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ABSTRACT OF THESIS

BLOCK-BASED DETECTION METHODS FOR UNDERWATER TARGET

DETECTION AND CLASSIFICATION FROM ELECTRO-OPTICAL IMAGERY

Detection and classification of underwater mine-like objects is a complicated prob-

lem due to various factors such as variations in the operating and environmental

conditions, presence of spatially varying clutter, target obstruction and occlusion

variations in target shapes, compositions, and orientation. Also contributing to the

difficulty of the problem is the lack of a priori knowledge about the shape and ge-

ometry of new non-mine-like objects that may be encountered, as well as changes in

the environmental or operating conditions encountered during data collection. Two

different block-based methods are proposed for detecting frames and localization of

mine-like objects from a new CCD-based Electro-optical (EO) imaging system. The

block-based methods proposed in this study serve as an excellent tool for detection in

low contrast frame sequences, as well as providing means for classifying detected ob-

jects as target or non-target objects. The detection methods employed provide frame

location, automatic object segmentation, and accurate spatial locations of detected

objects.

The problem studied in this work is the detection of mine-like objects from a new

CCD imagery data set which consists of runs containing tens to hundreds of frames

(taken by the CCD camera). The goal is to detect frames containing mine-like ob-

jects, as well as locating detected objects and segmenting them from the frame to be
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subsequently classified as mine-like objects or background clutter. While object seg-

mentation and classification of detected objects are also required as with the previous

EO systems, the main challenge is successful frame detection with low false alarm

rate. This has prompted research on new detection methods which utilize block-

based snapshot information in order to identify potential frames containing targets,

and spatially localize detected objects within those detected frames.

More specifically, we have addressed CCD object detection problem by develop-

ing block-based Gauss-Gauss and matched subspace formulations. The block-based

detection framework is applied to raw CCD data directly from the sensor without the

need for computationally expensive filtering or pre-processing as with the previous

methods. The detector operates by measuring the log-likelihood ratio in each block

of a given frame and provides a spatial ’likelihood map’. This detection process pro-

vides log-likelihood measurements of blocks in a given EO image which can then be

thresholded to generate regions of interest within frame to be subsequently classified.

This two-step process in both the Gauss-Gauss and matched subspace detectors con-

sists of first measuring the log-likelihood, and determining frame of interest and then

the regions of interest (ROI), and finally classifying the detected object ROIs, based

upon shape-dependent features.

Complex Zernike moments are extracted from each region of interest which are

subsequently used to classify detected objects. The shape-based Zernike moments

provide rotational invariance, and robustness to noise which are desirable character-

istics for classification. This block-based framework provides flexibility in the detec-

tion methods used prior to object classification, and solves the problem of having to

invoke a classification system on every CCD frame by determining frames containing

only potential targets.

A comprehensive study of the block-based detection and classification methods is

carried out on a CCD imagery data set. A comparison is made on the detection and
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false alarm rate performance for the Gauss-Gauss and matched subspace detectors on

the CCD data sets acquired from the Applied Signal Technologies in Sunnyvale, CA.

In addition a neural-network based classification system is employed to perform object

classification based upon the extrated Zernike moments. The tested data set from

AST consist of ten runs over the mine field each run containing up to several hundred

frames. The total number of frames tested totals 1317, with 16 frames containing a

single or partial targets in five of the data runs. Results illustrating the effectiveness

of the proposed detection methods are presented in terms of correct detection and

false alarm rates. It is observed that the low-rank Gauss-Gauss detector provides an

overall frame detection rate of 100% at the cost of a false alarm rate of 36.9%. The

matched subspace detector outperforms the Gauss-Gauss method and reduces the

false frame detection rate by 16.9%. Using the Zernike features extracted from the

matched subspace detector’s output and an artifical neural network classifier yeilds

a true frame detection rate of Pd = 100% at the cost of Pfd = 16.8% reducing the

detected false frames detected by 3.3%. The reduced-rank Gauss-Gauss detector has a

detection rate of Pd = 100% at the cost of probability of false detection Pfd = 36.9%,

using features extracted from the reduced-rank Gauss-Gauss detector’s output passed

to the neural network classifier yeilds a true detection rate of Pd = 100% at the cost

of Pfd = 21.7% which significantly reduces the detected false frames by 15.1%.

Michael Jonathan Kabatek
Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, CO 80523

Summer 2010
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivations

An underwater mine is a self-contained explosive device placed in water to destroy

ships or submarines. Ocean mines have been a major threat to the safety of vessels

and human lives for many years. The Navy’s capability to conduct shallow water

and very shallow water mine countermeasures in support of beach assaults, as well

as keeping the ocean as a safe place is a very important issue, and current mine-

hunting technology is still in need of major improvement [1] - [12]. To clear the

threat of the naval mines and ensure that the fleet can carry out operations in the

open ocean and littoral, including maintaining open sea lanes of communication and

supporting maneuver warfare from the sea, the US Navy has devoted substantial

resources and efforts to detect and discriminate different types of underwater mines.

In order to improve the Navy’s ability to effectively prevent other nations from posing

a significant threat to the national security or economy of the US by mining in the

oceans, extensive research and developmental work on underwater mine detection,

classification, and identification have been supported for many years [1] - [12].

The problem of detection of underwater objects in electro optical imagery has been

mainly carried out using two typed of EO sensors. The sensors used for underwater

mine detection include the laser line scan (LLS) technology, and Streak Tube Imaging

LIDAR (STIL). These systems although different operate similarly by scanning line-

by-line over a target field in order to identify potential mine like objects arising from

sonar contact. The LLS and STIL imaging systems generate two dimensional contrast

and range data: The bottom return includes both time of flight information, which
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provides a quantitative measure of the height of the object above the bottom and

the radiometric level that is proportional to the reflectivity of the bottom object. In

contrast to the new CCD-based imaging system which provides sequences of contrast

images (photographs) over the target field.

Although the sensor technology for underwater mine identification has advanced

to a level that these systems are being transitioned into the fleet, the target identifica-

tion is still being done by human operators [1]- [12]. The development of an automatic

underwater target identification system capable of identifying various types of under-

water targets (mines), under different environmental conditions pose many technical

problems. Some of the contributing factors are: Targets have diverse sizes, shapes

and reflectivity properties; target emplacement environment is variable; targets may

be proud or partially buried; environmental properties vary significantly from one

location to another. Bottom features such as sand, rocks, corals, and vegetation can

conceal a target whether it is partially buried or proud. Competing clutter with re-

sponses that closely resemble those of the targets may lead to significant number of

false positives. All these factors contribute to make this problem a very complicated

and challenging one.

1.2 Literature Review

Identification of mine-like objects is a pressing need for military, and other ocean

fleets. In mine countermeasures operations, sonar is used to detect and classify mine-

like objects if their sonar signatures are sufficiently similar to known signatures of

mines. For littoral regions, its possible that hundreds of mine-like objects need to

be identified for safe passage of the Fleet [12]. This operation is a time-consuming

identification process performed manually by Explosive Ordnance Disposal divers or

Remotely Operated Vehicles. Rapid visual identification of mine-like objects using

electro-optic identification sensors can dramatically improve the time required for
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mine countermeasures operations.

Electro-optical (EO) imaging systems [1] - [12] are being increasingly exploited as

target identification tools with good spatial resolution. To support rapid visual iden-

tification, two types of electro-optic identification (EOID) sensors have been under

investigation by the Navy. These laser identification systems used are: the Arete As-

sociates Streak Tube Imaging LIDAR (STIL) system, the Northrop Grumman Laser

Line Scan (LLS) system, and the Raytheon LLS system [12]. In [12] the two main

EO sensors are described. The EOID laser line scan technology uses a diode-pumped

Nd: YAG laser that provides 500 mW (Raytheon system) and 160 mW (Northrop

Grumman system) of power, both operating at 532 nm wavelength. The laser illu-

minates a small spot, which is synchronously scanned by a photo-multiplier receiver

to build up a raster-scanned image. The laser scans downward through a 70-degree

field-of-view [12].

Arete Associates developed the patented STIL technology specifically for high-

resolution three-dimensional imaging of underwater objects. The STIL system is an

active imaging system using a pulsed laser transmitter and a streak tube receiver to

time resolve the returned light. The laser beam is diverged in one dimension using a

cylindrical lens to form a fan beam. The returned light is imaged onto a slit in front

of the streak tube photocathode by a conventional lens, and is time (range) resolved

by electrostatic sweep within the streak tube, generating a 2-D range-azimuth image

on each laser pulse. The bottom return includes both time of flight information,

which provides a quantitative measure of the height of the object above the bottom

and the radiometric level that is proportional to the reflectivity of the bottom object.

Each laser shot thus provides range to and contrast of the bottom for each cross-track

pixel [12].

The work in [3] overviews the EOID sensors project for developing a Laser Visual

Identification Sensor (LVIS) for identification of proud, partially buried, and moored
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mines in shallow water and very shallow water, which is deployed in small diameter

underwater vehicles, including unmanned underwater vehicles (UUVs). The authors

in [3] state that LVIS must: a) deliver high quality images in turbid coastal waters,

while b) being compatible with the size and power constraints imposed by the intended

deployment platforms. LVIS is designed to produce images of mine like contacts

(MLC) of sufficient quality to allow identification while operating in turbid coastal

waters from a small diameter UUV.

Technology goals in [3] are: a) identification range up to 40 feet for proud, partially

buried, and moored MLCs under coastal water conditions; b) day/night operation

from a UUV operating at speeds up to 4 knots; c) power consumption less than 500

watts, with 275 watts being typical; and d) packaged within a 32-inch long portion

of a 21-inch diameter vehicle section.

The work in [6] described various spatial and non-spatial sensing concepts and

discuss hardware implementations. In particular they highlight the ability of laser-

based systems to produce imagery at very low light levels. The authors in [6] present

the utility of low light level imagery in two dimensions, the potential benefits of

three-dimensional low light level imagery as well as characteristics of systems that

can implement these concepts.

Previous work [1] - [12] on the development of detection and classification methods

have been focused on the data sets collected using the two described EO sensors [12].

The work in [1] used the data collected using the STIL which produced high-resolution

3-D images of underwater objects. STIL scans line by line, on a rectangular area of a

target field [1]. The collected raw STIL data is rendered to produce pairs of contrast

(gray-level) and range (distance) maps [5]- [12]. The previous work [1] - [4] focused

on filtering, segmentation, and classification of underwater mine-like objects from

cropped regions of the STIL scans.

In [1] three filtering methods were tried to preprocess the STIL images. Each
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cropped STIL image containing a mine-like object was filtered using three filters in

succession: a median filter, k-nearest mean (KNM) filter, and an edge preserving fil-

ter [1]. These filters attempt to remove background noise, and sharpen edges before

the segmentation stage. After preprocessing the mine-like objects must be segmented

from the STIL images. Two different segmentation methods namely a global-based

histogram modeling, and a contour-based method were studied in [1]. In this work

histogram modeling estimates the background parameters, and uses a maximum like-

lihood (ML) -based method for removing the background. In histogram-based back-

ground/noise removal methods, different PDF’s such as Gaussian, Rayleigh, Gamma,

uniform, exponential, and Bernoulli were tried to model the modes in the histograms.

The global histogram modeling process used in [1] assumed that the signal and

noise are comprised of a two-component Gaussian mixture. The parameters of these

two Gaussian’s were found using the expectation maximization (EM) iterative algo-

rithm [22]. From this process a threshold is found to segment the background from

the mine-like object in the STIL image. The second object segmentation method

explored in [1] and [4] was a contour-based method using gradient vector flow (GVF)

snake [23]. Using this method an initial contour is set that can move under the in-

fluence of internal force parameters from within the curve itself and external forces

computed from the image data. The internal and external force parameters are de-

fined so that the snake will conform to an object boundary or other desired features

within an image. Canny edge map [24] is initially used to detect the edges of the

mine-like objects, then an initial contour is set, and deformed until convergence is

achieved.

Once object silhouettes are generated for both contrast and range STIL images

features are extracted from the combined silhouettes. The features extracted from the

segmented images included Zernike moment shape dependent features [25], [26], and
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Gray Level Co-occurrence Matrices (GLCM) texture-based features [18] which are ex-

tracted from both range and contrast maps within the silhouette boundary. Zernike

moments are shape dependent features based on Zernike polynomials. GLCM, on

the other hand, computes several statistical/textural features namely contrast, cor-

relation, entropy, and homogeneity. Various feature extraction schemes are available

that can be used to extract shape-dependent features for a wide variety of pattern

recognition problems. However, moment-based schemes [27]- [28] are among the most

widely used methods as they provide translation, rotation and scaling invariant fea-

tures ideal for 2-D as well as 3-D pattern recognition applications. In [30], a compar-

ison is made among several types of moments including regular moments, Legendre

moments, Zernike moments, and complex moments. These methods were compared

in terms of their image representation ability, noise sensitivity, and information redun-

dancy on several character recognition examples. Owing to the fact that the regular

moments do not provide an orthogonal representation, the extracted features using

this scheme lack optimality in representation. This is in contrast to the orthogonal

moments, e.g. Legendre and Zernike moments [27]- [28] . The experiments conducted

in [29] indicated that the classification results of the Zernike moments are substan-

tially less sensitive to additive noise effects in the images when compared to the other

types.

In [28], a similar study was carried out where the regular moments and Zernike

moments were used for subsequent feature extraction and a back-propagation neural

network (BPNN) [19] was employed as a classifier. The system was tested for classi-

fying 26 uppercase characters (A to Z) in the English alphabets. The silhouettes were

allowed to have varying scale, translation and orientation forming 24 sets of images.

In addition, random noise with varying SNR from 5 to 50 dB was added to the pat-

terns. The simulation results once again showed the noise immunity of the Zernike

moments particularly when used in conjunction with a BPNN classifier. In another
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study [27] Zernike moments were used for recognition and pose estimation of 3-D

objects from the 2-D perspective views. The scheme utilizes multiple BPNN’s with

different parameters and structures. The decisions of these networks were fused to-

gether using a majority voting scheme. It was observed that combining the decisions

of these parallel networks can minimize the occurrence of erroneous decisions. Due

to the use of Zernike moments the performance was invariant to viewing angle, loca-

tion and orientation of the objects in the image. The effectiveness of the system was

demonstrated on several clean and noisy patterns of military ground targets. Finally,

the two pose parameters, namely elevation and aspect angles, were estimated using a

two-stage neural network structure. In [31], a pattern classification scheme for clas-

sifying buried land mines of wood and nylon compositions from microwave imagery

data was developed. Two-dimensional (2-D) Karhonen Loeve (KL) transform and

Zernike moments were used to extract energy and shape-dependent features of the

segmented land mine regions. A neural network was then trained to discriminate the

targets from the non-target anomalies. The comparison of the results indicated that

the Zernike moments gave much better discrimination of wooden type mines that are

generally very difficult to identify due to their weak response in the microwave im-

ages. This is due to the property that the dielectric constant of wood is closer to that

of soil than the nylon. Additionally, it was observed that the uncorrelated property

of these feature extraction schemes substantially improved the training of the neural

network classifier. Experimental results in [1] show Zernike moments remained ro-

bust, and invariant to rotation, and scaling, while they changed for different grazing

angles. The GLCM texture based features proved to be more robust to grazing angle

changes. Both Zernike moments, and GLCM were used as features in the classifica-

tion process. Among classifiers used are back-propagation neural network [19] and

support vector machines [20] were tried to classify mine-like objects in STIL images.

Due to all the useful properties of the Zernike moments we have chosen to use this
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method for shape-dependent feature extraction of detected regions of interest (ROI)

in our study.

1.3 Objectives of the Present Research

The work in this research project used a different EO sensor consisting of a CCD

camera and LED illuminator. Due to the differences between the EO CCD and STIL

systems a new detection framework was determined to be necessary. The key dif-

ference between the CCD system and the STIL system is the way they operate and

generate images. The STIL sensor scans a target field line-by-line in order to acquire

an image containing mine-like objects, whereas the CCD system takes a sequence of

snapshots over a target field as the vehicle carrying the sensors is moving through

the target field. For the previous work the STIL images (both range and contrast)

were cropped by hand, preprocessed, segmented, and classified in order to determine

if the detected object was a target or non-target as well as identifying different types

of mines. For the CCD case, a data run is generated which contains many snapshots

(30 to 300 frames) of a target field. The majority of the frames in a CCD data run

contain only background clutter or partial targets. Therefore, it is necessary to not

only segment and classify mine-like objects (as with STIL), but also to automatically

determine the frame(s) of interest (FOI) containing mine-like objects within a data

run. This automatic determination of the FOI for a given data run is necessary oth-

erwise hundreds of frames would need to be preprocessed, segmented, and passed to

a classification system, resulting in tremendous computational overhead. The added

complexity of automatically determining FOI from a data run make this problem a

very challenging one.

After investigating many possible target detection and segmentation schemes, it

was decided to develop a low-rank block-based Gauss-Gauss [16, 14], as well as a
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matched subspace detectors [15] to resolve both the problem of automatic determina-

tion of FOI within a data run, as well as automatic object segmentation for subsequent

feature extraction. The proposed method for detection of mine-like objects in the EO

CCD database involves a local block-based detection in the spatial domain. Each

CCD contrast image in a data run is partitioned into 4 × 4 blocks. Each block is

then applied to the detector in order to determine if the block contains background

or a portion of a potential mine-like object. If the object passes the criterion of be-

ing a mine-like object it is flagged as a target block. If a predetermined number of

connected blocks in an image are determined to be target blocks, the whole frame is

flagged as FOI. The connected target blocks detected in the FOI comprise the ROI

allowing automatic segmentation for feature extraction. The connected target blocks

now comprise a segmented image of a potential target. From this segmented image

map, features can easily be extracted and passed to a classifier to determine if the

mine-like object is a target or non-target. Results show that FOI identification and

ROI classification can be achieved for all targets in the studied data set. Comparing

to the work in [1] our overall system is substantially less complicated since no separate

preprocessing and segmentation is needed. This makes adoption in real mine hunting

systems that use EO sensors a reality.

1.4 Organization of the Thesis

The organization of this thesis is as follows. Chapter 2 describes characteristics of

the CCD sensor; and data collection methods as well as a description of the CCD

imagery data for targets (mines) and non-targets (background clutter). The chapter

also presents the data set, and challenges associated with detection on CCD frame

sequences. In Chapter 3 a review of binary hypothesis testing and Gauss-Gauss

detection is presented. Next rank reduction is presented for Gauss-Gauss detection

followed by the implementation of block-based detection algorithms on the CCD data
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set. We also present a comparison of full-rank and reduced-rank Gauss-Gauss detec-

tors on the tested data set, as well as details of the process which is used to design

the detectors. The process involved to detect FOI and segment ROI using the Gauss-

Gauss detector is also presented in 3. In Chapter 4, we present the matched subspace

detector and relevant theory. We compare Gauss-Gauss detection and matched sub-

space methods and show how the latter detector improves overall clutter suppression.

In Chapter 5 we present results on feature extraction methods, as well as results of

the target classification using shape based Zernike features. We present a comparison

of the classifiers applied to both the results of the Gauss-Gauss detector as well as

those of the matched subspace detector. Chapter 6 concludes the studies carried out

in this research and discusses the goals for future work.
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CHAPTER 2

EO SENSOR, DATA DESCRIPTION AND

CHALLENGES

2.1 Introduction

In this chapter we present several aspects of the data collection process involved with

the EO-CCD imaging system including properties of the sensor, details on how the

data is collected, and description of the challenges associated with detection in EO-

CCD images. Since the data collection using the EO-CCD system involves capturing

a sequence of frames over a target field, which is in contrast to scanning line-by-line

over a target field (as in the previous data from the STIL system [1]- [12]), a new

framework for detection had to be developed to work on this new class of images.

This chapter is organized as follows: in Section 2.2 we first present the technical

aspects of the CCD sensor including the CCD camera used, camera resolution, and

other information about the imaging system used in this research. Next, in Section 2.3

a discussion of the data produced by the CCD sensor is presented, and information

about the tested data set is reviewed. Finally, we discuss challenges involved in

automatic target recognition of mine-like objects using the CCD system, and also

present examples of frames contained within the CCD data set, followed by concluding

remarks about this CCD imagery data set.

2.2 CCD Sensor Description & Properties

This section provides a detailed overview of the EO-CCD module. The EO system

developed by the Applied Signal Technologies, Inc (AST), in conjunction with the
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Naval Surface Warfare Center, Panama City (NSWC-PCD) consists of four main

components, which are: the 12-bit CCD camera, PC104 stack, on-board & external

hard drive, and external changeable LED illuminators [13]. In the following we will

describe the EO module CCD system, and its components.

The EO module (shown in Figure 2.1) employs a DVC-1500M monochrome CCD

camera. The camera is used to take ocean bottom photos (frames) over a target

field. The CCD camera is a high performance digital camera with functions tailored

to high-throughput scientific and industrial applications. It is capable of both high-

speed readout (40 MHz pixel rate) and low noise readout (20 MHz pixel rate) at

12 bits [32]. It utilizes a Sony ICX285AL progressive scan interline CCD. The high

quantum efficiency of the CCD peaks in the 500-600 nm region of the spectrum [32].

The CCD camera has four basic operating modes: streaming overlapped exposure,

streaming non-overlapped exposure, edge-triggered single frame snapshot, and vari-

able pulse-width exposure. Each mode can be operated at either 20 or 40 MHz and

can support variable binning and region of interest operation. The camera is capable

of producing images having sizes of 1394 × 1040 (6.45um pixel size) having a high

dynamic range of 12-bit/pixel with multiple binning modes (1× 1 to 8× 8) [13]. The

next main component in the system is the PC104 stack. The PC104 stack is the

main computer on the EO module which controls all subsystems including the CCD

camera, LED illuminator, and storage devices. The PC104 stack stack consists of a

1GZ Pentium 4 with 1GB Ram, 1394b firewire II board and Ethernet switch board.

The next main component are the storage devices for storing captured images from

the camera (frames). The external and internal storage consist of one internal 100GB

hard drive and one external 100GB firewire hard drive. The final system component is

the LED illuminator used to provide more light for the CCD camera when capturing

ocean bottom photos. The LED illuminator on the EO module is a white Philips Lu-

miled Luxeon Flood 18 LED illuminator. The LED illuminator consists of 18 Indium
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Gallium Nitride (InGaN) LED light sources mounted onto an aluminum core printed

circuit board and provides accurate light center positioning with Luminous Flux >

500 lumens [33]. The EO module is capable of active or passive imagery (illumina-

tor on or illuminator off while capturing ocean bottom photos), and is designed to

operate over a large dynamic range to maximize imaging capability in turbid water

conditions [13].

Figure 2.1: Photo of CCD sensor courtesy of Richard Manley, NSWC-PCD.

The EO module has a length of 8.5 in. and a diameter of 8 in., it weights 15 lbs,

and has a payload size of 12 in. [13]. The EO module is on a Bluefin-12 autonomous

underwater vehicle (AUV) developed by Bluefin Robotics [34]. The Bluefin-12 has

variable payload flexibility and capability the Bluefin-12 is light weight, and is tailored

to support a wide range of payloads in the forward 48 of the vehicle. The bluefin-12
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has low self-noise, outstanding dynamic control, and magnetic and inertial navigation

providing payload data quality [34]. The vehicle has a flooded architecture, acous-

tically transparent shell material. The EO module is housed in the vehicle which

takes sequential photos (frames) of the ocean bottom in order to detect proud and/or

buried mines. An example frame sequence is shown in Figure 2.2.

2.3 CCD Sensor Data & Challenges

The CCD image data consists of a series of ocean bottom snapshots as can be seen

in Figure 2.2. The data analyzed consists of five data runs containing targets, and

five containing no targets (just background). The data runs used as a testing set in

this study together with total number of frames per run and target FOI’s are given

in Table 2.1.

Table 2.1: Tested CCD Data Set

Run Total Frames FOI

SAM001 003 42 0
SAM004 001 35 0
SAM22 011 35 0
SAM23 003 293 3
SAM23 004 287 3
SAM23 005 293 4

TargetY8 001 136 3
TargetY8 003 29 0
TargetY8 004 32 0
TargetY8 006 135 3

Totals 1317 16

In this study a total number of 10 data runs were analyzed. The total number

of frames in the data runs is 1317, of which 16 frames contain targets. The CCD

system produces images that are 684 × 513 pixels at 12-bits per pixel gray level

resolution. The data imported is resized to 512× 512 pixels for ease of computation

using the default MATLAB bicubic interpolation image resizing algorithm. Example
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data frames containing target (mine) and non-target (background only) are shown

in Figure 2.3 which exhibit considerable overlap. The histograms for these typical

target and background only (non-target) frames are shown in Figure 2.4. The data set

contains only two different types of targets: runs TargetY8 001, TargetY8 006 contain

long cylindrical targets as found in Figure 2.3; where as runs SAM23 003, SAM23 004,

and SAM23 005 contain partial targets of different shapes as shown in Figure 2.5.

Figure 2.6 shows several non-target frames with varying bottom conditions.

There are three main challenges involved in designing an automatic target detec-

tion and recognition system for the new EO database. The first is FOI detection,

which is the key to the success of other subsequent steps namely feature extraction

and classification. Since only a few out of several hundred frames in a run may con-

tain a partial or full target images, it is important to isolate only those frames which

contain a potential target. The next challenge is segmentation of the mine-like ob-

jects within the FOI for ROI selection. This is another main challenge due to the

fact that background and mine-like objects tend to have very similar contrast and

texture characteristics, hence making the segmentation and discrimination very dif-

ficult tasks. The third challenge involved with designing robust target detection and

classification systems for this new CCD EO database lies in the fact that FOI may

contain partial targets. Partial targets cause difficulties for both detection and clas-

sification systems due to the fact that the extracted ROI may not contain adequate

discriminatory information. These challenges and issues are discussed in more detail

below.

1. As mentioned before each data run contains such a large number of frames

containing only background and few frames containing targets. The focus of

this work is to detect FOI within the runs, and extract ROI only from the

detected frames containing potential targets. Once ROI are extracted from the

FOI, the problem becomes a two-class classification problem to determine if
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the detected object is a target or a non-target. The main challenge involves

designing a detector that will provide screening mechanism to filter out frames

that have no object of interest. If a mine-like object exists in a frame, the frame

must be marked as FOI, so that the detected objects contained in the FOI can

be segmented and further classified.

2. The next main challenge when designing a detection system for this new EO

database is successful ROI segmentation. We can see from our typical target

and background frames in Figure 2.3 and their distributions in Figure 2.4 that

the background and target have overlapping gray level intensities. This make its

difficult to employ global-based schemes to segment the detected objects. Also

low contrast of the CCD EO images do not provide any identifiable texture to

discriminate between target and background.

3. Finally partial targets are fragmented ROI within a FOI (See Figure 2.5). This

can occur because of occlusion or when only a portion of a mine-like object is

captured in a frame, hence causing two problems. The first problem is the fact

that a partial target may be very small and indistinguishable from background

anomalies (see Figure 2.6). Small objects pose a challenge since the detector

must have some way of discriminating small anomalies from very small portions

of targets. Another issue involved in partial targets exists in the fact that these

small ROI must be classified after they are detected. A classifier may incorrectly

classify a partial target due to the lack of adequate discriminatory features.
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Frame N

Frame N+1

Frame N+2

Frame N+3

Frame N+4

Frame N+5

Figure 2.2: Frame sequence example from run TargetY8 001 containing target frames
(full and partial target frames are shown).
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Figure 2.3: Typical Target and Non-Target Frames.
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Figure 2.4: Typical Target and Non-Target histograms.
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SAM23_003_161 SAM23_003_162 SAM23_003_163 SAM23_004_156

SAM23_004_157 SAM23_004_158 SAM23_005_161 SAM23_005_162

SAM23_005_163 SAM23_005_164 TargetY8_001_070 TargetY8_001_071

TargetY8_001_072 TargetY8_006_070 TargetY8_006_071 TargetY8_006_072

Figure 2.5: All targets contained in Table 2.1.

19



SAM001_003_001 SAM004_001_015 SAM22_011_013 SAM23_003_224

SAM23_004_228 SAM23_005_054 TargetY8_001_066 TargetY8_003_012

TargetY8_004_020 TargetY8_006_095 TargetY8_006_101 TargetY8_006_037

TargetY8_006_091 TargetY8_006_088 TargetY8_006_021 TargetY8_006_016

Figure 2.6: Selected non-targets clutter contained in Table 2.1.
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2.4 Conclusion

In this chapter we presented the description and properties of the CCD sensor used

for collecting the EO images, the type of data produced from the sensor,and those

used in this study, as well as challenges associated with designing an automatic target

detection and recognition system for the data collected using this new sensor. The

sensor provides data runs which consist of sequences of ocean bottom snapshots in

which FOI must be first detected. Subsequently ROIs that contain potential mine-

like objects must be segmented in order extract salient shape dependent features to

classify them as mine-like objects or background anomalies. The main challenges in

this work are: (1) FOI detection, (2) ROI segmentation, and (3) partial target feature

extraction. In contrast to the STIL sensor that produced a pair of contrast and range

images this CCD sensor produces only one image with typically poor contrast between

target objects and background regions. These overlapping pixel intensities make it

difficult to apply global-based schemes over the entire image to segment the potential

targets. For these reasons a block-based scheme is employed for target detection and

segmentation. This is discussed in the next chapter.

21



CHAPTER 3

BLOCK-BASED GAUSS-GAUSS DETECTION

3.1 Introduction

In this chapter a block-based method for detection of FOI within a run, and deter-

mining ROI within the detected frames is described. The main reason for taking

a local-based (block) approach as opposed to a global-based approach employed on

the STIL data [1, 2, 4] lies in the fact that FOI must be determined for every data

run. If a histogram (global-based) approach were to be employed here preprocessing

and segmentation would be performed on every frame in the data set. However, as

mentioned before in the CCD-based database mine-like objects tend to have the same

pixel intensity as those of background regions, hence making global-based methods

inefficient for this application. In contrast, in the local block-based approach each

image is processed block-by-block using a local-based Gauss-Gauss detector [14, 16]

which exploits local statistical (second order) properties of the mine-like objects, and

background anomalies. Only blocks that have similar characteristics to mine-like ob-

jects are flagged as detections. Once all blocks within a given frame are processed

then a collection of connected blocks will be defined. Conceivably this method should

identify all the blocks in a given frame that belong to a potential mine-like object.

This collection of connected blocks will result in a segmented mine-like object from

which features will be extracted. The proposed local-based method accomplishes two

goals: (a) determines if an object (or part of an object) exists in a frame thereby de-

tecting a FOI. This reduces the number of frames which need to be looked at by the

classifier; and (b) automatically gives the location of the potential mine-like object,

and segments the ROI with mine-like characteristics from the FOI. In what follows
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we describe the theory and results of this local-based detector and its reduced rank

version.

In this chapter we review binary hypothesis testing in Section 3.2 as well as the

measurement model, and details regarding the model used in this study. Section 3.2

also presents the Gauss-Gauss formulation of the detector, and methods for detection

improvements using rank reduction [14]. Details on how the block-based detector is

implemented on the EO-CCD data and description of the procedures involved with

generating detection measures from the EO-CCD images and generating FOIs are

also presented. This section presents a comparison between full-rank, and reduced-

rank detection, and describes procedures involved in the detector design. Section 3.3

of this chapter explains in details how ROIs are segmented from detected FOIs and

presents several examples of detected ROIs as well as the detector’s performance on

the tested EO-CCD data set in Table 2.1.

3.2 Block-Based Detection

To determine FOI the sequence of frames in a data run are partitioned into small

blocks of size 4x4 and the problem is casted as block-based binary hypothesis test-

ing. A brief review of binary hypothesis testing using Neyman-Pearson and Gauss-

Gauss [14, 16] detection is given in the next subsection. In Chapter 4 we present an

improved version of the detector that uses the matched subspace method [15,17].

3.2.1 Review of Binary Hypothesis Testing

The classical detection problem of choosing between two hypotheses [16] is that given

an N-dimensional observation space, where y = [y1, y2, · · · , yN ]H represents an ob-

servation (measurement) vector in this space, we would like to test between H1 hy-

pothesis (true) and H0 hypothesis (null) for this observation vector. In this specific

problem our observations (or measurements) are pixel blocks of n× n (n = 4) pixels

shaped into column vectors of size N × 1 therefore N = n2, and for this detection
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problem under H1 our measurement y contains signal plus noise, while under H0 our

measurement contains noise alone. That is,

H1 : y = x + n

H0 : y = n

where x represents the signal and n represents the noise. Clearly, each time we

conduct the test there are four possible outcomes. These are: (a) H0 is true and we

choose H0, (b) H0 is true and we choose H1, (c) H1 is true and we choose H1, and (d)

H1 is true but we choose H0. The first and third outcomes lead to correct decisions

while the second and fourth outcomes lead to erroneous decisions. The Bayes test is

based on two assumptions. First, the two hypotheses, H0 and H1, correspond to two

possible prior probabilities, P0 and P1, respectively. These probabilities represent the

prior observer’s information about the hypotheses before the detection is conducted.

The second assumption is that there is a cost associated with each of the four courses

of action described above. These costs are denoted by, C00, C10, C11, and C01, for

outcomes 1-4, respectively. It is assumed that the cost of a wrong decision is higher

than the cost of a correct decision, i.e. C10 > C00 and C01 > C11. The goal of the

Bayes test is to design a decision rule so that on the average cost of a decision will

be as small as possible, which subsequently leads to the smallest Bayesian risk when

making the decision. If we denote the expected value of the cost as the risk R, we

can then write R as [16],

R = C00P0P (H0|H0)

+ C10P0P (H1|H0)

+ C11P1P (H1|H1)

+ C01P1P (H0|H1) (3.1)
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where P (Hj|Hi) i, j ∈ [0, 1] is the probability that we choose Hj given that the true

hypothesis is Hi.

Because the decision rule is binary, i.e. there are only two possibilities, either H0

and H1, we can view the rules as a division in the observation space into two parts A0

and A1. In other words, if the observation is found in the region A0 the hypothesis

H0 is declared true and if the observation is found in the region A1 the hypothesis

H1 is declared true. By viewing the problem in this manner we express the risk in

terms of the decision regions and probabilities as,

R = C00P0

∫
A0

pY|H0(y|H0) dy

+ C10P0

∫
A1

pY|H0(y|H0) dy

+ C11P1

∫
A1

pY|H1(y|H1) dy

+ C01P1

∫
A0

pY|H1(y|H1) dy. (3.2)

To find the decision rule, the decision regions are determined such that the risk in

(3.2) is minimized. Because each element of y must be assigned to either the A0 or

A1 in the observation space A, we can say that A = A0 ∪A1 and A0 ∩A1 = ∅. Now,

(3.2) can be rewritten as [16]

R = P0C00

∫
A0

pY|H0(y|H0) dy + P0C10

∫
A−A0

pY|H0(y|H0) dy

+P1C01

∫
A0

pY|H1(y|H1) dy + P1C11

∫
A−A0

pY|H1(y|H1) dy. (3.3)

We can separate the integrals and rewrite (3.3) as,

R = P0C00

∫
A0

pY|H0(y|H0) dy + P0C10

∫
A

pY|H0(y|H0) dy

−P0C10

∫
A0

pY|H0(y|H0) dy + P1C01

∫
A0

pY|H1(y|H1) dy

+P1C11

∫
A

pY|H1(y|H1) dy − P1C11

∫
A0

pY|H1(y|H1) dy (3.4)
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If we use
∫
A
pY|H0(y|H0) dy =

∫
A
pY|H1(y|H1) dy = 1, then (3.4) can be reduced to,

R = P0C10 + P1C11

+

∫
A0

[
P1(C01 − C11)pY|H1(y|H1)− P0(C10 − C00)pY|H0(y|H0)

]
dy (3.5)

The first two terms in (3.5) represent the fixed cost and the integral represents the

cost controlled by the points in the observation space, A that are assigned to A0. The

points in A for which the first term in the integral is larger than the second term are

assigned to A1, whereas the points in which the second term is larger than the first

term are assigned to A0. Any points in which the terms are equal have no effect on

the cost and can be arbitrarily assigned to any region (we assume that the points

are assigned to A1). We can, therefore, define the decision region in the observation

space by

P1(C01 − C11)pY|H1(y|H1) ≥ P0(C10 − C00)pY|H0(y|H0). (3.6)

which can be rewritten as

pY|H1(y|H1)

pY|H0(y|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (3.7)

The quantity on the left is called the likelihood ratio and will be denoted by

l(y) ,
pY|H1(y|H1)

pY|H0(y|H0)
. (3.8)

The relationship on the right is the threshold of the test and will be denoted by η.

Thus, Bayes criterion leads to a likelihood ratio test,

l(y)
H1

≷
H0

η. (3.9)

One of the methods for hypothesis testing is based on the Neyman-Pearson crite-

rion [16]. In the Neyman-Pearson detection scheme the hypothesis test is formulated

as a constrained optimization problem. In this optimization problem the false alarm

probability is constrained and the probability of detection is maximized. The op-

timization problem yields a likelihood ratio test and thresholding conditions. The
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Neyman-Pearson criterion [16], [35] generates a test to maximize Pd (probability of

detection) while making Pfa (probability of false alarm) as small as possible. The

criterion constrains Pfa = α′ ≤ α and designs a test that maximizes the probability

of detection under this constraint [16].

We applied a block-based likelihood ratio test using the standard Gauss-Gauss

detector [14] which is used to determine if a block belongs to a potential mine-like

object or just background. The detection problem is viewed in terms of the signal

plus noise model [14], the decision between two hypotheses is now either background

(noise) only (H0) or target (signal) plus background (H1). Assuming that observation

block of size n × n shaped column-wise into a vector y ∈ RN (N = n2) is Gaussian

distributed with zero mean and covariance matrix R. In the Gauss-Gauss detector,

we test the hypothesis H0 : R = R0, i.e. noise alone versus H1 : R = R1, i.e signal

plus noise where R1 = R0 + Rs, R0 is the covariance matrix of the noise alone, and

Rs is the covariance matrix of the target (signal) alone. It is assumed that noise and

target are uncorrelated. The conditional probability density function, pY|Hi
(y|Hi),

for a given hypothesis Hi, i ∈ [0, 1] and measurement vector y is given by

pY|Hi
(y|Hi) = (2π)−

N2

2 |Ri|−
1
2 e−

1
2
yH |R−1

i |y (3.10)

Now, using the likelihood ratio in (3.8) and taking the natural log, the log-

likelihood of y becomes [14]:

l(y) = ln

(2π)−
N2

2 |R1|−
1
2 e−

1
2
yHR−1

1 y

(2π)−
N2

2 |R0|−
1
2 e−

1
2
yHR−1

0 y


= ln

(
|R1|−

1
2

|R0|−
1
2

e
1
2
yH(R−1

0 −R
−1
1 )y

)
=

1

2
ln|R1| −

1

2
ln|R0|+

1

2
yH
(
R−1

0 −R−1
1

)
y (3.11)

Disregarding the constants that are not observation dependent, the likelihood-ratio

for the Gauss-Gauss detector [14] becomes

l(y) = yH
(
R−1

0 −R−1
1

)
y = yHQy. (3.12)

27



where Q = R−1
0 −R−1

1 .

Using this log-likelihood, the test in (3.9) is implemented for each block to deter-

mine if the block belongs to a mine-like object. Through our research we have found

that the full-rank block-based method just described works well for detecting FOI,

but yields incomplete ROI silhouettes making it difficult to classify detected ROI’s.

Next, we will describe a process called rank-reduction [14] which maximizes the

separation between targets and non-targets.

3.2.2 Rank Reduction

Let us start with (3.12) and rewrite matrix Q as:

Q = R
−T/2
0 (I − S−1)R

−1/2
0 . (3.13)

where R0 = R
1/2
0 R

T/2
0 and S = R

−1/2
0 R1R

−T/2
0 is the “signal-to-noise ratio” ma-

trix [14]. Under this transformation we can write the log likelihood ratio in (3.13) in

terms of the “signal-to-noise ratio” matrix S as

l(z) = zT (I − S−1)z (3.14)

where z = R
−1/2
0 y is also Gaussian distributed with zero mean and covariance matrix

R = I under H0 and R = S under H1 i.e.,

EH0 [zzT ] = I (3.15)

EH1 [zzT ] = S

The J-divergence [14] which is a measure of the detectability (or separation) between

the two hypotheses is written as

J = EH1 [l(y)]− EH0 [l(y)] (3.16)

= tr(I − S−1)(EH1 [zzT ]− EH0 [zzT ])

= tr(S + S−1 − 2I)
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In order to maximize the J-divergence between H0 and H1 we look at the orthogonal

decomposition of the S matrix:

S = R
−1/2
0 R1R

−T/2
0 = UΛUT . (3.17)

where Λ is a diagonal matrix with diagonal elements λi and U is an orthogonal matrix

satisfying UUT = I. In this form, the log likelihood ratio becomes

l(y) = zTU(I − Λ−1)UTz (3.18)

and the J-divergence between the two hypothesis becomes

J = tr(Λ + Λ−1 − 2I)

=
N∑
i=1

(λi + λ−1
i − 2)

(3.19)

As can be seen both the log-likelihood in (3.18) and J-divergence in (3.19) are now

expressed in terms of the eigenvalues and eigenvectors of the SNR matrix S. Also in

(3.19) it is obvious that it is the sum of (λi+λ
−1
i −2) that determines the contribution

to the J-divergence. It can be shown (see Remark 1 below) that the term (λi+λ
−1
i −2)

determines the best per-mode SNR contribution to the J-divergence. This means that

eigenvalues that are either much larger than unity or much less that unity should be

retained for best case rank reduction, and improvement of SNR.

Equation (3.18) can be written in the reduced-rank form by using Λr and Ir instead

of Λ and I, where Λr and Ir contain only r non-zero elements along the diagonals

(the r nonzero entries occur at arbitrary locations) as defined in [14]. Matrices Ir and
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Λ−1
r are

Ir =



1

1

0

. . .

1

0



Λ−1
r =



λ−1
1

λ−1
2

0

. . .

λ−1
r

0


The reduced rank log likelihood ratio and J-divergence then become

l(y) = zTU(Ir − Λ−1
r )UTz (3.20)

and

Jr = tr(Λr + Λ−1
r − 2I)

=
r∑

n=1

(λr + λ−1
r − 2) (3.21)

The reduced rank log-likelihood ratio in (3.20) is used in our reduced-rank block-

based detector which maximizes the J-divergence, between the two hypotheses H0

and H1. A procedure is suggested in [14] for choosing only a subset of r eigenvalues

of S to maximize the J-divergence in (3.21). We have found experimentally that

reducing the detector rank to r = 1 always yields the highest separation between the

two hypotheses. This process in essence reduces the effects of background noise in

the detection process.
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Remark 1 If R0 = σ2I and Rs = diag[σ2
s1 · · ·σ2

sN
], then

λi =
σ2
si

+ σ2
n

σ2
n

(3.22)

and thus

(λi + λ−1
i − 2) =

σ4
si

σ2
n(σ2

si
+ σ2

n)
=

SNR2
i

SNRi + 1
≈ SNRi (3.23)

where SNRi =
σ2

si

σ2
n

. That is, each term in (3.21) corresponds to the “per-mode”

SNR.

3.2.3 Implementation of Block-based Detection

Each frame in a data run is partitioned into blocks of size 4× 4 (n = 4). Each block

is then rearranged into a N-dimensional column vector (N = n2 = 16) for computing

the log-likelihood ratio.

An exaggerated example of the blocking is shown in Figure 3.1. Each block is

column-wise rearranged into a vector in order to compute the log-likelihood ratio.

Figure 3.1: Block-based detection process.

The Gauss-Gauss detection is then performed on each block, and a likelihood value

is computed for each block which generates a ’likelihood map’. In this likelihood map

each pixel represents the value of the log-likelihood ratio of the corresponding block in

the original EO image. The likelihood maps are then used to determine both FOI, and
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ROI in a data set based on thresholding the log-likelihood ratio. This log-likelihood

ratio thresholding is based on the training data.

Size thresholding is also imposed on the number of detected blocks needed in order

to declare a frame as a FOI. If only isolated blocks are detected in a frame it does not

warrant calling the frame a FOI. Thus, in our implementation at least 180 connected

blocks must be detected in order for the frame to be flagged as a FOI. Also an upper

size threshold of 2500 connected blocks is imposed. If too many connected blocks are

detected then the frame is assumed to contain only background anomalies.

These size constraints pose another challenge to the FOI detector. More specif-

ically, if the vehicle carrying the sensor is high above the targets, the targets may

appear small, and may be missed due to the lower size threshold, conversely if the

vehicle is directly over the target then the target may appear too large. The above

size constraints were determined experimentally using the different mine-like objects

in the database. The overall process is described in the following steps:

1. Extract target, and background blocks from the training set from both mine-

like objects and background anomalies frames in order to determine a threshold

value for separating the likelihood value of the target and non-target blocks.

2. Compute the likelihood ratio for each block under the Gauss-Gauss formulation

using (3.20).

3. Threshold the likelihood ratio for each block. If the block’s likelihood ratio falls

above the threshold then designate the particular block as ’target’. If the block’s

likelihood ratio is below the threshold then designate the block as background.

4. The number of connected blocks is determined using MATLAB regionprops

function. If a particular number of connected blocks are designated as a target

blocks, then flag the frame under consideration as a FOI.
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5. The ROI is automatically determined and segmented directly as a result of this

process by way of the detected blocks in the FOI. This is because the collection

of connected block form the silhouette of the object.

3.2.4 Comparison Between Reduced-Rank and Full-Rank Detectors

As mentioned before, for the reduced rank detector r = 1 gave the best separation

between log-likelihood ratio values for H0 and H1. An example of this separation

is shown in Figure 3.2(a), which shows the log-likelihood maps for these detectors.

A comparison between the log-likelihood ratio values is shown in the histograms in

Figure 3.2(b) for the two cases. It can be seen from Figures 3.2(a) and 3.2(b) that for

reduced rank detector, values of the likelihood have been pushed towards lower values.

This has in turn suppressed much of the noise from the full rank implementation, and

hence improved the SNR. Therefore, we choose to work with the reduced rank version

of the log likelihood ratio test in our overall system.

3.2.5 Detector Design

In order to use the proposed block-based likelihood detector first a ‘training set’ must

be selected. The selection of a set of blocks from some mine-like objects and back-

ground anomalies is required in order to compute the covariance matrices associated

with H0 and H1. This process is subjective in that the blocks used for the train-

ing must be hand picked from frames which are believed to represent a wide range

of target and background scenarios. For this purpose we have designed a software

application GUI (see Appendix A for details) which aids in the selection of train-

ing blocks for the detector, as well as building a feature set for training the neural

network classifier. Since a limited number of frames containing targets are available

in this database, blocks from two frames in a single data run (SAM001 004) con-

taining a target were used. In order to form the training set, regions of target and

background were cropped from the frames shown in Figure 3.3 using the developed
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Reduced−Rank Likelihood Map Full−Rank Likelihood Map

(a) Comparison between full rank and reduced rank log likelihood ratio
maps. Both maps are plotted on the same scale from 0 (black) to 50 (white)
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(b) Comparison between histograms of the full rank and reduced rank log
likelihood ratio values.

Figure 3.2: Comparison between full rank and reduced rank detectors.
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GUI software application. That is, we construct a mine-like object training matrix

T = [T 1, T 2, . . . , TK ] where the subscripts denote the block index and are obtained

from several different blocks over mine-like objects. The subscript K is the total

number of training blocks used, which should be large enough to contain the variety

of mine-like object signatures that are typically encountered. We also construct a

background clutter training matrix N = [N1, N2, . . . , NK ] which are obtained from

several different blocks containing only background anomalies. For both mine-like

objects, and background cases K = 1465 blocks which should be large enough to

contain the variety of mine-like object and background scenarios that are typically

encountered.

Figure 3.3: FOI from data run SAM001 004 used to train the Gauss-Gauss detector.
Regions of blocks were selected over the target and over background.
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Blocks were cropped from two frames in the data run SAM001 004 for each mine-

like objects and background anomalies to compute covariance matrices R1 and R0,

respectively. The 1465 training blocks for target contained mostly pixels over the

target, and target edges, while the 1465 randomly chosen blocks for background

contained only pixels belonging to background anomalies. After training the detector

was evaluated on the data set in Table 2.1 in order to assess the system’s performance

for FOI detection.

A fixed threshold is chosen based on several frames in a ‘detector validation run’

SAM002 008. The detector has been evaluated on several frames containing mine-like

objects in run SAM002 008 in order to determine a suitable threshold to successfully

differentiate between background and target blocks. Using the distributions of log-

likelihood values for target and background blocks in SAM002 008 we have experi-

mentally chosen the threshold to be 5. It turns out that this threshold is adequate

for detecting mine-like objects in the testing set considered in this study.

3.3 ROI Segmentation

After each image has been passed through the detector and the likelihood map has

been generated the likelihood values are thresholded. This thresholding process is

used to segment all detected objects in a given frame. Each block is compared to a

threshold η as in Figure 3.1. If a block’s likelihood value lies above the determined

threshold the block is designated as a ’target block’. If a block’s likelihood value lies

below the threshold η the block is designated as a ’background block’. The detector is

somewhat robust to rotation of ROI due to the fact that the interior blocks of the ROI

are mainly detected. However, edge blocks may be affected by rotation depending

on the degree. Thus, it is possible that detection of partial targets could be affected

by rotation depending on the severity of occlusion in the frame. Missed detections

may occur if there are not enough interior blocks of a target in a given FOI to flag a
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detection.

After the thresholding process is completed a binary image remains containing

collections of target blocks which constitute ’target objects’. Each detected target

object in a given frame is now compared to an upper and lower ’object size threshold’.

The object size threshold imposes upper and lower size constraints on the number of

connected blocks on the detected target objects. Figure 3.4 shows a block diagram

outlining the overall detection and ROI segmentation process in this block-based

detection scheme. Figure 3.4 shows that we start with the original image which is

passed through the detector to generate the likelihood map. Once the likelihood

map has been generated we threshold the pixel intensity values of the likelihood map

to generate the binary image. Once the binary image has been generated we then

impose the object size threshold to remove objects that are assumed too large or too

small to be a potential mine-like object. If objects are found to be within the size

constraints then the frame is flagged as FOI. Lastly, the remaining binary silhouettes

are collected to be further processed by the classifier to discriminate mine-like object

from background clutter using shape-based features described in Chapter 5. If a single

object is detected in a given frame, the frame is flagged to be an FOI, otherwise if

no objects are detected in the frame then the frame is discarded. Each detected

object in a given FOI is flagged to be an ROI. Ultimately the detector outputs binary

silhouettes of the detected objects as well as several measures associated with the

detected objects, which are summarized in Table 3.1.

The detection results are output to a new folder based on the date and time

the detector is run. The detection measures are output to a text file which contain

the information in Table 3.1 formatted in rows. The detector also saves figures of

the detected FOI with ROI’s bounding boxes, and binary silhouettes of the detected

objects.

Several important measures associated with each detection are given in Table 3.1.
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Figure 3.4: Detection and ROI segmentation process.

First the Frame is given to indicate which frame the detection has occurred in. Next,

ObjectNumber is given to indicate whether or not several objects have been detected

in a single FOI. The Area measure is used to report the number of connected blocks

contained in each detected object, which gives an indication of the size of the detected

object. CentroidX and CentroidY report the x and y center position of each detected

object (or ROI) within the FOI. MajorAxisLength and MinorAxisLength specifies

the length (in pixels) of the major, and minor axis of the ellipse that has the same nor-

malized second order central moments as the ROI, respectively. The Eccentricity

measure specifies the eccentricity of an ellipse that has the same second-moments

as the ROI, while Orientation reports the angle (in degrees ranging from -90 to

90 degrees) between the x-axis and the major axis of an ellipse that has the same

second-moments as the ROI. Solidity indicates the proportion of the pixels in the

convex hull that are also in detected ROI, which is computed as Area/ConvexArea.

Xpos and Xwid report the coordinate (pixel column) and horizontal width (pixels) of

the bounding box of the detected ROI, respectively, while Ypos and Ywid report the

coordinate (pixel row) and vertical width (pixels) of the bounding box of the detected

ROI, respectively.

Several detection results (output figures) are shown for targets in Figures 3.5(a)-

3.5(c) and background anomalies in the Figures 3.6(a)-3.6(c). In each of these figures

38



Table 3.1: Detector output Measures

Measure Description
Frame Frame number associated with the input file

(given by the last three numeric digits in the *.tif file name).
ObjectNumber The ROI number of the detected object in the frame.
Area The number of detected blocks in the ROI.
CentroidX The horizontal coordinate (pixel column) location of the ROI center of mass.
CentroidY The vertical coordinate (pixel row) of the ROI center of mass.
MajorAxisLength Specifies the length (in pixels) of the major axis of the ellipse that has the

same normalized second central moments as the ROI.
MinorAxisLength Specifies the length (in pixels) of the minor axis of the ellipse that has the

same normalized second central moments as the ROI.
Eccentricity Specifies the eccentricity of the ellipse that has the same second-moments as the ROI
Orientation The angle (in degrees ranging from -90 to 90 degrees) between the x-axis and the

major axis of the ellipse that has the same second-moments as the ROI.
Solidity The proportion of the pixels in the convex hull that are also in the ROI.

Computed as Area/ConvexArea.
NetScore Score generated by the Neural network shape based classification.
Xpos The horizontal coordinate (pixel column) of the bounding box of the ROI.
Ypos The vertical coordinate (pixel row) of the bounding box of the ROI.
Xwid The horizontal width (pixels) of the bounding box of the ROI.
Ywid The vertical width (pixels) of the bounding box of the ROI.

the original image is shown on the left and segmented ROI from the likelihood map

is shown on the right. The bounding box of the ROI is superimposed on the original

input frame. It can be seen that the detector generates well-defined silhouettes for the

target cases. It is also important to note that for the background anomalies detected

the silhouettes are irregularly shaped with more holes. Table 3.2 shows a summary of

FOI detections at the point of 100% detection of targets. Overall, an FOI detection

rate of 100% has been achieved at the cost of a FOI false alarm rate of 36.9% when

considering data in Table 2.1. This means that 486/1317 of the frames in the data

set pass the detector, which will be subsequently applied to the classifier to classify

the detected ROI and further reduce the false alarm rate. We can see the runs have

varying degress of false alarms due to varying ocean bottom conditions in each run.

Typically, more false alarms are obtained when the ocean bottom has more dense

clutter.
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SAM23_005_163 ROI

(a) Partial Target SAM23 005 Frame 163

TargetY8_001_071 ROI

(b) Target TargetY8 001 Frame 071

SAM23_004_156 ROI

(c) Partial Target SAM23 004 Frame 156

Figure 3.5: Various detector outputs for different target frames.
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SAM23_004_158 ROI

(a) False Alarm (with target) SAM23 004 Frame 158

TargetY8_001_043 ROI

(b) False Alarm TargetY8 001 Frame 043

SAM001_004_171 ROI

(c) False Alarm SAM001 004 Frame 171

Figure 3.6: Various detector outputs for different detected background anomalies.
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Table 3.2: Detection Results for Reduced-Rank Gauss-Gauss

Run False Detections True Detections/FOI Total

SAM001 003 2 / 42 (0 / 0)
SAM004 001 7 / 35 (0 / 0)
SAM22 011 12 / 35 (0 / 0)
SAM23 003 142 / 293 (3 / 3)
SAM23 004 92 / 287 (3 / 3)
SAM23 005 129 / 293 (4 / 4)

TargetY8 001 47 / 136 (3 / 3)
TargetY8 003 11 / 29 (0 / 0)
TargetY8 004 16 / 32 (0 / 0)
TargetY8 006 28 / 135 (3 / 3)

Totals 486/1317 16/16
Percentage 36.9% 100%
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3.4 Conclusion

In this chapter we described and analyzed a full-rank and a reduced-rank block-based

detector for detecting underwater mine-like objects. Using block sizes of 4x4 the log-

likelihood ratio has been evaluated on the entire EO-CCD database. First it was found

that a detector that used 4x4 blocks performed much better than that used 8x8 sized

blocks. Second it has been observed that detected ROI’s of targets are more regularly

shaped and are more solid than those of the background anomalies. Additionally the

detection algorithm does not require any preprocessing, i.e., it is directly applied to

the data acquired from the EO-CCD sensor. We have found that a challenge with

this new data set is the fact that FOI must be identified before segmentation and

ROI feature extraction. Also, detection of partial targets and classification based

on partial silhouettes pose many challenges. A promising benefit of the proposed

block-based detector lies in the fact that detection of FOI, and segmentation can be

achieved in a single step. This automatic FOI detection coupled with automatic ROI

segmentation and object size thresholding reduces the number of objects from which

features need to be extracted, and hence reducing the load on the classifier. Automatic

FOI detection and ROI segmentation are desirable benefits of this detection scheme.

Overall, robust object silhouette definition has been achieved using the reduced-

rank Gauss-Gauss detector. Silhouette definition is the key to successful object clas-

sification. Using methods described in the next chapter it is found that the matched

subspace detection method provides further improvement in clutter suppression and

hence further reduces the false alarm rate when compared to that of the reduced-rank

Gauss-Gauss detector.
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CHAPTER 4

MATCHED SUBSPACE DETECTION

4.1 Introduction

In Chapter 3 we showed that in order determine FOI in a data run, each frame is par-

titioned into small blocks (e.g. of size 4x4) and the problem is viewed as block-based

binary hypothesis test under the Neyman-Pearson criterion [14,16]. We showed how

block-based detection methods provide automatic ROI segmentation of the detected

objects. Reduced-rank version of the Gauss-Gauss detector [14] was also presented,

implemented and benchmarked for the data set in Table 2.1. This reduced-rank de-

tector improves the detection performance by suppressing the noise/clutter. In this

chapter we present methods for further suppressing background clutter from EO-

CCD imagery to facilitate more accurate object detection, at lower computational

cost comparing to the reduced-rank Gauss-Gauss detector. Mitigating the effects of

background anomalies allows for better extraction of target ROI while reducing false

detections hence reducing the number of objects that need to be classified. This reduc-

tion in false alarm lowers the computational load on the classifier which is important

for real time applications.

We have investigated those methods for background removal that are based on the

framework in [15], [17] which outlines various forms of the matched subspace detection

under different assumptions for the structure of the signal, clutter, and noise. In

particular, a method for separating the background clutter by projecting the data

onto the signal subspace will be introduced. In this chapter we first review the theory

of the matched subspace detection in [15], [17] for the signal plus noise structure.

Next, we give a comparison between the reduced-rank Gauss-Gauss detector, and
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matched subspace detector on the data contained in Table 2.1.

This chapter is organized as follows: In Section 4.2 we present the theory of

the matched subspace detector. In Section 4.3 we present a comparison between

the reduce-rank Gauss-Gauss detector and show improved clutter suppression can

be achieved using the matched subspace method, which uses the same block-based

framework for FOI, and ROI detection. Section 4.4 gives a summary of this chapter

and concluding remarks on the detector.

4.2 Matched Subspace Detection

As previously described in Chapter 3 we use the likelihood ratio test (LRT) to de-

termine an unknown hypothesis (Hi) from a known measurement. This method for

hypothesis testing is based on the Neyman-Pearson criterion which yields the LRT

and optimum thresholding conditions [16]. The method of matched subspace de-

tection utilizes the generalized likelihood ratio test (GLRT) in which the unknown

parameter we wish to estimate is replaced with it’s maximum likelihood (ML) es-

timate. In this case, the GLRT is a maximal invariant statistic which means that

the GLRT is the uniformly most powerful invariant detector [15], [17]. In [15], the

problem is to determine whether observation y is associated with signal plus noise

plus interference, or with noise plus interference conditions. Several cases of detect-

ing subspace signals in the presence of subspace interference and noise are considered

in [15]. While reference [17] considers the problem of detecting subspace signals in

noise (without interference).

In the signal plus noise (without structured interference) matched subspace frame-

work we regard the signal (mine-like object) x to be represented as a linear combi-

nation of modes or basis vectors [17]. The motivation for using this signal model in

our problem is based on the fact that each measurement block y in a given EO-CCD

image will contain either a target’s signature plus background noise x + n under H1
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or background noise alone n under H0. We make the assumption that the mine-like

objects we wish to detect can be characterized using a small number of basis vectors

e.g., blocks corresponding to different edge orientations and texture content. There

are several ways to formulate the matched subspace detection problem. We use the

framework presented in [17] due to the fact that we lack structured interference. As

before, the binary hypothesis test is written as:

H1 : y = x + n

H0 : y = n

As with the Gauss-Gauss detectors in Chapter 3 each EO-CCD image is first

divided into blocks of size n × n and arranged (column-wise) into a vector of N × 1

(N = n2) denoted by y. The background removal method requires knowledge of the

signal subspace 〈H〉 (e.g. target blocks x spanning 〈H〉), which is of dimension MH <

N . This requires finding MH suitable basis vectors that properly span 〈H〉. MH < N

basis vectors can be obtained by applying singular value decomposition (SVD) [36] to

a data matrix that has a large number of training block vectors as its columns. That

is, we first construct a mine-like object training matrix T = [T 1, T 2, . . . , TK ] where

each column corresponds to a different block which contain mine-like objects. The

subscript K is the total number of training blocks should be large enough to contain

the variety of mine-like object signatures that are typically encountered. Note this

matrix T is the same training matrix used to form the sample covariance matrix for

targets R1 in Chapter 3. Specifically, K = 1465 blocks were cropped from two frames

in the data run SAM001 004 which are typically encountered mine-like objects.

Now, we assume the signal x obeys a linear subspace model.

x =

p∑
n=1

hnθn = Hθ (4.1)

H ∈ RN×p, θ ∈ Rp
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Here H is a known N × p matrix with columns hn and θ is a p × 1 vectors with

elements θn. The matrix H is composed of p ≤ K basis vectors which represent the

signal subspace 〈H〉. One way to define matrix H is to apply SVD on the data matrix

T to give a representative set of basis vectors for mine-like objects, i.e.,

T = UΣVT (4.2)

where the columns of U contain the input basis vectors for T, the columns of V

contain the output basis vectors for Y, and Σ is a diagonal matrix of singular values.

The first MH columns of U corresponding to the MH largest singular values of T are

used to form H (i.e. basis vectors that span 〈H〉) since this allows reconstruction

of the data vectors in T optimally in the least squares sense. In this experiment we

select six columns of T corresponding to the largest singular value of Σ. To formulate

the matched subspace detector we first write our hypothesis H0 and H1 in terms of

the corresponding noise models, i.e.,

H1 : n1 = y −Hθ (4.3)

H0 : n0 = y

where n1 and n0 are noise under hypothesis H0 and H1 respectively. Here we make

the assumption that n1 and n0 are Gaussian distributed random variables with di-

agonal covariance structures with variance σ2. To justify this assumption the sample

covariance matrices for data matrices N and T are generated and shown in Figure 4.1.

As can be seen, for data matrix N the diagonal elements are much larger than the

off-diagonal ones. This assumption implies that different pixels within a block are

almost uncorrelated with one another. While this may be a reasonable assumption

for n0, clearly it is not accurate for n1 based on the covariance matrix for H1 having

large off-diagonal elements as shown in Figure 4.1. Nonetheless, this simplifies the

derivations significantly.
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Figure 4.1: Covariance structure computed using N (left) and T (right) data ma-
trices. These matrices show large values along the diagonal and lower values off the
diagonal.

Assuming the noise is Gaussian distributed the probability density functions for

n1 and n0 are given by

fi(y) = (2πσ2)−N/2exp

{
− 1

2σ2
‖ni‖22

}
, i = 0, 1 (4.4)

and the likelihood ratio function is defined as

l(y) = ln
f1(y)

f0(y)
= ‖n0‖22 − ‖n1‖22 (4.5)

In order to formulate the GLRT we replace θ in (4.3) with it’s ML estimate θ̂ =

(HTH)−1HTy hence giving

l(y) = ‖n̂1‖22 − ‖n̂2‖22

= yTy − (y −PHy)T (y −PHy) (4.6)

Computing the right hand side of 4.6 yields the following GLRT:

l(y) = yTPHy (4.7)

where PH = H(HTH)−1HT is the projection matrix [36] onto the subspace 〈H〉. The

term PHy in (4.7) is the component of our measurement y that lies in the signal

subspace 〈H〉. Equation (4.7) gives the power of the measurement in the subspace

〈H〉. In this experiment we have implemented matched subspace detector GLRT, and
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evaluated it on the data set in Table 2.1. A comparison between the matched subspace

detector and the Gauss-Gauss detectors in Chapter 3 is given in the following section.

4.3 Comparison between Matched Subspace & Gauss-

Gauss Detection

In this section we present a comparison between the reduced-rank Gauss-Gauss de-

tector of Chapter 3, and the matched subspace detector presented in the previous

section. We have benchmarked both detectors on the dataset contained in Table 2.1.

Here we present a comparison between the results of the three different steps (likeli-

hood map, binary image, and object (ROI) image) of the reduced-rank Gauss-Gauss,

and the matched subspace detector. Figures 4.2, 4.3, and 4.4 show the results of

various detection stages for both reduced-rank Gauss-Gauss and matched subspace

detectors. The figures shown from top to bottom are: the original image, likeli-

hood map, binary image, and object (ROI) image for the three target run examples

(SAM23 005,TargetY8 001,SAM23 004) presented in Section 3.3.

In each of these figures we see that the likelihood map has considerably better

contrast for the case of the matched subspace detector. We can also see from these

figures that the matched subspace likelihood map better separates the target from the

background clutter. Figures 4.2, 4.3, and 4.4 also show the binary images for both

reduce-rank Gauss-Gauss and matched subspace detectors obtained at a threshold

corresponding to the 100% detection point on the ROC curve (Figure 4.5) of 100%

true target detection for both detectors. We can see that the matched subspace

detector provides improved clutter supression in all three cases having lesser false

alarms/detected clutter. The matched subspace method reduces clutter by measuring

the energy of each block in the signal subspace, as opposed to the Reduced-Rank

Gauss-Gauss detector which relies on the seperation between second order statistics.

Tables 4.1 and 4.2 show the FOI detection results at the point of 100% detection
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Matched Subspace Reduced−Rank Gauss−Gauss

Figure 4.2: Comparison between matched subspace detector and reduce-rank Gauss-
Gauss detector (from top to bottom) for the original image, likelihood map, binary
image, and object image for target run SAM23 005 frame 162

50



Matched Subspace Reduced−Rank Gauss−Gauss

Figure 4.3: Comparison between matched subspace detector and reduce-rank Gauss-
Gauss detector (from top to bottom) for the original image, likelihood map, binary
image, and object image for target run TargetY8 001 frame 71
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Matched Subspace Reduced−Rank Gauss−Gauss

Figure 4.4: Comparison between matched subspace detector and reduce-rank Gauss-
Gauss detector (from top to bottom) for the original image, likelihood map, binary
image, and object image for target run SAM23 004 frame 156
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for each detector. We can see from these tables that the matched subspace detector

reduces the number of frames which need to be passed to the classifier by 16.7%

from the reduced-rank Gauss-Gauss detector. This improvment is gained without

increasing the computational time of the detector.

Table 4.1: Detection Results for Matched Subspace Detector

Run False FOI Detections True FOI Detections/FOI Total

SAM001 003 3 / 42 (0 / 0)
SAM004 001 0 / 35 (0 / 0)
SAM22 011 9 / 35 (0 / 0)
SAM23 003 60 / 293 (3 / 3)
SAM23 004 62 / 287 (3 / 3)
SAM23 005 63 / 293 (4 / 4)

TargetY8 001 31 / 136 (3 / 3)
TargetY8 003 9 / 29 (0 / 0)
TargetY8 004 1 / 32 (0 / 0)
TargetY8 006 28 / 135 (3 / 3)

Totals 266/1317 16/16
Percentage 20.2% 100%

Table 4.2: Detection Results for Reduced-Rank Gauss-Gauss Detector

Run False FOI Detections True FOI Detections/FOI Total

SAM001 003 2 / 42 (0 / 0)
SAM004 001 7 / 35 (0 / 0)
SAM22 011 12 / 35 (0 / 0)
SAM23 003 142 / 293 (3 / 3)
SAM23 004 92 / 287 (3 / 3)
SAM23 005 129 / 293 (4 / 4)

TargetY8 001 47 / 136 (3 / 3)
TargetY8 003 11 / 29 (0 / 0)
TargetY8 004 16 / 32 (0 / 0)
TargetY8 006 28 / 135 (3 / 3)

Totals 486/1317 16/16
Percentage 36.9% 100%
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Figure 4.5 shows the ROC curves (based on FOI detection) of both detectors. We

can see that the matched subspace detector outperforms the reduced-rank Gauss-

Gauss detector at virtually all thresholds. The matched subspace detector reduces

the false detection rate for FOI by 16.9% (at the 100% detection point) over the

Gauss-Gauss detector. Low false detection rate is important in terms of reducing the

load on the classifier.
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Figure 4.5: ROC for FOI performance comparison of the reduced-rank Gauss-Gauss
and matched subspace detectors.

4.4 Conclusion

In this chapter we presented a new detector that casts the detection problem in

terms of detecting underlying signal subspace and noise. We showed that using the

same block-based framework for FOI, and ROI detection with the matched subspace
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detector improved clutter suppression over that of the reduced-rank Gauss-Gauss

detector in Chapter 3. This, considerably reduces the load off the classifier. We

designed the detector by defining matrix H and applying SVD on the data matrix T

to give a representative set of basis vectors for mine-like objects. The likelihood map

for the matched subspace detector has considerably better contrast when compared to

the reduced-rank Gauss-Gauss detector. Additionally the reduced-rank Gauss-Gauss

detector achieves a Pd = 100% detection rate with a Pfd = 36.9% false detection

rate, while the matched subspace detector achives a Pd = 100% detection rate while

maintaining a Pfd = 20.2% false alarm rate. In Chapter 5 we present shape-based

classification methods which are applied to both the reduced-rank Gauss-Gauss, and

matched subspace outputs after the detection process is completed.
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CHAPTER 5

FEATURE EXTRACTION IN

ELECTRO-OPTICAL IMAGERY

5.1 Introduction

Once the FOI’s are identified a feature extraction process must be used to extract

shape-dependent features. Many different shape dependent feature extraction meth-

ods exist that can successfully be applied to a wide variety of pattern recognition

problems. However, moment-based schemes [27]- [30] are among the most widely

used methods as they provide translation, rotation and scaling invariant features

ideal for 2-D as well as 3-D pattern recognition applications. In [30], a compari-

son was made among several types of moments including regular moments, Legendre

moments, Zernike moments, and complex moments. These methods were compared

in terms of their image representation ability, noise sensitivity, and information re-

dundancy on several character recognition examples. Owing to the fact that the

regular moments do not provide an orthogonal representation, the extracted features

using this scheme lack optimality in representation. This is in contrast to the or-

thogonal moments, e.g. Legendre and Zernike moments [27]- [30]. The experiments

conducted in [30] indicated that the classification results of the Zernike moments are

substantially less sensitive to additive noise effects in the images when compared to

the other types. In [28], a similar study was carried out where the regular moments

and Zernike moments were used for feature extraction and a back-propagation neural

network (BPNN) [19] was employed as a classifier. Due to these useful properties of

the Zernike moments we have chosen to use this method for shape-dependent feature
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extraction of detected ROI.

In this chapter we show how Zernike moments are used in conjunction with a

BPNN classifier in order to classify ROIs from detected FOI as mine-like objects,

or background anomalies. Zernike moments are extracted from each ROI in order to

characterize the shape of the ROI. Decision between mine-like object, and background

clutter is made based on the shape of the ROI in question using the BPNN classifier.

Each detected FOI can yield one or more ROIs, while each ROI needs to be classified

as either a mine-like object or background clutter. If all detected object in a particular

FOI are identified to be background clutter that particular frame will no longer be

considered.

This Chapter is organized as follows. In Section 5.2 we review the feature extrac-

tion process using the Zernike moments used in this research. Then, a method for

reducing the size of the feature sets using Fisher distance measures [37] is described in

Section 5.2.2. Next, in Section 5.3 we present the ROI classification process using the

reduced feature sets of Zernike moments and a BPNN classifier. The results of this

object classification scheme are presented in Section 5.3. Finally concluding remarks

are given in Section 5.5.

5.2 Shape-Dependent Feature Extraction

5.2.1 Zernike Moments

Zernike moments are obtained using a complete set of complex polynomials defined

in the interior of the unit circle. For an image f(x, y), the Zernike moments of order

n with repetition m where |m| ≤ n and n− |m| constrained to an even number, are

given by

Anm =
n+ 1

π

∑
x

∑
y

f(x, y)V ∗nm(ρ, θ) (5.1)

where x2 + y2 ≤ 1 i.e. confined to the interior of the unit circle, ρ is the length of a

vector from the origin of the unit circle to (x, y) point, θ is the corresponding phase
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angle, and Vnm(ρ, θ) form a complete set of orthogonal complex polynomials over the

unit circle. These are defined by

Vnm(ρ, θ) = Rnm(ρ)ejmθ (5.2)

where the radial function Rnm(ρ) is given by

Rnm(ρ) =

n−|m|/2∑
s=0

(−1)s[(n− s)!]ρn−2s

s!(n+|m|
2
− s)!(n−|m|

2
− s)!

(5.3)

Note that we have Rn,−m(ρ) = Rnm(ρ) and also A∗nm = An,−m.The magnitude of the

Zernike moments are rotation invariant features. This is due to the fact that upon

rotation the complex Zernike moments only acquire a phase factor which does not

affect the magnitude of the moments. To make the moments translation invariant,

the image is transformed to a new coordinate system by moving the origin to the

centroid prior to the moment calculation. Then, the first-order moments of the new

image becomes zero. To achieve scale invariance, the image is resized by changing its

zeroth-order moment to a predetermined value. A general mapping of type f(x, y) =

g(x+ x
a
, y+ y

a
) where (x, y) are coordinates of the centroid of the original image g(x, y)

and a is a scaling parameter, is applied prior to computing the Zernike moments. The

scale and translation normalization processes affect two Zernike features namely |A00|

and |A11|. However, |A00| will be the same for all the images and |A11| will be zero.

As a result, these moments will not be included in the extracted feature vector and

the selected features start from the second-order moments. The great benefit of these

moments is their optimality property which is useful when they are used for object

classification. In addition, it has been shown that the Zernike moments [28, 27] are

more immune to noise and distortion than the regular moments.

For this study Zernike moments up to order n = 15 with m = (0, 2, 4..n) for even

n, and m = (1, 3, 5..n) for odd n were used to extract features from the detected

ROI. This generates a feature vectors of dimension 72 for each ROI. Feature sets

of these Zernike moments were built using mine-like object and background clutter
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ROI’s extracted from training runs outside the runs in Table 2.1. These training

runs include: SAM001 004, SAM002 008 (also used to train the detector), and new

runs SAM005 003, and SAM005 004. These four runs contain typical target ROI’s

having regular-shape silhouettes. The feature set built using the above mentioned

runs consists of 21 target ROI’s, and 21 randomly selected non-target ROI’s. The

features from these 42 ROI’s are extracted and compiled into a feature set, which is

then used as the training set for the BPNN classifier. Several mine-like objects and

background clutter ROI’s from the BPNN training set are shown in Figures 5.1(a)

and 5.1(b), respectively.

SAM001_004_172 SAM002_008_152 SAM005_004_164

(a) Three target ROI’s.

SAM001_004_172 SAM002_008_149 SAM001_004_173

(b) Three non-target ROI’s.

Figure 5.1: Several target and non-target ROI’s used for the BPNN training set.

5.2.2 Feature Space Dimensionality Reduction

Since this 72×1 feature vector is of rather large size we employed a distance measure

to reduce the size of the feature set by choosing only the top most discriminatory

features. To compute the most discriminatory features we compute the following
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Fisher distance measure [37] between every pair of features in the target (T) and

non-target (NT) training subsets;

Dn =
|µn|NT − µn|T |
σn|NT + σn|T

(5.4)

where Dn is the Fisher distance measure computed for the nth feature. In (5.4) µn|T ,

and σn|T are the mean of the nth feature for the target subset, and similarly for µn|NT ,

and σn|NT . The higher the value of Dn the more discriminatory the nth feature for

target vs non-target classification.

To reduce the feature space we first compute Dn for all n ∈ [1, 72]. Next, we order

the Dn in descending order, and normalize all Dn to the highest distance found. All

features that have normalized distance greater than 0.3 are then kept. This process

yields a reduced-dimensional feature space of size 36 which contains the dominant

Zernike moments as far as discrimination is concerned. The mean and standard devi-

ation of the dominant features of the BPNN training set are plotted in Figure 5.4(a)

for target and background training ROI’s.

We can see from Figure 5.4(a) that there is separation between the two reduced

dimensional feature sets. We can see that target features exhibit stronger peaks

around several features than those of the non-target features. This separation has

been found to be adequate for classification of the detected ROIs in this study.

5.3 ROI Classification

In this section, we will study and benchmark the performance of a classifier on the

EO-CCD imagery database given in Table 2.1. The classifier considered for this

project is a feed forward multi-layer BPNN [19], which uses an error back-propagation

method [19], to update the network’s connection weights in batch or iterative modes.

The whole process to update the connections weights involves applying the data to
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the input of the BPNN and propagating it, through the hidden layers and their non-

linear activation functions, in the forward direction to generate the outputs. The

outputs are then compared to some desired outputs (01 and 10 for target and non-

target respectively) that represent the class of the data samples and the errors are

back-propagated through the weights of the output and hidden layers, in a consecu-

tive fashion, to generate desired values for updating the hidden layer weights. The

objective function for finding the optimum weights is the average mean squared error

(MSE) at the output layer. There are several algorithms [19] that can be used to

minimize this objective function including the Resilient Back propagation, Conjugate

Gradient, Quasi-Newton and Levenberg-Marquard methods.

In BPNN, the choices of learning algorithm, initial values of network parameters,

network topology i.e. number of hidden layers and number of neurons in each hidden

layer as well as the type of activation function play dominant roles in the overall

performance. These choices are typically problem dependent and are made experi-

mentally by trying several structures, topologies and choices of initializations in order

to yield the optimally trained network. Additionally, perhaps the most important re-

quirement is the choice of an appropriate and representative set of features for train-

ing and testing of the BPNN classifiers. We designate a training set from 21 target

samples, and 21 non-target samples (42 total) from runs SAM001 004, SAM002 008,

SAM005 003, and SAM005 004 in order to train and validate the BPNN. The net-

work structure was 36 inputs, 36 first hidden layer neurons, 72 second layer hidden

layer neurons, and 2 output neurons. The neurons in the hidden layers and output

layer had sigmoidal activation functions.

The network is trained using the Levenberg-Marquardt training [19]. Training

stops when any of the following conditions occur:

1. The specified maximum number of epochs: EPOCHS is reached.
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2. The specified maximum amount of TIME has been exceeded.

3. Performance GOAL has been reached.

4. The performance gradient falls below MINGRAD.

5. The learning rate MU exceeds MU MAX.

6. Performance on the validation set has increased more than MAX FAIL times

since the last time it decreased (when using validation).

These training parameters are outlined in Table 5.1.

Table 5.1: MATLAB Neural Network Training Parameters

net.trainparam.param Value

epochs 25
time Inf
goal 0
max fail 6
min grad 1.0000e-010
mu max 1.0000e+010

The initialization function used to initialize the layer’s weights and biases is the

Nguyen-Widrow initialization algorithm [19]. This algorithm chooses values in order

to distribute the active region of each neuron in the layer evenly across the layer’s

input space. The MSE is used as the network’s performance measurement func-

tion, and the 42 training samples are divided randomly 50/50 between training, and

validation sets for training the network, and identifying the best trained network.

The purpose of validation is to check for the presence of over-training and optimally

select parameters in order to minimize the error. The validation set is formed by

randomly selecting 50% (half target, half non-target) of the 21 target samples, and

21 non-target samples (42 total) from runs SAM001 004, SAM002 008, SAM005 003,

and SAM005 004. Throughout this study we have held network parameters at their

default values within MATLAB.
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5.4 Classification Results and Observations

5.4.1 ROI Classification Results

In this section we present the performance of the classifier system on the testing set

in Table 2.1. The ROI detection results have already been presented in Chapters 3

and 4. Here we have a two-class ROI prediction problem, in which the outcomes are

labeled either as positive (P) or negative (N) classes. There are four possible outcomes

from a two-class classifier. If the classifier outcome is P and the actual value is also

P, then it is called a true positive (TP); while if the actual value is N then it is said

to be a false positive (FP). Conversely, a true negative (TN) is occurred when both

the predicted outcome and the actual are both N, and false negative (FN) is when

the predicted outcome is N while the actual is P. Based upon these, we summarize

the following performance measures associated with the ROI classification.

1. True Positive Rate (TPR) = TP/(TP+FN)

2. False Positive Rate (FPR) = FP/(FP+TN)

The confusion matrices for the classifier using the matched subspace and reduced-

rank Gauss-Gauss detectors ROI outputs are shown in Tables 5.2 and 5.3. We can

see that the classifier in the matched subspace case classifies far less objects than that

of the reduced-rank Gauss-Gauss. Since the network is trained with only 21 hand

picked target and non-target ROI’s the network is not able to cover the wide range

of non-target ROI scenarios encountered in the testing set. This can be solved by

using a classifier equipped to handle data imbalance between target and non-target

samples. An example of such a classifier is support vector machines (SVM) [19].

Figure 5.2 shows the ROC curve for ROI classification. We can see that the clas-

sifier performs worse on the ROI’s generated using matched subspace detector when

comparing to those of the reduced-rank Gauss-Gauss detector’s output. This result

is somewhat misleading since the classifier in the matched subspace case operates on
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Table 5.2: Confusion Matrix for Matched Subspace Output

truth P N Total

predicted

P 16 0 16

N 302 123 425

Total 318 123

Table 5.3: Confusion Matrix for Reduced-Rank Gauss-Gauss Output

truth P N Total

predicted

P 16 0 16

N 363 419 782

Total 379 419

far fewer ROIs than in the reduced rank Gauss-Gauss case. The classifier operating

on the matched subspace detector’s output achieves probability of correct classifica-

tion Pcc = 100% at the cost of probability of false alarm Pfa = 71%. The classifier

operating on the reduced-rank Gauss-Gauss detector’s output achives probability of

correct classification Pcc = 100% at the cost of probability of false alarm Pfa = 46%.

The classifier handles less ROI’s in the case of the matched subspace detector, and

since the BPNN is trained with a balanced training set the classifier does not properly

handle the large number of non-target ROI’s encountered in the testing set.
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Figure 5.2: ROI classification performance receiver operating characteristics (ROC)
for matched subspace detector, and reduced-rank Gauss-Gauss detector.
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5.4.2 Overall FOI Detection/Classification Results

We also look at the combined detector/classifier in terms of FOI performance. We

look to see how many FOI have been eliminated after the classifier has been invoked.

We look at the FOI performance due to the fact that the operator will evaluate the

output of the system by looking at FOI, and ROI within the FOI. The frame reduction

performance of the combined detector and classifier system for matched subspace

and reduced-rank Gauss-Gauss are presented in Tables 5.4 and 5.5, respectively. The

columns of Tables 5.4 and 5.5 are summarized by following:

1. FA FOI: The number of FOI false alarms per run using the stand alone detectors

(e.g. matched subspace and reduced-rank Gauss-Gauss detector alone).

2. FA FOI (w/ BPNN): The number of false FOI per run after extracting features

and applying runs to the BPNN classifier.

3. FOI Reduction %: The percentage false FOI reduced per run by using the

BPNN classifier

From Tables 5.4 and 5.5 we see that the BPNN reduced detected false FOI by 3.3%

when using the matched subspace detector, while the BPNN significantly reduced

detected false FOI by 15.1% when using the reduced-rank Gauss-Gauss Detector.

Along with Tables 5.4 and 5.5.

Figure 5.3 presents the overall frame detection ROC (FOI-ROC) for both matched

subspace, and reduced-rank Gauss-Gauss detectors. This figure shows the FOI ROC

for the stand alone detectors, as well as false alarm suppression achieved using the

BPNN. Upon evaluating the performance of the overall system on data of Table 2.1,

it was found that the matched subspace detector has a detection rate of Pd = 100%

at the cost of probability of false detection Pfd = 20.2%. Features extracted from the

matched subspace detector’s output passed to a BPNN classifier yields a true FOI
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Table 5.4: Detection Results for Matched Subspace Detection and Classification

Run FA FOI FA FOI(w/ BPNN) FOI Reduction %

SAM001 003 3/42 3/42 0.0%
SAM004 001 0/35 0/35 0.0%
SAM22 011 9/35 7/35 5.7%
SAM23 003 60/293 52/293 2.7%
SAM23 004 62/287 52/287 3.4%
SAM23 005 63/293 57/293 2.0%

TargetY8 001 31/136 27/136 2.9%
TargetY8 003 9/29 6/29 10.3%
TargetY8 004 1/32 0/32 3.1%
TargetY8 006 28/135 19/135 6.6%

Totals 266/1317 223/1317 43/1317
Percentage 20.2% 16.9% 3.3%

Table 5.5: Detection Results for Reduced-Rank Gauss-Gauss Detection and Classi-
fication

Run FA FOI FA FOI(w/ BPNN) FOI Reduction %

SAM001 003 2/42 1/42 2.3%
SAM004 001 7/35 4/35 8.5%
SAM22 011 12/35 10/35 5.7%
SAM23 003 142/293 73/293 23.5%
SAM23 004 92/287 75/287 5.9%
SAM23 005 129/293 66/293 21.5%

TargetY8 001 47/136 34/136 9.5%
TargetY8 003 11/29 2/29 31.3%
TargetY8 004 16/32 0/32 50.0%
TargetY8 006 28/135 22/135 4.4%

Totals 486/1317 287/1317 199/1317
Percentage 36.9% 21.7% 15.1%
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detection rate of Pd = 100% at the cost of Pfd = 16.8% hence reducing the detected

false FOI by 3.3%. The reduced-rank Gauss-Gauss detector has a detection rate of

Pd = 100% at the cost of probability of false detection Pfd = 36.9%, while features

extracted from the reduced-rank Gauss-Gauss detector’s output passed to a BPNN

classifier yields a true FOI detection rate of Pd = 100% at the cost of Pfd = 21.7%

hence significantly reducing the detected false FOI by 15.1%.
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Figure 5.3: FOI performance receiver operating characteristics (ROC), with and
without BPNN.

It is notable that the number of frames has been reduced, and the matched sub-

space detector-classifier finds 302 false ROIs, while the reduced-rank Gauss-Gauss

detector-classifier finds 366 false ROI’s. To look into the number of false ROIs de-

tected we generate the separation between the two reduced dimensional feature sets
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which have been detected, and classified using the matched subspace detector. Fig-

ure 5.4(b) shows a similar plot as in Figure 5.4(a) for the testing set as can be seen the

shape based features in the testing set overlap with those of the targets much more

than in the training set (Figure 5.4(a)), this also contributes to the large number of

false ROI’s detected in this testing set.

Figures 5.5 and 5.6 show examples of misclassified target and non-target ROI’s

(using the threshold value at the ROC knee points). Figure 5.5 shows examples of false

negative objects (Likelihood map and centered detected ROI). The detected ROI’s

in Figure 5.5 are centered for computation of Zernike moments One main reason for

false negatives is fact that partial targets can exhibit features which resemble small

background anomalies. Notice all examples of false negative objects in Figure 5.5 are

ROI’s of partial targets. Figure 5.6 shows example of false positive objects (Likelihood

map and centered detected ROI). False positives can occur when detected background

anomalies ROI’s are ’filled in’ (solid) and resemble an ROI of a mine-like object. As

mentioned before the main problem, is that impedes the classification process the

overwhelming number of non-target anomalies with similar features as those of partial

targets.

While these results are promising they highly depend on the primary detector’s

(e.g. matched subspace or reduced-rank Guass-Gauss) choice of an appropriate

threshold for robust silhouette definition. If the primary detector fails to output

complete silhouettes of detected mine-like or non-mine-like objects subsequent fea-

ture extraction, and classification become difficult, and may eventually fail.
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(a) Plot of mean and standard deviation for all classified object Zernike fea-
tures in the reduced ROI training feature set detected using the matched
subspace detector.
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(b) Plot of mean and standard deviation for all classified object Zernike fea-
tures in the reduced ROI testing feature set detected using the matched sub-
space detector.

Figure 5.4: Plot of mean and standard deviation for Zernike features in the reduced
feature sets
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SAM23_005_161 ROI

TargetY8_001_072 ROI

SAM23_003_162 ROI

Figure 5.5: Example of false negative (ROI’s). The likelihood map output from
matched subspace detector (left), and false negative ROIs (right).
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SAM001_003_039 ROI

SAM001_003_040 ROI

SAM23_003_141 ROI

Figure 5.6: Example of false positive (ROI’s). The likelihood map output from
matched subspace detector (left), and false negative ROIs (right).
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5.5 Conclusion

In this chapter we have shown how Zernike moments can be used in conjunction

with a BPNN classifier to classify ROIs from detected FOI as mine-like objects or

background anomalies. Zernike moments are extracted from each ROI in order to

characterize the shape of the detected ROI. Classification of the mine-like object, and

background clutter is decided based upon shape-based features extracted from ROIs

in question. A method for reducing the dimension of the feature space using Fisher

distance measures was also discussed that allows selection of the most discriminatory

features for this two-class classification problem. The process of ROI classification

using this reduced dimensional feature set of Zernike moments and a BPNN classifier

was then discussed.

The classifier operating on the matched subspace detector’s output achieves prob-

ability of correct classification Pcc = 100% at the cost of probability of false alarm

Pfa = 71%. The classifier operating on the reduced-rank Gauss-Gauss detector’s out-

put achives probability of correct classification Pcc = 100% at the cost of probability

of false alarm Pfa = 46%. However, the former case classifier handles less ROIs then

in the latter. On the other hand since the BPNN is trained with a balanced train-

ing set the classifier cannot successfully classify the large number of non-target ROIs

encountered in the testing set. This can be overcome by using a classifier which can

handle data imbalance issues, e.g. SVN [19].

The frame reduction capability of the combined detector-classifier system was also

demonstrated. The stand alone matched subspace detector achieves Pfd = 20.2%,

while the combine system acheives Pfd = 16.8%, the combine system reduces the

false detected FOI by 3.3% over that of the stand alone detector. The stand alone

reduced-rank Gauss-Gauss detector acheives Pfd = 36.9%, while the combine system

acheives Pfd = 21.7%, the combine system reduces the false detected FOI by 15.1%

over that of the stand alone detector. All FOIs can be succesfully identified, and
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target ROIs subsequently classified correctly using the methods implemented in this

research. It has been found that false positives and false negative misclassifications

occur when partial mine-like object ROIs are detected, or when small background

anomalies appear solid. The main problem is the overwhelming number of non-target

anomalies with similar features as those of partial targets. Very promising results

have been achieved, but room for improvement still exists in terms of optimizing

classifier paradigm and training.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

This research project involved the development of an underwater target detection and

classification system for electro-optical EO-CCD imagery data. Automatic recogni-

tion of underwater objects, such as mine-like objects, from CCD imagery poses many

technical problems. The targets in the EO-CCD imagery could be proud or par-

tially buried making the contrast and texture of mine-like objects and background

clutter very similar. The CCD sensor generates a sequence of snapshots taken from

ocean bottom as opposed to the STIL sensor, which used a LIDAR to scan an area

to generate contrast and range maps after the data rendering process [1] - [12]. Af-

ter analyzing the data it was found that different target detection and segmentation

methods are needed than those developed for the STIL imagery in [1], [4].

This work has led to successful development and implementation of an automatic

target recognition system comprising a block-based detector and ROI segmentation,

Zernike-based feature extractor and a BPNN based classifier for the new electro-

optical CCD imagery data. The detector takes a sequence of frames as an input and

produces detected frames (FOIs) numbers, object locations, and confidence scores

associated with each detected ROI as outputs. The detector also generates likelihood

maps indicating the location of each detected ROI as well as the binary silhouette of

each segmented object.

An application GUI has been developed (See Appendix A) which allows one to

study the performance of different detection systems. The GUI allows a user to build
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training sets for the detectors, analyze likelihood maps, segment ROI’s, and build

Zernike-based feature sets for a classifier all interactively.

The block-based detectors developed here have been shown to generate likeli-

hood maps with relatively high separation between mine-like object and background

blocks. The two-step process which primarily identifies FOI in a data run and then

extracts ROI within the FOI has been proven to be successful on the EO imagery

data considered in this work. The Gauss-Gauss detector’s rank-reduction method sig-

nificantly improved the definition of the likelihood maps generated by the detector.

The matched subspace detector is formed using an SVD on a preselected training

data matrix. The SVD generates optimal basis vectors used to generate a signal sub-

space which is used to project given samples and measure how those samples align

with the subspace. The matched subspace detector improves clutter suppression and

generation of complete silhouettes in segmented ROI’s. Both detectors remove, on

average, more than half the frames on the tested data with matched subspace having

Pd = 100% and Pfd = 20.2%, and reduced-rank Gauss-Gauss having Pd = 100% and

Pfd = 36.9%.

We have shown that ROI can be successfully segmented from the input frames,

and shape-based Zernike moments can be successfully used to identify a detected

ROI as a mine-like objects or background clutter using a neural network-based clas-

sifier. In this work we have employed robust feature extraction methods as well as

implemented a distance measure to reduce the dimensionality of the feature space of

Zernike moments used for ROI classification. The reduced feature sets extracted from

the detected ROI’s have been found to be separable for mine-like object discrimination

from background clutter.

The classifier operating on the match subspace detector’s output achieves prob-

ability of correct classification Pcc = 100% at the cost of probability of false alarm
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Pfa = 71%. The classifier operating on the reduced-rank Gauss-Gauss detector’s out-

put achives probability of correct classification Pcc = 100% at the cost of probability

of false alarm Pfa = 46%. The classifier handles less ROIs in the case of the matched

subspace detector, and since the BPNN is trained with a balanced training set the

classifier does not properly handle the large number of non-target ROIs encountered

in the testing set. This can be handled by using a implementing a classifier which is

trained on a much larger set of non-target ROI senarios.

It has been found that the use of BPNN classifier significantly reduces false FOI

detections by 15.1% for the reduced-rank Gauss-Gauss detector, and 3.3% for the

matched subspace detector. Using the detector and classifier together yeilds Pd =

100% with Pfd = 16.9% for the matched subspace detector and BPNN, and Pd =

100% with Pfd = 21.7% for the reduced-rank Gauss-Gauss detector and BPNN.

Overall, the algorithms developed in this research provided promising results for

underwater target detection and classification from CCD imagery. Among the de-

sirable characteristics of the proposed methods is the simplicity of the detection

algorithms for detecting FOI in a run, while automatically segmenting the ROI of

mine-like objects. Unlike the methods in [1], no preprocessing is needed here and one

algorithm is used for both FOI identification and ROI extraction. While the system

developed here focuses on the detection and classification of mine-like objects, it is

certainly applicable to other areas such as image-based fault detection and quality

control.

6.1 Future Work

Although, the block-based detectors developed in this thesis offer powerful tools for

detection of underwater mine-like objects, there are several important areas and ex-

tensions that can be pursued in the future. These include, but are not limited to:
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• The data used in this study was limited to only a few runs and types of un-

derwater targets. Ideally, the next step in the development of the block-based

detector would be to test the performance on more data to prove the usefulness

of the detection systems developed in this thesis in different environmental and

operating conditions. The testing on more difficult data sets provided by AST

or NSWC as well those including more man-made non-targets should also be

done in the future. More specifically, a study on the effect of different bottom

types, target orientations, CCD resolution, and SNR on the probability of de-

tection and false alarm rates would be insightful and help to illustrate the real

effectiveness of the detector for realistic underwater target detection problems.

• The main development in this thesis was devoted to the detection system design

for underwater target detection from EO imagery, while a small portion of the

work was carried out on the classification. Potential extension of this research

would be to study the use of other features for classification of targets and non-

targets, and background clutter. Additionally, different classification paradigms

can be tried to optimize the overall rates.

• The block-based detector developed in this research is applicable not only to

EO image detection, but also to other sensory systems which generate images,

i.e. magnetic, infrared, and sonar imagery. A study of its usefulness on these

types of sensing modalities would highly be valuable.

• Another possible extension to the target detection from EO imagery is multiple

hypothesis testing. There has been a large amount of research devoted to mul-

tiple hypothesis testing, especially in the areas of bioinformatics, genomics, and

brain imaging [38], [39]. The idea behind a multiple hypothesis testing approach

is that by performing multiple statistical tests where a number of hypotheses
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is rejected and another number of hypotheses is accepted allowing us to iden-

tify the detected ROI to belong to a particular type of objects (e.g. mine-like

objects versus natural/man-made clutter and background alone). By making

a small number of false discoveries and by controlling a suitable error rate one

can maximize the power of each test at the same time and hence reduce the

overall false alarm rate.

• This detector can potentially be improved by using the signal plus noise plus

interference model as presented in [15] and [40]. Further research using these

generalizations may improve detector performance, by designing detectors which

detect targets and remove structured interference from the frames.

• Another possibility for research lies in using different methods than SVD to

choose an optimal basis for signal and noise basis vectors used in the matched

subspace detector. Among possible methods for choosing the best basis [41,42].

• Room for improvement also exists in terms of optimizing the classifier paradigm

and training in order to account for the large number of detected ROIs, and

data imbalance issues. This could mean using classifiers such as SVM [19].
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APPENDIX A

GRAPHICAL USER INTERFACE (GUI)

A.1 Introduction

In this appendix, we provide a detailed description of the designed Graphical User

Interface (GUI) software to study the performance of block-based detection methods

on the EO-CCD data set, or any other digital image database. The GUI plays an

integral role in evaluating, and building training data sets for different detectors

tried in this project, as well as building feature sets to train a neural network-based

classifier. This Appendix outlines the features of the GUI, and serves as a tutorial

for it’s use.

The GUI allows a user to interactively select target and background blocks by

drawing boxes on a frame to be included in the detector’s training set. The GUI

also allows the user to measure likelihood values in the generated likelihood map and

displays them in a histogram plot below the likelihood map image (this is useful for

selecting detector thresholds). Additionally, the GUI allows the user to choose rank

of the detector, the type of detector, and compute the likelihood map of a test image

based on the selected training set. Once a training set is selected for the detector, the

user can measure the likelihood values for target and non-target blocks. The GUI can

then segment the likelihood map based on the selected threshold and extract object

ROI, and compute the Zernike-based features of those ROI. Finally, feature vectors

can be used to form a feature set to train and test a neural network-based classifier.

Another feature of the GUI is that it allows the user to import previously saved

training and feature sets, as well as export detector training and feature sets for later

use, if needed. This GUI uses the MATLAB programming language and toolboxes,
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and provides an easy to use software package allowing users who are not experts in

detection or neural networks to explore the methods discussed in this thesis.

A.2 GUI Usage Reference

The GUI implements block-based detection methods for EO-CCD data sets. The

overall capabilities of the GUI are: (1) easy and quick comparison of block-based de-

tectors in terms of evaluating and assessing separation between mine-like objects and

background clutter; (2) easy design of training sets for use with block-based detectors;

(3) add and save multiple training blocks for easy comparison of different training

sets; (4) visualize the output of the detector and measure likelihood separation be-

tween mine-like objects, non-targets, and background clutter. Figure A-1 shows the

main MATLAB figure of the GUI.

Figure A-1: GUI tool used for building training sets for the detector, and feature
sets for the classifier.

The following walks through typical usage of the GUI. Figure A-1 shows thew

main windows of the GUI which is mainly used to build training sets for a detector,

and apply the trained detector on test images in order to rapidly evaluate the detector.

Tables A.1 A.2 A.3 serve as a function reference for using the GUI. In this appendix
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GUI commands, controls, displays, and filenames are typed in Typewriter text.

The first task when using the GUI is to load images (a run) into the GUI from either

ALL TARGETS STRUC.mat or <run name> <frame#>.mat. This is accomplished using

the File menu.

The following steps outline how to use the GUI to build a new training set for

the detector, and evaluate the trained detector on a test image. In order to use the

block-based likelihood detector a ‘training set’ must be selected. The selection of a set

of blocks from targets and background is required in order to compute the covariance

matrices associated with H0 and H1 for Gauss-Gauss and to build and form H, and

PH for matched subspace. This process is subjective in that the blocks used for the

training must be hand picked from frames which are believed to represent a wide

range of target scenarios.

1. Load Targets using the the File menu File -> Load Targets or File ->

Open

2. Choose desired frame from the Target Frame Drop down menu.

3. Adjust detector parameters such as Block size, Rank, Detector Type, Zero

Mean, etc.

4. Use the Select Area button located on the southwest corner of the GUI to

bring up the H0(blue=non-target) and H1(red=target) draggable-resizeable se-

lection boxes within the Original Image panel.

5. Once the selection boxes are positioned use the Capture button to include the

data snippet in the current training set.

6. Use the Update button to evaluate the detector on the current (or desired)

Target Frame.
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7. Capture more data snippets by repeating steps 4, 5, and 6, while using the >>

button to exclude undesired data snippets.

8. Use the Red and Blue draggable-resizeable selection boxes located in the Detector

Image panel to measure the separation between target and non-target, using

Detector Measurement histogram.

9. Once satisfied with the training set export the training set using File ->

Export Training Set.

Once a training set is built and the user is satisfied with the detector separation

between H0 and H1, the user is ready to move on to building a feature set for the

classifier. The following step walk through how to build a shape based feature set for

a classifier based on Zernike moments.

1. Import (using File -> Import Training Set) or build a new detector train-

ing set.

2. Load Targets using the the File menu File -> Load Targets or File ->

Open.

3. Choose desired frame from the Target Frame Drop down menu.

4. Use the Update button to evaluate the detector on the current (or desired)

Target Frame.

5. Use the Red and Blue draggable-resizeable selection boxes located in the Detector

Image panel to decide on a value for the Threshold numeric box.

6. Use the Segment button to segment all objects above Threshold in the Detector

Image, and populate the Objects listbox.
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7. Designate objects to be in the classifier training set as either target, or non-

target using the Object-Type radio buttons, and then double clicking the de-

sired object in the Objects listbox.

8. Repeat steps 3-7 until the desired number of classifier training objects have

been selected.

9. Once satisfied with the classifier training set export the training set using File

-> Export Feature Set.

A.3 GUI Function Reference

Table A.1: File Menu
Item Description

Load Targets Loads targets from
ALL TARGETS STRUC.mat and displays
them in the Original Image panel

Open... File Open dialog for choosing
<run name> <frame#>.mat files

Print... Prints the entire MATLAB GUI figure
Import Training Set Imports previously exported detector

training set from *.txr files
Export Training Set Exports detector training set to *.txr file
Export Feature Set Exports zernike feature set to *.fxr file
Close Closes the GUI window

89



Table A.2: GUI Plots and Graphical Data Display

Item Type Description

Original Image Image displays a loaded original image selected
from Target Frame drop down

Detector Image Image displays detector output
Training Set Histogram Histogram shows pixel intensity value distribution for

target and non-target training set
Detector Measurement Histogram shows likelihood intensity value distribu-

tion for Red(target) and Blue(non-target)
boxes

J-Divergence Graph Real time plot of J-Divergence as a func-
tion of rank

Zernike Moments Graph Plot of The magnitude of Zernike mo-
ments up to 15th order

Segmented Object Image silhouette of currently selected detected
object

Covariance Image Plots detector multivariate covariance for
target and non-target training sets
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Table A.3: GUI Controls
Item Type Description

Target Frame Drop Down Menu displays a loaded original image selected
from Target Frame drop down

Block Size Drop Down Menu Used to select the training set and detec-
tor block size

Rank Drop Down Menu Used for selecting the detector rank (Log-
Likelihood/Gauss-gauss only)

Zero Mean Drop Down Menu how to zero mean each frame ¡Training set
mean— Run mean¿

Colormap Drop Down Menu Choose the color map of all images
Detector Type Drop down Menu ¡Log-Likelihood—Matched-Subspace¿
<< (Include) Button Include selected (excluded) data snippet

in training set
>> (Exclude) Button Exclude selected (included) data snippet

in training set
Select Area Button Generate area selection box in the original

image panel for training set block selection
(Red=Target, Blue=Non-Target)

Capture Button Capture current Red(target) and
Blue(non-target) selection boxes and
includes them in the current training set

Update Button Run the detector based on the current im-
age (based on current (include) training
set), and generate new detector image

Objects Listbox List of detected objects at the given
threshold. Each object is double clickable
to designate it as a target or non-target
in the feature set using the Object-Type

radio button.
Segment Button Segment objects from current detector im-

age using current threshold numeric box,
and populate Objects listbox

Threshold Numeric textbox Numeric value to threshold detector im-
age.

Object-Type Radio Button Used to designate selected object in
Objects list box as target or non-target
for object feature set

Training Objects Listbox Objects currently in the neural network
feature set
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