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Wiener Filters in Canonical Coordinates for
Transform Coding, Filtering, and Quantizing

Louis L. Scharf,Fellow, IEEE and John K. Thomas

Abstract—Canonical correlations are used to decompose the measurement coordinates to produce a quantized Wiener filter
Wiener filter into a whitening transform coder, a canonical filter,  or a quantized GaussMarkov theorem
and a coloring transform decoder. The outputs of the whitening g gpstract motivation for studying canonical correlations

transform coder are called canonical coordinates; these are the . that th id inimal d ioti f th lati
coordinates that are reduced in rank and quantized in our IS that they provide a minimal description ot the correlation

finite-precision version of the Gauss—Markov theorem. Canonical Petween a source vector and a measurement vector. Canonical
correlations are, in fact, cosines of the canonical angles betweencorrelations are also cosines of canonical angles; therefore,

a source vector and a measurement vector. They produce new some very illuminating geometrical insights are gained from a

formulas for error covariance, spectral flatness, and entropy.  gy,dy of Wiener filters in canonical coordinates. The concrete
Index Terms—Adaptive filtering, canonical coordinates, canon- motivation for studying canonical correlations is that they are
ical correlations, quantizing, transform coding, Wiener filters. the variables that determine how a Wiener filter can be reduced

in rank and quantized for a finite-precision implementation.
Canonical correlations decompose formulas for error co-

) i . variance, spectral flatness, and entropy, and they produce
‘ :ANONlCAL correlations were introduced by Hotelling geometrical interpretations of all three. These decompositions

[1], [2] and further developed by Anderson [3]. They argpqy that canonical correlations play the role of direction
now & standard topic in texts on multivariate analysis [4], [S{osines between random vectors, lending new insights into
Canonical correlations are closely relategaerency spectia |4 formulas. All of these finite-dimensional results generalize
and these spectra have engaged the interest of acousticigngciic time series and to wide-sense stationary time series.
and others for decades. In this paper, we take a fresh 100k=ga1y - experimental training data may be used in place of
canonical correlations, in a filtering context, and discover that .o d-order information to produce formulas for adaptive
they provide a natural decomposition of the Wiener filter. pjicner filters inadaptivecanonical coordinates.
this decomposition, the singular value decomposition (SVD)
of a coherence matriyplays a central role: The right singular
vectors are used in a whitening transform coder to produce Il. PRELIMINARY OBSERVATIONS
canonical coordinatesf the measurement vector; the diagonal
singular value matrix is used ascanonical Wiener filterto

I. INTRODUCTION

Let us begin our discussion of canonical coordinates by

estimate the canonical source coordinates from the canoni&{'S'ting an old problem in linear prediction. ThTe zero-
measurement coordinates; and the left singular vectors are u%ber?n raTndom vectox = [a(1) x(2) .- z(m)]” =
in a coloring transform decoder to reconstruct the estimate 1(1) x"(1)] has covariance matrix
the source. The canonical source coordinates and the canonical L[z T ~ree() 2L (D)
measurement coordinates are white, but their cross correlatiofter = £ L{(1)} (1) x* (1) = Lm(l) Rm(l)}' @)
is the diagonal singular value matrix of the SVD, which is ) ]
also called thecanonical correlation matrix The determinant oR.., may be written as

The Wiener filter is reduced in rank by purging subdominant det[Ras] = qoa(1) det[Rup(1)] )
canonical measurement coordinates that have ssoalred-
canonical correlationwith the canonical source coordinateswhere ¢..(1) is the error variance for estimating the scalar
Quantizing is done by independently quantizing the canonice(l) from the vectorx(1). This error variance may be written

as
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The vectork,.(1) is the coherence betweer{l) andx(1), x

or the cross correlation between the white random scalar
7‘,7,;1/2(1)33(1) and the white random vectdl;(/f)x(l): -

Y+
><I[
gl

A
W X=Wy

kea(1) = E[r5 2 (Da()x" (DR 7] ~

:7};}/2(1)1'11 (1)R_T/2 (7) Fig. 1. Filtering problem.

e zx(l)”

This basic idea may be iterated to writet[R,] as

>

det[Rua] = [] gea(i) R
=1

= [ rea(d[L = k2o (2)] ®8) ®

9)

wherek? (i) is the squared coherence between the sedlgr
and the vectox(i) = [z(¢+ 1) --- x(m)]T. This formula for
det[R,,] is the Gram determinant, with each prediction error ()
variance written in terms of squared coherence. It provides a

fine-grained resolution oéntropyand spectral flatness

X

H,, = % log(2me) + % log det[R]

=" Jo(2re) + % > log [ran (DL - K2,(0)]) (10)

SF,, = iet[Rxx] _ ﬁ [1 _ kim(L)] (11) Fig. 2.  Wiener filter in various coordinate systems.
H [Rxaz]zz =1 .
ey A. Standard Coordinates

. ) . The linear MMSE estimator of from y is x = Wy, and
Therefore, entropy is near its maximum, and spectral flatnggg corresponding (orthogonal) erroiis = x—%. In standard
is near 1 when the squared coherences betw¢gnandx(i) coordinates, the Wiener filtefW and the error covariance

are near zero for all. matrix Q.. are
The sequence of Wiener filters that underlies this decompo- .
sition of det[Ry;] is W =R.yR,, (14)

Qa;a; =F — X _a\T1 = wa _ Rac R_IRE ) (15)
w(i) = 3, (DR () = i (Dkea(DRZZ2(G) - (12) e R =] vRyy Ray

We shall call Fig. 2(a) the Wiener filter in standard coordi-

which is a decomposition of the filter into a whitenefates:

;ml/Q(i), a coherence filtek,(¢), and a colorerrif(i). The linear transformatmn
This idea is fundamental. |:eac:| _ {I —‘?7} {X} (16)
y 0 y

resolves the source vectar and the measurement vectpr

into orthogonal vectoré, andy, with respective covariances
The context for our further development of canonical cogg_ . and Ry,
relations is illustrated in Fig. 1. The: x 1 source vectorx
and then x 1 measurement vectgr are generated by Mother |:Qamc 0 } _ [I —W} [Rm Rwy} { I 0}_
Nature. Father Nature views only the measurement vegtor Ry, 0 I R;:ry Ry, [[-W* I
and from it, he must estimate Mother Nature’s source vector 17)
x. This problem is meaningful because the zero-mean randqrﬁis is one of the Schur decompositions R

vectorsx andy share the covariance matrR ..

I1l. CANONICAL CORRELATIONS IN A FILTERING CONTEXT

f.. From this
formula, it follows thatdet[R..] may be written as

R..—E X} T T _ [Rm Rmy} 13 det[R..] = det[Qq.] det[R,] (18)
[y v Ri, Ry ~ det[Quz] = det[Rae — RayRyy R, L (19)
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B. Coherence Coordinates We shall call the orthogonal matricd! and G transform
The coherence matrixmeasures the cross-correlation beS0ders the matrix K the canonical correlation matrix and
tween thewhite vectorsR;,}/Qx and R;;/Qy: the matrix KKT the squared cgno_nical correlation mat_rix.

The canonical correlation matriK is the cross correlation

C.y = ER;}?x(R,}*y)"] = R;Y/*Roy R,/ (20) betweelr}che white vectoFTR;+/?x and the white vector
TR — .
Using coherence, we can refine the Wiener fiN®r and its Ruy -

corresponding error covariance matfiy,, as K= E[FTR;Q}/?xyTR;yT/QG] = FTnyg_ (30)

—_RL/2 —1/2 ) ' . . .
W =Ry Coy Ry, (21) The Wiener filterW and error covariance matr®,... in these

Q.. =RY*(I - C,,CL )R/ (22) canonical coordinates are
We shall call the matrixC,;yCEy the squared coherence W:R;QQFKGTR;Z}/Q (31)
matrix. Q.. =RY?F(I - KK FTRY/Z. (32)

The corresponding Wiener filter, in coherence coordinates,

'i illustrated in Fig. 2(b). It resor:ves the source veotgar;}d The corresponding Wiener filter, in canonical coordinates, is
the measurement vector into the error vectore, and the ,,irared in Fig. 2(c). It resolves the source vectorand

estimateéc in th;‘ee stﬁges. The firsdt. stage Véhite?]s betand q the measurement vectgr into the error vectore, and the
y to p:fl) uce t .ehcct: erenhce coor fl_?a;_ean v, t %Secoﬂ estimatorx in five stages. The first stage whitens beattand
sta;ge tl tersy V\f't t g fr? eretrjcet IEeryd t?h prgft:jcett € y to produce the coherence coordinatesnd v, the second
esl|ma gr errore,, 3n ' the (‘;5 Ima 0%' lf‘” ! h'e hlr S1a09€ stage transforms the coherence coordinatesnd v into the
:f_lo orst eshe to pro uce-;cda_ln . We shall call this the Wiener .,nqnical coordinatea and v, the third stage filters with
iiter in coherence coor mates._ R . the canonical filterK to produce the estimatoi and the
The refined linear transformation fro(, y) 0 (&x, ¥) IS egtimator erro,, the fourth stage transformis and é,, into

é, RY? o I -C, the coherence coordinatgsande,,, and the fifth stage colors
{y } = { 0 Ré{f} {0 I } these to produc& andé,. We shall call this the Wiener filter
R-1/2 0 - in canonical coordinates.
{ - _1/2} { } (23) The refined linear transformation frofx, y) to (&,, y) is
0 Ryy y
A 1/2
The corresponding refinement for the covariance matrix for [+ | — Rwé: ?/2 F o]l -K|[F" o
é, andy is Yy 0 Ry, |0 G]J|O I||o GT
-1/2
Q. 0 ]_[RM? 0 |[I-CuCE, 0 : {ng R_Ol/Q} ﬂ (33)
0 Ry |0 Ry 0 I v LY
R;Ff 0 The corresponding refinement of the covariance matri>éfor
1o RLZ| (24) andy i
vy y 1S

The diagonal structure of this covariance matrix shows thafQ,, o0 ] [RY? o0 ][F 0][I-KK® 0
the estimator erroé, and the measurement in coherence { 0 Ryy} - [ 0 Ré{f} [0 G} [ 0 I}
coordinates, are also uncorrelated, providing an orthogonal FT o ][R 0
decomposition of the coherence coordinaiato the estimator : [ 0 GT:| { 0 RT/2:| . (34)

jr and the erroe,. It also shows that the covariance matrix v

for the error in coherence coordinatesds,, = I - C,,CJ,. The diagonal structure of this covariance matrix shows that
The formula fordet[R..] is now the estimator errog, and the measurement are also un-
correlated, meaning that the estimat@rand the errore,

det[R.] = det[Q..] det[Ry, ] (25) orthogonally decompose the canonical coordinatet also
det[Qqz] = det[Ruz] det[I - C., CJ, |- (26) shows that the covariance matrix for the error in canonical
coordinates i9Q,,, = I — KK*. The formula fordet[R...]
C. Canonical Coordinates is now

We achieve one more level of refinement by replacing the T
coherence matrixC,, by its SVD: det[R..] = det[Ry,]|det[l - KK™]det[Ry,]  (35)
det[Q..] = det[Ry.,] det[I — KK?]

min(m, n)

c., =FKG'; K=F'C,,G

FFT :IrnxrnGGT = Inxn (27) = det[Rxx] H [1 — I{}2 (L)] (36)
K =[K(m) 0]; m<n =1
_ [K(”)] m>n (28) This formula shows that the squared canonical correlations
U k%(4) are objects of fundamental importance for filtering. We

K(m) =diagk(1) k(2) --- k(m)]. (29) pursue this point in Section IV.
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IV. FILTERING FORMULAS IN CANONICAL COORDINATES The relative volumes depend only on the direction cosines

We summarize as follows. The Wiener filter @anonical K2 (i):
coordinatesreplaces the source and measurement vectors in min(m, n)
standard coordinates with source and measurement vectors M — H [1—k2(2)]. (40)
in canonical coordinates. In these coordinates, the source det[R.] iy
and measurement are white but diagonally cross correlated
according to the canonical correlation matk This canon- C. Entropy and Rate
ical correlation matrix is also the Wiener filter for estimating The entropyof the random vectog is
the canonical source coordinates from the canonical mea-

surement coordinates. The error covariance matrix associated g = mtn log(27e) + 1 log det[R...]
with Wiener filtering in these canonical coordinates is just 2 ) 2

Quu — T - KKT. lmm(rn, n) ‘ )

Recall that the canonical correlations are defined as =Hext 3 Z log[1 = k%(0)] + Hyy
=1
_ _ 1
K =E[F'R;}*x(G"R,}/*y)"| =F'C,,G (37) H,, = % log(2me) + 5 log det[R..]
Hy, = 5 log(2me) + 5 log det[Ry,]. (41)

so that each canonical correlatidni;) measures the cosine . . .
of the angle between two unit variance random variables: oN@'mally, we write this entropy as the conditional entropy of

drawn from the canonical source coordinates and one drat@/Veny, plus the entropy of. The conditional entropy, or
from the canonical measurement coordinates. For this reaspavivocation,is therefore

we call the squared canonical correlatioh¥(i) direction min(m, n)
cosines. By making the canonical variables diagonally cor- Hp\y = Hyo +% Z In[1 — kQ(i)] (42)
related, we have uncoupled the measurement of one direction i=1

cosine from the measurement of another. and the direction cosines determine hgwvirings information

aboutx to reduce its entropy from its prior value @f,,.
A. Linear Dependence The second term on the right-hand side of this equation is
We think of the Hadamard ratidet[R..]/II(R..);; as a the n(_agative .ofratg in canqnical coor(_jinates. Thus, the rate
measure of linear dependence of the variall@mdy. Using at whichy brings information abouk is determined by the

the results of (8) and (35), we may write the Hadamard ratfirection cosines or squared canonical correlations between
as the product the source and the measurement.

det[R..] V. RANK REDUCTION FOR TRANSFORM
(R )i CODING, FILTERING, AND QUANTIZING
det[Rau] ™M™ 5 det[Ry,] ~ The Wiener filter in canonical coordinates is a filterbank
=TTR_.. H 1-FOl gm idea. That is, the measurement is decomposed into canonical
I(Rog)ii II(Ryy )i , - - : :
i=1 coordinates that bring information about the canonical coordi-
m . min(m,n) Y T , nates of the source. It is also a spread-spectrum idea because
=[[n-%.61 J] B-#@OIJL-*,®] the canonical coordinates are white. The question of rank
=1 i=1 i=1 reduction and bit allocation for finite-precision Wiener filtering

(39) or, equivalently, for source coding from noisy measurements is
] ) clarified in canonical coordinates. The problem is to quantize
This formula tells us that what matters is timradependence the canonical coordinates]; so that the trace of the error
within x as measured by its direction cosines, the covariance matrixQ,. is minimized. The error covariance
tradependence withily as measured by its direction cosinesyatrix and its trace are
and theinterdependence betweenandy as measured by the

direction cosines betweer andy. These latter direction Q.. = RYPF(I- KKDF'R!/? (43)
cosines are measured in canonical coordinates, much as min(m,n)
principal angles between subspaces are measured in something tr[Qus] = Z [1—k2(0)]€%(4) (44)
akin to canonical coordinates. They are scale invariant. i=1
where the¢?(i) are the energies of the “impulse responses”
B. Relative Filtering Errors for the coloring (or synthesizing) transform decoder:
The prior error covariance for the message vest® R, £2(i) = sTs;; s; = (RLY2F),. (45)

and the posterior error covariance for the eggr=x — x is
Q... The volumes of the concentration ellipses associated wiffthe canonical measurement coordinate that are weakly
these covariances are proportionalts[R,,..] anddet[Q..]. correlated with the canonical source coordinates are purged
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and the remaining are uniformly quantized withbits, then

the resulting error covariance matrix for estimating the source 1
vectorx from the reduced-rank and quantized canonical mea- | ‘/"v A
surement vectow is Ko
r min(m, n)
UQea(r)] = Y M=KD+ Y &%)
=1 1=r+1 v - = = — _
™ 0 i >~
+ 0 B ° r
i=1 (@ (b)
min(m, n) min(m, n)
2/ 2. Qs NpF2/ .
= Y [L-F@IEG+ Y FOE®E " [ oias squared
=1 1=r+1 due to rank
r reduction ;
20\ ¢2(\0—2b; )
+ z; k‘ (L)£ (L)2 . (46) fm[;it:tf;;(c):mn
1=
variance due to
. . quantizing
In this latter form, we observe tha{@,...(r)] consists of three m
terms: the infinite-precision filtering error, the bias-squared ° m
introduced by rank reduction, and the variance introduced by © (d)

uantizing. The trick is to properly balance the second an
q 9 properly F%. 3. Components of distortion. (a) Squared canonical correlation. (b)

third. To this end, we will consider the rate-distortion prObIem\finite-precision distortion. (c) Extra components of distortion due to rank
reduction and quantizing. (d) Finite-precision distortion.

. 1 e
min D = min — tr[Qq.(r)] under constramtz: b; = mR. VL. CANONICAL TIME SERIES

(47) If x andy are jointly stationary random vectors whose
Using the standard procedure for minimizing with constraifimensions increase without bound (that is, they are stationary
(see, for example, [9] and [10]), we obtain the solution  time series), then all of the correlation matrices in these formu-
las are infinite Toeplitz matrices with Fourier representations

1 k2(4)€2(4) , . .
bi = 2 log, v (48) Ree < Sm(eje)a Rey < Swy(ew)a Ryy < Syy(ew)-
r = max arg; [k?(4)£%(i) > v/] (49) _ _ _ (52)
1 I 1200205 Furthermore, if the time series are not perfectly predictable
R=— Z = log, M (that is, the power spectrd,, and Sy, satisfy the Sigo
m i 2 v conditions), thenS,.(e/?) and S,,(c’?) may be spectrally
min(m, n) /N2y factored as
= 1 max 1 log, M, 0 (50) ' 1
m.o = 2 v Sea(e?) = ' '
= o) - A7) A7)
1 T 1 min(m, n 1 r ' 1
D:_ 1-]{2'. 2(4 —_— 2(; - U ’70 = = <
m ;[ ())& (@) + m i;_l &)+ m ; v Syy(e”) B(ci®) B(c=i°) (53)
p mintmn) N 5. where the filtersd(z) and B(z) are minimum phase, meaning
“m Z min{[1 — A7(9)]€°(0) + v, £(0)}. (51) that A(z), B(z), 1/A(z), and1/B(z) are causal and stable
=1 filters. Then, the various square roots in the filtering fomulas
] ~ have the Fourier representations
These formulas generalize the formulas of [9] by providing a
solution to the problem of uniformly quantizing the Wiener 1/2 I Srg 1
filter or quantizing the Gauss—Markov theorem. They may be R, < A(ed?)’ Roe™ = Ae=99) (54a)
interpreted as follows. R=Y2 & A(P?): R=T/2 & A(e—90 54b
If the bit rate R is specified, then the slicing level “fi/Q - (eje)’ “f’T/QH (e_je) (54b)
is adjusted to achieve it. The slicing level determines the Ry, " = B(e); Ry, "= = Ble™). (54¢)

bit allocation b;, the rankr, and the minimum achievable
distortion D. Conversely, if the distortio) is specifiedy is
adjusted to achieve it. This determirgsr, and the minimum
rate R. These formulas are illustrated in Fig. 3 for the idealized 0 . Cme1/2 —1/2
case where thé¢?() are unity. The components of distortion K(e””) o FKG™ = Cyy = R, "Ray Ry

illustrate the tradeoff between bias and variance. = A(7%)S,, (7)) B(c™7?) (55)

The SVD representation fa€,,, becomes a Fourier represen-
tation; therefore
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, 1 This formula shows the error spectrum to be the product of
FT AW®) A@) FT ¢, the source spectrum and an error spectrum, where the latter is
determined by the squared coherence spectrum.
The spectral flathess of the error spectrum is

I, — oo (det[Qua])/™

x>

Slee = m 1/m
hInrn—)oo <H [wa]zz)
A i=1
u € A T
u o df
X ex . oy 2
l/A(Z) eXp {/_77 log QJ}J)(C ) 27r}
K) = = (62)
K(z) 1/A(z) A Qur(e3?) a9
y X o 21
v A
u
(b) which is the ratio of prediction error variance to prior variance.

Fig. 4. Canonical Wiener filter in (a) frequency and (b) time domains. The equivocation ok giveny Is

H,, = lim [In(det[Rze])™ + In(det[I — KKT])Y™]

m—o

where .- 0 i o
K(c/?)  coherence spectrum = [ g Suae) 50+ [ loglt = (PRI
K spectral mask didg (e??)]; -7 T Jex 7r

F andG Fourier matrices. (63)

That is, the coherence spectrum is the Fourier representatilcme negative of the second term is the rate at whidbrings
for the coherence matrix, and tequared coherence spectrumn¢qrmation aboutx, and it is determined by the squared
is the representation for the squared coherence matrix: coherence spectrum

C.y = K(c') = A(e°) S0y (") B(e™*) (56)

150, ()2 B. Quantizing
C.yCy, < [K()] = . v (57) It is a straightforward exercise to reduce rank and quantize
Saa(e?)Syy(e/f) :
according to
With these results, we summarize the filtering fomulas in o\ 12 6
ical ti - : joy _ 1 [ K (") " S (%)
canonical time series coordinates as b(e!?) = 3 log, : b/Hz (64)
1%
0y _ 9\ B(od0 _
W= Wi(e )_A(eje)K(e YB(e?%) (58) r=o-
Qoo = Qua(e’®) = Suu(e®)1 = |K ()] (59) Q= {6: |K(’)] Spu(e’®) > v} (65)
' [T 1. |K(&)|2Sea(e??) de
This equation for¥ (c7?) shows it to be a product of spectral R= . max | o log, iy ;0 o
masks, as illustrated in Fig. 4(a). Alternativel¥,(c’?) is the (66)
frequency response of the Wiener filtf(z), and Q,...(¢’?) x ' '
is its error spectrum. This filter is illustrated in Fig. 4(b). If D= min{[1 — | K (¢’%)|?] Sz () + v
the filter is constrained to be causal, then the coherence filter -
K(z) is replaced by the causal filter Spa(e?) d_9 (67)
27
— —1
K+ (2) = A(2)[Sey (2) Bz )]+ (60)  These formulas are the asymptotic versions of the finite-
_ dimensional formulas. Their interpretation is the same as
A. Error Variance, Spectral Flatness, and Entropy illustrated in Fig. 3, with index replaced by frequency.
The Toeplitz matrixQ,., has the error variance? on its
diagonal. Therefore, this variance is VIl. ADAPTIVE CANONICAL COORDINATES
m 1/m The story of adaptive canonical correlations may be told as
ai = lim <H [Qm]”> follows. Assume that the covariance mati . is unknown.
mTe i1 In place of it, we haveM independent snapshots af
™ o d0 assembled into the matri¥
= Qm:(ej )%
" : T Z=[z 2o zm)= |0 22 XM}:[é}'
= [ Su@i-lKE@IPAG. 6D Vi Y2 o Yu
_x 27 (68)



SCHARF AND THOMAS: WIENER FILTERS IN CANONICAL COORDINATES FOR TRANSFORM CODING, FILTERING, AND QUANTIZING

Then,f{ZZ is a crude estimate of the covariancezof

5 ooT | X T T XXT XYT?T
Rzz =77 = |:Y [X Y ] - YXT YYT
= |aew ey | (69)

From the estimated covar[ance matktx ., we may determine
the adaptive Wiener filteW that minimizes

M
tr ng =1tr Z (Xi - Wyi)(xi - Wyi)T (70)
=1

653

This might be called a noise-rejecting quantizer [12] because
the quantizer is designed to filter out noise and produce a low-
variance quantized estimate of the source vector. The results
clarify the low-rank filters studied in [8] and [11]. This scheme
can be made data adaptive by constructing the estimated
correlation matrix for the source and measurement vectors
from experimental data and proceeding as if the estimated
covariance matrix were the true one. This procedure solves
the least squares problem of minimizing the sum of squared
errors between the filtered experimental measurements and the
experimental source vectors, generalizing the rank reduction
and bit allocation problems studied in [9] to the case where

which is the sum of squared errors between the experimergaperimental data, and not second-order information, is given.

source vectors; and the experimental estimatd8¥y;. The
solution is

W =R.,R,; (71)

No explicit identification or equalization of the channel model[3

takes place. Of cours€s = (f{,,y)Tf{;J} is what we would
mean by thechannel modefor generatingy = Gx + n, but

there is no need to explicitly estimate it. If the filter is to be[g

reduced in rank and quantized, th&¥ will be resolved into
adaptive canonical coordinates according to

W =RY’FKG'R,}/? (73)
Q. =RPFI-KKOFTRIZ  (74)
FKG" =C,, =R;/’R,,R;/2. (75)

Therefore, the estimated covariance mafiigz, which is con-
structed from snapshots of theeasuremerand thesource is
used to determine the estimated coherence métgix, which

is SVD'd to produce the adaptive Wiener filter in canonicghz2]
coordinates. In these coordinates, the adaptive canonical filter

K may be reduced in rank, and the canonical vestanay
be quantized.
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