βs) σ2
0 ∼ IG (a0, b0)

σ2
µ/s ∼ IG(aµ/s, bµ/s) σ2

s ∼ IG (as, bs)

Application only:

σ2
w ∼ IG(aw, bw)

Fixed parameters

Simulation study:

φw and σ2
w

Application:

φw

B.2 Model fitting details

Simulation Study

We simulated approximately continuous true paths using a grid of 500 equally spaced time

points on the unit interval. We simulated 100 observation times drawn uniformly from the same

unit interval. For estimation, we fixed the hyperparameters associated with the network to φw =

4/15 and σ2
w = 10, and used the priors given in Table B.1. For each fit, we obtained 4,000 iterations

and discard the first 3,000 as burnin. The entire simulation study was parallelized across 6 3GHz

cores and required approximately one week of computation time.
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Table B.1: True values and prior distibutions used in simulation study.

parameter true prior density
φinl (“low tortuosity”) 0.04 Gamma(2, 100)
φinl (“high tortuosity”) 0.04/3 Gamma(2, 100)

σ2
0 1 IG(10−3, 10−3)

σ2
µ/s 800 IG(10−3, 10−3)

σ2
µ 10

σ2
s 0.0125 IG(10−3, 10−3)

Killer whales

We acquired 100,000 iterations on a single computing node, and discared the first 50,000 as

burnin to yield a sample size of 50,000. We employ diffuse priors for all parameters. We set

the hyperparameters associated with the network to φw = 0.3 and σ2
w = 10. Model fitting was

performed using a processor speed of 3 GHz and required approximately 100 hours of computing

time.

Table B.2: Posterior credible intervals and prior distributions for the IP-DEP model in killer whale applica-
tion.

posterior (IP-DEP) posterior (IP-IND) prior
parameter median (2.5%, 97.5%) median (2.5%, 97.5%) density

φinl 0.00848 (0.00756, 0.00954) 0.00850 (0.00762, 0.00951) Gamma(2, 100)
σ2
0 705 (292, 2040) 1440 (627, 4510) IG(1, 10)

σ2
µ/s 3710 (2600, 5490) 1700 (1380, 2400) IG(10−3, 10−3)

σ2
µ 4.94 (3.52, 7.21) 2.39 (1.88, 3.14) NA

σ2
s 0.00133 (0.00122, 0.00145) 0.00133 (0.00123, 0.00145) IG(10−3, 10−3)

σ2
w 0.491 (0.370, 0.660) NA NA IG(52, 10)
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Appendix C

Supplemental Material for Chapter 4

C.1 MCMC Implementation details

Stage 1

We used the Ornstein-Uhlenbeck movement model of Johnson et al. (2008a) as the process

model for the imputation distribution in the process imputation framework (Scharf et al., 2017).

For each individual in the study, we define the first-stage model by pairing the process model in

Johnson et al. (2008a) and the measurement error model described in Section 3.4 that matched the

individual’s device type. We then used the R package crawl (Johnson, 2016) to fit the hierarchical

model to the individual’s telemetry observations, and drew K = 24 realizations from the posterior

distribution of the continuous movement process. Each realized draw was evaluated on a daily

time scale corresponding to the rate at which we have observations of sea ice extent. Figure C.1

shows realizations from the imputation distribution for two example polar bears in 2008.

The approximate time required to fit the imputation distributions and sample 24 paths for each

of the 279 individuals on a computer with a 3GHz processor was 3 hours. Pre-computing the

values of mi(t) across all K = 24 paths for i = 279, and all times t required approximately 12

hours (see Section 4.3.5).

Stage 2

We drew realizations from the posterior distribution of the parameters θ ≡
(
σ2
µ, σ

2
ac, τ

2, z,p,µSB,µCS

)′
using Metropolis within Gibbs updates in an MCMC proce-

dure. At each stage of the MCMC algorithm, we draw one of the 24 paths with equal probability

from the process imputation distribution generated in stage 1. We ran the MCMC algorithm for a

total of 104 iterations, discarding the first half as burnin. Updating the MCMC algorithm for 104

iterations required approximately 8 days.
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Figure C.1: Realizations from the process imputation distribution for two polar bears in 2008. The polar
bear to the right has fewer observations with greater measurement uncertainty, leading to greater variability
among the sampled paths. The polar bear on the right has dense observations from both GPS and Argos
devices. Sampled paths are much less variable.
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pi
0
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USFWS USGS

Figure C.2: Posterior medians for each pi, organized by the agency responsible for tagging the individual.
Darker points reflect posterior medians closer to 0 (SB, orange) and 1 (CS, purple). Vertical lines represent
posterior 1st and 3rd quartiles marginally for each pi.
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