FOLIO TAT C6 CER-66-67-61 Crp.2

LIBRARIES COLORADO STATE UNIVERSITY FORT COLLINS, OOLGRADO

Progress Report

HYDROGRAPH RISE TIMES

by

Songthara Om Kar

an Interim Report Prepared for

Office of Water Resources Research U.S. Department of the Interior U.S. Department of the Interior on the continuing investigation entitled: "FLOODS FROM FOREST COMPARED TO THOSE FROM FARMIAND"

Colorado State University Natural Resources Center Fort Collins, Colorado June 1967

CER 66-675061

n

Progress Report

HYDROGRAPH RISE TIMES

by

Songthara Om Kar

an Interim Report Prepared for

Office of Water Resources Research U.S. Department of the Interior on the continuing investigation entitled:

"FLOODS FROM FOREST COMPARED TO THOSE FROM FARMLAND"

Colorado State University Natural Resources Center Fort Collins, Colorado June 1967

ABSTRACT

HYDROGRAPH RISE TIMES

An exploratory study on "Floods from Forest Compared to Those from Farmland" was performed as an extension of a thorough study of Hydrograph Rise Times (Appendix). Fifty-one watersheds were classified, using as a criterion the watershed coverage, into four groups: forest, cultivated, grass, and desert. Equations for predicting rise times and ten-year flood peaks were derived in simple and multiple regression analyses by computer. The best equations obtained were used to study the effects of changing the watershed coverage on rise times and flood peaks by using two average watersheds. However, no conclusions concerning the trend of behavior of watersheds compared are warranted. Detailed information on watershed coverage and condition must be secured before any further work is to be performed.

i

ACKNOWLEDGMENTS

This is an interim report of continuing investigations of the "Floods from Forest Compared to Those from Farmland" being performed at Colorado State University. The data used was taken from the "Data Compilation for Small Watersheds" which was accomplished under the supervision of Dr. V. Yevjevich, Professor-in-Charge of the Hydrology Program.

This work was supported by funds provided to the Colorado State University Natural Resources Center by the Office of Water Resources Research, United States Department of the Interior.

Dr. Stephen C. Smith, formerly Director of the CSU Natural Resources Center, Dr. Bertram C. Goodell, Professor at Colorado State University and especially, Mr. Walter U. Garstka, Professor of Civil Engineering were consulted in the preparation of this interim report.

ii

TABLE OF CONTENTS

PAR	T ONE
<u> </u>	age
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF SYMBOLS	vi
INTRODUCTION	2
ANALYSIS OF DATA	4
PRESENTATION OF RESULTS	5
DISCUSSION OF RESULTS	5
SUMMARY AND RECOMMENDATIONS	7

PART TWO

Page

APPENDIX	•		•			•				•			•		·	•	•	i
TABLE OF	CO	NT	Eľ	NΤ	S													viii

LIST OF TABLES

Table	Page
1	DATA FOR CLASSIFICATION OF WATERSHEDS 10
2	RISE TIME T FOR FORESTED WATERSHEDS 13 M_1
3	RISE TIME T $_{M2}$ FOR FORESTED WATERSHEDS 14
4	TEN-YEAR FLOOD PEAK q FOR FORESTED WATERSHEDS
5	RISE TIME T FOR CULTIVATED
	WATERSHEDS
6	RISE TIME T _{M2} FOR CULTIVATED
	WATERSHEDS
7	TEN-YEAR FLOOD PEAK q FOR CULTIVATED WATERSHEDS
8	RISE TIME T_{M1} FOR GRASS WATERSHEDS 19
9	RISE TIME T_{M2} FOR GRASS WATERSHEDS 20
10	TEN-YEAR FLOOD PEAK q FOR GRASS WATERSHEDS
11	RISE TIME T_{M1} FOR DESERT WATERSHEDS 22
12	RISE TIME T_{M2} FOR DESERT WATERSHEDS 23
13	TEN-YEAR FLOOD PEAK q FOR DESERT WATERSHEDS
14	EQUATIONS FOR PREDICTION OF HYDROGRAPH RISE TIMES
15	EQUATIONS FOR PREDICTION OF TEN-YEAR FLOOD PEAKS
16	DATA FOR AVERAGE WATERSHEDS A AND B 27

LIST OF FIGURES

Figure		Page
1	Approximate location of watersheds	. 29
2	Rise time definitions	. 30
3	Comparison of hydrograph rise times predicted by formulae listed in Table 14	. 31
4	Comparison of ten-year flood peaks predicted by formulae listed in Table 15	• 32

LIST OF SYMBOLS

Symbol	Definition	Unit
A	Area	Square miles
F	Form factor	Dimensionless
Н	Total fall	Feet
L	Length of main stream	Miles
L _c	Distance to centroid of area	Miles
Р	Ten-year one-hour precipitation	Inch
q	Ten-year flood peak	Inch per hour
$\mathbf{R}_{\mathbf{T}}$	Relative rise time	Dimensionless
R ²	Coefficient of determination	Dimensionless
s ₁ , s ₂	Stream slope	Feet per mile
Sey	Standard error of estimates	Unit of indepen- dent variable
T _R , T _{R1} ,	T _{R2} Rise time	Hours
т _м , т _{м1} ,	^T M2 Median rise time	Hours

PART ONE

Interim Report

HYDROGRAPH RISE TIMES

INTRODUCTION

Investigations of runoff from agricultural watersheds and effects of forest on stream flow have been extensive in the United States and other nations for over a century and are of increasing interest. Pertinent references to the general subject are: Kittredge (1)*, Garstka et al. (2), Hertzler (3), and Storey (4).

The title of the investigation would indicate it to be a general study. The subject is so vast that only a small clearly delineated aspect could be pursued within limitations of funds. Therefore, hydrograph rise times were investigated.

A very thorough study of rise times was performed as shown in the Appendix by Om Kar. Data used in this study are from the compilation to be released in September 1967, "Research Data Assembly for Small Watersheds - Part II", Engineering Research Center, Colorado State University, Fort Collins, Colorado.

The results of this analysis explained to some extent the complexity of small watershed responses due to the heterogeneity between individual small watersheds with respect to climate, geometric characteristics and other watershed factors.

^{*} Numbers in the parentheses refer to the references which appear at the end of the report.

Rise times within a watershed vary from about 0.3 to 3 times or more the median rise time. A single distribution of relative rise times, R_T , applicable to all watersheds investigated, has the following mathematical form:

$$p(R_{T}) = \text{probability density of } R_{T}$$

$$p(R_{T}) = \frac{1}{-1.74 R_{T}} e^{-\frac{(\ln R_{T} + 0.16)^{2}}{0.96}}$$

The median rise time T_{M} in hours for a humid watershed can be estimated reasonably from the following equation:

$$T_{M} = 0.86 + 0.25 L_{C} - 0.65 F$$

where L_c is the distance to centroid of area in miles and F is the dimensionless form factor.

The median rise time T_{M} in hours for an arid watershed can be estimated reasonably from the following equation:

$$T_{M} = 1.33 - 0.86 S_{2}^{\frac{1}{2}} \times 10^{-1} - 0.093 A \times 10^{-2}$$

where S_2 is the stream slope in feet per mile and A is the area in square miles.

The above equations for predicting median rise times are limited to watersheds subject to short duration storms.

This interim report is an extension of that analysis. The purpose is to study the effects of changing the watershed coverage on the hydrograph rise times and the ten-year flood peaks.

ANALYSIS OF DATA

The watershed coverage is used as a criterion for the classification of watersheds into four groups:

- 1. Forest, more than 21% of the watershed area forested,
- 2. Cultivated, more than 50% of the watershed area cultivated,
- 3. Grass, more than 50% of the watershed area covered by grass, and
- 4. Desert, more than 50% of the watersheds are desert.

Table 1* lists the percentage of area of watershed coverage as described in references (5,6 and 7) of 51 watersheds used and their classification. Figure 1* shows the approximate location of the watersheds.

The area A, the length of main stream L , and the total fall H are used as independent variables in the simple and multiple regression analysis of hydrograph rise times. Two different measurements of rise times were used: T_{R1} and T_{R2} , Figure 2. The reasons are explained on page 28 of the Appendix.

For the analysis of ten-year flood peak, which was suggested by Visiting Professor, F. C. Bell (on leave from the University of New South Wales, Australia), the area A, the ten-year one-hour precipitation P, and the channel slope S₁ were selected. P was taken from the "Rainfall Frequency Atlas of the United States" (8).

^{*} All tables and figures are in the back of the report.

PRESENTATION OF RESULTS

The results of this extended analysis on hydrograph rise times and ten-year flood peak are shown in Tables 2 through 13. Each table contains simple regression equations and multiple regression equations with their respective coefficients of determination and standard errors of estimates.

DISCUSSION OF RESULTS

The examination of the results shows that there are several equations with very low coefficient of determination R^2 and high standard errors of estimates S_{ey} , and there are only few equations with high R^2 and low S_{ey} . This is an indication that more investigations are needed. The best equations derived in this study are shown in Tables 14 and 15. The equations selected are indicated by an asterisk at the right hand side of Table 2 through 13.

For purposes of comparison of floods from forested, cultivated, grass and desert watersheds, two average watersheds were computed. The averages of the watershed parameters used in the comparison were taken from Reference (9). The 51 watersheds studied are among those included in the 186 watersheds of Reference (9). Watershed A has the average watershed characteristics of the overall sample of 186 watersheds investigated, and watershed B has the average watershed characteristics of 61 watersheds smaller than one square mile.

The data of these watersheds are shown in Table 16. Average watershed A represents a larger watershed and average watershed B represents a smaller watershed.

These data are substituted into equations listed in Tables 14 and 15. Figures 3 and 4 show graphically the results. A range of values of plus and minus one standard error of the estimate are shown for each of the bars. This indicates graphically the 68% probability range of the predicted values.

The insufficiency of data on hand is illustrated by the examination of watersheds 5, 15 and 49 of Table 1. Watershed 5, shown to have approximately 53% of the area bare, 25% covered by the shrub, and 22% covered by grass, could be classified as desert or grass. Watershed 15, shown to have approximately 20% of the area idle, 30% covered by pasture, 27% cultivated, 21% forested and 2% impervious, could be classified as grass, cultivated or forested. Watershed 49, having 58% of the area covered by forest, is classified as forest but 22% is cultivated, 9% pasture, and 11% idle.

The unexpected result in Figure 3 of rise times for grass and cultivated watersheds could be due to the effect of soil and water conservation practices on land use.

The number of watersheds, although it is the minimum needed to permit exploratory analysis, is not adequate for a thorough statistical study. Specific information on infiltration for each watershed to be included in the analyses would be desirable.

SUMMARY AND RECOMMENDATION

Fifty-one watersheds taken from the "Research Data Assembly for Small Watersheds" were classified into four groups: forest, cultivated, grass and desert. Equations for predicting rise times and tenyear flood peaks were derived and tested by using average of parameters based on a total of 182 watersheds and 61 watersheds smaller than one square mile. The results indicate a general trend that the rise time is longest for forested watershed and less for others. The rise time for desert watershed is not indicative. In almost all cases the coefficient of determination indicates that a large amount of variance is not explained.

This is an exploratory study and no conclusions concerning the trend of behavior of watersheds compared are warranted.

Before any further work is to be performed on "Floods from Forest Compared to Those from Farmland" detailed information on soils, land use, ecological characteristics, stand-density of the vegetal cover and the extent of the application of soil and water conservation practices on watersheds, needs to be secured.

REFERENCES

- 1. Kittredge, J., "Forest Influences", Chap. XX through XXV, pp. 230-360, McGraw-Hill Book Co., Inc., New York, 1948.
- Garstka, W. U., L. D. Love, B. C. Goodell, and F. A. Bertle, "Factors Affecting Snowmelt and Streamflow", U. S. Bureau of Reclamation and U. S. Forest Service, pp. 5-8, March 1958.
- 3. Hertzler, R. A., "Engineering Aspects of the Influence of Forests on Mountain Streams", Civil Eng., Vol. 9, pp. 487-489, 1939.
- Storey, H. C., "Effects of Forest Runoff", J. Soil and W. Con., 14 (4), pp. 152-155, July 1959.
- 5. United States Department of Agriculture, "Selected Runoff Events from Small Agricultural Watersheds in the United States", USDA, Agricultural Research Service, Washington, D. C., 1961.
- United States Department of Agriculture, "Hydrologic Data for Experimental Agricultural Watersheds in the United States, 1956-59", Miscellaneous Publication 945, Washington, D.C., 600 pp., Nov., 1963.
- United States Department of Agriculture, "Hydrologic Data for Experimental Agricultural Watersheds in the United States, 1960-61", Miscellaneous Publication 994, Washington, D.C., 496 pp., May 1965.
- Hershfield, David M., "Rainfall Frequency Atlas of the United States", U. S. Department of Commerce, Weather Bureau, Technical Paper No. 40, Washington, D. C., 61 pp., May 1961.
- 9. Hiemstra, L. A. V., and Javad Jafari, "Analysis of Watershed Shape and Slope from a Sample of Watersheds Obtained from the Hydrology Program's Small Watershed File", an unpublished Interim Report on the Rainfall-Runoff Experimental Facility as part of the research project entitled "Experimental Investigation of Small Watershed Floods", pp. 11, Engineering Research Center, Colorado State University, Fort Collins, Colorado, October 1966.

TABLES

				Watershed Coverage (percentage of area)									
Order	State	Watershed No.	Bare* or Idle	Shrub	Grass or Pasture	Culti - vated	Woodland or Forest	Imper - vious	cation for this Analysis				
1 2 3 4 5	Arizona	1-03-06-011-03-06-021-03-06-031-03-06-041-03-06-05	85* 75* 32* 75* 53*	15 12 23 25 25	13 45 22				Desert Desert Desert Desert Desert				
6 7 8 9 10	Colorado Florida	1-03-06-06 1-03-06-18 1-03-06-19 1-06-06-105 1-09-16-01	80* 80* 50*	20 28	20 22 65		100	15	Desert Desert Desert Forest Grass				
11 12 13 14 15	Idaho Illinois Iowa Mississippi	1 - 12 - 04 - 01 $1 - 13 - 11 - 03$ $1 - 15 - 11 - 01$ $1 - 24 - 12 - 01$ $1 - 24 - 12 - 02$	33 20		85 14 35 13 30	15 83 45 21 27	20 31 21	3 2 2	Grass Cultivated Cultivated Forest Grass				
16 17 18 19 20		1-24-12-03 1-24-12-04 1-24-12-05 1-24-12-07 1-24-12-09	53 39 65 48 49		10 13 4 10 14	20 20 2 15 23	15 23 29 26 12	2 5 4 2	Grass Forest Grass Grass Grass				

TABLE 1. DATA FOR CLASSIFICATION OF WATERSHEDS

5			a	Watershee	d Coverage	e (percenta	ge of area)	Classifi-
			Bare*		Grass		Woodland		cation
		Watershed	or		or	Culti-	or	Imper-	for this
Order	State	No.	Idle	Shrub	Pasture	vated	Forest	vious	Analysis
21	↓ ↓	1-24-12-10	49		14	23	12	2	Grass
22	Nebraska	1-27-07-01			15	82		3	Cultivated
23		1-27-07-02			10	87		3	Cultivated
24		1-27-07-03			19	80		1	Cultivated
25	↓ ↓	1-27-07-04			22	74		4	Cultivated
26	New Mexico	1-31-06-01	80*		20				Desert
27		1-31-09-01	85*	8	8				Desert
28		1-31-09-04	70*		30				Desert
29	Ohio	1-35-14-02			54	20	23	3	Forest
30		1-35-14-04			43	41	12	4	Cultivated
31		1-35-14-05			57	15	24	4	Forest
32		1-35-14-06			55	15	26	4	Forest
33		1-35-14-07			50	18	28	4	Forest
34		1-35-14-08			57	29	14		Grass
35		1-35-14-09			50	19	27	4	Forest
36		1-35-14-10	5		28	43	21	3	Cultivated
37	· /	1-35-14-32			67	17	10	6	Grass
38	Oklahoma	1-36-08-01			100				Grass
39		1-36-08-02			100				Grass
40	\checkmark	1-36-08-03			100				Grass

TABLE 1. DATA FOR CLASSIFICATION OF WATERSHEDS - Continued

				Watershed Coverage (percentage of area)								
Order	State	Watershed No.	Bare* or Idle	Shrub	Grass or Pasture	Culti- vated	Woodland of Forest	Imper- vious	cation for this Analysis			
41	Texas	1-43-08-01			100				Grass			
42		1-43-09-01			28	69		3	Cultivated			
43		1-43-09-02			24	73		3	Cultivated			
44		1-43-09-05			17	78		5	Cultivated			
45		1-43-09-06			30	65		5	Cultivated			
46		1-43-09-07			41	57		2	Cultivated			
47		1-43-09-08			31	68		1	Cultivated			
48	1	1-43-09-09			31	68		1	Cultivated			
49	Virginia	1-46-18-07	11		9	22	58		Forest			
50	Wisconsin	1-49-11-01			16	79		5	Cultivated			
51	\checkmark	1-49-11-02			13	81		6	Cultivated			

TABLE 1. DATA FOR CLASSIFICATION OF WATERSHEDS - Continued

TABLE 2. RISE TIME T $_{\rm M1}$ FOR FORESTED WATERSHEDS

							and the second se
	Class:	Forest					
	Depende	nt Variabl	e: Rise	time, T _M	hours		
tions			Indepe	ndent Va	riable	n = 9	
rrela	Problem T	Constant	A	L	Н	D ²	q
Col	¹ M1		Regres	sion Coef	ficient	10	Gey
	1	1.56302	.02750			. 3069	.4897
aple	2	1.21347		. 15579		. 3748	. 4651
Sin	3	1.64891			.00016	.0836	. 56 31
	4	1.27054	.00717	.12518		. 3812	.4998
0	5	1.43140	.02963		.00020	.4349	.4776
ltiple	6	1.18983		.14677	.00009	.4012	.4916
Mu	7	1.34269	.02163	.04714	.00017	. 4420	.5199

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S_{ey} = standard error of estimates

	Class:	Forest						
	Depende	nt Variabl	e: Rise	time, T	M2, hou	Irs		
tions			Indepe	ndent Va	riable	n = 9		
rela	Problem	Constant	A	L	Н	D ²	q	
Col	T _{M2}		Regres	sion Coef	ficient	11	Jey	
	1	1.08289	.00972			.0948	. 3562	
aple	2	. 79042		.10474		.4183	. 2855*	
Sin	3	1.04596			.00017	.2349	. 3274	
	4	.60176	02371	.20593		.5913	. 2585	
0	5	.95995	.01172		.00018	. 3705	. 3208	
ltiple	6	. 75756		.09221	.00013	.5443	. 2730	
Mu	7	.63009	.01803	.17529	.00006	.6144	. 2751	

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S_{ey} = standard error of estimates
- * Equation selected for plotting bar graph shown in Figure 3.

TABLE 4. TEN-YEAR FLOOD PEAK q FOR FORESTED WATERSHEDS

	Class:	Forest						
	Depende	nt Variabl	e: 10-Y	ear Flood	l Peak, o	q , in./h	r.	
tions			Indepe	ndent Va	riable	n = 8		
rrela	Problem	Constant	A	Р	s ₁	P ²	q	
Col	q		Regres	sion Coef	ficient	10	Gey	
	i	.82414	- .01858			. 1545	.5558	
nple	2	.45361		.12730		.0102	.6014	
Sin	3	.78152			- .00038	.0235	.5974	
	4	06657	02740	.48234		. 2665	.5671*	
a a	5	1.01125	02323		00076	. 2405	.5771	
ltipl	6	1.02843		10733	00055	.0257	. 6536	
Mu	7							

n = number of watersheds

A = area of the watershed, square miles

P = 10-year one-hour precipitation, inches

 $S_1 = channel slope, feet per mile$

 R^2 = coefficient of determination

S_{ey =} standard error of estimates

* Equation selected for plotting bar graph shown in Figure 4.

	Class:	Cultivated										
	Dependent Variable: Rise time, T _{M1} , hours											
Independent Variable n = 17												
rrela	Problem	Constant	А	L	Н	R ²	q					
Col	¹ M1		Regres	sion Coef	ficient	10	Gey					
	1	.68898	.14418			. 8950	. 3315*					
aple	2	.56386		.19778		.4057	.7887					
Sin	3	.03576			.00960	.7510	.5105					
	4	.67802	.14214	.00628		.8952	. 3315					
0	5	.41943	.10679		.00341	.9293	.2815					
ltiple	6	.02775		.04626	.00856	.7644	.5141					
Mu	7	.43065	.10933	01199	.00353	.9301	. 2905					

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S_{ey} = standard error of estimates
- * Equation selected for plotting bar graph shown in Figure 3.

	Class:	Cultivated	d					
	Dependent Variable: Rise time, T_{M2} , hours							
tions			Independent Variable			n = 17	,	
rrela	Problem	Constant	А	L	Н	R ²	S	
Col	^т м2		Regres	sion Coef	ficient	10	ey	
	1	.55749	.10834			. 8251	.3349	
aple	2	.49856		.05212		. 3100	.6651	
Sin	3	.04299			.00743	.7345	.4126	
	4	.59050	.11448	01892		.8285	. 3432	
0	5	. 30779	.07370		.00316	. 8732	. 3349	
ltiple	6	.04191		.00625	.00729	.7349	.4267	
Mu	7	. 34264	.08161	.03723	.00354	. 8857	.2908	

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S_{ey} = standard error of estimates

TABLE 7. TEN-YEAR FLOOD PEAK qFOR CULTIVATEDWATERSHEDS

	Class:	Cultivated						
	Depende	Dependent Variable: 10-Year Flood Peak, q, in.						
tions			Indepe	ndent Va	n = 16	3		
rrela	Problem	Constant	А	Р	s ₁	R ²	S	
Col	q		Regression Coefficient			10	Ğеу	
	1	1.95237	41144			. 3766	. 8192	
aple	2	- 2.33599		1.47138		. 4128	.7951	
Sin	3	1.25460			.00295	.0168	1.0288	
	4	-1.33429	33961	1.24227		.6593	.6285	
0	5	2.37286	- .48215		- .00496	.4130	. 8250	
ltipl	6	4.95174		2.13582	.01341	.6756	.6133	
Mu	7	-3.44165	18808	1.76626	.00851	.7161	.5971*	

n = number of watersheds

A = area of the watershed, square miles

P = 10-year one-hour precipitation, inches

 $S_1 = channel slope, feet per mile$

 R^2 = coefficient of determination

 S_{ey} = standard error of estimates

* Equation selected for plotting bar graph shown in Figure 4.

TABLE 8. RISE TIME T_{M1} FOR GRASS WATERSHEDS

	Class:	Grass							
	Dependent Variable: Rise time, T _{M1} , hours								
tions			Indepe	ndent Va	n = 13				
rrela	Problem	Constant	А	L	Н	D ²	q		
Col	T _{M1}		ficient	n	Jey				
	1	.73218	.02215			. 3032	. 3262		
nple	2	.65582		.06730		.3646	. 3115		
Sin	3								
	4	.52966	05014	.20386		.4178	. 3127		
U U	5	.69597	.02253		.00020	.3068	. 3412		
ltipl	6	.58718		.06991	.00036	. 3758	. 3238		
Mu	7	.36976	06328	. 24446	.00066	.4525	. 3196		

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S_{ey} = standard error of estimates

TABLE 9. RISE TIME T $_{\rm M2}$ FOR GRASS WATERSHEDS

	Class:	Grass							
	Depende	dent Variable: Rise time, T_{M2} , hours							
tions			Indepe	ndent Va	n = 13				
rrela	Problem	Constant	А	L	Н	R ²	S		
Col	¹ M2		Regression Coefficient			n	ey		
	1	.52597	.02619			.5576	. 2266		
aple	2	.44052		.07795		.6431	.2036*		
Sin	3	.65244			.00011	.0014	.3405		
	4	. 33398	04234	.19326		.6930	.1980		
a	5	.44382	.02706		.00045	.5820	. 2311		
ltipl	6	. 31875		.08258	.00063	.6896	.1991		
Mu	7	.11006	06074	.25012	.00092	.7825	.1757		

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination

S = standard error of estimates

* Equation selected for plotting bar graph shown in Figure 3.

TABLE 10. TEN-YEAR FLOOD PEAK q FOR GRASS WATERSHEDS

	Class:	Grass							
	Depende	ent Variable: 10-Year Flood Peak, q , in./hr.							
tions			Indepe	ndent Va	riable	n = 13			
rrela	Problem	Problem Constant	А	Р	s ₁	R ²	s		
Col	Ч		Regression Coefficient			10	ey		
	1	1.59483	05110			.1508	1.1781		
nple	2	10362		.60609		.0975	1.2145		
Sin	3	1.40561			00056	.0107	1.2716		
	4	36448	06733	. 87710		.3398	1.0895		
a	5	1.97253	06805		00169	.2333	1.1740		
ltipl	6	-8.87459		3.70599	.00911	.4208	1.2145		
Mu	7	6.93338	03947	3.12473	.00693	.4856	1.0137*		

n = number of watersheds

A = area of the watershed, square miles

P = 10-year one-hour precipitation, inches

 $S_1 = channel slope, feet per mile$

 R^2 = coefficient of determination

S_{ey =} standard error of estimates

* Equation selected for plotting bar graph shown in Figure 4.

	Class: 1	Desert							
	Dependent Variable: Rise time, T _{M1} , hours								
tions			Independent Variable			n = 12			
rrela	Problem	Constant	А	L	Н	R ²	q		
How T M1 Regression Coefficient R ²									
	1	. 38780	- .00166			.0132	.1868		
nple	2	.40715		00715		.0297	.1852		
Sin	3	. 39099			00001	.0215	.1860		
	4	.44394	.00676	02556		.0523	.1929		
0	5	.40092	00179		.00001	.0368	.1945		
ltiple	6	.42629		00835	00001	.0609	.1921		
Mu	7	.48727	.00993	.03582	00001	.1056	.1988(*)		

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S_{ey} = standard error of estimates
- (*) Although none of the equations are indicative, equation $T_{M1} 7$ was used to plot the bar graph as shown by dotted lines on Fig. 3.

-						the set was been and the set of the set of the set	and the second	
	Class:	Desert						
	Depende	nt Variable: Rise time, T _{M2} , hours						
tions			Indepe	ndent Va	riable	n = 12		
rrela	Problem T	Constant	А	L	Н	D ²	S	
Col	¹ M2		Regression Coefficient			Ti -	Jey	
	1	.32923	- .00065			.0024	.1716	
aple	2	.33926		- .00343		.0082	.1711	
Sin	3	.34164			00001	.0461	.1678	
	4							
0	5	. 34622	00083		00001	.0500	.1765	
ltiple	6	.36224		00487	00001	.0622	.1754	
Mu	7	.41205	.00811	02731	00002	.0979	.1824	

- n = number of watersheds
- A = area of the watershed, square miles
- L = length of main stream, miles
- H = total fall, feet
- R^2 = coefficient of determination
- S = standard error of estimates

TABLE 13. TEN-YEAR FLOOD PEAK q FOR DESERT WATERSHEDS

	Class:	Desert					
	Depende	nt Variabl	Peak, q	, in./hr			
tions			Indepe	ndent Va	riable	n = 12	
rela	Problem	Constant	А	Р	s ₁	D ²	g
Col	q		Regression Coefficient			n	ey
	1	1.06539	01303			.1416	.4175
nple	2	.68758		.18946		.0140	.4475
Sin	3	.81819			.00111	.0835	.4314
	4	.58064	01412	.29981		.1755	. 4 3 1 3
0	5	.93620	01099		.00073	.1746	.4315
ltiple	6	27327		.59382	.00185	.1832	.4314
Mu	7	16386	01110	.59913	.00148	.2761	.4287*

- n = number of watersheds
- A = area of the watershed, square miles
- P = 10-year one-hour precipitation, inches
- $S_1 = channel slope, feet per mile$
- R^2 = coefficient of determination
- S_{ev} = standard error of estimates
- * Equation selected for plotting bar graph shown in Figure 4.

TABLE 14. EQUATIONS FOR PREDICTION OF HYDROGRAPH RISE TIMES

							Predict Time,	ed Rise hours
Class	n	Problem No.	Corre - lation	Equation	R²	S _{ey}	Water- shed A	Water- shed B
Forest	9	T _{M2} - 2	Simple	$T_{M} = 0.790 + 0.105 L$	0.418	0.285	1.217	0.905
Cultivated	17	T _{M1} - 1	Simple	$T_{M} = 0.689 + 0.144 A$	0.895	0.331	1.606	0.752
Grass	13	T _{M2} - 2	Simple	$T_{M} = 0.440 + 0.078 L$	0.643	0.204	0.757	0.526
Desert	12			None				

TABLE 15. EQUATIONS FOR PREDICTION OF TEN-YEAR FLOOD PEAKS

							Predicte Flood Pea	d 10 Year ak, in./hr.
Class	n	Problem No.	Corre - lation	Equation	R²	Sey	Water- shed A	Water - shed B
Forest	8	q-4	Multiple	q = - 0.066 - 0.027 A + 0.482 P	0.267	0.567	0.726	0.886
Cultivated	16	q-7	Multiple	q = $-3.442 - 0.188$ A + 1.766 P + 0.008 S ₁	0.716	0.597	1.020	2.782
Grass	13	q-7	Multiple	q = $-6.933 - 0.039$ A + 3.125 P + 0.007 S ₁	0.486	1.014	0.797	1.558
Desert	12	q-7	Multiple	q = $-0.164 - 0.011$ A + 0.599 P + 0.0015 S ₁	0.276	0.429	1.334	1.512

TABLE	16.	DATA	FOR	AVERAGE	WATERSHEDS	Α	AND	В

Number of Watersheds	Category	Average Watershed	A sq. mi.	L mi.	H ft.	S ft./mi.	P in.
186	Overall sample	А	6.37	4.07	1013	250	2.0
61	Area less than 1 sq.mi.	В	0.44	1.10	358	325	2.0

- A = area of the watershed
- L = length of main stream
- H = total fall
- S = stream slope
- P = ten-year one-hour precipitation

FIGURES

Figure 1. Approximate location of watersheds

Figure 2. Rise time definitions

Figure 3. Comparison of hydrograph rise times predicted by formulae listed in table 14

31

ŝ

Figure 4. Comparison of ten-year flood peaks predicted by formulae listed in table 15

PART TWO

APPENDIX

Part Two is the 124-page thesis HYDROGRAPH RISE TIMES by Songthara Om Kar in partial fulfillment of the requirements for the degree of Master of

Colorado State University.

Science in Civil Engineering at