
DISSERTATION

PHISHING DETECTION USING MACHINE LEARNING

Submitted by

Hossein Shirazi

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2021

Doctoral Committee:

Advisor: Indrakshi Ray

Co-Advisor: Chuck Anderson

Yashwant K. Malaiya

Haonan Wang

Copyright by Hossein Shirazi 2021

All Rights Reserved

ABSTRACT

PHISHING DETECTION USING MACHINE LEARNING

Our society, economy, education, critical infrastructure, and other aspects of our life have be-

come largely dependent on cyber technology. Thus, cyber threats now endanger various aspects of

our daily life. Phishing attacks, even with sophisticated detection algorithms, are still the top Inter-

net crime by victim count in 2020. Adversaries learn from their previous attempts to (i) improve

attacks and lure more victims and (ii) bypass existing detection algorithms to steal user’s identities

and sensitive information to increase their financial gain.

Machine learning appears to be a promising approach for phishing detection and, classifica-

tion algorithms distinguish between legitimate and phishing websites. While machine learning

algorithms have shown promising results, we observe multiple limitations in existing algorithms.

Current algorithms do not preserve the privacy of end-users due to inquiring third-party services.

There is a lack of enough phishing samples for training machine learning algorithms and, over-

represented targets have a bias in existing datasets. Finally, adversarial sampling attacks degrade

the performance of detection models.

We propose four sets of solutions to address the aforementioned challenges. We first pro-

pose a domain-name-based phishing detection solution that focuses solely on the domain name of

websites to distinguish phishing websites from legitimate ones. This approach does not use any

third-party services and preserves the privacy of end-users. We then propose a fingerprinting algo-

rithm that consists of finding similarities (using both visual and textual characteristics) between a

legitimate targeted website and a given suspicious website. This approach addresses the issue of

bias towards over-represented samples in the datasets. Finally, we explore the effect of adversar-

ial sampling attacks on phishing detection algorithms in-depth, starting with feature manipulation

strategies. Results degrade the performance of the classification algorithm significantly. In the

ii

next step, we focus on two goals of improving the performance of classification algorithms by

increasing the size of used datasets and making the detection algorithm robust against adversarial

sampling attacks using an adversarial autoencoder.

iii

ACKNOWLEDGEMENTS

First, and foremost, I am extremely grateful to my supervisor, Prof. Indrakshi Ray, for her

invaluable advice, continuous support, and patience during my Ph.D. study. Her immense knowl-

edge and plentiful experience have encouraged me in all the time of my academic research and

daily life. I would also like to thank Dr. Chuck Anderson, Dr. Yashwant Malaiya, Dr. Haonan

Wang, Dr. Indrajit Ray, Dr. Bruhadeshwar Bezawada, and Dr. Ritwik Banerjee for their technical

support on my study. I would like to thank all the members of the RaysCyberResearchLab and the

Department of Computer Science at Colorado State University. It is their kind help and support

that have made my study and life in the U.S. a wonderful time. Finally, I would like to express my

gratitude to my parents and my wife. Without their tremendous understanding and encouragement

in the past few years, it would be impossible for me to complete my study.

iv

DEDICATION

To Hajar and Hamoon

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction to Phishing . 1

1.1 Limitations of current machine learning-based solutions 2

1.2 Our proposed solutions . 4

1.3 Key Contribution . 7

1.4 Dissertation organization . 9

Chapter 2 Related Work . 10

2.1 Human-related approaches . 11

2.2 Software-related approaches . 13

2.3 Limitations of past work . 23

Chapter 3 Privacy-preserving Phishing Detection using Domain-Name Based Features . 26

3.1 Domain-name-based features . 26

3.2 Experimental evaluation . 31

3.3 Conclusion . 36

Chapter 4 Fingerprinting-Based Approach for Overcoming Bias in Phishing Detection . 38

4.1 Proposed approach . 38

4.2 Methodology of proposed approach . 40

4.3 Experiments and results . 44

4.4 Conclusion . 48

Chapter 5 Effects of Adversarial Sampling Attacks in Phishing Detection 49

5.1 Threat model . 50

5.2 Adversarial sampling for phishing . 52

5.3 Directed adversarial sampling . 56

5.4 Experiments and Results . 58

5.5 Conclusion . 71

Chapter 6 Using Adversarial Autoencoder for Generating Samples in Phishing Detection 76

6.1 Proposed approach . 76

6.2 Experiments and evaluation . 81

6.3 Conclusion . 90

Chapter 7 Conclusion . 91

vi

Bibliography . 92

vii

LIST OF TABLES

3.1 Binary Feature Distribution . 30

3.2 Feature Extraction Timings . 35

3.3 Training/Testing Timings . 35

3.4 True positive rates of testing phase for DS-2 . 36

3.5 Comparison with State-of-the-art Approaches . 37

4.1 List of target websites . 45

5.1 Table of notations . 54

5.2 Datasets attributes . 73

5.3 Evaluation of model against different classifiers with two metrics. 74

5.4 Specifying classifier with best F1 score . 74

5.5 Comparison of different approaches with proposed approach 75

6.1 Summary of the hypothesises and scores . 81

6.2 Summary of used datasets in experiments . 83

6.3 Evaluation of the model against different classifiers 84

6.4 Performance of models for evaluating Hypothesis-2 85

6.5 Improving performance with ∆5

Acc. 89

6.6 Improving performance with ∆5

F1
. 89

viii

LIST OF FIGURES

2.1 Phishing detection approaches in the literature. Human related approaches focus on

the role of human and software related approaches focus to improve software-based

solutions. 10

2.2 Warning of phishing attacks in Google Chrome and Microsoft Edge 13

3.1 Domain-name features . 27

3.2 ECDF plots for domain-Name Length, URL Length, and Link Ratio in BODY 28

3.3 PPV, TPR and ACC on DS-1 without URL Length Feature 33

3.4 PPV, TPR and ACC on DS-1 with URL Length Feature 34

4.1 Two different ways of modeling the phishing problem with regard feature definition . . 38

4.2 Legitimate screenshot from Yahoo.com. 42

4.3 F1 score of trained model for different classifiers. 47

4.4 Accuracy of trained model for targeted websites. 48

4.5 F1 score for trained model for targeted websites. 48

5.1 Robustness of datasets against adversarial samples. 62

5.2 Manipulation cost for adversarial . 64

5.3 Ratio of bypassing and transferring adversarial samples in tested datasets 65

5.4 Distribution of bypassed and transferring samples for each cluster 66

5.5 Conditional probability of adversarial samples . 67

5.6 Relation between original clusters instances with adversarial samples 69

6.1 High-level architecture of our proposed approach . 77

6.2 Performance of classifiers against synthesized samples 86

6.3 Recovery performance from synthesized attacks . 88

ix

Chapter 1

Introduction to Phishing

Our society, economy, education, critical infrastructure, and other aspects of our life have be-

come largely dependent on cyber and information technologies. Simultaneously, cyber-attacks are

becoming more attractive for adversaries [1]. The world is forecasted to spend $133.7 billion in

2022 on cyber-security [2]. 62% of businesses experienced social engineering attacks, including

phishing attacks in 2018, and 68% of business leaders feel their risks related to cybercrimes are in-

creasing [3]. However, only 5% of companies’ folders on average are appropriately protected [4].

4.1 billion data records have been breached only in the first half of 2019, 71% were financially

motivated, and 25% were motivated by espionage [5]. 52% of breaches have featured hacking as

an attack vector, 28% involved malwares, and 32–33% included phishing or social engineering as

attack vector [6]. These numbers demonstrate the importance of cyber-attacks.

Phishing, defined as the attempt to obtain sensitive information such as usernames, passwords,

and credit card details, often for malicious reasons, by masquerading as a trustworthy entity in

an electronic communication [7], is a problem that is as old as the Internet itself. Trying to get

unsuspecting users to give up their money, credentials, or privacy is a particularly insidious form

of social engineering that can negatively affect people’s lives.

Phishing attacks, even with sophisticated detection algorithms, are still dominant cyber-crimes.

FBI’s Internet Crime Complaint Center (IC3) reports phishing (including other similar types of

attacks like vishing, smishing, and pharming) to be the most prevalent crime type by number in

2019 with an estimated 12.5 billion USD in financial losses worldwide between 2013-2018 [8, 9].

Adversaries learn from their previous attempts to (i) improve attacks and lure more victims and

(ii) bypass existing detecting algorithms to steal user’s identity and sensitive information [10, 11]

to increase their financial gain.

1

1.1 Limitations of current machine learning-based solutions

Social engineering attacks in general, and phishing attacks specifically, are not successful be-

cause of the vulnerability in systems, but due to misjudgment of humans in distinguishing legit-

imate entities from fake ones. Consequently, a wide range of techniques has been studied in the

literature to counter such attacks having different levels of sophistication.

Machine learning aims at automating the learning processes from existing examples and ex-

periences without being explicitly programmed [12]. Machine learning algorithms have shown

promising results [13–16]. This technique requires prior real-world data that has been classified

or marked to carry out the training [17]. However, we have faced the following limitations using

machine learning-based techniques to detect phishing websites in existing approaches.

1.1.1 Not privacy preserving

Supervised deep learning appears to be a promising approach for phishing detection [18–20].

Machine learning requires a large volume of training data, such data extraction violates the privacy

of end-users. For extracting feature values of suspicious websites, third-party services like a search

engine has to be used. This reveals the browsing history of end-users and violates privacy.

1.1.2 Inadequate phishing samples

The next limitation is the lack of having real attack data or inadequate data samples. In cyber-

security systems, threats are rare events, so datasets are biased towards normal events. Such

datasets have much more normal instances than minority events and learning from a biased dataset

is challenging. The interest arises in the minority samples where rare instances belong to phishing

attacks. Besides, researchers barely share their datasets in cyber-security problems for reasons

of confidentiality and privacy. Only 10% of researchers shared their dataset in a similar security

networking problem [21]. That makes creating a ground truth dataset impossible.

2

With a low volume of existing phishing datasets [22], the learning classifier may not converge,

and the performance will be inconsistent. In short, the training model may be imperfect in the

absence of adequate data.

1.1.3 Over-represented targets

Zou and Schiebinger [23] revealed multiple examples of Artificial Intelligence (AI) where some

of the samples are over-represented, and others are under-represented. These biased datasets will

lead to a learning model that is racist, sexist, or unfair to the group of minorities. For example,

a medical machine learning algorithm that was trained for skin cancer from photographs was not

tested on dark-skinned people due to the lack of enough samples of that group, only 5% of images

were of dark-skinned individuals in the dataset [23].

Our observation here is if the phishing samples in a training dataset are biased towards the

most targeted websites, the detection rate of phishing instances for the more popular sites would

be higher than groups with fewer numbers. Although the overall results for the detection algorithm

are high, the detection results vary widely among the different target websites depending on their

popularity. In this situation, the algorithm is biased towards pro-big-techs, meaning it is more

successful for detecting attacks against popular websites compared to relatively unknown ones.

1.1.4 Adversarial attacks

Phishing attacks have shown remarkable resilience against a multitude of defensive efforts,

and attackers continue to generate sophisticated phishing websites that closely mimic legitimate

websites. One crucial assumption in using machine learning approaches is that the training data

collection process is independent of the attackers’ actions [24]. However, in adversarial contexts,

e.g. phishing, this is far from the reality as attackers either generate noisy data samples or gen-

erate new attack samples by manipulating features of existing phishing instances. Furthermore,

manipulating features results in a dangerous scenario wherein an attacker can bypass the generated

classifier without much effort. A carefully crafted phishing data sample that appears to a machine

learning classifier as a legitimate sample is called an adversarial sample. The immediate impact

3

of adversarial samples is to degrade the accuracy of a machine learning classifier. A key problem

for the attacker to consider would be choosing the features that need to be manipulated and the

associated cost for such manipulation. Ideally, the attacker would like to bypass the classifier with

the lowest cost of manipulating the data sample features.

1.2 Our proposed solutions

For the aforementioned challenges, we proposed a set of solutions. Each solution addresses

one or more challenges.

1.2.1 Privacy preserving phishing detection using domain-name based fea-

tures

In this proposed approach, we check whether a given suspicious website is phishing or not by

considering only the domain-name of the website. Typically, the content of a phishing website is

textually and visually similar to some legitimate website. Based on this, the problem statement we

examine is, to determine the features that quantify the attacker strategies in terms of the content

found in the phishing website. Our approach is based on the intuition that the domain name of

the phishing websites is a key indicator of a phishing attack. We design several features that are

based solely on the domain name and train a machine learning classifier based on sample data. The

trained classifier is used to test a suspicious website against these features.

The primary challenge is to justify the use of domain name-based features. A phisher has much

control over the formation and structure of the URL and therefore, can generate noisy URLs that

can bypass most machine learning approaches. On the other hand, the phisher has limited control

over the domain name, i.e., the adversary can generate several types of URLs within the same

domain, but the domain name remains fixed throughout. Second, domain name-based features are

likely to be more independent of the content in the phishing pages. The structure of the page layout,

the HTML tags, and the dynamic content will no longer be a major part of the detection algorithm.

Third, a phishing domain name typically can contain additional characters or numbers to give the

4

illusion of a legitimate website, e.g., go0ogle.com. These variations are subtle and are likely to

provide sufficient statistical distinctions between legitimate and phishing websites. Hence, based

on these arguments, we claim that domain name-based features are likely to exhibit more regularity

than URL-based features.

The penultimate challenge concerns the validity of the features. We performed a statistical

validation against a small sample of the data to verify the utility of the features across phishing and

legitimate websites. We were able to eliminate several features and our final classifier consists of

only seven features.

The final challenge is testing the resiliency of the domain-based features to detect unknown

or zero-day phishing attacks. To address this, we tested the classifier against a blacklist of URLs

taken from the latest updates on OpenPhish.com.

In this approach, we are not using any third-party services and feature extraction so the privacy

of users is preserved and addresses the challenge mentioned earlier. In Chapter 3, we explain the

details of our approach.

1.2.2 Fingerprinting-based phishing detection

Current approaches [25], [26], [27], and [28] perform an in-depth analysis to find characteris-

tics that are common across phishing websites but help distinguish them from genuine ones. These

characteristics form the basis of features that are used by machine learning algorithms. This ap-

proach appears counter-intuitive as adversaries use different techniques to make a phishing website

similar to a genuine target website, not other phishing instances. The choice of features and their

representation often depends on the skill of the model designer and the types of attacks that can

be detected by the algorithm. Adversaries are always looking for alternate attack vectors to bypass

current learning models and make existing features obsolete. As new attacks emerge, the current

models must be upgraded.

Our proposed approach consists of finding similarities between a legitimate website that is tar-

geted and all of the phishing websites that mimic the legitimate website. We define features to

5

compare a phishing sample to a target website. We propose the idea of fingerprinting a legitimate

website using its visual and textual characteristics which will uniquely represent it. We also sug-

gest using screenshots of websites instead of relying on the HTML code of websites; this makes

bypassing the learning model extremely hard for the attacker. The fingerprint will be compared

with the given samples to detect phishing instances.

Each machine learning vector will represent the similarity of a phishing website to a specific

target, not the similarity to other phishing instances. In this case, the machine learning algorithm

will not answer the critical question of phishing detection as “if the given website is phishing or

not” but it will answer “if a given website is attacking a specific target or not”. The learning

algorithm in this model improves learning scores based on the similarity of a phishing instance to

the target website and do not depend on other samples.

Thus, the model will not skew towards targets with more individuals, as each target has its own

learning model and dataset. Accordingly, each site is being judged independently and, it guarantees

there is not any bias toward groups of sites with a high volume of samples, and oversampling and

undersampling cannot affect the learning scores.

The model is looking for the visual and textual similarity between a given suspicious website

and a targeted genuine website. Thus, new attack vectors will not change the learning model, so

there is no need to update the model over time unless the target website has been changed.

This approach addresses the issue of bias towards over-represented samples. Chapter 4 explains

details of our approach.

1.2.3 Adversarial sampling attacks

In this proposed approach, we first explore and study the effect of adversarial sampling on

phishing detection algorithms in-depth, starting with some simple feature manipulation strategies,

and show some surprising results that demonstrate impact on the classification accuracy with trivial

feature manipulation.

6

We gathered four separate, publicly available phishing datasets developed by other researchers

and applied adversarial sampling techniques to evaluate the robustness of the trained model against

artificially generated samples. Although we do not show any solution to address this current threat,

we demonstrate the vulnerability of the existing approaches and explore the datasets’ robustness

against the engineered features and the learning models.

In the next step, we focus on two goals of improving the performance of classification al-

gorithms by increasing the size of the dataset and making the detection algorithm robust against

adversarial sampling attacks. Regarding the first goal, we propose a deep-learning approach to

synthesize new samples that preserve the characteristics of existing data but without doing actual

data collection. These samples will be added to the training datasets. Such an approach is essen-

tial when data is unavailable, or the collection process is laborious and infeasible. In addition,

we use new synthesized instances as an adversarial attack against the detection model and achieve

the second goal. We leverage the datasets with synthesized samples to make them prone to such

attacks.

We develop an adversarial autoencoder (AAE) network to mimic websites that are in tune with

the capabilities and characteristics of actual attackers as phishing samples as well as synthesizing

new legitimate samples. Our proposed AAE has been used to extend both phishing and legitimate

instances in the dataset and is compatible with the adversary we modeled. We inspect the similarity

between synthesized samples via AAE and original samples to guarantee the synthesized samples

follow the same characteristics as the original ones. That proves the validity of our synthesized

samples.

Chapter 5, we first show the details of adversarial attacks against phishing detection algorithms.

In Chapter 6, we address two issues of the low volume of data and adversarial attacks in phishing

detection.

1.3 Key Contribution

Our key contribution in this dissertation as follows:

7

• In Chapter 3, we describe a machine learning-based approach for phishing detection that

relies entirely on domain name-based features and preserves the privacy of end-users.

• Our approach achieves a 97% accuracy on a set of 2000 URLs with five-fold cross-validation.

In addition, our approach achieves a 97-99.7% detection rate on live blacklist data from

OpenPhish.com.

• In Chapter 4, we define a new fingerprinting approach based on the visual and textual traits

of legitimate websites. Our algorithm is able to detect whether a given suspicious website

attacks a specific target. We implemented our approach on 14 legitimate websites and tested

against 1446 unique samples. Our model reported an accuracy of at least 98% and it is not

biased towards any website. This is in contrast to the current machine learning models that

may be biased towards groups of over-represented samples and lead to more false-negative

errors for less popular websites.

• In Chapter 5, we show the weakness of some well-known machine learning approaches

and emphasize how a phisher can generate new phishing website instances, i.e., adversarial

samples, to evade the machine learning classifier in each of these approaches. Our experi-

ments reveal that the phishing detection mechanisms are vulnerable to adversarial learning

techniques. Specifically, the identification rate for phishing websites dropped to 70% by

manipulating a single feature. When four features are manipulated, the identification rate

dropped to zero percent. This result means that any phishing sample, which would have

been detected correctly by a classifier model, can bypass the classifier by changing at most

four feature values

• We define phishing instances’ vulnerability level, which quantifies and optimizes the attack-

ers’ efforts to generate adversarial samples. In addition, we describe a clustering approach

to direct the attacker in generating better adversarial samples with a higher likelihood of suc-

cess to bypass the classifier. We show that the clustering approach identifies data samples

with higher vulnerability levels.

8

• In Chapter 6, we present an AAE model to synthesize phishing and legitimate data that

mimic original ones to augment the training dataset.

• We quantify the improvement of the accuracy of models by using synthesized data. We also

discuss how to design robust classifiers using synthetic data that is resistant to adversarial

attacks. We exemplify the widespread applicability of our approach for a range of datasets

and different classification algorithms.

1.4 Dissertation organization

In Chapter 2 of this dissertation, we first study the phishing detection background by giving a

classification framework to compare existing approaches. In Chapter 3, we define machine learning

algorithms to classify between legitimate and phishing instances based on the domain name. In

Chapter 4, we propose a model to calculate the visioned similarity between a phishing website and

the target. We then study the vulnerability of existing models against adversarial sampling attacks

in Chapter 5. We synthesize new phishing instances through a feature manipulation process. These

samples bypass the existing learning model demonstrating the current phishing detection model’s

vulnerability. Finally, in Chapter 6, we propose an Adversarial Auto-Encoder (AAE) algorithm

that synthesizes new phishing and legitimate adversarial samples that mimic real samples. We

evaluated whether these new synthesized samples can bypass the existing model or not. Chapter 7

summarises our findings and concludes the dissertation.

9

Chapter 2

Related Work

Phishing attacks are classified as social engineering attacks. In this kind of attack, the adversary

does not necessarily look for a vulnerability in the system but looks for unaware users to lure

them. For example, an attacker creates a web page similar to a login page of a well-known email

provider, sends the links to the users, and asks them to log in. In this example, there is not any

security concern related to the email provider. If the end-user is not aware of the potential threats,

they may be fooled by the attacker. During the last decade, different researchers tried to come

up with different approaches. From a broader perspective, we categorize all these efforts into two

major categories. In the first category, we discuss the approaches that try to address the problem

in a human-based manner. The approaches in this category increase the knowledge of end-users

and help them to make good decisions when they face suspicious websites. In the second category,

we study software-based approaches. In this approach, different techniques aim to distinguish

between legitimate websites and phishing ones. The result of this category may also be fed to the

first category to help end-users.

Figure 2.1: Phishing detection approaches in the literature. Human related approaches focus on the role of

human and software related approaches focus to improve software-based solutions.

10

2.1 Human-related approaches

The strategy of phishing attackers is based on taking advantage of unaware or inexperienced

users. The users who do not know about these attacks are in more danger. Figure 2.1 shows

existing phishing detection algorithms in the literature. Knowledge management helps to increase

user’s information about the attacks and educate them when faced with it, however, the list-based

approach shows a warning to prevent the user from being fooled by the phishing website.

2.1.1 Knowledge management and user educating

The users are the ones who are at risk so it is beneficial to educate them and increase their abil-

ity to protect themselves against these attacks. Jensen et al. [29] explored how an organization can

utilize its employees to combat phishing attacks collectively through coordinating their activities

to create a human firewall. They utilize knowledge management research on knowledge sharing

to guide the design of an experiment that explores a central reporting and dissemination platform

for phishing attacks. Results demonstrate that knowledge management techniques are transfer-

able to organizational security which can benefit from insights gained from combating phishing.

Specifically, they highlight the need to both publicly acknowledge the contribution to a knowledge

management system and provide validation of the contribution by the security team. They reported

that doing only one or the other does not improve outcomes for correct phishing reports.

Sheng et al. [30] design an online game that teaches users good habits to help them avoid

phishing attacks and use learning science principles to design and iteratively refine the game. The

participants were tested on their ability to detect phishing websites from the legitimate ones before

and after playing the designed game and reading an article about phishing. The results show that

playing the game can increase the ability to find the phishing website of the participant. Asanka

et al. [31] create a mobile version of a game aimed to enhance avoidance behavior through the

motivation of home computer users to protect against phishing threats [32].

To explore the effectiveness of embedded training, researchers conducted a large-scale exper-

iment that tracked workers’ reactions to a series of carefully crafted spear-phishing emails and

11

a variety of immediate training and awareness activities [33]. Based on behavioral science find-

ings, the experiment included four different training conditions, each of which used a different

type of message framing. The results from three trials showed that framing had no significant

effect on the likelihood that a participant would click a subsequent spear-phishing email and that

many participants either clicked all links or none regardless of whether they received training. The

study was unable to determine whether the embedded training materials created framing changes

in susceptibility to spear-phishing attacks because employees failed to read the training materials.

2.1.2 List-based

List-based solutions have fast access time, but they suffer from a low detection rate especially

for the zero-day attacks, which exploit potentially serious software security weaknesses that the

vendors or developers may be unaware of. Afroz et al. [34] build profiles of trusted websites based

on fuzzy hashing techniques. This approach combines white-listing with black-listing and heuristic

approaches to warn users of attacks. Jain et al. [35] used an auto-updated white-list of legitimate

sites accessed by the individual user. When users try to open a website, which is not available in

the white-list, the browser warns users not to disclose their sensitive information. However, all

list-based approaches suffer from the problem of dynamic updates and scalability, which makes

them impractical for client-side detection.

Modern browsers use a list-based approach in an embedded manner and update the list regu-

larly. The browser checks every single website that users want to visit against that list and if the

webpage is listed there, gives a warning to the user. Figure 2.2 shows an example of that warning

shown to the users by Google Chrome and Microsoft Edge.

Firefox checks each website that a user visits against reported phishing, unwanted software,

and malware lists. These lists are automatically downloaded and updated every 30 minutes by

default when the “Phishing and Malware Protection” feature is enabled [36].

Microsoft SmartScreen, used in Windows 10 and both Internet Explorer 11 and Microsoft

Edge, helps to defend against phishing by performing reputation checks on visited sites and block-

12

Figure 2.2: Warning of phishing attacks in two different browsers; Left: Google Chrome

- Right: Microsoft Edge

ing any sites that are thought to be phishing sites. SmartScreen also helps to defend people against

being tricked into installing malicious applications. Google’s Safe Browsing infrastructure dis-

plays warning messages in Google Chrome, Android, and Gmail if the user tries to access a poten-

tially malicious site or download malware and viruses [37].

2.2 Software-related approaches

Relying solely on the end-user in the fight against phishing attacks is inadequate. The end-

users are prone to make incorrect decisions, even with education and awareness. Addressing this

problem needs the help of software-related techniques to prevent, detect and mitigate phishing. In

this section, we will discuss different software-related techniques to fight against them, namely,

visual and textual similarity, machine learning, heuristics, and learning in adversarial contexts.

2.2.1 Machine learning-based approach

Machine learning algorithms have been proven to have the ability to discover complex correla-

tions among different data items of similar nature. Many algorithms consist of two steps: learning

and testing. In the learning step, the algorithms try to learn from supporting examples, and in the

testing phase, the researchers evaluate the accuracy of the algorithms.

13

Attackers often use email to send out phishing URLs to the victim. Consequently, detecting po-

tentially dangerous emails helps to protect users from phishing websites. There is a wide literature

on automating detection for phishing emails by looking at the context of the email. For example,

Basnet et al. [38] used 16 features to detect phishing emails. While they use email messages as a

source to extract the features, we only focus on the website itself rather than how the attacker tries

to tempt the users.

Ma et al. [39] described an approach based on URL classification using statistical methods to

discover the lexical and host-based properties of malicious website URLs. They use lexical prop-

erties of URLs and registration, hosting, and geographical information of the corresponding hosts

to classify malicious web pages at a larger scale. These methods are able to learn highly predictive

models by extracting and automatically analyzing tens of thousands of features potentially indica-

tive of suspicious URLs. The resulting classifiers obtain 95-99% accuracy, detecting large numbers

of malicious websites by just using their URLs. However, their approach requires a large feature

set and extracts host information with the help of third-party servers. In Section 2.3, we discussed

why using URL-based features and third-party services leads to a biased dataset.

Miyamoto et al. [40] provided an overview of nine different machine learning techniques, in-

cluding Support Vector Machine, Random Forests, Neural Networks, AdaBoost, Naive Bayes,

and Bayesian Additive Regression Trees. They analyzed the accuracy of each classifier on the

CANTINA dataset [41], a state of the art dataset, and achieved a maximum accuracy of 91.34%

using AdaBoost. They used a wide range of classifiers but due to the adaptive nature of these

attacks and not having the capability of updating training dataset, they cannot guarantee the re-

siliency of the solution.

Aburrous et al. [42] proposed association data mining algorithms to characterize and identify

the rules to classify phishing websites. They implemented six different classification algorithms

and techniques to mine the phishing training datasets. They used a phishing case study that was

applied to illustrate the website phishing process. The rules generated from their associative clas-

sification model showed the relationship between some important characteristics like URL and

14

domain identity, security, and encryption criteria. The experimental results demonstrated the feasi-

bility of using Associative Classification techniques in real applications and its better performance

as compared to other traditional classifications algorithms, e.g. Multi-class Classification based on

Association Rule algorithm which has an error rate of Rate 12.6%

Xiang et al. [43] proposed a layered anti-phishing solution with a rich set of features. They

proposed 15 features that exploit the Document Object Model (DOM) of webpages including using

search engine capabilities, and third-party services, with machine learning techniques to detect

phishing attacks. Also, they designed two filters to help reduce False Positive Rate (FPR) and

achieve runtime speedup. The first is a near-duplicate phishing detector that uses hashing to catch

highly similar a fake website. The second is a login form filter, which directly classifies web

pages with no identified login form as legitimate. The key shortcoming of this approach is that the

experiments were conducted with biased datasets. The Alexa.comwebsite, which provided most

of the legitimate websites in this dataset, only gives the domain name of legitimate websites. While

the phishing websites are taken from PhishTank.com are mostly complete URLs of phishing

web pages. So the types of data instances are different. Also, using third-party services to extract

some features may endanger the privacy of users by revealing their browsing history.

In 2015, Verma et al. [44] described an approach based on textual similarity and frequency

distribution of text characters in URLs. For instance, they examined the character frequencies in

phishing URLs and the presence of suspicious words as features. However, this approach is entirely

based on URLs and is likely to be biased in the modern-day context. Some of their features, like

presence of suspicious words, will need to be updated frequently as newer phishing attack surfaces

emerge.

Jain et al. [45] described a machine learning-based approach that extracts the features from

the client-side only. Their approach examined the various attributes of phishing and legitimate

websites in-depth and identified 19 features to distinguish phishing websites from legitimate ones.

Their approach has a relatively high accuracy in the detection of phishing websites as it achieved

a 99.39% true positive rate and 99.09% of overall detection accuracy. While their approach relied

15

only on the client-side feature and did not use any third-party features, there are some drawbacks

to this approach. For example, their method of dataset creation is flawed. For phishing websites,

they used PhishTank.com as a source of phishing websites. For legitimate websites, they

used mostly Alexa.com, which ranks the most top-ranked domain names in the world. While

PhishTank.com generated the phishing pages, Alexa.com gives only domain names and not

the internal pages of the domain. As a result, their features are biased with respect to the dataset.

This factor was not considered in the feature extraction process. For example, one feature in their

approach is the number of dots in the given URL. In the training phase, while all given legitimate

instances consist of only domain names, the phishing instances consist of entire URLs. Another

feature looks for suspicious words in the URL, but many legitimate websites also have these words.

Al-Janabi et al. [46] described a supervised machine learning classification model to detect

the distribution of malicious content in online social networks (OSNs). Multisource features have

been used to detect social network posts that contain malicious URLs. These URLs direct users

to websites that contain malicious content, drive-by download attacks, phishing, spam, and scams.

For the data collection stage, the Twitter streaming API was used. They just focused only on one

OSN network (Twitter) and applied their approach. Their features can neither be extracted locally

nor guarantee the security of users outside of the network during regular browsing.

Marchal et al. [47,48] proposed a client-side detection approach complete it with a browser ex-

tension [49] using custom datasets from Intel Security and tried to eliminate bias in datasets. They

developed a target identification component that can identify the target website that a phishing web

page is attempting to mimic. However, their approach uses over 200+ features for classification,

which complicates the feature extraction part in comparison with approaches with a fewer number

of features. Moreover, not much is known about the exact design of their features and the dataset

used is not available to replicate their results.

Rao et al. [50] proposed a classification model based on an ensemble of features that are ex-

tracted from URL, source code, and third-party services. Their approach is inefficient and suffers

16

from the same problems as other techniques using URL-based features. Furthermore, this approach

uses third-party servers and reveals a user’s browsing history to untrusted servers.

For phishing website detection, machine learning algorithms are well suited as they can as-

similate common attack patterns such as hidden fields, keywords, and page layouts across multiple

phishing data instances and create learning models that are resilient to small variations in future un-

known phishing data instances. In the prior machine learning approaches, researchers engineered

novel sets of features from diverse perspectives based on public datasets of phishing and legitimate

websites. While these approaches have demonstrated excellent results for detecting phishing web-

sites, they also suffer from severe disadvantages due to adversarial sampling, as we show in the

following discussion.

Niakanlahiji et al. [13] introduced PhishMon, a scalable feature-rich framework with a series

of new and existing features derived from HTTP responses, SSL certificates, HTML documents,

and JavaScript files. The authors reported an accuracy of 95% on their datasets.

According to a Symantec report [51], the number of URL obfuscation-based phishing attacks

was up by 182.6% in 2017. Some URL obfuscation techniques used by attackers are the mis-

spelling of the targeted domain name, using the targeted domain name in other parts of the URL

like the sub-domain, adding sensitive keywords like “login”, “secure”, “https”, etc. Sahinguz et

al. [14] proposed a real-time detection mechanism based on Natural Language Processing (NLP)

of URLs. The technique used a large dataset without requiring third-party services and focused on

features derived from URL obfuscation and achieved an accuracy of 95%.

Verma et al. [52] defined lexical, distance, and length-related features for the detection of

phishing URLs. They employed the two-sample Kolmogorov-Smirnov statistical test along with

other features to detect phishing websites. They conducted a series of experiments on four large

proprietary datasets and reported an accuracy of 99.3% with a false positive rate of less than 0.4%.

Jiang et al. [53] merged information from DNS and the URL to develop a Deep Neural Network

(DNN) with the help of NLP to detect phishing attacks. While other approaches need to specify

17

features explicitly, this method extracts hidden features automatically. The approach relies on the

information from DNS and, thus, requires third-party services.

Attackers use Domain Generation Algorithms (DGA) to dynamically generate a large number

of random domain names for adversarial purposes, including phishing attacks. Pereira et al. [54]

introduced an approach for detecting such domains. These domains are considered legitimate for

detection mechanisms and human analysis. The authors used a graph-based algorithm to extract

the dictionaries that have been used by attackers to detect malicious domains.

While these proposed approaches are promising, they often do not consider the page content.

Attackers have full control over the URL and thus, they can create any URL to bypass the classifier.

Also, the content of the website is the most critical factor in luring the end-users rather than the

URL or domain name themselves. Therefore, any solution not considering the website content

would not be useful in the real world.

Tian et al. [55] studied five types of domain squatting; the practice of actors registering and

using domains that impersonate companies, organizations, brands, or even people without having

the right to do so. The authors studied a large DNS dataset of over 224 million registered domains.

They identified 657 thousand domains that potentially targeted 702 popular websites. Using visual

and Optical Character Recognition (OCR) analysis, they created a highly accurate classifier and

found more than one thousand new phishing instances of which 90% of them successfully evaded

well-known blacklists even after one month. The authors combined two powerful techniques:

domain squatting and OCR analyses on a large dataset. The advantage of this approach is in

finding new instances that evaded the current classifiers. However, there is a significant cost in

keeping this information current.

Recently, Li et al. [56] proposed an approach to extract the features from both URL and web

page content and ran multiple machine learning techniques, including GBDT, XGBoost, and Light-

GBM, in multiple layers, referred to as stacking approaches. The URL-based feature set includes

eight features in total such as using IP address, suspicious symbols, sensitive vocabulary. The

HTML-based category includes features like Alarm Window, Login Form, Length of HTML Con-

18

tent. The dataset has 20 features in total. The experiment has been conducted on three datasets, of

which two are large ones with 50K instances, and the accuracy is more than 97% in all cases. Al-

though this approach is similar to recent machine learning approaches and does not use third-party

services, it is similar to other previous work [57].

2.2.2 Visual and textual similarity

Since over 90% of users rely on the website appearance to verify its authenticity [58], the

adversaries try to create the visual appearance of phishing websites nearly identical to that of

legitimate ones. Consequently, the researchers try to use the similarity between websites as a key

feature to discriminate between legitimate and phishing websites. Some approaches use visual

similarity between websites while others use textual similarity.

Chen et al. [59] proposed an approach for detecting visual similarity between two web pages.

They tested their system using the most popular web pages to examine its real-world applicabil-

ity. Accuracy in the case of true positive and false positive rates reached 100 and 80 percent,

respectively.

Fu et al. [60] used Earth Mover’s Distance (EMD) to measure webpage visual similarity. They

first converted the involved web pages into low-resolution images and then used color and coor-

dinate features to represent the image signatures. Then they used EMD to calculate the signature

distances of the images of the web pages. They employed an EMD threshold vector for classifying

a web page as a phishing or a normal one. Also, they built up a real system that is already used

online and it has caught many real phishing cases.

Routhu Srinivasa Rao et al. [61] proposed a combination of white list and visual similarity-

based techniques. They used a computer vision technique called SURF detector to extract dis-

criminative key point features from both suspicious and targeted websites followed by computing

similarity degree between the legitimate and suspicious pages.

All these approaches need a target website to compare the similarity between two web pages

and detect one of them as phishing. Zhang et al. [62] created a framework using a Bayesian

19

approach for content-based phishing web page detection. The model takes into account textual

and visual contents to measure the similarity between the protected web page and suspicious web

pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are

described. But, this process is expensive and often results in false positives.

Recently, there has been a rise in extreme phishing attacks [63, 64], a form of fine-grained

content mimicking phishing, on financial institutions where the phishing website mimics the le-

gitimate website to an alarming degree. Typically, these websites are meant to defeat visual and

textual similarity analysis. The high level of noise introduced in such websites is likely to defeat

most content-based machine learning approaches in the past.

2.2.3 Heuristic approaches

Neil et al. [65] implemented SpoofGuard, a plugin for Internet Explorer, that detects phishing

attempts on the client side. It assigns weights to different anomalies found in the HTML page of

websites and assigns a score. If the assigned score crosses a certain threshold, it will label the

website as a phishing website and send a warning to the user. This tool runs on the client-side and

can detect phishing websites based on those anomalies on the page.

Cui et al. [66] tried to find similarities between different attacks during a 10-month study by

monitoring around 19000 websites. The study showed that 90% of phishing websites have a similar

DOM structure and over 90% of these attacks were actually replicas or variations of other attacks

in the database.

Bulakh et al. [67] use a different approach to detect a phishing website. They proposed an

approach where each branded company can define its phishing detection mechanism and protect

their customers. Phishing website may link their materials to the spoofed website and interact with

it e.g. using the images or scripts, or links on spoofed pages directly from the targeted pages.

They created the dataset based on those features and achieved an accuracy of 96.34% and a false

positive rate of 3.39% with the Random Forest (RF) algorithm. While this can be used as an

20

excellent complimentary service besides other detection approaches, especially by highly targeted

websites to protect their customers, it suffers from a lack of generality.

Han et al. [68] studied the entire life cycle of phishing campaigns in the wild. The previous

researchers have studied the phishing kits after anti-phishing services had detected them, and the

researchers did not observe the real way that victims interact with phishing kits, apparently because

of ethical reasons. In this study, the authors presented a sandbox that protects the privacy of the

victims thoroughly to address those two dilemmas. They draw the first comprehensive picture of

the phishing attack with precise timing.

Anti-Phishing Working Group (APWG) reports in the third quarter of 2019, more than two-

thirds of all phishing websites were using SSL certificates [69], the highest rate since 2015 when

they started tracking this parameter. However, it has become clear that the usage of the HTTPS

protocol alone is not a credible sign of a secure website anymore. This is being called the HTTPS

paradox [70]. There are few researchers in the literature to detect malicious SSL certificates. Drury

et al. [70] used SSL certificate meta-data and used machine learning algorithms to discriminate

benign websites and phishing ones, but they were unsuccessful. Torroledo et al. [71] defined and

extracted features from SSL certificates and used a deep neural network. Their results showed an

accuracy of 88.6% for phishing websites, which is significant, but this method does consider SSL

packet fields and traffic flow, so it cannot detect encrypted malicious streams [72].

Cui et al. [66] monitored more than 19000 phishing attacks for ten months and found over 90%

of attacks were a replication or variation of other attacks in the database. In a subsequent work,

Cui et al. [73] have done a more in-depth analysis.

Ho et al. [8] created a large-scale dataset of emails from 92 enterprise organizations and created

a detection algorithm to discover spear-phishing emails. The model found hundreds of real spear-

phishing emails with a very low false-alarm rate: four per every one million. Gutierrez et al. [74]

observed that current machine learning-based detection algorithms are vulnerable to structural or

semantic change in the message. They implemented machine learning on a large corpus of phishing

and legitimate emails and employed under-sampling boost algorithms to handle the class imbalance

21

problem of phishing datasets. But they did not study the problem of the imbalanced datasets in

phishing datasets.

Van Der Heijden et al. [75] developed an automated and fully quantitative method based on

machine learning and econometrics to measure cognitive vulnerability triggers in a phishing email

to predict the degree of success of an attack. Instead of selecting the best features from a machine

learning point of view, this study is based on the human cognitive method. The study shows how

adversaries convince end-users to give up their sensitive information. These detected metrics can

improve learning algorithms and help response teams to prioritize their effort in case of a real

attack.

Marchal et al. [76] focused on detecting phishing domains and created a proactive mecha-

nism instead of reactive approaches like blacklisting. The second-level domain of the URL and a

Markov chain have been used to detect suspicious domain names. They leveraged natural language

modeling to create a blacklist based on phishing-related vocabulary.

2.2.4 Learning in adversarial context

The proposed defense mechanisms in the literature widely employed machine learning tech-

niques to counter phishing attacks. However, adversarial sampling attacks can threaten current

defense mechanisms. An adversarial sampling attack is an attack where an adversary generates a

phishing data sample that appears to the phishing detection classifier as a legitimate data sample

and thereby, avoids detection by the classifier. In general, such a sample is called an adversarial

sample. While there is some general analysis of the vulnerabilities of classification algorithms and

the corresponding attacks [77], to the best of our knowledge, there is no other study on adversarial

sampling in the context of the phishing attacks. Thus far, researchers have studied and formulated

these threats in a general manner or in other application contexts like image recognition. In the

following, we briefly explore these efforts.

Dalvi et al. [24] studied the problem of adversary learning as a game between two active agents:

data miner and adversary. The goal of each agent is to minimize its cost and maximize the cost

22

to the other agent. The classifier adapts to the environment and its settings either manually or

automatically in this approach. The authors assumed that both sides, including data miners and

adversaries, have perfect knowledge about a problem. This assumption, however, does not hold

in many situations. For example, in the phishing detection system, the adversary does not know

the training set or the actual classification algorithm used. The attackers may directly or indirectly

target the vulnerabilities in the feature selection procedure. Although the attackers might target the

trained classification system, it still is an indirect attack on the chosen features.

Xiao et al. [78] explored the vulnerabilities of feature selection algorithms under adversarial

sampling attacks. They extended a previous framework [79] to investigate the robustness of three

well-known feature selection algorithms.

There are a few approaches that create more secure machine learning models. Designing a

secure learning algorithm is one way to build a more robust classifier against these attacks. De-

montis et al. [80] investigated a defense method that can improve the security of linear classifiers

by learning more evenly-distributed feature weights. They presented a secure SVM called Sec-

SVM to defend against evasion attacks with feature manipulation. Wang et al. [81] theoretically

guaranteed the robustness of the k-nearest neighbors algorithm in the context of adversarial exam-

ples. They introduced a modified version of the k-nearest neighbor classifier where k is equal to 1

and theoretically guaranteed its robustness in a large dataset.

Finally, there are some tools for benchmarking and standardizing the performance of machine

learning classifiers against adversarial attacks in the literature. Cleverhans [82] is an open-source

library that provides an implementation of adversarial sample construction techniques and adver-

sarial training for image datasets. Given the lack of such benchmarking tools for the phishing

problem, we tested our approach with our own attack strategies and implementation.

2.3 Limitations of past work

The studies in the existing literature emphasize feature definition or enhancing the statistical

learning models to discriminate between phishing and legitimate websites. The state-of-the-art

23

solutions for phishing detection [13, 53, 54, 56, 57] use engineered features based on observations

made by the research experts in this domain on publicly available datasets. One crucial assumption,

in existing machine learning approaches, is that the training data collection process is independent

of the attackers’ actions [24]. However, in adversarial contexts, e.g. phishing or spam filtering, this

is far from reality as attackers either generate noisy data samples or generate new attack samples

by manipulating features of existing ones. Furthermore, the manipulation of features results in a

dangerous scenario wherein an attacker can bypass the generated classifier without much effort. A

carefully crafted phishing data sample that appears to a machine learning classifier as a legitimate

sample is called an adversarial sample. The immediate impact of adversarial samples is to degrade

the accuracy of a machine learning classifier. A key problem for the attacker to consider would be

the choice of the features that need to be manipulated and the associated cost for such manipulation.

Ideally, the attacker would like to bypass the classifier with the lowest cost of manipulating the data

sample features. In this work, we explore and study the effect of adversarial sampling on phishing

detection algorithms in-depth, starting with some simple feature manipulation strategies, and show

some surprising results that demonstrate impact on the classification accuracy with trivial feature

manipulation.

Current content-based approaches [25–28,57] performed an in-depth analysis of the contents of

the phishing websites to extract similarities among them and discriminate them from genuine ones.

This analysis has been used to render sets of features and create training datasets to be used by

machine learning algorithms. This approach appears counter-intuitive as adversaries use different

techniques to make a phishing website similar to a genuine target website, not other phishing

instances. The same argument holds for the set of phishing websites. In addition, the strength of

a detection model is based on the expertness and aptitudes of the model designer; for example,

how many current attack vectors have been rendered as machine learning features into the dataset.

Adversaries are continuously looking for alternate attack vectors to bypass current learning models

and make features obsolete. The current models are vulnerable to these new coming attacks and,

thus, need to be updated for new attacks.

24

In addition, another major problem in detecting phishing attacks is the adaptive nature of strate-

gies used by the phishers. Generating a phishing website has not only become trivial but also the

attackers are able to bypass most defense strategies with relative ease. For instance, the evolu-

tion of extreme phishing, a complex form of phishing that targets the identity of users shows the

severity and intensity of phishing attacks. Phishers are constantly improving phishing toolkits to

generate websites that can evade nearly all forms of defenses available. Therefore, there is a need

for developing phishing detection approaches that demonstrate robustness and resiliency against

the adaptive strategies being used by the phishers.

Phishing attacks have shown remarkable resilience against a multitude of defensive efforts,

and attackers continue to generate sophisticated phishing websites that closely mimic legitimate

websites.

25

Chapter 3

Privacy-preserving Phishing Detection using

Domain-Name Based Features

3.1 Domain-name-based features

We focus on the general problem of determining if a target website is a phishing website or

not, based on the standard definitions of a phishing website from literature [83, 84]. Typically, the

content of a phishing website is textually and visually similar to some legitimate website. Based

on this, the problem statement we examine is, to determine the features that quantify the attacker

strategies in terms of the content found in the phishing website. Such features will be used to train

a machine learning model to classify between phishing and legitimate websites.

The URL-based approaches [39, 44, 46, 85] analyze various features based on the target URL

such as length of the URL, page rank of the URL, number of dots in the URL, presence of spe-

cial characters, hostname features like IP address, domain age, DNS properties, and geographic

properties, among other features. While the intuition in these approaches is sound, i.e., the URL

is a good indicator of phishing attacks, the structural changes of modern-day URLs negate several

lexical features identified by these approaches. For instance, these days, the URLs generated by

websites like Google and Amazon, are long and contain many non-alphabetic characters, which

dilute the lexical similarity of legitimate URLs. For this reason, the URL-based approaches inad-

vertently tend to be biased towards the datasets being used and are likely to be ineffective in the

future. A few hybrid detection mechanisms [86,87] combine content and URL features, but suffer

from the same problems.

In Figure 3.1, we demonstrate some of the distinguishing domain-name-based features of le-

gitimate and phishing websites.

26

Title Match

Copyright Match

Frequency

Domain name

(a) Legitimate site

Mismatch

Mismatch

No Copyright logo with domain name

Domain name

(b) Phishing site

Figure 3.1: Domain-name features for legitimate and phishing websites. (a) depicts a legitimate Facebook

website, and (b) shows a phishing website that targets Facebook.

3.1.1 Feature engineering and validation

As far as possible, our feature design attempts to be content-agnostic, i.e., the feature design

attempts to model the principles of phishing attacks and reduce the dependence of the features

on specific data values. Our feature set consists of two types of features: binary, i.e., the feature

value is 0 or 1, and non-binary, i.e., the feature is real-valued. In summary, the key principle of

our feature engineering is that all features depend on the domain-name of the website and the

relationships, visual and statistical, of the domain-name with the content of the website. These

aspects ensure that our features are not affected by biased datasets and are robust to noise.

To validate the intuition behind each feature, we tested the empirical cumulative distribution

function (ECDF) of the feature for 1000 phishing websites against 1000 legitimate websites. We

show sample ECDF plots for a few features. We also indicate if the features are “New”, meaning

designed by us, or “Existing”, meaning that other researchers have designed it.

3.1.2 Non-binary features

We defined the following non-binary features in our proposed approach.

Feature 1 (New): Domain Length. The attackers who want to register a domain for phishing

have to choose a longer domain-name in comparison with the legitimate website. The length of

the domain-name is the number of characters in the domain-name string. As shown in Figure 3.2

27

(a) (b)

(c)

Figure 3.2: ECDF plots for (a) Domain-Name Length, (b) URL Length and, (c) Link Ratio in BODY

(a), the ECDF of this feature shows sufficient distinction between the legitimate websites and the

phishing websites.

Feature 2 (Existing): URL Length. The URL length is a popular feature among all known

phishing detection approaches and is based on the intuition that phishing URLs are longer than

legitimate URLs. We describe this feature here primarily to highlight the issue of dataset bias

discussed in Section 1.1. In Figure 3.2 (b), we show the ECDF of this feature. On the surface,

it seems an excellent feature, however, it is completely data-dependent, and most existing works

have generated results that are likely to be heavily influenced by the distribution of this feature

in the phishing and legitimate datasets. We generated two sets of classification results: with and

without the URL length, to demonstrate the impact of classification due to this feature. The average

28

accuracy of classification increases by 2% because of this feature and reaches 99%, which matches

the state-of-the-art result when only accuracy is considered. Furthermore, if the feature extraction

time is also considered, we show that our results are better than the state-of-the-art work.

Feature 3 (Existing): Link Ratio in BODY. This feature is defined as the ratio of the number of

hyperlinks pointing to the same domain to the total number of hyperlinks on the web page. The

intuition is that, in the process of making a phishing website similar to the legitimate website, the

attackers refer the hyperlinks on the landing page to a legitimate domain-name, which is different

from the domain-name displayed in the address bar of the browser. This feature is content-agnostic

as the ratio can be computed for any phishing website that exhibits this behavior. For example, the

phishers create a phishing page to mimic a well-known payment service where all links on the page

are to a legitimate website except the login-form in which the users need to enter their information.

Accordingly, the ratio of the links referring to the current domain compared to all links found on

the website will be different when compared between a phishing website and a legitimate website.

To evaluate this feature, we find all the links on the page and the ratio of links referring to the

current page over the number of all links found on the page. However, some legitimate websites

also exhibited this behavior, and therefore, we used a scaling process to derive the final value of the

feature. Figure 3.2 (c), shows the ECDF of this feature, of the raw ratios, with sufficient separation

between the two distributions.

Feature 4 (New): Frequency of Domain-Name. This feature counts the number of times the

domain-name appears as a word in the visible text of the web page. The intuition is that many

web pages repeat the domain-name several times in their web page, as part of disclaimers, privacy

terms, and so on. Therefore, if the domain-name does not appear at all on the web page, then

there is something suspicious about such a web page. This is a key feature that captures the

visual relationship of the domain-name to the web page. In practice, we find this feature to be

very indicative and useful in detecting phishing websites. Note that, for classification purpose, we

converted this feature into a binary feature, i.e., if the domain-name does not appear on the web

page, we set it to 0 and if it appears more than once, we set it to 1.

29

3.1.3 Binary valued features

Table 3.1 summarizes the percentage distribution of the binary features in the sample dataset.

Feature 5 (Existing): HTTPS Present. An SSL certificate is issued for a particular domain-name.

Most legitimate websites used SSL certificates and operated over HTTPS protocol. Therefore, if a

website uses HTTPS, the feature value is 1 and if not, it is 0. Recently, phishing websites are using

HTTPS as well and this explains the relatively high distribution.

Table 3.1: Binary Feature Distribution

Feature Legitimate Phishing

HTTPS Present 0.92 0.23

Non-alphabetical Characters 0.05 0.36

Copyright Logo Match 0.26 0.0

Page Title Match 0.87 0.03

Feature 6 (New): Non-alphabetical Characters in Domain-Name. Attackers use non-

alphabetical characters, like numbers or hyphens, to generate newer phishing domain-names,

which are very similar to legitimate domain-names. If the domain-name has any non-alphabetic

character, this feature is set to 1 and 0, otherwise. Past works [44, 45] have considered a variant of

this feature, i.e., they examined the number of special characters in the entire URL. However, as

discussed earlier, generating customized noisy URLs is a relatively easy task for the attackers.

Feature 7 (New): Domain-Name with Copyright Logo. Many legitimate websites use the copy-

right logo to indicate the trademark ownership on their organization name. Usually, the domain-

name is placed before or after the copy-right logo for such websites. To generate this feature, we

considered up to 50 characters before and after the copyright logo, removed the white spaces, and

checked for the presence of the domain-name in the resulting string. Surprisingly, we found that

none of the phishing websites placed their actual domain-names along with the copyright logo.

That has aroused the suspicion of any web user and therefore, we found this feature to be an

excellent distinguisher.

30

Feature 8 (New): Page Title and Domain-Name Match. Many legitimate websites repeat the

domain-name in the title of the web page. We found that many phishing websites used this feature

to deceive users into believing that they were visiting legitimate websites. But, clearly, a phishing

website would not use the phishing domain-name on the title page as it would be clearly visible to

the user. As shown in Table 3.1, our intuition proved right and we found that less than 3% of the

phishing websites were using this feature, but over 87% of legitimate websites had this feature.

A Comparison with [48]. In [48], although the authors have alluded to the use of the domain-

name as one of the factors and described several features, they did not base their approach entirely

on this aspect as we have done in our work. Some of the features common with our work are

Feature 4, the frequency of occurrence of a domain-name, and Feature 8, the match of a domain-

name with the title along with some more domain-name-based features. Furthermore, the approach

in [48] uses many other features, over 200, to perform the final classification and even ignored

some domain-name-based features. For instance, they ignored Feature 7, domain-name match

with copyright logo, which we found very useful in detecting phishing websites.

3.2 Experimental evaluation

We conducted two sets of experiments to assess the performance of our model trained with

various machine learning classifiers. The first set of experiments were conducted on a prepared

dataset and the second set of experiments were conducted on a live unknown phishing dataset

from OpenPhish.com. Only one past work [44] demonstrated a similar result on unknown

datasets with a detection rate of 95%. In contrast, our approach achieves much higher detection

accuracy, close to 99.7%. We show the time taken to extract the feature values for each website,

the training time for each classifier, and the time taken by the classifier to predict whether a website

is phishing or not. We implemented our approach using the Sci-kit [88] library in Python 2.7 on

a desktop running Fedora 24 OS with Intel Corer 2 Duo CPU E8300© 2.4 GHz processor with 6

GB RAM.

31

3.2.1 Datasets

For the list of legitimate websites, we obtained the 1000 top-ranked websites from

Alexa.com and assumed them as legitimate. For the phishing websites, we got 1000 phishing

websites from PhishTank.com and 2013 phishing websites from OpenPhish.com.

DS-1. This set includes 1000 legitimate websites from Alexa.com and 1000 phishing websites

from PhishTank.com. In the experiments, we trained and tested on this dataset with 80% data

for training and 20% data for testing using five-fold cross validation.

DS-2. This dataset includes 1000 legitimate websites from Alexa.com and 3013 phishing web-

sites from PhishTank.com and OpenPhish.com. For this dataset, we considered 1000 le-

gitimate and 1000 phishing websites for training without cross-validation. The remaining 2013

websites were used for testing.

3.2.2 Experiment 1: performance on DS-1

We designed two different experiments to evaluate the accuracy of classifiers on DS-1. In the

first experiment, we used all the features described in Section 3.1 except for the URL length. In

the second experiment, to show the bias of URL-based features, we included URL length and

demonstrated the increase in classification accuracy. The URL length feature is one such biased

feature that exhibits significantly different distribution for phishing and legitimate URLs, as phish-

ing URLs are typically longer in publicly available datasets.

Results without URL Length Feature. Our domain-name-based approach achieves 97% ac-

curacy and validates our basic hypothesis. We show the results in Figure 3.3. For each of the

parameters, we show the maximum value achieved and the average value across all the validations.

Gradient Boosting performed the best with a maximum accuracy of 99.55% percentage and an

average accuracy of 97.74%. For Gradient Boosting and Majority Voting, the TPR is very high,

98.12% and 97.46%, respectively, and so is the PPV, 97.8% and 97.55%, respectively, showing the

high phishing detection capability of the classifiers. We note that our average accuracy of 97.74%

32

is very high when compared to several existing works that used a rather large and diverse set of

features.

(a) PPV (b) TPR

(c) ACC

Figure 3.3: PPV, TPR and ACC on DS-1 without URL Length Feature

Results with URL Length Feature. This feature results in higher accuracy and clearly demon-

strates the bias due to the dataset. We show the results of these experiments in Figure 3.4. There

is an increasing trend across all the classifiers for all the parameters considered. There is a clear

increase in PPV where four classifiers reported an average of 98% and above with Majority Voting

reporting 99%. Excepting Gaussian Naive Bayes, all other classifiers recorded an average TPR

of 98% and above, with a maximum of 100% for three classifiers. The accuracy also showed an

increasing trend with the average accuracy increasing to 98.8% for Gradient Boosting, and the

maximum accuracy of 99.55% for several other classifiers. This experiment clearly shows that

features like URL length tend to impact classification accuracy depending on the dataset.

33

(a) PPV (b) TPR

(c) ACC

Figure 3.4: PPV, TPR and ACC on DS-1 with URL Length Feature

3.2.3 Time analysis for DS-1

Feature Extraction Timings. Our feature extraction time is very low, of the order of few millisec-

onds, and demonstrates the efficiency of our feature set. Table 3.2 shows the results of our feature

extraction. The total time for extracting features of a legitimate website is about 0.117 seconds

and for a phishing website is 0.02 seconds, which indicates the real-time nature of our approach.

This is extremely low compared to the state-of-the-art approach in [48] where the extraction time

was in the order of a few seconds. We emphasize that the average loading time of a web page like

msn.com, is around 1 second and our feature extraction adds only a few milliseconds overhead to

this process.

Training and Classification Timings. Our classifier training and classification times, that are

shown in Table 3.3, are very low, of the order of a few micro-seconds, and again demonstrates the

efficiency of our approach. The testing times reported are the average across the five-fold cross-

validation and do not include the feature extraction time. The training can be done offline and the

testing takes a few micro-seconds to perform, after the feature extraction. Given that cumulative

34

Table 3.2: Feature Extraction Timings

Feature Legitimate (µs) Phishing (µs)

HTTPS Present 4.12 3.87

Domain Length 63.45 66.45

Page Title Match 26.9 32.3

Frequency Domain-Name 333.8 33.09

Non-alphabetic Characters 32.64 13.68

Copyright Logo Match 2737.56 450.48

Link Ratio in Body 114482.87 19445.67

URL Length 0.3576 0.5066

Total Time (s) 0.117 0.02

Table 3.3: Training/Testing Timings

Classifier Train (in ms) Test (in µs)

SVM Linear 1339.85 6.74

SVM Gaussian 703.62 38.32

Gaussian Naive Bayes 2.28 1.47

kNN 7.36 14.85

Decision tree 2.49 0.80

Gradient Boosting 2737.56 450.48

Majority Voting 177.73 3.25

time for feature extraction and testing is less than 2 milliseconds, we claim that our approach can

be deployed in practice as a client-side browser plug-in.

3.2.4 Experiment 2: performance on DS-2

In this experiment, we examine the robustness of our learning approach on unknown and unseen

data. We obtained a list of 2013 live phishing websites from OpenPhish.com. Although a

higher number of sites were listed, many sites were unavailable and few were blocked by the

corresponding ISPs. We trained the classifier in two modes: without including the URL length

feature and with the URL length feature included. Finally, we tested the classifiers on the 2013

data instances and show the results in Table 3.4. These results show the remarkable performance

of our approach. Unlike the previous approach [44], which attempted a similar experiment, for

many of our classifiers, the TPR largely remains unchanged across both the experiments and even

35

Table 3.4: True positive rate of testing phase for DS-2. Best values are shown in bold.

Classifier Without URL Length With URL Length

SVM Linear 94.09 94.24

SVM Gaussian 92.75 90.81

Gaussian Naive Bayes 91.06 92.75

kNN 93.74 99.7

Decision tree 97.91 97.27

Gradient Boosting 98.21 99.75

Majority Voting 95.33 97.67

shows a slight increase for Decision tree and Gradient Boosting classifiers. Furthermore, when

including URL length, the TPR even reaches 99.7% for kNN and Gradient Boosting. This result

also confirms our hypothesis that domain-name-based features can accurately capture the nature

of a phishing website.

3.2.5 Comparison with previous work

We compare our results empirically with existing state-of-the-art solutions in Table 3.5. Our

basis for comparison is the number of features, the accuracy, and whether client-side features only

are used or third-party features are included. We did not include the run-times of the approaches

as that is a system-specific metric. However, we note that our scheme reports micro-second level

feature extraction and classification time, even when run on a relatively low-performance laptop

with Core 2 Duo processor. From a different perspective, while Verma et al. [44] and Marchal et

al. [48] used large number of features with 35 and 210 respectively, our proposed approach uses

fewer number of features (only 7 and 8 features) and performance is comparable.

3.3 Conclusion

In this section, we described the first approach towards the design of only domain-name-based

features for the detection of phishing websites using machine learning. Our feature design em-

phasized the elimination of the possible bias in classification due to differently chosen datasets of

phishing and legitimate pages. Our approach differs from all previous works in this space as it

36

Table 3.5: Comparison with State-of-the-art Approaches. #Leg. indicates number of legitimate instances in

the dataset, and #Phi. indicates number of phishing instances.

Approach # Leg. # Phi. # Features Acc. Client Side

Cantina [41] 2100 19 7 96.97 No

Cantina+ [43] 1868 940 15 97 No

Verma et al. [44] 13274 11271 35 99.3 Partial

Off-the-Hook [48] 20000 2000 210 99.9 Yes

Our approach without URL Length 1000 3013 7 97.7 Yes

Our approach with URL Length 1000 3013 8 98.8 Yes

models the relationship of the domain-name to the intent of phishing. With only seven features we

are able to achieve a classification rate of 97%. Furthermore, we were able to show a detection rate

of 97-99.7% for live black-listed URLs from OpenPhish.com. This shows that our approach is

able to adapt to the complex strategies used by phishers to evade such detection mechanisms. As

our features explore the content found in the visible space of the web page, an attacker will need to

put a huge effort to bypass our classification. In trying to bypass our approach, an adversary may

end up designing a page that will make any user suspicious. Furthermore, we demonstrated the

shortcoming of using URL features such as URL lengths, which seem to give higher accuracy but

may not do so in the near future. Our feature extraction and classification times are very low and

show that our approach is suitable for real-time deployment.

37

Chapter 4

Fingerprinting-Based Approach for Overcoming

Bias in Phishing Detection

4.1 Proposed approach

Phishing campaigns usually work based on a three-part scheme. The first part is using email

or some form of communication to lure users and redirect them to a phishing page. The fake page

closely mimics a trustworthy site. Finally, the user enters their information, which is captured

by the adversary. Phishing websites must target at least one genuine site, which we define target

website, and should be similar in terms of visual and textual traits to the target website to earn the

end-user’s trust.

(a) Existing Approach (b) Proposed Approach

Figure 4.1: Two different ways of modeling the phishing problem with regards to feature definition. (a)

image shows features that are defined based on similarity among phishing websites and that among legiti-

mate websites. (b) image shows features that have been defined based on their similarity to target websites.

Samples that are attacking a target are clustered together.

38

In our proposed approach, instead of defining features that group the phishing websites to-

gether, we relate a suspicious phishing website to its target and define features based on the sim-

ilarity of a given suspicious website and its target. Figures 4.1 (a) and (b) hypothetically explain

this issue in detail. Figure 4.1(a) is a scatterplot of phishing and legitimate samples with two fea-

tures: feature 1 in the y-axis and feature 2 in the x-axis in existing approaches. The green dots

represent the position of phishing instances, and the blue dots represent legitimate websites. This

image clearly shows, based on feature definition, phishing and legitimate websites are distinguish-

able with two misclassified samples. In addition, it shows that phishing samples are not related to

any legitimate website.

Figure 4.1(b) shows our proposed approach. There are still two features, namely feature 3 and

feature 4 in the y-axis and the x-axis respectively. There are three target websites in these graphs

named Target 1, Target 2, and Target 3. All dots in the graph indicate phishing samples. Since

features are defined to show the similarity of phishing instances to the target website, phishing

websites in each group are close to each other, and this group represents individuals attacking a

target website in the form of a cluster.

4.1.1 Fingerprint definition

We define the fingerprint of a legitimate website as a mathematical representation of that web-

site, which can uniquely distinguish a legitimate website from other legitimate websites. Moreover,

comparing suspicious websites with this fingerprint would determine if it is similar to the target

website or not, a vital sign when a phishing website attacks a target. If a suspicious website’s

similarity to a target website exceeds a given threshold, then this would be assumed as a phishing

website.

For each given target site, we would consider both the visual and textual characteristics of the

target site. The process of extracting a fingerprint and then matching it with suspicious websites

is independent of other legitimate websites. Consequently, the phishing detection process for each

target would be independent of other targets. Thus, we have no issues with biased data.

39

We define the fingerprinting for any given legitimate website as follows. For each given legiti-

mate website, there would be a set of features that:

• Uniquely represent a website so that it can be distinguished from other legitimate websites

which we call the fingerprint of the website, and

• Comparing the fingerprint of a website to any other given website will return the level of

similarity between them.

Each legitimate website has at least one screenshot. We use fi for feature i and denote FA
j

as all fingerprint features of jth screenshot of legitimate website A. Thus, if screenshot j has Lj

number of features, FA
j would be:

FA
j = { f0 ∪ f1 ∪ ...fLj

} (4.1)

If |A| is the total number of screenshots for legitimate website A, then the fingerprint of legiti-

mate website A would be called as FA and calculated as follows:

FA = { FA
0
∪ FA

1
∪ ... FA

|A| } (4.2)

Screenshots are captured images that have been shown on the end-users display. These captures

are taken from login pages of legitimate websites or login pages of older versions of a legitimate

website. If visual or textual traits of a legitimate website change over time, we need to add new

screenshots and update the fingerprint to capture these changes to detect new phishing attacks.

4.2 Methodology of proposed approach

Our approach consists of the following steps. We are given the benign set that consists of the

set of legitimate websites that we are trying to protect from phishing attacks. For each legitimate

website in the benign set, we perform the following three steps.

40

• Step 1: Extracting Fingerprints from Legitimate Websites. We create a fingerprint using

textual and visual features.

• Step 2: Creating and Labeling Dataset. We create a labeled dataset. We assign a label of 1

if the data is a phishing sample that is targeting the legitimate website. Otherwise, we assign

it a label of 0.

• Step 3: Create a Machine Learning Model. We create a machine learning model corre-

sponding to the legitimate website.

4.2.1 Extracting fingerprints

For each given legitimate website, we prepare one or more screenshots of the target website. In

some cases, if the website has multiple login pages that are not visually identical, we prepare more

than one screenshot, then extract textual and visual features. The visual and textual characteristics

of each page define the unique identity of each legitimate website.

Textual Sector. Textual elements are the text that is visible to the end-user. Examples include text

that asks users to enter their username and password or terms and conditions of using the services.

Graphical designers use these characteristics to create a uniquely distinguishable webpage. Thus,

we use those characteristics to create fingerprints in this study.

For the textual feature gathering, we use an Optical Character Recognition (OCR) algorithm,

which uses machine learning to extract text word by word as an object which we can use in pro-

gramming. For our OCR algorithm, we used the web-based Google Cloud Vision API which is

one of the best algorithms available. Google OCR hides technical details from end-users, but it

includes five steps: Text Detection, Direction Identification, Script Identification, Text Recognition,

and Layout Analysis.

Text Detection uses a Conventional Neural Network (CNN)-based model, to detect and localize

the line of text that generates a set of bounding boxes. Direction Identification classifies direction

per bounding box and Script Identification identifies script per bounding box. Text Recognition

recognizes the text from the image. It includes a character-based language model, an inception-

41

style optical model, and a custom decoding algorithm. Finally, Layout Analysis determines reading

order and distinguishes titles, header, etc. [89].

The extracted text provided by Google OCR is cleaned. We ignore punctuation and stop words

and make all texts lower-case. We fix misspelled words if there are any. Misspelled words are

relatively rare in legitimate websites but common for fake websites. The cleaned list of extracted

words creates the textual sector of the fingerprint.

Visual Sector. Visual elements include, but are not limited to, brand logo and other graphical

iconic elements related to the website. These are elements that make a login page unique compared

to other legitimate webpages. We used a segmenting algorithm to detect, localize, and save many

of these segments found in legitimate web pages. The segments generated were then manually

scrutinized to eliminate the ones that were considered not relevant to the site’s fingerprint.

Figure 4.2: Legitimate screenshot from Yahoo.com. Black colored boundaries specify visual segments and

red-colored boundaries specify parts with texts returned by the OCR algorithm.

42

Figure 4.2 shows a screenshot of Yahoo, captured from the legitimate website. The parts in

black rectangles are the visual segments and the parts in red rectangles are the textual segments

that constitute the fingerprint.

4.2.2 Creating dataset

We create a dataset for each legitimate website. The phishing samples that target the legitimate

website are labeled as 1 and anything else is labeled as 0.

Textual Sector Matching. For each given input website, we use the previously discussed OCR

algorithm to get all the text out of the screenshot. Then we match each word in the fingerprint with

words of the given input. If the word in the fingerprint does not match any word in the website, we

assign that feature as −1. If the word in the fingerprint does match that of the word in the input,

then that corresponding feature is assigned a value that reflects the importance of the word in the

input website. The TF-IDF algorithm statistically reflects the importance of a word in a corpus.

The corpus consists of all of the words in the legitimate websites. Thus, for each word of a given

website, we use TF-IDF to evaluate its importance in the context of the website, if it matches

with a word in the fingerprint. In such a case, the TF-IDF score is assigned to the corresponding

feature. For example, the company’s name will have a higher value than a word like login in the

learning vector and makes it more meaningful for the machine learning algorithm.

Visual Sector Matching. In order to determine if the visual characteristics of an input image match

that of our target website, we need to check if the legitimate website’s segments exist in the input

image. This fact introduced many complications, as image comparison is often times challenging.

We also had to consider what an adversary might do to bypass a comparison algorithm. We decided

to leverage the concept of homography to counter simple rotations and deformations. This was

achievable by using the key-points of both the segments and the input image. In the next step,

we determined the quality of the projective transformation of the input image for each legitimate

segment. If no homography transformation is found, we consider that segment to be absent from

the input image. Furthermore, if a homography does exist, we compare the resulting image with

43

the segment to determine the validity of this homography. For the comparison algorithm, we

implemented a custom algorithm called BFMatcher, which compares the key points using brute

force key-point matching and the dot product between these matches. If the comparison value is

above a threshold, we consider the segment to exist in the input image. The feature value of this

part of the fingerprint matching is the result of the comparison algorithm.

For every given input, we will have a vector that specifies the similarity between the given

website and the fingerprint of the target site. We have created our dataset after calculating these

features.

4.3 Experiments and results

We discuss the datasets used and machine learning metrics and then elaborate on the two ex-

periments we have conducted and the results in this section.

4.3.1 Created dataset

Dalgic et al. [90] gathered screenshots of phishing attacks and made them publicly available.

This dataset includes labeled phishing samples of 14 brands. While authors [90] only has the

phishing samples, we need screenshots of the legitimate websites to create a fingerprint for them.

Thus, we captured screenshots of these legitimates websites and added them to our dataset. We also

manually double-checked all of the phishing samples and their relationship to the claimed target

website to find discrepancies and fixed a few of them. In the next step, we run our fingerprint

extraction algorithm to create a fingerprint for each legitimate website. We evaluated the learning

vector based on the similarity to the fingerprint extracted for the targeted website.

For each target website, we created a separate dataset and for each given screenshot, we eval-

uated whether the text or visual segments exist in the fingerprint or not which was used to encode

the feature vector. If the instance is attacking this target website, we label it as 1, otherwise we

label it as 0.

44

Table 4.1: List of used target websites and number of textual, visual, and, total features used for fingerprint,

and total number of phishing samples for each target. (* Bank of America)

#Fingerprint Segment

Website Tex. Vis. Tot. Samples

Adobe 26 26 52 70

Alibaba 82 22 104 76

Amazon 24 14 38 29

Apple 34 31 65 64

BOA∗ 182 39 221 111

Chase 127 99 226 111

DHL 48 33 81 109

Dropbox 45 16 61 115

Facebook 84 34 118 144

Linkedin 77 28 105 38

Microsoft 15 10 24 117

Paypal 27 14 41 214

Wellsfargo 166 42 208 134

Yahoo 14 12 26 114

Table 4.1 lists all target sites we used in our experiments with the number of items in both

textual and visual segments of the fingerprint and the number of phishing instances for each tar-

get. We created 14 separate datasets for the 14 respective target websites. The machine learning

classifier will be trained on the corresponding dataset. This helps to relate the phishing samples

to a specific target site, instead of relating all phishing websites to all legitimate websites, as we

discussed it in [91].

4.3.2 Machine learning and scores

In our experiments, we used five different classifiers available in Sckikit-learn toolkit [88] and

then we selected the best one. We used Random Forest (RF), Gradient Boosting (GB), and Support

Vector Machine (SVM) with two different kernels: Linear (l) and Gaussian Radial-basis function

kernel (g). In addition, we used a Majority Voting (MV) as another classifier that acts as a voter

among all of the fitted classifiers. We ran each experiment 10 times and reported the average of the

results with five-fold cross-validation to avoid issues of over-fitting. We tested the performance of

each learning model against unseen samples.

45

Evaluating the effectiveness of an algorithm only by relying on accuracy in imbalanced datasets

may be misleading. Because a majority group with a large margin can dominate the accuracy result.

We have an imbalanced dataset and thus reporting accuracy may be misleading. To address this

limitation, F1 score, which is a harmonic average of precision and recall, has been proposed and

widely accepted. We report F1 score to show how effective is our algorithm. We also reported

accuracy score for further comparison with other studies.

4.3.3 Performance of classifiers

For each dataset of the target site, we split the dataset into three sub-sets: one set with only

textual features, the other set with entirely visual features, and the last one with both textual and

visual features. We then trained and tested all five classifiers for each sub-set ten times and reported

the average.

Figure 4.3 highlights these results. It shows MV with the highest F1 score of 97.62% among

all of the classifiers; thus, we selected this classifier for further experiments. Furthermore, it gives

the best accuracy as well.

The next best classifier after MV is GB. It has an average F1 score of 97.29% and an accuracy

of 99.68%, which is slightly more than RF. These results show that both GB and RF were able to

significantly detect phishing attacks against all 14 websites.

4.3.4 Effectiveness of model

Figure 4.4 reports the accuracy of the model for all 14 targeted websites that we ran the experi-

ments for, and figure 4.5 reports the F1 scores with separation based on textual and visual sections

of the dataset. For this experiment, we used GB as it gave the best results in the previous experi-

ment. Figure 4.4 shows the results of three sub-sets: only textual features, only visual features, and

both together. The accuracy was over 98% for all cases when we used both the visual and textual

features. It also shows that the visual sector alone does not give good results for the following

websites: Adobe, Amazon, Microsoft, and Yahoo.

46

Figure 4.3: F1 score of trained model for different classifiers.

Our dataset is a highly imbalanced dataset, and we reported the F1 score to balance between

precision and recall. Having a high F1 score guarantees both precision and recall have high values.

In this case, the classifier does not ignore one class with a lower volume of data to increase total

accuracy. Figure 4.5 clearly shows the model gives a high F1 score for all of the websites. Chase

website with the F1 score of 99%75 has the highest score, and Microsoft with 88.42% has the low-

est score when we used both visual and textual features. The reason that Microsoft has the lowest

score among the targeted website is that the fingerprint process could not find enough segments to

create the fingerprint.

In addition, our model gives exceptionally high scores among all of the websites regardless of

their popularity. While Amazon and Yahoo are among the top twenty most visited websites [91]

but they have the same accuracy or F1 score as DHL, which has a popularity rank of 1248 [91].

47

Figure 4.4: Accuracy of trained model for targeted websites.

Figure 4.5: F1 score for trained model for targeted websites.

This demonstrates that our experiments were free from the bias stemming from the popularity of

the website in contrast to current approaches.

4.4 Conclusion

In this chapter, we propose an approach that detects whether a phishing website is attacking a

target legitimate website. We generate fingerprints for legitimate websites using visual and textual

characteristics and detect phishing websites based on how closely their features match these fin-

gerprints. Our approach is not biased towards more popular websites and can be adapted for new

attacks. We demonstrate our approach on 14 different target websites with varying popularity. Our

model achieve an accuracy of 99% for all of them with cross-validated data. Furthermore, we em-

ploy a one-vs-all technique and create an imbalanced dataset; we report an accuracy of more than

98% among all of the websites, which is surprisingly high. It may be possible that through adver-

sarial machine learning attackers generate phishing samples that match the fingerprint of legitimate

websites. Our future work will investigate how to protect against such attacks.

48

Chapter 5

Effects of Adversarial Sampling Attacks in Phishing

Detection

Machine learning-based techniques are effective in detecting patterns among different types

of websites, i.e. phishing and legitimate. However, phishing and legitimate websites should be

represented as a set of features for use in machine learning algorithms. A feature is a measurable

property of a characteristic of a website. Researchers define a set of features and measure feature

values for each given website. Features could be defined at certain levels i.e. contextual charac-

teristics of the websites or URLs of the websites. A labeled phishing dataset is comprised of a set

of instances of phishing and legitimate websites where each instance is represented by its feature

values and has a label that indicates whether it is phishing or legitimate. A classification algorithm

trains on a part of labeled data to make predictions about the label of the other parts which have

not been used for training.

Most works emphasize feature definition and aim to improve the statistical learning models to

discriminate between phishing and legitimate websites. The state-of-the-art solutions for phishing

detection [13, 53, 54, 56, 57] use engineered features based on observations made by the research

experts in this domain on publicly available datasets. One crucial assumption in using machine

learning approaches is that the training data collection process is independent of the attackers’ ac-

tions [24]. However, in adversarial contexts, e.g. phishing or spam filtering, this is far from reality

as attackers either generate noisy data samples or generate new attack samples by manipulating

features of existing phishing instances. Furthermore, manipulating features results in a dangerous

scenario wherein, an attacker can bypass the generated classifier without much effort. A carefully

crafted phishing data sample that appears to a machine learning classifier as a legitimate sample

is called an adversarial sample. The immediate impact of adversarial samples is to degrade the

accuracy of a machine learning classifier. A key problem for the attacker to consider would be

49

choosing the features that need to be manipulated and the associated cost for such manipulation.

Ideally, the attacker would like to bypass the classifier with the lowest cost of manipulating the data

sample features. In this work, we explore and study the effect of adversarial sampling on phishing

detection algorithms in-depth, starting with some simple feature manipulation strategies, and show

some surprising results that demonstrate impact on the classification accuracy with trivial feature

manipulation.

5.1 Threat model

In this section, we model the adversarial sampling attack against machine learning-based phish-

ing detection approaches. We start with the attacker’s goal, knowledge, and influence in general

machine learning solutions, and then we explain them in the context of our phishing problem. We

model the adversarial sample generation for existing phishing instances based on the attackers’

abilities and then evaluate the cost that the adversary has to pay for the successful execution of this

attack. Finally, we define the vulnerability level for the dataset.

5.1.1 Attacker’s goal

Biggioa et al. [92] explored three different goals for attackers in reactive arms race namely se-

curity violation, attack specificity, and error specificity. An attacker’s goal in the security violation

is to evade well-known security metrics, including confidentiality, availability, and integrity. The

attacker may violate the availability of the system by a denial-of-service attack. In this case, if the

system cannot accomplish the desired task due to the attacker’s behavior, the availability of the

service would be affected. The attacker needs to obtain users’ sensitive and private information

with approaches like reverse-engineering to violate the user’s confidentiality.

In a phishing context, the adversary will attack the integrity of the system. The integrity is

violated if the attack does not permit the regular system behavior; however, the attacker violates

the accuracy of the classifier e.g. by making the classifier label the maliciously crafted phishing in-

stances as legitimate to evade the classifier. The attack specificity depends on whether a specific set

50

of samples (like phishing) being incorrectly classified for any given sample. The error specificity

relates to a specific type of error in the system and degrades the classifier’s scores.

5.1.2 Attacker’s knowledge

An attacker may have different levels of knowledge about the machine learning model. An

attacker might have detailed knowledge, i.e., white-box or perfect knowledge, minimal knowledge

about the model called zero knowledge [78, 92] and limited knowledge about the model known as

gray-box. If the adversary knows everything about the learning model, parameters, and the training

dataset, including the classifier parameters, the attacker has perfect knowledge. In the case of zero

knowledge, the adversary can probe the model by sending instances and observing the results. The

adversary infers information about the model by choosing appropriate data samples. In the case of

limited knowledge, it is assumed that the adversary knows about features and their representation

and the learning algorithm. However, the adversary does not know about the training set or the

algorithm’s parameters.

From the dataset point of view, the attacker may have partial or full access to the training

dataset. The attacker may also have partial or full knowledge about the feature representation or

feature selection algorithm and its criteria. In the worst-case scenario, an attacker may know about

the subset of selected features.

5.1.3 Attacker influence

Two major types of attacker influence have been defined in the literature, namely poisoning and

evasion attacks. In a poisoning attack, the adversary generates and injects adversarial instances in

the training phase. Adversarial instances are the ones with manipulated labels. For example, email

providers use spam detection services and give the users the ability to override the email’s label

e.g. re-labeling a spam email as non-spam to deal with false-positive detection cases. The system

benefits from the user’s labeling to improve accuracy by updating the training set. However, in

a poisoning attack, an attacker, with an authorized email account in the system, can re-label the

51

correctly detected spam emails as non-spam to poison the training set which results in a poor

learning model that is easy to bypass even with slightly manipulated phishing instances.

In an evasion attack, the attacker does not have access to the training set and intentionally and

smartly manipulates features to avoid samples being labeled correctly by the classifier at the testing

phase. Similar to the previous example on the spam detection system, a phisher may send an email

with intentionally misspelled words to evade the classifier.

5.1.4 Our assumption

In this subsection, we define the threat model that we assumed in this work.

Attacker’s Goal. We consider that the adversary attacks the specificity of the learning model.

The adversary generates new phishing samples that are labeled incorrectly by the classifier as

legitimate. Thereby, these samples will bypass the learning model and deceive the end-users.

Also, with respect to error specificity, the adversary wants to decrease the system’s ability to detect

phishing instances and increase false-negative rate of the system.

Attacker’s Knowledge. We assume that the adversary has limited knowledge. The adversary

only knows about the feature set. However, it does not know about the training set, the learning

algorithm that has been used, or the classifier’s training parameters.

Attacker Influence. We assume that the adversary can test as many instances as needed and get

the results. Under this assumption, an adversary can create a large number of new samples and test

them to see if they can bypass the model.

In the next section, we describe our sample generation approach and outline our method for

measuring the effectiveness of the samples in lowering the classifier’s accuracy.

5.2 Adversarial sampling for phishing

We simulate the attacker’s approach to generate new adversarial samples based on the exist-

ing phishing samples. The adversary generates new samples by manipulating phishing samples’

features and then checks whether the generated samples evade the classifier. A phishing sample

52

evades the classifier if it is labeled as a legitimate sample. All such generated samples that bypass

the machine learning classifier are adversarial samples. The motivation for using features from

existing phishing samples is to guarantee that the generated samples are guaranteed to possess

some key phishing characteristics. We assume that the attacker has full control over the URL and

phishing page content except for the domain name part. The attacker has limited knowledge about

the classifier and features, as discussed in Section 5.1.2.

5.2.1 Defining dataset

We use a similar notation to that used in [78]. The dataset has been generated by a procedure

P : X 7→ Y . We denote a set D with n samples as D = {xi, yi}
n
i=1

. Each instance in the dataset

has d features that are represented as a d-dimensional vector:

xi = [x1

i , · · · x
d
i] ∈ X (5.1)

Each instance xi is tagged to a target label yi ∈ Y . There are two types of labels for instances:

legitimate (L) instances labeled as 0 and phishing (P) instances labeled as 1, which implies that

Y = {0, 1}. A learning algorithm trains on this dataset and will be expected to predict the label of

an unknown website instance correctly, i.e., 0 for legitimate, or 1 for phishing.

5.2.2 Selecting features for manipulation

To specify a subset of features, we introduce the notation π = {0, 1}d to denote a d-bit value.

If the value in the ith bit of π is 0, then that feature is not selected for manipulation, and if the value

is 1 then it is chosen for manipulation. We use Πd
s to denote the set of all possible combinations of

s features that have been selected out of total d features. The size of this set is given by (ds).

To illustrate, π ∈ Πd
s denotes an element π when there are s numbers of features selected for

manipulation out of total d features. For example, Π3

1
= {100, 010, 001}means all possible subsets

of 3 features when only 1 feature has been selected for manipulation. In addition, π1 ∈ Π3

1
is 100,

π2 ∈ Π3

1
is 010, and π3 ∈ Π3

1
is 001.

53

The first step towards generating samples is to select one or more features for manipulation.

The generative algorithm can be represented in terms of function h(xi) that selects a feature subset

π by minimizing the number of features and costs. In Table 5.1, we defined the notation used for

describing our approach.

Table 5.1: Table of notations

Notation Meaning

D Dataset

X Set of instances in the dataset

Y Set of labels in the dataset

n Number of instances in the dataset

d Number of feature vectors for each instance

xi ith instance in the dataset

x
j
i jth feature value of ith instance

¬ Not operand

π d-bit string indicating chosen features for manipulation

Π Set of all possible feature combination

Πj
i Set of i feature selected out of total j features

¬π negation of π; if π = 001, ¬π = 110
h(xi) Select a feature subset π for a given xi by minimizing num-

ber of features and cost

X i Set of all values of feature i

X i
P Set of all values of feature i for phishing instances

× Cartesian product

∗ Cross vector product

5.2.3 Assigning new values to selected features

After defining the features that will be manipulated, we must assign new values to them. We

assume that each value will be replaced only by values that appeared in existing phishing instances.

The intuition is that if the value has been found to be assigned to that feature previously for a

phishing instance, then that feature value is more likely to be found in another phishing instance.

In Algorithm 1, in lines 4 to 5, we used Cartesian Product to generate all possible combinations

for each feature, taking the values from phishing instances.

54

For the features that have been selected for manipulation, the corresponding bit in π will be 1.

In this case, the (π ∗ n_fea) term will select new feature values and assign them. For the features

that have not been selected for manipulation, the corresponding bit in π will be 0. In this case,

(¬π ∗ x) will be used, and it will keep original input instance values.

If the newly generated sample is equal to the given input, we discard it as it does not hold any

changes; Otherwise, we include it in the set of genSamples. We test the generated sample with a

classifier to check the label. We add generated phishing samples that are labeled as legitimate to

advSamples. These are samples that have been classified incorrectly. These are samples that are

able to evade the classifier. This is defined in lines 9-12 in Algorithm 1.

5.2.4 Adversary cost

Attackers have to handle two challenges for generating adversarial samples. From a machine

learning point of view, the dataset includes feature vectors. Still, the attacker has to change the

phishing website to generate the desired vector similar to adversarial samples. For example, if a

feature is URL length, the adversary can generate a new URL with the desired length based on

adversarial samples. This is not a trivial process, and it has a considerable cost for the attacker.

Whereas adversarial samples may have a higher chance of evading the classifier, they may not

be visually or functionally similar to the targeted websites. This increases the chance of being

detected by the end-user. Thus, the adversary wants to minimize two parameters: the number of

manipulated features and the assigned feature values. We consider this as a cost function for the

adversary.

In the previous section, we discussed how the attacker controls the number of manipulated

features, but it is not the only parameter. If the manipulated feature values differ much from the

original values, it will increase the classifier’s chance of evading. We study this hypothesis in

Section 5.4. This will also change the website’s visual appearance or behavioral functionality from

the targeted website, thereby increasing the chance of phishing websites being detected by the

end-user.

55

In this work, we used the Euclidean distance between the original phishing sample and newly

generated sample to estimate the cost; a higher distance indicates a higher cost. Consider xi to be

a phishing instance and xi
′

a manipulated one based on the original xi instance. Both are vectors

of size n. The Euclidean distance between xi and xi
′

will be calculated by Equation 5.2:

d(xi, x
′

i) =

√

√

√

√

n
∑

k=1

(xk
i − x

′k
i)

2 (5.2)

If l is the number of manipulated features to generate x
′

i from xi, and d is Euclidean distance

between them, the total cost c will be derived from this equation: C(xi, x
′

i) = (l, d). This tuple will

be used to evaluate the total cost for generating the adversarial samples.

5.2.5 Vulnerability level

A phishing instance is vulnerable at the level l with the cost d if there is at least one adversarial

instance generated from this phishing instance that can bypass the machine learning classifier with

l manipulated features and a distance d from the original instance. In other words, we call this

instance vulnerable if manipulating l features of the original phishing instance with a distance of d

allows it to bypass the classifier. The attacker’s goal here is optimizing the l and d, a multi-objective

optimization problem for the attacker. For example, suppose we have a phishing instance, and we

are able to generate an adversarial sample by manipulating 3 features with Euclidean distance of

2.7. In that case, we say that the original phishing sample is vulnerable at the level of 3, with a cost

of 2.7.

5.3 Directed adversarial sampling

In the approach described so far, the adversary needs to adopt a trial-and-error with a given

phishing sample, i.e., the attacker is not sure whether a given phishing sample can be used to

generate an adversarial sample that can bypass the classifier. This process is further constrained if

the attacker attempts to minimize the cost of generating such adversarial samples. As a result, the

56

attacker’s effort is increased significantly as the attacker needs to experiment with each sample and

try various feature manipulation combinations to generate an adversarial sample. To address these

problems, we describe a clustering-based pre-processing approach that directs the attacker towards

selecting the best possible phishing samples that are likely to bypass the classifier. Simultaneously,

this approach also helps the defender identify those features that are more likely to be useful to

adversaries and refining the existing machine learning model.

5.3.1 Outline of clustering approach

In general, the clustering of data samples using standard approaches like the k-means algorithm

[93] generates groups of samples that share a significant number of common features or have

similarities in a few dimensions. This feature of clustering algorithms is the key intuition for our

improved adversarial sample generation technique.

Concisely stated, our approach first clusters the phishing samples using a standard clustering

algorithm such as k-means and initializes a per-cluster counter to zero. Next, we select one random

sample from each of the clusters to generate adversarial samples using Algorithm 1. If the gen-

erated sample is adversarial, we increment the per-cluster counter of the respective cluster. Next,

we repeat the experiment with a few more samples by progressively selecting more samples from

successful clusters, i.e., the cluster with higher per-cluster counter values, after the initial testing

period.

We note that, based on the properties of clustering, i.e., similar data samples are placed in the

same cluster; we surmise that a cluster that has contributed to adversarial samples is more likely

to contribute to many other adversarial samples. Our experimental results show that this is indeed

the case and demonstrate that the clustering approach significantly improves the success rate of

generating adversarial samples.

5.3.2 Correlating cluster membership and adversarial sampling

From our experimental results, we make a few important observations and state them here.

We clustered adversarial samples using the existing clusters of the data. If an adversarial sample

57

belongs to a different cluster than the cluster to which the original phishing sample belonged, we

denote such an adversarial sample as a transferred sample. This definition captures a key notion

that an adversarial sample is likely to belong to a different cluster due to feature manipulation.

When viewed from a different perspective, this indicates that a generated sample is likely to be

an adversarial sample if the generated sample’s cluster membership is different from the origi-

nal phishing sample from which it was generated. We demonstrate this characteristic using our

experimental results in Section 5.4.

Using this notion of transferred samples, we define the correlation between adversarial samples

and cluster membership transfer. For this purpose, we calculate the probability of an adversarial

sample being transferred to a new cluster. Formula 5.3 articulates the probability of success in

generating an adversarial sample when the generated sample is transferred to a new cluster. In

this formula, Ay denotes adversarial samples, and Tr represents transferred samples in a given

experiment.

P (Ay | Tr) =
P (Ay ∩ Tr)

P (Tr)
(5.3)

In the next section, we evaluate our clustering approach, validating the basic approach, and in

the process, demonstrate some important results that enable an adversary to generate effective

adversarial samples.

5.4 Experiments and Results

This section shows the effectiveness of our proposed adversarial sampling attack that degrades

existing learning models’ accuracy and efficacy. First, we discuss the datasets utilized, and we

elaborate on three different experiments we have conducted and the results.

5.4.1 Used datasets

We obtained four publicly available phishing datasets on the Internet, and the details of these

datasets are given below.

58

DS-1: This set includes 1000 legitimate websites from Alexa.com and 1200 phishing websites

from PhishTank.com; 2200 in total. Each instance in this dataset has eight features, and all are

related to the websites’ domain name. The features used are domain length, presence of a non-

alphabetic character in the domain name, the ratio of hyperlinks referring to the domain name, the

presence of HTTPS protocol, matching domain name with copyright logo, and matching domain

name with the page title. With these features, Shirazi et al. [57] reported an accuracy of 97-98%

in the experiments, which is significantly high.

DS-2: Rami et al. [26] created this dataset in 2012 and shared it with the UCI machine learning

repository [94]. This set includes 30 features that are divided into five categories: URL-based,

abnormal-based, HTML-based, JavaScript-based, and domain-name-based features. This dataset

includes 4898 legitimate instances from Alexa.com merged with 6158 phishing instances from

PhishTank.com; more than 11000 in total, making it the most extensive dataset that we have used

in this study.

DS-3: In 2014, Abdelhamid et al. [25] shared their dataset on the UCI machine learning repository

[94]. This dataset includes 651 legitimate websites and 701 phishing websites; 1352 instances

in total. The features include HTML content-based features and some features that require third-

party service inquiries, such as DNS servers that perform domain-name age lookup and so on. The

authors report a detection accuracy in the range of 90%-95% in their experiments.

DS-4: This dataset is the most recent, from the year 2018, that is publicly available. It has been

created by Tan et al. [27] and was published on Mendeley 1 dataset library. This set contains 5000

websites from Alexa.com and as well as those obtained by web crawling, labeled as legitimate,

and 5000 phishing websites from PhishTank.com and OpenPhish.com. The authors collected this

data from January to May 2015 and from May to June 2017. This dataset includes 48 features, a

combination of URL-based and HTML-based features.

Table 5.2 summarizes the number of instances, features, and the portion of legitimate vs. phish-

ing instances in each dataset. We have datasets with a large number of instances, DS-2 and DS-4,

1https://data.mendeley.com/

59

with 11000 and 10000 instances, respectively. We also have a small dataset DS-3 with 1250 in-

stances. With respect to the number of features, DS-1 has just seven features, whereas DS-4 has

48 features. Besides, each dataset’s features are selected from different points of view, such as

URL-based features in DS-2, DS-3, and DS-4, or domain-related features in DS-1, and HTML-

based features in DS-2 and DS-4. These variations validate our hypothesis in a stronger and more

general sense. Also, it shows that adversarial sampling is a severe problem that may manipulate

different types of features to evade the classifier.

5.4.2 Phishing detection accuracy without adversarial sampling

In the first experiment, we tested each dataset’s performance against a wide range of standard

classifiers. We labeled phishing websites in all datasets as +1 and legitimate websites as −1. We

used five-fold cross-validation to avoid over-fitting issues and test the learning model’s perfor-

mance against unseen data instance classification. We used six different classification algorithms

namely Decision Tree (DT), Gradient Boosting (GB), Random Forest (RF), K-Nearest Neighbors

(KNN), and Support Vector Machine (SVM) with two different kernels: Linear (lin) and Gaussian

Radial-basis function (RBF) to make different algorithms comparable. We repeated each experi-

ment 10 times and reported the average and standard deviation of the results. Table 5.3 explains

the achieved results in this experiment.

For DS-1, RF and GB both generate the highest ACCs and the TPRs for both classifiers are

comparable. Also, DS-1 has the best average of TPR among all datasets. RF gives the best TPR

(94.25%) and ACC (95.76%) on DS-2. Interestingly, the DT does not generate a good TPR

(86.77%). The DS-3 dataset experiments did not yield a high TPR or the ACC. Both GB and

SVM with Gaussian kernel have the TPRs close to 87%, which is not that good. The best ACC, for

this dataset, is from GB, with 83%. The experiment on DS-4 gave excellent results. Both GB and

RF gave a TPR over 97% and an accuracy of 97%, which are very high. This dataset has the best

average of ACC among different classifiers meaning this dataset performs very well with different

60

types of classifiers. With six different classifiers, the experiments on both DS-1 and DS-4 show an

average ACC of more than 94%, which is significantly high.

We used a single metric of F1 to compare all classifiers and datasets together. Table 5.4 shows

the best F1 score for each dataset with the classifier that has produced that result. It is evident

from this table that both GB and RF generate the best results among all of the experiments, so we

selected these two classifiers for the next experiments.

5.4.3 Adversarial sample generation

We reserved 200 random phishing instances in each dataset and then trained the model without

the 200 random reserved phishing instances. The generated adversarial samples need to be similar

to the phishing examples; otherwise, those cannot be assumed to be phishing instances. We used

previously seen values in the phishing instances to assign new values to the features and generate

new instances. With this strategy, it is guaranteed that the newly assigned value is valid and has

already been seen in other phishing instances in the dataset. We discussed this process earlier

in Section 5.2. We randomly selected features, up to four different features, and changed each

feature’s values with all possible feature values. If an adversarial sample is generated, we consider

the original phishing instance to be vulnerable. A given phishing instance can generate several

adversarial samples with varying costs, as defined in Section 5.2.4. We call the phishing samples

with the lowest cost of generating adversarial samples as optimized samples.

5.4.4 Robustness of the learning model

This experiment studies the robustness of datasets and learning models against generated ad-

versarial samples. We selected one classifier that performs best for each dataset based on the F1

score from Table 5.4. For the datasets DS-1 and DS-3, we selected GB, and for DS-2 and DS-4,

we chose RF.

In this experiment, we counted the number of reserved phishing instances that are vulnerable.

This means that there should be at least one adversarial sample with the lowest cost based on the

original sample. With small perturbation in these instances, they can bypass the classifier and

61

Figure 5.1: Robustness of datasets against adversarial samples.

elude the users to release their critical information. Based on our hypothesis, these are vulnerable

instances and can be assumed as a threat to the learning model. We repeated each experiment ten

times and reported the average of the results.

Figure 5.1 shows the results of our experiment. The x-axis shows the number of manipulated

features; zero manipulated feature means that the test happened with the original phishing instances

detected correctly by the classifier. The trend of results reveals that increasing the number of

perturbations results in an increase in the number of evaded samples proportionally. We continued

increasing the perturbed features for up to four different features at a time. We observed that with

four features, almost all manipulated phishing instances bypass the classifier model.

For example, Figure 5.1 shows that less than 4% of phishing instances in DS-1 can bypass the

classifier without any perturbation. With only one manipulated feature, more than 20% of phishing

instances can bypass the classifier. With two manipulated features, almost all instances can bypass

the GB. The results are almost the same for other datasets. In another case, while just 12% of

original phishing instances (the instances without any changes) have been misclassified in DS-3,

the results significantly go up to 65% with only one perturbed feature.

This experiment shows how vulnerable the machine learning models are to the phishing prob-

lem. Small perturbation on features can bypass the classifier and degrade the accuracy significantly.

62

5.4.5 Dataset vulnerability level

In this experiment, we studied the cost that an adversary has to pay to bypass a classifier. From

an adversary perspective, it is not inexpensive to manipulate an instance with new feature values

to create an adversarial sample. In Section 5.2.4, we assessed the cost and in Section 5.2.5, we

defined the term vulnerability level for one instance. Once again, we reserved 200 random phishing

instances from each dataset and chose the classifier for each dataset based on Table 5.4. For datasets

DS-1 and DS-3, we chose GB while we chose RF for both DS-2 and DS-4 datasets. Averaging the

vulnerability level for each of the 200 selected instances and repeating the experiment ten times,

we assessed the whole dataset’s vulnerability level.

Figure 5.2 presents the results of this experiment for all datasets for two parameters: the num-

ber of manipulated features and the average cost of adversarial instances. It is evident that, by

increasing the number of manipulated features, the cost also increases steadily. For example, for

the dataset DS-1, the average cost, for adversarial samples, with one manipulated feature is 0.95,

and with four manipulated features, the cost is 3.93.

Furthermore, the average cost for some datasets is more than that of other datasets. For ex-

ample, in the DS-4, the adversary has to pay more cost, particularly when the number of features

increases to three and four compared to the other datasets. This shows that this dataset is more

robust against these attacks and has a lower vulnerability level.

5.4.6 Cluster directed adversarial sampling

We discuss using the clustering approach described in Section 5.3 and present the results. In

this experiment, we calculated the probability of transferred samples and adversarial samples

as we discussed in Section 5.3. For each dataset, we calculated the probability of generating

adversarial samples and the probability of such a sample being transferred to a new cluster from

the original cluster.

63

Figure 5.2: The manipulation cost for adversarial samples based on the number of manipulated features.

Figure 5.3 shows the adversarial sampling probability and transferred samples for each dataset.

On average, more than 60% of all adversarial samples in DS-1, DS-2, and DS-4 datasets were able

to bypass the classifier. For the DS-3 dataset, the bypassing rate is around 30%.

Another measure in Figure 5.3 is the transferring rate in which new adversarial samples are

categorized in a new cluster. In all datasets, we see an average of at least 75% or more. This

reveals that the majority of adversarial samples belong to a different cluster rather than the original

cluster. This is the first significant finding related to the clustering approach.

This experiment investigated adversarial sampling and transferring probability based on each

cluster. Figure 5.4 depicts how these probabilities varied among different clusters. Figure 5.4(a)

for DS-1 shows adversarial samples are uniform, bypass classifiers, and transferred among clus-

ters, and it is not significantly different among different clusters. Figure 5.4(b) for DS-2 shows

some variations among different clusters. Clusters 3 and 8 have the highest chance of generating

adversarial samples. Cluster 5 has a significantly low chance of transferring an adversarial sample.

The chance of an adversarial sample generation does not vary among different classifiers, as

shown in Figure 5.4(c) for DS-3. The same pattern can be seen for transferring as well. There is a

64

Figure 5.3: Ratio of bypassing and transferring adversarial samples in tested datasets

big gap between the probability of generating adversarial samples and transferring in this dataset,

something that has not been seen in other datasets.

Figure 5.4(d) shows results for DS-4. Cluster 8 has the lowest chance of generating adversarial

samples, and clusters 3 and 4 have the highest one. Cluster 4 also has the highest chance of

transferring to other clusters.

5.4.7 Conditional probability of transferred samples

This experiment used conditional probability to show how adversarial samples and transferred

samples are co-related to each other. For this purpose, we calculate the probability that an adver-

sarial sample is transferred to another cluster. It shows how likely an adversarial sample would be

transferred to a new cluster. Figure 5.5 depicts these results.

In this Figure, Ay|Tr shows the probability of a manipulated sample being an adversarial sam-

ple (Ay) given that the sample is transferred (Tr) to a new cluster. In the same way, NAy|NTr

shows the probability of not being an adversarial sample (NAy) given that the sample is not trans-

ferred (NTr) to a different cluster.

This knowledge for an adversary is compatible with the threat model defined in Section 5.1. In

our proposed model, an attacker has access to the predict function and phishing website.

Figure 5.5 shows that in DS-1, DS-2, and DS-4, the probability of generating an adversarial

sample when a manipulated sample is transferred to a new cluster rather than its original cluster is

65

(a) (b)

(c) (d)

Figure 5.4: Distribution of bypassed and transferring samples for each cluster in all of tested datasets: (a)

DS-1; (b) DS-2; (c) DS-3; and, (d) DS-4

at least 65%. It gives hints to the attackers to target features that, with manipulation, the instance

would transfer to another cluster. We also calculated when conditional of these two parameters

were not happening. Based on the results, there is not a significant correlation between these two

probabilities.

5.4.8 Selecting best cluster

As discussed earlier in Section 5.2.4, generating adversarial samples is not an inexpensive

process, and an adversary would like to optimize this effort. This section defines the probability of

generating adversarial samples and identifying clusters with a lower cost to optimize an adversary’s

efforts. To achieve this goal, we considered the following parameters.

Probability of Cluster Membership. Using the clustering algorithm, each data instance belongs

to one cluster, and not all clusters have the same number of instances. In this case, the probability

66

Figure 5.5: Conditional probability of adversarial samples

of a data instance belonging to different clusters changes across different clusters. We calculate

the probability of an instance is a member of each cluster when considered over the universe of all

instances.

Probability of samples belonging to cluster i is denoted as P (ci). Also, ini is the set of instances

in cluster i, and ins is the set of all phishing instances. P (ci) will be calculated as follow:

P (ci) =
|ini|

|ins|
(5.4)

Probability of Membership Transfer. For generating new samples, we manipulate the feature

values of each instance. In the next step, using the clustering algorithm, we find the cluster mem-

bership of each new instance. The cluster to which a generated sample belongs may or may not be

the same as the cluster of the original sample used to generate the sample. Furthermore, a gener-

ated sample’s membership may be transferred to any other cluster, but with differing probabilities.

We calculate the probability of an instance transferring from a given cluster to all other clusters for

each such membership transfer. If the initial cluster is i and a newly generated sample is transferred

to cluster j, we denote this probability as P (tri,j). This probability will be calculated as follow:

P (tri,j) =
|mem_transi,j|

|insi|
(5.5)

In this formula, mem_transi,j is the set of instances of cluster i that transferred their member-

ship to cluster j, and insi is the set of all instances in cluster i.

67

Adversarial Sample Probability of Cluster. When a generated sample is found to be trans-

ferred to a different cluster, such a sample may or may not be an adversarial sample. According

to the definition, only those generated samples that can bypass the classifier are adversarial sam-

ples. Such adversarial samples may not be equally distributed among all the clusters, and hence,

the probability of a cluster containing adversarial samples varies from cluster to cluster. Specif-

ically, we calculate the probability of a generated sample getting its membership transferred to a

specific cluster and being an adversarial sample at the same time. We denote the probability of an

adversarial sample belonging to a cluster i as P (Ayi).

P (Ayi) =
|adv_sami|

|gen_sami|
(5.6)

In this case, adv_sami is the set of adversarial samples that belong to cluster i, and gen_sami

is the number of generated samples in cluster i.

With these parameters, we are in a position to calculate the probability of generating adversar-

ial samples based on instances chosen from a specific cluster while focusing on the membership

transfer of such adversarial samples to another chosen cluster.

Probability Normalised with Cost. We calculated the average cost of each transfer between

different pairs of clusters. We call cost csti as the cost of manipulating features for instances in

cluster i. To consider this cost as well as the probability, we normalized this probability with cost

in Equation 5.7, which can be viewed as the likelihood of this transfer with a given cost from an

original cluster of i to a transferred cluster of j.

L(i, j) =
P (ci) ∗ P (tri,j) ∗ P (Ayj)

csti,j
(5.7)

One cluster membership transfer of a generated adversarial sample with high probability and

high cost is not desirable and will get a lower total score than a transfer with high probability and

low cost. The desired transfer from an adversary perspective is one with the highest probability

and lowest cost.

68

We visualize these probability and cost metrics in Figure 5.6 to show the best transfer that

can be made. The X − axis shows the initial cluster of phishing samples, and Y − axis shows

the cluster of generated adversarial samples. Darker colors show lower probability and higher

cost. Lighter colors show higher probability and lower cost. In essence, the heat map shows what

transfer has the highest probability of adversarial samples with the lowest cost.

(a) (b)

(c) (d)

Figure 5.6: The relation between an original cluster of an instance with adversarial samples: (a) describes

the DS-1; (b) describes the DS-2; (c) describes the DS-3; and, (d) describes the DS-4.

For example, Figure 5.6(a) for DS-1 shows that if the generated sample’s membership is trans-

ferred from cluster 1 to cluster 2, then there is a higher probability of this sample being an adversar-

ial sample. In other words, this is a better choice for the adversary. Furthermore, Figure 5.6(b), for

69

DS-2, shows that cluster number 5 is a vulnerable cluster and generates adversarial samples whose

membership is transferred to a different cluster with a low cost. A similar pattern is seen in Figure

5.6(d) for DS-4 in cluster 1. In other words, if manipulating a sample in cluster 1 transfers its

membership to a different cluster, then there is a higher likelihood that this sample is adversarial.

Similarly, Figure 5.6(c), for DS-3, shows that the most vulnerable cluster is three on average.

In this experiment, we used the previous discussion to form a probabilistic model used by both

the adversary and the defender. The adversary can find the best suitable transformation among

different cluster samples that generate a higher number of adversarial samples. A defender can find

the specific vulnerability of the learning model and the clusters contributing to a higher number of

adversarial samples, thereby enabling a specific corrective action.

5.4.9 Comparing the results with prior research

In this section, we compare our approach with some of the previous research in this field. Table

5.5 compared nine different approaches in the literature. We summarized each approach’s advan-

tages and disadvantages and showed the dataset size and best accuracy results of each approach.

We studied a wide range of previous efforts by focusing on machine learning techniques. Some

of the techniques solely focused on the URL itself [14, 55], but others look at both the URL, and

the content of the page [57, 67]. The use of third-party services is another difference between

approaches that possess privacy risks. The previous studies have been done on variable sizes of

datasets. While some of the datasets have less than 5 thousand records [57, 67], there are also

datasets with millions of instances [53, 55]. Also, for approaches analyzing just the URL without

the webpage content, creating massive datasets are easier. Most of the approaches achieved high

accuracy of over 95%. Both [52, 54] achieved an accuracy of 99%, which is significantly high.

Tian et al. [55] found new phishing samples that were not detected by common phishing detection

mechanisms even after one month. We also added the results of this study to Table 5.5. We trained

the classifier on the four public datasets and achieved very high accuracy. When we added the

manipulated features in the testing phase, the accuracy degraded significantly and finally became

70

zero. These experiments prove that our proposed attack is sufficient to evade existing classifiers

for phishing detection.

5.5 Conclusion

In this work, we explained the limitation of machine learning techniques when adversarial sam-

ples are considered. We introduced the notion of vulnerability level for data instances and datasets

based on the adversarial attacks and quantified it. We achieved high accuracy in the absence of this

attack using seven different well-studied classifiers in the literature: more than 95% for all classi-

fiers except one that had 82%. However, when we evaluated the best-performing classifier against

the adversarial samples, the classifier’s performance degraded significantly. With only one feature

perturbation, the TPR falls from 82-97% to 79%-45% and, increasing the number of perturbed

features to four, the TPR fell to 0%, meaning that all of the phishing instances were able to bypass

the classifier. Subsequently, we continued our experiments by factoring in the adversary cost. We

showed that both the number of manipulated features and the total manipulation cost, which can

be derived from the difference between the original phishing sample and the adversarial sample,

are essential. This means that from an attacker’s point of view, changing the minimum number of

instances is desired, but the adversarial sample must have the minimum cost. This shows the weak-

ness of well-known defense mechanisms against phishing attacks. To increase the success rate for

adversarial sampling, we devised a clustering approach that directs the adversary towards identify-

ing the best possible phishing samples for manipulation. We showed that our clustering approach

allows an adversary to pick adversarial samples from a specific cluster and achieve a high-rate of

success close to 75%. Adversarial samples transferred from the original cluster to a new cluster

have a higher chance of bypassing the model. Our clustering approach allows an attacker to iden-

tify better samples and allows analysts to identify better defenses. It hints at the adversary to select

more efficient feature manipulation to evade the classifiers. Our future work is to develop robust

learning models in the face of such organized adversarial sampling strategies. Specifically, our

adversarial sampling approach gives indications of the features that are more likely to be manipu-

71

lated. Defenders can focus on these features to make it infeasible to generate adversarial samples.

The complex correlation between the features and the nature of phishing attacks is a topic for future

exploration.

72

Algorithm 1: Algorithm for generating adversarial samples. It manipulates feature val-

ues and if the new sample bypasses the classifier, it will return them as new adversarial

samples.

1 x = [x1, x2, . . . , xd];
2 X i

P , ∀i ∈ 1 . . . d; /* Phishing instance x used to generate samples,

feature value i obtained from all phishing instances for

all features 1 to d. */

3 genSamples; /* Array of generated samples */

4 advSamples; /* Array of generated adversarial samples */

/* Refer to 5.1 for the notation. */

/* Initialization */

5 advSamples← {}; /* Initialising set of generated adversarial

samples */

6 genSamples← {}; /* Initialising set of generated samples */

7 PhV al ← 1; /* Cartesian Product generates all possible feature

values of current phishing instances. */

8 for k ← 1 to d do

9 PhV al ← PhV al ×Xk
P

10 for π ∈ Π do

11 for n_fea ∈ PhV al do

12 nw_smp← (π ∗ n_fea) + (¬π ∗ x); /* For each feature, if the

feature position is selected for manipulation, the

feature value will be replaced by a corresponding

feature value from some phishing instance;

otherwise, the feature value remains unchanged. */

/* Check if the generated sample differs from the input

sample. */

13 if x 6= nw_smp then

14 genSamples← genSamples ∪ nw_swp if xislabeledaslegitimate then

15 advSamples← advSamples ∪ nw_smp

Table 5.2: Number of instances, features, and a portion of legitimate and phishing websites in each dataset.

Data shape (#) Labels (%)

Dataset Size Features Legitimate Phishing

DS-1 2210 7 44.71 55.29

DS-2 11055 30 55.69 44.31

DS-3 1250 9 43.84 56.16

DS-4 10000 48 50.0 50.0

73

Table 5.3: Evaluation of model against different classifiers with two metrics.

(a) TPR

Cls. DS-1 DS-2 DS-3 DS-4 Avg.

DT 95.25 86.77 84.97 96.14 95.25

GB 96.18 92.25 87.23 97.65 96.18

KNN 95.93 90.61 84.95 93.97 95.93

RF 96.25 94.25 85.84 97.85 96.25

SVM(l) 95 89.62 86.71 94.93 95

SVM(r) 93.67 91.88 87.88 95.69 93.67

Best 96.25 94.25 87.88 97.85

(b) ACC

Cls. DS-1 DS-2 DS-3 DS-4 Avg.

DT 94.8 92.1 82.51 95.73 91.29

GB 95.49 94.32 83.76 97.52 92.77

KNN 94.82 92.21 81.16 93.76 90.49

RF 95.35 95.76 82.89 97.8 92.95

SVM(l) 93.96 92.4 79.16 94.38 89.98

SVM(r) 93.96 94.14 82.4 95.2 91.43

Best 95.49 95.76 83.76 97.8

Table 5.4: The classifier that holds the best F1 on each dataset has been selected. TPR and ACC are also

reported for comparison

Metric DS-1 DS-2 DS-3 DS-4

Best Classifier GB RF GB RF

Best F1 95.94 95.17 85.83 97.8

TPR 96.18 94.25 87.23 97.85

ACC 95.49 95.76 83.76 97.8

74

Table 5.5: Comparison of different approaches in the literature including our proposed approach. * indicates

current work.

Author Description Size ACC Adv.

[13]
-Scalable feature-rich framework with a series of new and existing features

-Not using third-party services, Language agnostic
22.3K 95% No

[14]
-Real-time detection mechanism based on NLP of URLs, Language independent

-Tested on a large dataset, Not using third-party service
73K 97% No

[52]
-Features based on lexical-, distance-, and length-related features of the URL

-Using four large datasets
115K 99.3% No

[53]
-Combined the URL and DNS information, Used a deep neural network

with the help of NLP, Automatically extracts hidden features
7M 96% No

[55]

-Studied five types of domain squatting, Using a dataset of over 224 million

registered domains, Using visual and OCR analysis, Found new phishing

instances that evaded common blacklist

234M N/A No

[54]
-Detecting algorithmically generated domain, Graph-based algorithm to extract the

dictionaries that are being used to generate algorithmically domains
80K 99% No

[57]

-Studying limitation current approaches: large number of features and bias

in the datasets , Focused on the domain name, Running at the client-side

-Not using third-party services

2.2 K 97-98% No

[56]
-Extract the features from both URL and HTML of the page

-Not using third-party services
50K 97% No

[67]
-Companies can define their phishing detection mechanism and protect the customers

-Can be used as a complimentary service besides other detection approaches
1.3K 96.34% No

*
-Evaluate the performance of existing datasets including [25–27, 57]

-Using multiple classifiers and comparing the results
2-10K 81-95% No

*

- Proposing adversarial sampling attack against the learning model,

Showing the feasibility of the attack, Prove the vulnerability of current model,

Modeling the vulnerability level and cost

2-10K 0% Yes

75

Chapter 6

Using Adversarial Autoencoder for Generating

Samples in Phishing Detection

6.1 Proposed approach

In this section, we begin by modeling an attacker and then discuss how to get data that mimics

the one that may be produced by him taking into account his capabilities. We then propose our

AAE to generate synthesized samples of phishing and legitimate instances.

6.1.1 AAE for synthesized data generation

We utilize the adversarial autoencoder (AAE) for synthesizing both phishing and legitimate

samples that mimic respective websites. The AAE is capable of generating both continuous and

discrete data distributions. Therefore, AAE is a perfect fit for generating discrete feature sets

of datasets described in Subsection 6.2.1. The high-level architecture of the AAE is depicted in

Figure 6.1. The autoencoder derives a compressed knowledge representation of the original input,

which reconstructs the same data distribution.

q(z) =

∫

x

q(z|x)pd(x)dx (6.1)

An aggregated posterior distribution of q(z) on the latent code is defined with the encoding func-

tion q(z|x) and the data distribution pd(x) as shown in Eq. 6.1 where x denotes the real phishing

dataset. In this work, we synthesize phishing and legitimate samples separately, where we train

two different AAEs for each dataset.

The operating principle of AAE is that the autoencoder seeks to minimize the reconstruction

error while the adversarial network attempts to minimize the adversarial cost. The Reconstruction

phase and regularization phase are two simultaneous phases that arise during training. In the

76

Figure 6.1: The high-level architecture of our proposed approach. It includes an adversarial autoencoder

(AAE) that generates synthesized data using both phishing and legitimate data. The top row represents the

standard autoencoder that reconstructs the data from the latent code z. The next row shows the discriminative

network that predicts whether the samples emerge from the hidden code of the autoencoder q(z) or the user-

defined prior distribution p(z) [95]. pd(x) denotes the data distribution. q(z|x) and p(x|z) denote the

encoding and decoding distributions respectively. After the data generation, a machine learning classifier

(fc) described in Subsection 6.1.3 is applied for different classification tasks.

reconstruction phase, the autoencoder’s data reconstruction error is minimized, often referred to

as the loss. The regularization phase relates to the adversarial component of the network. It

minimizes the adversarial cost to fool the discriminator by maximally regularizing an aggregated

posterior distribution q(z) to the prior p(z) distribution.

The simultaneous training process allows the discriminative adversarial network into believing

that the samples from hidden code q(z) come from the prior distribution p(z) [95]. A normal

distribution is exploited as the arbitrary previous p(z) in this work. After the training process, the

adversarial network synthesizes samples similar to the actual samples through the prior distribution

p(z).

77

In this work, we synthesize phishing and legitimate samples separately, where we train two

different AAEs for each dataset because each has different sets of distinct features. The feature

values are varied in many value ranges. Thus, the values are normalized between -1 and 1 before

feeding to the encoder and are denormalized after data generation from the decoder.

After the generation of both phishing and legitimate samples separately, we integrate them

into a single dataset. Therefore, in the end, we have two datasets: Original Dataset, which has

both phishing and legitimate samples and has been used to generate adversarial samples and a new

Synthesized Dataset that consists of new synthesized both phishing and legitimate samples.

The synthesized dataset has the characteristics of phishing samples generated by real-world

attackers and the characteristics of legitimate samples collected from real websites. We feed them

into a classification algorithm that can recognize phishing samples from legitimate ones. This clas-

sifier is unaware of whether the samples are synthesized, which means generated by adversarial, or

actual, which means we got them from an existing dataset. The instances are labeled as legitimate

or phishing, and the classifier will predict them subsequently.

The use of synthesized samples solves multiple purposes at the same time. We increase the

dataset size and alleviate the problem of data unavailability and data collection. The various areas

like phishing detection and other investigative domains that are difficult to gather data then suffer

from insufficient data for further analysis. The samples that have been generated by that AAE will

be injected into our training set with respective labels. That helps to make the existing learning

algorithm resilient against adversarial attacks. In this work, we defined five pairs of hypotheses

scores. We verified our hypotheses in Section 6.2 in the experimental study.

6.1.2 Experimental methodology

We define five hypotheses on the goals we introduced in Section 1.2.3. We define five scores,

one for each hypothesis, that measuring those scores will empirically evaluate each hypothesis and

prove them.

78

Hypothesis-1. It is essential to make sure our classification algorithm holds acceptable perfor-

mance on the dataset without considering any synthesized samples. Hypothesis-1 states if classi-

fication algorithms can reproduce the performance close to the performance reported by original

authors of datasets. In other words, we evaluate if our classification algorithms outperform, or at

least be as good as, the original author’s report. In case the authors do not report any results, the

performance needs to be in an acceptable range. We train and test our classifiers without consider-

ing synthesized samples and compare results with the authors’ results to prove this hypothesis. ∆1

evaluates Hypothesis-1 as defined as follows.

∆1 is the difference in performance between the performance reported by the original authors

of the dataset and the best performance we got in our experiments. Positive values or close to zero

are desired as it proves the performance of our model is better or close to what the original authors

reported.

Hypothesis-2. The second hypothesis states that synthesized samples (generated by AAE) should

be similar to original samples. Thus, it is unlikely that a machine-learning-based algorithm can

distinguish synthesized samples from original samples. For this purpose, a classification algorithm

is targeting to detect synthesized samples from original samples on both phishing and legitimate

samples without regard if samples are phishing or legitimate.

∆2 is the performance when classifiers are trained on original and synthesized samples. We

calculate ∆2 in both cases the best performance, ∆2

Max and average performance, ∆2

Avg. Average

performance on different classifiers is important as a classifier could be successful on few datasets

but fails on some others.

Hypothesis-3. The third hypothesis states that synthesized samples are more likely to evade the

classifier and being mislabeled. In other words, synthesized phishing samples will be incorrectly

labeled as legitimate more than original phishing samples. While this could happen for synthesized

legitimate samples as well. This is one of the most critical goals of our research as we want to show

current classification algorithms are vulnerable to this adversarial sampling attack.

79

For evaluating this hypothesis, we will test synthesized samples with classification algorithms

that have been trained only with original samples. This guarantees algorithms do not have infor-

mation about synthesized samples. We will then compare these results with the performance of

when the algorithms were tested with original samples as ∆3 score.

∆3 specifies the different performance of a model when it is tested on synthesized with original

samples. The model is trained only with original samples, composing both phishing and legitimate.

The lower values for ∆3, the more the classifier and dataset are vulnerable against synthesized

samples and proves Hypothesis-3.

Hypothesis-4. The fourth hypothesis is referring to our mitigation approach. Our initial hypothesis

is re-training classifiers on datasets that have been injected with synthesized samples will recover

the performance of models from Hypothesis-3. For this purpose, we defined the following score

of ∆4.

∆4 calculates the difference between the performance of a classifier when it was tested on

synthesized samples, but it was trained on only original samples with models that have been trained

on a combination of original and synthesized samples. Higher values on ∆4 are desired.

Hypothesis-5. In Section 1.2.3 we explained data gathering is a difficult task in an adversarial

context like phishing detection. One of the usefulness of our proposed approach is to increase

the size of the training set without needing to gather real data. This hypothesis states that injecting

synthesized samples into the training set will increase the performance of the classifiers on original

samples. That helps to improve the performance of the models without doing the data gathering.

∆5 has been defined for this purpose.

∆5 defines the improvement of the performance over original samples. For this purpose, we

calculate the difference between the performance of two classifiers when it is tested with only

original samples, but once it is trained on only original samples and once it is trained on both

original and synthesized samples. This score helps to understand if adding synthesized samples.

Table 6.1 summarizes hypothesis and scores we defined in this section.

80

Table 6.1: Summary of the hypothesises and scores

Hypothesis Score

Name Description # Op1 Trn Op1 Tst Op2 Trn Op2 Tst Trg

Hyp-1 Reproducing datasets authors performance ∆1 Org Org Org Org Phi vs Leg

Hyp-2 Distinguishing synthesized and original samples ∆2 Syn/Org Syn/Org – – Syn vs Org

Hyp-3 Performance of synthesized samples ∆3 Org Org Org Syn Leg vs Phi

Hyp-4 Recovery performance for synthesized samples ∆4 Org Syn Org/Syn Syn Leg vs Phi

Hyp-5 Increase performance of original samples ∆5 Org/Syn Org Org Org Leg vs Phi

6.1.3 Machine learning classifier

For training purposes, we use eight different classifiers available in the Scikit-learn tool [88].

The classifiers that we use are Decision Tree (DT), Gradient Boosting (GB), k-Nearest Neighbors

(KNN), Random Forest (RF), Gaussian Naive Bayes (GNB), and Support Vector Machine with

two kernels: Linear (SVM(l)) and Gaussian (SVM(r)) kernel. For each experiment, we optimized

specific parameters of each classifier to get the best results and prevent overfitting.

6.2 Experiments and evaluation

In this section, we conduct a set of experiments to empirically prove the hypothesizes we

defined in Section 6.1. We start with introducing datasets we have used, followed by experiments

we have conducted for each hypothesis and the results we got in our experiments.

6.2.1 Summary of phishing datasets

In our experiments, we use nine phishing datasets publicly available on the Internet. For each

dataset, we summarized the number of each group of labels (phishing or legitimate) and the total

number of instances in the dataset. In addition, we explained the number and types of features in

each dataset. Types of features are important as it explains in what types of datasets our algorithms

can be run. In addition, we reported the highest performance reported by the original authors of

the dataset, when it was available, for our comparison in the next step.

DS-1: Shirazi et al. [57] published their unbiased phishing dataset that focuses on a subset of

domain-name-based features without third-party inquires in 2018. The reported accuracy varies

between 0.97-0.98 on the validation set and unknown live phishing URLs.

81

DS-2: Rami et al. [26] created this dataset in 2012 and shared it with the UCI machine learning

repository [94]. Authors detected characteristics that distinguish phishing websites from legitimate

ones, like long URL, IP address in URL, adding prefix and suffix to domain and request URL, etc.

In the next steps, the authors defined a set of 30 features that are divided into five categories:

URL-based, abnormal-based, HTML-based, JavaScript-based, and domain-name-based features.

Finally, the authors analyzed what features are the most significant ones regarding the detection

algorithm. However, we used all 30 features in our experiments, regardless of the importance of

features. The authors reported 0.922 for accuracy on this dataset.

DS-3: In 2014, Abdelhamid et al. [25] shared their dataset on the UCI machine learning repository

[94]. The features include HTML content-based features and some features that require third-party

service inquiries, such as DNS servers that perform domain-name age lookup. The best accuracy

reported for this dataset is 0.97.

DS-4: This dataset has been created by Tan et al. [27] and was published on Mendeley 2 dataset

library. This dataset includes 48 features, a combination of URL-based and HTML-based features.

The authors integrated a feature selection phase with a training phase and chose the 10 best features

with random forest classifiers. However, similar to DS-2, we used all features in our experiments.

The best performance achieved in this model is 0.96.

DS-5: Hannousse et al. [96] released this dataset that includes more than 11 thousand phishing and

legitimate URLs with 87 extracted features from three different categories: 56 extracted from the

structure and syntax of URLs, 24 extracted from the page contents, and 7 are extracted by querying

external services. The dataset is balanced, and 50% of phishing and the other 50% of legitimate

instances. The best accuracy reported by the authors is 0.966.

DS-6: Vrbancic et al. [97, 98] generated this dataset with 111 URL-based features without con-

sidering the contents of webpages or using third-party services. This dataset includes more than

146 thousand instances of phishing and legitimate websites. Unfortunately, we could not find any

reported accuracy for this dataset.

2https://data.mendeley.com/

82

Table 6.2: Summary of datasets we used in our experiments including released year, author’s reported

performance, dataset size (number legitimate, phishing, and total instances), number of features, and type

of features including URL-based, Page-content-based, and inquiring third-party services.

Author Size (K) Features

Name Year Prf. Leg. Phi. Tot. No. URL Pg. Cnt. 3rd. Pt.

DS-1 2018 0.98 1 1.2 2.2 7 X X

DS-2 2012 0.922 6.2 4.9 11.1 30 X X

DS-3 2014 0.97 0.6 0.7 1.3 9 X X

DS-4 2018 0.96 5.0 5.0 10.0 48 X X

DS-5 2020 0.966 5.7 5.7 11.4 87 X X X

DS-6 2020 - 58.0 30.7 88.7 111 X

DS-7 2020 0.983 5.9 7.2 13.1 35 X

DS-8 2020 0.970 2.2 1.8 4.0 76 X X

DS-9 2020 - 7.8 7.6 15.8 79 X

DS-7: Moruf et al. [99,100] released a dataset of phishing and legitimate websites with 35 features.

The authors added features related to image identity, page style, layout identity, and text identity.

There are more than 13 thousand instances, 7200 instances labeled as phishing, and 5800 labeled

as legitimate. The authors reported an accuracy of 0.983.

DS-8: Mahmodi et al. [101,102] gathered a dataset of legitimate and phishing websites with more

than 8000 instances. 75 URL-, and content-based features compromised this dataset. For this

dataset, the authors reported an accuracy of 0.970.

DS-9: Muhammad et al. [103] created a dataset of phishing and legitimate instances with 15000

instances. All of the 79 features are URL-based features. Similar to DS6, we could not find any

reported performance for this dataset as well.

Table 6.2 summarizes the number of instances, features, and the portion of legitimate vs. phish-

ing instances in each dataset. In addition, we specified each of these datasets have URL-based,

page-content-based, and third-party-based features.

83

6.2.2 Hyp-1: reproducing author’s results

In this experiment, we evaluate Hypothesis-1 as it questions if our proposed method can re-

produce the performance close to the performance reported by original authors of datasets without

considering any synthesized samples. We used 80% of data for training purposes and 20% for test-

ing in five-fold cross-validation. We ran all experiments ten times and reported the mean accuracy.

The results are reported in Table 6.3.

Table 6.3: Evaluation of the model against different classifiers with two metrics of ACC.

DT GNB GB KNN RF SVC(l) SVM(r) Auth. ∆1

Acc

DS1 0.959 0.946 0.968 0.962 0.971 0.95 0.955 0.98 −0.009

DS2 0.967 0.597 0.972 0.948 0.973 0.932 0.972 0.922 +0.051

DS3 0.92 0.896 0.924 0.932 0.932 0.900 0.94 0.97 −0.03

DS4 0.973 0.85 0.984 0.873 0.986 0.946 0.951 0.96 +0.026

DS5 0.942 0.72 0.961 0.843 0.967 0.937 0.871 0.966 +0.001

DS6 0.953 0.839 0.957 0.877 0.971 0.917 0.756 - -

DS7 0.991 0.911 0.991 0.993 0.991 0.939 0.963 0.983 +0.01

DS8 0.99 0.92 0.999 0.979 0.996 0.988 0.956 0.970 +0.029

DS9 0.972 0.821 0.983 0.97 0.987 0.963 0.956 - -

Avg. 0.963 0.833 0.971 0.931 0.975 0.941 0.924 0.964 +0.011

Table 6.3 summarizes the accuracy scores we achieved for all 9 datasets and 7 classification al-

gorithms. In addition, it expresses reported accuracy by authors, except for datasets DS6, and DS9,

which we could not find reported accuracy by original authors. For calculating ∆1

Acc, we selected

the maximum accuracy we got among 7 classifiers (declared in bold font) and then subtracted it

from the reported performance by authors.

Positive values for ∆1

Acc show our model outperformed the accuracy of original authors. For 5

out of 7 datasets, we are reporting positive ∆1

Acc values. While for two datasets of DS1 and DS3,

we are reporting negative values for ∆1

Acc, those are not statistically significant. In addition, the

best average performance we got among classifiers, belonging to RF classifiers, is higher than the

average performance reported by original authors by 0.011. These results prove Hypothesis-1.

84

6.2.3 Hyp-2: distinguishing synthesized samples

In this experiment, we evaluate to see if synthesized samples are distinguishable from original

samples, based on Hypothesis-2. For each dataset, our AAE has generated 10K phishing and 10K

legitimate samples. We trained our set of classifiers on original samples, as positive labels, and

synthesized samples, as negative labels. Similar to the previous experiment, we used 80% of data

for training purposes and 20% for testing in five-fold cross-validation. While some of the datasets

are imbalanced, we are best performing F1 score as ∆2

Max_F1
in Table 6.4.

Table 6.4: Performance of models to evaluate Hypothesis-2. Each model is trained on original and synthe-

sized data to distinguish between those samples. F1 score has been reported.

DT GNB GB KNN RF SVC(l) SVM(r) ∆2

Max_F1

DS1 0.53 0.0 0.543 0.462 0.51 0.0 0.47 0.543

DS2 0.829 0.303 0.881 0.725 0.907 0.098 0.899 0.907

DS3 0.127 0.0 0.142 0.144 0.153 0.0 0.139 0.153

DS4 0.942 0.334 0.962 0.89 0.975 0.542 0.937 0.975

DS5 0.999 0.237 0.998 0.745 0.999 0.744 0.096 0.999

DS6 0.993 0.317 0.99 0.903 0.998 0.827 0.515 0.998

DS7 0.902 0.452 0.931 0.857 0.972 0.171 0.787 0.972

DS8 0.991 0.257 0.992 0.738 0.996 0.284 0.753 0.996

DS9 0.998 0.309 0.999 0.924 0.999 0.887 0.931 0.999

Avg. 0.812 0.245 0.826 0.71 0.834 0.395 0.614

We fine-tuned all classifiers over datasets in this experiment.

The lower ∆2

Max_F1
scores demonstrate the lack of ability to distinguish synthesized samples

from legitimate and support our Hypothesis-2. Table 6.4 summarizes ∆2

Max_F1
scores as we defined

in Section 6.1. For each pair of classifiers and dataset, we report an F1 score. In addition, we report

the average and best F1 scores for each classifier and dataset respectively. As Table 6.4 shows, the

best F1 score for DS1 and DS3, declared by ∆2

Max_F1
, are very low. For other datasets, the ∆2

Max_F1

are reasonably high, with the lowest value of 0.907 belonging to DS2. While ∆2 holds significant

results, the average of different classifies over all of our datasets are very low. The highest average

85

score belongs to the RF classifier with 0.834. These results show that while classifiers may be

successful in discriminating synthesized samples from original in some datasets, the average results

are not acceptable and proves our hypothesis that synthesized samples are difficult to be detected

from original ones on average.

6.2.4 Hyp-3: performance against synthesized samples

To prove Hypothesis-3, we checked the performance of classifiers against synthesized samples,

when algorithms are trained only with original samples. That shows if synthesized samples can by-

pass the models and exploit vulnerabilities. We then calculated ∆3, as the different performance of

classifiers trained only on original samples and tested on synthesized samples and original samples.

For reporting results, we averaged the difference between the performance of models in Section

6.2.2 and when models were tested against synthesized samples on different datasets. That number

shows how performance between these two testing set changes, either increasing or decreasing on

average. We have tested our models with 2000 synthesized phishing samples and 2000 legitimate

samples, 4000 samples in total. For this experiment, we injected 80% of our synthesized sample

(both phishing and legitimate samples) into the training set and re-trained.

(a) (b)

Figure 6.2: (a) Performance of classifiers against synthesized samples when algorithms are only trained

on original samples. (b) Difference of performance when models were tested on original and synthesized

samples are calculated and depicted in this graph.

86

Figure 6.2 depicts ∆4

Acc and ∆4

F1
scores for different classifiers and datasets. On average, the

∆4

F1
score has been decreased by 7.1% and ∆4

Acc by 5.6%; a clear sign of synthesized samples

can evade the classifier. Among different datasets, DS4, DS5, and DS9 have more decrease in

performance, with the heights downgrade for DS5 with 22% and 7% for ∆4

F1
and ∆4

Acc respec-

tively. For different classifiers, SVM with a linear kernel and KNN has a significant downgrade

in performance. ∆4

F1
score has been downgraded 17.7% and 15.3% for linear SVM and KNN

respectively.

These results demonstrate our synthesized phishing and legitimate samples were able to evade

trained classifiers; a clear sign of vulnerability for models for both classification algorithms and

datasets we experimented. In addition, it proves the strength of our algorithm is not limited to

a specific algorithm or dataset and our algorithm is successful in wide ranges of datasets and

classification algorithms.

6.2.5 Hyp-4: mitigating against adversarial samples

In this experiment, we evaluated our mitigation approach. We injected synthesized samples

to measure if the performance can increase. That proves Hypothesis-4. For that, we defined ∆4,

which is the difference of performance when algorithms were trained only with original samples

and when was trained with both original and synthesized samples. For each dataset, we injected

80% synthesized samples into the training set and reserved 20% for testing. Similar to the previous

experiment, Figure 6.3 explains the results of experiments for ∆4

F1
and ∆4

Acc based on classifier

and datasets.

Figure 6.3 depicts improvements in performance that happened after injecting synthesized sam-

ples into the training set. That helped the performance to recover significantly. We made the fol-

lowing observations. ∆4

F1
and ∆4

Acc are significantly high when it was averaged on datasets and

classifiers. ∆4

F1
and ∆4

Acc scores, for all cases, have been improved but the GNB classifier. In addi-

tion, the recovery is similar to the performance downgrade in the previous experiment that means

the downgrade of performance that was because synthesized samples have been fully recovered.

87

(a) (b)

Figure 6.3: This experiment evaluates recovery from synthesized attacks. The results show the performance

of testing with synthesized samples when the model was trained with synthesized samples and were not

trained with those samples when datasets were tested (a) and when classifiers were tested (b).

The average of ∆4

F1
and ∆4

Acc are 7.4% and 6.1% respectively, while the decrease in performance

in the previous experiment was 7.1% and 5.6%. That shows performance has been recovered to

the same amount it was degraded in the previous experiment. These results prove Hypothesis-4 as

the proposed approach was able to recover the performance to the level before using synthesized

samples.

6.2.6 Hyp-5: improving performance for original Samples

In previous experiments, we showed injecting synthesized samples into the training set miti-

gates vulnerability against synthesized samples. However, this was not the only benefit of using

our proposed approach. As data gathering is a laborious activity, we want to analyze if extending

the size of the dataset with synthesized samples improves the performance of models when those

are tested with original samples, in comparison with algorithms when those were trained only with

original samples. We calculate ∆5 as this difference. Tables 6.6 and 6.5 summarize results for two

scores of ∆5

F1
and ∆5

Acc.

As Tables 6.6 and 6.5 summarize, the average performance for two scores of ∆5

Acc and ∆5

F1

have been slightly improved, 0.089 and 0.156 respectively. As original performance for these

models is significantly high, even a small improvement is considerable. Besides, the improvement

88

Table 6.5: Improving performance of each classifier and dataset on original samples with ∆5

Acc.

Dataset DT GNB GB KNN RF SVC(l) SVM(r) Avg.

DS1 1.1 0.5 0.5 1.6 0.3 0.9 1.1 0.9

DS2 -0.9 7.1 -1.1 0.7 0.2 0 0.2 0.9

DS3 0.4 -0.8 0 -1.2 -1 0.4 -1.6 -0.5

DS4 -1.7 -0.7 -1.3 0.9 -0.4 -0.9 -0.4 -0.6

DS5 -0.2 1.1 -0.6 -2.9 0.2 ERR 0 -0.4

DS6 0.1 2.2 -0.4 0.3 0.1 ERR 2 0.7

DS7 0 -0.9 -0.2 0 -0.1 -0.2 -0.4 -0.3

DS8 -0.1 0.7 -0.4 -0.2 0.1 0.9 1.2 0.3

DS9 -0.1 -1.3 -0.2 0 -0.2 -0.9 1.4 -0.2

Avg. -0.156 0.878 -0.411 -0.089 -0.089 0.029 0.389 0.089

Table 6.6: Improving performance of each classifier and dataset on original samples with ∆5

F1
.

Dataset DT GNB GB KNN RF SVC(l) SVM(r) Avg.

DS1 0.7 0.4 0.4 1.4 0.3 0.8 1 0.7

DS2 -0.9 4.5 -1.2 1 0.3 0.1 0.3 0.6

DS3 0.9 -0.2 0.4 -0.7 -0.5 0.9 -1.1 0

DS4 -1.5 -0.2 -1.2 1 -0.4 -0.8 -0.3 -0.5

DS5 0 0.9 -0.5 -1.5 0.3 ERR -7.8 -1.4

DS6 0.2 5.6 -1.3 -0.1 0.2 ERR 10 2.4

DS7 0 -0.6 -0.2 0 -0.1 -0.2 -0.3 -0.2

DS8 0 1.6 -0.4 -0.1 0.2 1 1.5 0.5

DS9 0 -2.5 -0.7 -0.3 0 -0.9 -0.8 -0.7

Avg. -0.067 1.056 -0.522 0.078 0.033 0.129 0.278 0.156

89

for specific algorithms is significant. For example, GNB accuracy has been increased by 7% when

it was trained on DS2 and by 2.2% on DS6.

Having said that, the performance improvement that has been demonstrated by ∆5

Acc and ∆5

F1

scores proves Hypothesis-5. In other words, extending the dataset with synthesized samples helped

to improve the performance of the system for both synthesized and original samples.

6.3 Conclusion

Supervised machine learning is a promising approach for phishing detection. However, suffi-

cient volumes of data regarding phishing websites are unavailable and often infeasible to obtain.

Towards this end, we demonstrated how Adversarial Autoencoders can be used for synthesizing

samples that mimic data of real phishing websites. We compared the similarity of the features and

instances of the generated data to ensure that the generated data may be realistically generated by

the attacker. We used nine publicly available datasets for our experiments. Our experiments re-

vealed that the learning algorithms work better when they are trained with larger volumes of data.

Injecting synthesized data in the training set improved the performance of the learning algorithms.

Moreover, the learning algorithms that included some synthesized data also were significantly

more robust to exploratory attacks.

90

Chapter 7

Conclusion

In this dissertation, we described the approach towards the design of only domain-name-based

features for the detection of phishing websites using machine learning. Our feature design em-

phasized the elimination of the possible bias in classification due to differently chosen datasets of

phishing and legitimate pages. Our approach differs from all previous works in this space as it

models the relationship of the domain name to the intent of phishing.

We then proposed a fingerprinting approach that detects whether a phishing website is attack-

ing a target legitimate website. Our approach considers both visual and textual characteristics

and detects phishing websites based on how closely their features match these fingerprints. That

addressed two issues of bias towards more popular websites and adaptability to new attacks in

existing algorithms.

In the next step, we studied the vulnerability of existing phishing detection approaches against

adversarial sampling attacks. We showed that newly generated samples with a small number of

perturbed features can bypass existing models. In addition, we observed adversarial samples trans-

ferred from the original cluster to a new cluster have a higher chance of bypassing the model. Our

clustering approach allows an attacker to identify better samples and allows analysts to identify

better defenses. It hints at the adversary to select more efficient feature manipulation to evade the

classifiers.

Finally, we demonstrated how Adversarial Autoencoders can be used for synthesizing phish-

ing samples. Our experiments revealed that the learning algorithms work better when they are

trained with larger volumes of data. Injecting synthesized data in the training set improved the

performance of the learning algorithms. Moreover, the learning algorithms that included some

synthesized data also were significantly more robust to exploratory attacks.

91

Bibliography

[1] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,” Journal of

Computer and System Sciences, vol. 80, no. 5, pp. 973–993, 2014.

[2] S. Moore, Gartner Forecasts Worldwide Information Security Spending

to Exceed $124 Billion in 2019, Gartner, accessed July 13, 2020.

[Online]. Available: https://www.gartner.com/en/newsroom/press-releases/

2018-08-15-gartner-forecasts-worldwide-information-security-spending-to\

-exceed-124-billion-in-2019

[3] D. Milkovich, 15 Alarming Cyber Security Facts and Stats, Cybint, accessed July 13, 2020.

[Online]. Available: https://www.cybintsolutions.com/cyber-security-facts-stats/

[4] L. P. Kelly Bissell, The Cost of Cybercrime, Accenture, accessed July

13, 2020. [Online]. Available: https://www.accenture.com/_acnmedia/PDF-96/

Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf#zoom=50

[5] Cyber Risk Analitics, Risk Based Security, accessed July 13, 2020. [Online]. Available:

https://pages.riskbasedsecurity.com/2019-midyear-data-breach-quickview-report

[6] G. Bassett, C. D. Hylender, P. Langlois, A. Pinto, and S. Widup, Data Breach

Investigations Report, Verizon, accessed July 13, 2020. [Online]. Available: https:

//enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf

[7] Wikipedia, “Phishing — Wikipedia, the free encyclopedia,” 2016, [Online; ac-

cessed 21-October-2016]. [Online]. Available: https://en.wikipedia.org/wiki/Phishing#cite_

note-APWG-10

[8] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage, G. M. Voelker,

and D. Wagner, “Detecting and characterizing lateral phishing at scale,” in 28th {USENIX}

Security Symposium ({USENIX} Security 19), 2019, pp. 1273–1290.

92

[9] F. B. of Investigation (FBI), “Business e-mail compromise 12 billion dollar scam,” https:

//www.ic3.gov/media/2018/180712.aspx, (accessed July 2, 2020).

[10] S. Singh, A. K. Sarje, and M. Misra, “Client-side counter phishing application using adap-

tive neuro-fuzzy inference system,” in International Conference on Computational Intelli-

gence and Communication Networks, 2012.

[11] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in Conference on Human

Factors in Computing Systems, 2006.

[12] A. Handa, A. Sharma, and S. K. Shukla, “Machine learning in cybersecurity: A review,”

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 4, p.

e1306, 2019.

[13] A. Niakanlahiji, B.-T. Chu, and E. Al-Shaer, “Phishmon: A machine learning framework

for detecting phishing webpages,” in IEEE International Conference on Intelligence and

Security Informatics, 2018, pp. 220–225.

[14] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing detec-

tion from urls,” Expert Systems with Applications, vol. 117, pp. 345–357, 2019.

[15] J. Mao, J. Bian, W. Tian, S. Zhu, T. Wei, A. Li, and Z. Liang, “Phishing page detection

via learning classifiers from page layout feature,” Journal on Wireless Communications and

Networking, 2019.

[16] A. K. Jain and B. B. Gupta, “Towards detection of phishing websites on client-side using

machine learning based approach,” Telecommunication Systems, vol. 68, no. 4, pp. 687–700,

2018.

[17] J. Kirchner, A. Heberle, and W. Löwe, “Classification vs. regression-machine learning ap-

proaches for service recommendation based on measured consumer experiences,” in IEEE

World Congress on Services, 2015.

93

[18] Y. Huang, Q. Yang, J. Qin, and W. Wen, “Phishing url detection via cnn and attention-

based hierarchical rnn,” in IEEE International Conference On Trust, Security And Privacy

In Computing And Communications. IEEE, 2019, pp. 112–119.

[19] P. Saravanan and S. Subramanian, “A framework for detecting phishing websites using ga

based feature selection and artmap based website classification,” Procedia Computer Sci-

ence, vol. 171, pp. 1083–1092, 2020.

[20] E. Zhu, Y. Ju, Z. Chen, F. Liu, and X. Fang, “Dtof-ann: An artificial neural network phish-

ing detection model based on decision tree and optimal features,” Applied Soft Computing,

vol. 95, p. 106505, 2020.

[21] S. Abt and H. Baier, “Are we missing labels? a study of the availability of ground-truth in

network security research,” in International Workshop on Building Analysis Datasets and

Gathering Experience Returns for Security. IEEE, 2014, pp. 40–55.

[22] Z. Dou, I. Khalil, A. Khreishah, A. Al-Fuqaha, and M. Guizani, “Systematization of knowl-

edge (sok): A systematic review of software-based web phishing detection,” IEEE Commu-

nications Surveys Tutorials, 2017.

[23] J. Zou and L. Schiebinger, “Ai can be sexist and racist—it’s time to make it fair,” 2018.

[24] N. Dalvi, P. Domingos, S. Sanghai, D. Verma et al., “Adversarial classification,” in Interna-

tional Conference on Knowledge Discovery and Data Mining. ACM, 2004, pp. 99–108.

[25] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based associative classi-

fication data mining,” Expert Systems with Applications, vol. 41, no. 13, pp. 5948–5959,

2014.

[26] R. M. Mohammad, F. Thabtah, and L. McCluskey, “An assessment of features related to

phishing websites using an automated technique,” in International Conference for Internet

Technology and Secured Transactions. IEEE, 2012, pp. 492–497.

94

[27] C. L. Tan, “Phishing dataset for machine learning: Feature evaluation,” 2018, https://data.

mendeley.com/datasets/h3cgnj8hft/1 (Accessed 2019-05-12).

[28] H. Shirazi, B. Bezawada, I. Ray, and C. Anderson, “Adversarial sampling attacks against

phishing detection,” in Data and Applications Security and Privacy. Springer International

Publishing, 2019.

[29] M. Jensen, A. Durcikova, and R. Wright, “Combating phishing attacks: A knowledge man-

agement approach,” in 50th Hawaii International Conference on System Sciences, 2017.

[30] S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F. Cranor, J. Hong, and E. Nunge,

“Anti-Phishing Phil: The Design and Evaluation of a Game That Teaches People Not to Fall

for Phish,” in 3rd Symposium on Usable Privacy and Security, ser. SOUPS ’07. New York,

NY, USA: ACM, 2007, pp. 88–99.

[31] N. A. G. Arachchilage, S. Love, and K. Beznosov, “Phishing threat avoidance behaviour:

An empirical investigation,” Computers in Human Behavior, vol. 60, pp. 185–197, 2016.

[32] D. D. Caputo, S. L. Pfleeger, J. D. Freeman, and M. E. Johnson, “Going spear phishing:

Exploring embedded training and awareness,” IEEE Security & Privacy, vol. 12, no. 1, pp.

28–38, 2014.

[33] ——, “Going spear phishing: Exploring embedded training and awareness,” IEEE Security

& Privacy, vol. 12, no. 1, pp. 28–38, 2013.

[34] S. Afroz and R. Greenstadt, “Phishzoo: Detecting phishing websites by looking at them,” in

IEEE International Conference on Semantic Computing. IEEE, 2011, pp. 368–375.

[35] A. K. Jain and B. Gupta, “A novel approach to protect against phishing attacks at client-side

using auto-updated white-list,” EURASIP Journal on Information Security, vol. 2016, no. 1,

p. 9, 2016.

95

[36] Wikipedia, “Mozilla. phishing protection,” 2017, [Online; accessed 04-

April-2017]. [Online]. Available: https://support.mozilla.org/t5/Protect-your-privacy/

How-does-built-in-Phishing-and-Malware-Protection-work/ta-p/9395

[37] A. L. H. N. L. H. N. Security, “Inside Google’s Global Campaign

to Shut Down Phishing.” [Online]. Available: https://www.wired.com/2017/05/

inside-googles-global-campaign-shut-phishing/

[38] R. B. Basnet, S. Mukkamala, and A. H. Sung, “Detection of phishing attacks: A machine

learning approach,” in Soft Computing Applications in Industry. Studies in Fuzziness and

Soft Computing. Springer, 2008, vol. 226, pp. 373–383.

[39] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists: Learning to detect

malicious web sites from suspicious urls,” in ACM International Conference on Knowledge

Discovery and Data Mining. ACM, 2009, pp. 1245–1254.

[40] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, “An evaluation of machine learning-

based methods for detection of phishing sites,” in International Conference on Neural In-

formation Processing. Springer, 2008, pp. 539–546.

[41] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based approach to detecting

phishing web sites,” in ACM International Conference on World Wide Web. ACM, 2007,

pp. 639–648.

[42] M. Aburrous, M. A. Hossain, K. Dahal, and F. Thabtah, “Predicting phishing websites using

classification mining techniques with experimental case studies,” in International Confer-

ence on Information Technology: New Generations. IEEE, 2010, pp. 176–181.

[43] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: A feature-rich machine learning

framework for detecting phishing web sites,” ACM Transactions on Information and System

Security, vol. 14, no. 2, pp. 1–28, 2011.

96

[44] R. Verma and K. Dyer, “On the character of phishing urls: Accurate and robust statistical

learning classifiers,” in ACM Conference on Data and Applications Security and Privacy

(CODASPY), 2015, pp. 111–122.

[45] A. K. Jain and B. B. Gupta, “Towards detection of phishing websites on client-side using

machine learning based approach,” Telecommunication Systems, pp. 1–14, December 2017.

[46] M. Al-Janabi, E. d. Quincey, and P. Andras, “Using supervised machine learning algorithms

to detect suspicious urls in online social networks,” in IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining, 2017, pp. 1104–1111.

[47] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know your phish: Novel techniques for

detecting phishing sites and their targets,” in IEEE International Conference on Distributed

Computing Systems. IEEE, 2016, pp. 323–333.

[48] S. Marchal, G. Armano, T. Grondahl, K. Saari, N. Singh, and N. Asokan, “Off-the-hook:

An efficient and usable client-side phishing prevention application,” IEEE Transactions on

Computers, vol. 66, no. 10, pp. 1717–1733, 2017.

[49] G. Armano, S. Marchal, and N. Asokan, “Real-time client-side phishing prevention add-

on,” in IEEE International Conference on Distributed Computing Systems. IEEE, 2016,

pp. 777–778.

[50] R. S. Rao and A. R. Pais, “Detection of phishing websites using an efficient feature-based

machine learning framework,” Neural Computing and Applications, January 2018.

[51] S. R. Team, “ISTR Internet Security Threat Report Volume 23,” 2018. [On-

line]. Available: https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/

istr-23-cyber-security-threat-landscape

[52] R. Verma and K. Dyer, “On the character of phishing urls: Accurate and robust statistical

learning classifiers,” in Data and Application Security and Privacy, 2015, pp. 111–122.

97

[53] J. Jiang, J. Chen, K.-K. R. Choo, C. Liu, K. Liu, M. Yu, and Y. Wang, “A deep learning based

online malicious url and dns detection scheme,” in Security and Privacy in Communication

Systems, 2017, pp. 438–448.

[54] M. Pereira, S. Coleman, B. Yu, M. DeCock, and A. Nascimento, “Dictionary extraction and

detection of algorithmically generated domain names in passive dns traffic,” in Research in

Attacks, Intrusions, and Defenses, 2018, pp. 295–314.

[55] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a haystack: Tracking down elite

phishing domains in the wild,” in Internet Measurement Conference, 2018, pp. 429–442.

[56] Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, “A stacking model using url and html features

for phishing webpage detection,” Future Generation Computer Systems, vol. 94, pp. 27–39,

2019.

[57] H. Shirazi, B. Bezawada, and I. Ray, “"kn0w thy doma1n name": Unbiased phishing detec-

tion using domain name based features,” in Access Control Models and Technologies, 2018,

pp. 69–75.

[58] S. Afroz and R. Greenstadt, “PhishZoo: Detecting Phishing Websites by Looking at Them,”

in IEEE Fifth International Conference on Semantic Computing, Sep. 2011, pp. 368–375.

[59] T.-C. Chen, S. Dick, and J. Miller, “Detecting visually similar web pages: Application to

phishing detection,” ACM Transactions on Internet Technology, Jun. 2010.

[60] A. Y. Fu, L. Wenyin, and X. Deng, “Detecting Phishing Web Pages with Visual Similarity

Assessment Based on Earth Mover’s Distance (EMD),” IEEE Transactions on Dependable

and Secure Computing, vol. 3, no. 4, pp. 301–311, Oct. 2006.

[61] R. S. Rao and S. T. Ali, “A computer vision technique to detect phishing attacks,” in In-

ternational Conference on Communication Systems and Network Technologies, 2015, pp.

596–601.

98

[62] H. Zhang, G. Liu, T. W. S. Chow, and W. Liu, “Textual and visual content-based anti-

phishing: A bayesian approach,” IEEE Transactions on Neural Networks, vol. 22, no. 10,

pp. 1532–1546, 2011.

[63] R. Zhao, S. John, S. Karas, C. Bussell, J. Roberts, D. Six, B. Gavett, and C. Yue, “The

highly insidious extreme phishing attacks,” in International Conference on Computer Com-

munication and Networks. IEEE, 2016, pp. 1–10.

[64] ——, “Design and evaluation of the highly insidious extreme phishing attacks,” Computers

& Security, vol. 70, pp. 634 – 647, 2017.

[65] N. Chou, R. Ledesma, Y. Teraguchi, J. C. Mitchell et al., “Client-side defense against web-

based identity theft,” in Computer Science Department, Stanford University, 2004.

[66] Q. Cui, G.-V. Jourdan, G. V. Bochmann, R. Couturier, and I.-V. Onut, “Tracking phishing

attacks over time,” in International Conference on World Wide Web, 2017, pp. 667–676.

[67] V. Bulakh and M. Gupta, “Countering phishing from brands’ vantage point,” in International

Workshop on Security And Privacy Analytics, 2016, pp. 17–24.

[68] X. Han, N. Kheir, and D. Balzarotti, “Phisheye: Live monitoring of sandboxed phishing

kits,” in ACM SIGSAC Conference on Computer and Communications Security, 2016, pp.

1402–1413.

[69] APWG, “Global phishing survey: Trends and domain name use in 2016,” 2017, [Online;

accessed 21-October-2016]. [Online]. Available: http://docs.apwg.org/reports/APWG_

Global_Phishing_Report_2015-2016.pdf

[70] V. Drury and U. Meyer, “Certified phishing: taking a look at public key certificates of

phishing websites,” in Symposium on Usable Privacy and Security, 2019, pp. 211–223.

99

[71] I. Torroledo, L. D. Camacho, and A. C. Bahnsen, “Hunting malicious tls certificates with

deep neural networks,” in Proceedings of ACM Workshop on Artificial Intelligence and Se-

curity, 2018, pp. 64–73.

[72] R. Dai, C. Gao, B. Lang, L. Yang, H. Liu, and S. Chen, “Ssl malicious traffic detection

based on multi-view features,” in Proceedings International Conference on Communication

and Network Security, 2019, pp. 40–46.

[73] Q. Cui, G.-V. Jourdan, G. V. Bochmann, I.-V. Onut, and J. Flood, “Phishing attacks mod-

ifications and evolutions,” in European Symposium on Research in Computer Security.

Springer, 2018, pp. 243–262.

[74] C. N. Gutierrez, T. Kim, R. Della Corte, J. Avery, D. Goldwasser, M. Cinque, and S. Bagchi,

“Learning from the ones that got away: Detecting new forms of phishing attacks,” IEEE

Transactions on Dependable and Secure Computing, vol. 15, no. 6, pp. 988–1001, 2018.

[75] A. Van Der Heijden and L. Allodi, “Cognitive triaging of phishing attacks,” in 28th

{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 1309–1326.

[76] S. Marchal, J. François, T. Engel et al., “Proactive discovery of phishing related domain

names,” in International Workshop on Recent Advances in Intrusion Detection. Springer,

2012, pp. 190–209.

[77] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Adversarial machine

learning,” in ACM Workshop on Security and Artificial Intelligence, 2011, pp. 43–58.

[78] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is feature selection secure

against training data poisoning?” in International Conference on Machine Learning, 2015,

pp. 1689–1698.

[79] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern classifiers under attack,”

IEEE Transactions on Knowledge and Data Engineering, vol. 26, pp. 984–996, 2014.

100

[80] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto,

and F. Roli, “Yes, machine learning can be more secure! a case study on android malware

detection,” IEEE Transactions on Dependable and Secure Computing, 2017.

[81] Y. Wang, S. Jha, and K. Chaudhuri, “Analyzing the robustness of nearest neighbors to adver-

sarial examples,” in International Conference on Machine Learning, 2018, pp. 5120–5129.

[82] N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, and P. McDaniel, “cleverhans v1. 0.0:

an adversarial machine learning library,” arXiv preprint arXiv:1610.00768, vol. 10, 2016.

[83] Z. Dou, I. Khalil, A. Khreishah, A. Al-Fuqaha, and M. Guizani, “Systematization of knowl-

edge (sok): A systematic review of software-based web phishing detection,” IEEE Commu-

nications Surveys Tutorials, vol. 19, no. 4, pp. 2797–2819, 2017.

[84] N. Abdelhamid, F. A. Thabtah, and H. Abdel-jaber, “Phishing detection: A recent intelligent

machine learning comparison based on models content and features,” in IEEE International

Conference on Intelligence and Security Informatics, 2017, pp. 72–77.

[85] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for detection and measure-

ment of phishing attacks,” in ACM Workshop on Recurring Malcode. ACM, 2007, pp.

1–8.

[86] C. L. Tan, K. L. Chiew, K. Wong, and S. N. Sze, “Phishwho: Phishing webpage detection

via identity keywords extraction and target domain name finder,” Decision Support Systems,

vol. 88, no. C, pp. 18–27, August 2016.

[87] W. Zhang, Q. Jiang, L. Chen, and C. Li, “Two-stage elm for phishing web pages detection

using hybrid features,” World Wide Web, vol. 20, no. 4, pp. 797–813, July 2017.

[88] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,”

Journal of machine Learning research, 2011.

101

[89] E. Ma, “Secret of google web-based ocr service,” Jan 2019. [Online]. Available:

https://towardsdatascience.com/secret-of-google-web-based-ocr-service-fe30eecedd01

[90] F. C. Dalgic, A. S. Bozkir, and M. Aydos, “Phish-iris: A new approach for vision based

brand prediction of phishing web pages via compact visual descriptors,” in International

Symposium on Multidisciplinary Studies and Innovative Technologies. IEEE, 2018, pp.

1–8.

[91] Alexa, “amazon.com competitive analysis, marketing mix and traffic,” 2020. [Online].

Available: https://www.alexa.com/siteinfo/amazon.com

[92] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine learn-

ing,” arXiv preprint arXiv:1712.03141, 2017.

[93] J. MacQueen et al., “Some methods for classification and analysis of multivariate observa-

tions,” in Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 14.

Oakland, CA, USA, 1967, pp. 281–297.

[94] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[95] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,”

arXiv preprint arXiv:1511.05644, 2015.

[96] S. Hannousse, Abdelhakim; Yahiouche, “Web page phishing detection,” 2020, https://data.

mendeley.com/datasets/c2gw7fy2j4/2(Accessed2020-09-12).

[97] G. Vrbančič, “Phishing dataset for machine learning: Feature evaluation,” 2020, http://dx.

doi.org/10.17632/72ptz43s9v.1 (Accessed 2020-10-12).

[98] G. Vrbančič, I. Fister, and V. Podgorelec, “Datasets for phishing websites detection,” Data

in Brief, vol. 33, p. 106438, 2020. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S2352340920313202

102

[99] M. Adebowale, “Phishing dataset for machine learning: Feature evaluation,” 2019, https:

//data.mendeley.com/datasets/gt7xdbs3kt/2(Accessed2020-09-12).

[100] M. Adebowale, K. Lwin, E. Sánchez, and M. Hossain, “Intelligent web-phishing

detection and protection scheme using integrated features of images, frames and text,”

Expert Systems with Applications, vol. 115, pp. 300 – 313, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417418304925

[101] H. Sadoghi Yazdi, e. mahmodi, and A. Ghaemi Bafghi, “Data for: An online mini-

mal uncertainty drift-aware method for anomaly detection in social networking,” 2020,

https://data.mendeley.com/datasets/zw7knrxpy5/1(Accessed2020-09-12).

[102] H. S. Yazdi, A. G. Bafghi et al., “A drift aware adaptive method based on minimum uncer-

tainty for anomaly detection in social networking,” Expert Systems with Applications, vol.

162, p. 113881, 2020.

[103] M. HANIF, “Malware webpages data,” 2020, https://data.mendeley.com/datasets/

zsj5pgrsg9/1(Accessed2020-09-12).

103

