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ABSTRACT 

 

 

 

UNCERTAINTY IN HYDROLOGICAL ESTIMATION 

 

 

 

Detailed hydrometeorologic analyses and uncertainty assessments are needed to aid water 

resources decision-making, to account for upstream-downstream linkages and dominant process 

scale for integrated land and water resources management and planning. The water balance is a 

fundamental concept in hydrology that inspires many tools for predicting the specific 

components including precipitation, streamflow, soil moisture, and groundwater storage. A water 

balance is typically expressed as an equation that relates water inputs, outputs, and storage of a 

system. The water balance model is applied to analyze the allocation of water among 

components of the hydrologic system. Knowledge on the components composing inputs and 

outputs in a water balance are essential to understanding watershed processes. While methods to 

measure and model water balance components continue to improve, all components of the 

balance have substantial uncertainty.  

Methods to analyze a water balance should acknowledge these uncertainties and consider 

how they propagate through water balance calculations in order to better assist water resources 

decisions. This research investigated four water balance components: (1) snowpack sublimation, 

(2) precipitation as snow, (3) precipitation as rain, and (4) stream discharge in mountainous 

watersheds in order to examine and build our knowledge of uncertainty in the water balance for 

mountainous environments. The research presented in this dissertation supports a theme that 

hydrology is a highly uncertain science, where uncertainty is a result of the hydrologic 

community’s knowledge gap to accurately model physics of atmospheric and hydrologic 
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processes. A finding of this work is that no component of the water balance can be quantified at 

watershed scale without estimating he associated uncertainty. Results highlight that mean 

cumulative snowpack sublimation uncertainty is 41% with individual input variable uncertainties 

in the range of 1 to 29%; simulated to observed basin mean snow depth was estimated within 

15% for 10-years while extreme dry and wet years were within 5%; and forcing precipitation 

datasets used in hydrologic models to estimate streamflow have cumulative uncertainties in the 

range of 30 to 60%. Results of this dissertation identify the importance to account for uncertainty 

in water resources, i.e., Monte Carlo methods, to properly account for and quantify associated 

risks in water management and design infrastructure decisions. 
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1.0 INTRODUCTION 

 

1.1 Rationale 

 The validity of hydrologic research is largely determined by the accuracy of observed and 

estimated variables. It is accepted that there are errors in instrumentation, measurement, and 

modelling, so the question is what the relative magnitude and nature of errors might be. Thus to 

properly test hydrologic hypotheses, it is essential to make estimates of uncertainty in the 

reliability of measured, sampled, and modelled quantities.  

 The problem is a balance of ensuring precise spatial and temporal measurements, and 

objectively estimating the accuracy of measurements already collected. For a set of 

measurements, precision refers to the closeness of two or more measurements to each other, 

while accuracy refers to the closeness of a measured value to a standard or known value. 

Precision refers to the sampling method and technique, while accuracy involves the degree of 

closeness between a measurement result and the true value of the quantity. The estimation of 

accuracy requires an understanding of the potential sources of uncertainty and knowledge of the 

relative magnitudes of uncertainty.  

 In hydrologic measurements, accuracy and precision are dependent on the measurement 

and model scales (Blöschl, 1999). Since larger regional hydrologic processes are to a great 

degree the resultant of processes at smaller scales, models representing these physical processes 

can in complexity considerably from one scale to another (Heuvelink, 1998; Blöschl, 1999). 

Blöschl (1999) addressed measurement scale and the relevance to sampling pattern with the scale 

triplet: spacing, extent, and support (Figure 1.1). Spacing is termed the distance between 

samples; extent is referred to the overall region of the data; and support, is defined as the size or 
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area represented by the sample (Blöschl et al., 1991; Blöschl, 1999). The model scale consists of 

a similar scale triplet, but depends on the spatial properties of the model (Blöschl et al., 1991; 

Blöschl, 1999). Heuvelink (1998) listed three reasons in which models representing physical 

processes can change scale: (i) different processes dominate and at different scales, different 

processes are ignored in simplification for model development; (ii) input data are often absent or 

of much lower quality at large scales which results in a tendency to use simpler, empirical 

models at larger scales; and (iii) the support of the inputs and outputs of a model vary with 

change of scale, and this affects the correlation between them. Issues of scale are inherent in all 

hydrologic processes. Sampling and modelling techniques need to consider the natural variability 

of the measured process and account for the measurement scales and model scales in order to 

accurately interpret the data, and model the physical processes. 

 

Figure 1.1. Definition of the scale triplet: spacing, extent, and support (Figure from Blöschl, 

1999). 

 

 To investigate hydrologic errors, two basic approaches can be taken: (i) an analytical 

approach that considers in detail the potential sources of error and analyzes the nature of the 

component errors making use of available data, research results, and theoretical considerations, 

and (ii) an experimental approach that involves extensive comparative field studies (Dickinson, 
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1967; Montanari, 2007). A combination of the analytical and experimental approaches would 

provide the best information on measurement and model errors of the hydrologic system. It is 

important that every hydrologic study consider at least one approach for studying uncertainty and 

the effect of uncertainty in that study. 

 

1.2 Water Balance Components 

As hydrologic processes are affected by increasing climate variability and climate 

change, the need for detailed hydrometeorologic analyses and uncertainty measures are needed 

to aid climate-influenced water resources decisions. Water balance models are used to analyze 

the allocation of water among components of the hydrologic system. Knowledge on the 

components composing inputs and outputs in a water balance are essential to understanding 

watershed processes. The main components of a water balance are precipitation, streamflow, 

evaporation, transpiration, sublimation, and storage. Precipitation, as rain and/or snow, is the 

primary input to a watershed. Streamflow, evapotranspiration, and sublimation are the main 

outputs from a watershed. Storage within the watershed are in soil water, groundwater, lakes, and 

icefields, glaciers and permafrost. The most basic water balance equation is the continuity 

equation (Dingman, 2002), which states that over any time interval the difference in the volume 

of water entering a system, I, and leaving a system, O, must equal the change in the volume of 

water stored in the system, ΔS. 

𝐼𝐼 − 𝑂𝑂 =  ∆𝑆𝑆,       equation 1.1 

An expanded and more detailed expression of the water balance equation for a region and 

time period is: 
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𝑃𝑃𝑟𝑟 + 𝑃𝑃𝑠𝑠 + 𝐺𝐺𝑖𝑖 + 𝑅𝑅𝑖𝑖 − (𝑄𝑄 + 𝐸𝐸𝑡𝑡 + 𝐸𝐸𝑠𝑠 + 𝐺𝐺𝑜𝑜 + 𝑅𝑅𝑜𝑜) =  ∆𝑆𝑆,   equation 1.2 

where Pr is precipitation as rain, Ps is precipitation as snow, Q is stream discharge, Et is 

evapotranspiration, Es is snowpack sublimation, Gi is groundwater in, Go is groundwater out, Ri 

is snow redistribution in, Ro is snow redistribution out and S is storage. Quantifying water 

balance components, through measurement and estimation are crucial to understanding the 

hydrology of a watershed.  

 Accurate precipitation data are essential for quantifying input for water balance studies, 

therefore measurements need to be as accurate as possible. Rainfall, snowfall, and snowcover are 

not homogenous, are highly variable, and hard to estimate in complex terrain (Johnson and 

Hanson, 1994; Daly et al., 1994). In snow dominated watersheds, such as alpine and subalpine 

regions, it is extremely important to gain an understanding on solid precipitation quantity, 

variability, and distribution of snow water equivalent (SWE). Mountain topography creates 

complex patterns of snow distribution, controls snow accumulation, and snow ablation (Elder 

and Dozier, 1990; Balk and Elder, 2000; Erxleben et al., 2002; Erickson et al., 2005, Fassnacht et 

al., 2018). These interactions are critical for understanding basic alpine and subalpine hydrology 

and for modelling both the timing and magnitude of runoff. In general, precipitation and 

streamflow are the main water balance components measured in time and space. 

 

1.2.1 Precipitation Gauges 

 Typical water balance studies measure both solid and liquid precipitation quantities with 

a standard precipitation gauge. Precipitation gauges, shielded and unshielded, inherently 

underestimate total precipitation due to local airflow, wind undercatch, wetting, and evaporation 
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loss (e.g., Larson and Peck, 1974; Goodison et al., 1998; Fassnacht, 2004; Roe, 2005). Wind-

induced turbulence over the gauge orifice accounts for the greatest systematic error in 

precipitation measurements, this component accounts for 2–10 percent error for rain and 10-50 

percent error for snow (Groisman and Easterling, 1994). Precipitation is not measured 

extensively across most watersheds, especially watershed in complex terrain with only a few or 

no gauge measurements available. To supplement limited measurements, regional observed 

datasets (National Weather Service, Global Historical Climatology Network, Snow Telemetry,  

Remote Automatic Weather Stations, …) and regional modeled datasets (PRISM, Livneh, 

Daymet, NARR, …) are available but often not representative of the quantity and distribution 

within a small-scale. 

 In addition, based on accessibility most precipitation gauges are located at lower 

elevations, do not account for variable orographic influences, and often record less precipitation 

than occurs in higher elevations (Groisman and Easterling, 1994; Roe, 2005). Precipitation gauge 

measurements need to be adjusted for wetting loss, evaporation loss, wind undercatch, and 

orographic influences before actual ground precipitation can be estimated (e.g. Daly et al., 1994; 

Goodison et al., 1998). Even after correction methods have been applied, large uncertainties and 

potential data errors can still be present. The most common and largest errors associated with 

precipitation gauges are those due to wind effects for both shielded and non-shielded gauges 

(Kochendorfer et al., 2017). Point measurement errors can be in the range of 5 to 15 percent for 

long-term data, and as high as 75 percent for individual storms (Winter, 1981). 
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1.2.2 Evapotranspiration 

 Evaporation is the process by which water changes from a liquid to a vapor. 

Transpiration is the loss of water from plant leaves by evaporation through the leaf stomata. 

Combined, evaporation and transpiration are termed evapotranspiration. Evapotranspiration rates 

are dependent upon temperature, vapor pressure, wind velocity, and the nature of the surface 

(Viessman and Lewis, 2003). Evapotranspiration is an important process within watershed 

studies because it can be a source of significant water loss to the atmosphere. Methods for 

estimating evapotranspiration include budget methods, such as energy budget and water budget; 

comparative methods such as evaporation pans; and aerodynamic methods, such as eddy 

correlation, gradient, and mass transfer (Winter, 1981). Previous research in western mountain 

watersheds has documented annual evapotranspiration values between 100-800 mm (Kattelmann 

and Elder, 1991; Hasfurther et al., 1994; Ruess et al., 1995). Antal et al., (1973) compared five 

evaporation methods (Penmans's formula, Meyer's formula, Daltons Law, adjusted Meyer's 

formula, and formula-based Lake Ferto in Hungary) to the energy balance evaporation method 

and showed that annual evaporation values deviate 5 percent from the energy balance method, 

and that monthly values deviate 10 to 15 percent from the energy balance method. 

 

1.2.3 Snowpack Sublimation 

 Sublimation is the conversion between the solid phase and vapor phase, with no 

intermediate liquid stage. Sublimation of snow in windswept alpine/subalpine regions is an 

important hydrological process because snowpack sublimation can account for significant water 

losses to the atmosphere. Methods for estimating sublimation from a snowpack are energy 
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budget methods, snow evaporation pans, and aerodynamic profile methods, such as the latent 

heat flux and sensible heat flux.  

Sublimation losses from the snowpack have been estimated for various environments and 

can constitute a significant component of the water balance, with net sublimation losses 

estimated between 10-35% of the seasonal snow accumulation, specifically: 12-33% in the 

Canadian prairies (Woo et al., 2000), 19% in the Wyoming Rocky Mountains (Hultstrand, 2006), 

15% in the Colorado Rocky Mountains (Hood et al., 1999), 28% in north central Colorado 

Rocky Mountains (Sextone et al., 2018), and 18% in the Sierra Nevada Mountains (Kattelmann 

and Elder, 1991). Over a 40-day period in the Colorado Rocky Mountains, total snowpack 

sublimation was greater than measured precipitation (Molotch et al., 2007). 

At regional macroscales, land surface models (LSM) use a resolution of 5 to 30 km to 

simulate cold season processes. LSM generate large variability in net sublimation: 0-15% based 

on twenty-one LSM in a grassland catchment Valdai, Russia (Slater et al., 2001), 10-35% based 

on the Variable Infiltration Capacity (VIC) model for Imnavait Creek, Alaska (Bowling et al., 

2004), and 8-20% based on the MOSAIC, Noah, VIC models over the Northwest River Forecast 

Center's domain (Oregon, Washington, Idaho) (Sheffield et al., 2003). The SnowModel (Liston 

et al., 2006) used in the Upper Colorado River Basin estimated sublimation that ranged from 0-

4% in the low valleys to 20-30% in the high mountains, 28% in north central Colorado Rocky 

Mountains (Sextone et al., 2018), with isolated areas exceeding 30% of annual precipitation 

(Phillips, 2013). Differences in regional sublimation estimates are attributed to coarse model 

scale, representation of small scale variability, and snowpack model algorithms (Sheffield et al., 

2003; Pan et al., 2003; Bowling et al., 2004; Reba et al., 2012; Svoma, 2016; Sexstone et al., 

2016). 
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1.2.4 Streamflow 

 Streamflow data are one the most important water balance components, the data are used 

to indicate the present hydrologic conditions and the discharge amounts of a watershed and to 

check methods for estimating present and future conditions. We tend to have the most 

confidence in streamflow measurements, as they represent an area that provides integrated 

process insight (Kampf et al., 2020). Streamflow has been studied extensively over the years 

(Stähli et al., 2011), and a number of devices and methods have been developed to measure 

streamflow (Chow, 1959; King and Brater, 1963; Henderson, 1966; Stähli et al., 2011). The most 

common stream gauging methods are direct measurement (volumetric, velocity-area, and 

dilution) and indirect measurement (empirical rating curves, theoretical rating curves from weirs 

and flumes) (Winter, 1981; Dingman, 2002). New technologies have resulted in alternatives to 

current meters. Acoustic velocity meters and acoustic Doppler current meters were designed to 

measure current velocities, depth, and area of a river along the water surface instantaneously to 

provide estimates of stream discharge (Duncker et al., 2006; Rehmel, 2007; Jongkook et al., 

2016). 

 Water level or stage height is typically measured with a staff gauge or water level 

recorder. Stage height is converted to discharge either by stream gauging relationships or with 

calibrated structures such as flumes and weirs. Measurement error associated with stage readings 

and flumes are considered to be less than 5 percent (Winter, 1981). Errors associated with pygmy 

meter discharge measurements are +/-3.5 percent (Herschy, 1973). Errors associated with 

acoustic velocity meters and acoustic Doppler current meters are not statistically different from 

current meter measurements at a 95% confidence level (Duncker et al., 2006; Rehmel, 2007). 
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The largest errors tend to be with high flows, where the rating curve is less defined and the cross-

section may change (McKerchar, 2003). 

 

1.2.5 Groundwater 

 Groundwater is the part of hydrologic cycle that is infiltrated into the ground through the 

soil until it reaches impermeable layer that is saturated with water. Water in the ground is stored 

in the spaces between soil and/or rock particles. Groundwater moves through the sub-surface and 

can eventually seep into streams and lakes; it constitutes surface water baseflow (Dingman, 

2002). Knowledge of groundwater conditions in a region provide and understanding in the 

fluctuations of streamflow and lake levels, particularly during dry periods. Quantifying 

groundwater is difficult because flow rates are determined largely by the underlying geology, 

which varies spatially and is under-sampled at the relevant process scales. 

 Based on field studies in mountainous areas, the percentage of groundwater contribution 

to streams, has been reported between 30-75% (Hood et al., 2006 and references therein), 

illustrating substantial variability in groundwater contribution. Groundwater was considered 

negligible for two small lakes in the Flattops Wilderness Area (Michel et al., 2002), and Winter 

(2003) stated that Loch Vale, Colorado and Emerald Lake, California were strongly dominated 

by surface flows. Typically, groundwater inflow and outflow are not measured, most often an 

assumption is made that these terms are negligible (Istanbulluoglu et al., 2012; Kampf et al., 

2020). This assumption is a simplification to the water balance equation in that groundwater is 

accounted for in the residual error term.   
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1.2.6 Storage 

Water storage is an essential part of the hydrologic cycle, especially for deep soils, 

groundwater, lakes, annual snowpack, glaciers, and vegetation. Storage in vegetation is small in 

total volume (compared to that stored elsewhere) but can have a significant impact, in the short-

term, specifically on vegetation water use. For example, diurnal changes in stem storage of water 

in trees have a role to play in diurnal patterns of water use by woodlands and forests. Hood et al. 

(2006) used the change in lake storage as part of the water balance to quantify the importance of 

groundwater. The Thornthwaite monthly water balance applies the change in the storage 

component to represent soil moisture change and to estimate actual evapotranspiration 

(Thornthwaite, 1948). 

Storage is generally assumed to be the residual in water balance studies, due to 

discrepancy in the water balance measurement or computation errors, components not 

considered, or unknown errors. A small residual value can indicate that the components used in 

the design water balance are in fact in balance.  

 

1.3 Uncertainty, Calibration and Evaluation of Water Balance Components 

Research on water balance components can be highly uncertain, the main reason being 

that we still do not understand the fundamental dynamics of many hydrological processes and 

cannot measure and model them accurately (Kampf et al., 2020). Most hydrological processes 

are not observed in detail, consequently accurate mathematical representation of hydrologic 

volumes, initial boundary layer conditions and physical processes cannot be represented 

accurately. Mantovan and Todini (2006) have identified sources of water balance uncertainties 
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as: (i) data uncertainty, (ii) model parameter uncertainty, (iii) model structure uncertainty, and 

(iv) natural uncertainty. 

 

1.3.1 Data Uncertainty 

The performance of hydrological models is mainly affected by data uncertainty. This 

uncertainty arises from errors in the observed data, particularly data used for model calibration. 

The errors may be linked to the quality of the data which depends on the type and conditions of 

measuring instruments as well as data handling and processing. Precipitation and streamflow are 

usually the major sources of input and output data that are used to calibrate and evaluate model 

uncertainty with the spatial and temporal precipitation uncertainty being large. 

 

1.3.2 Model Parameter Uncertainty 

Model parameter uncertainty is also known as model specification uncertainty. This 

relates to the inability to converge to a single best parameter set using available data, which leads 

to parameter identifiability problems (Beven, 2001; Wagener et al., 2004). The parameters are 

optimized so that the model results are as good as possible (Beven, 2001; Scharffenberg et al., 

2018). Uncertainty then depends on how parameters are optimized (peak flow, volume, 

residuals) and results are applied (Scharffenberg et al., 2018; Pokorny et al., 2021).  
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1.3.3 Model Structure Uncertainty 

Model structure uncertainty is introduced through simplifications and/or inadequacies in 

the representation of physical processes in a given model. It also originates from inappropriate 

assumptions within the modelling procedure, inappropriate mathematical description of these 

processes (Beven, 2001), and the scale at which processes are represented in the model 

(Heuvelink, 1998; Blöschl, 1999; Koren et al., 1999). However, no matter how exact the model 

is calibrated, there always exists discrepancy between model outcome and observed data (Chiang 

et al., 2007; Beven, 2006). Hydrologic models typically give attention only to the dominant 

processes perceived to be important by the modeler, typically precipitation and streamflow, 

thereby possibly ignoring other processes, which may nevertheless affect model simulation 

results. This type of uncertainty is usually identified through assessing the model’s ability to 

represent properties of the hydrograph (Butts et al., 2004) and can be quantified using goodness-

of-fit methods during model calibration, such as the Nash-Sutcliffe model efficiency (NSME) 

(Nash and Sutcliffe, 1970; Chiang et al., 2007) and the Kling-Gupta efficiency (KGE) (Gupta et 

al., 2009). 

 

1.3.4 Natural Uncertainty 

Natural uncertainty arises due to the randomness of natural processes (Beven, 2001). This 

uncertainty can therefore be linked to data uncertainty, where by the quality and type of data 

plays a significant role in determining the amount of uncertainty. For example, the spatial and 

temporal randomness of rainfall can somewhat be represented explicitly when using good rain 

gauge networks and radar rainfall data (Segond, 2006). In addition, scaling issues, spatial 
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representativity and interpolation methods are typically represented within natural uncertainty 

(Heuvelink, 1998; Blöschl, 1999). 

 

1.3.5 Uncertainty Estimation Techniques 

The most common uncertainty estimation technique used in the literature is the 

generalized likelihood uncertainty estimation (GLUE) (Beven, 2001). GLUE is based on the 

estimation of probabilities of different outcomes using likelihood measure. In the GLUE 

methodology, a prior distribution of parameter values is used to generate random parameter sets. 

Each sampled set is used to drive the model to produce a sample result, such as, a Monte Carlo 

simulation (Melching and Singh, 1995). Each result is compared with the available calibration 

data using a quantitative likelihood measure of performance. 

A likelihood measure in the GLUE approach can be any measure of performance as long 

as better performing models attain higher values and the sum taken over all sampled parameter 

sets is unity (Wagener et al., 2004), such that non-behavioral parameter sets have a likelihood of 

zero, i.e., for those parameter sets that fall below a given threshold value. Only the simulations 

with a likelihood measures greater than zero are used for predictions, and these predictions are 

weighed by the likelihood measure associated with that simulation (Beven, 2001; Wagener et al., 

2004). 

Uncertainty in the parameter values and input data are propagated and represented in the 

model output in the form of confidence limits at specified percentiles (Wagener et al., 2004). The 

GLUE methodology thus requires sets of decisions to be made, i.e. (i) the model or models to be 
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included in the analysis, (ii) a feasible range for each parameter, (iii) a sampling strategy for the 

parameter sets, and (iv) an appropriate likelihood measure. 

As a GLUE model explores how model performance varies over the parameter, results 

may be used for parameter sensitivity analysis. This seeks to identify sensitive parameters or 

those which determine whether a model result has a high-likelihood or low likelihood. A 

quantitative measure such as the nonparametric Kolmagorov-Smirnov (KS, or d) statistic is often 

used to assess the significance of the differences between the likelihood or non- likelihood of the 

parameter values. 

The main criticism of GLUE is that the selection of the threshold used in separating 

acceptable and unacceptable simulations is purely subjective. In addition, GLUE use an informal 

likelihood estimate as compared to applying a true maximum likelihood estimate of the 

parameters to benchmark model performance (Mantovan and Todini, 2006; Vrugt et al., 2009). 

Monte Carlo simulation uses algorithmically generated pseudo-random numbers which 

are forced to follow a predetermined probability distribution (Hastings, 1970; Farrance and 

Frenkel, 2014). With input variations simulated by random numbers, the functional relationship 

provides the corresponding variations in the output in a manner which provides its probability 

distribution. Summary of the Monte Carlo simulation output can provide uncertainty estimates. 

Other uncertainly methods used in literature include those based on formal Bayesian 

theory such as Markov Chain Monte Carlo (MCMC), which are a slight deviation from the 

GLUE methodology. One such method is the DiffeRential Evolution Adaptive Metropolis 

(MCMC-DREAM) (Vrugt et al., 2009). Unlike GLUE, MCMC DREAM simulation uses a 

formal likelihood function based on maximum likelihood theory, appropriately samples the high-
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probability-density region of the parameter space, and separates likelihood from non-likelihood 

solutions using a cut-off threshold that is based on the sampled probability mass, and thus 

underlying probability distribution (Vrugt et al., 2009). 

Another technique based on the Bayesian theory is the particle filter algorithm (Smith et 

al., 2008). In this approach, the model parameters are assumed to vary in time, and a filtering 

process is used to identify a unique parameter distribution needed at each time to reproduce the 

observed data in an iterative way. The treatment of model parameters as varying in time is 

another difference between this and other approaches such as GLUE mentioned above. 

 

1.3.6 Calibration 

Since most of the parameters used in conceptual models do not have a direct physical 

interpretation, they must be estimated through calibration with observed data, so as to improve 

the model fit (Wagener et al., 2004). Calibration is defined as the process of adjusting parameter 

values in order to optimize model performance according to predefined criteria. This is normally 

achieved by optimization of parameter values through comparing the results of repeated 

simulations with available data. The parameter values are adjusted between each run of the 

model, either manually by the modeler or by computerized optimization scheme until some best 

fit parameter set has been found (Beven, 2001). These optimization schemes involve measures of 

goodness of fit or objective functions.  
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1.3.7 Validation  

In the literature, model validation, verification, or evaluation, depending on the author, is 

a process of demonstrating that a given site-specific model is capable of making acceptable 

predictions for periods outside a calibration period. This is usually in the form of a split-sampling 

test where a data set is divided into two periods of calibration and validation, etc. (Klemes, 1986, 

Wagener et al., 2004).  

 

1.3.8 Stationarity  

Stationary means that hydrological variables fluctuate randomly whose probability 

distribution does not change when shifted in time (Milly et al., 2008; Bayazit, 2015), i.e. 

parameters such as mean and variance do not change over time. Non-stationary means that 

hydrological variables probability distribution does change when shifted in time, non-stationarity 

has been attributed to climate change, climate variability, and land use changes (Milly et al., 

2008; Bayazit, 2015).  

Montanari and Koutsoyiannis (2014) stated all hydrological systems are time-invariant 

because the data analyses and results are interpreted on the basis of past experience and data. 

Addressing non-stationarity in the hydrologic system is a somewhat new concept, but addressing 

it will benefit planning, design, and management strategies for water resources projects making 

them more flexible, adaptable, and robust (Matter, 2010). 
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1.3.9 Objective Functions  

Objective functions are measures of model performance, and often based on either 

measures derived from statistics or based on hydrological aspects of the model performance 

(Wagener et al., 2004). This is usually done in combination with visual inspection of the 

calculated output. There are several objective functions used in hydrology. These include the 

mean absolute error (MAE) method, the Root Mean Square Error (RMSE) method, Willmott’s 

index of agreement (D), the NSME, and the KGE (Table 1.1). The aim of these objective 

functions is to minimize the magnitude of the residuals. 

 

Table 1.1. Typical objective functions used to test goodness-of-fit between observed and 

simulated data. Where 𝒛𝒛(𝒙𝒙𝒊𝒊) is the observed value at location i, 𝒛𝒛�(𝒙𝒙𝒊𝒊) is the predicted value at 

location i, 𝒛𝒛(𝒙𝒙𝒊𝒊) is the mean observed value at location i, 𝝈𝝈𝒐𝒐𝒐𝒐𝒐𝒐 is standard deviation in 

observations, 𝝈𝝈𝒐𝒐𝒊𝒊𝒔𝒔 is standard deviation in estimates, 𝝁𝝁𝒐𝒐𝒐𝒐𝒐𝒐 is observation mean, 𝝁𝝁𝒐𝒐𝒊𝒊𝒔𝒔 is estimate 

mean, and n is the number of samples. 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 =  �1𝑛𝑛∑ [𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧̂𝑧(𝑥𝑥𝑖𝑖)]2𝑛𝑛𝑖𝑖=1   

𝑅𝑅𝑀𝑀𝐸𝐸 =  
1𝑛𝑛∑ [|𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧̂𝑧(𝑥𝑥𝑖𝑖)|]𝑛𝑛𝑖𝑖=1   

𝐷𝐷 =  1 − ∑ ∑ �𝑧𝑧(𝑥𝑥𝑖𝑖)−𝑧̂𝑧(𝑥𝑥𝑖𝑖)�2𝑛𝑛𝑖𝑖=1𝑛𝑛𝑖𝑖=1∑ ��𝑧𝑧(𝑥𝑥𝑖𝑖)− 𝑧𝑧(𝑥𝑥𝑖𝑖) �+|𝑧̂𝑧(𝑥𝑥𝑖𝑖)− 𝑧𝑧(𝑥𝑥𝑖𝑖)|�2𝑛𝑛𝑖𝑖=1   

𝑁𝑁𝑆𝑆𝑅𝑅𝐸𝐸 = 1 −  
∑ �𝑧𝑧(𝑥𝑥𝑖𝑖)−𝑧̂𝑧(𝑥𝑥𝑖𝑖)�2𝑛𝑛𝑖𝑖=1∑ �𝑧𝑧(𝑥𝑥𝑖𝑖)−𝑧̂𝑧(𝑥𝑥𝑖𝑖)�2𝑛𝑛𝑖𝑖=1   

𝐾𝐾𝐺𝐺𝐸𝐸 = 1 −  �(𝑟𝑟 − 1)2 + (
𝜎𝜎𝑠𝑠𝑖𝑖𝑠𝑠𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠 − 1)2 + (

𝜇𝜇𝑠𝑠𝑖𝑖𝑠𝑠𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 − 1)2    
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The above objective functions have some limitations. By using the squared residuals or 

variance, they tend to exaggerate the influence of larger errors, which tends to be equivalent to 

exaggerating the influence of higher events, and putting relatively little weight on lower events 

(Perrin et al., 2001, Wagener et al., 2004).  

Some investigators suggest the importance of studying the characteristics of the residual 

distribution in evaluating the suitability of a model structure, e.g. (Yapo et al., 1996; 

Mroczkowski et al., 1997; Wagener et al., 2004). This is based on the fact that if a fit produces 

residuals consistent with the random error assumptions, then the model has extracted all useful 

information from the data leaving only noise in the residuals (Wagener et al., 2004). This 

includes assessing: (i) whether the variance of the residuals increase with increasing values 

(which is known as heteroscedasticity) or increase with decreasing values (homoscedastic), (ii) 

whether the residuals reveal long term effects (trends) or dependency in time, (iii) how close the 

residual distribution is to a normal distribution, and (iv) how the residuals are correlated in time. 

The question of which objective function to use normally depends on the objective of the 

study. However, it is evident from the literature that using only one objective function to validate 

the calibration of a model is not suitable, instead the use of several objective functions to validate 

the model and its performance is recommended (Littlewood, 2002). 

 

1.4 Hypothesis & Objectives 

This research intends to broaden the understanding of uncertainty in hydrological 

estimation by presenting the components that create uncertainty, and quantifying uncertainty 

associated with specific water balance components and the techniques used to estimate these 
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quantities. More specifically, the research objectives will focus on the uncertainty associated 

with calculating snowpack sublimation (Es), the accuracy of sampling design methods for 

quantifying spatial snow distribution (Ps), and the uncertainty and sensitivity that spatial rainfall 

data (Pr) have on streamflow(Q). This research will use scientific methods to build upon and 

advance the current knowledge of water balance studies in mountainous environments and strive 

to improve the hydrologic communities view of water resources in terms of hydrologic error and 

uncertainty.  

 

1.5 Research Overview 

In recent years, the hydrological community has expanded studying the function and 

dynamics of individual basins to develop an integrated approach to understand interactions 

different hydrological processes have over various scales. In large river basins, processes that 

influence the hydrology in the headwater areas can have a profound impact on downstream 

hydrology hundreds of kilometers away. Thus, resource management practices in headwater areas 

can have both beneficial and adverse effects on downstream communities. Understanding these 

upstream-downstream linkages and the dominant process scales is an essential basis for integrated 

land and water resources management and planning in a river basin. It is particularly critical in 

basins with substantial elevation differences, where the climatic and topographic conditions at the 

source of the river are quite different to those downstream. Understanding such linkages and the 

scale of the processes is a challenge, especially across much of the mountainous Western United 

States. 

The research objectives and hypotheses outlined above are investigated through three 

separate research papers. First, a Monte Carlo analysis is used to evaluate the sensitivity of 
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modeled sublimation to uncertainties of the input variables and parameters for three (average 

snowpack in 2005, deep snowpack in 2011, and shallow snowpack in 2012) winters. Second, ten 

years of surveyed snow depth data were combined with physiographic variables and were used to 

a derived statistical snow depth model to assess snow depth variability and uncertainties in derived 

spatial snow depth estimates. Third, four spatial precipitation estimates are used to generate high 

spatial and temporal resolution precipitation estimates for input into a hydrologic model to assess 

streamflow variability from the different precipitation inputs. 

While methods to measure and model water balance components continue to improve, all 

components of the balance have substantial uncertainty at the watershed scale. Approaches for 

analyzing the water balance should acknowledge these uncertainties and consider how they 

propagate through water balance calculations in order to better assist water resources decisions. 

This research focused on the four water balance components (Figure 1.2): i) snowpack sublimation 

(Es), ii) precipitation as snow (Ps), iii) precipitation as rain (Pr), and iv) stream discharge (Q) in 

order to examine the uncertainty associated with calculating snowpack sublimation; to examine 

the uncertainty associated with estimated snow depth distribution; and to examine the uncertainty 

different precipitation estimates have on streamflow to assess streamflow variability to build 

knowledge on the uncertainty in water balance studies. 
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Figure 1.2. Graphical representation of water balance components and measurement 

instrumentation investigated in this dissertation. Where Pr is precipitation as rain, Ps is 

precipitation as snow, Gi is ground water input, Ri snow redistribution input, Q is stream 

discharge, Et is evapotranspiration, Es is snowpack sublimation, Go is groundwater out, Ro is 

snow redistribution out and S is storage. 
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CHAPTER 2.0 - THE SENSITIVITY OF SNOWPACK SUBLIMATION ESTIMATES 

TO INSTRUMENT AND MEASUREMENT UNCERTAINTY PERTURBED IN A 

MONTE CARLO FRAMEWORK 

 

2.1 Summary 

 The bulk aerodynamic flux equation is often used to estimate snowpack sublimation since 

it requires meteorological measurements at only one height above the snow surface. However, to 

date the uncertainty of these estimates and the individual input variables and input parameters 

uncertainty have not been quantified. We modeled sublimation for three (average snowpack in 

2005, deep snowpack in 2011, and shallow snowpack in 2012) different water years (October 1 

to September 30) at West Glacier Lake watershed within the Glacier Lakes Ecosystem 

Experiments Site in Wyoming. We performed a Monte Carlo analysis to evaluate the sensitivity 

of modeled sublimation to uncertainties of the input variables and parameters from the bulk 

aerodynamic flux equation. Input variable time series were uniformly adjusted by a normally 

distributed random variable with a standard deviation given as follows: 1) the manufacturer’s 

stated instrument accuracy of 0.3 °C for temperature (T), 0.3 m/s for wind speed (Uz), 2% for 

relative humidity (RH), and 1 mb for pressure (P); 2) 0.0093 m for the aerodynamic roughness 

length (z0) based on z0 profiles calculations from multiple heights; and 3) 0.08 m for 

measurement height (z). Often z is held constant; here we used a constant z compared to the 

ground surface, and subsequently altered z to account for the change in snow depth (ds). The 

most important source of uncertainty was z0, then RH. Accounting for measurement height as it 

changed due to snowpack accumulation/ablation was also relevant for deeper snow. Snow 

surface sublimation uncertainties, from this study, are in the range of 1 to 29% for individual 

input parameter perturbations. The mean cumulative uncertainty was 41% for the three water 
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years with 55%, 37%, and 32% occurring for the wet, average, and low water years. The top 

three variables (z varying with ds, z0, and RH) accounted for 74% to 84% of the cumulative 

sublimation uncertainty. 

 

2.2 Introduction 

 In mountainous regions, such as the western United States, most of annual precipitation 

falls as snow and is stored in high-elevation mountain snowpacks. Snowpack sublimation is an 

important hydrologic process which can account for significant water losses to the atmosphere 

(Hood et al., 1999; Liston et al., 2006a; Liston et al., 2006b; Molotch et al., 2007; Sexstone et al., 

2016). However, the amount of water that is exchanged between seasonal snowpacks and the 

atmosphere through sublimation is still poorly understood (Lang, 1981; Hood et al., 1999; 

Molotch et al., 2007). The large degree of uncertainty can have significant consequences on 

hydrologic studies, water supply forecasting, and water supply modelling.  

 Sublimation losses from the snowpack have been estimated for various environments and 

can constitute a significant component of the water balance, with net sublimation losses estimated 

between 10-35% of the seasonal snow accumulation, specifically: 12-33% in the Canadian prairies 

(Woo et al., 2000), 19% in the Wyoming Rocky Mountains (Hultstrand, 2006), 15% in the 

Colorado Rocky Mountains (Hood et al., 1999), and 18% in the Sierra Nevada Mountains 

(Kattelmann and Elder, 1991). Over a 40-day period in the Colorado Rocky Mountains, total 

snowpack sublimation was greater than measured precipitation (Molotch et al., 2007). 

 Sublimation occurs more readily under certain weather conditions, such as low relative 

humidity (RH) and increased wind speed (Uz). Vapour pressure (e) gradients (Δe) between the 
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snowpack and the atmosphere, snow surface roughness length (z0), wind speed, and atmospheric 

stability all have a significant contribution to sublimation magnitude and direction (upward as a 

loss or downward as vapour deposition). Methods for estimating sublimation from a snowpack 

include the bulk aerodynamic flux (BF) calculation, Bowen ratio-energy balance, snow 

evaporation pans, and aerodynamic profile (AP) methods. Newer techniques that directly measure 

atmospheric flux (eddy covariance, EC) have also been tested for use in snowpack sublimation 

monitoring in alpine and sub-alpine environments (Hood et al., 1999; Molotch et al., 2007; Marks 

et al., 2008; Reba et al., 2012; Sexstone et al., 2016).  

Sublimation losses from the snowpack are typically calculated from a mass transfer 

equation, as per Dingman (2002) and Fassnacht (2004). The latent heat flux (QE in kJ/s/m2) is 

equal to the product of the latent heat of sublimation (LS as 2838 kJ/kg at a temperature (T) of 0 

oC; Datt, 2011) and the rate of latent mass transfer (E in kg/s/m2). The most common method for 

estimating snowpack sublimation is measuring snowpack QE using the BF equation (Moore, 

1983). This method has the advantage of requiring meteorological measurements at only one 

height above the snow surface. However, a primary assumption applied to the BF method is that 

the snow surface temperature follows the air temperature for the estimation of saturation vapour 

pressure (esat). This assumption is often inaccurate at temperatures colder than 0 °C (Raleigh et 

al., 2013) and can lead to an over-estimation of sublimation (Bernier and Edwards, 1989; Marks 

et al., 2008). In addition, this method also assumes the snow surface is saturated with respect to 

ice or water (i.e., 100% relative humidity), which may not always be the case (Box and Steffen, 

2001). With the surface temperature and humidity assumptions, the estimated sublimation loss 

(upward flux) is a function of the difference in vapour pressure between the measurement height 

and the surface (Fassnacht, 2004) and can never be downward, such as in the form of frost 
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deposition (Sexstone et al., 2016). In reality, the snow surface temperature is limited to 0°C but 

the air temperature can be warmer and vapour deposition can occur depending on the relative 

humidity of the air, i.e., the vapour gradient. 

A more accurate method for calculating the snowpack QE and snowpack turbulent fluxes 

as compared to the BF method is the AP method which requires the measurement of Uz, T, and 

RH at multiple heights above the snowpack (Cline, 1997a; Hood et al., 1999; Sexstone et al., 

2016). Both the BF and AP methods require an estimate of z0 to define the Uz profile. Using z0 as 

a variable rather than a constant parameter will alter the computed snowpack sublimation loss 

estimates (Fassnacht, 2010); z0 has been seen to vary by almost three orders of magnitude (2 x 

10-5 to 9.76 x 10-3 m) (Brock et al., 2006). Previous research has used z0 as a parameter with 

values of 1 x 10-3 m (Hultstrand, 2006), 5 x 10-2 m (Fassnacht, 2004) and 5 x 10-4 m (Box and 

Steffen, 2001). 

The EC method is considered the most accurate/direct method for calculating snowpack 

QE (Molotch et al., 2007; Sexstone et al., 2016). A two-tower approach (two eddy covariance 

sensors) 35 miles north of Bangor, ME was used to test the EC method uncertainties in QE 

measurements, results from the study state thata QE measurement uncertainty of 0.005 kJ/s/m2 

was reported for an entire calendar year (Hollinger and Richardson, 2005). This method is 

considered a direct atmospheric flux measurement technique to determine the vertical turbulent 

fluxes within the atmospheric boundary layer. While EC systems are fairly robust, the EC 

procedure requires adequate site conditions, such as long fetches, and a high frequency sonic 

anemometer that can be cost and energy prohibitive. Sublimation measurements that require 

extensive meteorological measurements and equipment for the EC and AP methods are relatively 

limited in complex mountain regions (Sexstone et al., 2016), typically limited to research 
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facilities, which makes the BF calculation the most common method used to estimate snowpack 

sublimation at local and regional scales. 

The objectives of this research for one seasonally snow-covered alpine environment are 

(i) to quantify the sensitivity of sublimation estimates using the BF method from the uncertainty 

of the input measurements; ii) to quantify snow sublimation uncertainty as a function of peak 

snow water equivalent and total precipitation; and (iii) to provide guidance to account for 

instrumentation errors and what input variables need the greatest attention while quantifying 

snowpack sublimation. This study provides an evaluation of the sensitivity of snow sublimation 

calculations and possible uncertainties which can improve our understanding of water resources, 

water supply forecasting, and water supply modelling. 

 

 2.3 Study Site 

 For this study, sublimation estimates were conducted in West Glacier Lake watershed 

(WGLW) within the Snowy Range Mountains, Wyoming (41°22’30" N latitude and 106°15’30" 

W longitude) (Figure 2.1). WGLW is part of the US Forest Service’s Glacier Lakes Ecosystem 

Experiments Site (GLEES) developed to conduct research on the effects of atmospheric 

deposition on alpine and subalpine ecosystems (Musselman, 1994). Approximately 575 ha in 

size, GLEES consists of three small watersheds, beneath a northeast-southwest ridge, and 

WGLW ranges in elevation from 3,277 m at the lake outlet to 3,493 m at the top. Mean annual 

temperature is -1 °C at the outlet and -2.5 °C at the top of the basin (Korfmacher and Hultstrand, 

2006). Mean annual precipitation is 1200 mm, with approximately 75 to 85 % falling as snow, 

which remains from late November to early June (Wooldridge et al., 1996; Korfmacher and 
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Hultstrand, 2006). This region is dominated by high westerly winds that range between 0 and 26 

m/s with an average of 8 m/s (Korfmacher and Hultstrand, 2006). These climatic conditions 

combine to create an environment where snow accumulation, snow redistribution, and snowpack 

sublimation can have significant impacts on the watershed hydrology. 

 

2.4 Methodology 

2.4.1 Bulk Aerodynamic Flux 

 The meteorological variables needed for the BF equation are T (in oC), RH (in %), Uz (in 

m/s), and station pressure (P in mb). For the BF method, the latent mass flux is calculated as: 

𝐸𝐸 =  
0.622∙ ρ 𝑎𝑎𝑃𝑃∙∅𝑠𝑠∙∅𝑣𝑣  ∙ 𝑈𝑈𝑧𝑧 ∙  𝑘𝑘2(𝑞𝑞𝑎𝑎−𝑞𝑞𝑜𝑜)𝑙𝑙𝑛𝑛�𝑍𝑍𝑎𝑎+𝑍𝑍𝑑𝑑𝑍𝑍𝑜𝑜 �2      Equation 2.1 

where ρa is the density of air (kg/m3), ϕm is the stability function for momentum calculated as a 

function of the Richardson number (unitless), ϕv is the stability function for water vapour 

calculated as a function of the Richardson number (Ri, unitless), k is von Karman’s constant 

(0.4), qo is the specific humidity (kg/kg) at the surface of the snow, qa is the specific humidity at 

measurement height Za (in m), and Zd is the zero-plane displacement (in m). A value of zero is 

used for Zd. 

 The qo at each level in the profile is determined by (Saucier, 1983): 𝑞𝑞𝑜𝑜 =
0.622𝑒𝑒𝑃𝑃−0.378𝑒𝑒        Equation 2.2 

where e is the vapour pressure (in mb), calculated from the equation: 𝑒𝑒 =
𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠(𝑅𝑅𝑅𝑅)100         Equation 2.3 
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where esat is the saturation vapour pressure over water (in mb), estimated from the equation: 𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡 = 6.11 ∗ 𝑒𝑒𝑥𝑥𝑒𝑒 � 17.3∗𝑇𝑇𝑇𝑇+237.3�      Equation 2.4 

with T in °C. Stability functions are calculated as a function of the Ri as described by Ohmura 

(1981) The Richardson number is determined by:  𝑅𝑅𝑖𝑖 =
𝑔𝑔𝜃𝜃� �  𝛿𝛿𝜃𝜃 𝛿𝛿𝑧𝑧⁄

(𝛿𝛿𝛿𝛿 𝛿𝛿𝑧𝑧⁄ )2�      Equation 2.5 

where g is the acceleration due to gravity (9.81 m/s2) and θ  is the mean potential temperature of 

the levels (in oC) (Andreas, 2002). The stability factors (Φm and Φv) are estimated as a function 

of the calculated Ri, based on the value of Ri, as per Cline (1997a).  

Air density ρ 𝑠𝑠 is calculated from the equation: 

𝜌𝜌𝑠𝑠 =
𝑃𝑃𝑅𝑅∙𝑇𝑇        Equation 2.6 

where P is air pressure (mb *100), R is the specific gas constant (287.05 J/kg/K), and T is the air 

temperature in degrees Kelvin.  

 

2.4.2 Data 

The GLEES maintains an 18-meter tower equipped with standard meteorological sensors 

located at 3286 m elevation between east and west Glacier Lakes (Figure 2.1). T, RH, Uz, wind 

Direction (Wd), solar radiation (Qh), and soil temperature (Tsoil) are measured every 15 minutes. 

For this study, we utilized the quality controlled hourly meteorological data (T, RH, Uz, P) from 

the GLEES tower for the water years (October 1 to September 30) 2005, 2011, and 2012 (data 

are available at <https://www.fs.usda.gov/rds/archive/Product/RDS-2006-0003-2/>. These years 

were selected because they represent an average snow season (2005), a wet snow season with 

cooler T, higher RH and above average precipitation (2011), and a drier snow season that melted 
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out early with warmer T, lower RH, and below average precipitation (2012) (Figure 2.2 and 

Table 2.1). Snow depth (ds) and snow water equivalent (SWE) were obtained from the Natural 

Resources Conservation Service Snow Telemetry (SNOTEL) site Brooklyn Lake, Wyoming 

located approximately 1 km to the southeast at an elevation of 3115 m (Figure 2.2; data are 

available at <https://www.wcc.nrcs.usda.gov/>). Snow depth data were only available since 

water year 2004. The SNOTEL data were used to determine the snow-cover period for the three 

water years and the snowpack and average meteorological conditions were computed (Table 

2.1). 

The z0 parameter was empirically derived from a nearby research site, Niwot Ridge 

Subnivean Lab Colorado that measures meteorological variables at multiple heights allowing for 

AP calculations. Niwot Ridge is similar in elevation and meteorology as West Glacier Lake 

region and is assumed that the Niwot Ridge z0 parameter was transposable to West Glacier Lake. 

The z0 parameter estimates were computed during the snowcover season (Cline, 1997b) using Uz 

measurements at two different heights, za and zb: 

𝑍𝑍𝑜𝑜 = exp 
(𝛿𝛿𝑎𝑎∗𝐿𝐿𝐿𝐿(𝑧𝑧𝑜𝑜)− 𝛿𝛿𝑜𝑜∗𝐿𝐿𝐿𝐿(𝑧𝑧𝑎𝑎))

(𝑧𝑧𝑎𝑎−𝑧𝑧𝑜𝑜)
     Equation 2.7 

An average z0 value of 0.0043 m and a standard deviation to 0.0013 m were computed from sub-

hourly wind measurements that were at 0.5 and 2.0 m above the snowpack for water years 1994 

and 1995. These are similar to values (0.0022 m to 0.0050 m) presented in Brock et al. (2006). 

 

2.4.3 Monte Carlo Simulations 

To evaluate the sensitivity of simulated sublimation using the BF method to uncertainties 

of the input variables and parameters data, we performed a Monte Carlo analysis. Monte Carlo 
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methods utilize computational algorithms to model the probability of different outcomes in a 

process that cannot easily be predicted due to the intervention of random variables and/or 

uncertainty (Hastings, 1970). Only one variable or parameter was perturbed at a time to 

determine which one was most sensitive in the sublimation calculation; we did not examine 

joint-uncertainties (Graham et al., 2010 and Sexstone et al., 2016). Cumulative sublimation 

uncertainty was quantified by the addition of individual variable/parameter uncertainties (Bliss et 

al., 2011). Seven numerical experiments were performed (Table 2.2) by individually changing 

four meteorological variables (T, RH, Uz, P) that had an hourly time step, two parameters (z0 and 

z) that are usually assumed to be constant, and one parameter (z) that was used as a variable. For 

each hourly time step, the variable or parameter was adjusted using a random number that was 

selected from a normal distribution with a mean of zero and a standard deviation based on the 

instrumentation measurement error range which was set to the manufacturer’s stated instrument 

accuracy (Table 2.2). The perturbed RH values were constrained to a maximum of 100%. For z0, 

a standard deviation was calculated from field data, as presented above (equation 7). For the 

Monte Carlo analysis, sublimation was computed for each year 1000 times, each of the 1000 

times using the randomly selected perturbation to the individual input variable or parameter to 

assess the sensitivity of the sources of uncertainty. The measurement height changes as snow 

accumulates or ablates, but z is often held constant (Fassnacht, 2004). Therefore, z was used as 

constant of 3.0 m with a standard deviation of 0.08 m based on stated instrument accuracy (Judd 

snow depth sensor < juddcom.com>) (Ryan et al., 2008). The value of z was also adjusted to 

account for the change in ds (Figure 2.2); the Monte Carlo approach was not used in this last test 

(Table 2.2). 
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2.4.4 Surface Temperature Estimates 

 We evaluated the use of dewpoint temperature to represent the snow surface temperature, 

as shown in Raleigh et al. (2013). Sublimation was computed using air temperature and relative 

humidity to estimate the dewpoint temperature (equation 4), without perturbations. These 

sublimation estimates were compared to the base case scenarios for the three years. 

 

2.5 Results 

 For the three different snow years, the estimated sublimation for the non-perturbed base 

case (Table 2.1 and lines in Figure 2.2c) was inversely related with the amount of snow (Figures 

2.2a and 2.2b), which is in part a function of the other meteorological conditions. The simulated 

sublimation was somewhat consistent over the winter of 2011, as seen by approximately constant 

slope of cumulative sublimation (Figure 2.2c). In 2012, the change in cumulative sublimation 

rate decreased after February while in 2011 it started to increase then (Figure 2.2c).  

 Using the Monte Carlo approach with input variable/parameter perturbations yielded a 

range of results (Table 2.3), which were consistent for some variables, such as RH, Uz, and z0. 

The range of variability from the perturbations became larger in mid-February 2011, mid-March 

2012, and early April 2011 (Figure 2.2c). The shape of the z0 simulation was similar for each 

year (Figure 2.3 and the standard deviation in Table 2.2) and coefficient of variation was the 

same (Table 2.3). Sublimation sensitivity based on the perturbed input variables/parameters with 

the Monte Carlo simulations show consistent inter-annual variability in the simulations for RH, 

Uz, and z0, but not for T or the two z tests (Figure 2.4 and Table 2.3). Since the instrument 

accuracy of P was so high (~0.1%), the P perturbations has a negligible effect on sublimation 

estimates.  
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 Calculated sublimation was most sensitive to the perturbations of z0, RH, z (in 2011 due 

to deep snow; Figure 2.4b), Uz and finally T (Table 2.3 and Figure 2.4). Temperature 

perturbation yielded the most noticeable sublimation variability in 2005, about four to five as 

much as in the other years due to (Figure 2.4); this likely occurred since 2005 had the most 

freezing days. However, this variation in temperature was small compared to the other years. 

When the snowpack is shallower, such as in 2005 and 2012 (Figure 2.2a), z has less of an 

influence on the sensitivity of the calculated sublimation (Figures 2.3a and 2.3c).  

 The range of variability in calculated sublimation using the Monte Carlo approach was 

most for 2011 and least for 2005 (Figure 2.2c). However, the variation in simulated sublimation 

(Table 2.4) was much greater for the lower snow years when taken as a percentage of peak SWE 

(Figure 2.2b) and annual precipitation (Table 2.1). The range of simulated sublimation to peak 

SWE and to annual total precipitation was greater by a factor of two for both 2005 and 2012 

(Table 2.4). More importantly, sublimation was estimated to be at least half of the peak SWE in 

2012, and a third of peak SWE in 2005 (Table 2.4). The maximum simulated sublimation was 

more than two-thirds for 2005 and almost 100% for 2012 (Table 2.4). These values can be 

considered scaled when subsequently compared to the annual precipitation total, since peak SWE 

was 67% of annual precipitation in both 2005 and 2012; it was 83% in 2011 (Table 2.1). For the 

base case, sublimation was computed to be 37, 21, and 52% of the annual precipitation in 2005, 

2011, and 2012, respectively (Table 2.4). 

 The average daytime dewpoint temperature has a negative bias (Raleigh et al., 2013). 

This use of dewpoint temperature (Td) for the surface temperature (Ts) yielded a negative 

cumulative sublimation estimate throughout the winter for each year (Figure 2.5), which is not 

correct. Interestingly, this assumption yielded the most deposition (negative cumulative 
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sublimation in Figure 2.5) and were somewhat of a translation of the base case (Figure 2.2c). The 

computed mean hourly sublimation rate is also negative every hour and smaller in magnitude 

than when the surface air temperature is used, as stated above (Figure 2.6). Therefore, using 

dewpoint temperature for surface temperature was not evaluated further. 

 

2.6 Discussion  

The three snow seasons represent a range of snow conditions within the available period 

of record. Given the large variability in the amount of snowfall (Figure 2.2 and Table 2.1), the 

importance of sublimation to the seasonal water balance varied widely (Hultstrand, 2006; Table 

4). There were large variations in calculated sublimation were due to z0 (Figure 2.3) and there is 

much uncertainty in estimating the value of z0 (Andreas, 2002; Fassnacht et al., 2015), as it 

varies spatially and temporally (Brock et al., 2006). Only for deep snow (2011; Figure 2.2a) was 

perturbation in z relevant (Figure 2.4c). When using the BF method, the actual measurement 

height should be estimated from snow depth (e.g., Figure 2.2a; Fassnacht, 2010). 

There was some sensitivity to Uz, but much less to T (mostly in 2005), and essentially 

none to P (Figure 2.4). The calculated sublimation sensitivity due to RH and Uz is based on 

instrumentation accuracy. More advanced methods, such as the EC method (Box and Steffen, 

2001; Reba et al., 2012; Sexstone et al., 2016), could improve accuracy. However, such more 

accurate sensors may not be as robust in the field (Sexstone et al., 2016). 

The mean BF cumulative sublimation uncertainty was 41% for the three water years with 

55%, 37%, and 32% occurring for the wet, average, and low water years (Table 2.3). The mean 

uncertainty for each input parameter in order from largest to smallest uncertainty is z varying 
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with ds (15.8%), z0 (9.6%), RH (7.1%), Uz (4.9%), z at constant height (2.0%), and T (1.9%) 

(Table 2.3). The uncertainty for top three variables account for 74% to 84% of the cumulative 

sublimation uncertainty (Table 2.3). 

Latent heat flux estimates over snow covered surfaces are highly correlated for the EC 

and BF methods, but with some discrepancies (e.g., Marks et al., 2008), such as a positive bias in 

estimating sublimation using the BF method (Box and Steffen, 2001; Marks et al., 2008). The BF 

sublimation estimates calculated here (Table 2.1 and Figure 2.2c) are larger than those presented 

in the literature (e.g., Hood et al., 1999). The EC and AP methods were shown to compare well 

(Reba et al., 2012), and both are considered better than BF (Sexstone et al., 2016). However, the 

BF method provided reasonable snowpack sublimation estimates when EC instrumentation were 

not available (Sexstone et al., 2016), which is often the case (Fassnacht, 2004). 

For the average and deep snowpack, there was limited inter-annual year variability 

whereas the drier and shallower snowpack had larger inter-annual variability of total modeled 

snow sublimation from the snow surface using the base case (Figure 2.2c). This was also 

observed by Sexstone et al. (2016) and Reba et al. (2012) suggesting snow sublimation is largely 

dependent on the amount of snowfall. Sexstone et al. (2016) stated that snow sublimation rates 

do not scale with snowpack depth or SWE, i.e. during a low snow season a larger percentage of 

the snowpack is lost to sublimation and hence less total snow is available for melt. The results of 

this study confirm the statements made by Reba et al. (2012) and Sexstone et al. (2016). It should 

be noted that blowing snow (Fassnacht, 2004) and blowing snow sublimation were not 

considered (Sexstone et al., 2018). The variability in the BF-based sublimation estimates were a 

function of the amount of snow (Figure 2.2c), specifically how the snow depth is represented 

(Figure 2.4). 
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The contribution from turbulent transfer to the ablation of the snow cover has been shown 

to vary between 5% and 60% (Stewart, 1982; Kattleman and Elder, 1991; Cline, 1997a, 1997b; 

Hunsaker et al., 2012), with sublimation losses ranging from 20% of the snowpack in the alpine 

of the California Sierra Nevada (Marks and Dozier, 1992; Marks et al.,1992; Marks et al., 1998) 

to 45% of the snowpack in a subalpine forest in the Rocky Mountains (Hood et al., 1999; 

Pomeroy and Essery, 1999; Marks et al., 2001; Pomeroy et al., 2006; Molotch et al., 2007; Reba 

et al., 2012; Sexstone et al., 2016). This analysis shows sublimation losses generally greater than 

this range (21 to 52% of the snowpack for the base case in Table 2.4), but it was largely 

dependent on the amount of snow that accumulated (Figure 2.2a). It should be noted that the 

reported percentages could be lower if direct measurements of SWE and ds were made in the 

GLEES basin where a deeper snowpack maybe present.  

The understanding of sublimation is not well established at regional macroscales, where 

land surface models (LSM) have been used to simulate cold season processes. LSM have a 

coarse resolution (5-30 km), usually larger than the scale of many cold season processes, which 

restricts how a LSM represents the variability of elevation, vegetation, and meteorology in 

complex terrain, due in part to a lack of reliable data. Model generated net sublimation has 

shown large variability based on the model and domain, small scale variability, and snowpack 

model algorithms (Sheffield et al., 2003; Pan et al., 2003; Bowling et al., 2004; Reba et al., 2012; 

Svoma, 2016). For example, snowpack sublimation as a percent of precipitation was estimated 

from 0-15% using various LSMs for a grassland catchment Russia (Slater et al., 2001), 10-35% 

in Alaska using the Variable Infiltration Capacity (VIC) model (Bowling et al., 2004), 8-20% 

using various models over the Pacific Northwest of the United States (Sheffield et al., 2003), and 

from 0-4% in low valleys to 20-30% in the high mountains of the Upper Colorado River Basin 
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(UCRB) using SnowModel (Liston et al., 2006b). Sublimation in isolated areas of the UCRB has 

been modeled to exceed 30% of the annual precipitation (Phillips, 2013). This study focused on 

site specific calculations representing a small localized region, and showed some large variability 

(Tables 2.3 and 2.4, Figures 2.1, 2.2 and 2.3). Thus, without accurate measurements of 

sublimation at the localized scale, it is more difficult to evaluate large scale estimates of 

sublimation (Svoma, 2016). Advancing the understanding of how localized variability affects 

large scale sublimation can still be achieved through careful model experiments, especially if the 

sensitivity of results is examined through variable/parameter adjustment and model simulations 

(Strasser et al., 2011; Phillips, 2013).  

One of the simplistic assumptions of applying the BF method is that the snow surface 

temperature tracks the air temperature measurement, and is thus likely a major uncertainty in the 

experimental setup and can lead to substantial overestimations of sublimation (Bernier and 

Edwards, 1989; Marks et al., 2008). Recent experimental studies have used outgoing longwave 

radiation measurements to measure snow surface temperature and highlight that the snow surface 

tends to be consistently colder than the air temperature, especially at night (Reba et al., 2012; 

Sexstone et al., 2016). Most models that utilize the BF equation do not assume that snow surface 

temperature tracks air temperature but rather solve the snow energy balance equation for snow 

surface temperature (e.g., Liston and Elder, 2006). We tested using dewpoint temperature to 

estimate the snow surface temperature and this yielded a negative (downward) sublimation 

(Figures 2.5 and 2.6). Downward sublimation or deposition as frost does occur some nights and 

into the early morning, so an improvement is necessary to the assumption for the snow surface 

temperature.  
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2.7 Conclusion 

 Surface sublimation sensitivity was evaluated and quantified in an alpine environment 

based on the BF method over three water years (average snow season, a wet snow season, and a 

low snow season). The magnitude and range of perturbed snow sublimation estimates show 

considerable uncertainty with perturbed input variables. Of the factors affecting the calculated 

snow sublimation estimates, z0 and RH are the most significant. For deep snow conditions, where 

the distance between the instrument and the snow surface can be small, z is important. Wind 

speed uncertainty caused sensitivity in the sublimation estimates. Temperature perturbation only 

yielded noticeable sublimation variability in 2005.  

Sublimation calculations are derived from a rather large array of parameters, many of 

which have rather high degrees of uncertainty. As a result, snowpack sublimation is, often 

reported as a single number, but can be better characterized as a range of values. Snow surface 

sublimation uncertainties, from this study, are in the range of 1 to 29% for individual input 

parameter perturbations, with the top three variables (z0, RH, and z) accounting for 74% to 84% 

of the cumulative sublimation uncertainty. Surface sublimation uncertainties from this study 

provide a means to properly account for instrumentation errors and what variables need the 

greatest attention while performing snowpack sublimation estimates in high elevation regions. 

 

Data Availability 

 The meteorological data used in this paper are available from the United States Forest 

Service Rocky Mountain Research Station <here>. The snow data are available from the Natural 

Resources Conservation Service Water and Climate Center <here>.  
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2.8 Tables and Figures 

 

Table 2.1. Snowpack and mean meteorological conditions for October-May, the period when 

temperatures are below 0oC and conducive for sublimation, plus the unperturbed sublimation 

estimated from the BF method. 

 WY 

2005 

WY 

2011 

WY 

2012 

temperature; T (°C) -4.78 -6.18 -4.82 

relative humidity; RH (%) 67.8 72.3 62.4 

wind speed; Uz (m/s) 4.99 5.42 5.28 

saturation vapor pressure; es (mb) 4.71 4.36 4.85 

station pressure; P (mb) 684 685 687 

vapour pressure; e (mb) 2.92 2.89 2.66 

momentum stability function; ∅m 0.94 1.01 0.98 

water vapour stability function; ∅v 0.99 1.05 1.01 

total precipitation (mm) 777 1303 671 

peak snow water equivalent; SWE (mm) 521 1087 450 

snow cover period (days) 234 249 220 

unperturbed sublimation (mm) 290 276 350 

 

 

Table 2.2. Summary of the seven numerical tests that were performed in the sensitivity analysis 

for sublimation calculations. The mean and standard deviation used in the perturbations for the 

variables and parameters is listed. 

test # variable / parameter mean  standard deviation 

1 temperature (°C) time series 0.3 

2 relative humidity (%) time series 2 

3 wind speed (m/s) time series 0.3 

4 station pressure (mb) time series 1 

5 aerodynamic roughness length (m) 0.0043 0.0013 

6 measurement height (z) is constant (m) 3 0.08 

7 z varies with ds (m) time series not used 
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Table 2.3. Uncertainty summary statistics by Water Year based on Monte Carlo simulation from 

uniformly perturbing input sublimation variables/parameters: T is air temperature, RH is relative 

humidity, Uz is wind speed, z0 is the aerodynamic roughness length, z = 3, is a constant 

measurement height of 3.0 m, and z is the height of the instrumentation above the snow surface 

that varies as a function of the snow depth. The variable z was not perturbed (Table 2) so no 

range is available. The P perturbations are not included as they did not impact the calculated 

sublimation. 

variable / year T RH Uz z0 z = 3 z = f(ds) 

standard deviation (mm) 

2005 10.3 21.7 14.7 28.0 3.9 33.5 

2011 1.7 21.9 12.8 26.6 14.4 112 

2012 5.7 20.3 17.9 33.8 4.1 31.9 

coefficient of variation (%) 

2005 3.6 7.5 5.0 9.6 1.2 10.3 

2011 0.6 8.0 4.6 9.6 3.8 28.8 

2012 1.6 5.8 5.1 9.6 1.1 8.3 

maximum range (mm) 

2005 45 110 80 130 21 34 

2011 15 112 65 123 139 112 

2012 36 105 88 156 22 32 

difference from the base value for standard deviation (%) 

2005 5.4 9.7 6.4 12 1.7 - 

2011 0.9 9.8 5.8 11.4 6.6 - 

2012 1.3 9.0 8.4 14.5 1.8 - 

difference from the base value for maximum range (%) 

2005 15.4 38 27.5 44.7 7.2 11.5 

2011 2.5 38.6 22.5 42.5 47.6 38.6 

2012 12.4 36.3 30.4 53.9 7.6 11 

 

 

 

 Table 2.4. The amount of sublimation for the minimum, base and maximum computed values 

compared to peak SWE and annual total precipitation, given as a percent. 
 

% of peak SWE % of annual total precipitation 

year minimum base maximum minimum base maximum 

2005 37 56 70 25 37 47 

2011 17 25 47 14 21 39 

2012 52 78 96 35 52 65 
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Figure 2.1.  Topographic map of West Glacier Lake watershed, located in the Snowy Range of 

the Medicine Bow Mountains of southern Wyoming. Contour interval is 15 m. Solid dot shows 

location of lake outlet. The star shows the location of GLEES meteorological station used in this 

study. Data from the GLEES tower were used in the study. 
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Figure 2.2. Brooklyn Lake SNOTEL a) snow depth and b) snow water equivalent, and c) the 

calculated unperturbed and range of perturbed cumulative sublimation for water year 2005, 2011, 

and 2012. The median ds (2004 to 2017) and SWE (1981-2017) are included. In c), the shaded 

zones are the upper and lower limits of the perturbed computations. 
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Figure 2.3.  Histogram of 1000 modeled sublimation simulations for z0 perturbations for water 

year 2005 (unperturbed 290 mm), 2011 (unperturbed 276 mm), and 2012 (unperturbed 350 mm). 

 

 

 

 

Figure 2.4.   Sensitivity statistics by water year a) 2005, b) 2011, and c) 2012 for the Monte 

Carlo simulation from uniformly perturbing input sublimation variables and parameters (see 

Table 2). The unperturbed sublimation is shown as a dotted line for each water year. 
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Figure 2.5. Comparison of the estimated cumulative sublimation using dewpoint temperature as 

the surface temperature (Ts) versus the base case, using air temperature to estimate Ts for the 

study winters of 2005, 2011, and 2012. 

 

 

 

 

 

Figure 2.6. Mean hourly computed sublimation for the base case with air temperature (see x-axis 

in Figure 2.5) and using the dewpoint temperature (see y-axis in Figure 2.5). 
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CHAPTER 3.0 - SIMULATED SNOWPACK BASED ON A CLIMATOLOGICAL SNOW 

DISTRIBUTION PATTERN AND WINTER SEASON INDEX 

 

3.1 Summary 

In mountainous regions of the western United States, the majority of annual precipitation 

falls as snow and is stored in high-elevation snowpacks. Mountain snowfall can be stored on the 

surface for time periods ranging from hours to months before melting and continuing through the 

hydrologic cycle. In high-elevation seasonally snow-covered basins, obtaining accurate estimates 

of the amount of water contained within the snowpack is important for the purposes of river and 

flood forecasting, and in terms of correctly representing the inputs into a snow-dominated 

system. In snow dominated regions it is important to gain an understanding of precipitation 

quantity, variability, and the distribution. Mountain topography can produce complex patterns of 

snow distribution, controls snow accumulation, and snow ablation. Accurate estimates of winter 

precipitation, distribution, and ablation are fundamental toward understanding watershed 

processes in mountainous regions. 

The interaction of topography and consistent meteorological patterns tend to generate 

similar snow depth distribution patterns form year to year. As a result of these interactions, it is 

hypothesized that deep and shallow regions of snow depth are repeatable and scalable. In this 

study, we question whether snow depth patterns near peak accumulation are consistent for a 10-

year time frame and whether limited snow depth measurement years can be used to accurately 

represent snow depth distribution and basin mean snow depth. We use 10 years of snow depth 

measurements collected near peak accumulation in West Glacier Lake watershed, Wyoming to 

analyze snow depth patterns controlled by meteorologic and topographic interactions. 

Generalized Additive Models (GAMs) combined with topographic variables and snow depth 
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measurements were used to estimate snow depth distribution and a snow depth climatological 

pattern with high levels of accuracy. The near peak snow depth patterns were identified as 

repeatable with an average annual correlation estimate equal to 0.83; the winter season index 

provide a method to scale and quantify annual snow depth within West Glacier Lake watershed. 

 

3.2 Introduction 

In snow-dominated watersheds, it is important to understand the quantity, variability, and 

distribution of snow, as the snow is an important water storage for downstream purposes 

(Doesken and Judson, 1997). In mountainous terrain, one of the most apparent characteristics of 

the snowpack is its spatial heterogeneity (McKay and Gray, 1981; Pomeroy and Gray, 1995; 

Elder et al., 1991; Molotch et al., 2005; Elder et al., 2009; Fassnacht et al., 2018; Mott et al., 

2018). Mountain topography can produce complex patterns of snow distribution, control snow 

accumulation, and snow ablation (Elder and Dozier, 1990). The snowfall deposition and 

snowmelt patterns are a result of consistent interactions between the localized meteorology and 

terrain (Pflug and Lundquist, 2020). The resultant distribution of snow often has a similar pattern 

from year to year (Grayson et al., 2002; Sturm and Wagner, 2010) based on topography, canopy, 

if present, and wind characteristics, i.e., speed and direction (Winstral et al., 2002; Erickson et 

al., 2005). These distribution patterns and the associated topography (and canopy) dictate further 

distribution and ablation processes (Revuelto et al., 2014) that dictate peak streamflow out of the 

basin (Fassnacht et al., 2014), baseflow characteristics (Godsey et al., 2014), and groundwater 

recharge (Carroll et al., 2019). 

Various studies have focused on identifying the correlation between snow distribution 

and surrogate topographic variables (Meiman, 1968; Elder et al., 1998; Erxleben et al., 2002; 
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Winstral et al., 2002; Erickson et al., 2005; Molotch et al., 2005; Fassnacht et al., 2012; 

Grünewald et al., 2013; Revuelto et al., 2014; Pflug and Lundquist, 2020). These studies identify 

topography, solar radiation, wind redistribution, slope, aspect, and vegetation as the primary 

components that control snow depth and snow water equivalent (SWE) variability. Consistent 

snow patterns are found where fixed controls such as vegetation and topography dominate the 

region (Sturm and Wagner, 2010).  

Grayson et al. (2002) identified the following three distinct ways to identify patterns: (i) 

"lots of points" (LOP) where there is a sufficiently dense array of point measurements to be 

interpolated to a pattern, (ii) "binary data" such as remote sensing of snow cover; and (iii) 

"surrogate data" used to create correlations between the snow and easily established patterns 

such as topography and vegetation. Where topographic parameters are used to explain the spatial 

heterogeneity of snow depth, various statistical approaches have been evaluated. The statistical 

modelling methods include linear regression models (Fassnacht, et al., 2003; Zheng, et al., 2016), 

multiple linear regression models (Grünewald et al., 2013; Revuelto et al., 2014), binary 

regression trees (Erxleben et al., 2002; Gleason et al., 2017; Molotch et al., 2005; Winstral et al., 

2002), general additive models (López-Moreno, Latron, & Lehmann, 2010; López-Moreno & 

Nogués-Bravo, 2005), and geostatistical models (Erickson et al., 2005; Molotch et al., 2005; 

Hultstand, 2006; Fassnacht et al., 2012). 

The character of a winter season can be defined by features, including temperature 

averages and extremes, snowfall totals, snow depth, and the duration winter (Cerruti and Decker, 

2011; Mayes Boustead et al., 2015; Vögeli, 2016). A snowfall index (Vögeli, 2016), a snow drift 

factor (Tarboton and Luce, 2006), a winter season severity index (Mayes Boustead et al., 2015), 

and a climatological grid index (Sturm and Wagner, 2010) have been used to evaluate and 
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improve distributed snow models (Grayson and Blöschl, 2001; Hiemstra et al., 2006; Tarboton 

and Luce, 2006) and suggested that these indices can be applied to consistent snow patterns 

(Grayson et al., 2002; Erickson et al., 2005; Sturm and Wagner, 2010). Winter season indices 

allow quantities such as averages, percentiles, and extremes to be calculated to establish a 

baseline year which individual years can be compared (Mayes Boustead et al., 2015). 

Studies have hypothesized that snow accumulation and distribution patterns are 

consistent over time (Elder er al., 1991; Woolridge et al., 1996; Grayson et al., 2002, Erickson et 

al., 2005; Deems et al., 2008; Sturm and Wagner, 2010; López Moreno et al., 2015; Pflug and 

Lundquist, 2020). In this study, we test whether snow depth distribution patterns are consistent 

over a 10-year period within a sub-alpine basin, West Glacier Lake, in Wyoming and whether 

limited snow depth measurement years can be used to accurately represent snow depth 

distribution and basin mean snow depth. The specific questions for this study are the following: 

(1) do snow depth measurements reveal a consistent snow depth distribution over time, (2) can a 

snow depth model be developed, (3) what snow depth interpolation model provides the best 

representation of snow depth distribution, (4) what are the dominant topographic parameters that 

control snow distribution and do they vary over time, and (5) can a winter season index be 

developed to quantify basin snow depth.  

 

3.3 Study Site 

 For this study, snow depth measurements were collected in West Glacier Lake watershed 

(WGLW) within the Snowy Range Mountains, Wyoming (41°22’30" N latitude and 106°15’30" 

W longitude) (Figure 3.1a). WGLW is part of the US Forest Service’s Glacier Lakes Ecosystem 
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Experiments Site (GLEES) developed to conduct research on the effects of atmospheric 

deposition on alpine and subalpine ecosystems (Musselman, 1994). Approximately 5.75 km2 in 

size, GLEES consists of three small watersheds, beneath a northeast-southwest ridge. WGLW is 

0.61 km2 in size, ranges in elevation from 3,277 m at the lake outlet to 3,493 m at the top. The 

mean annual temperature is -1 °C at the outlet and -2.5 °C at the top of the basin (Korfmacher 

and Hultstrand, 2006). Mean annual precipitation is 1200 mm, with approximately 75 to 85 % 

falling as snow, which typically remains from late October to early June (Wooldridge et al., 

1996; Korfmacher and Hultstrand, 2006). Large inter-annual and spatial station variability exists 

between measured precipitation quantities (Hultstrand, 2006), as seen at the five precipitation 

monitoring stations within 4 km of GLEES: National Atmospheric Deposition Program (NADP) 

WY00 and WY95, Clean Air Status and Trends Network (CASTNET), GLEES Tower, and 

Brooklyn Snowpack Telemetry (SNOTEL). This region is dominated by strong westerly winds 

that range between 0 and 26 m/s with an average of 8 m/s (Korfmacher and Hultstrand, 2006). 

The topographic and consistent climatic conditions within the region create an optimal 

environment to evaluate whether snow distributions are consistent over time (Hiemstra et al., 

2006). 

 

3.4 DATA and METHODS 

3.4.1 Survey Data 

Snow depth data were collected across the WGLW from 2005 through 2014, during or 

close to peak snow accumulation each year (generally late April to early- May) (Figure 3.2) on 

an approximate 50 m measurement grid similar to the protocol of Hultstrand et al., (2006) 

(Figure 3.1). Snowpack in the WGLW usually exhibits large spatial variability, and topographic 
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variables apply a strong control on its distribution. At each snow depth measurement location, 

either five measurements or three measurements were collected, the snow depth measurements 

were recorded to the nearest 0.01 m, and the locations recorded with Global Positioning System 

(GPS) with an approximate accuracy of 5 m. Multiple snow depth measurements were taken to 

limit the effect of local anomalies related to microtopography, rocks, or other limitations of 

reaching the ground surface (Fassnacht et al., 2013) and to account for grid size scale uncertainty 

(Molotch et al., 2005; Fassnacht et al., 2018). The final snow depths values were obtained by 

averaging the measurements. 

The advantage of analyzing a multiyear data set is that it allows for the identification of 

topographic controls that are significant across years. From measurement years 2005 through 

2009, between 400 and 500+ measurement locations were collected; the measured snow depth 

data contained similar sampling spatial distributions across the entire watershed and 

measurements had similar summary statistics (mean, standard deviation, and coefficient of 

variation) for these five years (Figure 3.1; Table 3.1). Compared to the 2005 through 2009 snow 

depth survey data, the 2010 through 2014 years were limited in the number of measurements 

recorded with only 100 to 300 measured and the measured locations were not as consistent 

across the basin, with focus in the lower elevations and flatter terrain (Figure 3.1; Table 3.1). 

Therefore, the snow depth measurement years were split into two groups for modelling and 

verification: 1) measurement years 2005 through 2009 were used to test our first objective 

determine whether a consistent snow depth distribution can be identified and if this snow depth 

distribution can be quantified and 2) the remaining measurement years 2010 through 2014 were 

used as verification for limited measurement location years.  
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3.4.2 Topographic Parameters 

The topographic parameters of elevation, solar radiation, slope, northness, aspect, 

ponding, and maximum upwind slope were considered as an independent variable in snow depth 

models to improve interpolated estimates (Elder et al., 1998; Lapen and Martz, 1996; Balk and 

Elder, 2000; Erxleben et al., 2002; Molotch et al., 2005; López-Moreno and Nogués-Bravo, 

2006). Vegetation was not used as a predictor due to the limited vegetation within WGLW. 

 

3.4.2.1 Elevation 

 Precipitation generally increases with elevation due topographic precipitation 

enhancements (Meiman, 1968; Gray and Male, 1981; Barry, 1992; Roe, 2005). Even in low 

relief basins, small changes in elevation can alter snow distribution processes through wind scour 

and deposition. A 5 m DEM was generated by the US Forest Service (USFS) based on infrared 

and aerial photographs. The 5 m DEM was used to derive all WGLW topographic variables.  

 

3.4.2.2 Slope 

 Slope is considered to be an important terrain feature affecting the snow depth 

distribution (McClung and Schaerer, 1993). In topographically similar terrain, snow depth can be 

exposed to high wind shear forces, a slope that is oriented toward the mean wind direction tends 

to have a decrease in snow depth (Gray and Male, 1981). Slope was calculated within ArcGIS® 

(ESRI, 2020), using the Spatial Analyst Tool based on the 5 m DEM. The slope function 

calculates the maximum rate of change between each cell and its neighbors, every cell in the 
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output raster has a slope value. The lower the slope value, the flatter the terrain; the higher the 

slope value, the steeper the terrain.  

 

3.4.2.3 Northness 

 Northness is commonly considered a substitute for solar (Molotch et al., 2005). 

Northness was used in this study and was calculated as the product of the cosine of the aspect 

and the sine of the slope (Molotch et al., 2005). Northness is also considered to be a stable 

variable over long periods of time.  

 

3.4.2.4 Aspect 

 Aspect has been attributed with melt effect (Meiman, 1968). The exposure of the slope 

aspect to the sun can affect solar radiation inputs, which in turn controls snowpack temperature 

and stability (Barry, 1992; Deems, 2002). Aspect is also considered to be a stable variable over 

long periods of time. Aspect was calculated within ArcGIS® (ESRI, 2020), using the Spatial 

Analyst Tool based on the 5 m DEM. The aspect function identifies the steepest downslope 

direction from each cell to its neighbors, the value of each indicates the direction the cell's slope 

faces.  
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3.4.2.5 Solar Radiation 

 An index of daily incoming direct solar radiation was modelled for each pixel in WGLW. 

Solar Analyst, an ArcGIS® GIS extension, computes direct, diffuse, global radiation, and direct 

radiation duration, sunmaps and skymaps, and viewsheds was used for the modelling solar 

radiation following Fu and Rich (2000). The required inputs for Solar Analyst were elevation, 

slope, and aspect grids. 

Solar radiation was calculated for the basin for the 15th of each month from December to 

April. The average monthly value for the five dates was used as an index of direct solar radiation 

during the accumulation season. Previous research has calculated a solar radiation index using 

similar methods (Elder et al., 1998; Erxleben, 2002; Molotch et al. 2005).  

 

3.4.2.6 Ponding 

 Water ponding depths, a variable used to delimit drainage paths and depressions, can be 

significant for snow accumulation in windswept landscapes (Whiting and Kiss, 1987; Lapen et 

al., 1996). Water ponding represents the depth (m) of surface depression on the surface in 

regards to the surrounds in elevation (Lapen et al., 1996).  

 

3.4.2.7 Maximum Upslope Wind 

 Strong winds interact with local topography and are critical to the creation of 

heterogeneous snow depth distribution, often cited as one of the dominant influences on snow 

accumulation and distribution (Elder et al., 1991; Luce et al. 1998; Winstral et al., 2002; Molotch 



71 

et al., 2005; Hiemstra et al., 2006; Revuelto et al., 2014). Accounting for wind interactions is a 

crucial process to aid in the understanding of snow distribution and snow variability. In order to 

capture this process, a wind shelter index (Winstral and Marks, 2002) was used to aid in the 

modelling of snow depth distribution. The maximum upwind slope parameter (Sx), defined by 

Winstral and Marks (2002) is: 

𝑆𝑆𝑥𝑥𝐴𝐴,𝑑𝑑𝑑𝑑𝑠𝑠𝑥𝑥(𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖) =  max �𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸(𝑥𝑥𝑣𝑣𝑦𝑦𝑣𝑣)−𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸(𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖) 

((𝑥𝑥𝑣𝑣 −𝑥𝑥𝑖𝑖)2+ (𝑦𝑦𝑣𝑣 −𝑦𝑦𝑖𝑖)2)0.5��,   equation 3.1 

where A is the Azimuth of the search direction, dmax is lateral search distance, (xi,yi) are the 

coordinates of the cell of interest, and (xv,yv) are the set of cell coordinates located along the line 

segment defined by (xi,yi), A, and dmax. Negative Sx values indicate exposure relative to the 

shelter-defining pixel (i.e. the cell of interest is higher than the shelter defining pixel). 

 Averaging the Sx value across the upwind direction is shown to be more robust to both 

natural and systematic deviations (Winstral and Marks, 2002). The mean maximum upwind 

slope parameter (𝑆𝑆𝑥𝑥), defined by Winstral and Marks (2002) is: 

 

𝑆𝑆𝑥𝑥𝐴𝐴,𝑑𝑑𝑑𝑑𝑠𝑠𝑥𝑥(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)|𝐴𝐴1𝐴𝐴2 =  
1𝑛𝑛𝑣𝑣∑ 𝑆𝑆𝑥𝑥𝐴𝐴,𝑑𝑑𝑑𝑑𝑠𝑠𝑥𝑥(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)𝐴𝐴2𝐴𝐴=𝐴𝐴1 ,  equation 3.2 

 

where A1 and A2 define the outer limits of the upwind directions, 𝑀𝑀 bisects A1 and A2, and nv is 

the number of search vectors in the window defined by A1 and A2.  
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3.4.3 Interpolation Methods 

 In this study, we compare three commonly used interpolation methods (Binary 

Regression Tree, Multiple Linear Regression, and Generalized Additive) that are applied in snow 

depth distribution research to assess their capacity to estimate the snow depth distribution. The 

calibration measurement years 2005 through 2009 were used to assess the three interpolation 

methods (Table 3.1). To assess the accuracy of the interpolation methods, cross-validation was 

used to compare the estimated values with the observed. The predicted snow depth values were 

used to calculate error estimates (Willmott, 1982), such as mean absolute error (MAE), root 

mean squared error (RMSE), and Willmott’s index of agreement (D) statistics.  

3.4.3.1 Binary Regression Tree 

Binary regression tree method was selected for the ease of calculation, interpretation of 

results, and due to previous success in snow distribution studies (Balk and Elder, 2000; Erxleben 

et al., 2002; Molotch et al., 2005, Fassnacht et al., 2013; Fassnacht et al., 2018). Binary 

regression tree models predict dependent variables from a group of independent variables in a 

non-linear hierarchical manner through a series of binary decisions (Breiman et al., 1984). Snow 

depth data are often related to independent variables in a non-linear and hierarchical manner, 

thus binary regression trees provide an alternative to linear and non-additive models (Erxleben et 

al., 2002; Molotch et al., 2005). Increasing homogenous subsets of data were binned together 

through binary recursive partitioning. Detailed explanation of binary regression tree fitting, 

pruning, and cross-validation can be found in Breiman et al., (1984), Elder et al., (1995), and 

Balk and Elder (2000). The tree model with the lowest deviance and highest coefficient of 

determination (r2) using a combination of topographic variables was selected.  
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3.4.3.2 Multiple Linear Regression 

Multiple Linear Regression (MLR) models were selected for the ease of calculation and 

interpretation and due to previous success in snow distribution studies (Fassnacht et al., 2003; 

Yang et al. 2003; Razi and Athappilly 2005, Marofi et al., 2011; Grünewald et al., 2013; 

Revuelto et al., 2014). MLR models model non-linear relationship between a dependent variable 

and one or more independent variables. Unlike traditional linear regression, which is restricted to 

estimating linear models, MLR can estimate models with arbitrary relationships between 

independent and dependent. A MLR model was used between physiographic variables and snow 

depth. Initially, each variable was assessed with respect to its relationship to snow depth and the 

variable with the largest correlation selected. A stepwise procedure following the protocol of 

Fassnacht et al. (2003) was repeated until the addition/removal of new variables no longer 

increased the correlation coefficient. The MLR model with the lowest deviance and highest 

coefficient of determination (r2) using a combination of topographic variables was selected. 

 

3.4.3.3 Generalize Additive Model 

Generalized Additive Model (GAM) methods were selected for the ease of calculation, 

the ability to capture non-linear interactions, and due to previous success in snow distribution 

studies (López-Moreno and Nogués-Bravo, 2005; López-Moreno and Nogués-Bravo, 2006; 

López-Moreno et al., 2010; Björk, 2016). GAMs are non-parametric extensions of linear model 

regressions that apply non-parametric smoothing functions to each predictor and additively 

calculate the component response (Hastie and Tibshirani, 1987; López-Moreno and Nogués-

Bravo, 2005). GAM regression supports non-Gaussian error distributions and non-linear 

relationships between response and predictor variables. 
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3.4.4 Standardized Snow Depth Distribution  

Our study focused on the repeatability of snow depth distribution using the modeled 

snow depth distributions and observed snow depth measurement locations across WGLW from 

different years. We examined the modeled snow depth distributions to the observations snow 

depth data in order to correlate snow depth patterns from different years. The modeled snow 

distributions for different measurement years with different snow depth magnitudes were 

standardized by the snow depth measurement locations snow depth mean. The standardized 

snow depth values (SDV) were calculated based on methods in Sturm and Wagner (2010): 

𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖 =
𝑑𝑑𝑖𝑖𝜇𝜇𝑑𝑑,𝑦𝑦,     equation 3.3 

where 𝑑𝑑𝑖𝑖 is the modeled snow depth at grid cell i, 𝜇𝜇𝑑𝑑 is the survey snow depth measurement 

locations mean snow depth for year y. From the 2005 through 2009 SDV patterns we developed 

a climatological snow distribution pattern (CSDP) by calculating the arithmetic mean of five 

survey patterns (Sturm and Wagner, 2010). 

 

3.4.5 Climatological Snow Distribution Pattern Uncertainty  

To quantify the uncertainty due to grid-scale variability of the estimated SDV grids that 

were used to estimate the CSDP, we conducted a Monte Carlo analysis that used repeated 

random sampling of input variables to calculate a distribution of output variables. Monte Carlo 

methods utilize computational algorithms to model the probability of different outcomes in a 

process that cannot easily be predicted due to the intervention of random variables and/or 

uncertainty (Hastings, 1970). We repeat the random sampling process 2000 times, resulting in a 
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distribution of CSDP values based on the mean and standard deviation of the scaled snow depth 

grids. The Monte Carlo analysis provided a range of uncertainty and confidence for the 

calculated CSDP. 

 

3.4.6 SNOTEL Data And Winter Season Index 

 The Natural Resources Conservation Service (NRCS) operates a snow pillow sensor at 

the Brooklyn Lake SNOTEL site. Table 3.4 shows the SWE and snow depth measured at the 

SNOTEL site obtained from the USDA NRCS Web site (https://www.wcc.nrcs.usda.gov) during 

the snow depth measurement dates compared to the WGLW mean measurement depth. The 

WGLW measurements occurred near peak SWE date (Figure 3.2). The Brooklyn Lake SNOTEL 

site is within 2-km of WGLW, these data are investigated as an index to scale the SDV 

distribution within a WGLW.  

 A winter severity index was estimated based on the correlation between mean snow 

depth measurements by year to Brooklyn Lake SNOTEL SWE and snow depth data following 

methods discussed in Erickson et al. (2005) and Mayes Boustead et al. (2015). The winter snow 

depth severity index was applied to the CSDP to provide a direct scaling of snow depth 

distribution for WGLW. The scaled snow depth was calculated by:  

𝑆𝑆𝐷𝐷𝑖𝑖 = 𝐶𝐶𝑆𝑆𝐷𝐷𝑃𝑃𝑖𝑖 ∗ 𝑊𝑊𝑆𝑆𝐷𝐷𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,𝑦𝑦,   equation 3.4 

where 𝑆𝑆𝐷𝐷𝑖𝑖 is the normalized snow depth at grid point i, 𝐶𝐶𝑆𝑆𝐷𝐷𝑃𝑃𝑖𝑖 is climatological snow 

distribution pattern snow depth at grid point i, and 𝑊𝑊𝑆𝑆𝐷𝐷𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥,𝑦𝑦 is the winter snow depth season 

index for year y. The modeled snow depth scaling method is similar to the lidar modeled snow 

depth scaling described by Pflug and Lundquist (2020). 
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3.5 Results 

3.5.1 Survey Data 

A multi-year data set of 3382 snow depth measurements (mean of 3 or 5 depth 

measurements per location) (Figure 3.1) was used to model snow depth distribution. This data set 

was large in terms of number of snow depth measurements and the number of years compared to 

other field surveys (Table 3.2). The number of snow depth measurement locations ranged from a 

low of 118 measurements in 2011 to a high of 538 measurements in 2005 (Table 3.1). Summary 

statistics for the ten years of snow depth measurements were calculated (Table 3.1). The spatial 

extent of field measurements varied from year to year as a function of the number and experience 

of field personnel, weather conditions and safety considerations. The snow depth mean sampling 

resolution was 50 m. The measured snow depth locations in a yearly data set ranged from 0 to 

505 cm with the yearly mean snow depth between 173 to 285 cm (Table 3.1). The coefficient of 

variation for snow depth measurements in a yearly data set ranged from 0.37 to 0.62, which is 

within the range of 0.33 to 0.63 reported by Elder et al. (1991) for three snow depth surveys near 

maximum accumulation (1986–1988).  

 

3.5.2 Model Selection  

 Three interpolation models were used to estimate the dependent variable of snow depth 

from a group of seven independent topographic variables. We used the 2006 snow depth data set 

to evaluate the performance and spatial accuracy of the three interpolation methods. The cross-

validation error estimates indicate the high predictive ability of non-linear relationships in snow 
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depth distribution for the GAM, the MAE, RMSE, and D were 68 cm, 86 cm, and 0.72 

respectively with a basin mean snow depth of 197 cm (Figure 3.3a, Table 3.3). The MLR model 

provided a decent estimation of the snow depth distribution, did not adequately represent wind 

redistribution in around the lake region but provided a good range of snow depth estimates, the 

MAE, RMSE, and D were 86 cm, 103 cm, and 0.396 respectively with a basin mean snow depth 

of 190 cm (Figure 3.3b; Table 3.3). The pruned ten node binary regression-tree model provided a 

poor estimation of the observed snow depth distribution, did not adequately represent wind 

redistribution and topographic variables in around the lake region, and provided limited range of 

snow depth estimates the MAE, RMSE, and D were 86 cm, 109 cm, and 0.552 respectively with 

a basin mean snow depth of 196 cm (Figure 3.3c; Table 3.3).  

Results from the 2006 test case were similar to López-Moreno and Nogués-Bravo (2005), 

the binary regression tree model provided an accurate description of the basin mean data but 

show relatively low predictive capability of the observed spatial pattern, and using MLR and 

GAM provided more robust estimates. Based on our case study and results in the literature 

(López-Moreno and Nogués-Bravo, 2005; López-Moreno and Nogués-Bravo, 2006; López-

Moreno et al., 2010; Björk, 2016), we applied GAM methodology with topographic variables to 

simulate snow depth distribution in WGLW. 

All seven of the topographic variables were used to identify significant predictors of 

snow depth in the WGLW for the 2005 through 2009 calibration years (Table 3.4). Slope was 

statistically significant in all five calibration years, with elevation and aspect being significant in 

four and three years, respectively (Table 3.4). Ponding was somewhat significant (p<0.1) in three 

years and significant in one year (Table 3.4). The other variables were significant or somewhat 

significant in two years.  
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Topographic variables that were significant (p <0.05) (Table 3.4) in two or more 

calibration years, elevation, slope, aspect, and maximum upwind slope (and all significant in 

2006), were selected to model snow depth distribution independently for each of the five 

calibration years. To illustrate the ability of GAMs to capture non-linear correlations, the GAM 

response curves for measurement year 2006 and 2008 are shown to highlight the effects the 

topographic variables elevation, slope, aspect, and maximum upwind slope have on snow depth 

in WGLW (Figure 3.4).  

 

3.5.3 Standardized Snow Depth And Pattern Repeatability  

 Similarity between the individual years model SDV is visually striking (Figure 3.5): the 

deepest snow was always on the east facing slopes, the shallowest snow on west facing slopes 

and across WGLW (Figure 3.5). The five years of SDV data (Figure 3.5) were used to develop 

the CSDP, (Figure 3.5f) by calculating the arithmetic mean of five SDV grids. The Monte Carlo 

analysis provided a sensitivity of the normalized basin mean snow depth (1.038), the Monte 

Carlo mean snow depth result was within 1% but estimated a larger range in SDV variability. 

The snow depth pattern repeatability (r) was calculated as the Pearson’s correlation coefficient 

between the CSDP and induvial years SDV (Figure 3.6). The basin mean snow depth pattern 

repeatability (r) ranged from 0.78 to 0.88 with a mean of 0.83, which is within the range of 0.70 

to 0.89 reported by Pflug and Lundquist (2020) (Figure 3.6). The highly correlated snow depth 

pattern repeatability (r) is critical because it means that estimated CSDP can be used to simulate 

snow depth distribution patterns with a reasonable degree of confidence (Sturm and Wagner, 

2010; Pflug and Lundquist, 2020). 
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3.5.4 Snow Season Index  

 The WGLW survey dates are shown with the daily snow depth and SWE for March 1 

through May 31 at Brooklyn Lake SNOTEL (Figure 3.2). In regard to snow depth, five of the 

survey dates occurred on above normal (median) years, five occurred on below normal years, 

one measured year (2011) was above the 90th percentile, and one measured year (2012) was 

below the 10th percentile (Figure 3.2a). In regard to SWE, six of the survey dates occurred on 

above normal (median) years, four occurred on below normal years, one measured year (2011) 

was above the 90th percentile, and one measured year (2012) was below the 10th percentile 

(Figure 3.2b).  

Brooklyn Lake SWE and the WGLW snow depth measurement locations mean were 

correlated for (a) the ten measurement years (r2 = 0.64) and (b) the five calibration measurement 

years (r2 0.18) (Figure 3.7a; Table 3.5). Brooklyn Lake snow depth and the WGLW snow depth 

measurement locations mean snow were correlated for (a) the ten measurement years (r2 = 0.75) 

and (b) the five calibration measurement years (r2 0.69) (Figure 3.7b; Table 3.5). The Brooklyn 

Lake snow depth to the WGLW snow depth measurement locations mean correlation (Figure 

3.7b) was used as the winter season index because it produced accurate and more robust 

estimations.  

 

3.5.5 Snow Depth Simulation  

 The combined winter season index, the CSDP, and the WLGW snow depth 

measurements estimated the WGLW snow distribution (Figure 3.8; Table 3.5) with a high degree 

of accuracy. The mean simulated to observed basin snow depth difference and percent difference 

for the ten years were 8 cm and 5% respectively (Table 3.5). The snow depth simulation 
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estimates during extreme years, below normal year 2012 and above normal year 2011, were 

captured extremely well with the basin mean difference and percent difference within 10 cm and 

5% respectively (Table 3.5).  

The snow depth measurement locations distribution had larger snow depth variability that 

ranged from 0 to 500+ cm (Figure 3.9a), whereas the simulated snow depth distribution had less 

variability that ranged from 50 to 485 cm (Figure 3.9b). The basin mean snow depths were 

typically within 10% (Figure 3.9; Table 3.5). 

Simulated basin mean snow depth was above the snow depth measurement mean for the 

five data intense years (Figure 3.10), and above the snow depth measurement mean for eight of 

the ten measurement years (Figure 3.10). For measurement years 2010 and 2012, the snow depth 

measurement location means were larger than the simulated mean snow depth. For these two 

years, the snow depth measurement locations where focused in the lower portion of the basin 

around Wet Glacier Lake (Figure 3.1g,i). Measurement year 2012 collected snow depth 

measurement locations in higher regions of WGLW (Figure 3.1i), this provided a better 

estimated measurement mean compared to the simulated basin mean (Figure 3.10). Results 

indicate a positive bias of the basin mean snow depth estimate when snow depth measurement 

locations are only measured in lower elevations around West Glacier Lake. 

 

3.6 Discussion 

In this study, snow depth sampling in WGLW followed Grayson et al. (2002) LOP 

sampling method to identify snow depth spatial patterns. Snow depth measurements in WGLW 

(Figure 3.1) were numerous with 3382 collected over 10 years (Table 3.1; Table 3.2). The snow 
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depth measurement periods captured normal snow depth years and record dry (2012) and wet 

years (2011) (Figure 3.2; Figure 3.8 and 3.9). The multi-year snow depth dataset had consistent 

standard deviations that ranged from 90 to 118 cm, and coefficient of variation that ranged from 

0.33 to 0.63 by year, while the mean snow depth varied substantially between years (Table 3.1). 

Snow distribution within WGLW consisted of drifted and wind scoured patterns that were 

controlled by persistent westerly winds (Korfmacher and Hultstrand, 2006) and topographic 

influences (Erickson et al., 2005).  

Although labor intensive, the LOP sampling method (Grayson et al., 2002) provided a 

robust dataset (Elder et al., 1998; Balk and Elder, 2000; Erxleben et al., 2002; Erickson et al., 

2005) that was able to confirm consistent snow depth distribution and repeatability (Figure 3.6) 

with the same accuracy as Airborne Lidar Surveys (ALS) (Pflug and Lundquist, 2020). More 

advanced snow depth sampling methods, such as ALS (Deems et al. 2008; Deems et al. 2017; 

Pflug and Lundquist, 2020), may improve spatial sampling footprint (~ 1m) and temporal 

sampling frequency. However, the ALS survey methods may not be as robust in densely 

vegetated and high relief regions (Deems et al. 2017). 

The complex topography (Figure 3.11) of WGLW plays a dominate role in snow 

distribution modelling. Spatial interpolation techniques such as binary regression tree models, 

MLR models, geostatistical models, and GAM methods have been used to estimate snow depth 

and SWE distribution in complex terrain with considerable results (Balk and Elder, 2000; López-

Moreno and Nogués-Bravo, 2005; Molotch et al., 2005; Erickson et al., 2005; López-Moreno et 

al., 2010; Grünewald et al., 2013; Fassnacht et al., 2013; Revuelto et al., 2014; Björk, 2016). 

Spatial modelling results were similar to López-Moreno and Nogués-Bravo (2005) in that binary 

regression tree model provided an accurate description of the basin mean snow depth (Figure 3; 
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Table 3) but showed relatively low predictive capability, and MLR and GAMs provided more 

robust estimates (Figure 3.3). In this study, like recent studies (López-Moreno and Nogués-

Bravo, 2005; López-Moreno and Nogués-Bravo, 2006; López-Moreno et al., 2010; Björk, 2016), 

snow depth distribution modelling was performed using GAMs with topographic variables to 

capture the nonlinear interactions controlling snow depth distribution.  

Mountain snow depth distribution is highly variable and typically controlled by 

meteorologic and topographic variables (Elder and Dozier, 1990; Winstral et al., 2002; Erickson 

et al., 2005; Pflug and Lundquist, 2020). We identified four topographic variables that influenced 

snow depth distribution that were significant and consistent among years (Table 3.4); elevation, 

slope, aspect, and maximum upwind slope (Winstral and Marks, 2002; Winstral et al., 2002) 

were significant predictors and consistent among years for estimating snow depth distribution 

within WGLW (Elder et al., 1998; Erxleben et al., 2002; Erickson et al., 2005; Molotch et al., 

2005; Revuelto et al., 2014). The slope variable has been found to largely explain the snow 

distribution in steep terrain related to snow redistribution, avalanches, and as a surrogate for solar 

radiation (McClung and Schaerer, 1993; Elder et al., 1998; Erxleben et al., 2002), in this study 

slope was identified as the most significant variable controlling snow depth distribution.  

Elevation has been found to largely explain the snow distribution in areas having big 

elevational differences (Elder et al., 1998; Erxleben et al., 2002; Molotch et al., 2005), or in 

some cases limited elevational differences (Fassnacht et al., 2018). In this study elevation was 

the second most significant variable found between snow depth and elevation, with significant 

correlations occurring in four out of five years. Aspect has been attributed with melt effect 

(Meiman, 1968) and can influence snowpack temperature, stability and snow distribution (Barry, 

1992; Deems, 2002; Erxleben et al., 2002; Fassnacht et al., 2018). Here, aspect was the third 



83 

significant variable found between snow depth and elevation. The maximum upwind slope has 

been found to largely explain the snow distribution in areas of topography that have consistent 

prevailing winds (Elder et al., 1991; Luce et al. 1998; Winstral et al., 2002; Molotch et al., 2005; 

Revuelto et al., 2014), as was found in this study. 

We modeled snow depth distribution for years 2005 through 2009 with a high degree of 

accuracy (Figure 3.5; Table 3.3) and repeatability (r = 0.82; Figure 3.6) for the five calibration 

years. These five years were used to estimate a CSDP for WGLW. To characterize the winter 

season in regard to precipitation magnitude, we developed a winter season index (r = 0.75; 

Figure 3.7b) for WGLW based on the nearby Brooklyn Lake SNOTEL station data. Once 

established, the CSDP (Figure 3.5f) and winter season index (Figure 3.7b) were used to simulate 

snow depth information for near peak snow accumulation with relatively high confidence for 

measurement limited years (Figure 3.8 and 3.9; Table 3.5). Simulated mean snow depth to snow 

depth measurement mean was highly correlated (r2 = 0.75; Figure 3.10), the simulated dataset 

did not capture the upper and lower range of snow depth measurement as well (Figure 3.9). This 

study investigated the assumption of pattern repeatability (Sturm and Wagner, 2010) and a 

winter season scaling index (Erickson et al., 2005; Mayes Boustead et al., 2015; Vögeli, 2016) to 

an alpine watershed based using 10 years of snow depth measurement locations with reported 

results slightly higher and within range of ALS in California (Pflug and Lundquist, 2020). 

 

3.7 Conclusion 

 This study applied 10 years of near peak snow depth measurements, a general additive 

model interpolation method, combined with topographic variables to estimate a climatological 

consistent snow depth pattern that is scalable based on a winter season index. The utility of 
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GAM interpolation captured the nonlinear interaction of snow depth with topographic variables. 

The topographic variables of elevation, slope, aspect, and maximum upwind slope were 

significant predictors of snow depth distribution. The estimated climatological snow distribution 

pattern and winter season index were able to simulate WGLW snow depth with high accuracy 

both quantitatively and qualitatively comparable to previous studies. 
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3.8 Tables and Figures 

 

Table 3.1. Summary of snow depth measurements and statistics for WGL snow surveys. 

Sample Year 

Number of 

Samples 

Mean 

Depth, cm 

Standard 

Deviation, cm 

Coefficient of 

Variation  

2005 538 182 98 0.54 

2006 395 176 105 0.60 

2007 520 198 107 0.54 

2008 407 217 104 0.48 

2009 408 204 90 0.44 

2010 182 266 98 0.37 

2011 118 285 118 0.42 

2012 255 173 107 0.62 

2013 294 195 102 0.52 

2014 265 226 99 0.44 

 

 

Table 3.2. Summary of snow depth measurements from selected snow distribution studies 

(modified from Erickson et al., 2005 and Clark et al., 2011). 

Reference Location 
Basin Area 

(km2) 

Years 

Sampled 

Depth 

Samples 

Elder et al. (1991) Emerald Lake Basin, California  1.2 3 2048 

Elder et al. (1998) Blacktop Basin, California 92.8 1 700 

Balk and Elder (2000) Loch Vale, Colorado 6.9 2 370 

Erxleben et al. (2002) three sites, Colorado 6.0 1 1650 

Stähli et al. (2002) Erlenbach, Switzerland 0.7 2 853 

Erickson et al. (2005) Green Lakes Valley, Colorado  2.3 7  3235 

Sturm and Wagner (2010) Imnavait Creek, Alaska 6.0   12* 21637 

This study  West Glacier Lake, Wyoming 0.6 10 3382 

 * multiple sampling periods within a year; two intensive sampling years 

 

 

Table 3.3. The mean absolute error (MAE), root-mean square error (RMSE) and Wilmott’s index 

of agreement (D) cross validation estimates for sample year 2006 interpolation. 

 GAM Linear Regression Tree 

MAE 68 86 86 

RMSE 86 103 109 

D 0.715 0.396 0.552 
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Table 3.4. Summary of topographic variables for GAM snow depth model. WGL snow depth 

was modeled with the topographic variables of elevation, slope, aspect, and maximum upwind 

slope.  

Sample 

Year 
Elevation 

Solar 

Radiation 
Slope Northness Aspect Ponding 

Maximum 

Upwind 

Slope 

2005 *** + ***   +  
2006 ***  *  *** + * 

2007 * * **  *** **  
2008 ***  ** + *** +  
2009   * +   ** 

*** is for p ≤ 0.001; ** is for p ≤ 0.01; * is for p ≤ 0.05; + is for p<0.1 

 

 

 

Table 3.5. Summary of snow depth measurements for WGL snow surveys, concurrent Brooklyn 

Lake SNOTEL snow depth and SWE measurements, and simulated snow depth statistics. The 

difference and percent difference are calculated from the sample basin mean depth to the 

simulated basin mean depth. 

Sample 

Year 

Sample 

Depth, cm 

Brooklyn 

Lake SWE, 

mm 

Brooklyn Lake 

Snow Depth, 

cm 

Simulated 

Snow Depth, 

cm 

Difference, 

cm 

Percent 

Difference 

2005 182 424 117 187 5 3% 

2006 176 615 147 206 30 17% 

2007 198 528 152 209 11 6% 

2008 217 612 180 227 10 5% 

2009 204 663 175 224 20 10% 

2010 266 615 180 227 -39 -15% 

2011 285 1067 287 295 10 4% 

2012 173 351 91 170 -3 -2% 

2013 195 516 157 212 17 9% 

2014 226 792 208 245 19 8% 
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Figure 3.1. Topographic map of West Glacier Lake watershed (a). Snow depth sample locations 

and summary statistics for sample year (b) 2005, (c) 2006, (d) 2007, (e) 2008, (f) 2009, (g) 2010, 

(h) 2011, (i) 2012, (j) 2013, (k) 2014, and (l) all year locations (n=3382). 
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Figure 3.2. Snow survey dates plotted on top of a) snow depth and b) SWE data from the 

Brooklyn Lake SNOTEL site for years 2005 through 2020. The red symbols are the survey dates 

and associated SNOTEL date values. 
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Figure 3.3.  Snow depth distribution estimated for sample year 2006 using three statistical 

interpolation methods a) GAM, b) linear regression, and c) binary regression tree methods. The 

number in the top left corner represents the average snow depth in cm, the number in the bottom 

left corner is the mean absolute error (MAE), and the number in the bottom right corner is the 

Willmott’s D.  
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Figure 3.4. Significant topographic variables elevation (a and e); slope (b and f); aspect (c and g); 

and maximum upwind slope (d and h) non-linear relationships to snow depth for sample year 

2006 and 2008. 
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Figure 3.5. Plots of standardized snow depth values (SDV) and mean climatological snow depth 

distribution. The number in the top left corner represents the mean SDV. 
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Figure 3.6. Pattern repeatability (Pearson correlation, r) between standardized climatological 

snow depth pattern and individual years SDV patten. The vertical red dashed line at 0.83 

represents the mean r value for the five-year calibration period. 
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Figure 3.7. The sampled mean snow depth correlated to a) SWE and b) snow depth for 2005 to 

2014 samples (grey circles) and the 2005 to 2009 calibration period samples (orange triangles).  
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Figure 3.8. Estimates of snow depth distribution for years 2005 through 2014 at near peak snow 

depth accumulation. The number in the top left corner represents the percent difference from a 

mean snow depth of 169 cm, calculated from the Brooklyn Lake SNOTEL snow depth in Table 

3.5. 

 

 

 

 

Figure 3.9. Comparison of annual a) sampled snow depth data and b) simulated snow depth.  

 

 



95 

 

Figure 3.10. Estimates of sampled mean snow depth versus simulated mean WGLW snow depth 

for years 2005 through 2014 (grey circles) and the 2005 to 2009 calibration period (orange 

triangles).  
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Figure 3.11. Elevation distribution of WGLW illustrated as a) histogram and b) boxplot. 
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CHAPTER 4.0 - THE BEST PRECIPITATION ESTIMATES FOR A HYDROLOGIC 

MODEL BY COMBINING GAUGE AND RADAR DATA 

 

4.1 Summary  

 Accurate estimation of the spatial and temporal distribution of rainfall is a crucial input 

into a surface water model, and for model calibration and evaluation. Typically, the number of 

rain gauges used to monitor rainfall is inadequate to resolve the spatial and temporal distributions 

over a watershed. When the measurement of rain falling in a watershed is based solely on rain 

gauges, these gauges are frequently located in convenient locations, which may not represent the 

entire watershed, and can lead to over- or under-estimation of runoff. Radar-estimated 

precipitation provides high spatial and temporal resolution, yet requires significant quality 

control and calibration before being useful for hydrologic modelling. Rain gauge data are 

combined with radar data to calibrate the rainfall rate. 

In this study, four spatial precipitation estimates (inverse distance weighting (IDW), 

IDW-PRISM (Parameter-elevation Regressions on Independent Slopes Model), default radar, 

and gauge-adjusted radar) were used to generate high spatial and temporal resolution 

precipitation estimates for input into a hydrologic model to assess streamflow variability from 

the different precipitation inputs. Each input was used in the US Army Corps of Engineers 

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) model to examine 

precipitation uncertainty on simulated streamflow predictions in the 857 km2 Alsea watershed. 

Initial Loss and Clark Transformation parameters were calibrated to observed streamflow from a 

48-hour storm event using the gauge-adjusted radar precipitation dataset. The three remaining 

precipitation estimates were used as forcing datasets in the HEC-HMS model, showing that for 

this storm event, rainfall estimation gives rise to significant variability in streamflow predictions. 
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4.2 Introduction 

 Accurate hydrologic modelling requires good approximations of the spatial and temporal 

distribution of precipitation (Girons lopez et al., 2015). Among the numerous input data to 

hydrologic models, precipitation measurements arguably have the most critical influence on the 

performance of a hydrologic model (Sik Kim et al., 2008; Ochoa-Rodriguez et al., 2015). For 

over a century, hydrologists have tried to infer rainfall volume over a watershed through spatially 

interpolating point rainfall data from sparsely placed rain gauges (Thiessen, 1911). The number 

of rain gauges used to monitor precipitation is generally inadequate to resolve the spatial 

distribution of precipitation over a watershed (Ogden et al., 2000; Moon et al., 2004; Girons 

lopez et al., 2015; Sivasubramaniam et al., 2018) and are often too coarse of a temporal 

resolution (i.e., daily). Precipitation gauges are able to measure precipitation falling at a number 

of locations, but unable to estimate precipitation falling between the gauges. Typically, the 

spatial distribution of precipitation has been estimated by developing a spatial pattern based on 

rain gauge observations using interpolation, such as, Thiessen polygons, inverse distance 

weighting (IDW), or geostatistical techniques (Ogden et al., 2000; Borga, 2002; Sharif et al., 

2002; Cole and Moore, 2008; Waleed et al., 2009). Unfortunately, the spatial distributions 

inferred by these precipitation estimation techniques have limited connection with the actual 

patterns of precipitation. 

 Ground-based radar data have been used since the 1940's to estimate precipitation 

(Marshall and Palmer, 1948). Advancements in technology have made radar data a viable tool to 

improve the precipitation mapping between rain gauges (Brandes, 1975). With regards to 

precipitation monitoring, significant progress has been made over the last few decades, including 
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widespread increase in the use of weather radar rainfall estimates, generally provided at 1 km2 

resolution with a 5 – 10 min temporal scan. Radar data have been used to estimate precipitation 

at fine spatial and temporal resolutions (Sun et al., 2000; Uijlenhoet, 2001; Vieux et al., 2003; 

Ochoa-Rodriguez et al., 2015), and can better capture the spatial variation of precipitation than 

rain gauge data in areas where rain gauges are sparsely distributed (Yang et al., 2004; Segond et 

al., 2007). Numerous studies have shown the improvements in flood estimation and flood 

forecasting using radar precipitation as the input data to hydrologic models (Kouwen, 1988; 

Pessoa et al., 1993; Sun et al., 2000; Ren et al., 2003; Cole and Moore, 2008; Ochoa-Rodriguez 

et al., 2015). Results are superior to those from techniques relying solely on precipitation gauges, 

particularly when gauge data are used to adjust the radar estimates (Fassnacht et al., 1999; Sun et 

al., 2000). Radar by itself has not proven to be a consistent estimator of actual precipitation 

amounts. 

 Most current radar-derived precipitation methods rely on a correlation between radar 

reflectivity (Z with units of mm6 m-3) and precipitation rate (R with units of mm h-1) in the form: 

 

Z = aRb       equation 4.1,  

 

where a is the "multiplicative coefficient" and b is the "power coefficient". Both a and b are 

directly related to the drop size distribution (DSD) and the drop number distribution (DND) 

within a cloud (Martner et al., 2005).  

 Using gauge estimates of precipitation, Marshall and Palmer (1948) found Z=200R1.6. 

The National Weather Service (NWS) currently uses a default Z-R relationship of Z=300R1.4 to 
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estimate rain with their network of WSR-88D radars (NEXRAD) located across the United 

States, but it often produces highly variable and inaccurate results (Hunter, 2008). The variability 

in the results of the Z vs. R correlation is a direct result of differing DSD, DND, and air mass 

characteristics across the United States (Dickens, 2003; Adirosi et al., 2015). The DSD and DND 

are determined by complex interactions of microphysical processes within a cloud that fluctuate 

seasonally, daily, regionally, and within the same cloud.  

 Radar data’s greatest strength is the ability to resolve precipitation between the gauges, 

but lacks the accuracy to estimate precipitation magnitude (Ogden et al., 2000). Merging radar 

and rain gauge data utilizes the strengths of each measurement technique while reducing their 

respective weaknesses (Moon et al., 2004; Kim et al., 2008). Radar data are used for the spatial 

distribution of precipitation, and precipitation gauge data are used to scale the magnitude of the 

spatial data often termed Gauge-Adjusted Radar Rainfall estimates (GARR) (Atlas et al., 1997; 

Mousavi and Kouwen, 2003; Hultstrand et al., 2008; Kim et al., 2008; Waleed et al., 2009; 

Hultstrand and Kappel, 2017). The result is a gauge-adjusted radar precipitation dataset that 

combines the spatial distribution of the radar and the scaling information of the gauge data 

(Fassnacht et al., 2001; Hultstrand et al., 2008; Hultstrand and Kappel, 2017). 

 The performance of distributed, physically-based hydrologic models depends heavily on 

the quality of the input data, especially precipitation (Sharif et al., 2002; Ren et al., 2003; Cole 

and Moore, 2008; Girons lopez et al., 2015; Sirisena et al., 2018). Hydrologic models ranging in 

complexity from the physically-based fully distributed to conceptual lumped models and their 

use depends upon the question being asked and the available input data. Ren et al. [2003] stated 

that radar precipitation estimates were far superior to rain gauge estimates as input into 

hydrologic models with Nash-Sutcliffe model efficiency of 83-93% for radar data compared to 
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27-69% for gauge data. Cole and Moore [2008] stated gauge-adjusted radar estimates are needed 

for any appreciable utility for flood modelling. 

The purpose of this study is to evaluate the precipitation and runoff from a large rainfall 

event in the Alsea watershed in coastal Oregon USA, and use this information to determine the 

effect of different precipitation estimates on streamflow estimation. The specific objectives of 

this study are the following: (1) what are the spatial and temporal characteristics of different 

precipitation estimates; and (2) what are the implications of the precipitation estimates in 

modeled streamflow. 

 

4.3 Study Site 

 The Alsea watershed above Tidewater, OR (USGS gauge number 14306500) is located 

within the Siuslaw National Forest, on the western Oregon coast. The Alsea watershed is 857 

km2 in size, ranges in elevation from 17 to 1,248 m with a mean basin elevation of 320 m (Figure 

4.1). Average annual precipitation is approximately 2,068 mm, with 322 mm falling in 

November (Daly et al., 2004; PRISM Climate Group, 2020). The watershed average 24-hour 2-

year precipitation event is 104 mm and the 24-hour 100-year precipitation event is 193 mm 

(Schaefer et al., 2008). These estimates are slightly lower than the older but official NOAA Atlas 

2 values of 125 mm and 223 mm (Miller et al., 1973). 

 The storm event analyzed for this paper is a 48-hour window from November 6 - 8, 2006. 

During this window, the Alsea watershed received an average of 138 mm of precipitation in a 

48-hour period, a maximum point precipitation of 185 mm in a 48-hour period, and a maximum 

point precipitation of 170 mm in a 24-hour period. The maximum 24-hour gridded precipitation 
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within the Alsea watershed for this storm event is between the 2-year and 100-year 24-hour 

precipitation event (Schaefer et al., 2008). 

 

4.4 Data 

 A hydrometeorological spatial interpolation software, the Storm Precipitation Analysis 

System (SPAS), characterizes the spatial and temporal distributions of precipitation events 

(Parzybok et al., 2008; Hultstrand et al., 2008; Hultstrand and Kappel, 2017; Keim et al., 2018; 

Brown et al., 2020). The SPAS program was used to estimate hourly precipitation grids based on 

four spatial interpolation methods: i) IDW, ii) IDW-PRISM (Parameter-elevation Regressions on 

Independent Slopes Model), iii) default radar and iv) gauge-adjusted radar. Details on each of the 

four methods are described in the following sections. The four estimates of hourly precipitation 

were used as input into the US Army Corps of Engineers Hydrologic Engineering Center 

Hydrologic Modeling System (HEC-HMS) model. HEC-HMS is a physically-based hydrologic 

model that was developed by the US Army Corps of Engineers (Scharffenberg et al., 2018).  

 

4.4.1. Precipitation Gauge Data 

 Precipitation data were obtained from 48 recording rain gauges with hourly or daily 

temporal resolution over the entire storm period. Ten of these recording rain gages are located in 

or within 20 km of the Alsea watershed. This high density of gauges exists since the Alsea has 

been a research watershed for numerous decades (Chapman et al., 1961; Hall and Stednick, 

2008; Stednick, 2008; Segura et al., 2020). Hourly gauge precipitation data were identified, 
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acquired, and quality controlled from the National Center for Environmental Information (NCEI, 

https://www.ncei.noaa.gov/) and the Remote Automated Weather Station (RAWS, 

https://raws.dri.edu/) networks. Precipitation from daily or event reporting locations were more 

abundant and were also identified, acquired and quality controlled from the NCEI and RAWS 

networks.  

To increase the number of observations used for hourly interpolation, the daily and event 

reporting observations were converted to hourly estimated values based on the temporal 

distribution of precipitation at nearby hourly rain gauges (Parzybok et al., 2008; Hultstrand et al., 

2008; Hultstrand and Kappel, 2017). To disaggregate (i.e., distribute) daily gauge data into 

estimated hourly values, official hourly reporting gauge data were first evaluated and quality 

controlled. Each hourly precipitation value was converted into a percentage that represents the 

incremental hourly precipitation divided by the total storm precipitation. A file was constructed 

for each hour for each gauge station that includes the latitude (x), longitude (y), elevation (elev), 

precipitation (R), reflectivity (Z) and the percent of precipitation (%R) for a particular hour. An 

IDW interpolation technique was applied to each of the hourly files. The result was a continuous 

grid with percentage values for the entire analysis domain, keeping the grid cells onto which the 

hourly gauge correctly estimates the observed/actual percentage. Since the percentages typically 

have a high degree of spatial autocorrelation (Daly et al., 1994; Hunter and Meentemeyer, 2005; 

Hultstrand and Kappel, 2017), the spatial interpolation had skill in determining the percentages 

between gauges, especially since the percentages were somewhat independent of the 

precipitation magnitude (Schaake et al., 2004). The end result was a grid for each hour that 

represented the percentage of the total storm precipitation that fell during that hour. After the 

hourly percentage grids were generated and quality-controlled, the hourly estimated timing at 
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each of the daily gauges was based on i) the daily gauge observation time, ii) daily precipitation 

amount and iii) the series of interpolated hourly percentages extracted from grids. 

 

4.4.2. Streamflow Data 

Streamflow data were acquired, and quality controlled for the Alsea River near Tidewater 

(gauge number 14306500) from the United States Geological Survey (USGS) National Water 

Information System (NWIS, https://nwis.waterdata.usgs.gov/nwis/sw) database. Daily 

streamflow has been archived since 1 October 1939, and 30-minute streamflow has been 

archived since 1 October 1986.  

 

4.5 Methodology 

4.5.1. IDW Precipitation Estimates 

 The hourly and hourly estimated precipitation data were spatially and temporally 

distributed based solely on the gauge data using an IDW algorithm (Isaaks and Srivastava, 

1989): 
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 where )(ˆ 0xz  is the interpolated value, n is the number of sample points, )( ixz  is the ith data 

value, di denotes the separation distance between the interpolated value and data value, and p 

denotes the weighting power. The IDW estimates for this study were derived as per Isaaks and 

Srivastava (1989) with a p value of 2 and are referred to as IDW estimates. An exponent of 2 is 

optimal in various applications (Fassnacht et al., 2003a).  

 

4.5.2 IDW-PRISM Precipitation Estimates 

 Climatology basemaps are independent grids of spatially distributed weather or climate 

variables that are used to govern the spatial patterns (Daly et al., 1994; Daly et al., 2004; Perica 

et al., 2013; PRISM Climate Group, 2020). The National Weather Service (NWS) utilizes the 

“Mountain Mapper” methodology and Parameter-Elevation Regressions on Independent Slopes 

Model (PRISM) basemaps for quantitative precipitation estimates (QPE) (Daly et al., 1994; 

Schaake et al., 2004; Zhang et al., 2011; Zhang et al., 2014; Hultstrand and Kappel, 2017). The 

mountain mapper technique uses an IDW approach to estimate precipitation at ungauged 

locations from values at gauged locations while considering the climatology of precipitation at 

the gauged and ungauged locations (Schaake et al., 2004). Mountain mapper methodology uses 

precipitation climatology such as PRISM mean monthly precipitation or the 

Hydrometeorological Design Studies Center (HDSC) NOAA Atlas 14 precipitation frequency 

grids (Perica et al., 2013) to resolve orographic enhancement areas and micro-climates at a 

spatial resolution of 800 m. The PRISM methodology uses a weighted regression scheme to 

account for complex climate regimes associated with orography, rain shadows, temperature 

inversions, slope aspect, coastal proximity, and other factors (Daly et al., 1994; Daly et al., 2004; 
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PRISM Climate Group, 2020). NOAA Atlas 14 provide precipitation frequency climatologies 

with associated 90% confidence intervals and supplementary information on temporal 

distribution of heavy precipitation, analysis of seasonality and trends in annual maximum series 

data (Perica et al., 2013). Basemap climatologies in complex terrain are often based on the 

PRISM mean monthly precipitation and/or NOAA Atlas 14 precipitation frequency grids given 

both resolve orographic enhancement areas and micro-climates in complex terrain. Basemaps 

climatologies of this nature in flat terrain are not as effective given the small terrain forced 

precipitation gradients. The Mountain Mapper method as per Schaake et al., (2004) was applied 

in this study and is referred to as IDW-PRISM estimates. 

 

4.5.3. Default Radar Precipitation Estimates 

Level–II base reflectivity data were acquired from NCEI at a temporal resolution of 5 

minutes, a spatial scale of approximately 1x1 km resolution, and with a precision of 0.50 Z. The 

SPAS tool performs radar data quality control algorithms (RDQC) to remove non-precipitation 

artifacts from base Level–II radar data and projects the data from polar coordinates to a Cartesian 

(latitude/longitude) grid (Hultstrand and Kappel, 2017). Non-precipitation artifacts include 

ground clutter, bright banding, sea clutter, anomalous propagation, sun strobes, clear air returns, 

chaff, biological targets, electronic interference and hardware test patterns (Lakshmanan and 

Valente, 2004; Lakshmanan et al., 2014). The quality-controlled radar data were used as the raw 

radar reflectivity data across the watershed, that were subsequently adjusted to precipitation 

estimates.  
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The default radar dataset was computed by applying the NWS default Z-R relationship of 

Z=300R1.4 to the raw quality-controlled radar reflectivity data. No further bias corrections were 

applied to these default radar estimates. The hourly precipitation estimates were derived by 

summing the sub-hourly scan-level precipitation grids. 

 

4.5.4 Gauge-adjusted Radar Precipitation Estimates 

 The SPAS tool utilizes an iterative procedure for optimizing the a and b coefficients of 

the Z-R relationship each hour during the analysis period. For each hour, the algorithms 

determined if sufficient observed hourly precipitation data (minimum six stations) were available 

to compute a reliable Z-R relationship (Hultstrand and Kappel, 2017). If sufficient observed 

precipitation data were not available, then the Z-R relationship would adopt the previous hours 

Z-R relationship (if available) or apply a user supplied default algorithm, in this case Z = 

300R1.4. If sufficient precipitation data were available for an hour, they were related to the radar 

reflectivity data, and a least-squares power function was computer between the data points. The 

resulting a and b coefficients and the maximum estimated precipitation were subjected to several 

tests to determine if the Z-R relationship was acceptable. Once a mathematically optimized 

hourly Z-R relationship was determined, it was applied to the raw quality-controlled scan level 

Z-grid to compute initial precipitation estimates (in mm h-1) at each grid cell over the extent of 

the radar data. 

 Spatial differences in the Z-R relationship exist across the radar domain due to 

differences in DSD, DND and/or poor radar coverage. To account for these local differences, 

SPAS computed spatial residuals, as per Fassnacht et al. (2003b), as the difference between the 
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precipitation estimates from the Z-R equation and the observed precipitation for each gauging 

station. To limit the impact of large anomalous residuals and promote a spatially smooth pattern, 

the residuals, also known as biases, were smoothed using a 3 by 3 block spatial filter. The final 

hourly precipitation grids were created by adding the initial precipitation estimate grid with the 

residual/bias grid, these precipitation estimates are referred to as gauge-adjusted radar estimates. 

 

4.5.5 Hydrologic Modelling 

 The HEC-HMS model was developed by the US Army Corps of Engineers to simulate a 

variety of situations, including analyzing urban flooding, flood frequency, flood warning system 

planning, reservoir spillway capacity, and stream restoration (Scharffenberg et al., 2018). HEC-

HMS contains four main components: i) an analytical model to calculate overland flow runoff as 

well as channel routing, ii) an advanced graphical user interface that displays hydrologic system 

components with interactive features, iii) a system for storing and managing data, specifically 

large, time variable datasets, and iv) a means for displaying and reporting model outputs (Bajwa 

and Tim, 2002).  

 For this study, HEC-HMS was calibrated to the observed USGS streamflow data and the 

gauge-adjusted radar estimate dataset using HEC-HMS built in Optimization Manager interface. 

The HEC-HMS model was calibrated using deterministic model optimization, based on 

univariate-gradient search algorithm, involved adjusting initial parameter values so that the 

simulated results match the observed streamflow as closely as possible, as per Scharffenberg et 

al. (2018). For the Alsea watershed model, the Initial and Constant Loss method and the Clark 

method were selected for transforming the precipitation estimates into streamflow. The Initial 
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and Constant Loss method use two parameters: the initial loss and the constant loss values to 

define infiltration losses. Clark Unit Hydrograph model derives unit hydrographs by representing 

two critical process: translation and attenuation in the transformation of excess precipitation into 

runoff.  

 For the Initial and Constant Loss, the parameters of Initial Loss, Percent Impervious, and 

Constant Rate were estimated following US Army Corps of Engineers (2016) and adjusted 

through the HEC-HMS optimization method. For the Clark Unit Hydrograph, the parameters of 

Time of Concentration and Storage Coefficient were estimated following US Army Corps of 

Engineers (2016) and adjusted through the HEC-HMS optimization method. The deterministic 

optimization process was completed once the goodness-of-prediction estimates, “sum of absolute 

residuals” and “sum of squared residuals”, provided the best value for each parameter adjusted. 

The “percent of error in peak” and “peak-weighted root mean square error” goodness-of-

prediction indices were not used in the deterministic optimization.  

 

4.6 Results 

4.6.1. Precipitation 

The gauge-adjusted estimated precipitation represents the true spatial (Figure 4.2) and 

temporal characteristics (Figure 4.3) and is considered as the reference for comparison. The 

gauge-adjusted estimated precipitation average volume on the watershed area was 138 mm and 

the maximum within the watershed 185 mm (Figure 4.2 and Table 4.1). Figure 4.5 compares 

accumulated maximum 24-hour estimated precipitation and the associated 24-hour average 
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recurrence interval (ARI). The gauge-adjusted maximum 24-hour ARI is 72-years with a 

watershed average of 14-years.  

The uncalibrated default radar estimated precipitation created a spatial pattern that is not 

representative to the spatial (Figure 4.2) and temporal characteristics (Figure 4.3) of the 

reference gauge-adjusted radar precipitation. The uncalibrated default radar estimated 

precipitation significantly underestimated the precipitation from the storm. The uncalibrated 

default radar estimated precipitation average volume on the watershed area was 26% less than 

the reference gauge-adjusted radar precipitation volume and the maximum volume on the 

watershed area was 31% less than the reference gauge-adjusted radar precipitation (Figure 4.2 

and Table 4.1). Figure 4.5 compares accumulated maximum 24-hour estimated precipitation and 

the associated 24-hour ARI. The uncalibrated default radar maximum 24-hour ARI is 17-years 

with a watershed average of 3-years. The uncalibrated default radar maximum 24-hour estimated 

precipitation significantly underestimated the precipitation from the storm. The uncalibrated 

default radar maximum 24-hour estimated precipitation average volume on the watershed area 

was 22% less than the reference gauge-adjusted radar precipitation volume and the maximum 

24-hour volume on the watershed area was 27% less than the reference gauge-adjusted radar 

precipitation. 

The IDW estimated precipitation created a spatial pattern that is similar to the spatial 

(Figure 4.2) and temporal characteristics (Figure 4.3) of the reference gauge-adjusted radar 

precipitation. The IDW estimated precipitation slightly underestimated the precipitation from the 

storm. The IDW estimated precipitation average volume on the watershed area was 3% less than 

the reference gauge-adjusted radar precipitation volume and the maximum volume on the 

watershed area was 6% less than the reference gauge-adjusted radar precipitation (Figure 4.2 and 
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Table 4.1). Figure 4.5 compares accumulated maximum 24-hour estimated precipitation and the 

associated 24-hour ARI. The IDW maximum 24-hour ARI is 53-years with a watershed average 

of 12-years. The IDW maximum 24-hour estimated precipitation slightly underestimated the 

precipitation from the storm. The IDW maximum 24-hour estimated precipitation average 

volume on the watershed area was 3% less than the reference gauge-adjusted radar precipitation 

volume and the maximum 24-hour volume on the watershed area was 6% less than the reference 

gauge-adjusted radar precipitation. 

The IDW-PRISM estimated precipitation created a spatial pattern not representative the 

spatial (Figure 4.2) and temporal characteristics (Figure 4.3) of the reference gauge-adjusted 

radar precipitation. The IDW-PRISM estimated precipitation overestimated the precipitation 

from the storm. The IDW-PRISM estimated precipitation average volume on the watershed area 

was 12% more than the reference gauge-adjusted radar precipitation volume and the maximum 

volume on the watershed area was 22% more than the reference gauge-adjusted radar 

precipitation (Figure 4.2 and Table 4.1). Figure 4.5 compares accumulated maximum 24-hour 

estimated precipitation and the associated 24-hour ARI. The IDW-PRISM maximum 24-hour 

ARI is 160-years with a watershed average of 18-years. The IDW-PRISM maximum 24-hour 

estimated precipitation slightly overestimated the precipitation from the storm. The IDW-PRISM 

maximum 24-hour estimated precipitation average volume on the watershed area was 13% more 

than the reference gauge-adjusted radar precipitation volume and the maximum 24-hour volume 

on the watershed area was 24% less than the reference gauge-adjusted radar precipitation. 
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4.6.2. Mass Curves 

Mass curves are plots of the temporal distribution and the magnitude of precipitation. 

Mass curves were extracted at three locations and for the basin average for each of the four 

precipitation estimates: i) the maximum precipitation location, ii) the basin outlet, iii) the basin 

average precipitation, and iv) the minimum precipitation location. The gauge-adjusted radar 

mass curves have a large difference in the magnitude; the overall timing is in good agreement. 

The maximum basin precipitation was 185 mm, the basin outlet was 183 mm, the average basin 

138 mm, and the minimum basin precipitation was 106 mm (Figure 4.3a, Table 4.1). The default 

radar mass curves exhibit less variability in the magnitude; the overall timing is in good 

agreement. The maximum basin precipitation was 128 mm, the basin outlet was 101 mm, the 

average basin 102 mm, and the minimum basin precipitation was 71 mm (Figure 4.3b, Table 

4.1). The IDW mass curves show little difference in the magnitude and the overall timing is in 

good agreement. The maximum basin precipitation was 174 mm, the basin outlet was 169 mm, 

the average basin 134 mm, and the minimum basin precipitation was 106 mm (Figure 4.3c, Table 

4.1). The IDW-PRISM mass curves show little difference in the magnitude and the overall 

timing is in good agreement. The maximum basin precipitation was 178 mm, the basin outlet 

was 178 mm, the average basin 155 mm, and the minimum basin precipitation was 106 mm 

(Figure 4.3e, Table 4.1). 

 

4.6.3. Observed Gauge Precipitation versus Predicted Precipitation 

 The overall fit between the total storm observed precipitation and estimated total storm 

precipitation at gauge locations were used to assess the overall fit of the gridded rainfall for each 
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of the four precipitation methods. The accuracy of the four precipitation estimates were 

quantified based on the following goodness-of-prediction estimates: the root mean square error 

(RMSE), the mean absolute error (MAE), the coefficient of determination (R2), and the Nash-

Sutcliffe Efficiency (NSE).  

 The gauge-adjusted radar total storm precipitation versus the observed precipitation 

correlation is extremely high; the R2 is 0.998 and the NSE is 0.999 (Figure 4.6 and Table 4.2). 

The gauge-adjusted radar results have the best fit due to the nature of the spatial bias adjustment 

(residuals)accounting, which is an exact interpolator of the point but not representative between 

gauges. The default radar total storm precipitation versus the observed precipitation correlation is 

extremely poor; the R2 is 0.168 and the NSE is -2.08 (Figure 4.6 and Table 4.2). The default 

radar results always underestimated the observed precipitation and provided the least accuracy of 

the four precipitation estimates. The IDW total storm precipitation versus the observed 

precipitation correlation is extremely high; the R2 is 0.979 and the NSE is 0.979 (Figure 4.6 and 

Table 4.2). The IDW results have a great fit due to the nature of IDW, which is an exact 

interpolator of the point but not representative between gauges but still underperformed when 

compared to the gauge-adjusted precipitation estimates. The IDW-PRISM total storm 

precipitation versus the observed precipitation correlation is extremely high; the R2 is 0.976 and 

the NSE is 0.974 (Figure 4.6 and Table 4.2). The IDW-PRISM run has a great fit due to the 

nature of IDW, which is an exact interpolator of the point but not representative between gauges, 

as is seen in the range of estimated precipitation values (Figure 4.2, Figure 4.3, and Table 4.2). 

The IDW-PRISM precipitation estimates underperformed compared to the gauge-adjusted 

precipitation estimates. 
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4.6.4. Hydrologic Modelling 

The accuracy of the four precipitation estimates as input into HEC-HMS were quantified 

based on the following streamflow goodness-of-prediction estimates: RMSE, MAE, R2, and NSE. 

For this study, HEC-HMS was calibrated to the observed streamflow data for and the gauge-

adjusted radar precipitation estimates. Using the HEC-HMS calibrated parameters (Table 4.3), 

the model was forced by the three remaining precipitation estimates and results were used to 

quantify the variation in modeled streamflow. The observed maximum, average, and minimum 

streamflow was 472.9, 203.7, and 60.9 m3/s, respectively. The observed cumulative total runoff 

for the Alsea watershed is 30.8 mm. Figure 4.4 shows the basin average precipitation used as 

input in to the Calibrated HEC-HMS model, the accumulation patterns illustrate the similarities 

in timing and magnitude of precipitation for the gauge-adjusted and IDW estimates and also 

illustrate significant differences in timing and magnitude of the default radar and IDW-PRISM 

estimates. 

The runoff volume calculated for the gauge-adjusted radar precipitation estimates on 

average is 1.4% less than the average observed streamflow and the peak streamflow is 4.0% 

larger than the observed peak streamflow (Table 4.2). Although the peak discharge is 4% higher 

using the gauge-adjusted radar precipitation, the total runoff volume is 1.3% lower than the 

observed total runoff. The gauge-adjusted radar precipitation resulted in streamflow simulation 

with a slightly higher peak streamflow and an average slightly lower with the relatively excellent 

goodness-of-fit measures (Table 4.4) indicating a successful model calibration and a great 

reference dataset. The uncalibrated default radar estimated precipitation average streamflow is 

31.5% less than the average observed streamflow and the peak streamflow is 33.2% lower than 

the observed peak streamflow (Table 4.2). The peak discharge is 33% lower using the 
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uncalibrated default radar estimated precipitation, the total runoff volume is 31.5% lower than 

the observed total runoff. The uncalibrated default radar estimated precipitation resulted in 

streamflow simulation that significantly lower in both peak, average and cumulative streamflow; 

and produced poor goodness-of-fit measures (Table 4.4). The IDW estimated precipitation 

average streamflow is 6.1% less than the average observed streamflow and the peak streamflow 

within 1% of the observed peak streamflow (Table 4.2). The total runoff volume is 6.2% lower 

than the observed total runoff. The IDW estimated precipitation resulted in streamflow 

simulation that slightly lower peak streamflow and an average slightly lower with the relatively 

good goodness-of-fit measures (Table 4.4) indicating a successful model calibration. The IDW-

PRISM estimated precipitation average streamflow is 18.8% greater than the average observed 

streamflow and the peak streamflow is 30.8% greater than the observed peak streamflow (Table 

4.2). The peak discharge is 30.8 greater using the IDW-PRISM estimated precipitation, the total 

runoff volume is 18.8% more than the observed total runoff. The IDW-PRISM estimated 

precipitation resulted in streamflow simulation that significantly overpredicted in both peak, 

average and cumulative streamflow; and produced poor goodness-of-fit measures (Table 4.4). 

 

4.7 Discussion 

 The precipitation and streamflow data collected for the November 2006 storm event in 

the Alsea watershed, provided an opportunity to investigate the effect different precipitation 

estimates have on streamflow simulations for a typical large storm event (less than a 100-year 

ARI; Figure 4.5). This study provides quantitative information on the development of four 

different precipitation estimates, the calibration of a HEC-HMS model, and the resulting 

streamflow simulations as compared to observed streamflow.  
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 Given the large variability in magnitude and timing of precipitation estimates (Figure 4.2; 

Figure 4.3; Figure 4.6; and Table 4.1), the results of this study highlight the significance of 

precipitation estimates used as input into hydrologic models (Sharif et al., 2002; Ren et al., 2003; 

Cole and Moore, 2008; Girons lopez et al., 2015; Sirisena et al., 2018). Goodness-of-fit 

measures performed on the observed precipitation data to the four estimated precipitation 

datasets show that the gauge-adjusted and IDW precipitation estimates resulted in the best 

representation of the observed precipitation (Ogden et al., 2000; Moon et al., 2004; Kim et al., 

2008; Table 4.2). The default radar estimates showed significant underestimation of precipitation 

estimates while the default radar generated excessive precipitation estimates.  

 To place the precipitation estimates in a historical context, the four precipitation 

estimates were compared with Oregon’s Department of Transportation (ODOT) 24-hour 

Regional Precipitation datasets gridded point precipitation ARIs (Schaefer et al., 2008). ARIs 

indicate the average time between events of a given magnitude when averaged over a long period 

(Lincoln 2014; Lincoln et al., 2017) and are frequently calculated for an event for a range of 

different durations, typically from hours to days. The ODOT contains Regional Precipitation 

datasets contains 24-hour precipitation estimates with recurrence intervals ranging from 1 to 

1000 years. The precipitation frequency estimates are an expressed value reported with their 

corresponding 90% confidence intervals. As the ARIs increase, the confidence interval widths 

increase as well, resulting from variability in precipitation and the rare nature of extreme events. 

The annual exceedance probability (AEP), the probability that an event of the given magnitude 

will occur within any given year (one divided by ARI), is more commonly used to describe the 

rare nature of an event to the public (Lincoln et al., 2017). Recent studies (Parzybok et al., 2011; 

Keim et al., 2018) have described rainfall totals in terms of both ARI and AEP to better define 
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the historical nature of a storm. For this study, the reference gauge-adjusted precipitation at the 

24-hour duration (maximum occurred between November 6-8, 2006) had an ARI of 72-years 

(AEP is 0.014) and a watershed average ARI of 14-years (AEP is 0.071, Figure 4.5).  

 The HEC-HMS optimized parameters (Table 4.3) for the Initial and Constant Loss 

method and the Clark method were derived by calibrating the observed streamflow to the gauge-

adjusted precipitation estimates. The final optimized parameters and are within the typical range 

to account for loss and transformation of excess precipitation into runoff (Scharffenberg et al., 

2018). 

 Streamflow simulations show a large degree of variability in the magnitude of peak 

streamflow and total streamflow volume (Figure 4.7; Table 4.9). As expected, the gauge-adjusted 

precipitation estimates resulted in the best overall streamflow simulation goodness-of-fit 

measures while the IDW, IDW-PRISM, and default radar precipitation estimates resulted in 

streamflow simulation goodness-of-fit rankings of second, third, and fourth best respectfully 

(Table 4.4). In particular, streamflow simulations using the gauge-adjusted radar method 

simulated the peak time and shape of hydrograph more accurately than the other methods. A 

result of the gauge-adjusted radar method utilizing both radar and gauge data to derive 

precipitation fields that represent the actual spatial and temporal characteristics of precipitation 

(Pessoa et al., 1993; Sun et al., 2000; Ren et al., 2003; Cole and Moore, 2008; Hultstrand et al., 

2008; Ochoa-Rodriguez et al., 2015). The IDW-PRISM precipitation estimates generated the 

second worst streamflow and goodness-of-fit estimates; these results can be attributed to 

excessive precipitation estimates driven by the basemap interpolation at higher elevation regions 

(Schaake et al., 2004; Hultstrand and Kappel, 2017). The default radar precipitation estimates 

generated the worst simulated streamflow and goodness-of-fit estimates; these results can be 
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attributed to a drastic underestimate of precipitation resulting for raw uncalibrated radar 

(Dickens, 2003; Hunter, 2008; Adirosi et al., 2015).  

 As shown in the is study, we found that different precipitation estimates have a 

considerable impact on streamflow simulation (Figure 4.6; Figure 4.7) with the greatest 

streamflow variability attributed to both the precipitation magnitude and timing.  Although this 

study only investigated precipitation estimates for one storm event that was less than 100-year 

magnitude (Figure 4.5), the study further illustrates the importance of accurate spatial and 

temporal precipitation estimates in performing hydrologic model simulations (Sik Kim et al., 

2008; Girons lopez et al., 2015; Ochoa-Rodriguez et al., 2015). 

 

4.8 Conclusions 

 The four precipitation datasets for the Alsea watershed in Oregon are different in 

magnitude with varying spatial and temporal distributions across the study area. The gauge-

adjusted radar estimates are of high quality and superior to the default radar, IDW, and IDW-

PRISM estimates. The default radar estimates presented the largest deviation in magnitude and 

resulted in significant underestimation of storm total rainfall volume. The IDW estimates were the 

second best in regard to precipitation magnitude and goodness-of-fit measures but the spatial 

pattern was not representative since the rain gauges in and around the watershed are spaced far 

apart. The IDW-PRISM precipitation estimates resulted in overestimation of the storm total 

rainfall volume and generated a nonrepresentative spatial pattern anchored to the underlying 

terrain.  The temporal characteristics within the Alsea watershed were similar for the three 

precipitation estimates that utilized gauge data (gauge-adjusted, IDW, IDW-PRISM) as compared 
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to the default radar. The default radar intensities were much lower as compared to the intensities 

of the estimates that included gauges. 

 The four precipitation datasets yield different simulated streamflows. The gauge-adjusted 

radar and IDW estimates both showed good agreement with the observed streamflow data, while 

the default radar estimates underestimated and the IDW-PRISM overestimated the observed 

streamflow. In terms best-fit statistic (NSE and R2), the default radar and IDW-PRISM 

precipitation estimates were the poorest. Despite the low density of rain gauges in the Alsea 

watershed, simulations that included precipitation estimates that included gauge data showed a 

better agreement with observed streamflow as compared to streamflow simulations based on 

precipitation estimates that did not include gauge data. 

 

 

 

 

 

 

 

 

 

 



130 

4.9 Tables and Figures 

Table 4.1. Gridded total storm precipitation statistics (mm) for the Alsea watershed for each of 

the four precipitation estimates. 

 
Gauge-

Adjusted 
Default IDW IDW-PRISM 

Maximum 185 128 174 226 

Average 138 102 134 155 

Minimum 106 71 106 108 

Outlet 183 101 169 178 

StDev 18 14 19 25 

 

 

 

Table 4.2. Total storm goodness-of-fit measures between the observed gauge data total storm 

precipitation (mm) and estimated gauge grid cell total storm precipitation (mm) for 42 gauge 

locations. 

 
Gauge-

Adjusted 
Default IDW IDW-PRISM 

RMSE 1.872 89.56 7.414 8.157 

MAE 0.793 76.32 1.983 3.574 

R2 0.999 0.168 0.979 0.976 

NSE 0.999 -2.078 0.979 0.974 

 

 

 

Table 4.3. Calibrated HEC-HMS parameters used with precipitation estimates to simulation 

streamflow. 

 

Loss Rate Clark Transform 

Initial Loss = 9.60 mm (0.378 in) Time of Concentration = 9.192 hours 

Constant Rate = 4.013 mm/hr (0.158 in/hr) Storage Coefficient = 14.44 hours 
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Table 4.4. Alsea basin observed and simulated streamflow statistics (m3/s) and goodness-of-fit 

measures for four precipitation methods. 

 Observed 
Gauge-

Adjusted 
Default IDW IDW-PRISM 

Cumulative (mm) 30.8 30.4 21.1 28.9 36.6 

Maximum 472.9 491.7 315.9 469.9 618.7 

Average 203.7 200.9 139.5 191.2 242.0 

Minimum 60.9 60.9 60.9 60.9 60.9 

RMSE  - 10.9 87.6 17.6 58.8 

MAE - 9.1 65.2 13.0 41.9 

R2 - 0.994 0.975 0.993 0.941 

NSE - 0.993 0.576 0.983 0.808 
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Figure 4.1. Study site map showing location of the Alsea watershed. Red circle is location of 

basin outlet and red plus symbols are precipitation gauges in the basin region. 
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a)  

b)  e)  

c)  f)  



134 

d)  g)  

   

Figure 4.2. Spatial total storm precipitation patterns for a) gauge-adjusted radar reconstruction, b) 

default radar reconstruction, c) IDW reconstruction and d) IDW-PRISM reconstruction for the 

November 6 - 8, 2006 storm event. Percent difference from gauge-adjusted radar spatial pattern to 

e) default radar pattern f) IDW pattern and g) IDW-PRISM pattern. Red circle is location of basin 

outlet and red plus symbols are precipitation gauges in the basin region. 
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Figure 4.3. Hourly mass curve accumulated precipitation from 0100 PST 06 November to 0100 

PST 08 November for a) gauge-adjusted radar reconstruction, b) default radar reconstruction, c) 

IDW reconstruction and d) IDW-PRISM reconstruction. 
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Figure 4.4. Hourly basin average mass curve accumulations used as input in to the calibrated 

HEC-HMS model to estimate to streamflow. 
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Figure 4.5. 24-hour maximum estimated precipitation and the associated 24-hour average 

recurrence interval for 6–8 November 2006 storm event for a) gauge-adjusted radar estimate, b) 

IDW-PRISM estimate, c) IDW estimate and d) default radar estimate. 
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Figure 4.6. Fit between the observed total storm precipitation and estimated total storm 

precipitation at 42 gauge locations used to derive hourly and the total storm precipitation 

estimates. Black line represents a 1:1 fit. 
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Figure 4.7. Streamflow modeled with the gauge-adjusted radar (red), default radar (green), IDW 

(grey), and IDW-PRISM (orange) average basin hourly precipitation grids. Gauge-adjusted hourly 

basin average precipitation is shown (grey) and observed USGS streamflow (black). 
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5.0 DISCUSSION 

 

5.1 Details from the Individual Papers 

 Through a combination of field measurements, data collection, and modelling this 

dissertation applied scientific methods to build on and advance knowledge of four water balance 

components. With the goal to improve the hydrologic community awareness of water resources 

in terms of hydrologic uncertainty (Nearing and Gupta, 2018) and to improve water supply 

forecasting, water supply modelling, and design infrastructure. This dissertation is structured by 

the following questions examined in Chapters 2 through 4: (1) Can snowpack sublimation 

uncertainty be quantified, if so what variables are sensitive for snowpack sublimation estimates? 

(2) Can a snow depth measurement dataset be used to identify and model a snow depth 

distribution climatology, if so can the climatology be scaled to estimate snow depth distribution 

for different years within complex mountainous terrain? (3) What are the uncertainty and 

sensitivity that spatial rainfall data have on modeled streamflow? Chapters 2 through 4 of this 

dissertation evaluate and build on knowledge that are central to these overarching questions.  

In Chapter 2, snowpack sublimation sensitivity was evaluated and quantified in a 

sub-alpine environment based on the bulk aerodynamic flux (BF) method. Sublimation 

measurements based on aerodynamic profile (AP) and eddy covariance (EC) require 

extensive meteorological measurements, typically limited to research facilities, whereas 

the BF method requires fewer meteorological measurements that are often available on 

standard operational meteorological monitoring networks. This evaluation of snowpack 

sublimation within mountainous terrain is particularly applicable for water balance 

modelling to properly account for instrumentation errors and what variables need the 
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greatest attention while performing snowpack sublimation computations. This study revealed 

snowpack sublimation losses, as a percent of annual total precipitation (14 to 65%), are generally 

greater when incorporating uncertainty analysis as compared to ranges stated in literature (21 to 

52%). Results highlight how meteorological and related data that are used in models, such as in 

SnowModel with MicroMet (Liston and Elder, 2006), may have substantial impact on simulated 

datasets. These findings provide important considerations to evaluate sensor error, and related 

issues including discontinuity in measurements. For example, at the SNOTEL stations, they 

moved the temperature sensors without evaluating longterm impacts (Ma et al., 2019). 

Adequately quantifying and assessing the dynamic nature of snow surface roughness (Brock et 

al., 2006) showed the range of snow surface roughness (z0) values for different locations, and 

Sanow et al. (2018) illustrated the differences in z0 at one location based on snow accumulation 

and melt characteristics. As snow accumulates and melts, the distant from the sensors to the 

snow surface changes (z), and this must be incorporated into any sublimation computations. 

Ultimately, future studies should incorporate these considerations to provide a more robust and 

complete understanding of snowpack sublimation and benefit water resources investigations such 

as water supply forecasting, and water supply modelling in snow dominated regions.  

In Chapter 3, 10-years of near peak snow depth measurements and General Additive 

Model (GAM) interpolation methods were combined with topographic parameters to estimate a 

climatological consistent snow depth pattern (CSDP) that is scaled based on a winter season 

index, i.e., the amount of snow in a particular winter. The identification and implementation of a 

repeatable and scalable snow depth distribution (Strum and Wagner, 2010) within complex 

mountainous terrain can provide an accurate estimation of the distribution which is imperative to 

accurately model snowmelt contributions. The snow depth distribution from GAMs were highly 
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correlated (r = 0.83; Chapter 3) between years providing confidence in the estimated CSDP. The 

derived winter season index (r2 = 0.75; Chapter 3), based on the correlation between mean snow 

depth measurements to Brooklyn Lake SNOTEL SWE, was used to characterize the winter 

season accumulation based on the snow on the ground. This study identified a winter season 

scaling index (WSI), quantified snow depth pattern repeatability and applied the pattern based on 

the WSI for an alpine watershed. These results, based on measurements and interpolation 

methods, reveal individual year correlations within reported ranges with a mean correlation 

higher than Airborne Lidar Surveys (ALS) estimates (Pflug and Lundquist, 2020). The results 

confirm that snow depth distributions are a result of consistent interactions between the localized 

meteorology, in particular solar radiation, wind speed and direction, and terrain from year to 

year. Quantifying snow depth patterns can provide additional information for hydrologic models 

that utilize snow depth distribution patterns. This can aid in modelling ablation processes, as 

these dictate streamflow out of a system, estimating spatial snowpack sublimation, and 

simulating baseflow characteristics and groundwater recharge. A benefit of using snow depth 

estimates (Chapter 3) with estimates of density, as per some of the limitations outlined by López-

Moreno et al. (2013) in measuring density in similar type areas, or using modeled density is to 

estimate SWE from spatially distributed snow depth (Painter et al., 2016). At finer resolution, 

these snow depth data could be used to evaluate snow surface characteristics which could help 

estimate snow surface roughness (z0), which is used in sublimation modelling (Chapter 2). Future 

studies that take time to identify and develop repeatable and scalable snow depth patterns, 

whether through sample measurements, modelling, and/or ALS, should include uncertainty 

estimates, e.g.,Monte Carlo methods (Chapter 2 and Chapter 3), to provide a more robust and 

complete understanding of snow distribution variability and uncertainty through time to aid 
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water resource disciplines such as, water supply forecasting and water supply modelling used to 

design infrastructure in snow dominated regions. 

In Chapter 4, four highly spatial and temporal rainfall datasets were estimated and used 

as input into a hydrologic model to quantify the sensitivity of precipitation on modelled 

streamflow. Results from hydrologic model simulations were compared to observed USGS 

streamflow to determine the variance in streamflow from the different forcing precipitation 

datasets. Hydrologic model evaluation for two of the four simulations showed satisfactory 

performance of mean and maximum streamflow, while the other two datasets resulted in poor 

performance with large differences in the mean and maximum streamflow. The temporal 

characteristics were similar for the three datasets that utilized gauge data, while the dataset based 

solely on radar had the lowest magnitude and smallest intensities. These results illustrate the 

need for precipitation data that have accurate spatial and temporal characteristics in order to use 

a physically-based streamflow model. Precipitation estimates are the most important input to 

hydrologic models for hydrologic calibration, verification, and forecasting (Vieux et al., 2004; 

Sirisena et al., 2018), and are among the most difficult to quantify spatially and temporally. For 

intense rainfall events, this is due to the high spatial variability (Ogden, 2000; Brogan et al., 

2017) and the lack of measurements, while for snowfall (Smith et al., 2014; Reges et al., 2016), 

this is due in part to undercatch (Goodison et al., 1998; Kochendorfer et al. 2017). Inability to 

forecast, measure, or model the spatial and temporal magnitudes of precipitation will limit the 

analysis, interpretation of data, and attempts to model the hydrologic response. Streamflow data, 

observed or simulated, are used to perform frequency analysis, quantify water yields, and design 

flood retaining structures. 



153 

The research presented in this dissertation supports a theme that hydrology is a highly 

uncertain science (Montanari et al, 2009), and that the uncertainty is a result of our limited 

knowledge on the interacting physical and empirical methods used to model many of the 

hydrologic and meteorologic processes, a lack of data (Fassnacht, in review) and the requirement 

to interpolate/extrapolate from the data we have (e.g., Collados Lara et al., 2021), that are not 

representative (e.g., Fassnacht et al., 2012). This works shows that no single component of the 

water balance can be quantified at the watershed scale without substantial uncertainty. However, 

we can begin to quantify the uncertainty. Specifically, this research investigated the sensitivity 

and uncertainty of four of the main water balance components for a basin: snowpack sublimation 

(Es), precipitation as snow (Ps), precipitation as rainfall (Pr) and streamflow(Q). Mean 

cumulative snowpack sublimation uncertainty was 41% with individual input parameter 

uncertainties in the range of 1 to 29%, and the top three variables (z varying with ds, z0, and RH; 

Chapter 2,) accounted for 74 to 84% of the cumulative sublimation uncertainty. Snow depth 

distribution patterns were highly repeatable (r = 0.83) and applied with a winter season index (r2 

= 0.75) provide accurate snow distribution estimates, even when limited data were available, i.e., 

the number of snow depth samples was small (Chapter 3). For the 10 sampling years, the 

simulated basin mean snow was within 15% of observed, with the extreme dry and wet years 

being within 5%. Annual estimates are dependent on labor intensive snow depth measurement 

collection efforts that depend on weather and safety concerns, as well as available field 

personnel, and require spatial modelling methods; these results show that the uncertainty of 

simulated snow distribution are relatively small (15%). The forcing precipitation dataset used in 

hydrologic models to estimate streamflow can have cumulative uncertainties in the range of 30 to 
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60%, with precipitation and streamflow mean and maximum uncertainties equal at 15 and 30% 

respectively (Chapter 4). 

 

5.2 Implications 

The findings of this study have important implications for hydrologic research and offer 

insight for future investigations. Future applications of water balance modelling, whether an 

open or closed system (Kampf et al., 2020), should account for the various hydrologic 

component uncertainties (Fassnacht et al., 2018). Hydrologic uncertainty, in terms of a water 

balance model, arises from numerous sources, such as input error, sampling error, 

instrumentation error, calibration accuracy, parameter sensitivity and parameter uncertainty. In 

this study, several approaches were investigated for analyzing the impact of parameter 

uncertainty. An overarching goal of hydrological studies is to determine streamflow, from 

understanding the function of systems to forecasting. The methods and applications to quantify 

uncertainty in components of the hydrology cycle work towards improving streamflow 

estimation and defining streamflow uncertainty, especially in unrelated basins (Hrachowitz et al., 

2013). Here, a proposed approach is one that includes Monte Carlo simulation with stochastic 

and deterministic uncertainty analyses to identify components that have the greatest sensitivity to 

simulated streamflow estimates. This integrated approach will aid in the identification of 

significant, non-significant, and/or redundant components of the water balance model.  

Future studies that deal with snowpack sublimation, snow depth distribution, 

precipitation, and streamflow will benefit from results presented in this dissertation. For 

example, investigation that model snowpack losses (Sexstone et al., 2016), spatial and temporal 

characteristics of snowpack, snowmelt, and precipitation (Liston and Elder, 2006) can contribute 
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to model parameterization. Studies that model spatial and temporal characteristics of 

precipitation (Daly et al., 1994), perform hydrologic model calibration and verification (Vieux et 

al., 2004) will have more robust results. Site-specific or regional studies (Hosking and 

Wallis, 1997) that perform rainfall and snowpack frequency analysis (Schaefer et al., 

2008; Cho and Jacobs, 2020) or streamflow analysis (Sirisena et al., 2018) will both 

benefit and aid in critical designs for flood retaining structures (Cheng and 

AghaKouchak, 2014; Cho and Jacobs, 2020). The limitations and possible future 

investigations related to the work are presented below. 

 

5.3 Limitations and Possible Next Steps 

This dissertation used data collection and modelling of water balance components to 

provide advances related to the uncertainty in water balance studies and assist water resources 

decisions. While it also presents an opportunity for future investigations from this work, there are 

some limitations. In Chapter 2, a three year sample size limited the generalizability of the 

snowpack sublimation results. However, these three years were selected to represent the range of 

snowpack conditions within the available period of record, specifically a normal snowpack 

(2005), an above normal snowpack (2011), and a below normal snowpack (2012). Future 

research could estimate snowpack sublimation uncertainty for all available years of record. This 

could provide a more robust distribution of uncertainty estimates, yet the range of uncertainty 

was likely covered by the largest and smallest snowpack years investigated.  

In Chapter 3, the accuracy of the CSDP may be influenced by the specific spatial 

interpolation model that was applied. However, the GAM interpolation method did produce 

highly correlated results, measurement spatial pattern to simulated spatial pattern, providing a 
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high level of confidence in the snow depth pattern. Future research could compare the 

empirically modeled snow depth patterns to results from a physically-based snow model (e.g., 

SnowModel, since component thereof was used near the study site; Hiemstra et al., 2002) to 

investigate pattern repeatability (Sturm and Wagner, 2010), and thus determine snow depth 

uncertainty estimates. This could include evaluating the distribution of sampling for the different 

years, such as focusing on how representative the last five sampling years were of the study site. 

The precipitation evaluation and streamflow modelling in Chapter 4 examined one storm 

event and one basin which limited the generalizability of the precipitation and streamflow 

uncertainty results. However, the approximate 100-year rainfall event (Chapter 4) occurred in a 

well gauged basin, so this analysis deals with an important precipitation-runoff event for the 

basin. An assessment of individual events is common to understand the nature of the 

precipitation event and the resultant streamflow (e.g., Colle and Mass, 2000; Ogden et al., 2000; 

Brogan et al., 2017). Precipitation for one storm event was estimated based on four different 

interpolation methods, the sensitivity and uncertainty associated with different precipitation 

inputs into the hydrologic model were captured well. Future efforts could focus on different 

precipitation events with a range of precipitation recurrences. Expanding to additional basins is 

of interest to provide both refined local and regional uncertainty for precipitation inputs and 

effects on streamflow.  

 

5.4 Future Opportunities 

 The methodology presented in Chapter 2 and Chapter 3 could be used in future 

investigations to evaluate parameterizations of other critical components for snowpack modelling 
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(Liston and Elder, 2006) and hydrological modelling (Ochoa-Rodriguez et al., 2015; Sirisena, 

2018) applications. Also, snow modelling applications that utilize a fine grid resolution to 

simulate the processes driving snow distribution (e.g., snow redistribution by wind in alpine 

areas) or CSDPs, based on field measurement and ALS, may be particularly useful for model 

evaluation (e.g., Phillips, 2013; Pflug and Lundquist, 2020). Future research could evaluate the 

ability of snow model simulations to accurately characterize the spatial distribution of snow 

depth using detailed point measurements and ALS to infer model deficiencies based on errors in 

modeled snow depth.  

The methodology presented in Chapter 4 could be used in future investigations to 

evaluate multiple precipitation estimates that are critical for streamflow model calibration and 

verification applications. Hydrologic models that utilize gridded datasets, compared to lumped 

models that use basin average data, to simulate streamflow may be particularly useful for model 

evaluation. Future research should take into account several precipitation estimates (e.g., gauge 

data, radar, satellite, reanalysis) as input into hydrologic models in order to accurately 

characterize the precipitation input uncertainties and modeled streamflow deficiencies. 

Incorporating Monte Carlo methods to account for precipitation dataset uncertainties will 

provide a suite of stochastic precipitation scenarios useful to estimate peak discharges with very 

low probability of occurrence (Felder and Weingartner, 2016).  

  Given that z of ds, RH, and zo were estimated as a significant contribution of overall 

snowpack sublimation losses (e.g., Chapter 2), future research aimed at measuring these 

processes across multiple topographic locations could help to refine and improve the accuracy of 

estimated snowpack sublimation. In Chapter 3, near peak accumulation snow depth distribution 

was identified as being consistent year to year, topographic variables elevation, aspect, slope, 
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and maximum upwind slope controlled the snow distribution, future research should include 

these variables to refine and improve the accuracy of estimated snowpack distribution (Liston 

and Elder, 2006). Since different precipitation estimates provide a significant contribution of 

overall streamflow uncertainty (e.g., Chapter 4), future research that investigates multiple 

precipitation datasets should help to refine and improve the accuracy of estimated streamflow. 

Lastly, future investigations should continue to pursue testing and improving water 

balance process representations within the hydrologic cycle; however, should also focus on the 

testing of the effectiveness of current model systems for water resources forecasting applications 

to evaluate potential deficiencies. For example, either the snow evolution model (Liston and 

Elder, 2006; Liston and Hiemstra, 2008) or the Utah Energy Balance Model (Tarboton and Luce, 

2006) could be coupled with a hydrological model such as the US Army Corp of Engineers 

HEC-HMS and different precipitation forcing datasets to model water balance components to 

provide more robust and complete understanding on individual component uncertainties and 

propagated cumulative uncertainties. In the future, water resources management will likely 

benefit from the use of coupled physically-based models and Monte Carlo simulations that can 

account for snow processes such as redistribution and snow sublimation, account for different 

forcing precipitation datasets in order to quantify the spatial and temporal evolution and 

distribution of a water balance model. 

 

5.5 Rational for Two Different Basins 

 The research of this dissertation focused on two mountain basins with different dominant 

precipitation inputs, specifically, rainfall and snowfall. In a snow dominant basin, the main 

source of precipitation inputs is in the form of snowfall; new snowfall accumulates to build the 
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snowpack during the winter season, storing water until spring temperatures increase, together 

with increased solar loading, to melt the snowpack. In a rain dominant basin, the main source of 

precipitation input is in the form of rainfall; rainfall has a direct impact on the basin streamflow 

and is not dependent on snowpack storage and melting. The two mountain basins, driven by 

rainfall and snowfall, were selected to estimate uncertainty of water balance components that are 

directly affect by the dominant precipitation type. Chapter 2 and 3 focused on a snow dominated 

watershed to capture the effects of snowpack sublimation and snowpack distribution in water 

balance modeling. In Chapter 4, we investigated a rain dominated basin and the direct effect on 

streamflow. 

 

5.6 Scientific Method 

 The scientific method is a process of experimentation to ask and answer scientific 

questions. The scientific method typically consists of four steps: Observation, Hypothesis, 

Prediction, and Testing (Lee, 1992; Griffith, 2004; Schick and Vaughn, 2010). To me, the four 

steps seem limited and missing a few critical steps. I would define the scientific method in seven 

steps: 

1) Problem or Question: develop a question or problem that can be solve through 

experimentation. 

2) Observation and Research: make observations and perform research on problem or 

question. 

3) Hypothesis: predict a possible outcome to the problem or question. 
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4) Experiment and Predictions: design a test or procedure to confirm or reject 

hypothesis. 

5) Collect and Analyze Results: record data on what happened, modify procedure if 

needed. 

6) Conclusion: review the data and check to see if hypothesis was correct. 

7) Communicate the Results: present projects and results though presentations and 

journal submissions. 

 

The most important feature of scientific method is the predictive power of the hypothesis, 

as tested though data analysis and experiments. In science disciplines, there is the possibility that 

new observations, experiments and/or technologies will conflict with the current theory. The 

entire procedure of scientific method is what makes science exciting, one can build on previous 

research to increase knowledge, or one can disprove a theory and diverge onto a new path. As 

new data, methods, and analysis procedures are developed, we can test against current data 

methods and theories.  

In recent years, our society has been characterized by an unprecedented ability to 

produce, store, and analyze large amounts of data. With these data, the ability to process, analyze 

and extract useful information is important to gain additional process knowledge. Now, we have 

reached the point of creating a separate discipline, so-called Big Data (Succi and Coveney, 

2019).  
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5.7 Big Data in Hydrology 

 Big Data build knowledge within and beyond science, enabling new, highly efficient 

ways to plan, conduct, disseminate and assess research (Nkiaka et al., 2016; Lange and Sippel, 

2020). In the last few years, Big Data (BD), Machine Learning (ML), and Self Organizing 

Mapping (SOM) methods have created novel ways to produce, store, and analyze data. These 

new methods bring together computational, algorithmic, statistical and mathematical techniques 

to gain knowledge (Nkiaka et al., 2016; Lange and Sippel, 2020). With these data, questions such 

as “can we use large datasets to practice science to test scientific methods”, “do these datasets 

change the way approach scientific methods”, or “is there a blend of old and new methodologies 

that will help us build knowledge” can be asked. Big data are often associated with the idea of 

data-driven research (Succi and Coveney, 2019; Sabina, 2020), where learning happens through 

the accumulation of data and the application of methods to extract meaningful patterns from 

those data (Nkiaka et al., 2016).  

For BD driven analysis, research tend to use data as their starting point, without relying 

on theoretical preconceptions, in contrast to theory-driven approaches where research consists of 

testing a hypothesis (Anderson, 2008). In principle, big data constitute the largest pool of data 

currently assembled and provide a starting point to search for hydrologic process interactions and 

correlations (Mayer-Schönberger and Cukier 2013). Crucial to data-driven approach credibility 

is the effectiveness of the methods used to extrapolate patterns from data and evaluate whether or 

not such patterns are meaningful, and what “meaning” may involve in the first place (Sabina, 

2020). 

In today’s age, numerous data types are readily available (measured, modeled, simulated, 

probabilistic, machine learning, official, non-official) at one’s fingertips, or a quick internet 
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search. The question we need to ask about these different data are how should we use them, 

which ones should we use, what scale or extent do they represent, can we combine multiple data 

(experimental, simulated, data driven, theoretical) to properly address specific scientific 

questions. Ultimately, uncertainty will always exist; the question is to what scale is acceptable, 

how can we reduce uncertainty, are big data driven correlations representative of the process and 

scale, and are they comparable to the scientific method?  

 

5.8 Recommendations 

 Recommendations based on this dissertation are: 1) a need to assess uncertainty (Nearing 

and Gupta, 2018) so that we know what confidence we have in the deterministic numbers that 

our methods and models produce, 2) that uncertainty can be in various forms, including possible 

sensor error (Hultstrand and Fassnacht, 2018) or sensor bias (e.g., Ma et al., 2019), 

parameterization such as estimating the snowpack z0 (e.g., Sanow et al., 2018), determination of 

consistent snowpack patterns (Sturm and Wagner, 2010; Chapter 3), spatial representivity of 

gauges (Fassnacht et al., 2003; Chapter 4), and 3) new data collection techniques, such as remote 

sensing tools (e.g., lidar becoming more operational or at least more prevalent in the context of 

hydrological monitoring; Painter et al., 2016) or the internet of things (Lettenmaier, 2017), and 

various modelling approaches (Dozier et al., 2016). However, we have much historical data and 

want to understand the past functioning of hydrological systems, even though non-stationarity is 

relevant (Milly et al., 2008) and impacts inter-annual patterns over longer time period (e.g., 

Fassnacht and Hultstrand, 2015). 



163 

Field measurements and instrumentation should accurately represent the physical 

properties of the hydrometeorological process being studied. In order to collect data that 

represent hydrometeorological process at the time of sampling, it is necessary to correctly locate 

and select equipment appropriate to site environments and study needs and use appropriate 

methods to make accurate field measurements. Calibration should be an ongoing requirement; 

this requirement will depend on the instrument technology and manufacturer recommendations. 

Instrument precision and accuracy should be measured periodically; precision and accuracy may 

vary, depending on the instrument used, sampling conditions, and sampling environment. In 

snow dominated basins, measurements of snow depth should be made, and it is recommended 

that snow depth sensors become a standard instrument on meteorological weather stations. 

To investigate hydrologic uncertainty, two approaches could be taken within a Monte 

Carlo framework: (i) an analytical approach that considers in detail the potential sources of error 

and analyzes the nature of the component errors making use of available data, research results, 

and theoretical considerations, and (ii) an experimental approach that involves extensive 

comparative field studies (Dickinson, 1967; Montanari, 2007) and big data (Succi and Coveney, 

2019). A combination of the analytical and experimental approaches would provide the best 

information on measurement and model errors of the hydrologic system. It is important that 

every hydrologic study consider at least one approach for studying uncertainty and the effect of 

uncertainty in that study. 
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6.0 REFLECTIONS 

 

6.1 Summary 

 My path through graduate school was non-traditional; I started my PhD graduate 

endeavor and dissertation research over 12-years ago. In this time, I have had numerous life 

experiences, such as a being a working professional, starting and growing a business, moving 

across the country several times, getting married, and being blessed with two wonderful children. 

These life experiences meant a traditional full-time graduate student was not an option for me. 

Over the years, life has become more of a balancing act, juggling professional, personal, and 

family schedules. I always knew I wanted to finish my dissertation and the research that I had 

started so many years ago. 

I have always enjoyed academia, i.e., research, writing, presenting, and publishing. 

Although classified as a non-traditional graduate student, I started a niche hydrometeorologic 

business that is grounded on academic philosophies and methods I learned though my Masters 

and PhD experiences. The academic process and interactions with colleagues in my professional 

career where a large motivation for me to finish what I had started many years ago. 

In my professional career, I apply scientific methods to operational research problems, 

identify methods, collect data, analyze data, publish results, and implement results that benefit 

hydrometeorologic communities and critical design infrastructure. This dissertation is an 

extension of my professional career, focused on quantifying spatial and temporal characteristics 

of extreme precipitation events, probable maximum precipitation, problem maximum snowfall, 

climate change, uncertainty analysis, and precipitation frequency analysis for federal, state, and 

local entities. As part of my working profession, I have had the honor to work closely with 
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numerous colleagues in federal agencies (NWS, HDSC, NOAA, FERC, NRC, ORNL, USACE, 

BIA, USGS, NRCS, USDA), all States Dam Safety programs, with State Climatologists (CO, 

NM, PA, NJ, LA, MA, NY, VI), and academia (LSU, CSU, TSU, Penn State).  

Although classified as a non-traditional graduate student, I have academics infused within 

me through both graduate school and my career. These are being used to build and contribute 

new knowledge in the field of water resources through research, writing, presenting, and 

publishing. A fundamental finding that I have discovered about myself through this endeavor is 

that I enjoy academia, the structure, and the application of scientific processes in my professional 

and personal life.  
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