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AbstractÐAn automated approach for template-free identification of partially

occluded objects is presented. The contour of each relevant object in the analyzed

scene is modeled with an approximating polygon whose edges are then projected

into the Hough space. A structurally adaptive self-organizing map neural network

generates clusters of collinear and/or parallel edges, which are used as the basis

for identifying the partially occluded objects within each polygonal approximation.

Results on a number of cases under different conditions are provided.

Index TermsÐImage analysis, occluded objects, unsupervised clustering SOM

network, Hough space.
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1 INTRODUCTION

THE demand of automated procedures for the analysis of digital
scenes has gone beyond the traditional applications of robotic
assembly and production-line inspection. In these applications,
object occlusion probably generates the most significant problem
when trying to accurately describe the scene. Over the years,
several approaches have been proposed [1], [2], [3] which, for the
most part, rely on the existence of a template library. This library
generally consists of a set of exemplar patterns or extracted
features describing the objects that are expected to appear in the
scene. Some sort of matching algorithm is then defined that allows
the identification of the partially observed objects by comparing
the real scene information with the template library contents.

For certain applications, however, the compilation of a

template library makes little sense as the objects to be analyzed

in the scene will never repeat. In such cases, the library must

be replaced by some high-level description of the object

properties. We refer to a scenario like this as ªtemplate-freeº

object identification. For example, in evaluating airborne

fiberglass particle distributions using scanning electron micro-

graphs (SEM), the objects of interest have shapes resembling

parallelograms, but no two objects are identical [4]. In this

paper, we introduce an approach that automatically searches

the fibers in digitized micrographs. This method is based on

Hough-space representations [5], [6] of polygonal approxima-

tions for the objects in the scene. Clusters in the transformed

space identify sets of edges that can be combined to describe a

fiber object. To find the unknown number and location of

clusters, we utilize a structurally adaptive variant of the self-

organizing map (SOM) neural network that we have developed

[7]. This provides a fast, object-based clustering and facilitates

the implementation of the template-free fiber identification.

2 OBJECT SEGMENTATION AND MODELING

The faultless detection of closed, eight-connected contours is a

required step for modeling the objects in the scene. To obtain these

contours, a threshold-based segmentation scheme is favored over
edge detection approaches, as the available edge extraction
methods do not guarantee that the required closed contours
would be obtained (which imposes the need for an edge linking
procedure). On the other hand, extracting the connected contours
from binary images is straightforward.

SEM images consistently exhibit a gray-level distribution with a
bimodal profile. However, the prior probabilities of the histogram
modes vary significantly among the studied cases (see, for
example, Fig. 1). Simple valley detection strategies for the selection
of an adequate threshold fail when one of the priors is very small.
The scheme adopted here selects the threshold using a Bayesian
approach based on a two-component Gaussian model of the image
histogram. Such a model is obtained through the use of the
expectation maximization (EM) estimation algorithm [8]. In order
to avoid significant preprocessing overhead due to the application
of the EM iterations over the entire set of pixels in an SEM image, a
1:4 uniformly subsampled version of the image is actually used in
the computations.

The eight-connected contours are obtained from the binary
images by means of a morphological erosion followed by an
exclusive-OR masking [9]. For a binary image with M objects, there
are contour pixel sets with Nm, m � 1 . . .M elements each. Every
contour pixel set can be associated to a unique (up to a rotation)
chain code descriptor [10]. Thus, the scene can be represented by
the M ordered sets Om � f�x1; y1�m; . . . ; �xNm

; yNm
�mg, m � 1 . . .M ,

where �xn; yn�m are the coordinates of the nth pixel in the ordered
contour corresponding to the mth object present.

The information conveyed by every ordered contour pixel
set Om can be compactly represented after performing a
piecewise linear approximation of its associated plane curve
[11], [12], [13], [14]. The goal of the approximation is to find
a polygon whose vertices form a subset Vm � Om of k points
Vm � f�xa; ya�m; �xb; yb�m; . . . ; �xk; yk�m j 1 � a < b < � � � < k � Nmg
such that

max yn ÿm�p;q�xn ÿ b�p;q�
ÿ �

m2
�p;q� � 1

� �ÿ1
2

���� ���� < �;

p � n � q; a � p; q � k;
�1�

with m�p;q� the slope and b�p;q� the intercept of the line connecting
�xp; yp�m with �xq; yq�m. Note that a similar expression, with
interchanged coordinate roles, is used when considering nearly
vertical edges. Condition (1) guarantees that the maximum
distance from any point �xn; yn�m occurring in the interval p �
n � q of the ordered contour set to its approximating polygon edge
is less than some arbitrary threshold �. The higher the value of �,
the coarser the polygonal approximation results. The search for the
solution polygon Vm can be implemented with a recursive split
algorithm, an efficient implementation of the Pavlidis-Horowitz
approximation procedure [11], as follows: The ordered pixel set
Om is initially split into two subsets, Om;1 and Om;2, at the positions
of the upper-leftmost and lower-rightmost pixels in Om, which are
usually high curvature points in the contour. For each subset Om;k,
the error condition (1) is tested. If the condition fails for one of the
subsets, the point of maximum distance �xsplit; ysplit�m is added to
the solution set Vm. The corresponding subset is then split into two
new subsets, which are recursively tested for compliance with the
approximation criterion.

3 ANALYSIS OF COMPLEX OBJECTS

Whenever an image is segmented into the observable objects in the
scene, the piecewise linear approximation described above will
produce a number of polygons Vm that can be either convex or
concave. Convex polygons can be assumed to represent single
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objects, possibly a fiber (mostly parallelograms) or some regularly

shaped debris. Concave polygons are likely to represent complex

objects, i.e. mixtures of simpler convex polygons that are either

touching, overlapping or crossing. Thus, further processing of the

concave polygons is required to analyze their constituents.
Our approach to the analysis of concave polygons is based on

the Hough parametrization of the edges [5]. Such representation

has the useful property that collinear edges share the same set of

parameters �, the distance of the edges to the origin, and �, the

angle of the normal vector to the edge with respect to the abscissa

axis, regardless of the choice of coordinate origin. Parallel lines will

share the same � while presenting different values of �. Thus, when

mapping the edges of a complex object defined by a set Vm into the

Hough space, several clusters will be formed, each one associated

to one of the (partially occluded) convex polygon constituents of

the complex object. Further, if the missing line segments that

would otherwise connect collinear edges from the same side of a

fiber were present in the scene (not occluded), these segments

would also map to the same regions as the edges they would link

together. It is important to note that, given that all the lines (edges)

in the scene are already known after the polygonal modeling,

Hough transformation is not required or used here for line

detection (as in the standard grid accumulation procedure [10]).

Rather, this transform is used to provide a more convenient

representation of the concave polygon structures.

3.1 Unsupervised Clustering of Edge Parameters

There is a major issue in applying the above-mentioned clustering

approach when breaking a complex object into its constituent

parts. The number of simple objects is usually unknown and, thus,

there is no way to know a priori how many clusters could be

formed out of all the edge parameters of the concave polygon. This

means that clustering procedures such as K-means or the self-

organizing map neural network (SOM, [15]), which require the

prior definition of the number of clusters to be found among the

data, are inappropriate for the application. In addition, in any

given micrograph, the number of independent complex objects is

also unknown. This means that the clustering problem has to be

solved several times per image using an efficient algorithm. We

address this problem by using a variant of the SOM neural

network that is built using a minimum spanning tree (MST) [16]

organization. The MST-SOM [7] is a structurally adaptive

unsupervised learning network in which the number of processing

units and neighborhood relations are modifiable during the

training phase. This architecture is well-suited for the complex
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Fig. 1. Gray level histograms for two micrograph instances. While valley detection
works for SEM case 01, it fails for case 17. Model-based segmentation provides

adequate thresholding regardless of the intensity distribution for the particular
experiment.

Fig. 2. (a) Voronoi partition of the Hough space derived from the weights of the 10 processing units of the MST-SOM built for clustering the edges of the concave polygon
shown in Fig. 2b. Each cross indicates an element ��p;q� 2 Em. The numbers identifying the clusters also indicate the location of the corresponding trained network weight.
(b) Edge clustering with the MST-SOM. For the concave polygon illustrated in the upper left box, the network generates 10 different clusters (Fig. 2a) that corresond to
subsets of polygon edges, as shown here for three different cases. For reference, the dotted lines indicate the original object contour. Solid lines indicate clustered
polygon edges.



object analysis task as each processing unit in the network defines

a cluster.
The SOM is a neural network architecture in which an ordered

set of reference vectors (processing units or nodes) is adaptively

distributed among the sample space in order to fit the distribution

of the observed data. The number of nodes in the network defines

how many clusters will be formed, while the location of the

reference vectors in the sample space defines the corresponding

partition. Positioning of the reference vectors is carried out through

competitive learning, where local interactions among neighboring

network nodes determine the final distribution of clusters. The

MST-SOM network differs from the standard SOM in that the

neighborhoods of the processing units are defined adaptively

within the sample space based on the construction of an MST. This

neighborhood definition facilitates the addition and removal of

processing units during the training phase, as no specific geometry

has to be established among the units at any given time. The

structural adaptation amounts to the creation and elimination of

clusters among the data. The criterion being optimized through the

structural adaptation is the relative entropy [17] of the processing

units' activation distribution with respect to an ideal, equiprobable

activation distribution. A small value of the relative entropy

corresponds to a spatial organization of the processing units that

better describes the distribution of the training data. No specific

constraint on cluster size is imposed in the formulation, although

the relative entropy goal will indirectly influence this size,

generating large clusters in scarcely-populated regions of the

sample space. For a detail discussion on the MST-SOM weight

updating rule, the reader is referred to [7]. It is important to note,

however, that this training has fast convergence properties, is

relatively insensitive to initial placement of the units, and does not

require a learning rate parameter, all of which are desirable

features for implementation. After each updating step, the relative

entropy is monitored and the structure of the network is modified

accordingly. If the relative entropy is not diminishing, then a new

processing unit is added to the network in an attempt to

redistribute the activations. All the inactive units are also removed

at this point. When the network updating process is terminated,

the clusters defined by the Voronoi partition associated with the

final network weights will group the edges of the related objects

together. As an example of this procedure, Fig. 2a shows the

partition resulting from the unsupervised clustering of the edges of

the complex object shown in Fig. 2b, where some of the associated
edge subsets are also highlighted.

The final step in complex object analysis is to connect the edge
subsets in order to define meaningful convex polygons. Given that
the elements of Vm are ordered according to their positions on the
contour's chain code, it follows that the polygon edges are also
ordered consecutively, forming the set:

Em � f��a;b�;��b;c�; . . . ;��kÿ1;k�;��k;a�g; �2�
where ��p;q� � ���p;q�; ��p;q��, a � p; q � k, are the normal parameters
of the polygon edge connecting �xp; yp�m with �xq; yq�m. Unsuper-
vised clustering of the elements of Em generates P subsets
Cm;n � Em, n � 1; . . . ; P of edges. The elements of these subsets
are still ordered, but, in general, they will not represent a
consecutive set of edges. Consider, for example, some edge cluster
Cm;n described by the following set:

Cm;n � f��a;b�;��c;d�;��d;e�; . . . ;��k;a�g: �3�
Two conditions can be observed in (3). The cluster has grouped
together two edges, namely ��c;d� and ��d;e�, that occur consecu-
tively in the perimeter of the concave polygon, i.e., the edges share
an endpoint. These edges could possibly pertain to the same
simple object. On the other hand, the cluster does not include the
��b;c� edge, although it does include the previous and the next
edges from Em. These disjoint edges, ��a;b� and ��c;d�, may or may
not correspond to the same object. The clustering process will
generate many of these disjoint edge conditions because there will
always be partially occluded objects within a complex object.

The missing connections between nonconsecutive edges are the
necessary pieces that will break a complex object into its
components. Some assumptions about the shape of the simple
objects that are being sought for have to be made in order to decide
if the missing, unobserved edges should be added. Since the goal is
to search for fiber objects that are closely described by parallelo-
grams, then a sensible and broad consideration to take is that any
added connection should aim at the construction of a parallelo-
gram. It is also natural to enforce that any edge to be added must at
least lie within the boundaries of the original concave polygon.

When the unobserved and possibly occluded edge ��b;c� in (3)
lies within the concave polygon, the MST-SOM can be used to
investigate if it is also clustered in Cm;n. If this is the case, then this
edge can be added to the set, as it will not deviate the simple
polygon from resembling a parallelogram. When the unobserved
edge is not clustered in Cm;n, a second test has to be applied to
decide whether the edge is lying across the width of the
parallelogram or not. Two edges of this kind are required so that
the extracted object corresponds to a closed polygon. Ignoring an
unobserved connecting edge implies that a valid closed polygon
cannot be formed unless the edge ��c;d� is removed from Cm;n. This
action will create ��b;d�, a new unobserved edge that has to be
analyzed as before for possible inclusion. The procedure just
described for completing parallelograms out of the clustered edges
will likely leave some of the edges unused. A typical situation in
which this will happen is when analyzing two fibers that are lying
side by side and touching each other. Extra passes of the described
analysis procedure have to be performed on the remaining edges
until no more simple objects can be formed.

4 EXPERIMENTAL RESULTS

Twenty-six SEM preparations of fiberglass were acquired from
Schuller, Inc. in Denver, Colorado, and analyzed. Images from
each preparation were obtained by digitizing the video output of
the microscope at x1000 magnification power. The spatial resolu-
tion of the setting was 0.2 �m per pixel, generating images of 512
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Fig. 3. Different stages of the analysis procedure for SEM #13 in Table 1. Note that

the highly overlapped object extending from the upper right corner of the

micrograph was missed by the detection procedure.



by 512 pixels, with a grayscale resolution of four bits per pixel.

Coordinate origin was assumed to be at the lower left corner of the

image. These images varied in fiber density and amount of debris

present. Fig. 3 (case 13) shows different stages in the analysis of a

sample SEM. Table 1 summarizes the counts of visually identified

objects per image and the number of objects detected by our

method. Processing time is dependent on the complexity of the

scene, as every complex object found requires an MST-SOM run

and its subsequent cluster analysis. Processing a typical object with

15-20 line segments takes from 5 to 10 MST-SOM iterations.

5 DISCUSSION

To the authors' knowledge, the method presented here for the

identification of partially occluded objects is unique in the sense

that it does not rely on a template library for shape matching. The

use of such libraries is the common denominator found in related

literature on the subject. This is understandable, as many of the

applications on occluded object identification are aimed at robotic

vision for sorting, placing, or selecting known parts in a

production line. Our application required a different approach

given that every SEM image presents a unique set of objects for

which no previous information is available. Although we have

restricted ourselves to simple objects resembling parallelograms in

this application, it seems feasible to extend the present approach to

other situations by adequately redefining the corresponding

geometrical constraints. For example, in more complicated

scenarios, the projection of the polygon parameters onto higher-

dimensional Hough spaces may result in a simplified representa-

tion of the objects in the scene. Nonetheless, it must be expected

that the lack of reference templates and the generality of the

geometrical assumptions would also be a source of errors that have

to be dealt with in an appropriate way.
It is important to note that the object counts reported in Table 1

indicate that most of the times our method is detecting more

objects than those actually existing in the original SEM. The

occurrence of these ªextraº detected objects is the result of the

assumptions made with respect to the shape of the partially

occluded objects. As a result of these assumptions, the separation

of the complex object components can be sometimes carried out in

more than one way. The most frequent case occurs when the shape

of the object being analyzed is close to a convex polygon, but yet it

is detected as concave due to some segmentation noise. In this case,

the (almost convex) approximating polygon can be broken down

into various overlapping parallelograms, each one covering most

of the area of the original object. These solutions are clearly

redundant and can be easily detected and eliminated, reducing the

extra object count. It is important to note that for the images

analyzed in this work, this condition alone accounts for 80 percent

of the extra object counts.

A second condition generating extra objects can be observed

with curved fibers. Under the parallelogram assumptions, such

fibers will be broken into a series of multiple objects. In this case,

the relevant property of these extra objects is that they share a

common edge. Unfortunately, this can also happen in other

situations not involving curved fibers and, therefore, cannot be

used as an indicator of this condition. This means that, in its

current version, our method has a compromise between discover-

ing curved fibers and failing to identify other, noncurved objects.
There are also instances of missing detections, as happens for

the case shown in Fig. 3. Very narrow fibers occasionally have a

low intensity content and, in some cases, the model-derived

segmentation threshold can confuse them completely or partially

with the background. Fibers with extensive overlap, like the large

ones seen toward the center of the scene, cannot be resolved with

our procedure. In this case, the information derived from the

clusters is insufficient to completely decide that an edge having the

length of the entire overlapping fiber has to be supplied. A

different technique in generating the micrograph preparation may

reduce the occurrences of such highly ambiguous cases.

6 CONCLUSIONS

An approach to the template-free identification of partially

occluded objects in a digital scene has been presented. Objects in

the scene are modeled by polygons that approximate their

contours up to a given piecewise maximum error measure.

Unavoidable ambiguities introduced by the segmentation proce-

dure are accounted for by analyzing the distribution of the polygon

edge parameters in the normal space. This analysis is efficiently

accomplished by using a structurally adaptive neural network that

builds clusters of edge parameters in an unsupervised way. Only

broad assumptions are made about the geometric characteristics of

the partially occluded objects, avoiding the need of an object

template library and the corresponding shape matching algorithm.

Application of the proposed method to the detection of fiberglass

particles in scanning electron microscopy imagery has shown that

the scheme is computationally fast and performs adequately in

varying object density conditions, even in the presence of severe

background clutter.
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TABLE 1
Visually Identified (Observed) and Detected Object Counts for the 26 Cases Studied

Case 13 corresponds to the example shown in Fig. 3.
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