NOTE TO USERS

This reproduction is the best copy available.






DISSERTATION

PROPERTIES OF THE TROPICAL HYDROLOGIC CYCLE AS ANALYZED

THROUGH 3-DIMENSIONAL K-MEANS CLUSTER ANALYSIS

Submitted by
Matthew Alan Rogers

Department of Atmospheric Science

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University

Fort Collins, Colorado

Summer 2008



UMI Number: 3332703

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3332703
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346



COLORADO STATE UNIVERSITY

April 11 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED
UNDER OUR SUPERVISION BY MATTHEW ALAN ROGERS ENTITLED
PROPERTIES OF THE TROPICAL HYDROLOGIC CYCLE AS ANALYZED
THROUGH 3-DIMENSIONAL K-MEANS CLUSTER ANALYSIS BE ACCEPTED
AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY.

Committee on Graduate Work

=TS "Graeme Stephens, Advisor

L o

Rfchard Johnson, Department Head and Committee Member

///% ,Z(////% N ,{/ML/
Christian Kummerow, Committee Member

Ma/(’?%of

Richard Eykholt, Department of Physics, Outside Committee Member

Christian Jakob, Committee Member

ii



ABSTRACT OF DISSERTATION
PROPERTIES OF THE TROPICAL HYDROLOGIC CYCLE AS ANALYZED
THROUGH 3-DIMENSIONAL K-MEANS CLUSTER ANALYSIS

As the primary locations of deep convective activity and unrestrained tropical
wave dynamics, the tropical West Pacific and East Indian oceans are among the most
important regions in the tropics. Given that most of the region consists of unpopulated
expanses of ocean, observations of tropical atmospheric properties in this important
region is exceptionally difficult. Only with the help of satellite observations are we
capable of gleaning valuable data from this region, and our utilization of advanced
analysis techniques allows us to gain more from these observations then would otherwise
be possible.

In that vein, this dissertation reports on the use of a unique statistical technique,
long known to other fields of research, as applied to a combined-instrument satellite
observation dataset over the warm pool region of the tropical West Pacific ocean. The
statistical technique, known as k-means cluster analysis, is used to delineate self-similar
populations of cloud type, hereafter referred to as cloud regimes, from frequency-
distribution histograms of cloud-top height, cloud optical thickness, and rainfall amount.
We will show that four primary cloud regimes exist in the tropical region discussed, that
the four regimes vary primarily through differences in convective activity, and that these
four cloud regimes exist in a coherent temporal structure that explains the long-observed
variability in convective activity seen in the tropics.

Combining this regime information with satellite observations, along with
reanalysis data, we then examine the individual properties of each cloud regime. These
observations give us the means to understand the forcings behind cloud regime change in
the region. We confirm the structural properties of these regimes using analysis from a
cloud-resolving model, and apply our new understanding of the mechanism behind this
large-scale forcing to the governance of the tropical hydrologic cycle as a whole. The
insights gained from this analysis have benefits to both the fields of atmospheric remote

sensing, and of cloud- and climate modeling of the tropical atmosphere.
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Applications of this technique are of particular interest to researchers developing
retrieval algorithms for latent heat profiles using active sensors such as the cloud-

profiling radar aboard CloudSat.

Matthew Alan Rogers

Department of Atmospheric Science
Colorado State University

Fort Collins, Colorado 80523
Summer 2008
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“A cloud does not know why it moves in just such a direction and at such a speed..It
feels an impulsion...this is the place to go now. But the sky knows the reasons and the
patterns behind all clouds, and you will know, too, when you lift yourself high enough to
see beyond horizons.”

-- Richard Bach, American author
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Chapter 1

Introduction and Motivation

1.1 Background

The feedbacks associated with the tropical hydrologic cycle are of paramount
importance to understanding global climate change. Our relative inability to describe
completely the physical mechanisms behind these feedbacks greatly inhibits our ability to
analyze (and by extension, predict) important climate signals. It is of some interest,
therefore, to develop a hypothesis that explains the physical mechanisms that govern the
hydrologic cycle as well as the associated feedbacks.

Development of a hypothesis that adequately explains the hydrologic cycle and its
evolution is greatly hampered by the lack of a complete dataset that describes the
hydrologic cycle as an organic whole. The history of said hypotheses is therefore based
on arguments that rely on the impact of the hydrologic cycle on more observable
quantities. As an example, Riehl (1954) computed the yearly mean precipitation of the
Earth based on the required latent heat release to balance the effect of radiative cooling of
the atmosphere. Later studies tend to confirm, at least to first order, this indirect analysis,
although the analysis cannot provide physical mechanisms merely from the inferences
drawn therein. Other studies used self-regulating theories of the tropical hydrologic
cycle. Manabe and Wetherald (1967) applied their theory of radiative-convective

equilibrium, based on hypothetical distributions of relative humidity and using a

mechanism of convective adjustment, to compute the change in global temperature due to

a doubling of CO:..



One way of observing the tropical hydrological cycle is in the intraseasonal
variation in clouds and weather. Theories regarding the structure of the intertropical
convergence zone (ITCZ) and the trade-wind inversions were related to hypotheses of
water vapor and latent heat flux transport out of the tropics. A diagram of this system,
taken from Simpson (1992) is presented as Figure 1.1. Johnson et al. (1999) modified
this structure to include the effects of the freezing-layer inversion (as well as the trade
inversion) to describe a tri-modal model of tropical convection, consisting of trade
cumulus, cumulus congestus, and cumulonimbus cloud types, as shown in Figure 1.2.
The evolution with time of the tropical hydrologic cycle has also been studied. The
canonical discovery of Madden and Julian (1971) and summarized by Madden and Julian
(1994) of a 40-60 day oscillation (hereafter referred to as the Madden-Julian Oscillation,
or MJO) in convection, concurrent with westerly wind bursts, is perhaps one of the best
known tropical intraseasonal variations. Nakazawa (1988) analyzed the structure of
convection in the framework of the MJO and defined a hierarchical structure of tropical
convection in relation to forcing from the MJO. The largest convective cloud clusters,
referred to by Nakazawa as ‘super-clusters’ (and also referred to as mesoscale convective
systems (MCSs)) are of particular interest, especially with regard to their propogating
behavior.

These theories of tropical cloud structure tend to focus on two or three
predominant cloud populations — cumuliform clouds (fair weather and congestus) as well
as cumulonimbus. More contemporary studies (e.g. Jakob and Tselioudis (2003),
Rossow et al. (2005) and Jakob et al. (2005)) suggest the presence of additional cloud

populations. Using the ISCCP dataset and cloud classification scheme, described by
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Figure 1.1. Schematic describing the interaction of the ITCZ with trade
cumulus. Figure taken from Simpson (1992).

Rossow and Schiffer (1991), Jakob and Tselioudis (2003, hereafter JT03) used
histograms of ISCCP cloud type using three-hourly observations of cloud top pressure
and cloud optical depth in the framework of a nearest-neighbor (or k-means) clustering
algorithm (Anderberg, 1973). The results of their efforts were distinguishable and unique
cloud clusters composed of cloud populations with similar cloud properties. The
resulting clusters are considered to be objectively-determined cloud regimes. JT03 find
four dominant regimes (Figure 1.3): a convectively suppressed cumulus regime, a
convectively suppressed high thin cloud regime, and two convectively active regimes

with differing strengths of convection. Another key finding of JTO03 is that the
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Figure 1.2. Diagram from Johnson et al. (1999) of trimodal characteristics

of tropical convection
occurrence of deep convection in the tropical West Pacific ocean is ‘relatively small and
rare compared to the cirrus outflow they produce.’

Further implications on the nature of cloud regimes in the TWP are contained in a
hypothesis regarding a self-regulating mechanism of the tropical hydrologic cycle. As
described in Stephens et al. (2003), mechanisms associated with the MJO are found to

correspond with cyclic processes between sea-surface temperature (SST), upper- and
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lower-tropospheric heating, and the adjustment of the tropospheric stability profile
caused by the former. Essentially, the hypothesis posits a three-phase cycle governing
the magnitude of convection, concurrent with an externally-driven convective triggering,
mechanism driven by tropical wave dynamics. Other theories investigate the genesis of
this convective triggering, and the various feedbacks between wave dynamics and
convective heating profiles.

Other theories tying feedbacks between dynamic and thermodynamic properties
of the tropical West Pacific with tropical convection focus on the presence of
tropospheric humidity as a controlling feature of the tropical hydrologic cycle. A classic

example of a simple feedback mechanism between tropospheric moisture processes and



convection is found in the convective parameterization described by Arawaka and
Schubert (1974.) Conditioning of the tropical environment by convection as seen
through observations is also a ubiquitous topic (Yanai et al. (1973), Dudhia and
Moncrieff (1987)). These theories tend to describe a desiccating influence of convection
on the descending regions surrounding the convective cores — studies that include the
radiative effects of modification of the tropospheric humidity profiles (Grabowski and
Moncrieff (2004)) are used to demonstrate capabilities in improving such tropical
features as the MJO.

There exists a common thread among all of the theories described here — they all
tie the presence and prevalence of tropical cloudiness to a series of complex and
interconnected feedbacks between a series of important atmospheric variables. Tropical
clouds are seen essentially as results of the interplay between these variables, while at the
same time complicating the analyses due to the difficulty in retrieving parameters in
cloudy or semi-cloudy atmospheres, as well as the complex and poorly understood
feedbacks due to the physical presence of tropical clouds themselves.

1.2 Motivation

Our proposal is to combine objective, observation-based categorization of the
atmosphere with the mechanistic and dynamical analysis of contemporary theories on the
tropical hydrologic cycle to tease out as much information as possible about each of the
phases of the hydrologic cycle. This accomplishes two tasks — it gives an objective
definition of each phase based on a cogent physical convention, and it greatly facilitates
intercomparison between each phase of the hydrologic cycle and the theorized phases that

result from theories regarding their governance. Observing the change with time as each



phase of the hydrologic cycle changes to a new phase could allow us to gain insight into
possible feedback mechanisms between the phases, and perhaps even work out (to first
order, at least) the magnitude of change between the dominant variables responsible for
the initiation of change in the hydrologic cycle. What remains for us is to construct the
appropriate ‘cogent physical convention” with which to apply our analysis.

Current approaches to the topic at hand typically approach the topic in the
framework of a complex interplay of discrete components whose forcings and feedbacks
are indistinguishably wrapped up in the observations. Complicating the issue is the
reality that several of the necessary components are difficult, or perhaps impossible to
retrieve over the sparsely populated regions of the tropics typically being studied,
especially during periods of cloud cover, when the ability of satellite-based instruments
to reliably retrieve surface parameters is reduced or perhaps even eliminated. Given the
ubiquity of cloud cover in the tropical atmosphere, this is no small issue. Consequently,
progress in research on the tropical hydrologic cycle is hampered by the difficulties
encountered in confirming or rejecting hypotheses due to uncertainty (or complete lack)
of the observations.

Perhaps a different way to approach the topic would be to observe primarily those
parameters of the tropical atmosphere that are easiest (or at least, most prominent) to
infer (say, cloud properties), and then examine the remaining parameters in a framework
of the easy parameters, which we have more confidence in. Clouds, which are a direct
result of the complicated and poorly-understood thermodynamic mechanisms within the
tropical system, are relatively easy to observe — perhaps creating a framework of

understanding the tropical system as a function of the clouds it produces would be



fruitful. A-means cluster analysis, predicated on cloud properties may well provide such a
framework, assuming we apply it in a manner that accounts for the uncertainties in our
retrieval of cloud properties. The framework of cluster analysis based on geostationary
ISCCP histograms of cloud top pressure and cloud optical depth is a good start — the
ISCCP histogram structure is ideally suited to minimize the effects of retrieval error, due
to the relatively large bin sizes of the classification scheme. And the retrievals of cloud-
top pressure and cloud optical depth are generally well-behaved — one thing to investigate
is whether or not these two parameters alone are sufficient to categorize tropical
convection. To first-order, they certainly are, but it may well be that the inclusion of
additional cloud properties could improve the categorization necessary to examine other,
less-reliable parameters in context of cloud evolution.

One final motivation worth considering is the ability of any method that organizes
tropical convection by cloud properties to be combined with other cloud observations of
the same region. By necessity, any method we propose will certainly utilize some form
of satellite-based retrieval — it would be ideal if we could choose a satellite observing
platform that facilitated further research using additional instruments.

1.3. Outline of Research

The upshot of the previous several pages is that we seek an intelligently-designed
way to organize the tropical West Pacific in terms of the dominant cloud regimes
contained therein, and then interpret observations of atmospheric parameters sorted by
cloud regime to better understand the changes between the regimes. With the assumption
that the dominant cloud regimes computed by our analysis will correspond with the

important phases of the tropical hydrologic cycle (and we’ll have to test to make sure that



this is so0), we will have then gained understanding on the changing nature of the tropical
hydrologic cycle. In keeping with our final motivation, we would like to use cloud
observations from the EOS-PM (Aqua) satellite, which is the ‘lead’ satellite of the so-
called ‘A-Train’ (Stephens et al. (2004)), which would provide us with a surfeit of
relevant atmospheric observations with which to compare. We would combine the
satellite-based information with reanalysis products to further enhance our understanding.

Where we go from here is an essentially linear progression — we need to ensure
that we can first reproduce the results of JT03 with observations from a new satellite
platform, namely Aqua (Chapter 2). Having done so, we need to examine those results,
and suggest potential changes, and investigate the utility of additional information. We
comprehensively develop a new framework for k-means analysis of TWP cloud
properties, and then describe the results of performing that analysis (Chapter 3). Having
done this preparatory work, we begin our analysis of the TWP using our regime
information, establish the connection between our regimes and the tropical hydrologic
cycle, and further develop our understanding of these regimes using external
observations, both satellite-based and from reanalysis (Chapter 4). We explore the great
utility of cluster analysis in the framework of large-scale cloud resolving models, and
investigate some key differences between observations and models (Chapter 5). We
perform a feasibility study on the utility of cluster analysis in the development of future
retrieval algorithms (Chapter 6). Finally, we summarize the research, discuss future

applications, and list the key conclusions of this research. (Chapter 7.)



Chapter 2
Cloud Clustering as a Diagnostic Tool
2.1 The k-means algorithm

Clustering algorithms are used in a wide variety of analyses requiring an
intelligent means of sorting between different states of a system. Clustering techniques
have also the additional benefit of being able to quantify the amount of difference
between different unique states within a multi-dimensional system. Other applications of
cluster techniques aside from climate research include economics (to quantify and predict
trends), and are also incorporated in facial recognition software used by surveillance
camera security systems commonly found at airports.

As described by Anderberg (1973), the k-means clustering algorithm is an
iterative process that assigns individual observations of a dataset to one of any number of
cluster seeds (called centroids.) At the beginning of the algorithm, k observations are
chosen at random from a dataset containing N observations. These observations become
the first class of centroids that are used to sort the remaining N-k observations. The
algorithm then proceeds individually through the remaining observations, and computes
the Eulerian distance of the individual observation from each of the k centroids. The
individual observation is then assigned to the nearest (and therefore, the most similar)
centroid (as determined from the previous step) and the centroid is recomputed using a
weighted average of the old centroid value combined with the new observation. The
algorithm then moves to the next observation, again comparing the individual observation
to the new centroids, and repeating until additional iterations do not produce a significant

change in the centroids, thus terminating the iteration process. After each individual

10



observation has been sorted in this manner, the new centroids represent, in sense, an
aggregate of the mean properties of several similar observations in the dataset (in fact, if
k is chosen to be 1, the process is identical to computing the mean of every observation in
the dataset.) We define these resultant centroids as the clusters of archetypal states
existing within the system being analyzed. Using facial recognition as an example, this
technique is analogous to taking a group of facial photographs, sorting them into
subgroups based on roughly similar appearances (choosing k=2 in this example might
well yield two clusters comprised of male faces and female faces, for example), and then
computing an average male and female face that is representative of the bulk
characteristics of each subgroup.

The process of choosing a suitable value for k is the only non-objective
component of the algorithm, although it is possible to use objective criteria to finalize an
appropriate value. To select an appropriate value for k, the clustering algorithm is
performed several times with increasing values of %, and then analyzing the resulting

clusters against several ‘rules’. Rossow, et al. (2005) describes a set of four such rules

that, when met by the clusters, establish a ‘best’ value for k. These rules are:

1.) The resulting clusters must have high pattern correlation with themselves if the
initial k& observations are changed (e.g. picking different ‘seed’ clusters does not

change the outcome,)

2.) The resulting clusters should have low pattern correlation values with other

clusters. This is a particularly useful criteria, as choosing a value of k that is too

11



large often results in several clusters being near-copies of each other, with only

minute differences.

3.) The distribution of cluster frequency over space and time should also have low

correlations with each other, and

4.) The distance between the resulting clusters should be larger than the intra-
cluster dispersion, signifying confidence that observations ‘belong’ to a particular

cluster.

The criteria set by Rossow, et al. (2005) create an extremely useful objective
framework for determining the ‘best” value for k, although the criteria themselves are, of
course, subjectively selected. The algorithm itself requires no predetermined set of
criteria to select a value of k&, and other possible mechanisms to objectively determine the
‘best’ value of £ may yet be described. The original analysis of JT03 do not specify a
particular algorithm for determining k£ — they instead choose k=4 based on the ‘visual
significance’ of choosing four clusters over a larger number. (Rossow et al. (2005) using
a much different set of observations found a ‘best’ value for k of six.)

It is also possible to begin with archetypal clusters at the start of the process,
computed from some prior analysis, and then compare the individual observations to the
archetypal clusters to compute the difference between each individual observation and
any of the clusters, withoutr modifying the clusters themselves. Returning again to our

example of facial recognition, this is analogous to processing through a stack of
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photographs and comparing each photograph to photographs of known criminals, and
triggering a possible match when the similarity (as expressed through an Eulerian
distance) between an individual photograph and a photograph of a criminal exceeds some
set value. Although this method is not technically a clustering algorithm per se, it uses
several of the same techniques. As applied to cloud observations, this research will use
both methods — the former to determine dominant cloud regimes of the tropical West
Pacific, and the latter to assess the evolution in time of cloud properties with respect to
the dominant regimes.
2.2 The Method of Jakob and Tselioudis

In order to apply the k-means algorithm to a dataset of cloud observations, one
must first devise a framework in which to describe the cloud properties in a manner that
is easily understood by the algorithm. The algorithm as described would perform poorly
if temporal and spatial properties of tropical cloud systems were included in the
information used to ‘cluster’ a dataset, due to the great variability in these properties.
What is desired is a framework that contains only the essential physical properties of
cloud systems, separated from their temporal and spatial characteristics.  This
necessitates choosing temporal and spatial scales of interest, and then within those scales
of interest, choosing a suitable method to analyze the cloud properties in a purely
physical manner.

Jakob and Tselioudis (2003, hereafter referred to as JT03) used the k-means
algorithm to analyze ISCCP D1 (Tselioudis et al. 2000) cloud observations from a region
within the TWP (specifically, 130° to 170° degrees East longitude, 10° South to 10° North

latitude) over a period of one year (calendar year 1999.) These observations are three-
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hourly histograms of cloud optical depth (t) and cloud-top pressure (CTP), following
the ISCCP cloud classification scheme described by Rossow and Schiffer (1991), and are
taken from a combination of polar-orbiting and geostationary satellites. The ISCCP
cloud classification scheme described by Rossow and Schiffer (1991) is based on
observations of cloud radiative properties, and as such, permits discrimination between
cloud systems based entirely on observed physical properties — making them particularly
useful in the framework of the k-means algorithm, as these properties occur
independently of the cloud system’s physical location or timescale.

Using these histograms as the individual observations, the k-means algorithm as
described in section 2.1 is applied. When applied to the ISCCP D1 dataset, JTO3 resolved
four clusters, each of which JT03 suggested was representative of a distinct cloud regime.
These regimes are presented as Figure 2.1.

As is described in JTO03, the regimes found are: a shallow cumulus regime
(Cluster 1), an isolated cirrus regime (Cluster 3), a convective/thick cirrus regime
(Cluster 2), and a deep and “probably organized” convective regime (Cluster 4.) The two
convective regimes populate the right-hand column of Figure 2.1, while the so-called
‘suppressed’ regimes populate the left hand column. The shading in Figure 2.1 describes
the normalized occurrence of a particular grouping of T and CTP — a darker shade
corresponds to an increased occurrence of that particular CTP-t pairing. As an example,
Cluster 3 in Figure 2.1 demonstrates more frequent occurrences of high, thin cloud pixels

that are interpreted as cirrus clouds.
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Figure 2.1: CTP-t histograms of the cloud regimes described by JT03 using ISCCP D1
data of the TWP in 1999. Used with permission from Jakob and Tselioudis (2003)
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Each regime is also described by a relative frequency of occurrence (RFO) and a
total cloud-cover amount (TCC.) The RFO is the ratio of the number of observations that
‘belong’ to a certain cluster to the total number of observations, expressed as a
percentage. As an example, Cluster 1 in Figure 2.1 has an RFO of 46% meaning that
46% of the observations in the dataset identified with the suppressed shallow-cumulus
regime. The total cloud cover (TCC) is readily found by summing the individual
histograms to get the total occurrence of cloudy pixels in the histogram, again expressed
as a percentage.

An interpretation of JTO3 is a picture of the atmosphere as a series of repetitions
through ‘modes’ in the tropical atmosphere, with each successive mode described by its
own peculiar cloud properties. A useful outcome of such an interpretation would be to
link each mode (and eventually, the progression through each) with the determining
dynamic and thermodynamic mechanisms — such an analysis would have great benefit to
the modeling community, for example, in grappling with the complex feedbacks between
heat, moisture, and radiation between cloud systems as represented in models. In order to
pursue this goal, one must take a close look at the individual properties of each of the
modes - this is one of the goals of this research project, as well as other projects. We’ll
describe some of the latter first in brief, and then return to the former in much more
detail.

In an effort to better quantify the radiative and thermodynamic characteristics
associated with each regime, Jakob et al. (2005) used the regime analysis of JT03 to
compute regime-averaged properties using a variety of observations, including satellite

observations of OLR and surface and radiosonde observations taken from the
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Atmospheric Radiation Measurement Program (ARM) site iocated on Manus Island, as
well as limited use of reanalysis products to infer other fields that are more difficult to
measure directly. The observations listed are sorted and averaged by regime. As in
JT03, 3-hourly ISCCP histograms of cloud-top pressure and cloud optical depth (the
ISCCP D1 data product) for the region 10°N-10°S, 130°-170°E are used for the cluster
analysis - for this study, the observations are extended in time to include the period 1999-
2000 (JTO3 used only data from 1999.) Also as in JTO3, the analysis results in four
clusters with properties nearly identical to the clusters described in JTO3.

One of the two important findings of Jakob et al. (2005) that we’ll discuss here is
the ability of the clustering technique to describe, at a glance, the presence of a certain
cloud regime as a function of time. Figure 2.2, a reproduction of Figure 2 from Jakob et
al. (2005), demonstrates this particular feature. The figure is a representation of cluster
trends for the month of May 2000 — time runs along the x-axis, while cluster type is
represented on the y-axis, in four rows. A shaded line in a row for a certain day indicates
the presence of that row’s cluster on that day — looking at Figure 2.2, then, we see that the
month started with a preponderance of deep convection through the 8" of May,
transitioning to a period of cirrus and low cloud through the 16", and ending with a
period of short-timescale variability in cloud type. It is possible (and very useful!) to
extend these types of plots over longer time periods to analyze larger-scale trends in time

of cloud regimes, and we will return to several similar analyses shortly.
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Figure 2.2. Time series of the occurrence of the TWP cloud regimes
around Manus Island in May 2000. Reproduced from Figure 2. in Jakob,
et al. 2005.
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The other important finding (or rather, findings) of Jakob et al. (2005) discussed
here are the properties of the regimes themselves. An important objective of the
clustering technique as applied here is to find unique regimes of the tropical atmosphere.
After performing the cluster analysis, it would be ideal if the properties of each unique
regime found (especially those properties nor used in the clustering technique) reinforce
the uniqueness of said regime in a coherent manner — for example, the respective OLR
for each regime should agree with commonly-accepted values for similar systems. Such
reinforcement not only provides additional confidence in the technique, but also allows
for quantitative computation of mean physical properties of relevant subsets of the
atmospheric system - a particularly useful tool for the researcher.

A detailed description of all the results of Jakob et al. (2005) would unnecessarily
burden the familiar reader, but some of the most relevant features of each regime as

described are listed here:

1.) The shallow-cloud convectively suppressed regime is characterized by low
topped clouds with low- to medium optical depths, relatively high OLR (~280
W/m?), total column water vapor (TCWV) of ~5.0 cm, and approximate mean

average vertical velocities (w) on the order of -0.01 Pa/sec

2.) The thin-cirrus convectively suppressed regime is characterized by thin cirrus
clouds, lower OLR values (~250 W/m*), TCWVs of ~53 cm, and

o ~ —0.02 Pa/sec.
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3.) A convectively active regime consisting of ‘high-top, medium-t cirrus’ and
‘likely deep convective’ clouds. Some ambiguity about ‘member clouds’ is
expressed in this particular regime, which we will address in Chapter 3. The
relevant for this regime include a median OLR of 210 W/m?, total column water

vapor for around 5.5 cm, and o ~ -0.040 Pa/sec

4.) A convectively active regime consisting of high-topped clouds with substantial
optical thickness, ascribed to a classic tropical deep convection profile. Median
OLRs for this regime are below 170 W/m?, albedos are greater than 50%, and

total column water vapor for the regime exceed 6 cm, with w ~ -0.045 Pa/sec

The properties for the regimes described are comfortably familiar to researchers,
and establish the utility of the clustering algorithm in distinguishing different physical
states of the atmosphere based solely on objective analysis of atmospheric observations.
In the next section, we will apply the clustering technique to a different set of
observations than those used in the JT03 study and compare the results with earlier work.
2.3 k-means Cluster Analysis Using MODIS Level-2 Cloud Product Data
2.3.1 — Background and dataset description

For the most part, the cloud properties used to sort cloud regimes in cluster
analysis are retrievable by a number of different spaceborne instruments. For the
purposes of this study, we choose observations from the MODIS Level-2 Cloud Product
dataset. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, one

of several instruments being flown on the EOS-series of missions, is a high-resolution
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36-band radiometer covering the spectral range from the visible through the thermal
infrared. Several cloud properties (including cloud optical depth and cloud-top pressure)
may be computed using MODIS radiances in the framework of a retrieval algorithm
described by Platnick, et al. (2003) Again, of particular interest to this research are the
retrievals of cloud-top pressure and cloud optical depth — the ingredients of the ISCCP
histograms used in previous cluster analyses. By using MODIS data to create ISCCP-like
histograms, it should be possible to perform the same cluster analysis, and compare the
results to the earlier ISCCP-based analysis.

There are several relevant differences between the MODIS observations used in
this research and the ISCCP D1 dataset used by JT03. The most obvious difference is the
orbital characteristics of the instrument itself — the geostationary ISCCP D1 dataset
provides constant coverage of the region of interest at around 5km resolution (more or
less — for a detailed description on ISCCP pixel size and sampling issues, see Rossow and
Schiffer (1991.)), whereas the EOS-series satellites provides a high-resolution (1-5 km)
snapshot of the region once per day. The benefit of using higher-resolution (spatially, at
least) MODIS data is somewhat offset by the fact that the data will neglect certain
features of the system, most notably, the diurnal cycle in convection. It will be shown
that the cloud regimes so found (and notably, the bulk properties of these regimes) do not
significantly differ from previous cloud regimes using ISCCP data — while the MODIS-
based cluster analysis does not explicitly represent the progression in cloud morphology
inherent to the diurnal cycle of convection within each regime, it appears that it can

identify the same regime-averaged properties found using ISCCP-based analysis.
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Other differences between the MODIS and ISCCP observations are the retrievals
used to determine the relevant parameters. As an example, cloud-top pressure in ISCCP
is determined from inferred height via cloud-top temperature in the IR, whereas in
MODIS it is determined through the CO, slicing technique (Platnick et al. 2003.) The
effects of slightly different retrievals (with concomitant slightly different retrieval error,
etc.) is on the clustering algorithm is expected to be small, since the observations
themselves are first passed through the framework of the ISCCP cloud classification
scheme — the histogram boxes in the classification scheme cover ranges that are exceed
the likely differences between retrievals, which may only be a few percent, perhaps. The
only notable exception would be for extremely thin clouds (i.e. cirrus) — Jin (1997)
compares HIRS and ISCCP observations and notes a significant difference in thin cirrus
cloud amount due to retrieval techniques.

The observations used for the purpose of generating ISCCP-style histograms in
this research are observations of cloud-top pressure and cloud optical depth taken from
the MODIS Level-2 Cloud Product dataset. As discussed in Platnick et al. (2003), the
cloud-top pressure retrieval utilizes a CO,-slicing technique described by Menzel et al.
(1983) and Wylie and Menzel (1999) which utilizes several partial-absorption bands in
the 15-pum CO, absorption region, as seen by the MODIS instrument. Cloud-top pressure
is reported in the Level-2 database in units of millibars, and has a pixel spatial resolution
of 5x5 km. Retrievals of cloud optical thickness in the Level-2 Cloud Product are
accomplished using a sophisticated algorithm that include decision-making and
discrimination by water phase of sensed pixels, then using specific library calculations

(based on the outcome of the prior step) from observations of several frequencies in the
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visible and NIR, as well as 1.6-, 2.1-, and 3.7um band. A more detailed description may
be found in Platnick et al. (2003). Pixel spatial resolution for cloud optical depth in the
cloud product data is 1x1 km. For the purposes of generating ISCCP histograms, the 5-
km resolution CTP data is oversampled to match the resolution of the 1-km resolution
cloud optical depth data; this is preferred to smoothing the optical depth information to
match the coarser CTP data.

MODIS data are obtained from the GSFC DAAC service in .hdf format — the
relevant parameters are read in and used to populate a two-dimensional array based on
the ISCCP cloud classification scheme, and then stored as ISCCP histograms for later use
in the cluster algorithm. A sample of MODIS cloud-top pressure, cloud optical depth,
and the resulting ISCCP histogram computed from the two are provided as Figure 2.3.
2.3.2 — Spatial and temporal selection, and discussion on choosing k

One other issue that must be considered is the spatial coverage of MODIS
granules, as well as some key differences between the histogram construction between
the ISCCP-based and MODIS-based cluster analysis. As described in JT03, the area of
observation using ISCCP data cover a much greater area than does the typical MODIS
granule — a region of the tropical west Pacific from 130°-170° E longitude, and 10°S-10°N
latitude. The orbital characteristics of the EOS satellites allow for observations covering
the latitude range of JT03, but do not scan far enough longitudinally to cover the entire
40°x20° range visible by ISCCP in a single data granule. Complicating the issue is the
construction of the ISCCP histograms themselves — the histograms used in JTO3 are
computed individually from 2.5°x2.5°-degree subdomains within the larger 40°x20°

observation area. Consistent reconstruction of these subdomains in the MODIS dataset is

23



Figure 2.3 — sample ISCCP histogram generated from MODIS Level-2
Cloud Product observations of cloud optical depth and cloud-top pressure.
In the cloud-top pressure scene, we see a relatively broad area of high-
altitude cloud top pressures in the southwest corner. Cells of high cloud
optical depth in the same region suggest the presence of deep convection
with attendant cirrus anvil. The generated ISCCP histogram demonstrates
the abundance of high-optical depth and high-altitude CTP, as well as a
smattering of lower, thinner clouds (as may be seen in the northeastern
corner of the scene.)
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hampered by the day-to-day orbital variations of the center of the MODIS swath. Given
these differences between the satellite platforms, we must make some compromises to
accommodate the smaller swath area of a MODIS granule. For this study, we choose a
spatial scale that is somewhat smaller than the domain chosen by JT03 in order to ensure
complete satellite coverage of the domain. The choice was made to compute single
histograms using a region from 150°-160°E longitude, and 0°-10°N latitude, subsetting the
region of interest covered by JT03. The histograms used in our MODIS-based analysis
are from a region roughly sixteen times larger than those of the ISCCP-based analysis —
one histogram from the MODIS analysis would be composed of sixteen adjacent
histograms from the ISCCP analysis. For a typical tropical MCS, both the ISCCP- and
the MODIS-based histograms are sufficiently large enough to contain all the relevant
cloud structures, the largest of which were expected to be the so-called ‘supercluster’
(Mapes and Houze (1993)).

MODIS Level-2 Cloud Product observations from the EOS-PM (Aqua) satellite
covering the region of interest described above were collected for the period 01 June
2002 through 31 May 2003, representing a full year of coverage of the region. Days with
missing data or incomplete coverage are rejected to ensure quality control on the data.

Since the purpose of this initial cluster analysis using MODIS data is to compare
the results to those of JTO03, we choose to utilize the same approach as JTO3 in
determining the value of k to use in the cluster analysis. This criteria, as is discussed in
JT03, is one of ‘visual significance’ of the computed clusters, resulting in the selection
k=4. (More rigorous criteria (along the lines of Rossow et al. 2005) are used in later

computations.) Figure 2.4a-d shows the result of running the cluster analysis choosing
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values of 3,4, 5, and 6 for k. The k=3 case is shown as Figure 2.4a, continuing through
with the k=6 shown as Figure 2.4d. Using the ‘visual significance’ criteria, we reject the
value k=6, as clusters 2 and 6 are quite similar to one another (both clusters roughly
contain mid-valued optical depths and high-altitude CTPs.) Similarly, we reject the value
k=3, as cluster 3 in this run appears to be a conglomerate of clusters 3 and 4 of the k=4
run, both of which appear to be significant. Thus, a case for using either k=4 or k=5
could be made using the ‘visual significance’ criteria; to facilitate comparisons between
these results and those of JT03, we choose the value k=4 for this section.

It should be noted that the rejection of k=6 based on visual criteria alone is
perhaps unnecessarily subjective — using the more rigorous criteria of Rossow et al.
(2005) results in an optimal value of k=6, which is also the value used in recent research
by Prof. Christian Jakob (personal communication.) The choice to use k=4 over k=5 for
this section is essentially a matter of convenience, especially considering the temptation
to explore the difference between the two convective regimes represented by clusters 2
and 5 in the k=5 run (reference Figure 2.4.) In Chapter 3, we will go into more depth
regarding possible physical explanations between these weak-convective regimes.

2.3.3 — Cluster Results — MODIS-determined regimes

The k-means clustering algorithm was provided in the form of a FORTRAN code,
courtesy of Prof. Christian Jakob. The code was ported to IDL and modified to read
MODIS data from EOS-HDF files. After running the analysis to choose k described
previously, the code was set to use k=4 and then re-run to compute the regimes, along
with their respective frequencies and cloud covers. The cluster results are shown as

Figure 2.5.
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Figure 2 .4a — part one of four comparisons of choices for the value of % for
the MODIS cluster analyses. This figure represents the choice of k=3.
The relative frequency of occurrence (RFO) of each centroid is listed over
each centroid.
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Figure 2.4b — part two of four comparisons of choices for the value of k&
for the MODIS cluster analyses. This figure represents the choice of k=3.
The relative frequency of occurrence (RFO) of each centroid is listed over
each centroid.
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Figure 2 4c — part three of four comparisons of choices for the value of k
for the MODIS cluster analyses. This figure represents the choice of k=5.
The relative frequency of occurrence (RFO) of each centroid is listed over
each centroid.
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Figure 2.4d — part four of four comparisons of choices for the value of k
for the MODIS cluster analyses. This figure represents the choice of k=6.
The relative frequency of occurrence (RFO) of each centroid is listed over
each centroid.
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Figure 2.5 — clusters returned from the analysis for choice of k=4.
Compare to the results of Figure 2.1
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Examining Figure 2.5 demonstrate some familiar results — we have two clusters
that seem to represent isolated cirrus and shallow cumulus (clusters 4 and 1, respectively)
and two convective regimes, one of deep convection (cluster 2) and one of
convection/thick cirrus (cluster 3.) The computed frequencies of occurrence (RFOs) of
each regime, along with the computed total cloud cover (TCC) for each regime are
presented, along with the corresponding values from JT03, in Table 2.1. Perhaps the
most remarkable result of the MODIS analysis is that comparable regimes, determined
independently, via differing observations systems and for different years, have roughly
the same total cloud cover amount, as defined by fractional area of cloud cover in the
respective regions of interest. The frequency of occurrence vary somewhat more — this is
to be expected, since there would be little reason to expect that the weather for two
separate years in a region would occur with the same frequency, although the variability
is within several percent for each regime. The largest discrepancy between the two
comparisons is the cloud cover by isolated cirrus — as mentioned earlier, this was not
unexpected, given the difficulties in detecting thin cirrus with different retrieval
techniques.

2.3.4 — Bulk Properties of Regimes, and Comparison to Jakob, et al. (2005)

We have seen good agreement in comparative cluster structure between cluster
analysis using MODIS observations compared to cluster analysis using ISCCP data,
despite the differences in histogram scale sizes between the two analyses. Given that the
histogram scaling for both analyses are of sufficient size to encompass the largest cloud
features, this is not necessarily a surprise — essentially, both analyses agree that the

fundamental characteristics of clouds in the region of interest are similar independent of
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observing platform, provided that the histograms used to define the regimes are chosen
with the appropriate amount of care. What remains to be tested is whether regime-
averaged properties over the region of interest and sorted by MODIS-based regimes are
comparable to the regime-averaged properties using ISCCP-based regimes, such as those
described by Jakob et al. (2005.)

In order to accomplish this, we use NCEP reanalysis (Kalnay et al. (1996)) data
products as a convenient method to look at several relevant parameters for comparison.
It should be stressed that we are not attempting to match the results of Jakob et al. (2005)
exactly, as the observations used to create the clusters are not only from different
observation platforms, but were also made some years apart. We instead rely on
statistical assessments of mean properties of each regime (as did Jakob et al. (2005)); as
such, it is expected that the time-averaged mean properties derived from point sources
should not be more or less useful than the time-averaged mean properties derived from
reanalysis products — especially considering the great amount of effort put in to
engineering the reanalysis to represent ‘reality’, at least in terms of reproducing
observations. The general physical properties of each regime, when averaged in the
manner described, should be relatively insensitive to the choice of measurements,
provided the parameters being analyzed in the reanalysis are not entirely dependent on
the parameterizations inherent to the reanalysis model wherever possible.

Three variables, representing in an extremely gross sense the radiative,
hydrologic, and dynamic properties of each regime, are used to compare the regimes —
these are outgoing longwave radiation (OLR), total column water vapor (TCWYV), and

average vertical velocity for each regime.
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Table 2.1 — Comparison of JT03 cluster values versus MODIS cluster values.

RFO -JT03 RFO --MODIS | TCC -JT03 TCC - MODIS
Shallow Cumulus 46% 39% 040 041
Isolated Cirrus 23% 27% 0.90 081
Convection/Thick 14% 13% 0.96 0.96
Cirrus
Deep Convection 17% 21% 0.77 0.75

Although we express some concern over the accuracy of vertical velocity computations
from the reanalysis products, general trends should hold (greater vigor of vertical motion
during convective regimes, large-scale atmospheric descent in convectively-suppressed
regimes, etc.) The general idea is that we can compare the NCEP vertical velocity values
from the MODIS-derived cluster analysis with the NCEP vertical velocity values from
the ISCCP-derived cluster analysis, and see if general trends are in agreement between
the two. Similarly, regime-averaged values of OLR and TCWV between the MODIS-
and ISCCP-derived regimes should compare favorably if the regimes are indeed alike.

In order to compute the properties of each regime, we first use the MODIS-
derived clusters to go back and sort each daily MODIS observation into its proper regime
(for example, if the MODIS ISCCP histogram from June 9" matched most closely to the
‘deep convection’ cluster, that day is assigned as a ‘deep convection’ day.) For each day,
the three variables being compared, sorted by their proper regime, are then averaged
together to get the bulk properties for each regime — this is the essentially the same

method used by Jakob et al. (2005.) Table 2.2 compares the results of Jakob et al. (2005).
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Table 2.2 — Comparison between MODIS/NCEP results and Jakob et al. (20053)

OLR - |OLR - | TCWV ~|TCWV —|w- w -
Jakob et | MODIS/NC | Jakobetal. | MODIS/NC | Jakob et al. MODIS/NC
al. EP EP EP
Shallow Cu 280 2679 W/m* 5.0cm 5.16 cm -0.01 Pa/sec -0.028
W/m® Pa/sec
Isolated Ci 250 252.1 W/m* 53 cm 497 cm -0.02 Pa/sec -0.034
W/m? Pa/sec
Convection/ 210 195.5 W/m? 56cm 5.37 cm -0.04 Pa/sec -0.066
Thick Ci W/m? Pa/sec
Deep 170 192.6 W/m?* 59cm 5.81 cm -0.45 Pa/sec -0.067
Convection W/m? Pa/sec

The greatest differences between the two regimes are, as expected, in the
computation of vertical velocity. Jakob et al. (2005) actually used four reanalysis
products in an attempt to evaluate vertical velocity by regime — unfortunately; none of the
reanalysis products provided a consistently realistic value for vertical velocity. In fact,
only two of the analyses (neither of which were the NCEP reanalysis) described net
downward motion during the convectively suppressed regimes. Whether this is a failing
of cluster analysis to ‘sort’ the atmosphere into regimes of like vertical motion based on
convective activity, or instead a failure of reanalysis products to accurately represent the
instantaneous vertical momentum profile of the atmosphere, however, remains to be seen.
Regardless, in both the analysis performed by Jakob et al. (2005) and in this analysis, the
minimum (albeit still upward) values of vertical velocity occur during the convectively
suppressed regimes, while maximum vertical velocities are found during convective
regimes.

We see also the general agreement between the MODIS- and ISCCP-derived
regimes in the OLR and TCWV fields — values match remarkably well, especially

considering that the regimes described were separated by nearly two years. We stress
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that we are not ascribing properties to the atmosphere based on the regime analysis
(although we may attempt to do so in future chapters) but are rather confirming that it is
possible to replicate the results of an ISCCP-derived cluster analysis, both in overall
cluster properties as well as mean regime properties based on the clusters themselves,
using MODIS data. The great variety of instruments found on the EOS series of
satellites, as well as the many new instruments flying in formation (particularly, those
satellites in the ‘A-Train’ constellation behind the Aqua satellite) allow for many
opportunities to apply new and effectively simultaneous atmospheric observations in
concert with cluster observations made using MODIS observations.
2.4 Discussion

There are some limitations to the cluster analysis as described that should be
discussed. Perhaps the most salient of these limitations is the satellite retrievals
themselves — since both ISCCP and MODIS observations are passive observations, they
contain no information about the affects of multiple cloud layers. Histograms of cloud
type assembled using passive observations of cloud scenes containing multiple cloud
layers suffer in that generally, the lower cloud layers are entirely ignored, or could
perhaps influence the values of optical depth retrieved, thereby skewing the histogram.
Recent satellites utilizing active sensors are making some headway into discovering these
‘hidden clouds’ — Figure 2.6 presents an 8 January, 2008 QuickLook image from the
CloudSat mission (described by Stephens et al. 2003) showing a complex of several
shallow-convective towers adjacent to a thick layer of upper-level cirrus. Several of the
convective towers appear to be developing underneath the cirrus deck, which may be a

remnant of earlier convection. The CloudSat instrument, a 94-GHz cloud-profiling radar,
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15 Time 02:53:1902:50:08 | Lat -6.1 -17.6 | Lon 1634 1659 CIRA CloudSat DPC

Figure 2.6 — CloudSat profile of multiple cloud layers near the equator in the

West Pacific, 8 January 2008. The vertical axis represents height above the

ground, and the horizontal axis represents along-track distance. Brighter colors

represent greater (uncalibrated) radar reflectivity.
has the ability to penetrate cloud layers and even weak- to moderate-precipitation, and
will greatly improve our understanding of the crucially important vertical structure of
cloud systems. The utility of directly retrieved vertical cloud structure information used
in analyses such as cluster analysis (as opposed to inferring vertical properties through
variables such as cloud optical depth) is apparent, and there are plans to modify yet again
the clustering technique to accommodate these new and valuable observations. We will
discuss the use of CloudSat data in cluster analysis techniques in much more detail in
forthcoming chapters - for the present, we will move forward with a cluster analysis
based on passive-only sensors to facilitate better comparison with past research utilizing
cluster analysis.

Another way forward is to rethink the process of how we ‘index’ the atmosphere,
at least as it pertains to histograms of cloud type. Using the ISCCP cloud classification
scheme makes a good deal of sense, as the sorting scheme used to define the histograms

are optimized to produce cloud types of similar radiative impact, but there are other ways

to group clouds by their properties, of course. If one imagines the hydrologic cycle in its
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simplest form, of the conceptually-simple voyage of water as it evaporates, is transported
elsewhere by the ‘dry dynamic’ atmosphere, and is condensed again to fall, only to renew
the cycle, then we understand that the presence of water in the atmosphere may be used
as a tracer of sorts to mark the goings-on of the atmosphere in the ‘background’. And the
properties of clouds are the simplest way to describe the present state of water in the
atmosphere. Much of the driving force of the atmosphere is contained in the latent heat
release and consumption as water changes phase, and the ultimate driving force of the
balance of solar and terrestrial radiation is itself greatly modified by the mere presence of
these clouds. Were we to construct a histogram that includes more of the relevant
features of these clouds, namely their height, relative water amount, and presence of
precipitation, we would perhaps make some headway into addressing the issues described
above. The addition of precipitation information to the ISCCP histograms currently used
in the cluster analyses would further separate the clouds into raining- versus non-raining
clouds, perhaps alleviating some of the uncertainty found in different cloud scenes with
similar optical depths and cloud-top heights, but with vastly different component clouds.
We propose that such a histogram may be constructed, and that new cloud
regimes found using these histograms will add to the already valuable information found
by using two-dimensional histograms based on cloud radiative properties. We turn to this

next in Chapter 3.
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Chapter 3
Towards Development of a Three-Dimensional Cluster Analysis

3.1 Motivation

As was discussed in the introductory chapter, the role of precipitation has a
dominating influence on the energy budget of the tropics. The presence (and magnitude)
of precipitation in tropical clouds signals a marked change in the overall stability of the
tropical atmosphere, replete with feedbacks on several relevant tropical systems,
especially on tropical dynamics (through radical changes in the vertical structure of
tropospheric heating through latent heat release) as well as the local radiative budget.
The formation of precipitation marks an important milestone in convective development
— as such, it may well be supposed that the inclusion of observations of precipitation
would have an influence on the results of cluster analysis.

How, exactly, to include this precipitation information is the topic of this chapter.
We begin with a discussion of candidate datasets for our precipitation observations, and
then discuss how to include these observations in an intelligent manner with our previous
observations, followed by an exhaustive analysis of the selection of the appropriate value
of clusters in our new, 3D framework.
3.2 The AMSR-E Precipitation Product

We seek a precipitation dataset with similar spatial- and temporal coverage and
resolution to complement the MODIS observations used for our 2D analysis. Several
such options exist — the bulk of which consist of various infrared techniques, which use a
variety of relationships to infer rainrate from differences in brightness temperature as a

function of wavelength, and microwave techniques, which observe the emission

39



properties of suspended hydrometers above the surface. Infrared techniques are limited
in that they tend to rely on non-robust relationships between cloud-top properties (which
in turn, determine the brightness temperature in the IR) and actual rainfall. Microwave
properties are limited when the surface has an unknown microwave emissivity. Over
water, microwave retrievals tend to perform better, due to the reflectivity of the surface in
microwave frequencies.

For this research, we use Level-2 rainfall retrievals from the AMSR-E instrument
on the EOS/PM (Aqua) satellite, as described in Wilheit, et al. (2003). Using a
microwave retrieval makes the most sense for our region, which is nearly entirely
covered by ocean, and in particular, the microwave retrieval from the AMSR/E
instrument has the additional benefit of being located on the same spacecraft as the
MODIS instrument we’re using for our other observations, thus maximizing data overlap
between the two datasets.

AMSRUJE rainfall data are processed and gridded (in a non-interpolative manner)
with co-located MODIS observations of cloud-top height and cloud optical depth to
ensure pixel overlap between the two instruments — pixels containing only MODIS or
AMSRV/E data, and not both, are discarded. A sample image over the region of interest,
containing MODIS observations of cloud-top height and cloud optical depth along with
the corresponding AMSRV/E rainfall retrieval is presented as Figure 3.1.

3.3 Selection of a Suitable 3D Histogram

Having selected a suitable dataset for rainfall observations, we now seek a method

to integrate observations of precipitation along with our previously described

observations of cloud-top pressure and cloud optical depth into our cluster analysis.
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Figure 3.1. 21 June 2002 observation of cloud optical depth and cloud-top height as seen
from MODIS, and rainfall as seen from AMSR/E.
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Ideally, the combination of the three observations into a cogent 3D histogram will
facilitate comparison to the well-known properties of the 2D histogram analysis, but will
also demonstrate increased sensitivity to precipitation characteristics of cloud
organization, particularly with regards to convective organization.

One way to approach this goal is to re-use the 2D comparison (the ISCCP cloud
classification scheme) between cloud-top pressure and optical depth in the framework of
varying levels of rainrate. In the 2D histogram representation, cloud optical depth is
sorted into increasing values along the x-axis, while cloud top pressure is sorted along the
y-axis. Bin sizes for the 2D histograms are, as previously discussed, determined by the
ISCCP cloud classification scheme. For the 3D histogram representation, we propose to
use the same x- and y-axis bins for optical depth and cloud-top pressure as in the 2D
histograms, and sort the precipitation along the z-axis into bins whose sizes are
determined by an external analysis of the precipitation — in this case, an additional, one-
dimensional clustering of observed rainrates.

Of course, there are several ways one could organize the third dimension of our
3D histograms — what we seek is a simple, intuitive method that relies on the properties
of the precipitation itself, and not on externally-derived parameters, most of which rely
on assumptions about precipitating microphysics. What is necessary for the clustering
histogram is that the bin sizes be distinguishable based on gross properties only —
moreover, we desire a mechanism that describes these gross properties in a realistic, and
preferably objective, manner.

To this end, the third dimension of the histogram is established as follows: a

simple, one-dimensional clustering of AMSR/E rainrates is performed in order to find the
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most common rainrate values in the dataset, and then use those rainrate values as the
center values for our z-axis bins, with the bin widths determined by the spacing between
the one-dimensional clusters. This entails, of course, an exercise in miniature of the
entire research project — we must categorize the AMSR/E data in a large vector readable
by the cluster algorithm, decide on an appropriate number of clusters to use (which, in
turn, will decide the number of bins for our 3D analysis later on) and run the requisite
tests to ensure that the cluster results are repeatable and meaningful in a statistical sense.

The data used to determine the rainrate bin value are the same data to be used in
the 3D analysis — namely, the AMSR/E Level-2 rainrate product from June 2002-May
2003 over the previously-discussed region of the tropical West Pacific. At the end of the
analysis, we will have, in effect, an amalgam of the most commonly-found rainrates in
this region, at least as observed by the AMSR/E platform. To our knowledge, this is the
first time that tropical rainrate has been categorized using clustering techniques.

The precipitation observations are broken down into a one-dimensional vector of
satellite pixels containing rainrate values. (Since the intent is to categorize the properties
of the precipitation, non-precipitating pixels in the cluster analysis are rejected — when
we use the results of the one-dimensional cluster analysis to create bins for our 3D
analysis, we will add an additional bin for non-precipitating pixels.) We then apply our
clustering algorithm to this vector, choosing £ initial centroids from the database, and
then iterate through the vector. The principals discussed previously guide our choice of £
— each derived cluster value for an appropriately-chosen value of k& will be sufficiently
different from other cluster values, and will not change significantly when different initial

centroids are chosen from the vector,
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We find three clusters of rainrate values in our dataset (namely, for this clustering,
that £=3). They are, in order of increasing mean rainrate, 0.342 mm/hr, 2.88 mm/hr, and
8.04 mm/hr, with relative frequencies of occurrence of 68.04%, 23.07%, and 8.89%,
respectively. For the sake of convenience, we label these clusters as ‘low’, ‘medium’,
and ‘high’ precipitating clusters, again respectively. As might be expected, the bulk of
precipitating pixels found were of medium-to-low rainrates, with a smaller fraction of
high rainrates (corresponding to the smaller areal fraction of convective cores,
presumably.) Since we cannot ascribe any cloud properties to the clusters based on our
simple 1-D clustering, it is difficult to compare these values with other studies of cloud
fraction as of yet. If we assume, however, that the lowest rainrate is more likely to be
assoclated with stratiform (as opposed to convective) cloud structure, then the relative
frequency of occurrence of our ‘stratiform’ rain compares favorably with analyses of
stratiform rain fraction discussed in Schumacher and Houze (2003). There are some
important differences — namely, that the RFO values from our analysis are not strictly a
frequency in time or of areal coverage, but instead one of pixe/ occurrence. Naturally,
however, there should exist some relationship between the three — if a region experiences
a majority of stratiform precipitation in both frequency and areal coverage, one would
expect a similar majority in the number of pixels reporting stratiform-like precipitation.

For this particular analysis, we found that £=3 was the optimal value. An attempt
to run the analysis with k=2 failed entirely to converge on final cluster values,
presumably due to the great variability of rainrates in the dataset. Choosing k=4 for the
cluster analysis yielded the following cluster rainrate values: 0.184 mm/hr, 1.185 mm/hr,

3.37 mm/hr, and 8.34 mm/hr, with relative frequencies of occurrence of 52.03%, 22.46%,
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17.74%, and 7.76%, respectively. However, histograms of rainrate amount separated by
cluster for the k=4 case demonstrate a significant amount of overlap in rainrate between
clusters. This leads to some uncertainty in the significance of each cluster in the k=4
case, as overlapping clusters represent individual observations of rainrate that are
assigned to different clusters, despite having the same value. Rossow et al. (2005)
describes this phenomenon as well, and it is typically used to ensure that the value of & is
not too large. While there exists some overlap in the £=3 case, it is less than in the k=4
case, making it a better solution than the k=4 case. Figure 3.2 presents histograms (by
cluster) for the =3 and k=4 cases, and demonstrates the degree of overlap between the
two cases. As one would expect, increasing the number of clusters (setting &k > 4) yields
increased overlap between clusters. Following the guidelines of Rossow et al. (2005) we
therefore select the best option, which is the A&=3 case.

The results of both the 4#=3 and k=4 cases give similar enough results to draw
some general inferences about the nature of tropical precipitation, at least in the region of
interest (and as observed by AMSR/E.) Both cases break down into roughly three
precipitation scenarios — one of sub-mm/hr rainrate, with the highest frequency of
occurrence, another of light-to-moderate rain of the order of ~3 mm/hr, and one of
heavier precipitation likely associated with deep convection. The relative occurrence of
each precipitation type agrees generally with other observations of tropical rainfall —

furthermore. Using the results from our £=3 cluster analysis, and recalling that we want
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Figure 3.2 — histograms of precipitation amount sorted by cluster. The
histogram for the k=3 case is shown on the left; #=4 on the right.
Overlapping regions in the histogram indicate that individual identical
rainrate amounts are being assigned to different clusters, signifying less
certainty in ‘membership’ to a particular cluster. Overlap in the k=3 case
is less than in the k=4 case, particularly for low rainrate observations.

Table 3.1: Sorting bin values for MODIS-AMSR/E 3D histogram

Cloud Optical Depth

Cloud-top Pressure

Observed Rainrate

Bin1:0-1.3

Bin 1: sfc-800 mb

Bin 1: 0-0.06 mm/hr

Bin 2: 1.3-3.6

Bin 2: 800-680 mb

Bin 2: 0.06-1.5 mm/hr

Bin 3: 3.6-9.4

Bin 3: 680-560 mb

Bin 3: 1.5-5.1 mm/hr

Bin 4: 9.4-23.0

Bin 4: 560-440 mb

Bin 4; > 5.1 mm/hr

Bin 5: 23-60

Bin 5: 440-310 mb

Bin 6: > 60

Bin 6: 310-180 mb

Bin 7: < 180 mb
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to allow for non-precipitating cloudy pixels, we propose to use the following definitions
to sort rainrate amounts in our 3D histograms: Bin /.) contains pixels with rainrates <
0.06 mm/hr — our non-precipitating cluster. Bin 2.) contains pixels with rainrates
between 0.06 and 1.5 mm/hr, centered on the ~0.3 mm/hr cluster. Bin 3.) contains pixels
with rainrates between 1.5 and 5.1 mm/hr, roughly centered on the 2.88 mm/hr cluster.
Finally, Bin 4.) contains pixels with rainrates higher than 5.1 mm/hr. The range of each
bin is based on the rainrate value at the overlap points between clusters from the
histogram described in Figure 3.n — this effectively ‘splits’ the uncertainty between
clusters, assigning lower rainrates into lower bins and vice versa. Our 3D histogram will
thus be sorted according to criteria outlined in Table 3.1. An example 3D histogram,
constructed using the data from the 21 June 2002 shown in Figure 3.1, is presented as
Figure 3.3.
3.4 Selection of value for k in 3D Histogram Cluster Analysis

Arguably, the selection of a histogram with which to sort multiple satellite
observations into a coherent picture is the most important step in this kind of cluster
analysis. A close second would be the selection of the number of centroids with which to
sort the histograms, especially since there exists a certain amount of subjectivity in this
selection. Earlier, in Chapter Two, we discussed different approaches to the selection of
k, varying from choosing a number leading to results that are ‘visually significant’ to the
approach of Rossow et al. (2005). Further experimental attempts to objectively
determine k involve more rigorous statistical analysis of resulting clusters for different
choices of k than are described by Rossow et al. (2005) — typically, a parameter that

describes an ‘optimal’ relationship (defined as A, which varies depending on the kind of
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Figure 3.3. 3D histogram of satellite observations from 21 June 2002,
(shown in Figure 3.1) Each of the four panels for each cluster depict a 2D
cloud-top height/optical depth histogram for a certain rainrate bin. Here,
“no rain” represents rainrates < 0.06 mm/hr, “light rain” for rainrates
between 0.06 and 1.5 mm/hr, “rain” for rainrates between 1.5 and 5.1
mm/hr, and “heavy rain” for rainrates > 5.1 mm/hr. Brighter colors in a
histogram represent higher counts of cloud pixels per bin, and more
generally, a higher amount of cloud cover for that histogram.
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data being analyzed) is computed for varying values of k, and an iterative approach to
minimize A is used to determine the appropriate value for k. Such methods (known as
lambda cluster analyses) fall outside of the strict definition of our familiar k-means
analysis, and perhaps more properly belong in the field of statistics. We would like to
take the via media when determining & — i.e. to remove as much subjectivity in the
selection as possible, without necessarily having to break new ground in the field of

statistics to do so.

With some modifications, we propose that the criteria determined by Rossow et
al. (2005) constitute a useful set to determine an appropriate value for %, at least for the

style of cluster analysis of this study. The criteria used are:

1.) Resulting clusters for an appropriate value of & will have high pattern
correlation with themselves if different initial centroids are chosen (which

we will refer to as the stability principle.)

2.) The Euclidian distance between individual observations and their ‘parent’
cluster (defined as the cluster to which the analysis assigns said observation)
will be less than the intra-cluster distance between the ‘parent’ cluster and

the other clusters. We refer to this as the confidence principle.

3.) Finally, resulting clusters for an appropriate value of k& will have low pattern
correlations in concert with high ‘confidence’ (as defined above) with other

resulting clusters, which we will refer to as the significance principle.
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The fourth criterion of Rossow et al. (2005) omitted here is that of low correlation
of cluster frequency over space and time, which is particularly useful for cluster analyses
over large regions (say, the entire tropics.) .For large regions, there is sufficient
variability in cloud observations to potentially create ‘sub-clusters’ of clusters — that is,
nominally identical clusters which exhibit just enough difference in pattern correlation to
qualify as separate clusters via the significance principle. However, when the spatial-
and temporal characteristics of these ‘sub-clusters’ are analyzed, there exists a significant
amount of overlap between the ‘sub-clusters’, and that in fact, the differences are merely
an artifact of the observation dataset rather than a real difference in clusters. For our
analysis, we have chosen a spatial scale that is suitable to observe cloud-scale phenomena
- while the clouds in our defined region do exhibit considerable variability, the variability
is nothing like that which would be found in a global-scale analysis. We expect,
therefore, that differences in pattern correlation between resulting clusters to be sufficient
to satisfy the significance principle for our smaller region.

Another consideration is the utility of using pattern correlation in determining the
‘significance’ of resulting clusters. Rossow et al. (2005) determine that resulting clusters
are significant (that is to say, significantly different from other resulting clusters) if the
pattern correlation (defined as the Pearson expected value coefficient of linear
correlation) between the two clusters is < 0.6. However, there has been little or no
discussion as to why exactly pattern correlation is the preferred method of determining

cluster significance.
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We propose the following thought experiment to explore the utility of pattern
correlation: consider a function #{# varying in time. We trivially define the following
additional functions in terms of f{#):

g(t) = clf(t)
h(t) =c,f (1)

3.1
Without assigning any physical meaning to the functions, we can perform a linear
correlation analysis between f{z) and g(?), and between f(¢) and A(t). This is a simple
exercise — since the functions g(z) and A(?) are simply linear multiples of f{z), the linear
correlation in both cases will be unity. Let us now assign a physical meaning to the
functions — say that f{2), g(t), and h(t) represent the different areal cloud fraction of
stratocumulus for different regions as a function of time. (For the sake of simplicity, we
also assume that the only clouds in the regions are stratocumulus — thus the fractions
described by the functions represent also the total cloud fraction for the region.) In this
thought experiment, the cloud cover amount for the three regions will differ based on the
value of the constants ¢; and ¢,. Let us assign values of ¢ = 1, and ¢; « ¢z, and then
evaluate our hypothetical model in the framework of cloud radiative forcing. For this
case, there will be a marked difference in cloud radiative forcing between the cloud
fractions represented by g(?) and f{?), and considerably less difference in cloud radiative
forcing between the cloud fractions represented by A(#) and f{?) — despite the fact that all
three regions are represented by cloud fraction functions that correlate identically with
one another. This finding is not surprising — the linear correlation describes only how the
functions vary identically with time in this case, and clearly has no bearing on the
physical properties (or significance) of the cloud fractions described by the three

functions.
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With this in mind, let us turn to our cluster analyses. As we described in Chapter
2, it is possible to integrate over the bins of a cluster’s histogram to determine the total
cloud cover (TCC) of the region — this integration is possible because each bin contains
the number of pixels matching a certain range of cloud parameters. Integrating over
every bin therefore counts the total number of cloudy pixels in the scene, which can then
be compared to the total number of pixels observed in the scene to compute the fraction
of total cloud cover. Thus, the magnitude of the bin counts in a histogram can convey
important physical information — in this case, the more counts per histogram, the greater
the total cloud cover. This information must be included along with the spatial pattern of
histogram bin population when considering the total amount of information found in a
histogram — but linear correlation only considers the spatial pattern of bin histogram
population, and disregards the magnitude information. As in our simple example above,
two histograms with superficially similar spatial patterns, but different magnitudes of bin
populations (and therefore, different cloud cover amounts) will correlate well with one
another. This does not, however, necessarily mean that the two histograms are not
physically significant from one another, simply because the correlation analysis does not
take into account all of the relevant information to determine significance. In other
words, using correlation analysis to determine cluster significance rules out the
possibility of having two clusters with similar cloud #ypes, but radically different amounts
of cloud cover. If we want to describe the unique properties of each cluster as a cloud
regime, we need to include the possibility of regimes that vary primarily by cloud cover

amount as opposed to cloud type to be complete.
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How then do we assess the significance of cluster results if correlation analysis
doesn’t tell the whole story? One of the nicer features of k-means cluster analysis is that
these kinds of issues are directly addressed — two histograms with similar spatial patterns
but different magnitudes of population will have non-trivial Euclidian distances from
each other, and will self-identify thusly. Of course, this is of little help when attempting
to select an ideal value of £. In an ideal world, variations between observations would be
sufficiently large that observations would neatly sort themselves, with little or no
ambiguity, into the correct number of clusters. In this ideal case, there would be little
difference between the properties of observations within a cluster — much less than the
differences from cluster to cluster (the so-called confidence principle.) In the real world,
there is more ambiguity in how individual observations are sorted into clusters (due to the
nature of the observations themselves), but the fact remains that, for an appropriate value
of k, the differences between members of a cluster will be less than the differences
between centroid values — choosing a value of £ that is too large will result in duplicate
clusters that exhibit smaller intra-cluster distances. We propose that in order to assess the
significance of cluster results, the pattern correlation analysis used in previous works
must be examined in the framework of inter- and intra-cluster distance in order to
properly select the value of &, and that fixed values of pattern correlation used as
accept/reject criteria may not be the best method to determine significance (in any case, it
should at least not be the first method used).

Thus, an appropriate value of k£ for this analysis will result in unique clusters,
which will persist when different initial values for the centroids are chosen, and are made

up of observations that ‘belong’ more closely to each cluster than they do to any other
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cluster. In order to test these properties, for each value of k selected, we run the
following tests:

1.) To test the stability principle, the cluster algorithm is performed once, with the
initial centroids selected evenly throughout the observations at intervals of
k/N, and saving the cluster results. The algorithm is then repeated 5000 times,
this time selecting the initial centroids randomly. The cluster results from
each random-centroid run are pattern-correlated against the results from the
evenly-spaced centroid run. Naturally, the order of the new clusters will differ
from the order of the evenly-spaced runs — for this test, we pattern correlate all
of the randomly-derived clusters against each of the evenly-derived clusters
one at a time, and the cluster with highest pattern correlation thus found is
assumed to be the randomly-derived ‘counterpart’ to the evenly-derived
clusters. Note that for the purpose of testing stability, a simple pattern
correlation is sufficient to determine similarity of clusters. High pattern
correlation between the random runs and the evenly-spaced runs are required
to confirm the stability principle.

2.) To test the confidence principle, the mean intercluster distance for each cluster
is computed, and compared to the intracluster distances computed between
each cluster. If the largest mean intercluster distance is less than the lowest
intracluster distance, we determine that the confidence principle is satisfied.

3.) Finally, we test the significance principle by comparing the inter- and
intracluster distances computed above with the pattern correlations between

the resulting clusters. If the pattern correlation between a selected cluster and
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each of the other clusters is less than 0.6, then we determine that the
significance principle is satisfied. If the pattern correlation between any
cluster and another cluster is greater than 0.6, but the intercluster distances for
each cluster are smaller than the intracluster distance between the two clusters,
then we also confirm the significance principle. Any other combination fails

to confirm significance, and indicates that £ is likely too large.

In order to qualify as a candidate value for £, all three tests must be passed. We now
discuss the results of these tests for values of k£ between three and six.
3.4.1 Results for k =3

The three clusters found using #=3 are presented in Figure 3.3. Each cluster is
represented by a four-panel set, with each panel representing a 2D cloud-top
pressure/optical depth histogram at one of the four rainrate bins described in section 3.3.
Cluster 1 in the k=3 case appears to be largely made up of high, thin clouds with along
with a population of lower, also thin clouds, with little precipitation. This cluster has a
relative frequency of occurrence of 63.5%. Cluster 2 is a classic deep- and organized
convection cluster, exhibiting high thick clouds with moderate to heavy rainfall. The
relative frequency of occurrence for this cluster 2 is 7.3% - similar to the values found for
organized convection in the 2D case. Cluster 3 is also made up of high, thick clouds,
although somewhat less high and thick when compared to cluster 2. Rainfall for cluster 3
in this case is largely in the light- to moderate category, although some heavier rainfall

exists as well. The relative frequency for cluster 3 is 29.2%.
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Figure 3.4a. Cluster 1 found using k-means analysis with £=3. Each pane
of the figure represents a joint CTP-optical depth histogram for a single
precipitation bin, in the manner for Figure 3.3.
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Figure 3.4b. As in Figure 3.4a, but for cluster 2 found using k-means
analysis with £=3.
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Figure 3.4c. As in Figure 3.4a, but for cluster 3 found using k-means
analysis with £=3.
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After 5000 re-runs of the k=3 case, using randomly-chosen initial centroids, we
find that the 4=3 case fulfills the requirements for the stability principle — the average
correlation between randomly-chosen and evenly-chosen clusters were, respectively,
0.99, 0.99, and 0.99 for clusters 1, 2, and 3. Extremely high pattern correlations are
typical for cluster stability comparisons using low values of £ — in the extreme case of
k=1, the correlation would be unity, exactly, after all.

Intercluster distances (again, defined as the mean Euclidean distance between
each member observation and the parent cluster to which each belongs) is computed to be
3.32x107° (unitless) for cluster 1, 1.26x10™ for cluster 2, and 2.16x10™* for cluster 3. The
intracluster distances between the clusters are computed to be 3.9x107 for cluster 1 and
cluster 2, 5.95x10* between cluster 1 and cluster 3, and 1.96x10° for cluster 2 and
cluster 3. The largest variability (and therefore, ambiguity in membership) is found in
cluster 2, but this variability remains less than the distance between cluster 2 and any
other cluster, thus satisfying the confidence principle.

Intracluster pattern correlations were found to be 0.72 between clusters 1 and 3,
0.82 between clusters 1 and 2, and 0.829 between clusters 2 and 3. The highest pattern
correlation 1s, as might be expected, between the two convective clusters. However, as
we have demonstrated a high level of confidence that individual observations ‘belong’ to
their clusters, and with the previous discussion about the utility of pattern correlation in
determining significance in mind, we are comfortable with the relatively high pattern
correlations found here. Having confirmed stability, confidence, and significance of the
clusters found in the %4=3 case, we submit that 4#=3 would be a valid choice for

consideration in further analyses.
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3.4.2 Results for k=4

The four clusters resulting in a selection of k=4 are presented as Figure 3.5. Cluster 1,
with a relative frequency of occurrence of 21.9%, appears to be made up of high,
moderately thick clouds with light- to moderate rainfall, with properties similar to those
of developing convective towers. Cluster 2, with a relative frequency of occurrence of
17.5%, describes higher and thicker clouds than those of cluster 1, with greater incidence
of moderate- to heavy rainfall. Cluster 3, with the highest relative frequency of
occurrence (53.3%) is a low-precipitation, low total cloud cover regime similar to non-
convective clusters found by JT03. Cluster 4, with a relative frequency of occurrence of
7.3% (again, the same as found in the 2D and the 4#=3 case above) describes very high
and thick clouds, exhibiting a good deal of precipitation, including moderate- and heavy
rainfall.

Again, 5000 re-runs of the analysis, each using randomly chosen initial centroids,
are compared to the results above to assess stability. Pattern correlations between the
randomly-derived clusters and the clusters shown above were very high — the lowest
pattern correlation was for cluster 4, which had a pattern correlation of 0.99. Again, high
pattern correlations between the clusters indicate that the analysis is insensitive to the
choice of initial centroids; the stability of the analysis for k=4 is thusly confirmed.

Intercluster distances for the £=4 case are presented in Table 3.2. The maximum
intercluster distance is again for cluster 4, at 0.000188 (unitless.) Intracluster distances
for the k=4 case may be found on Table 3.3. The minimum intracluster distance, between

clusters 1 and 3, is 0.000203 — again, since the intercluster distances are smaller than the

60



Figure 3.5a. Clusters 1 and 2 for k-means analysis with &=4. The upper four panels
represent cluster 1, the lower four panels cluster 2
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Figure 3.5b. As in Figure 3.5a, but for clusters 3 and 4.
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Table 3.2. Intercluster distances for &=4

Cluster w/ description Mean Intercluster Distance (unitless)
Cluster 1 1.18x107
Cluster 2 9.71x10°
Cluster 3 1.89x10™
Cluster 4 6.54x10”

Table 3.3. Intra-cluster distances for k=4

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Cluster | 3.34x10™ 2.03x10™ 2.96x10”
Cluster 2 3.34x10™ 9.59x10™ 2.08x107
Cluster 3 2.03x10™ 9.59x10™ 4.43x107
Cluster 4 2.96x107 2.08x10” 4.43x10”

Table 3.4. Coefficients of pattern correlation between clusters in the /=4 case.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Cluster 1 --- 0.928 0.921 0.839
Cluster 2 0.928 --- 0.789 0.792
Cluster 3 0.921 0.789 --- 0.657
Cluster 4 0.839 0.792 0.657 ---
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distances between the clusters themselves, we have confidence that individual
observations are being assigned correctly to the centroids.

Pattern correlation between the clusters, as one might suspect from Fig. 3.5, are
somewhat higher — the pattern correlations between the clusters are shown in Table 3.4.
The highest pattern correlations are found between clusters 1 and 2 (0.928) and between
clusters 1 and 3 (0.921.) Both cases are of predominantly high clouds, of low- to
moderate thickness and moderate- to low rainrates being compared to one another — the
key difference is the amount of cloud coverage in each cluster. Both clusters 1 and 2, for
example, contain moderately-thick high clouds of similar appearance (at least in the sense
of how they are represented in our 3D histogram) — but there is a great deal more cloud
cover in cluster 2 than in cluster 1, especially of clouds with low- and moderate rainrates.
Similarly, cluster 3 contains markedly fewer clouds than cluster 1 — one might envision
(and we’ll certainly do so, in greater detail, in just a bit) cluster 3 as a prototypical trade-
inversion cumulus regime, with fewer clouds (and certainly less convection), and cluster
1 as a transitional regime (perhaps due to a breakdown of stability in the region)
containing more convective clouds, and an increased amount of total cloud cover. From
a histogram-centered perspective, the clouds in these three clusters are topologically
similar, and pattern correlation is therefore high. The amount of cloud cover, and the
distribution of where that cloud cover occurs at certain rainrates, is what distinguishes
these clusters from one another in the cluster analysis. When considered along with a
high confidence in assignment of individual observations to these clusters, we feel

comfortable with the significance of the clusters as computed with &=4.
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3.4.3 Results for k=5

Clusters found for the k=5 case are shown in Figure 3.6. The five clusters shown
in Figure 3.6 depict our familiar deep-convective (cluster 5) and hot-tower (cluster 4)
structures, with relative frequencies of occurrence of 7.3% (by now, a familiar number)
and 27%, respectively. We also see a low-cloud cover/low precipitation cluster
containing thin cirrus and low, likely cumuliform clouds (cluster 3) with relative
frequency of occurrence of 42.3%, which is reminiscent of the trade-regime cluster, and
two high-cloud clusters of moderate thickness and rainrate (clusters 1 and 2.) These
latter clusters have relative frequencies of occurrence of 14.5% and 8.8%, respectively.

After performing 5000 re-runs of the analysis using randomly chosen initial
centroids, we start encounter some issues. Pattern correlations between clusters are lower
than previous cases, and in fact, several of the cases exhibit different characteristic
clusters. Although we omit figures of the clusters themselves in the name of brevity, it is
worthwhile to describe the differences between the random and the evenly-spaced runs.
Cluster 1 from the random run is roughly similar to cluster 5 from the evenly-spaced run
depicted in Figure 3.6; likewise, cluster 3 in the random case approximates cluster 4 of
the evenly-spaced case, and cluster 4 of the random case is similar to cluster 1 of the
evenly-spaced case. However, clusters 2 and 5 in the random case are markedly different
than clusters 1 and 2 in the evenly spaced case. The differences are largely ones of cloud
cover, although some topological differences do exist. These differences are sufficiently
large enough that pattern correlation between the ‘related’ clusters for the evenly-spaced

and the randomly-initiated runs are low: as low as 0.669 for randomly-initiated clusters
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Figure 3.6a. Clusters 1 and 2 for k-means analysis with &=5. The upper four panels
represent cluster 1, the lower four panels cluster 2
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Figure 3.6b. Clusters 3 and 4 for k-means analysis with £&=5. The upper four panels
represent cluster 3, the lower four panels cluster 4
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Figure 3.6¢c. Cluster 5 for k-means analysis with £=5.
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that are identified as most similar to cluster 1 of the evenly-spaced runs. Table 3.5
contains the coefficients of pattern correlation for the £=5 case.

Average intercluster distances for the k=5 case are provided in Table 3.6.
Intercluster distances for clusters 3-5 are generally small, and are comparable to other
intercluster distances computed so far. The average intercluster distance for both clusters
1 and 2, however, are larger, signifying more ambiguity in membership of individual
observations to each cluster. Mean intercluster distances for cluster 1 and 2 are,
respectively, 0.000115 and 0.000187. The intracluster distance between cluster 1 and 2 is
computed to be 0.0000814 — which is extremely close and is, in fact, smaller than the
intercluster distances of clusters 1 and 2 (since this finding violates the confidence
principle, we omit reporting of the intracluster distances in the interest of brevity.) In
other words, there exists more variability within cluster 1 and cluster 2 than there exists
difference between them. This variability also explains the results of the stability tests:
since intercluster variability for the first two clusters is greater than the intracluster
variability between them, it is perhaps not surprising that the results of the stability
analysis will depend more on the initial choice of centroids.

Finally, we assess the significance principle for the &=5 case. Pattern correlations
between the five clusters are not markedly higher than in other cases, with the exception
of the pattern correlation between clusters 1 and 3, which is computed to be 0.934. Since
we have determined that we have low confidence in the uniqueness of cluster 1, we
cannot now dismiss this pattern correlation result, and must concede that the clusters in

the k=5 case lack significance from one another.
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Table 3.5. Average coefficients of pattern correlation between clusters for the =5 case

Cluster 1 0.669
Cluster 2 0.984
Cluster 3 0.976
Cluster 4 0.996
Cluster 5 0.993

Table 3.6. Average intercluster differences within clusters for the £=5 case

Cluster 1 1.15x10™
Cluster 2 1.87x10™
Cluster 3 9.96x10°°
Cluster 4 1.07x10”
Cluster 5 4.17x10°°
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3.4.4 Results for k=6

The six clusters computed for k=6 are shown in Figure 3.7. Having determined
that k=3 and 4 are valid choices for analysis, and that £=5 is not a valid choice, we expect
that increasing values of &k above 5 should also fail. This is, in fact the case — specifically,
we were unable to assess stability for the £=6 case due to great variability in the results
when randomly-selected initial centroids were used in place of evenly-selected centroids.
This is not entirely unexpected, since raising the value of k for a fixed number of
observations splits the observations into more clusters composed of fewer members (in
fact, when k=N, each observation becomes its own cluster.) This of course has the
ultimate effect of increasing the mean intercluster distance. Minor differences between
clusters composed of only a few observations are also not terribly stable, and the minor
differences imparted by using different initial centroids become increasingly influential in
the final outcome. For the k=6 case, the clusters found for each random case often bore
little resemblance to the clusters depicted in Figure 3.7, and as such, had extremely poor
pattern correlations. Since we have essentially no confidence in our ability to produce six
unique clusters for the £=6 case, we therefore forego the remaining tests, and truncate our

search for increasing values of £.
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Figure 3.7a. Clusters 1 and 2 for k-means analysis with £=6. The upper four panels
represent cluster 1, the lower four panels cluster 2
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Figure 3.7b. Clusters 3 and 4 for k-means analysis with £=6. The upper four panels
represent cluster 3, the lower four panels cluster 4
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Figure 3.7¢. Clusters 5 and 6 for k-means analysis with &=6. The upper four panels
represent cluster 5, the lower four panels cluster 6.
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3.4.5 Discussion on selection of k

We are left with two viable candidates for & — either A=3 or k=4 produce unique
and significant clusters for our particular dataset. As is noted in JTO3, choosing the
largest valid option for k£ has the benefit of choosing the most number of ‘distinctly
different’ clusters, and therefore provide the most granularity when discussing the
properties of the domain as a function of cluster-derived properties. We therefore select
k=4 as the best choice for continued analysis for the remainder of this work.
Coincidentally, the 2D analysis also used 4=4, but for very different reasons, although it
should be noted that the general properties of the clusters found in the 3D analysis do
bear some resemblance to those of the 2D analysis. We shall argue that the differences
between the 2D and 3D analyses are of some interest, however.

Finally, it is worth mentioning that our selection of k=4 for this analysis should
not be construed as a suggestion that the region of interest in the tropical West Pacific
contains four, and only four regimes — had we used different variables, we certainly could
have found other appropriate values of k. As stated in Chapter Two, it is, rather, our
intent to ‘index’ the atmosphere by using important cloud properties of a region — not to
classify the atmosphere in fofo as a function of our regimes. We are mindful, therefore,
that our results (which certainly are appropriate for our particular combination of data
and region) cannot be extrapolated to other regions without re-performing the steps
described in this chapter.

3.5 Discussion
If we interpret the clusters found in our 3D analysis in the same manner as JT03

interprets the results of their cluster analysis, then we conclude that the clusters shown in
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Figure 3.4 represent the four dominant cloud regimes found in the region of interest as
determined through our 3D combination of cloud-top pressure, cloud optical depth, and
rainfall amount. Comparing the results of Figure 3.4 to those of Figure 2.5 (our 2D
MODIS-derived clusters) we see several key similarities, along with some important
differences. Both the 2D results (Figure 2.5) and the 3D results (Figure 3.4) contain what
appear to be at least two convectively-active regimes, and at least one convectively
suppressed regime, with identical convective regimes consisting of a ‘hot-tower’ like
regime, and a likely organized deep-convective regime in both analyses. Furthermore,
the identical convective regimes have similar relative frequencies of occurrence,
especially when comparing the frequencies of occurrence of the organized deep
convective clusters. The general similarities between the two analyses are comforting, at
least in the sense that we have not gone too far astray from our original results with our
new analysis technique.

Notable differences between the 2D- and 3D analyses are perhaps more
interesting. One of the motivations of attempting this kind of analysis with a 3D dataset
is a fair amount of ambiguity in the nature of moderately thick cirrus, perhaps above an
underlying layer of congestus cloud, in the manner depicted in Figure 2.6. Indeed, the
results of Figure 3.4 bear this out — the nature of the non-convective regimes found in our
3D analysis is notably different than those of the 2D analysis. The most immediately
recognizable difference between the 2D non-convective and the 3D non-convective
clusters is the presence of a weakly-convective regime consisting of moderately-thick
congestus and cirrus clouds in our 3D analysis — this is certainly a departure from the 2D

analysis, although hints of some convection do appear in the 2D-derived high-cloud
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regime. Our 3D analysis, at first glance, appears to contain a convectively suppressed
regime consisting of low height- and thickness clouds (perhaps cumulus or scattered
stratocumulus) with a smattering of thin cirrus present as well. Overall cloud cover in
this suppressed regime is low, suggesting the possibility for a large amount of shortwave
surface heating. The next three clusters appear to vary by convective amount and
strength — a marginally convective regime (that we just discussed) consisting of
congestus and cirrus, with low- to moderate rainrates, followed by an isolated convective,
and finally the ubiquitous deep-convective regime. These results echo other observations
of tropical cloud construction more strongly than does the 2D analysis, and could be
arranged to support several different theories regarding the possible progressive nature of
tropical convection (e.g. Stephens et al. (2003)). In order to investigate these possibilities,
however, we will need to first derive the average properties of each of our regimes, assess
the progression of each regime as a function of time, and compare other observations of

tropical variability with our results. We present this work in forthcoming chapters.
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Chapter 4

Properties of the Tropical West Pacific from 3-Dimensional Cluster Analysis

4.1 Introduction

The central hypothesis of this research is that the current state of the tropical
environment can be identified by a continuing progression of a few unique, self-similar
cloud states, differentiable by a small set of cloud properties, and that through cluster
analysis centered on these properties, we may more accurately and objectively investigate
the evolution of the properties of the tropical atmosphere. Of special consideration are
those properties that describe the radiative, hydrological, and thermodynamic states of the
atmosphere — and perhaps more importantly, the interaction between these properties, and
what we can determine about the progressive nature of the tropical system from those
interactions.

Before developing these concepts further, one formal detail must be ironed out —
we must make the connection between a cloud cluster and a cloud regime. What has
been described so far have been cloud clusters, which is to say, the results of a cluster
analysis describing the several statistically unique patterns in a dataset consisting of cloud
observations. These are naturally-occurring patterns in nature and are unique in their
occurrence (in other words, the patterns don’t overlap when they occur.) This provides a
convenient definition of a cloud regime: a naturally occurring and ubiquitous cloud
population that manifests itself over a period of time in a real dataset. If we use the
results of our cloud cluster analysis to identify sets of naturally occurring and ubiquitous

cloud populations, then we have the mechanism to describe cloud regimes in the tropical
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West Pacific. The key distinction is how each is applied — for our purposes, we will refer
to a cloud cluster as specific to the particulars of cluster analysis, and will use cloud
regime to refer to the occurrence of one of our cloud clusters in a real dataset.

We begin with a detailed description of each cloud regime based solely on the
cloud properties of each regime (as determined from the MODIS and AMSR/E
observations used to describe the regime), and then follow up with an examination of the
progression in time of each regime. We then compare the results of our cloud regime
analysis with external datasets (specifically, CERES OLR and flux data, and NCEP
reanalysis products) to assess the germane atmospheric properties of each cloud regime,
and the evolution with time of these properties. The results of this comparison are of
particular use in examining contemporary theories of tropical evolution, which we will
discuss in Chapter 5.

4.2 Description of 3D regimes

The individual cloud clusters have heretofore been referenced by their cluster
numbers, e.g. Cluster 1, etc. These numbers are, of course, arbitrarily assigned — in
moving forward to describe the properties of each regime (based on the occurrence of
each cluster) we will want to assign a name for each regime that is descriptive of the
overall properties of the regime. As we describe the individual properties of each cloud
regime, as we do here, it is convenient to include the name we assign to each regime. We
now present the four regimes of our 3D analysis, sorted roughly by increasing amount of

convection in each regime.
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4.2.1 Cluster 3 — Trade Cumulus and Cirrus regime

The first regime contains the fewest convective clouds and the least cloud cover
of the four regimes, and is also the most commonly found cloud regime in the dataset.
The 3D histogram representing this regime is provided as Figure 4.1. The relative
frequency of occurrence (RFO) for this regime is 53.3% - just over half of the cloud
scenes in our analysis fit into this regime. As discussed in Chapter 2, it is possible to
integrate over the histogram bins to determine the total cloud cover (TCC) in the regime
— for this regime, total cloud cover is a scant 4.799 percent. By way of comparison,
TCCs for convectively suppressed regimes described in JTO3 were upwards of 40%.
(This difference is also reflected in the scaling of the figures.) A likely explanation for
this discrepancy is found in the disparate nature of the datasets used: JT03 used ISCCP
observations of Skm resolution, averaged over 3 hours — the presence of any cloud in the
Skm box over the three-hour averaging period would register the entire pixel as cloudy.
For our study, the 1km-resolution MODIS pixels are observed relatively instantaneously
— for an equivalent Skm area in our study, only those pixels that actually contain cloud at
the time of overpass are counted as cloudy pixels. For the extreme case of a single, 1km?
cloud existing in a 25 km? area (the size of the 5km pixel) the MODIS observation would
return a single, 1km” cloudy pixel, and 24 clear pixels, whereas the ISCCP observation
would return a 25km? cloudy pixel, with the single cloudy area ‘smeared’ over the entire

domain. The difference in perceived cloudiness is roughly an order of magnitude, which
corresponds with the difference in TCC seen in our study. A second explanation is found

in the disparate nature of the regimes themselves — in our analysis, we found two regimes
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Figure 4.1. 3D histogram of the trade cumulus and cirrus regime. Each
panel consists of a 2D histogram of cloud top height along the y-axis, and
cloud optical depth along the x-axis, with a single panel representing the
2D histogram of the cloud population within a certain rainrate bin
(described in Chapter 3.) The regime consists primarily of thin, upper-
level clouds and low-topped (CTP > 800mb) thin clouds consistent with
fair-weather cumulus clouds.
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consisting of generally shallow cumuliform clouds with attendant populations of thin
cirrus (clusters 3 and 1), but with marked difference in precipitation (and in total cloud
cover.) It is possible that the suppressed low-cloud regime of JTO3 (which did not use
precipitation information to determine cloud cluster) contained sporadic convective
clouds (which typically have higher cloud cover amounts, as we will see), artificially
inflating the total cloud cover of the JT03 regime. A third explanation is simply that
there were fewer clouds over the domain during the period of observation for this study
than there were during the period used in JTO03.

As shown in Figure 4.1, the trade cumulus and cirrus regime consists of relatively
high (cloud tops between 310 and 180mb) and thin (optical depth < 3.6) clouds, with a
secondary population of very thin (optical depth < 1.3) and low (cloud tops < 800mb)
clouds. The bulk of observed clouds contained rainrates less than 1.5mm/hr, although a
scant few pixels had higher rainrates. The lack of significant convection in the regime (as
would be expressed by high-thickness, high-topped clouds with significant amounts of
moderate- to heavy rainfall) indicate the general stability of the regime — this agrees with
the conventional understanding of the tropics as existing largely in a state of subsidence,
populated with boundary-layer clouds generated by eddies. As such, we would expect of
this regime generally high OLRs representative of the ocean surface, with attendant high
surface downward shortwave flux, leading to warmer SSTs. The paucity of total cloud
cover also suggests a relatively lower surface humidity, pointing to calmer surface winds.
In section 4.4, we further test these hypotheses with datasets external to the cluster

analysis.
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4.2.2 Cluster 1 — ‘Enhanced’ Cumulus regime

This cloud regime is perhaps best viewed as an extension of sorts of the trade
cumulus regime — the enhanced cumulus regime contains many clouds of a similar nature
to the trade cumulus regime. Clouds of the regime are typically thicker, with optical
depths typically less than 9.4 (with a small fraction in the range between 23 and 9.4.)
Cloud tops for the enhanced cumulus regime fall into two categories; first, higher level
clouds with cloud top heights between 180- and 310mb, divided between convective
clouds (as observed through at least moderate rainrates) as well as a population of thicker
cirriform clouds (with low or no rainfall) 1; and a second population of low-topped thin
clouds similar to the trade cumulus found in the trade cumulus regime. As with the
previous regime, the bulk of the cloud population exists at rainrates below 1.5 mm/hr,
although there exists a significant fraction of upper-level, moderately thick clouds with
rainrates between 1.5 and 5.1 mm/hr, as well as a tiny fraction of cloud pixels with
heavier rainfall (rainrates exceeding 5.1 mm/hr). Total cloud cover for the regime is
found to be 29.33%, and the RFO for the regime is found to be 21.9%, making it the
second-most common regime. The histogram for this regime is presented as Figure 4.2.

When compared to the more convective regimes (which we will describe shortly),
total cloud cover for the enhanced cumulus regime is relatively low — approximately
seventy percent of the region remains cloud free, and a fair amount of the cloudy parts of
the region contain low clouds that are more representative of a convectively-suppressed
atmosphere. However, it is the presence of convection that marks this regime as unique
from both the convectively suppressed regions and the other convective regions. As a

prototypical ‘transitional’ regime, it is expected to have unique properties compared to
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Figure 4.2. As in Figure 4.1, but for the enhanced cumulus regime. Note
that the scaling factor for individual bin population has been increased to
account for the greater total cloud cover of this regime compared to the
regime of Figure 4.1.
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the convectively suppressed regime. Although total cloud cover is still generally low, the
presence of deeper cloud suggests greater surface convergence of moisture, as well as
differences in the surface wind profile and mid-tropospheric moisture profiles. OLR for
the regime should be slightly lower, with appropriately lower shortwave surface fluxes as
well — we will return to test these hypotheses again in section 4.4.
4.2.3 Cluster 2 — Isolated Convection

Figure 4.3 depicts the histogram for the isolated convective cluster. The third-
most common regime of the four (RFO = 17.52%), the isolated convective regime
consists mainly of moderately thick, high-topped clouds with moderate- to heavy rainfall.
Cloud-top pressures for the isolated convection regime are generally between 180-
310mb, with a number of pixels exceeding the 180mb upper limit, representing deep
convection. Cloud optical depths in the regime are between 3.6 and 23, with a small
fraction exceeding optical depths of 23. The majority of the rainfall in the regime is
again in the light rain category, but with a sizable minority in the 1.5-5.1mm/hr category,
with roughly twice as much rainfall in this category as the enhanced cumulus regime.
Another indicator of the convective nature of this regime is the total cloud cover, which is
59.17%, suggesting greater coverage of convective anvils which commonly occur with
convection. Furthermore, there exist in this regime fewer low-topped, cumuliform cloud
such as those found in the prior two regimes.

The two convective regimes found in this study share many common features
with other convective regimes as found by other studies using cluster analysis (JTO3,
Rossow et al. 2005) which is perhaps not surprising — the unique nature of tropical

convection makes the convective modes of the tropics some of the more easily-

85



T
3t
1A wan A

Figure 4.3. As in Figure 4.2, but for the isolated convective regime.
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recognizable features of the system. A few key differences, however, offer some insight
into the utility of including precipitation in the technique — for example, there is a
markedly decreased presence of moderately thick cirrus in the isolated convective regime
(compensated by an increased presence of the same in the enhanced cumulus regime).
The shift of non-precipitating thicker cirrus (or perhaps, of non-precipitating multiple
layers of cirrus and underlying cumuliform cloud) to a different regime addresses one of
the more prominent ambiguity issues discussed in Chapter 2. (Whether or not this is the
primary benefit of the inclusion of rainfall into the algorithm is an issue we discuss at the
close of the chapter — there are other benefits of including rainfall to consider.)

We would expect even lower OLR values compared to the previous regimes and
reduced downward shortwave surface fluxes in concert with this regime, along with
higher total column water vapor amounts and a beginning of a decrease in SSTs due to
shading from convective anvils and increased transport of energy from the ocean surface
due to increased winds. The transport of water vapor from the near the ocean’s surface
into the upper atmosphere would become increasingly important in this regime, as would
the concurrent change in the vertical heating profile due to latent heat release in the
atmosphere aloft due to the convection. (We speculate further on this issue in Chapter 6.)
4.2.4 Cluster 4 — Organized Deep Convection

The final regime described by our analysis is one of predominantly deep
convection, with near-total cloud coverage and the most rainfall of all the regimes. This
regime is also the least-present in the dataset, with a relative frequency of occurrence of

only 7.3% (which happens to be the same frequency of occurrence found for the deep-
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Figure 4.4.
regime.

As in Figure 4.3, but for the organized deep convective
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convective regime in the 2D analysis) and is the most unchanged regime when compared
to the original 2D analysis. The histogram representing the deep convective regime is
presented as Figure 4.4. Total cloud cover for this regime was found to be 96.1%.

High, thick clouds dominate the regime - the bulk of the pixels have cloud tops
above the 310mb level, and exhibit optical depths in excess of 23, although the bulk of
pixels have optical depths between 1.3 (in the case of anvil cirrus) through 60 (in the case
of convective cores.) The bulk of the raining pixels still inhabit the light rain category,
with rainrates under 1.5 mm/hr, but this is concurrent with the highest concentration of
rainfall between 1.5 and 5.1 mm/hr of all the regimes. Furthermore, the vast majority of
all of the ‘heavy’ rainfall (characterized by rainfall in excess of 5.1 mm/hr) occurred in
this regime — more pixels with these rainrates occur in this regime than in the other three
regimes, combined.

The nature of organized convection in the tropical West Pacific ocean is a storied
topic of the atmospheric sciences. Nakazawa (1988) drew on this history to develop his
theory of tropical ‘super clusters’, the properties of which exhibit many of the same
properties found in this analysis. The convection associated with the MJO also has the
same general properties as those found by this study, and organized clusters of deep
convection plays a central role in several dynamic theories of tropical convective
interaction with the environment (Moncrieff (1992)).

4.3 Temporal characteristics of 3D regimes

One interesting feature of cluster analysis is the ability to go back to the original

dataset of histograms and assess which histogram belongs to which regime, and thereby

evaluate the evolution in time of each regime. In principle, one could do this from the
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saved centroid-histogram distance information as the analysis is originally performed as
well - however, there exists a great deal more ambiguity in cluster assignment in the
initial stages of the analysis, making it a more prudent effort to perform after the clusters
are already comfortably defined.

Having described the basic cloud properties of the regimes in section 4.2, it is
useful to examine the temporal properties of each regime. As previously described,
during the clustering procedure, each histogram is assigned to the ‘best’ cluster, and this
assignment information describing which observations ‘belongs’ to which cluster is
stored locally. For a dataset of M daily observations, we therefore have M assignments
between one of k clusters. For each cluster, we can construct a vector of length M
containing an arbitrary, non-zero value for days when the observed histogram was
assigned to that particular cluster, and a value of zero for days when the observed
histogram was assigned to a different cluster. We can then create a k¥ x M array
combining the vectors for all values of & - plotting the array for our results yields Figure
4.5, where the non-zero values (representing the presence of a particular cluster at a
certain time) are plotted in dark blue. In the case of Figure 4.5, the arrangement of the
array is ordered by convective activity, starting with the trade cumulus vector at the
bottom, and ending with the organized convection vector at the top. Several general
trends are immediately noticeable in the figure — a general sawtooth-shaped pattern
(Figure 4.6) with five roughly-defined peaks from 1 July through 26 November 2002

suggest a cyclic pattern of convective development from trade cumulus through
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Figure 4.5. Evolution with time of each cloud regime, with dates for years
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91

4 May



organized deep convective regimes. The period of these cycles is roughly 40 days, with
the most clearly-defined cycles occurring in late fall through winter. After 18 January
2003, the pattern oscillates at a much higher frequency, with no occurrence of the deep-
convective regime as the year progresses through May 2003.

The pattern described in Figure 4.5 and 4.6 is quite suggestive of the MJO, and
indeed the pattern coincides with low OLR anomalies (not shown at present, we return to
the topic shortly) generally associated with an active MJO. After the ‘MJO’ period
ceases, the convective cycles are generally more random, although higher-frequency
sawtooth cycles (terminating with the isolated convection regime) are seen from 30
January through 6 March 2003.

The presence of these possibly cyclic- and progressive patterns in cloud regime
evolution is clearly worth further investigation. It is difficult to do so, however, with
only the information provided in the datasets internal to the cluster observations. We
move forward, therefore, by using our regime information, and specifically, the
knowledge of the occurrence in time of each regime to compile a regime-sorted database
of external observations from satellite and reanalysis data. Through the use of these
regime-sorted compilation datasets, we can investigate more of the mechanisms that may
govern the cyclic behavior observed.

4.4 External observations of 3D regimes

The various hypotheses addressing the organization of the tropical cloud cycle are
legion, but most of the major theories involve some combination of a select set of
atmospheric parameters combined in differing physical frameworks. One such example is

the ‘humidistat’ hypothesis of Stephens et al. (2003) which posits a three-phase cycle of
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the following: a destabilization phase marked by warming SSTs in concert with upper-
atmosphere cooling that results in a moistened, unstable atmosphere; followed by a
convective phase, initiated by an unspecified convective trigger (thought to be a
consequence of a superimposed MJO dynamics profile which exerts sufficient control to
initiate convection) marked by organized convection which results in strengthened
surface winds, increased surface evaporation with decreased SSTs and a moistening and
warming of the upper troposphere; and finally, a restoring phase which occurs after the
MJO-like convective trigger has moved out of the region, leaving in its wake a large
amount of residual upper-level cloud which (through LW heating effects aloft and SW
cooling effects at the surface) restores the atmospheric stability, and eventually
dissipates, returning the system to the beginning. In this theory, as with other theories
regarding convective control of the tropics, the key interactions are those between surface
parameters (SST, evaporation/humidity/surface winds, and surface radiative fluxes) and
free- and upper-tropospheric parameters (LW heating, humidity, precipitation (with
attendant latent heating) and vertical temperature profiles) as governed by the cloud
processes within the system. Since our goal is to examine potential mechanisms that
govern the tropical cycle of cloudiness, our choice of external datasets to use in concert
with our cloud regime information is dictated by these relevant variables.

Thus far, we have used a combination of CERES instrument data to observe
radiative properties of the atmosphere, and NCEP reanalysis products to observe other
properties. In coming chapters, we will undergo examination of the region using regime
analysis including CloudSat observations of precipitation (Haynes et al., in preparation.)

This research is addressed in Chapters 5 and 6.
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4.4.1 Radiative characteristics

With respect to the physical models we intend to investigate with our regime
analysis, there are three key parameters that are reliable measurements of the radiative
state of the earth-atmosphere system that are also easy to co-locate with the MODIS and
AMSR/E observations used to create our cloud regimes. Pending further discussion, the
three parameters that we use to infer atmospheric radiative properties are — OLR, surface
downwelling longwave flux, and surface downwelling shortwave flux. Naturally, the
latter two properties are more difficult to retrieve for cloud scenes exhibiting a high
amount of cloud cover (namely, our organized deep convection regime) - in the case of
highly cloudy scenes, surface flux properties are generally computed using radiative
models (e.g. Li et al. (1993), Li et al. (2002)).

Our motivation for choosing these three parameters is based primarily on our
objective of comparing the radiative properties of our cloud regimes with the
hypothesized radiative properties of theorized cloud systems (e.g. the cycle of
destabilization, convection, and restoration described in Stephens et al. (2003)). OLR,
while not specifically tied to the humidistat hypothesis, is a useful parameter to observe,
especially when comparing cloud regime tendency to phases of tropical oscillations such
as the MJO which are often indexed by OLR anomalies. Surface downwelling fluxes of
shortwave and longwave radiation are used as proxies for the magnitude of surface
heating by insolation (as well as likely cooling of the upper atmosphere) and of upper-
atmosphere heating due to cloud greenhouse effects. It is our hope that by obtaining

domain- and regime-averaged properties for these parameters, we should gain insight into
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(at least the radiative) aspects of several current hypotheses regarding convective
regulation in the TWP.

A convenient source of OLR and surface flux information comes from the
CERES instrument aboard the Aqua satellite, which also carries the MODIS and
AMSRJE instruments used to create our cloud regime analysis. This greatly simplifies
the process of co-locating our radiative properties with our regime-based cloud scenes.
Two CERES instruments (Wielicki et al., (1996)) aboard Aqua employ three-channel
scanning broadband radiometers to observe a variety of scientific parameters, including
ERBE-like fluxes and observations of TOA/surface fluxes. For this comparison, we use
the Single Scanner Footprint (SSF) CERES product, using observations from both the
FM3 and FM4 instruments aboard Aqua. OLR and surface downwelling SW and LW
fluxes are both available from the product, with the downwelling surface flux parameters
computed using a radiative transfer model described in Li et al. (2002). CERES
observations are collected for the same region described in Chapter 3 (150°-160° E, 0°-
10°N) and averaged over the domain to compute a daily average of these properties.
Figures 4.7, 4.8, and 4.9 depict overlays of daily, domain-averaged values of OLR,
downwelling SW flux at the surface, and downwelling LW flux at the surface (smoothed
with a running 5-day filter for clarity) superimposed on the regime trend plot (as
previously described and introduced as Figure 4.5.)

Figure 4.7 depicts the relationship between CERES OLR and the regime trend.
Perhaps the most noticeable trend in the OLR/regime relationship is that during quiescent
periods of convection, OLR values are higher, with lower, colder OLR values (more

representative of deep convection) occurring in concert with the convective regimes.

95



This is especially true during the first two-thirds of the time period, which is marked by
periodic cycles of convection with a frequency of approximately 40 days. Mean OLR
values, by regime are presented (along with the flux data) in Table 4.1.

Figure 4.8 depicts the relationship between downwelling SW flux at the surface as
observed from CERES and the regime trend. A generally similar pattern as in Figure 4.7
is found — the lower cloud cover amount of the non-convective cluster fosters greater
insolation, and greater downwelling shortwave flux. It is expected that this increased
insolation would lead to increased surface heating, and warmer SSTs during non-
convective periods. (We investigate this in the next section.) As convection in the domain
becomes more predominant, insolation decreases as cloud cover increases. Mean values
for downwelling shortwave flux at the surface for each regime are shown in Table 4.1.

Figure 4.9 presents the relationship between CERES-observed downwelling
longwave flux at the surface versus the regime trend. As the domain becomes
increasingly convective, surface downwelling LW flux increases as well, which agrees
with our expectations that increased amounts of thicker cloud and increased water vapor
(especially with increasing clouds amounts located higher in the atmosphere) would lead
to increased trapping of longwave radiation, thereby warming the upper troposphere.
Combined with the decreased insolation, we would expect a general decrease in SST and
a cooling of the ocean surface combined with this upper-tropospheric warming. Again,

we investigate this further in the next section.
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Figures 4.7, 4.8, and 4.9 (from top to bottom) Cluster trend versus
CERES observed OLR, downwelling SW flux at the surface, and
downwelling LW flux at the surface, respectively. CERES observations
shown in predominantly orange, regime blocks in dark blue.
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Table 4.1. CERES observed radiative properties by regime type

Trade Enhanced Isolated Organized
Cumulus Cumulus Convection Convection
OLR 257.9 W/m* | 242.1 W/m* 225.5 W/m® 192.6 W/m*

Downwelling | 211.6 W/m® | 207.5 W/m~ | 204.1 W/m® 195.9 W/m®
surface SW flux

Downwelling | 418.0 W/m® |433.1 W/m* | 433.0 W/m® 435.3 W/m”
surface LW flux

The results shown here are promising — the radiative characteristics of the regimes
as derived from our 3D cluster analysis generally agree with our expectations of what the
radiative properties for regimes consisting of the kinds of clouds that we see in our
regimes. How these radiative parameters interact with the other atmospheric parameters
that are thought to govern the tropical cloudy cycle will determine how closely the
regimes derived from our analysis agree with contemporary theory.

4.4.2 Thermodynamic characteristics

Assessing the thermodynamic properties of the atmosphere is simultaneously the
most important and the most difficult task to accomplish over the tropical oceans.
Comprehensive data collection sites in the tropical West Pacific such as the ARM
facilities located on Nauru and Manus islands and in the Australian coastal city of Darwin
are typically well-equipped, but provide only point-specific information. Using point-
specific datasets in concert with cluster analysis requires a resampling of the cluster
domain, as is done in Jakob et al. (2005.) Estimating the total thermodynamic domain
properties of cloud regimes requires a data source that covers the entire domain, which at

this time, does not exist for the tropical West Pacific.
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We may make some progress, however, by using reanalysis data. The NCEP
reanalysis product, described in Kalnay et al. (1996) uses forecast model analysis updated
every 12 model hours with observations from the region. The forecast model ingests the
few observations available, along with relevant satellite retrievals, and forecasts the
domain properties using a standard forecast model approach. After a 12-hour forecast
run, the model solution is compared to the observations of the domain at the end of the
period, and the model is modified such that the model predictions match the observations.
The cycle is then repeated, continually modifying the model solution to agree with the
observations, while filling in the details for regions where observations are not possible.
The result is a high temporally- and spatially-covered dataset that is accurate for
analytical use, within the limits of the model used to generate the dataset.

We can use the domain-averaged properties from reanalysis products such as the
NCEP reanalysis project to assess some of the more difficultly retrieved thermodynamic
parameters for our domain. Among these parameters that we investigate are: 850mb
zonal wind, SST, total column water vapor, vertical velocity profiles, and atmospheric
stability, represented by the computed lifted index in the reanalysis product. For each
variable, we obtain a daily domain-averaged value over our region of interest from the
12-hourly averaged reanalysis product, giving us a half-daily domain average to compare
with our regime properties. We discuss each variable separately.
4.4.2.a 850mb Zonal Wind

A depiction of the mean 850mb zonal wind plotted against the regime trend (in
the manner of Figures 4.7-4.9) is provided as Figure 4.10. Zonal wind at this level is

often associated with the onset of deep convection (often called ‘westerly wind bursts’,
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referenced in Johnson and Lin (1997)) and is suspected to be a mechanism of low-level
convergence and enhanced surface evaporation. As such, the low-level zonal wind
function as a convective triggering mechanism, and is suspected to be driven by the
large-scale dynamics in the tropics.

Although the reanalysis results of Figure 4.10 are not as reliable as actual
sounding observations, we may detect some of the important trends using the reanalysis
data. One general trend we see is a stronger pattern of easterlies over the winter months,
with departures to westerlies (or at least a significant weakening of the prevailing
easterlies)in advance of deep convection. The summer months on either end of the figure
experience more unsettled wind conditions. With regard to the 850mb wind properties by
regime, 850 mb winds are milder and easterly (mean value of -0.149 m/sec) in the trade
cumulus regime, with a shift towards stronger westerlies in the enhanced cumulus and
isolated convection regimes (mean values of 0.913 and 1.242 m/sec, respectively).
Winds are still westerly, but much weaker in the deep convective regime, with a mean
value of 0.241 m/sec.
4.4.2.b SST

The domain-averaged SST anomaly for the period is plotted against the regime
trend in Figure 4.11. In nearly every mechanistic theory of tropical convective
regulation, increases in SST during cloud-free periods, due to increased insolation, are
predicted in advance of convective triggering (e.g. Stephens et al. (2003)). In our
analysis, we observed increased insolation (in the form of heightened surface
downwelling SW flux) during non-convective periods; as such, we would likewise expect

increasing SSTs during these periods. This is confirmed, as is shown in Figure 4.11 —
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Figure 4.11. As in Figure 4.11, but for NCEP SST versus regime trend
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SSTs continue to increase during the trade cumulus and enhanced cumulus regimes (on
the order of ~0.7 K), then experience a marked decrease in temperature during the
convective regimes.
4.4.2.c TCWV

The amount of column water vapor is very much tied to the amount of convection
in the atmosphere — the ability of the atmosphere to transport latent heat, especially into
the middle troposphere, where it can have a marked feedback effect on convectively-
forced waves in the tropics, is tied to the amount of moisture evaporated. Figure 4.12
presents the total column water vapor (TCWV) for the region compared to the regime
trend. As is seen in Figure 4.12, increases in convective activity are commensurate with
increases in total column water vapor. Mean TCWV values, by regime, are as follows:
for the trade cumulus regime, 4.97 cm, for the enhanced cumulus regime, 5.16 cm, for the
isolated convection regime, 5.37 cm, and for the deep convective regime, 5.81 cm.
Of equal importance to the amount of water each regime possesses is the altitude at
which said water exists. Regime-averaged vertical profiles of water vapor (in terms of
the specific humidity ¢, and expressed as a difference between the trade cumulus regime
and each of the enhanced cumulus, isolated convection, and deep convective regimes) are
presented as Figure 4.13. As is seen in Figure 4.13, surface values of water vapor
increase with convective activity for all four regimes — an increase in mid- and upper-
tropospheric water vapor is also exhibited by the more convective regimes (especially in

the deep convective regime).
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This would lead to an increase in mid- and upper-tropospheric warming due to the
retaining of LW energy (agreeing with the LW flux results described previously), as well
as a marked increase in mid-tropospheric latent heating — both of which will contribute to
modification of tropospheric stability, as we will discuss in later chapters.
4.4.2.d Lifted Index

Assessing the vertical stability of the atmosphere in the absence of regular
sounding data is best left to model analysis such as found in the NCEP reanalysis
product. One of the more useful products is the domain-computed lifted index, defined
as the difference between the 500mb environmental temperature and the temperature of a
surface parcel adiabatically lifted to the 500mb level. In an unstable atmosphere, the
temperature of the environment would be cooler than the temperature of a lifted parcel,
and the difference between the environmental and parcel temperature (defined as the
lifted index) would be negative. Conversely, in a stable environment, the environment is
warmer than a lifted parcel, and the lifted index would be positive. The value of the
lifted index, and to a lesser degree, the magnitude, are therefore useful indicators of
atmospheric stability. A plot of NCEP-derived lifted index versus regime trend is
presented as Figure 4.14.

The results shown in Figure 4.14 are particularly interesting — we see marked

instability primarily in the trade cumulus cluster, but less so in the enhanced cumulus
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cluster. Convective regimes tend to work towards neutral atmospheric stability, agreeing
with the general precepts of radiative-convective equilibrium (e.g. Manabe and Strickler,
1964.) Destabilization of the tropical tropopause appears to be most prominent during
the convectively-suppressed regimes, with restoring of atmospheric stability (presumably
due to heating aloft due to latent heat and LW effects, concurrent with surface cooling
due to anvil shading) occurring primarily during the deep convective regime.
4.4.2.e Vertical Velocity

The vertical motion of the tropical atmosphere is typically described as being in a
state of general descent, save for marked regions of enhanced convection, which provides
mass flux to the upper atmosphere, as well as the circulation driving the mass descent
over the bulk of the tropical atmosphere. As such, diagnosing vertical motion is of
interest when examining the tendencies toward convective activity of a particular region
in the tropics. Unfortunately, computing vertical motion, along with the convergence and
divergence associated with these motions, is notoriously difficult. Mapes and Houze
(1995) were successful in using radar observations of tropical clouds, along with a model
of diabatic divergence, to compute vertical motion in the atmosphere — they then used
this model to compute atmospheric heating profiles as a function of ascent in tropical
cloud systems. This seminal study provided a great advancement in our understanding of
the effects of clouds on tropical dynamic systems.

Computation of vertical motion in non-cloudy regions is much more difficult —
especially as the bulk of the tropics exists in the regions of large-scale descent at any
given time. Here, reanalysis products are of limited value — the dynamics governing the

patterns of atmospheric ascent and descent are poorly understood, and, are therefore

106



NCEP vertical velocity in Pa/sec x 102

153 i %
! Deep
f A i I j’ Convection
-1.18- ‘\ A i . !
/( o QX 4 l & |
f L j i i ' !
-1.77 i _ isolated
b If ; / 1 ‘ \ g Convection
7 i i i
-3.41%%& ‘f f f % ‘ Lk
\ ff 5‘ 5 7 Enhanced
-5.06 \} / \W Cumulus
IR
-8.71 E Trade
V Cumulus
836l LN L L H |
18 Jun 10 Aug 3 Oct 25 Nov 18 Jan 13 Mar 4 May
(2002) (2003)

Figure 4.15. As in Figure 4.12, but for NCEP-derived vertical velocity.
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represented in forecast models by relatively crude parameterizations. Furthermore, the
dearth of observations of atmospheric ascent and descent with which to compare the
modeled patterns of ascent and descent make any attempt to improve the model’s
representation of vertical motion problematic. As such, there exists no real dataset that
definitively defines the mean properties this important piece of the atmospheric puzzle.

At best, what may be determined from our rudimentary ability to diagnose
tropical vertical motion are trends — we cannot hope to find physical verity in the
magnitudes (or indeed, even the signs) of vertical motion as diagnosed through
reanalysis. Figure 4.15 presents the NCEP-diagnosed vertical motion at 500mb versus
regime trend.

The most obvious result seen in Figure 4.15 is that vertical motion (here
expressed in Pascals/second, with negative values indicating upward motion) very rarely
attains positive values, even for the convectively-suppressed regime. Since the vertical
velocities of Figure 4.15 are domain-averaged over a relatively large domain, we would
otherwise surmise that the areally-small amounts of upward vertical motion due to
boundary-layer eddies in the trade cumulus regime would be averaged out by the more
dominant large-scale descent almost certainly present in the regime; yet the overall
results indicate net upward motion over the regime. Given the growing instability in this
regime, and especially given that the presence of this particular regime is proportional to
the presence of observed trade cumulus in genuinely convectively suppressed
atmospheres, we conclude either that the discrepancy must lie in the model’s
representation of vertical motion, or in some mismatch in location between observed

convection and the manner in which it is represented in the reanalysis. We are not alone
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in asserting this — several other studies (primarily Jakob et al. (2005) discuss in more
detail the great difficulties faced in computing vertical motion in a model framework with
little or no observations to confirm the model results.

This result has relevance to several recent climate diagnostic studies (Bony and
Duvel (1994), Allan and Soden (2007), Back and Bretherton (2006)), which use
reanalysis-derived vertical motion as a metric to diagnose several properties of cloud-
climate interaction. The results of this study, which seem to indicate that our
expectations of convective vertical motion are not necessarily well-represented in
reanalysis products suggest that such studies using reanalysis as a diagnostic tool should
be careful to relate their use of this parameter with other observations that are more
readily tied to convection — Back and Bretherton (2006), for example, combine TRMM
rainrate observations with reanalysis vertical motion in their assessment.

While the overall trend of vertical motion by regime, does fit with our basic
expectations that convective regimes should have increased upward vertical motion than
their convectively-suppressed siblings, we are left with the inescapable conclusion that, at
least for this analysis, there appears to be a nontrivial discrepancy between reanalysis-
derived vertical motion and our expectations based on convective activity sorted through
cluster analysis. The mean values of vertical velocity, by regime, are found to be: -0.028
Pa/sec for the trade cumulus regime, -0.034 Pa/sec for the enhanced cumulus regime, -
0.066 Pa/sec for the isolated convection regime, and -0.067 Pa/sec for the deep
convective regime. We would expect better results from comparison between this
particular parameter with our regime analysis as more sophisticated techniques for

retrieving large-scale atmospheric motion become available.

109



4.5 Summary of Results and Discussion

What we have discussed in this chapter is the properties of each of our tropical
cloud regimes — to a greater extent, we have derived the occurrence in time of each cloud
regime, along with important properties of each regime that will allow us to compare
cach regime (with their important properties) to the hypothesized progression of the
tropical hydrologic cycle as seen through several contemporary theories. As we recall
from Figure 4.5, there occurs a general trend of progression from trade cumulus through
enhanced cumulus, to isolated convection and then deep convective cloud trend.

Our most commonplace regime is the trade cumulus regime, consisting of a low-
total cloud cover admixture of high, thin cirrus mixed with low-topped, low optical depth
cloud, which exhibits high OLR values with high insolation, low LW trapping, warming
SSTs, increased zonal wind, destabilization aloft, and likely descending motion (although
the latter was not definitively proscribed.) The next-most prevalent regime is the
enhanced cumulus regime, consisting of greater coverage of upper-level cirrus and
slightly thicker low cloud, and exhibiting an increase in upward motion, maximum SSTs,
increased instability, and an increase in water vapor uptake. The isolated convection
regime consisted of moderate cloud cover of thick, high convective clouds with moderate
rainfall, marked by an increase in LW trapping and a decrease in OLR and SW heating at
the surface, along with a marked increase in precipitation, column water vapor (along
with mid-tropospheric moisture), and vertical motion. The final, and least prevalent
cloud regime consisted of near-total cloud cover of deep, very high convective clouds

with moderate- to heavy rainfall, a maximum of LW heating concurrent with a minimum
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of OLR and SW heating at the surface, with a maximum of both column- and mid-
tropospheric water vapor, and marked stabilization throughout the regime.

Regime-averaged precipitation may be trivially computed by summing over the
raining pixels in the histograms — performing this analysis yields regime-averaged
rainrates for the trade cumulus, enhanced cumulus, isolated convection, and organized
convection regimes, respectively, of 0.52 mm/hr, 0.61 mm/hr, 0.67 mm/hr, and 0.91
mm/hr. Maximum rainrates for the regimes top out at around 21 mm/day, which is a
reasonable value compared with other AMSR-E studies of rainrate.

Several parallels may be drawn between the regimes found in this study and
hypothesized cloud populations in contemporary theories. A notable example is the
similarity between the cycle of convective growth in our regimes and the natural cycle of
the MJO as seen during the latter part of 2002. In order to further explore the physical
properties behind these parallels, we will spend the next few chapters applying cluster

analysis to simulated cloud populations and examining the results.
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Chapter 5

Cluster Analysis of Modeled Results and Comparison to Observations

5.1 Introduction

To this point, we have worked towards establishing a mechanism to sort tropical
clouds into cloud regimes via cluster analysis, and with these results, have computed the
environmental properties of these cloud regimes. We have also determined the evolution
with time of each cloud regime, and found there to exist cycles of convective growth and
decay, with characteristic timescales common to the region. Our application of cluster
analysis to cloud properties has proven to be a useful analysis tool for investigating the
properties of the environment based on sorting atmospheric observations — but we are not
limited to applying our analysis tools to only observations.

Recently, the ongoing evolution of climate modeling has seen the replacement of
conventional convective parameterization with embedded cloud-resolving models
(Grabowski and Smolarkiewicz (1999)., Khairoutdinov and Randall (2001),
Khairoutdinov et al. (2005)). The improvement by using this technique allows for much
greater fidelity between model computations of cloud-scale physics and the processes of
the real atmosphere. As such, the newest generation of cloud-resolving models represent
a wealth of potential information with which to compare to atmospheric observations — it
is expected that application of our cluster analysis technique, which yielded good results
on observations, will allow us to perform a quantitative assessment of the properties of
these large-scale cloud resolving models. In this chapter, we perform such an analysis

and discuss the results of the comparison.
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5.2 RAMS simulation of Tropical West Pacific convection

The large-scale cloud resolving model used in this study is the Regional
Atmospheric Modeling System (RAMS) developed at Colorado State University (Cotton
et al. (2003), Saleeby and Cotton (2004)). RAMS is a non-hydrostatic numerical model
that incorporates sophisticated microphysics, radiation, surface and turbulence schemes.
As described in the above papers, the surface processes were parameterized using the
Land Ecosystem-Atmosphere Feedback-2 (LEAF-2) scheme (Walko et al. 2000),
turbulence is represented by the Smagorinsky (1963) deformation-K closure scheme with
stability modifications by Lilly (1962) and Hill (1974); and the two-stream radiation
scheme of Harrington (1997) was called every 5 rhinutes.

The model includes a detailed bulk cloud microphysical scheme that assumes a
gamma-shaped particle size distribution for three species of liquid water and five species
of ice (Walko et al. (1995), Meyers et al. (1997)). The representation of the size
distribution in such a manner is consistent with observational studies that have shown
particle size distributions in tropical convective clouds closely conform to a modified
gamma distribution (Heymsfield et al. (2002)). A description of recent updates to the
microphysics is available in Saleeby and Cotton (2004). The cloud droplet spectrum is
decomposed into two modes, one for droplets 1 to 40 microns in diameter, and the second
for droplets 40 to 80 microns in diameter. Collection is simulated using stochastic
collection equation solutions, facilitated by look-up tables, rather than by continuous
accretion approximations. The philosophy of bin representation of collection is extended
to calculations of drop sedimentation. Concentrations of aerosol species serve as

prognostic variables in RAMS to determine cloud dropiet concentrations.
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For the 2D simulations in this section, we employed a model domain that spanned
9600 km in the zonal direction, from which we extract ten 960km subdomains
approximating in the simulated domain the area used for our observational analyses. The
horizontal grid spacing of this model is 2.4 km, and the vertical grid consists of 38 levels,
which stretch gradually from a depth of 20 meters in the boundary layer to over one
kilometer in the upper troposphere, resulting in a model top located at approximately
26km AGL. The resolution of this model approximates the resolution available to
satellite sensors, and as such, is a good fit for our cluster analysis. RAMS is initialized
with a sounding taken during the TOGA COARE experiment on 0Z 5 December 1992,
with an initial zero mean wind and a uniform and fixed sea surface temperature (SST) of
300K. The solar zenith angle is kept constant such that the daily insolation is maintained
at 447 W m?, representative of the mean annual insolation at the equator. As the
initialization sounding is weakly convective, no initial forcing is used to initiate
convection. The model undergoes an 11-day spin-up period to allow convection to
develop and fill the model domain. These two initialization parameters will have some
affect on the regime statistics — we discuss these effects presently.

After spin-up, the simulation is run for 55 days, sampled twice daily for each of
our ten subdomains to yield a total of 1100 cloud fields for analysis. Another
consideration is the affect of the constant zenith-angle approximation on the time
evolution of the cloud fields — effectively, the ‘sun is always on’ in this simulation. With
a constant solar forcing in the model, crucial parameters such as surface insolation, and

the ensuing SST and stability profiles in the simulated environment will largely dictate
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the onset of convection in the model. This is an important difference between the model
and the environment, and as such, we can expect some differences in the statistical
representation of the frequency of occurrence for convection in the model versus in our
observational study. As such, we make no attempt to explain the mechanisms behind
convective organization and their associated frequencies of occurrence from these
modeled results — we‘leave that for a future model run incorporating more realistic solar
forcing — and instead look to see if the generic structure of our modeled cloud regimes
correspond to the structure of the regimes found using our satellite analysis.

In the RAMS simulation, convection is initiated through random perturbations to
the initial potential temperature field, based on the 5 December 1992 TOGA COARE
sounding. Although this particular sounding is representative of a relatively quiescent
period of convection in the campaign, the initial perturbations to the domain used to
trigger convection are of sufficient magnitude to trigger a wide spectrum of convection,
and during the 55-day run of the model a great variety of convective systems develop as
the model is allowed to react freely to the perturbations induced by cloud formation and
dissipation in the model.

To perform our cluster analysis, we use the cloud hydrometeor mixing ratios
from the model to determine the uppermost pressure level containing cloud water/ice -
from this we derive the familiar cloud-top pressure field. Given that we have complete
information in the model regarding cloud-top heights viz multiple cloud tops, it is
possible to perform the cluster analysis using information from each cloud-top height.
Future implementations of this algorithm may utilize this information, but for now, we

choose to use only the highest cloud-top level to better match our previous work.
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Cloud optical depth and surface rainrate are separate fields in the model output —
combined with the cloud-top pressure information described previously, we can populate
3D histograms using the same parameters described in Chapter 3 for the cluster analysis.
5.3 Cluster analysis of simulated Tropical West Pacific convection

As previously mentioned, we use the twice-daily histograms from the model
simulation for our cluster analysis. The histogram structure used (specifically, the values
delineating each bin in the histogram), is identical to those of our previous studies using
MODIS and AMSR-E observations to facilitate intercomparison. With respect to how
these histograms are populated, however, there are some key differences between our
modeled and observed histograms. First, the values from the model are necessarily exact
(at least from the point of view of the model), whereas the values from the observations
are taken from retrievals, with associated error bars attributed to the retrieved values.
This introduces the possibility of a retrieval-versus-computational bias, which is often
compensated for by using the model to simulate radiances which are then fed to the
retrieval algorithms. This process eliminates any bias inherent to the retrieval algorithm,
but is somewhat time-consuming. What’s more, the robustness of a histogram-based
algorithm such as ours preempts such measures, as the values used to populate an
individual histogram bin can vary over a fair percentage before being assigned to a
different bin. Those values that for whatever reason do get assigned to a new bin due to
bias will most certainly be assigned to a neighboring bin, the Euclidian distance to which
is the smallest possible in our clustering algorithm. As such, any biasing errors

introduced by using the model-computed values rather than simulated retrieval values
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will be small enough to not influence the cluster algorithm at all, and may safely be
ignored.

A final complication is computing cloud cover and regime-averaged rainrate - as
we compute cloud cover by counting the pixels assigned to histogram bins, and since
each profile containing multiple cloud layers contributes an increased pixels to the
histogram, we would be over-estimating cloud cover. Similarly for rainrate, we would be
double-counting raining profiles, resulting in an overestimation of rainrate. As such, we
use only the uppermost cloud-top pressure for each profile in computing total cloud
cover, which restores the correct statistics. Similarly, we only integrate over the rainrates
using the highest cloud-top pressure to compute regime-averaged rainrate. As these two
properties are the only ones computed directly from the histogram, these corrections are
sufficient for our purposes.

The 110 histograms from the simulation, computed as described, are then
processed using the same k-means cluster algorithm developed in Chapter 3. The
resulting centroids are then subjected to the same stability, confidence, and significance
tests used to evaluate the observational centroids described in Chapter 3.

To facilitate comparison with the earlier results, we start with a value of k=4 and
evaluate the results, discussing other values of k in brief. As with our observational
analysis, a k=4 solution of 3D cluster analysis of the model results yields four regimes
varying by convective activity level, with some caveats. Figures 5.1-5.4 depict the four
regimes found using the model data. As before, we have two convectively-active

regimes and two convectively-suppressed regimes. The general properties of the four
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model regimes are comparable to those of the observed regimes, with differences that we
will discuss in detail presently.

Cluster 1 in our model represents the model trade cumulus regime, and has a
relative frequency of occurrence in the model of 64.55%, and is composed primarily of
high thin clouds with a sizable amount of non-precipitating low cloud of moderate optical
depth. Cluster 2, with a relative frequency of occurrence of 17.27%, represents the
‘enhanced cumulus’ regime, with fewer high, thin clouds and more clouds of moderate
optical depth in light-to-moderate rainfall regimes. Cluster 3, representing a regime of
isolated convection, has a relative frequency of occurrence of 11.82% and consists of
predominantly high, thick clouds of moderate-to-heavy rainfall, with few low clouds in
evidence. Cluster 4, the least frequent regime with a relative frequency of occurrence of
6.36%, contains an abundance of high, thick cloud with a second component of low-
topped, optically thick clouds of light rainfall. Compared to the observations, both
convective regimes contain a much larger proportion of high, thick cloud, representing
one of the important differences in the modeled environment compared to that of the
observations used in Chapters 3 and 4.

Before delving into individual regime properties and comparison to observations,
it would be prudent to demonstrate that the four regimes thus found obey the three
principles set out in Chapter 3 — namely, that the four regimes are stable to changes in
initial centroid selection, that we have confidence that the individual histograms belong to
each centroid, and that the four regimes are significant with respect to each other. As the
reader recalls, we test stability of regimes by performing the cluster analysis 5000 times,

selecting randomly the initial centroids each time, and then computing the mean pattern
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correlation of each regime’s 5000 incarnations. Stability is confirmed if this pattern
correlation is high, inferring that the same regimes result regardless of the initial choice
of centroids.

A final issue to address is the choice of k for this run. As stated in Chapter 3, the
goal of a successful A-means analysis is to find the greatest value of £ for which
significant cluster results can be found. As the reader recalls, for our observations
studies, we found valid results for both =3 and 4=4, and naturally choosing the latter
value to fulfill the stated goal. Should we find 4=4 to be a valid result, we would
naturally choose to forgo the tests on the £=3 case; since, although the results of this case
would likely also be valid, we would still choose the k=4 case as it would provide a
greater delineation between cloud regimes compared to the £4=3 by simple virtue of a
greater number of regimes for analysis.

This leaves us with the cases for k> 4. A test was attempted on the £=5 case, but
as in the k=6 case for the observational clusters, the resulting centroids could not be
reliably identified for use in the stability analyses due to the increased sensitivity to initial
centroid selection inherent to higher-valued & analyses. For the sake of brevity, we will
therefore neglect the unstable k& > 4 solutions and continue with our analyses using the
k=4 solution first.

Stability pattern correlation for the trade cumulus, enhanced cumulus, singular
convective, and organized convective regimes are, respectively, 0.98, 0.94, 0.89, and
0.87. These values, as the reader will note, are lower than those in the observations,
which is to be expected since we are working with fewer histograms compared to the

observational dataset. The lowest correlation, at 0.87 belongs unsurprisingly, to the
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regime with the fewest observations (the organized convection regime.) As we will see,
this also leads to greater uncertainty in the inter-cluster confidence parameter. As we do
not have a set rejection threshold, and since our correlations are relatively high compared
to the rejected values for k=5 and higher in the observational results discussed in Chapter
3, let us provisionally accept the stability of the regimes, pending the outcome of the
other two tests.

Our confidence test again measures the mean intercluster distance between a
centroid and its member observations, and compares this distance to the intracluster
distances between the centroids themselves. We assert confidence in the cluster analysis
if the mean intercluster distance is lower than all of the intracluster distances, which
would signify that the member observations of a centroid are more similar to their
centroid than all other centroids. Tables 5.1 and 5.2 respectively present the computed
intercluster and intracluster distances confidence test for the k=4 RAMS cluster analysis.

As might be expected, the two most similar clusters are the convectively-active
clusters, with an intra-cluster distance the same order of magnitude as the intercluster
distances for each cluster (albeit larger than the two intercluster distances.) Other clusters
have larger intracluster distances than their mean intercluster distances, especially in the
case of the enhanced cumulus cluster, Cluster 2. Overall, both inter- and intracluster
distances are larger for the simulated case than for the observational case. This is
possibly due to the relatively increased instability in the clustering results compared to
the observational case, but also might point to a relative homogeneity of cloud structure
in the real atmosphere compared to a modeled atmosphere. It is noted that the model

simulations are essentially a compacted version of the atmosphere, driven constantly by a
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Table 5.1. Intercluster distances for &=4

Cluster (description) Mean intercluster distance
Cluster 1: trade cumulus 0.00483

Cluster 2: enhanced cumulus 0.00987

Cluster 3: singular convection 0.0127

Cluster 4: organized convection 0.0326

Table 5.2. Intra-cluster distances for k=4

Clusters Distance Clusters Distance Clusters Distance
Cluster 4 — 0.2133 Cluster 3 - 0.2648 Cluster 2 — 0.2507
Cluster 1 Cluster 1 Cluster 1

Cluster 4 — 0.4641 Cluster 3 — 0.5156

Cluster 2 Cluster 2

Cluster 4 — 0.0514

Cluster 3

fixed-angle solar forcing with a fixed SST — the results are a much greater representation
of ‘transitional’ cloud phases in a temporal sense in the model output than is observed
from satellite analysis. This condition would explain the relative increase in both inter-
and intracluster distances in the model-derived clusters compared to the observational
clusters.

With the exception of the convective cases, the intra-cluster distances are
comfortably larger than the intercluster distances; with this limitation in mind we express
a reasonable confidence in our cluster analysis and stability thus far. The exception to
this is the nature of the convective regimes — although we have confidence in their

existence as separate regimes compared each other, we would perhaps be in error to
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express a good deal of confidence in their computed structure without utilizing more
observations to bring the statistics more in line.

Finally, we assess the significance of the regimes. As the reader will recall,
pattern correlation combined with an assessment of total cloud cover is used to assess
regime significance, with low correlation (and differing cloud cover amounts in special
cases of higher correlation) between the regimes as confirming the regimes to be
significant compared to one another. Table 5.3 presents the results of the significance
tests performed here.

The increased heterogeneity of the modeled regimes, perhaps responsible for the
larger inter- and intracluster distances as found in the confidence test, also appears to
have an influence the results of the pattern correlations presented in Table 5.3, as pattern
correlations are quite low. The most similar regimes are the trade cumulus and singular
convective regimes, with a pattern correlation of approximately 0.48, followed by the two
convective regimes, whose correlation with one another was computed to be around 0.42.
This brings into sharp focus the utility of using precipitation amount to separate cloud
regimes, as in the framework of the 2D ISCCP histogram, the cirrus and cumulus clouds
populating the trade cumulus regime can bear a similarity to the anvil-and-outflow
structure seen in convective regimes.

Overall pattern correlations between the regimes are elsewhere quite low, and we
therefore find significance in the computed regimes. Combined with our confidence and
stability tests, we find the computed regimes of the k=4 RAMS simulation to be valid.
One reservation must be expressed in these results, however — the stability and

confidence analyses of the convective regimes are sufficient to mark these regimes as
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Table 5.3. Coefficients of pattern correlation between clusters in the k=4 case

Clusters Correlation | Clusters Correlation | Clusters Correlation
Clusters 1-4 | 0.045858 Clusters 1-3 | 0.477614 Clusters 1-2 | 0.093396
Clusters 2-4 | 0.318291 Clusters 2-3 | 0.011276

Clusters 3-4 | 0.420417

generally stable and sufficiently self-similar for simple identification analyses, but
regime-averaged properties computed from these regimes must take into account that
there is likely some swapping of observations between the two convective regimes,
which would be entirely a result of differing initial conditions.
5.4 Properties of individual clusters and comparison to observations

As in Chapter 4, we present each regime separately, beginning with the
convectively-suppressed regimes and moving to the convectively active regimes. Also as
in Chapter 4, we use the term ‘regime’ as opposed to ‘cluster’ or ‘centroid’ to discuss the
results. Table 5.4 summarizes the results, and may be found in Section 5.5.
5.4.1 Cluster 1 — Trade Cumulus and Cirrus regime

Figure 5.1 presents the trade cumulus regime computed from RAMS. As stated
previously, this is the most frequent regime in the simulation, with a relative frequency of
occurrence (RFO) of 64.5% and a total cloud cover (TCC) of 40.9%. The RFO for the
model compares favorably with that of the observed trade cumulus regime, which was
53.3% (and was also the most frequent regime of the observed regimes). The total cloud
cover for the observed trade cumulus regime, however, was much smaller - 4.8%, which

is nearly an order of magnitude less than the cloud cover for the simulation. Of particular
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Figure 5.1. 3D histogram of the trade cumulus and cirrus regime for the
RAMS simulation. Each panel consists of a 2D histogram of cloud-top
height along the y-axis and cloud optical depth along the x-axis, with each
panel representing a single rainrate bin.
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importance is the difference in cirrus cloud amount between the model cumulus regime
and the observed cumulus regime — as we can see, the model regime contains quite a bit
more cirrus than the observations, and this increase in cirrus amount is the likely cause of
the discrepancy between the model and observations.

As with the observed trade cumulus and cirrus regime, the simulated trade
cumulus and cirrus regime consists largely of high, thin clouds combined with an equal
proportion of high, thicker clouds and low-topped clouds of moderate thickness. The
observed trade cumulus regime contained the high, thin clouds and a signal of high
thicker clouds as well, but with a relatively smaller proportion of low clouds. This is the
first (and ultimately the primary) difference we see between the simulated and observed
cloud populations — our simulated cloud population is a complete population, whereas it
appears that passive-only satellite observations may be missing that fraction of lower
cloud residing underneath optically thick higher cloud layers. This insight warrants
continued investigation into the existence and amount of low-level cloud in the tropical
atmosphere.

5.4.2 Cluster 2 — Enhanced Cumulus regime

Figure 5.2 presents the histogram of the enhanced cumulus regime for the RAMS
simulation. As with the observed enhanced cumulus regime, the simulated enhanced
cumulus regime is marked by an increase in both the frequency and the thickness of the
low-level cloud field, with a concomitant increase in rainfall (although the bulk of the
profiles remains in the lowest two rainrate bins, with rainrates < 1.5 mm/hr.)

What is notable about the simulated regime compared to its observed counterpart

is the relative dearth of high, thin cloud in the simulated regime — the observed enhanced
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Figure 5.2. As in Figure 5.1, but for the enhanced cumulus regime.
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cumulus regime remained primarily one of upper-level cloudiness with a moderately
stronger low-level cumulus signature. The simulated regime nearly eliminates the upper
cloud signature compared to its low-level cloud signature — this is again perhaps a result
of more completely utilizing multiple cloud layers in the model output compared to
observations.

In a qualitative sense, these simulated results are more in line with what one
would expect in regards to convective evolution of our regimes - as upper-level cirrus
amount begins to tail off, increased insolation would contribute to the surface warming
and an increase in strength of the boundary layer, resulting in thicker, more substantial
cumuliform clouds, such as those represented in our simulated regime, and agreeing with
our observational results shown in Chapter 4.

The relative frequency of occurrence for this regime is 17.3%, with a total cloud
cover of 46.0%, compared to 21.9% and 29.3% for the observed regime - again, the
model is somewhat over-representing total cloud cover, and likely for the same reasons
discussed previously in the trade cumulus section.

5.4.3 Cluster 3 — Isolated Convection regime

Figure 5.3 presents the first of the convectively-active regimes, the so-called
‘singular convection’ regime.  Structurally, the simulated and observed regimes
(reference Figure 4.3 for comparison) are somewhat similar — the simulated regime tends
to produce a stronger, more uniform signal of high, thick clouds of moderate-to- heavy
rainfall, while the observed regime tends to be spread over a slightly larger range of

cloud-top height and optical depth.
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Figure 5.3. Asin Figure 5.2, but for the isolated convection regime.
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In both regimes, the bulk of the rain falls in the 0.06-1.5 mm/hr rainrate bin, with
a reasonably strong signal in the 1.5-5.1 mm/hr bin, and a weak signal in the > 5.1 mm/hr
bin, representing the eponymous areally-sparse convective cores of these systems. The
bulk of the profiles observed are either high, thick clouds associated with towering
convection, or high, thinning clouds likely associated with the cirrus anvils produced by
the aforementioned convection — few (if any) profiles represent a significant low-level
cloud structure such as that seen in the stratiform regions of more organized convective
regimes.

The relative frequency of occurrence for this regime is 11.8%, with a total cloud
cover of 67.3%, compared to 17.5% and 59.2%, respectively, for the observed regime.
As we move into more convective regimes, the larger areal extent of convection (as
represented by anvil outflow in the model) appears to be compensating for the footprint
differences between the model and satellite resolving capability, and to that extent, cloud
cover amounts computed by the observations and by the model are in better agreement.
5.4.4 Cluster 4 — Organized Convection regime

The fourth, and final, regime for consideration is the organized convection
regime, whose histogram is presented as Figure 5.4. The least frequent regime, with a
relative frequency of occurrence of 6.4% (versus 7.3% for the observations) the
organized convection regime is nevertheless responsible the greatest rainfall and cloud
cover of the four regimes. Total cloud cover for the simulated regime is computed to be
92.4%, compared to 96.1% for the observed regime.

An intriguing result seen in Figure 5.4 reveals some details in the nature of the

differences between organized convective clusters and isolated convective cells (at least
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Figure 5.4. As in Figure 5.3, but for the organized convection regime.
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in the framework of simulated convection.) Overall, cloud-top heights are lower for the
organized convective regime than for the singular convective regime, with a much
stronger signal of low, thick cloud of moderate-to-heavy rainfall present in the organized
convective regime versus the singular convective regime. A larger fraction of the raining
profiles in the organized convection regime reside in the moderate-to-heavy rainrate bin
compared to the singular convective regime. What appears to be a smaller fraction of
heavily raining profiles in the organized convective regime is compensated by an increase
of 25% in cloud cover, yielding a much higher number of heavily raining profiles as well.
Compared to the singular convection regime, the organized convection regime consists of
slightly lower-topped, thicker clouds of much greater areal extent, and perhaps most
importantly, containing a significant fraction of relatively low, thick, raining cloud
suggestive of a stratiform component not present in the singular convective regime.

The structural differences between singular convective cells and organized
convection in the model are compelling as the profile of atmospheric heating due to latent
heat release by convection differs between differing convective modes — our ability to
distinguish between these modes through utilization of multiple cloud top information in
the model suggests that in the inclusion of active sensors capable of detecting these lower
cloud layers, which allows for the distinction between towering and stratiform convection
will be of great utility for future applications of cluster analysis. We will describe such a
potential use for cluster analysis in Chapter 6.

5.5 Discussion
Table 5.5 summarizes the relevant results of this model study compared with the

observations presented in Chapter 4. In this table, we compare the relative frequencies of
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Table 5.4. Summary table comparing observed regimes and modeled regimes.

Cluster RFO CcC Rainrate in mm/hr

Trade Cumulus 53.3% 4.8% 0.52
(observed)

Trade Cumulus 64.5% 40.9% 0.40
(model)

Enhanced Cumulus 21.9% 29.3% 0.61
(observed)

Enhanced Cumulus 17.3% 46.0% 0.73
(model)

Singular Convection 17.5% 59.2% 0.67
(observed)

Singular Convection 11.8% 67.3% 1.08
(model)

Organized Convection 7.3% 96.1% 091
(observed)

Organized Convection 6.4% 92.4% 1.73
(model)

occurrence, the total cloud cover, and the rainrate for each regime, both model and
observed.

Overall, the structural properties of the simulated regimes and the observed
regimes agree well, with a few important differences. Most prominently, the enhanced
cumulus regime in our model results shows an increase in low cloud amount with a
decrease in upper-level cloud amount relative to the observed enhanced cumulus regime.
Similarly an increase in low-topped, thick raining cloud is seen in the model organized
convection regime compared to its observed counterpart. Overall, while the generic
structure of each regime is quite similar between the observed regimes and the model
regimes, the model regimes do contain a larger amount of low-topped cloud populations.

This is a key difference between passively-sensed cloud regimes and model cloud

132




regimes — the question remains as to which result better represents the real atmosphere.
Although only preliminary results are available, observations from CloudSat tend to
support the model’s view of the atmosphere. Further quantification of the amount of low
cloud using active sensors will further delineate these differences.

Regime-averaged rainfall properties for the four regimes are computed in the
same manner as for the observed regimes described in Chapter 4. Regime-averaged
rainfall rates for the trade cumulus, enhanced cumulus, singular convection and organized
convection regimes are, respectively, 0.40 mm/hr, 0.73 mm/hr, 1.08 mm/hr, and 1.73
mm/hr. As mentioned previously, these values are computed by integrating over all
raining profiles identified by the uppermost cloud-top height to prevent double-counting
of raining profiles, which would result in erroneously high values of regime-averaged
rainfall. With the exception of the trade cumulus regime, these values are somewhat
higher than then values from our AMSR-E analysis presented in Chapter 4, although not
unrealistically so — maximum rainrates for the enhanced cumulus regime are less than
41mm/day. Here we recall that the AMSR-E footprint is larger than the effective
footprint of our model — it is possible that the ‘smearing’ of rainrates in the observations
over a larger footprint area could account for these differences.

Finally, we discuss the utility of active versus passive-only observations in the
formulation of histograms for use in cluster analysis. At the outset of this study, limited
or no active sensor data were évailable for analysis to compare with MODIS
observations; with the launch of CloudSat, that situation is has now changed. With the
ability of the CloudSat CPR to penetrate upper cloud layers to see underlying regions of

cloudiness, and especially with addition of precipitation retrievals using CloudSat radar
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attenuation (Haynes et al., forthcoming), it is possible to combine MODIS observations
with CloudSat observations to generate a new 3D histogram structure, using cloud-top
pressures derived both from MODIS and from CloudSat, and per-layer precipitation and
LWC values from CloudSat, that captures more fully the true cloud morphology that best
reflects the state of the environment in which the cloud resides. Continued development
of these retrievals, especially the CloudSat-derived precipitation data, is an area of
ongoing research — it is our hope that the groundwork laid by this study will prove useful
for these developments. Certainly, it remains important to use a blend of sensors to
maximize information content when populating histograms — a CloudSat-only cluster
analysis is described by Zhang et al. (2006) in which it is found that using only cloud
radar data to count clouds results in an underestimation of total cloud cover by around
30%. In the Zhang et al. work, it is supposed that thin clouds below the minimum
detectable signal of the radar as well as low-level clouds lost in the surface return remain
uncounted, yielding skewed cloud statistics. Combining the greater sensitivity to high,
thin clouds provided by MODIS (or optionally, from the CALIPSO mission (Winker et
al. 2006)) would help to reduce this underestimation, while retaining the value of having
multiple cloud-tops as observed by the CloudSat radar.

The results of this chapter have provided us with valuable insight into the utility
of cluster analysis as applied to large-scale cloud resolving models. As these models are
an increasingly important component of analytical tools and retrieval techniques, it is of
equal importance to quantify the comparisons between these models and observations —
good agreement between cloud regimes as found through model analysis and

observations gives us greater confidence in model results, and permits the use of these
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powerful tools to represent as-yet irretrievable properties of the atmosphere. In the next
chapter of this dissertation, we explore how application of cluster analysis to model
results might facilitate a new retrieval technique, and various applications of this
technique that might be relevant to analysis of the tropical hydrologic cycle as a whole

will be discussed in the final chapter of this work.
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Chapter 6
Towards a CloudSat Latent Heat Product Using Cluster Analysis
6.1 Introduction

Thus far, we have concerned ourselves with two primary tasks — first, describing a
cluster technique that allows for the identification of unique environmental regime
properties based on analysis of cloud properties, and second, analyzing the results of this
analysis in the framework of both observations and model analysis. Having described
how to use cluster analysis as an analytical tool, we now perform some preliminary work
to assess the feasibility of using this tool in active areas of research.

6.2 Identifying Latent Heating Properties through Cluster Analysis

Latent heating through condensation of water provides the energetic source for
tropical circulation. Several studies (Nakazawa et al. 1988, Emanuel et al. 1994) have
additionally emphasized the key role that tropical latent heating plays in regulation on
larger-scale, extratropical circulations. As we gain understanding of the importance of
the role latent heating plays in the atmosphere, both in the tropics and in the larger sense,
so too have we begun to put more effort into developing techniques to measure vertical
profiles of latent heat release in cloud systems.

The TRMM mission (Simpson, et al. 1996) is a spaceborne precipitation radar
combined with a passive microwave designed to measure tropical rainfall. Recent work
(Tao et al. 2006) describes retrieval algorithms based on TRMM observations that
retrieve profiles of latent heating from radar-observed rainfall. Several methods may be
employed to achieve these retrievals, including spectral methods whereby lookup tables

of heating profiles for different precipitation classifications are generated using cloud-
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resolving models (CRMs). Spectral methods such as these rely upon classification
schemes to partition rain into stratiform, convective, and anvil components. As we have
seen in previous chapters, cluster analysis offers another method for classifying cloud
properties that may prove useful for retrievals of latent heating.

The CloudSat mission (Stephens et al. 2003) is uniquely suited to study latent
heating, due to the additional resolution and sensitivity of the cloud-profiling radar (CPR)
over the TRMM precipitation radar. As such, developing a similar retrieval of latent
heating, using cluster analysis as a component for discriminating between different cloud
structures, seems a natural evolution. As a first gesture towards developing such
retrievals, we turn again to mode! studies, utiliziﬁg a 3D RAMS run, using the domain
and initialization properties of the 2D run described in Chapter 5. In addition to standard
model outputs, we also collect profiles of latent heating from this RAMS run (latent heat
profiles were not saved from the 2D runs used in Chapter 5.) We take 750 vertical
profiles of latent heating from the 3D model field, compute the cloud-top pressure, cloud
optical depth (by layer) and surface precipitation for each profile, and compute a
corresponding histogram using these three values. The histograms are then sorted using
the results of the 2D analysis — this simulates how satellite observations of cloud
properties (represented by the 750 model profiles) would be sorted using a canonical
regime analysis computed periodically using archived satellite observations (represented
by the 2D regime analysis results.)

Although we do not explicitly utilize radar reflectivity in these cluster analyses,

we will ultimately want to develop radar reflectivity-latent heat profile relationships. To
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Figure 6.1. Simulated reflectivity profile of an organized convective
system present in the 3D RAMS simulation used for our latent heating
feasibility study. CloudSat reflectivity is simulated using the QuickBeam
simulator package described by Haynes et al. 2007.
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that end, we also compute from the 3D model profiles simulated CloudSat observations
using the QuickBeam radar simulator package capable of simulating top-down radar
reflectivities at a number of microwave frequencies, including the W-band CPR on
CloudSat (Haynes et al. (2007)). QuickBeam ingests model profiles of pressure,
temperature, relative humidity and hydrometeor mixing ratios, and produces profiles of
top-down radar reflectivity. The reflectivity profiles account for attenuation of the
simulated radar beam, including those from gaseous absorption by the atmosphere and
from the hydrometeors themselves. An example of a simulated radar profile produced by
QuickBeam is provided as Figure 6.1. To generate this figure, one of the 750 individual
longitude-height profiles was passed to the radar simulator program. As mentioned, for
this feasibility study we are primarily concerned with gathering statistics for cloud
properties as a whole in the region, rather than comparing individual model profiles to
CloudSat observed profiles. Longitudinal-height slices such as these are available at each
time step and at each grid point, and are used for our statistical analysis, and will
eventually be used in development of the latent heat retrieval.

As a comparison, we have included a representation of model-computed latent
heating as Figure 6.2. The structure of latent heating as seen in Figure 6.2 is, exhibits a
broad area of heating just above the melting level in the model, along with a cooling
signature at and just underneath the melting layer. The structure of the heating is located
in the primary updraft/raining region of the convection, corresponding to the highest
areas of reflectivity in the simulated radar profiles. These results may be compared to
analytical studies of the structure of vertical heating by different convective modes

proposed by Mapes et al. (2004), Tulich et al. (2006), and Wheeler et al. (2000).
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Figure 6.2. Simulated CloudSat reflectivity profile and computed latent
heating of a convective element identified as isolated convection using 2D

cluster analysis results.
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Figure 6.3. Mean profiles of latent heating for the regime-sorted 3D
RAMS model run. Clockwise from the upper left, mean profiles of latent
heating are presented for the trade cumulus regime, enhanced cumulus
regime, organized convection regime, and isolated convection regime.
Shading around the profile denotes the standard deviation of the mean for
the latent heating at each level.
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Using our model generated histograms as input data, we sort model observations
into cloud regimes using the cluster centroids found in Chapter 5. We then compute
regime- and domain-averaged profiles of latent heating, which we present as Figure 6.3.
The first notable results of Figure 6.3 is that the profiles of latent heating for the
convectively-suppressed regimes (the top two panels in the figure) are not entirely
convection-free, as non-negligible heating exists above the nominal cloud tops for
shallow, suppressed clouds in a regime-averaged sense. It is important to remember that
the profiles used for this analysis are 960km in length — it is almost inevitable that one or
two convective towers will be present in any observation of this size, even when the rest
of the scene is generally convectively-suppressed. When averaged over an entire regime,
it is the contribution of this occasional convection in otherwise convectively suppressed
regimes that supplies the upper-level seen in Figure 6.4. While the overall magnitude of
this upper-level heating is small (on the order of 2 K/day or smaller), it is non-negligible
and must be taken into account regarding any future retrieval algorithm utilizing cluster
analysis — most likely, a modified histogram for identitying cloud regimes using a smaller
area will address this convective contamination issue. Developing this modified
histogram specially for latent heating retrievals is a future goal of this research.

The convective regimes are represented by the bottom two panels in Figure 6.4.
As we noted in Chapter 5, the singular convection regime is typified by isolated
cumulonimbus, whereas the organized convection regime is composed of more dense
convection, and in the RAMS simulations, typically containing a stratiform rain
component. Schumacher et al. (2004) describe corresponding latent heat profiles for

varying amounts of convective, shallow convective, and stratiform components of

142



tropical rainfall using TRMM observations. In general, cloud populations with a
significant fraction of stratiform rainfall exhibit low-level cooling below 2km, while
shallow convection results in a peak heating between 2-4km; deep convection results in
peak heating around 8km. With these generalizations in mind, the convectively-active
latent heating profiles presented in Figure 6.4 are consistent with our expectations — the
singular convection regime, consisting mostly of isolated deep convective cells, exhibits
a peak heating rate at around 4km, with a broad ‘nose’ of heating extending upwards of
10km. The organized convection mode exhibits a more complicated structure — the
contribution of the stratiform component is seen with cooling below 1km, and two local
maxima of heating rates; one at ~3km, representative of more shallow convection, and a
second peak at approximately 6km, again with a broad ‘nose’ of heating extending to
nearly 15km.

The relative fraction of each cloud type represented in each regime, and therefore
the contribution of each cloud type to the aggregate heating rate for each regime, is very
much a function of the dynamics and microphysics of the model responsible for cloud
generation. The ability of cluster analysis to separate these important cloud types
(namely, shallow convection, deep convection, and stratiform regions) within cloud
observations will greatly facilitate the computation of total latent heating profiles of a
cloud scene composed of a variety of cloud types. Clearly, much work remains to
develop the reflectivity-to-latent heating forward model most applicable to such a
retrieval; in the framework of this feasibility study, however, the ability of cluster

analysis to separate out relevant parts of observations is evident, and we feel confident
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that the application of this dissertation to such problems will result in improved retrieval
techniques and analysis of the latent heating of the tropical atmosphere by convection.
6.3 Discussion

Derivation of the vertical heating properties of the tropical atmosphere remains a
crucial task, as the implications of convectively-induced heating are thought to have a
significant impact on convective organization and control in the tropics (Schumacher et
al. (2004), Kiladis et al. (2005)). In order to derive the latent heating properties of
convection, it is necessary to understand the vertical profiles and necessary derivatives of
the cloud hydrometeors involved, and assessing these properties remains a significant
challenge due to the complex processes involved. The utility of cluster analysis, we feel,
is in its ability to separate like convective systems into discrete regimes which simplify
the assessment of the cloud properties required for these kinds of retrievals, and should

prove quite useful in the development of advanced latent heating retrievals.
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Chapter 7
Conclusion and Future Research
7.1 Review of Research

The tropical climate systems represents one of the most important physical
components in the earth-atmosphere system, and understanding its complexities
represents one of the key challenges in the field of atmospheric science at this time.
Increased understanding the mechanisms behind the tropical variation in humidity,
rainfall, and cloud cover would lead to improvements not only in tropical forecast
models, but in global climate models as well, which in turn would better our
understanding of the dominant feedback cycles of the atmosphere in the context of
climate change.

What is apparent from observation of the tropics is the organization of the tropical
hydrologic cycle into distinct phases of convective activity (Johnson et al. 1999, Jakob
and Tselioudis (2003), Rossow et al. (2005)) that are related to the important
thermodynamics of the tropical troposphere (Nakazawa (1988), Mapes and Houze
(1993), Kiladis et al. (2005)). Using the statistical technique of k-means analysis as
applied to ISCCP histograms of cloud type, Jakob and Tselioudis (2003) described four
tropical cloud regimes, with follow-up studies (Jakob et al. (2005), Rossow et al. (2005))
describing more properties. This research confirmed the results of Jakob and Tselioudis
(2003) using MODIS observations of cloud top pressure and cloud optical depth, and
observed the same tropical cloud regimes, at least as defined by the 2D analysis presented

in the literature.
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With the understanding that cloud populations within each regime are necessarily
representative of the physical processes going on in that regime, and with the idea that
perhaps a cluster analysis based on a more comprehensive dataset that includes more
information about the cloud properties within each cloud population, we developed a
new, 3D histogram for use with 4-means analysis. We applied this new technique to
MODIS observations of cloud-top pressure and cloud optical depth, along with AMSR/E
observations of rainfall, to recategorize the tropical cloud regimes. The 3D-derived
regimes share many common features with previous analyses, but also have key
differences that allow for detailed comparison between the cluster analysis and other
analyses of the tropical hydrological cycle.

We then apply our regime analysis to a time series dataset of 3D histograms to
determine the occurrence in time of each regime, finding a regular cycle of progression in
convective activity that agrees with observations of the MJO (Madden and Julian,
(1971)). With this knowledge, we use this index of regime occurrence in the tropical
West Pacific to compute regime-averaged properties using reanalysis and satellite
observations. We found that the properties of our 3D regimes and the progression in time
of these properties as the regimes proceed from one to another agree with other theories
of tropical organization (Stephens et al. (2003)). As such, it became possible to analyze
the effects of the small-scale interactions between cloud regimes and their larger
environment.

Application of our analysis technique to large-scale cloud resolving model
underscored the utility of this technique, and found compelling similarities and

interesting differences between the regimes computed using model analysis compared to

146



passive-only observations. With these results in mind, it seems natural to extend the
results of the research technique to further analyze the properties of the tropical
hydrologic cycle. We now discuss some tantalizing possibilities for use of this particular
research tool.
7.2 Future Work

We have already discussed quantitative assessments of large-scale cloud resolving
models and performed a feasibility study regarding use of the cluster analysis technique
in developing a latent heat retrieval. Obviously, continued research along these lines are
expected to bear much fruit. The results of this dissertation suggest additional
enhancements to the technique that may prove beneficial to these efforts. In this work,
we have focused on the need to develop meaningful cluster input, namely, 3D histograms
that accurately represent the relevant cloud properties of the environment in an effort to
produce similarly meaningful clusters. For future work, the primary enhancement to
histogram development will be to adapt the 3D sorting histogram to use a blend of active-
and passive sensors, such as described in Chapter 5. Ideally, a two- or three-sensor
approach using CloudSat and MODIS observations, perhaps in conjuction with AMSR-E
observations, will provide for us the ideal sorting histogram, capable of accurately
representing the key cloud properties of the environment and facilitating a more complete
and accurate regime separation.

Applying this histogram to both model analysis and observations will allow for
more data to be collected about the important regimes of the tropical system, and with
improved regime statistics, which can be assimilated by both the modeling and remote

retrieval communities. Using the results of an ongoing cluster computation, instruments
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of the A-Train will have a real-time capability to diagnose the regime properties of
current observations, which will prove useful in future retrieval algorithms such as the
latent heat retrieval discussed in Chapter 6.

7.3 Conclusions

The key conclusions of this research are as follows:

1.) Cluster analysis is a mature technique, capable of identifying unique and
meaningful environmental properties computed using cloud properties as identifying
markers. With careful selection of a sorting histogram, and with judicious application of
the stability, confidence, and significance criteria we have developed, the results of
cluster analysis can provide a wealth of information regarding the phases of several
environmental properties — certainly not limited only to tropical cloudiness estimates.
The three tests we developed to assess the validity of cluster analysis; namely, our tests of
stability, confidence, and significance, give us a quantitative method for assessing the
objective regimes found in cluster analysis.

2.) Previous cluster analysis techniques using geostationary data can successfully
be replicated using other observations. The ability to verify the results of a
MODIS/AMSR-E-based cluster analysis compared to earlier ISCCP-based work gives us
faith in the robust nature of tropical cloud regimes, in that we are able to observe these
regimes independent of observing platform choice.

3.) Tropical cloud regimes identified through cluster analysis appear to occur in
regular patterns whose governance are likely related to their thermodynamic and
dynamic properties. Through our 3D cluster analysis, we have identified four tropical

cloud regimes whose regime-average properties suggest a self-regulating mechanism of
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the tropical hydrological cycle through the interplay of radiation, moist physics, and
stability of the atmosphere. These regimes have been identified through other means
(such as ISCCP data and OLR analyses) as well — cluster analysis provides us with new
and unique quantitative methods to assess the properties of tropical cloud regimes, and
perhaps more importantly, diagnose cloud population evolution as a function of time.

4.) Cluster analysis of large-scale cloud resolving model results provides a
meaningful way of assessing both model results, and offers quantitative new tools to
analyze model results compared with observations. By comparing the cloud regimes
from a large-scale cloud resolving model run to observations, we encounter important
differences that underscores the challenges inherent to both modeling and observation of
cloud properties, and provides the impetus for using satellite observations of the tropics
in new and useful ways.

5.) Application of the cluster analysis technique to tropical convection allows us
to separate important cloud properties necessary for new retrieval techniques. The
ability to distinguish key properties of convective regimes (namely, shallow convection,
deep convection, and stratiform regions) using cluster analysis greatly enhances our
ability to define the aggregate latent heating properties of these regimes, especially in the
context of a radar-based latent heating profile retrieval algorithm.

We hope that in this work we have addressed some of the remaining issues facing
improved analysis of the tropical environment, and namely that our theory of analyzing
large-scale tropical evolution by focusing on the results of the small-scale interactions
between cloud populations (as viewed through the framework of cluster analysis) has

perhaps given us insight into the larger-scale properties of tropical cloud regimes.
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Furthermore, it is our sincere hope that this insight might be of use to other researchers
who can take these results and apply them to physical models of tropical interaction.

It is clear that our understanding of the tropical atmosphere is improving,
although much yet remains to be done before we can truly claim to have any mastery
over the complicated mechanisms which make up our atmosphere. With the continual
improvement in methodology and technology that allows us to observe our world,
combined with improved computational ability to analyze the results, we look forward to
continued improvements in our understanding of what may well be the most crucial

element of the earth-atmosphere system.
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