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ABSTRACT

PRODUCTIVITY AND PHENOLOGY IN A PROCESS-DRIVEN CARBON CYCLE MODEL

The carbon cycle is a major source of uncertainty in predicting future climate, especially with

regard to changes in the terrestrial biosphere. One obstacle in predicting the sources and sinks of

the carbon cycle is accurately predicting phenological transitions of the terrestrial biosphere with

a global process-driven model. We hypothesize that the terrestrial biosphere and its phenological

transitions can be simulated using a set of universal biological strategies and a simple set of plant

functional types in the Simple Biosphere (SiB4) model. In order to test our hypothesis, we com-

pare the SiB4 output to a suite of satellite observations of the terrestrial biosphere including solar

induced fluorescence (SIF) from the Orbiting Carbon Observatory (OCO-2), MODIS-based LAI,

and AVHRR-based NDVI. Our first analysis compares modeled canopy SIF to aggregated satellite

observed SIF over different biomes. We find that the model consistently over predicts pixel-scale

SIF. Modeled SIF over evergreen needleleaf forests has an especially high bias during the winter.

Our second analysis compares modeled and observed phenology over different regions around the

globe. We find that SiB4 is generally successful in simulating growing season onset, but often

simulates late senescence, especially in grasslands. We also find that SiB4 simulates crops well

in the United States but fails to properly predict the planting and harvesting time of crops in other

regions, especially the developing world.
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Chapter 1

Introduction

1.1 Terrestrial Biosphere

The terrestrial biosphere removes approximately a quarter of anthropogenic CO2 emissions

from the atmosphere every year, slowing the rate of climate change [1]. Therefore, understanding

the interactions of the terrestrial biosphere and the atmosphere, and how those interactions may

change with rising CO2, is crucial to projecting future climate. There are feedbacks in the terrestrial

biosphere, some poorly understood [2], that have large implications on the rate of atmospheric

CO2 increase. The feedbacks of the terrestrial biosphere are the result of both the direct effect of

increasing CO2 on photosynthesis and the effect climate change has on photosynthesis, respiration,

and disturbance [3]. Changes in photosynthesis and respiration, as well as the resulting change in

vegetation seasonality, are part of a field of research known as phenology.

1.2 What is phenology?

Phenology is “the study of the timing of recurring biological events, the causes of their timing

with regard to biotic and abiotic forces and the interactions among phases of the same or differ-

ent species” [4]. In this paper we focus on phenological transitions, which “drive the seasonal

progression of vegetation through stages of dormancy, active growth, and senescence” [5]. Phe-

nological transitions can be easily observed in some environments, such as deciduous broadleaf

forests. Trees produce buds in spring, create full canopies of leaves by summer, and then the

leaves fall off in autumn resulting in barren trees over winter. However, phenological transitions

are harder to understand and predict in other environments, such as tropical and evergreen forests.

There, visible signs of these transitions and the factors that are driving them, are less easily ob-

served [5]. In the past, phenology as a scientific field was often considered a study for amateurs,

completed by individuals or families in their local ecosystems. One such amateur was the great
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Henry David Thoreau [6]. Only in the last couple decades has phenology emerged as a critical

aspect of carbon cycle research [7]. The shift began once scientists noticed that plant phenology

could be used to track ecosystem response to inter-annual variability in weather, as well as long

term impacts of climate change [8–10]. As the body of phenological research grew, its importance

grew more evident. By dictating the timing of transitions in vegetation function and structure, phe-

nology affects biological and physical processes from microscopic to global scales. Phenology is

a factor in the survival and fitness of both plant and animal species, thereby affecting the gene pool

of regional ecosystems [11–13]. Changes in phenology can affect both human health, by influ-

encing the transport of allergens and disease, and land management practices such as agriculture,

forestry, and invasive species control [7]. Phenology can also alter the larger climate system by

influencing the exchange of mass, energy, moisture, and momentum between the biosphere and

the atmosphere [5, 14]. A longer growing season, for example, can alter physical processes such

as turbulence, albedo, and latent and sensible heat flux. It can also affect gas exchange processes

such as the formation of BVOCs [15]. Changes in phenology can also change the carbon storage

of regional ecosystems, which can influence the balance of natural carbon sources and sinks [15].

The majority of past phenological research has focused on drivers of spring phenology and how

it may respond to climate change. A warming climate has been linked to earlier spring growth,

earlier arrival of migratory birds and earlier emergence of migratory insects [16]. Early spring

leaf-out, in combination with forest fuel build-up and a warming climate, have been linked to

increased wildfires in drought stressed regions by enhancing soil and vegetation water depletion

[17]. Autumn phenology is often the recipient of less attention by researchers, despite holding

crucial biological events such as leaf senescence, fruit ripening, and bud formation [16]. It is still

unclear in what circumstances leaf senescence will be advanced or delayed in a warming climate

[7, 18], because it will depend on species-specific responses to environmental changes [19, 20].

Long-term observations suggest, however, that leaf senescence is delayed on average due to rising

temperatures [21, 22]. Using prognostic models that can accurately describe global phenology is
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crucial towards predicting how the terrestrial biosphere will change and interact with a warming

climate [18, 23, 24].

Correctly modeling phenology has proven elusive, however [7]. Validation of modeled phe-

nology is difficult because satellite based estimates of phenology often contradict each other and

in situ estimates [25, 26]. Furthermore, there is a great dearth of biome-scale ground estimates

of phenology [26]. In order to observe vegetation processes and phenology at a regional scale

remote sensing derived vegetation indices (VI) have been developed. The normalized difference

vegetation index (NDVI) has been one of the most commonly used products for phenological

research [25, 27–30]. This product can be derived from multiple sensors such as the Advanced

Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiome-

ter (MODIS). These products are highly noisy due to cloud cover, surface characteristics, and

atmospheric conditions. They can also have missing information, spatially and temporally, due

to snow, clouds, smoke, and other light scattering features [31]. Higher level products such as

the MODIS-based leaf area index (LAI) were developed by coupling MODIS reflectances with

a radiative transfer model in order to derive information about the vegetation canopy. This adds

another layer of uncertainty due to poorly constrained radiative transfer model physics [18].

Satellite data often has coarse resolution, making it difficult to differentiate fine scale features

or represent heterogeneity within single pixels (i.e. besides vegetation, other surfaces such as wa-

ter, man-made objects, bare ground, affect spectral reflectance) and can make interpretation and

validation of phenological estimates difficult. For example Churkina et al. [32] found that NDVI

indicates a longer season than flux tower observations but this may be due to differences in scale

between tower measurements and satellite pixels [33]. Peñuelas et al. [15] found, however, that

coarse resolution data of phenology may be more beneficial to educating biosphere models due to

the coarse resolution of the models themselves. Despite the drawbacks of remotely-sensed vege-

tation data, they have proven immensely useful in providing insight about the terrestrial biosphere

due to their synoptic coverage and repeated temporal sampling [25, 34–37]. Furthermore, they
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have a long data record and can provide context when analyzing phenology with new or different

satellite products such as solar induced fluorescence (SIF), which is utilized in this study.

1.3 What is Solar Induced Fluorescence?

A fraction of photons incident on a leaf are absorbed by photosynthetic centers called chloro-

plasts. Once absorbed by chloroplasts, there are four main pathways that a photon can take: pho-

tosynthesis, constitutive thermal dissipation, nonphotochemical quenching (NPQ), and fluores-

cence [38]. Photosynthesis is the process in which leaves utilize the energy of photons in order to

convert CO2 and water into carbohydrates. Constitutive thermal dissipation and nonphotochemical

quenching are both heat loss from the leaf, but the nonphotochemical quenching is an energy-

dependent variable that is controlled by the mechanisms that regulate electron transport within the

photosystems. The constitutive thermal dissipation, in contrast, is always present as heat loss from

the leaf, even at night. Finally, solar induced fluorescence (SIF) are photons that are re-emitted

by the plant photosystem at a slightly longer wavelength (lower energy level) and can be thought

of as an inevitable leak during the photosynthetic process [38]. It is important to note that fluo-

rescence is not a byproduct of photosynthesis, but a process that a photon may undergo instead of

photosynthesis.

Recent developments in remote sensing allows us to measure SIF from space [39–41]. Ob-

serving direct radiative emissions of chloroplasts from space could provide a great deal of insight

about how the terrestrial biosphere behaves by providing a constraint on regional scale photo-

synthesis (gross primary production, GPP). The amount of carbon assimilated by plants through

photosynthesis is the largest carbon flux between the atmosphere and the terrestrial biosphere [42].

Therefore correctly estimating global and regional GPP is of the utmost importance in understand-

ing the carbon cycle, its sources and sinks, and how it may respond to climate change. Large scale

GPP (regional to global), which cannot be directly observed, has been estimated in the past using

satellite products such as vegetation indices or canopy biophysical variables such as LAI or the

fraction absorbed of photosynthetically active radiation (fPAR) [43–46]. None of these products,
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however, are able to capture the highly variable nature of photosynthesis [47,48]. SIF, on the other

hand, is intrinsically linked to photosynthesis through chloroplast mechanics. Research has shown

a strong linear relationship between GPP and SIF using both gridded GPP products [40] and flux-

tower GPP [49–51] (Figure 1.1), though the nuances of the SIF-GPP relationship still needs further

exploration.

Figure 1.1: Scatter plots of daily Orbiting Carbon Observatory 2 (OCO-2) SIF retrievals and flux tower GPP
from specific biomes. Each plot represents a difference biome: (a) evergreen needleleaf forests (ENF); (b)
evergreen broadleaf forests (EBF); (c) deciduous broadleaf forests (DBF); (d) mixed forests (MF); (e) open
shrublands (OSH); (f) savannas (SAV); (g) grasslands (GRA); (h) croplands (CRO). The red solid lines are
fitted linear regressions lines. All biomes except evergreen broadleaf forests show good agreement. From
Li et al. [51]

Furthermore, SIF retrievals are less biased by atmospheric scattering than vegetation indices.

This is because SIF emissions happen to overlap with discrete bands of decreased solar intensity

called solar fraunhofer lines. These dark lines in the solar spectra occur due to gases in the solar

atmosphere that absorb photons within small ranges of wavelengths. Because there is no other

known major source of photons within fraunhofer lines except plant fluorescence, satellite obser-
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vations of photons in these bands must be coming directly from plants. Therefore, even though

fluorescence photons are also scattered as they travel through the atmosphere, they come from a

definitive source, which makes satellite SIF retrievals less biased by atmospheric scattering [52].

Satellite SIF observations are intrinsically at a pixel scale, which means that the satellite is retriev-

ing the SIF photons emitted by within a large area of ground instead of the SIF emitted from a

single plant or tree canopy. In order to compare leaf-level model predictions of SIF to satellite

observations, appropriate scaling factors must be utilized to estimate a canopy level, and finally

a landscape level SIF. These scaling factors are still being explored for a variety of vegetation

structures [53]. Despite the caveats involved in SIF measurements, it is intrinsically linked to pho-

tosynthesis, and can provide information on the physiological behavior of ecosystems instead of a

measure of its structure and greenness afforded by traditional vegetation indices [41]. SIF also has

the potential to provide more information about vegetation in regions that have been historically

difficult to observe due to cloud cover, dust, and other scattering phenomena.

1.4 Testing a terrestrial biosphere model

Our hypotheses about the primary drivers of the terrestrial biosphere and its phenology have

been built in to the structure of the Simple Biosphere 4 (SiB4) model. This is a process driven

model that uses a universal set of biological strategies to simulate the global terrestrial biosphere

and a closed carbon cycle. Many terrestrial biosphere models (TBMs) use satellite data to prescribe

their phenology while others use mechanistic approaches but require look-up tables in order to con-

trol growth and senescence [7]. The SiB4 model, however, introduces a process-driven dynamic

phenology that does not rely on satellite or empirical data. Furthermore, the SiB4 model produces

process-driven estimates of SIF. These attributes place the SiB4 model in a unique position to test

our understanding of the primary drivers of phenology because its output can be compared di-

rectly to OCO-2 based SIF observations and MODIS-based LAI estimates. Therefore, the primary

hypotheses that direct our research are as follows:
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• SIF can be determined using absorbed solar radiation, photochemistry, and a canopy radia-

tive transfer model.

• Phenology is a dynamic response of plants using a universal set of biological strategies that

control allocation of carbon.
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Chapter 2

Methods

2.1 The SiB4 model

At the time the first Simple Biosphere model (SiB1) was created, model simulated biosphere-

atmosphere interactions were not biological process-based or self consistent. Thus, SiB1 was orig-

inally developed to simulate the actual physiology and morphology of vegetation structures and the

resulting biophysical processes (i.e. fluxes of water, heat, and momentum) as part of global climate

models. SiB1 was built to take into account how plants used biological strategies to efficiently use

gas and water to maximize their growth and survival [54]. SiB2 was then built to incorporate a

process-based photosynthesis model and simulate more realistic latent and sensible heat fluxes and

carbon assimilation rates over large scales [55]. The photosynthesis model was based on enzyme

kinetics described by Farquhar et al. [56] and is linked to the surface energy budget and the atmo-

spheric climate through stomatal conductance [55,57–59]. Eventually SiB3 was created to include

prognostic calculations of moisture, temperature, and trace gases in the canopy air space [60–62],

improved hydrology, and improved photosynthesis [62–67]. Each version of SiB was developed to

improve modeling capabilities and address specific concerns and uncertainties in the carbon cycle.

SiB4 represents a significant step forward for the SiB suite of models by combining ideas from

past versions of SiB, including those discussed above, and incorporating recent developments in

terrestrial biosphere modeling [68]. SiB4 utilizes a new dynamic prognostic phenology scheme,

carbon fluxes, and dynamic allocation to cascading carbon pools to create a predictive and self-

consistent model of the terrestrial biosphere. The SiB4 model includes several new features that

are described in detail in Haynes et al. [68], but we will provide a description of the fundamental

model structure below.

The SiB4 model requires only three sets of inputs: meteorological data (for this study from

MERRA-2), soil properties such as clay fraction and soil reflectance, and a map describing frac-

8



tional land cover. The soil properties are garnered from a variety of sources (see Haynes et al. [68]

for details). SiB4 uses area mixtures of plant functional types (PFTs), rather than biomes, to de-

scribe global land cover because it reduces the complexity of representing heterogeneous plant

types and can, instead, take advantage of leaf level eco-physiological functions to represent each

specific plant type [69]. Each PFT (described in Table 2.1) is grouped by the plant type (forest,

shrubs, or grasses), leaf type (broadleaf or needleleaf), and foliage type (deciduous or evergreen).

Tundra environments tend to behave in unique ways, and thus have their own separate tundra grass

and shrub PFTs. SiB4 uses a crop phenology model developed by Lokupitiya et al. [70], and only

has explicit crop PFTs for maize, soybeans, and winter wheat. All other crops around the globe are

not directly represented, but instead are grouped into either the generic C3 or C4 croplands PFT.

Table 2.1: Plant functional types that are input in to the SiB4 model.

Plant Functional Type Abbreviation

Desert and Bare Ground dbg
Evergreen Needleleaf Forest enf
Deciduous Needleleaf Forest dnf
Evergreen Broadleaf Forest ebf
Deciduous Broadleaf Forest dbf
Shrubs (non-Tundra) shb
Tundra Shrubs sha
Tundra Grassland c3a
C3 Grassland c3g
C4 Grassland c4g
Generic C3 Crops c3c
Generic C4 Crops c4c
Maize mze
Soybeans soy
Winter Wheat wwt

One of the most significant updates that distinguishes SiB4 from the past SiB versions, and

from most other terrestrial biosphere models, is its dynamic prognostic phenology. SiB4’s ap-

proach to simulating phenology was created to integrate two commonly used strategies: growing-
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degree day approach (GDD) and growing season index (GSI). The growing degree day approach

traditionally uses temperatures in order to time the shift between phenological stages. The growing

season index approach uses thresholds of humidity, temperature, and light to predict the state of

vegetation. By integrating ideas from both of these approaches, SiB4 utilizes simulated vegetation

state and environmental factors (precipitation, day length, temperature, etc.) to shift plants through

five stages of phenology: emergence, growth, maturity, senescence/stress, and dormancy. Pheno-

logical stages control the dynamic allocation of photosynthate to leaves, stems, root, and seeds

throughout the season. Plants shift from maturity to senescence by predicting the most efficient

use of the scarce resources available to the plant. Therefore, when projected respiration costs of the

next increment of leaf area exceeds the amount of carbon likely to be fixed from that leaf, plants

will start to shift their carbon allocation to roots and reproduction, triggering senescence. This

dynamic strategy allows plants to move through phenological stages at vastly different rates. For

example, arid environments may rapidly progress through all the stages when responding to acute

rain events, while tropical forests may never reach a dormant stage. Furthermore this strategy al-

lows each plant type, and plants at different latitudes, to have different responses to environmental

factors.

SiB4 uses a system of first-order linear differential equations to control the flow of carbon

between eleven carbon pools [71, 72]. There are five live carbon pools, composed of canopy

and root structures, and six non-living carbon pools, composed of three above-ground pools of

decaying biomass at varying rates, and three soil pools of varying decay rate. Carbon taken up

during photosynthesis is allocated to the live carbon pools, and carbon in live pools are eventually

transferred to the dead carbon pools. All pools release carbon through respiration.

SiB4 simulates a closed carbon cycle. Carbon allocation, storage, and turnover determine the

above and below-ground biomass, which then feeds back on carbon assimilation and respiration.

Every time step (10 minutes) SiB4 computes albedo, respiration, soil moisture, and temperature.

It uses this information to compute moisture, carbon, and energy fluxes every time step. Once

daily SiB4 takes into account disturbances from crop harvesting and livestock grazing. Then at
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the end of each day it sums up the carbon fluxes and updates the carbon pools. Once the pools

have been updated, the land surface properties are updated and used for the next day’s rates of

photosynthesis, carbon pool transfer, autotrophic and heterotrophic respiration. Carbon does not

move laterally across grid boxes, except crop biomass, which is distributed to nearby population

centers. This closes the carbon cycle in each gridcell, providing self consistent predictions of the

state of vegetation, carbon assimilation rates, and land-atmosphere exchanges.

Using the strategies described above, SiB4 predicts a plethora of biological and physical vari-

ables in single, self-consistent, mathematical framework (see Figure 2.1). Of explicit importance to

our analysis, SiB4 utilizes the live carbon pools to predict a daily LAI and predicts a process-driven

leaf-level SIF [38]. The SIF predictions use a system that assigns rate coefficients to describe prob-

abilities of the four pathways that a photon can take after being absorbed by a chloroplast (as listed

in the introduction: photosynthesis, thermal dissipation, nonphotochemical quenching, and fluo-

rescence). The probabilities are assumed to be mutually exclusive, the sum of which is unity. The

amount of photons lost to thermal dissipation is dominant (95% or greater depending on the tem-

perature). The proportion of photons that go to the other three pathways (photosynthesis, NPQ,

and SIF) will change based on temperature, light, moisture, and the limitations of internal leaf

structures. We used hourly output of modeled SIF from September 2014 to present (the same as

the OCO-2 SIF record) and daily LAI estimates over the period 2000-2017.
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Figure 2.1: The SiB4 required inputs (yellow boxes), restart information (grey boxes) that are updated every
time step, and the SiB4 output (blue boxes).

2.2 Observation datasets

We use observation datasets of LAI, NDVI, and SIF in order to analyze SiB4 phenology and

improve our understanding of biome specific behaviors in the model. We use Terra MODIS LAI

data from the National Aeronautics and Space Administration (NASA) Near Earth Observatory

website (neo.sci.gsfc.nasa.gov). The data is received on a global 0.5x0.5 degree rectilinear grid and

in 8-day composites, which are created using maximum value compositing [73]. Maximum value

compositing, the process of choosing pixels with the highest value within each composite period,

are used by the MODIS team in order to correct for low bias caused by atmospheric scattering
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effects. In this case, the satellite pixels with the highest fPAR value every 8-days were selected,

which dictated which LAI values were used. NASA warns that these data have been composited,

scaled, and resampled to a coarse grid for visualization purposes, and should not be considered

absolute values. We believe that these data are acceptable for our study, however, as we also would

have composited the LAI data to a coarse grid in order to match the model resolution.

We use NDVI data over the years 2000-2017 from the NASA/GSFC Global Inventory Mod-

eling and Mapping Studies (GIMMS) group [74]. The data was obtained as 15-day composites,

which are made using maximum value compositing, on a fine grid (1/12 degree). We then com-

posite the data to the same coarse grid (0.5x0.5 degree) as the model and MODIS LAI data using

a bilinear interpolation scheme.

We obtain our fluorescence data from the Orbiting Carbon Observatory 2 (OCO-2). We use

the daily post-processed SIF Lite files, which have been quality controlled to correct for altitude,

outliers, scenes that are too bright or dark, high scattering, and clouds [40]. Each SIF retrieval in

the Lite files has an associated biome classification based on the International GeosphereâĂŞBio-

sphere Programme (IGBP) land cover system (see Table 2.2). The OCO-2 satellite flies in a sun

synchronous orbit , covering the same track every 16 days, always at approximately 1:30pm local

time. The satellite swath is approximately 10km wide and consists of eight independent cross-

track pixels, each with the footprint of 1.3 x 2.25 km. OCO-2 spectrometers take 24 spectra per

second providing a high density of retrievals. The SIF retrievals from OCO-2 are taken in a spec-

tral regime known as the O2-A band (757-775nm), which overlaps with the SIF emission spectrum

(660-850nm) [75]. Because these spectra overlap with fraunhofer lines,the OCO-2 SIF retrievals

are less affected by atmospheric scattering compared to traditional vegetation indices. This, com-

bined with the small footprint of each pixel, allows the OCO-2 satellite to acquire SIF retrievals in

regions that have historically poor data coverage, such as tropical rainforests. We use both vegeta-

tion indices and SIF products in this analysis, however, because they describe different aspects of

vegetation (structure vs function), the MODIS data is widely used to describe phenology, and the
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long data record of MODIS derived NDVI and LAI can provide context for the SIF comparisons,

which is only 3 years (September 2014 onward).

Table 2.2: IGBP classifications of land cover.

Class Description

0 Water
1 Evergreen Needleleaf Forest
2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forests
6 Closed Shrublands
7 Open Shrublands
8 Woody Savannas
9 Savannas
10 Grasslands
11 Permanent Wetlands
12 Croplands
13 Urban and Built-Up
14 Cropland/Natural Vegetation Mosaic
15 Snow and Ice
16 Barren and Sparsely Vegetated

OCO-2 retrievals include three different viewing angles from the satellite: directly overhead

(nadir), from a shallow angle (glint), and focusing on a single point on the ground and tracking it by

changing the viewing angle as the satellite flies overhead (target). These measurement modes are

not directly comparable to each other because each has different biases. Only nadir mode SIF data

was used for this analysis because it is much more abundant than target mode and has significant

advantages compared to glint such as a higher spatial resolution, a greater signal-to-noise ratio

over land, and has a higher chance of retrieving values over cloudy regions or areas of significant

topography [75]. Furthermore, nadir follows a similar ground track each 16-day cycle, allowing it

to better capture variability over time [75], which is crucial to our analysis of seasonality.
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The OCO-2 SIF data is re-gridded in 2 different ways: to a 0.5x0.5 degree rectilinear grid over

all of the biome types, yielding a total gridcell average; and to a 0.5x0.5 degree rectilinear grid

with a gridcell average for each biome (IGBP). We use the biome-specific grid cell averages of

satellite SIF to analyze the SiB4 PFT-specific SIF estimates from the canopy. We use the total

gridcell average (over all biomes) to analyze phenology of the general region, as described in the

phenology section of the methods below.

2.3 Model SIF scaling from canopy to the landscape

In order to analyze the scaling factors used to create canopy level SIF estimates in the SiB4

model, we compared SiB4 canopy-level SIF estimates from specific PFTs to OCO-2 SIF measure-

ments from the most comparable biome type, as dictated by IGBP biome classification. The model

SIF estimates were collocated to the nearest gridcell and hour as the observed SIF. We were not

able to use the same biome map for the model as the Satellite because the PFT map in each 0.5

degree gridcell in SiB4 has a predefined fraction of each PFT but no information on how the PFTs

are spatially arrayed. We removed biome-specific OCO-2 SIF gridcell averages that had less than

30 retrievals per day per gridcell. We also required that the gricell had at least 20% areal fraction of

the PFT being compared. This was done in an attempt to reduce errors due to model behavior for a

PFT when it covered a very small fraction of the gridcell. Finally, the grassland comparisons were

split up by latitude in an attempt to separate observed SIF values into C3 and C4 dominant signals

because the IGBP land classification map does not distinguish between C3 and C4 grasses. The SIF

observations over grasslands were compared to the modeled C4 grass SIF estimates in the tropics

(15°S-15°N) and modeled C3 grass SIF estimates in the northern mid-latitudes (40°N-60°N).

2.4 Choosing geographic regions for analysis

We confined our analysis of phenology to specific regions around the world (Figure 2.2). These

regions were chosen to in order to display the behavior of certain types of ecosystem (e.g. grass-

lands, crops, evergreen needleleaf, etc.). Thus, many of these regions are dominated by a specific
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PFT, or a specific group of PFTs. This was done in order to analyze how the phenological drivers

of different PFTs in the model compare to the real world. Note that acronyms ENF and DBF on

the map refer to evergreen needleleaf forests and deciduous broadleaf forests. Table 2.3 displays

the percent areal coverage the PFTs for each region, which are based on the land cover map input

to the SiB4 model for our analysis.

Figure 2.2: Map showing all of the regions used for phenological analysis.
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Table 2.3: IGBP classifications of land cover.

Sites 1st most abundant 2nd most abundant 3rd most abundant

N-American ENF 38% enf 23% dbg 14% sha
US Croplands 45% mze 29% soy 8% dbf
N-American DBF 38% dbf 13% c3g 13% mze
Amazon 51% ebf 16% dbf 13% c4g
S-American Grassland 47% c4g 16% dbf 13% dbg
African Sahel Grassland 59% c4g 14% dbg 14% shb
Congo 60% ebf 13%c4g 12% shb
Eurasian ENF 51% enf 17% dbg 13% sha
Tibetan Plateau 71% dbg 19% c3a 3% c3g
India 32% c3c 27% dbg 8% wwt
Northern Australia 33% c4g 32% dbg 15% c3g

2.5 Determining the timing of phenological transitions

In order to analyze the phenology of the SiB4 model we gathered 8-day MODIS LAI, 8-day

composited OCO-2 SIF, and 15-day composited GIMMs NDVI data over each specific region of

interest and averaged them over the spatial dimension in order to create a time series. The OCO-

2 SIF used in the phenology metrics were averaged over all biome types to get a total gridcell

average. Each time series was gap-filled with linear interpolation to replace 8-day periods that had

no data or were below a specified threshold for percent data coverage (1% for OCO-2 given the

extremely small footprint and linear nature of the narrow satellite tracks, and 30% for LAI and

NDVI). Then the MODIS LAI and OCO-2 SIF 8-day data were smoothed backward and forward

by a 40 day (1-1-2-1-1 window) moving average.

The NDVI 15-day composites were smoothed back and forward by a 45 day (1-2-1 window)

moving average. These datasets were smoothed in such a way in order to create idealized curves

that do not change the general shape of the seasonal cycles, but also allow for the intercomparison

of datasets with different temporal resolutions. Therefore the smoothed curves are meant to be

representative of the general seasonality of the region, based on the variable that is represented in
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each dataset (LAI, NDVI, SIF, etc.). The smoothed time-series were then interpolated to a daily

temporal resolution in order to record timing of phenological transitions. It should be noted that

the level of interpolation and smoothing makes it difficult to record the exact date of phenological

transitions [76] but for this analysis we are more interested in the relative differences between

observation datasets and the model output than the exact date of each phenological transition.

We compared the observation datasets to SiB4 model output of SIF and LAI over the same

regions. In this case the model output was not collocated to the nearest gridcell, but instead shown

in its entirety over the region. Only SiB4 SIF output from 1:30 pm local time was used, which

is approximately the same time as the OCO-2 pass-over time. The model LAI and SIF output

were composited to the same 8-day resolution as the corresponding observation data sets, and then

processed using the same steps, except the gap-filling, used for the observed data as described

above. Since SiB4 does not predict NDVI explicitly, we did not compare the two directly, but

we decided to include NDVI in our analysis of phenology because it is widely used to estimate

phenology.

The phenology of these datasets were then analyzed by splitting the data up in to individual

phenological years, where a phenological year was defined as a year long period from beginning

to end of each growing season. The start of each phenological year was chosen to be in the middle

of a period of minimal vegetation function or canopy structure, such as the winter or a dry season.

Then each seasonal cycle was normalized using a ratio based on White et al. [77] where X is a time

series of a variable in a given region:

X−Xmin

Xmax −Xmin

(2.1)

The ratio was applied to the time series of each phenological year of all observed and modeled

variables in each region. The ratio was applied to each year in order to normalize the ratio by

the maximum and minimum value of each growing season. Some years were not used if they

were found to have too many significant gaps in the data: there must be data in the original time

series within 60 days of the beginning or end of each phenological year; at least 35 composited
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8-day periods of LAI data within the phenological year; at least 14 composited 15-day periods of

NDVI data within the phenological year; and at least 25 composited 8-day periods of SIF data. We

decided that we required fewer 8-day periods of SIF data within each year than LAI data because

the gaps in the SIF record tended to be more dispersed throughout the year, while LAI data gaps

tended to be more concentrated making a reasonable estimate of phenological transitions difficult.

These requirements were utilized so that we could ensure that a full seasonal cycle was used when

determining the timing of phenological transitions.

By normalizing each regional time series using the ratio above we were able to compare the

apparent phenological transitions of each dataset . We defined the start of season (SOS) and end

of season (EOS) as the first and last day of the phenological year that the ratios crossed a 25%

threshold. We defined the start of maturity (SOM) and end of maturity (EOM) as the first and

last day that the ratios crossed a 75% threshold. Figure 2.3 shows a flow-chart describing how the

phenology was determined. We also compare the relative magnitudes of modeled and observed

variables by plotting the average growing season in the original units instead of the as ratios.
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Figure 2.3: Flow-chart describing our phenology analysis. The first step is to split the time series of each
variable of each region in to individual seasonal cycles (left hand plot). The second step is to normalize each
variables seasonal cycle by the ratio shown above (middle plot). The final step is to determine the start and
end of season (SOS and EOS) by identifying the first and last day that the 25% threshold is crossed, and
the start and end of maturity (SOM and EOM) by identifying the first and last day that the 75% threshold is
crossed.
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Chapter 3

Results

3.1 SIF pixel-scale analysis

We compared modeled canopy SIF from specific plant types to satellite pixel SIF observations

over the most comparable biome type from all over the globe (Figure 3.1). We find that the model

consistently overestimates SIF for almost all plant types throughout the year compared to satellite

observations. The magnitude of the overestimation, however, appears to be seasonally dependent.

We are able to infer information about the seasonality of the model overestimation because the

points are color-coded based on the whether the model value was within six months before (labeled

as growth on the colorbar) or within six months after (labeled as senescence on the colorbar)

the peak month of SIF for that model gridcell. Therefore the dark blue or dark red points are

generally observations found in the winter (or the dry season in some environments). In order

to describe how to interpret the color coding of these plots, we will focus on SIF comparisons

for deciduous needleleaf forests (Figure 3.1c), which displays a clear seasonal dependence. The

winter model-observation ratios are clustered near zero (blue). When the model grows leaves and

starts to photosynthesize (thus also simulating fluorescence) during the spring months, the model

SIF compares well to the observed SIF, indicated by the blue-green dots that are close to the one-

to-one line (thin black line). Then as the season shifts from spring to summer (shift from green

to yellow dots) the average model SIF is well above the one-to-one line, which indicates that the

model canopy SIF is overestimating the averaged SIF observations. Finally as the season shifts

from summer to fall and then to winter (shift from yellow to orange and red) the overestimation

is even greater, which indicates that not only is the model overestimating SIF, but it also has

phenological differences with the real world over deciduous needleleaf forests. We can infer this

because the SIF overestimation gets larger later in the season, indicating that the plants are greener

in the model than the real world later in the season.
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SIF comparisons over evergreen needleleaf forests (Figure 3.1a) also display a seasonal depen-

dence, but the relationship differs from deciduous needleleaf forests. The model-observation ratios

are clustered during the winter (blue and dark red) and summer (yellow) months but displays more

variability in the spring and fall. This is indicated by the large standard deviations in the model bin

averages (red dots and red error bars) over the low to mid range observations. Evergreen needle-

leaf comparisons also display the highest model overestimations during both spring and fall, which

indicate phenological differences between model and observed SIF during both the transition into

and out of maturity. Modeled evergreen needleleaf forests canopy rarely reach zero SIF creating an

especially high bias during the winter compared to other PFTs. Modeled evergreen needleleaf SIF

estimates also have the highest bias in general throughout the year compared to other plant types.

No apparent relationship exists between modeled and observed evergreen broadleaf (Figure

3.1b), which is indicated by the near constant bin averages of the modeled SIF across all observed

SIF values and all times of year. Modeled SIF from deciduous broadleaf forests (Figure 3.1d)

is the most accurately simulated compared to the satellite observations, averaging nearest to a

linear relationship than any other plant type. The seasonal dependence of the model-observation

relationship is less clear over deciduous broadleaf, but the model appears to slightly overestimate

SIF during the spring and fall and slightly underestimate SIF during the summer, when compared

to high SIF observation values. The tendency for the model to underestimate SIF at high values

seems to be common to many of the PFTs, but many of the other PFTs only have a few points below

the one-to-one line compared to the deciduous broadleaf forest. Modeled SIF estimates from the

shrublands PFT are compared to the observed SIF over the open shrublands biome (Figure 3.1e).

The modeled and observed SIF for shrublands have no apparent seasonal dependence and a highly

variable relationship, which is indicated by the large standard deviations around the purple bin

averages. The SIF comparisons for C3 grasses in the northern mid-latitudes and C4 grasses in the

tropics indicate that the model overestimates SIF from grasses throughout all seasons on average,

despite the few points that show a model underestimation when observed SIF is very high. A we

will discuss further in the conclusions section, we do not know whether this overestimation is due
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to the model SIF parameterizations, biases in the model photosynthesis mechanisms, atmospheric

scattering effects in the satellite retrievals, or land heterogeneity in the satellite pixels.
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Figure 3.1: A comparison of SiB4 PFT-specific estimates of SIF from the vegetation canopy and satellite
observed SIF over the most comparable biome type dictated by IGBP classification. Each point represents
the average of at least 30 SIF observations from the specified biome type over a 0.5x0.5 degree gridcell
within a given hour long period and the model estimate of SIF over the same PFT in the same gridcell and
nearest hour. The points are color coded based on the time before or after the peak mode SIF of the gridcell
the point was in. For example, if a point is dark blue, than it was around 5 months before the month of peak
SIF in the model for that gridcell. The purple squares represent the average model SIF estimate for a 0.2 bin
width of observed values. The purple error bars represent one standard deviation from the average. Plot F is
a comparison of simulated C4 grassland SIF and observed SIF over tropical regions (15°S-15°N) and plot
G is a comparison of simulated C3 grassland SIF over the northern mid-latitudes (40°N-60°N).
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3.2 Phenology

3.2.1 Deciduous broadleaf forests

We compared the timing of phenological transitions as well as the average seasonal cycles of

modeled and observed products over each region shown in Figure 2.2. It is important to note that,

unlike the SIF scaling analysis, the remaining analyses compare modeled gridcell total SIF esti-

mates (i.e. the sum of area weighted SIF estimates from each plant functional type each gridcell)

to aggregated SIF observations over all biome types in the region. The model was most accurate

in simulating phenology, canopy structure, and fluorescence in northeastern United States (Figure

3.2), which is dominated by deciduous broadleaf forests. The upper left plot of Figure 3.2 shows

the average seasonal cycle of modeled and observed LAI over this region. The lower left plot

shows the average seasonal cycle of modeled and observed SIF. The thin grey lines on both of the

left-hand plots are the individual seasonal cycles of the observed data that make up the average ob-

served season. The x-axes of the left-hand plots are day of year (DOY). Note that the DOY for all

plots is not necessarily day of calendar year, but instead should be considered day of phenological

year, which starts and ends where vegetation productivity is at its minimum for the region (i.e. in

the winter in the northern latitudes, the dry season in the tropics, etc.). Both observed LAI and SIF

are larger during the peak of the season, indicating that the model may be simulating a less dense

canopy than the real world, which may be the reason the SIF is also underpredicting for the region.

The upper right-hand plot of Figure 3.2 shows the day of year (DOY) where the ratios of each

seasonal cycle cross the 25% threshold (see flowchart of Figure 2.3). Therefore, on the upper-right

hand plot of Figure 3.2, there are two lines for each data product: one lower on the y-axis showing

the start of season (SOS) for each year; and another near the top of the y-axis showing the end

of season (EOS) for each year. In contrast, the lower right-hand plot is showing the first and last

day that the same ratios are crossing the 75% threshold each year, which is how we indicate the

start and end of matury (SOM and EOM, respectively). When comparing to MODIS LAI start of

season, we find the model canopy greens up later, indicated by a model SOS that averaged 20 days

later than observed. The 2 years of satellite SIF data indicate, however, that modeled fluorescence
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began ramping up within 10 days of the observed fluorescence. This, may indicate that once SiB4

produces it’s initial leaves and photosynthesis begins to increase, it may be taking too long to

produce new leaves. Despite a late SOS, the model accurately predicts the timing of senescence,

averaging only 2 days late compared to MODIS LAI, and 7 days late compared to OCO-2 SIF.

The NDVI, in contrast, indicates a much longer season than both LAI and SIF observations (right-

hand plots of Figure 3.2) averaging a start and end of season around 37 days early and 46 days

late, respectively, compared to MODIS LAI. This region shows very little interannual variability

in the growing season length. More analysis is needed to show that the model accurately predicts

deciduous broadleaf forests in other climates, as this analysis was restricted to a small area of

Eastern North America alone.
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Figure 3.2: The figure above compares modeled and observed productivity and phenology over the north-
eastern United States, which is dominated by deciduous broadleaf forests. The x-axes of the left-hand plots
show the day of phenological year (DOY; which here is day since the latest period of minimal vegetation
activity) instead of the day of the calendar year. The upper left-hand plot is the average seasonal cycle
of modeled and observed LAI. The lower left-hand plot shows the average seasonal cycle of modeled and
observed SIF. The upper right plot shows the first and last day of each growing season that the ratio of each
time series crossed a 25% threshold. The first day this occurred each growing season was defined as the
start of season (SOS) and the last day was defined as the end of season (EOS). The lower right plot shows
when the ratios cross a 75% threshold, which was defined as the start and end of maturity (SOM and EOM).
Note that the SIF record is only 2-3 years long. Please note that the colors remain consistent for each data
product.

3.2.2 Tropical and sub-tropical grasslands

The SiB4 model simulates the growing season onset well in tropical and subtropical grasslands

around the world, but tends to shift from maturity to senescence later than the observed from

MODIS and OCO-2 (Figures 3.3-3.5). We find that over a grassland-dominant region of South

American (Figure 3.3), LAI observations are consistently higher than modeled LAI (upper left-

hand plot) while the SIF observations are higher during spring onset and maturity but not during
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senescence (lower left-hand plot). When comparing modeled and observed LAI seasonality (upper

right panel of Figure 3.3) SiB4 simulates an SOS that is generally within 10 days of observed

values, but senescence is an average of 18 days late. According to the SIF comparisons, the model

is late both in the SOS (19 days) and an EOS (39 days). Both in the SIF and LAI, not only does the

end of season occur later in the model but so does the shift from maturity to senescence, averaging

an EOM 16 days later in model LAI and 31 days later in model SIF.

We find similar phenological behaviors over northern Australia (Figure 3.4), which is com-

posed of C4 grasses primarily, and C3 grasses and shrublands to a lesser degree. One difference

between the South American region and Australia is that modeled LAI and SIF are both consis-

tently higher than observations, except during the winter where model leaf area is generally lower

than MODIS LAI (left-hand plots of Figure 3.4). The SOS and EOS comparisons in this region

are similar to other grasslands regions because SiB4 simulates spring onset relatively well but has

a senescence period that is significantly longer than remotely sensed vegetation data indicates. The

SiB4 SOS averages 17 days early compared to MODIS LAI, and 21 days late compared to OCO-2

SIF. The model simulates a much longer growing season, however, because modeled LAI EOS

averaged 69 days later than observed, and modeled SIF averaged 78 days later than observed. The

model also tends to have a longer period of plant maturity over this region simulating an SOM

19 days early on average and an EOM delayed by 13 days. Similar to the NDVI seasonality over

deciduous broadleaf, the NDVI over this region suggests a longer season than both observed LAI

and SIF, averaging a EOS that is delayed by 51 days compared to MODIS LAI. The NDVI does

agree well with MODIS LAI in the timing of the spring onset, however. There is some interannual

variability in this region, but the discrepancies between modeled and observed phenology remain

consistent, excluding LAI EOS in 2005.

The African Sahel is a crucial region in carbon cycle research, holding one of the worlds largest

grasslands, and is poorly constrained by observations and in situ data [78]. We find, using both

LAI and SIF observations, that the model simulates the spring onset relatively well in this region

but simulates a senescence period that is too long and too slow (Figure 3.5). The model SOS is
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an average of 9 days late compared to MODIS LAI and 15 days late compared to the OCO-2 SIF.

Similar to other grassland regions, SiB4 simulated a far longer period of maturity and senescence,

averaging 50 days late compared to MODIS LAI and 66 days late compared to OCO-2 SIF. The

model SIF clearly has a dual peak pattern, due to the two distinct wet seasons of the Sahel region,

but the observed SIF did not. Further investigation is needed to see if this is also a pattern in SiB4

photosynthesis or only in the fluorescence estimations. If the model photosynthesis does not show

this dual peak pattern, then we may infer that the dual peak pattern shown in Figure 3.5 is due to

the light availability before and after the wet season. The model also simulates a longer period of

plant maturity than the observations (lower right panel of Figure 3.5).

Figure 3.3: The figure above compares modeled and observed phenology and productivity, as described in
Figure 3.2, over a region of South America dominated by C4 grasslands.
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Figure 3.4: The figure above compares modeled and observed productivity and phenology, as described in
Figure 3.2, over Northern Australia, which is dominated by C3 grasses, C4 grasses, and shrublands.
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Figure 3.5: The figure above compares modeled and observed productivity and phenology, as described in
Figure 3.2, over the African Sahel, which consists largely of a combination of C3 grasses, C4 grasses, and
shrublands.

3.2.3 Agricultural regions

The model is able to reasonably predict the timing of cropland harvest in agricultural regions

of the United States, but poorly represents either cropland planting dates or the timing of crop

growth. SiB4 also tends to misrepresent crop phenology in other regions around the world. The

United States corn belt is a region of industrial croplands in Iowa and the surrounding states.

The primary crops in the region are corn, soybeans, and wheat. The model simulates each of

these primary crops, and groups any other crops in to seperate PFTs called generic C3 crops and

generic C4 crops. Our analysis of the climatology and phenology of US agricultural land, often

called the Corn Belt, (Figure 3.6) revealed that the model simulated too short of a growing season

compared to observations, due to a green up that occurred too late. The model SOS was an average

of 39 days late compared to observed LAI and 29 days late compared to observed SIF (upper
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right-hand plot). The model was able to accurately capture the harvesting dates of crops in this

region, however, averaging only 6 days later compared to observed LAI and 15 days compared

to observed SIF. Interestingly, the model LAI consistently overestimated the leaf area magnitude

during the summer in this region (upper left-hand plot) but underestimated SIF magnitude (lower

left-hand plot). Similar to deciduous broadleaf and some grassland regions, the NDVI seasonality

indicates a much longer growing season than the observed LAI and SIF in this region, averaging

an SOS 33 days early and an EOS 44 days late compared to MODIS LAI.

We also compare the modeled LAI and SIF to observations over India (Figure 3.7), which

revealed an interesting discrepancy between the generic cropland PFTs in the model and how

crops are planted and harvested in the real world. Unlike grassland regions, the modeled croplands

seasonality in this region are essentially phase shifted earlier in the year, thus missing both the

spring onset and the senescence of vegetation. The model SOS occurs much earlier than both

observed LAI (72 days early) and observed SIF (55 days early) consistently throughout the data

record. The model EOS was also earlier than the corresponding observations but the magnitude

of lateness was also more variable than the discrepancies seen in the SOS comparisons. This may

be due to the dual peak pattern seen in the observations over this region, which could lead to a

prolonged season depending on the magnitude and timing of growth. The modeled vegetation also

reached the end of maturity, thus starting to senesce, earlier than observed, and sometimes even

before observed SIF and LAI reached maturity (lower right-hand plot).
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Figure 3.6: The figure above compares modeled and observed productivity and phenology, as described in
Figure 3.2, over the Corn Belt of the United States, which is dominated by industrial crops such as corn and
soybeans.
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Figure 3.7: The figure above compares modeled and observed productivity and phenology, as described in
Figure 3.2, over India, which has a large proportion of C3 croplands (32%, see in Table 2.3) and a mixture
of small fractions of other PFTs. The model peaks that are seen are due to PFT contributions from C3 and
C4 croplands.

3.2.4 Tibetan Plateau

We compare phenology and productivity of modeled and observed vegetation over the Tibetan

Plateau (Figure 3.8). Also known in China as the Qinghai-Tibetan Plateau, this region is one of

the most sensitive to climate change [79–81]. This region has experienced rapidly increasing tem-

peratures as well as accelerated permafrost thaw in the past few decades [82], resulting in plant

phenology shifts [80, 83]. These traits make this region ideal for studying plant phenology [84].

It should be noted that we do not analyze how the phenology in this region changes over multiple

decades, but instead focus on the intercomparisons of phenology between different satellite prod-

ucts and the SiB4 model. We find that the model LAI is always lower than observed LAI while

model SIF is consistently higher than observed, though both LAI and SIF in this region are very
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small in general (left-hand plots). When comparing modeled and observed LAI, SiB4 seems to

simulate green up very well in this region, averaging only 6 days earlier than observed. According

to the LAI comparison, SiB4 does have a slower rate of senescence, however, because the EOS

is 19 days later than observed while the EOM is only 7 days late on average. The model SIF is

not only greater than observed, but also tends to have a broader season, averaging an SOS and

EOS that are 33 days early and 29 days late, respectively. It should be noted that the observed SIF

averages below zero during the winter, which are non-physical values for SIF. This may be noise

in the data or due to offset corrections in the retrieval.

Figure 3.8: The figure above compares modeled and observed productivity and phenology, as described in
Figure 3.2, over the Tibetan Plateau, which consists largely of tundra C3 grasslands.
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3.2.5 Boreal forests and grasslands

For high latitude environments, we are unable to complete a phenology analysis due to gaps in

the MODIS LAI and OCO-2 SIF data record caused by a lack of sufficient light in these regions

during the winter months. We do compare the average seasonal cycles of observed and modeled

SIF, however (Figure 3.9). We find in all boreal environments compared, whether dominated by

tundra grasses or evergreen needleleaf forests, that SiB4 consistently overpredicts SIF. This is

consistent with the overpredictions of canopy SIF from evergreen needleleaf forests (see Figure

3.1).

Figure 3.9: SIF comparisons of modeled (solid line) and observed data (dashed line) over Eurasian ever-
green needleleaf forests (left-hand plot), North American evergreen needleleaf forests (middle plot), and
Canadian tundra (right-hand plot). The Canadian tundra vegetation is largely composed of tundra C3
grasses.

3.2.6 Evergreen broadleaf forests

Tropical rainforests, especially those in Africa, are poorly constrained by in situ observations

due to political instability and lack of infrastructure necessary to facilitate research [85]. Satellite

observations over rainforests are often attenuated by heavy cloud cover. Although rainforests do

exhibit some seasonality, which is possibly driven by light availability [86], we were not able
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to identify stark seasonal cycles. Therefore, we did not complete phenological analyses in these

regions. We also do not show a comparison of the average year of modeled and observed LAI

due to significant gaps in the LAI coverage. We do compare modeled and observed SIF, however,

over the Amazonian and Congolese Rainforest (Figure 3.10). The model was able to accurately

capture the relative aseasonality of regional photosynthesis in both the Congo and the Amazon.

There also appears to be an anti-correlation between modeled and observed SIF. This may be due

to differences in weather in the MERRA-2 and the real world, where SiB4 is predicting SIF for

cloudy scenes, while the observed values, by nature of the satellite retrievals, only represent sunny

to moderately cloudy scenes.

Figure 3.10: SIF comparisons of modeled (solid line) and observed data (dashed line) over Amazonian
(left-hand plot) and Congolese (right-hand plot) evergreen broadleaf forests.
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Chapter 4

Discussion and Conclusions

The SiB4 model is unique both in its ability to estimate SIF using enzyme kinetics and photo-

chemistry and in its process-driven strategy to dynamically shift global vegetation through pheno-

logical stages. We tested the model’s ability to predict SIF for varying plant types (Table 2.1) by

comparing modeled canopy estimates of SIF to aggregated satellite pixels of SIF. We found that,

for a majority of observed pixels, the modeled canopy SIF is consistently higher than the observed

SIF values across all plant types and climates, with the exception of deciduous broadleaf forests.

There are many possible reasons that the SiB4 canopy SIF estimates were higher than pixel-scale

SIF observations, primary of those being that the satellite is observing fluorescence over heteroge-

neous pixel instead of a homogeneous canopy. Heterogeneity in the satellite pixel will include bare

ground, other plant types, water, and other artifacts, that would cause SIF emissions from the pixel

to be lower than if the pixel was only composed of a homogenous plant canopy. Therefore, the

modeled SIF estimates from each PFT, which assumes a homogenous canopy, may be correctly

simulating the average canopy but it is difficult to verify with aggregated satellite pixels. This

would also imply a relationship between the overestimation of pixel-scale SIF and the density of

the canopy that is being observed, which warrants further research. Deciduous broadleaf, for exam-

ple, tends to form dense canopies in the real world allowing satellites to see a more homogeneous

scene, and it is the plant type where observed and modeled SIF compare best.

Another component that could contribute to the high modeled SIF emissions is the canopy

scaling factor that is used in the model to scale SIF from a single leaf to an entire plant canopy.

The scaling factors used in the model are empirically estimated using a canopy radiative transfer

model that splits the canopy into layers, estimates the amount of photons emitted by each layer,

models the recapturing of fluorescence photons by other parts of the canopy, and estimates the total

amount of fluorescence that escapes the canopy back into the atmosphere. Due to the especially

high bias in evergreen needleleaf forests, the scaling factor used in these environments may be over
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predicting the amount of photons that are allowed to escape the canopy. Snow cover in satellite

pixels may also dampen the SIF signal from evergreen needleleaf forests. The model, however,

does not take this into account, which could be causing the especially high overestimation in the

winter for this biome.

One final component that may explain the model overestimation of SIF is that the model

does not take in to account atmospheric scattering of fluorescence photons that occur between

the canopy and the satellite. Atmospheric scattering can reduce the SIF signal by approximately

20% with cloud optical thicknesses around 2-5 [52], though this would not explain all of the model

overestimation. These results emphasize the need for more ground-based canopy estimates of SIF

over a variety of plant types.

Despite the mismatch between modeled canopy estimates and satellite observations we learned

several interesting facts about about how SiB4 modeled SIF compares to the real world. For

example, comparing the average seasonal cycle of landscape scale model estimates of SIF (i.e.

gridcell averages of regions) showed that the model simulates seasonal cycles of fluorescence of a

reasonable magnitude in many environments.

When comparing remotely sensed phenology, we found a common pattern in many parts of the

world: AVHRR-based NDVI indicates a much longer growing season than both the MODIS-based

LAI estimates and SIF observations. This may be, in part, due to the tendency for NDVI to increase

in snowy regions because of spring snowmelt instead of actual vegetation onset [87]. However, the

NDVI also implies a longer period of maturity and a later transition in to senescence compared

to LAI and SIF, which is most likely due to the maximum-value compositing. Another common

occurrence was that SIF observations tended to be phase shifted earlier than LAI observations,

which is not surprising since others have reported that changes in vegetation indices can often lag

changes in vegetation function (i.e. photosynthesis) [88].

By comparing the regional phenology of a variety of modeled and observed variables we de-

tected ways that the biological strategies built in to the model did not capture the behavior of the

real terrestrial biosphere. One common theme was that the model tends to green up during the
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spring relatively well compared to observations in many environments, but tends to shift from ma-

turity to senescence late, and the rate of senescence tends to be too slow. Late senescence is a

common problem in many terrestrial biosphere models [89], due to the lack of in situ and reliable

satellite data. However, because SiB4 phenology is a dynamic and process-driven system, we are

able to make inferences about mechanisms causing the model to senesce too late and for too long.

We believe that the primary factors causing discrepancies between modeled and observed season-

ality are biological functions that SiB4 simply doesn’t have. For example, one interpretation is that

the model is actually predicting the timing of the shift from maturity to senescence but is missing

a critical component: plants are able to cut off nutrient and water flow to their leaves (known as

abscission), causing the leaves to brown or fall off more quickly than the modeled leaves, which

doesn’t include abscission. This would explain why the modeled canopy is green for too long, as

indicated by our LAI comparisons.

Another interpretation is that plants have evolved over millions of years to begin shifting their

carbon towards roots and reproductive systems, instead of making new leaves, earlier in the year

than the weather or climate might require. This may have occurred in plant evolution because

particularly bad droughts allowed plants that started senescing early to survive and pass on their

genes, while plants that had still been allocating a majority of their carbon towards creating new

leaves died out. Therefore, plants may have evolved to be more conservative with their carbon

allocation than our model is able to predict using meteorological and climatic factors. Our results

would suggest that this is particularly the case in grasses and shrublands because regions dominated

by these PFTs tend to have the latest senescence compared to observations.

It should be noted, however, that spring green-up was also late in some environments, such

as deciduous broadleaf forests and croplands in the U.S. This may be due to thresholds of light,

temperature, and moisture that are too high, causing a late leaf emergence or slow build up of the

canopy. Further investigation of the model photosynthesis may shed some light on this issue, by

revealing whether the underlying mechanisms of the model carbon allocation, or the model SIF

parameterizations are the cause.
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We also found that model phenology of croplands works reasonably well in the agricultural

center of North America but poorly simulates crop seasonality in other regions of the world. In

India, for example, the model reached maturity more than 50 days earlier than observed datasets

would indicate. These trends in India can be explained by mistimed planting and harvesting dates

of the generic C3 and C4 croplands PFTs in the model. This indicates that SiB4 may need to

explicitly represent other major crops, such as rice and sorghum, in future versions in order to

accurately capture the phenology and productivity of other agricultural regions around the world.
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