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ABSTRACT 

 
 
 

INHIBITION OF THE HOST 5’-3’ RNA DECAY PATHWAY IS A NOVEL MECHANISM BY 

WHICH FLAVIVIRUSES INFLUENCE CELLULAR GENE EXPRESSION  

 

 Host gene expression is an intricate process that requires many levels of regulation to 

allow the cell to react properly to a given stimulus or maintain homeostasis. One mechanism by 

which RNA viruses perturb host gene expression and potentially favor the allocation of host cell 

resources for viral proliferation is through interfering with cellular post-transcriptional processes. 

Furthermore, because viral RNAs must persist in the host cell cytoplasm to allow translation of 

viral proteins and ultimately viral replication, the same post-transcriptional processes that 

regulate host messenger RNAs (mRNAs) likely act on viral RNAs as well. The general RNA 

decay machinery in the cell serves as an important regulatory step for proper gene expression 

at the post-transcriptional level. Many RNA viruses have evolved unique mechanisms for 

dealing with the cellular RNA decay machinery to preserve their transcripts and ensure a 

productive infection. Viruses in the Flaviviridae contain positive-sense, single-stranded RNA 

genomes that are not polyadenylated. Therefore, these viral RNAs are likely recognized by the 

host cell as deadenylated, incongruous mRNAs and are likely substrates for the general cellular 

RNA decay machinery. Remarkably, members of the Flavivirus genus including the dengue 

viruses (DENV) and West Nile virus (WNV) produce an abundant non-coding subgenomic RNA 

(sfRNA) during infection that is generated through incomplete degradation of the viral genome 

by the host 5’-3’ exoribonuclease 1 (XRN1). We demonstrate that human and mosquito XRN1 

stalls on highly structured, conserved elements in the 3’ untranslated region of flaviviral RNAs, 

resulting in sfRNA formation. Furthermore, we determined that these sfRNAs act as competitive, 

reversible inhibitors of XRN1. Infected cells display several signs of sfRNA-dependent XRN1 
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dysfunction, including the accumulation of uncapped transcripts and an overall stabilization of 

host mRNAs. Additionally, sfRNA acts as a weak inhibitor of the host cell RNA interference 

(RNAi) pathway. We propose that sfRNA likely acts as a sponge for Argonaute-2 (AGO2) and 

DICER, and have determined that siRNA-mediated decay is suppressed in an sfRNA-

dependent fashion in flavivirus-infected human cells. This suppression of the RNAi pathway 

appears to alter host gene expression to a limited extent, and may be especially important for 

viral replication in the mosquito vector. Other members of the Flaviviridae, including hepatitis C 

virus (HCV) and bovine viral diarrhea virus (BVDV) do not form an sfRNA from their 3’ 

untranslated regions, but they do contain highly structured 5’ untranslated regions. Herein we 

show that aside from acting as internal ribosome entry sites, the 5’ UTRs of HCV and BVDV 

also stall and inhibit XRN1. Therefore, members of the Flavivirus, Pestivirus, and Hepacivirus 

genera appear to inhibit a major mRNA decay pathway by suppressing XRN1 activity via highly 

structured viral RNAs. Consequences of XRN1 suppression during viral infection include the 

stabilization and upregulation of short-lived transcripts including those encoding oncogenes, 

angiogenic factors, and pro-inflammatory factors. Furthermore, we present evidence that WNV 

sfRNA may dysregulate the coordination between mRNA stability and transcription. Therefore, 

the suppression of XRN1 may potentially act as an important mechanism by which diverse 

viruses in the Flaviviridae induce pathogenesis by dysregulating cellular gene expression. 
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INTRODUCTION 

 
 

 The molecular mechanisms by which viruses interact with their hosts coupled with how 

the host responds to infection form the basis for virus-induced pathology. Viruses with RNA 

genomes lack the genetic space necessary to encode all protein factors required for viral 

replication and gene expression, and therefore rely on the host cell for many aspects of viral 

propagation. Viral mRNAs must access the cellular translation machinery in the cytoplasm for 

gene expression. Furthermore, because viral mRNAs mimic cellular mRNAs, they are likely to 

interact with cytoplasmic RNA-binding proteins and mRNA decay factors. One important but 

under-studied aspect of host-virus interactions is how viral transcripts evade or suppress the 

cellular RNA decay machinery. We have identified a unique mechanism by which all members 

of the Flaviviridae family appear to suppress a major aspect of cellular RNA decay.  We posit 

that major changes in host gene expression occur as a consequence of this inhibition of RNA 

decay by members of the Flaviviridae. Furthermore, pathways by which virus-induced changes 

in mRNA stability could contribute to pathology as a result of mis-regulated gene expression will 

be discussed herein. This introduction seeks to contextualize the following studies and is 

separated into two major sections. Section I will give an overview of the molecular aspects of 

flavivirus propagation and viral pathogenesis. Section II will discuss the major pathways by 

which cellular mRNAs are degraded and will provide background on how RNA viruses are 

known to interact with the RNA decay machinery. 

 

Section I: Introduction to the Flaviviridae family   

 
 The following studies are focused on a particular group of viruses that as a whole are 

endemic around the globe and affect humans and animals. The Flaviviridae family includes 

three genera: the Flaviviruses, Hepaciviruses, and Pestiviruses (Quan et al. 2013; Stapleton et 
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al. 2011). Colloquially, all members of the Flaviviridae family (and the Flavivirus genus) are 

referred to as ‘flaviviruses’. The overall goal of this section is to provide the reader with a 

literature review on the known mechanisms of flaviviral propagation and the innate immune 

response to flavivirus infections. We hypothesize that one mechanism by which diverse 

flaviviruses cause disease is by the suppression of normal cellular RNA decay pathways that 

are essential for the coordinated regulation of gene expression in the cell. Therefore, the known 

mechanisms by which these viruses propagate and cause disease will be important to provide 

background for the following studies presented herein. 

 The Flavivirus genus includes many vector-borne viruses transmitted by mosquitoes or 

ticks to mammalian or avian hosts (Burke and Monath 2001). Members of this genus, Yellow 

Fever virus (YFV), DENV, WNV, and Japanese encephalitis virus (JEV) cause significant 

morbidity and mortality worldwide. The dengue viruses are four closely related flaviviruses that 

are known as dengue virus type 1-4, and the following studies utilized dengue virus type 2 

(DENV-2). Dengue viruses are the cause of the most common vector-transmitted disease 

globally (Centers for Disease Control and Prevention (CDC) 2012) and JEV is the most 

common cause of mosquito-borne pathogen-induced encephalitis worldwide (Sips et al. 2012). 

Of particiular importance in discussing the threat of arthropod-borne flaviviruses to human and 

animal health is the fact that these viruses can rapidly spread to new geographic regions. For 

example, WNV was introduced into North America in 1999 and is now endemic in the United 

States (Jia et al. 1999). Alarmingly, DENV is now likely circulating in the southern United States 

(CDC 2010; Shin et al. 2013). Vaccines against some flaviviruses and some mosquito control 

approaches have been effective in mitigating disease in certain populations, although we still 

lack effective vaccines and vector control strategies for many of these viruses (Heinz and 

Stiasny 2012; Gubler 2011). Therefore there is a profound need to develop effective anti-viral 

treatments and/or vaccines to combat these viruses, particularly with the threat of further 

geographic expansion of mosquito-borne flaviviruses.  
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 Members of the Hepacivirus genus currently include HCV and the GB viruses (GBV; 

named after the surgeon with the initials G.B. that GB viruses were initially derived from). This 

taxon is expanding, as several HCV and GBV genome-like RNA sequences have been detected 

in samples from dogs, rodents, bats and horses (Kapoor et al. 2013; Drexler et al. 2013; 

Chandriani et al. 2013; Burbelo et al. 2012; Kapoor et al. 2011; Epstein et al. 2010). Intriguingly, 

a recent survey of serum samples collected from 58 species of bats identified several new GB- 

and HCV- like viral RNA sequences, indicating that bats may be a major reservoir for these viral 

pathogens (Quan et al. 2013). Furthermore, these recent studies have revealed that the GB 

viruses have likely diverged significantly from the hepaciviruses and should be classified in their 

own taxonomic group, the Pegiviruses (Stapleton et al. 2011; Quan et al. 2013). Importantly, 

HCV is the most common blood-borne pathogen in the United States and is a leading cause of 

hepatocellular carcinoma (HCC) and liver disease worldwide (Wise et al. 2010; Armstrong et al. 

2006). Although the incidence of HCV is decreasing in the U.S., the overall incidence and costs 

associated with chronic disease associated with HCV infection are predicted to continue to rise 

(Razavi et al. 2013). Risk factors for acquiring HCV include infection with human 

immunodeficiency virus (HIV-1), use of injected drugs, receipt of an organ transplant or blood 

transfusions before 1992, and being born during the period from 1945-1965 (Smith et al. 2012). 

There are no vaccines available to protect against HCV, but several anti-viral drugs are in use 

or in development (Scheel and Rice 2013). However, identifying patients infected with HCV and 

providing adequate therapy to infected individuals around the globe remain significant 

challenges (Scheel and Rice 2013). Therefore, further research into the mechanisms of viral 

propagation and host response to infection is vital for the discovery and application of novel 

diagnostics, treatments and vaccines. 

 The pestiviruses include several pathogens of livestock, including BVDV, Border 

Disease virus (BDV) and Classic Swine Fever virus (CSFV; also known as hog cholera virus; 

Becher et al. 2003). Pestiviruses generally infect animals in the order Artiodactyla (the even-
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toed ungulates) (Peterhans et al. 2010). The economic burden of BVDV infections worldwide in 

the dairy and beef industries is substantial (Lanyon et al. 2014). For example, Heuer et al. 

(2007) found that in New Zealand, BVDV infection of cattle was associated with decreased milk 

production, increased time to conception, increased abortions, and loss of calves due to 

persistent infection or abortion. The resulting cost due to BVDV infection was thus estimated to 

be 73 dollars (US) per cow per year (Heuer et al. 2007). Commercially available vaccines 

against BVDV and CSFV have been used to limit disease prevalence in livestock, but one major 

limitation to this strategy to eradicate disease is the ability of these viruses to be transmitted 

vertically from mother to offspring in utero (Newcomer and Givens 2013). Several anti-viral 

compounds including nucleoside analogs that target the activity of the pestiviral RNA-dependent 

RNA polymerase (RdRp) have been efficacious in laboratory settings (Hoover and Striker 2008; 

Dukhan et al. 2005; Angusti et al. 2008; Newcomber and Givens 2013). However, these viruses 

are known to mutate frequently and are likely to evolve to resist anti-viral agents, particularly if 

applied individually (Newcomer and Givens 2013). Therefore, the eradication of BVDV will likely 

require the development and use of effective vaccines, diagnostics, and novel therapeutics 

targeting several viral and/or host factors. 

 

Overview of the flaviviral ‘life’ cycle 
 

 All members of the Flaviviridae are enveloped, contain single stranded positive-sense 

RNA genomes, and replicate exclusively in the cytoplasm of host cells. The replication cycle of 

flaviviruses can be broken into eight important steps (Figure 1). First, the virus enters the cell by 

receptor-mediated endocytosis mediated by the viral envelope glycoproteins (Box 1, Figure 1) 

(Smit et al. 2011) and a slew of cellular factors including the glycosaminoglycans (Chen et al. 

1997; Hilgard and Stockert 2000; Mandl et al. 2001; Germi et al. 2002). These low-affinity 

interactions are thought to concentrate the virus in certain regions of the cell surface to permit 
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entry by more specific viral receptors that remain unidentified (Lecoin et al. 2014). Once viral 

particles adhere to the cell surface they are permitted entry into the cell via clathrin-mediated 

endocytosis (Chu et al. 2006; Acosta et al. 2008; Suksanpaisan et al. 2009; Yang et al. 2013).  

 
 

Figure 1. Flaviviruses, hepaciviruses, and pestiviruses replicate exclusively in the 
cytoplasm.The eight major steps in the replication cycle are highlighted in orange boxes. 

 

 Unlike the flaviviruses, hepaciviruses and pestiviruses encode at least two envelope 

proteins that likely mediate entry into the cell and subsequent fusion of the viral and cellular 

membranes (Kim and Chang 2013; Lindenbach and Rice 2001). Hepatitis C virus appears to 

enter cells by interacting with several receptors including CD81, occludin, scavenger receptor 
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type B class 1, and claudin 1 (Ploss et al. 2009; Evans et al. 2007; Scarselli et al. 2002). 

Interestingly, the expression of human CD81 and human occludin alone was sufficient to permit 

HCV infection in a mouse model (Dorner et al. 2011). The CD46 protein may act as a common 

receptor for the pestivirus E2 protein (Hulst and Moormann 1997; Flores et al. 1996; Maurer et 

al. 2004); although the pestivirus E(rns) protein may mediate non-specific interactions between 

the virus and glycosaminoglycans on the surface of the cell (Iqbal et at 2000). Like the 

flaviviruses, HCV and BVDV appear to enter the cell by clathrin-mediated endocytosis 

(Grummer et al. 2004; Mathapati et al. 2009; Blanchard et al. 2006; van der Schaar et al. 2008). 

Therefore, flavivirus entry into the cell appears to require several steps: initial association of the 

virus with low-affinity receptors (e.g. glycosaminoglycans), recognition of virus-specific 

receptors, and initiation of clathrin-mediated endocytosis. 

 Following receptor-mediated entry into the cell, pH-dependent fusion of viral and cellular 

membranes takes place in pre-lysosomal endocytic vesicles (Box 2, Figure 1) (Gollins and 

Porterfield 1985; Tscherne et al. 2006; Chu and Ng 2004; van der Schaar et al. 2008; Pierson 

and Kielian 2013). Interestingly, the flavivirus E protein appears to undergo an irreversible 

conformational change in the low pH environment of pre-lysosomal vesicles that facilitates 

membrane fusion (Stiasny et al. 2002; Modis et al. 2003; Li et al. 2008; Yu et al. 2008). 

However, the mechanisms by which envelope proteins mediate hepacivirus and pestivirus 

membrane fusion are slightly different (Lindenbach and Rice 2001). Studies of HCV and BVDV 

cell entry have revealed that low pH alone is not sufficient for membrane fusion and HCV and 

BVDV maintain their infectivity after exposure to low pH (Depner et al. 1992; Krey et al. 2005; 

Tscherne et al. 2006). These studies indicate that either an additional factor is required for HCV 

and BVDV fusion (aside from low pH alone) or that conformational changes of the envelope 

proteins of the virions at low pH are reversible (Tscherne et al. 2006). Ultimately, fusion of the 

viral and endocytic membrane causes extrusion of the viral core protein in complex with the 

RNA genome into the cytoplasmic membrane (Lindenbach and Rice 2001).  
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 The next stage of the flavivirus replication cycle is the uncoating of the viral genome, or 

the dissociation of the core protein from the viral RNA (Box 3, Figure 1). Importantly, this occurs 

in the cytoplasm of infected cells where the viral RNA can be translated to produce non-

structural and structural proteins for replication and nascent virion production (Box 4, Figure 1) 

(Lindenbach and Rice 2001). Therefore, these viral RNAs are likely exposed to constitutively 

expressed cellular ribonucleases that function in normal host mRNA turnover and/or quality 

control functions (and will be discussed in Section II of this Introduction). All flaviviruses encode 

a single polyprotein that is co- and post-translationally cleaved by cellular and viral proteases to 

generate distinct proteins as discussed in further detail below. Because viral translation is 

required for subsequent genome replication to take place (Brinton 2013), the flaviviral RNA must 

remain intact and protected from nucleases to permit viral propagation. 

 Replication of flavivirus genomes then takes place in induced membranous 

compartments that are derived from the endoplasmic reticulum (ER) as depicted in Box 5, 

Figure 1 (Ng 1987; Egger et al. 2002; Weiskircher et al. 2009; Romero-Brey et al. 2012; Miorin 

et al. 2013; Kaufusi et al. 2014). The resulting compartmentalization of the cell is thought to 

serve three important functions: (1) to segregate the distinct processes of translation, viral 

particle assembly, and RNA replication for proper virion production, (2) to concentrate cellular 

factors necessary for viral RNA replication and construction of nascent virions, and (3) to shield 

newly made viral genomic RNAs and viral proteins from cellular ribonucleases and proteases 

(Paul and Bartenschlager 2013). Replication of flavivirus RNAs in these membranous 

compartments is thought to require the activity of all seven viral non-structural (NS) proteins 

(Brinton 2013). The four membrane associated proteins NS2A, NS2B, NS4A, and NS4B are 

thought to anchor the flaviviral protein-RNA replication complexes to induced membranous 

compartments for localized genome replication (Mackenzie et al. 1998; Westaway et al. 2002; 

Miller et al. 2006; Miller et al. 2007; Kaufusi et al. 2014). Recent studies have implicated the 

activity of NS4B in the formation of these ER-derived membranous sites of viral RNA replication 
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in flavivirus (Kaufusi et al. 2014), pestivirus (Weiskircher et al. 2009), and hepacivirus (Egger et 

al. 2002; Gouttenoire et al. 2010; Paul et al. 2011) infected cells.  

 Upon the formation of replication complexes in these membranous compartments, viral 

RNA replication ensues (Box 5, Figure 1). The Flaviviral RNA-dependent RNA polymerase NS5 

(or the hepaciviral or pestiviral NS5B) synthesizes nascent viral RNAs. Interestingly, the 

flavivirus NS3 protein possesses a helicase activity and a triphosphatase activity that is 

responsible for dephosphorylation of the 5’ ends of newly transcribed viral RNAs (Luo et al. 

2008; Wang et al. 2009). This permits the addition of a methylated 5’ cap on flaviviral RNAs 

(discussed in more detail in the next below) (Issur et al. 2009; Yap et al. 2010). The NS5 and 

NS5B proteins are anchored to the ER-derived membranes via hydrophobic trans-membrane 

domains to cause the localized, protected replication of viral RNAs (Gu and Rice 2013; Caillet-

Saguy et al. 2014). Newly transcribed viral RNAs are excreted from these membranous 

replication complexes into the cytoplasm, and can then either be packaged into nascent virions, 

undergo translation or serve as templates for further genome replication (Brinton 2013; Miorin et 

al. 2013). 

 For viral assembly, nascent viral RNA genomes form a complex with the basic core or 

capsid proteins and these ribonucleoproteins (RNPs) assemble with viral structural proteins to 

form immature virions (Box 6, Figure 1). Similar to the flavivirus capsid protein, the HCV and 

BVDV core proteins are enriched in basic amino acid residues to facilitate their tight association 

during viral RNA packaging in the ER (Lindenbach and Rice 2001). These newly constructed 

viral particles then bud through ER-associated membranes to create mature enveloped viruses. 

 Finally, fully formed, immature viral particles are trafficked through the trans-Golgi 

network in large vesicles (Box 7, Figure 1). Flavivirus particles undergo furin-mediated 

proteolytic cleavage of the structural prM protein to liberate the pr peptide from the mature M 

protein. The maturation of M on nascent viral particles is important for subsequent infections to 

be initiated (Guirakhoo et al. 1992; Elshuber et al. 2003; Junjhon et al. 2010; Zhang et al. 2003). 
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Although other viral proteins are proteolytically processed during or shortly after translation, 

delaying the cleavage of the pr peptide from M until viruses are in the trans-Golgi network likely 

protects the virus from undergoing pre-mature fusion with cellular membranes (Yu et al. 2008; Li 

et al. 2008). The flavivirus pr peptide therefore protects the viral E protein from undergoing 

irreversible conformational changes in the low pH of the trans-Golgi network (Yu et al. 2008; Li 

et al. 2008). Interestingly, pestiviruses and hepaciviruses appear to actively modulate the pH in 

these vesicular compartments via the p7 protein, which is known to oligomerize to form pore-like 

structures in membranes that selectively allow cations (e.g. protons) to cross the membrane 

(Griffin et al. 2003; Pavlovic et al. 2003; Premkumar et al. 2004; Wozniak et al. 2010). The p7 

protein was shown to be essential for HCV propagation in a non-human primate model of 

infection (Sakai et al. 2003), and further studies demonstrated that p7 is required for HCV and 

BVDV assembly and egress from the cell (Harada et al. 2000; Jones et al. 2007). Finally, virus-

laden vesicles ultimately fuse with the cellular membrane for release of the virions into the 

extracellular environment (Box 8, Figure 1). To summarize, flaviviruses, hepaciviruses, and 

pestiviruses undergo ‘life’ cycles exclusively in the cytoplasm of the cell and require both host 

and viral factors for successful propagation. 

 

Overview of flavivirus genome structure and gene expression strategy 

 
 Flaviviral genomic RNAs are approximately 10-12 kilobases in length and contain a 

single open reading frame flanked by 5’ and 3’ untranslated regions. In general, viral structural 

proteins are encoded at the 5’ end and non-structural proteins at the 3’ end of the open reading 

frame. Viruses of all three genera use a similar gene expression strategy, in which the viral RNA 

is translated into one long polypeptide that is proteolytically cleaved by viral or cellular proteases 

to generate distinct gene products. The genome structure, organization and gene expression 

strategy of flaviviruses will be discussed below. 
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Conserved elements in the flavivirus genomic RNA 

 
 The flavivirus genome is ~11 kb in length and contains a 5’ 7-methylguanosine cap but 

no poly(A) tail (Thurner et al. 2004; Brinton and Dispoto 1988; Chambers et al. 1990). Like 

many mammalian cells (Furuichi et al. 1975; Werner et al. 2011; Smietanski et al. 2014), the 5’ 

caps of flavivirus RNAs contain an additional 2’ O ribose methylation (Daffis et al. 2010; Zust et 

al. 2011; Szretter et al. 2012). The flavivirus NS5 protein mediates the methylation of the 5’ cap 

via a guanine N7 methyltransferase activity and a nucleoside 2’ O-ribose methyltransferase 

activity (Issur et al. 2009; Yap et al. 2010; Caillet-Saguy et al. 2014). This cap structure is 

required for cap-dependent translation of the flavivirus genome. 

 The 5’ and 3’ untranslated regions (~100 nt and 400-700 nt, respectively) have 

conserved sequence and structural elements that facilitate viral RNA replication, genome 

packaging, and translation (Lindenbach and Rice 2001). In general, the overall sequence 

composition of the 3’ and 5’ UTRs are not especially well conserved among all flaviviruses, but 

several structural motifs and short sequence elements that facilitate viral translation and 

replication are conserved (Thurner et al. 2004; Brinton and Dispoto 1988; Brinton et al. 1986). 

The short conserved sequence elements in the 5’ and 3’ UTRs are thought permit viral genome 

cyclization through long range RNA-RNA interactions, resulting in the formation of a complex 

tertiary structure necessary for genome replication (Hahn et al. 1987; Khromykh et al. 2001; 

Alvarez et al. 2005; Polacek et al. 2009; Friebe and Harris 2010). The specific RNA-RNA 

interactions between the viral RNA 5’ and 3’ UTRs are thought to position the viral RdRp 

appropriately for viral transcription initiation (Filomatori et al. 2006; Filomatori et al. 2011). The 

conserved structural motifs present in the 5’ UTRs and 3’ UTRs of flavivirus genomes will be 

discussed in more detail below and are diagrammed in Figure 2.  

 The 5’ UTRs of flaviviral RNAs are ~100 nucleotides long and contain a conserved stem-

loop structure (SLA) of ~70 nucleotides in length (Figure 2A; Liu et al. 2009(a)). This stem-loop 

is thought to function as a promoter for negative strand viral RNA synthesis in conjunction with a 
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short conserved U-rich region adjacent to SLA (Liu et al. 2009(a); Lodeiro et al. 2009). Two 

additional stem-loops are conserved in flavivirus RNAs downstream from SLA, stem-loop B 

(SLB) and a hairpin in the capsid-coading region of the open reading frame (cHP; Figure 2A). 

The SLB moiety contains a conserved sequence motif that mediates genome cyclization (Liu et 

al. 2009(a)). Finally, cHP is thought to be important for viral RNA replication and translation 

initiation (Liu et al. 2009(a); Clyde and Harris 2006; Clyde et al. 2008). Unlike the hepaciviruses 

and pestiviruses, the 5’ UTR of the flavivirus RNA does not harbor an IRES element. The 

flaviviral 5’ UTR therefore contains essential sequence and structural elements for viral RNA 

synthesis and cap-dependent translation initiation.  

 

Figure 2. Conserved structural elements in flaviviral RNAs. (A) The conserved 
structures in the 5’ capped RNA of dengue viruses (representative of the Flavivirus 
genus) with 5’ and 3’ UTRs flanked by structural (S) and non-structural (NS) protein-
coding regions. The three conserved stem-loops, SLA, SLB, and cHP (capsid-coding 
region hairpin) are indicated. (B) Conserved structures in the triphosphorylated HCV RNA 
(a representative of the Hepacivirus genus). The 5’ UTR contains four conserved 
structural domains numbered as 5’I-IV and two additional conserved stem-loops are 
present in the core-coding region (5’V and 5’VI). The seven conserved stem-loops at the 
3’ end of the viral RNA (3’I-VII) are found in the non-structural protein coding region and 
the 3’ UTR. The 3’ UTR contains a variable region (VR), a poly(U/UC) tract, and a 3’ X 
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tail. (C) The conserved structural motifs in the triphosphorylated BVDV RNA (a 
representative of the Pestivirus genus). As in the HCV RNA, the BVDV 5’ UTR contains 
four major structural elements labeled I-IV. The 3’ UTR contains three stem-loops (I-III), 
two of which are in the variable region (VR). Adapted from Liu et al. (2009(a)). 

 

 The 3’ UTRs of most flaviviruses encompass three conserved domains containing 

unique conserved structural and sequence elements (Figure 2A; Liu et al. 2009(a)). Domain I is 

adjacent to the open reading frame and is variable in sequence, but contains at least two 

conserved stem-loop structures (Liu et al. 2009(a); Ward et al. 2011). Directly 3’ to Domain I, 

Domain II has two dumbbell structures, each containing conserved sequence motifs (Liu et al. 

2009(a); Ward et al. 2011). Domain III encompasses the 3’ end of the viral RNA and contains 

two conserved sequence elements that are complementary to regions in the 5’ UTR (facilitating 

genome cyclization) plus a large stem-loop (3’SL) at the RNA terminus (Liu et al. 2009(a); 

Rauscher et al. 1997; Romero et al. 2006).  

 All flaviviruses tested to date generate distinct subgenomic RNAs (sfRNAs) of ~500 nt in 

length that contain the majority of the viral 3’ UTR (Urosevic et al. 1997; Lin et al. 2004; Pijlman 

et al. 2008). Intriguingly, higher-ordered pseudoknot-like structures formed from interactions 

between the conserved stem-loops and dumbbell motifs in Domains I and II in the 3’ UTR are 

implicated in sfRNA formation (Pijlman et al. 2008; Funk et al. 2010; Silva et al. 2010; Chapman 

et al. 2014). These viral RNAs are particularly interesting because they appear to be formed as 

a result of incomplete digestion of the viral genome by the major cellular exoribonuclease XRN1 

(Pijlman et al. 2008; Silva et al. 2010). We have therefore focused our studies on the 

interactions between the cellular RNA decay machinery and flaviviruses by studying the 

formation and function of sfRNA, the subject of this dissertation.   
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Hepacivirus and pestivirus genome structure  

 
 Although there are many similarities in the genome organization of the flaviviruses and 

viruses in the other two genera in the Flaviviridae family, the 3’ and 5’ UTRs of hepacivirus and 

pestivirus RNAs are more similar to one another than they are to flavivirus RNAs. Hepatitis C 

virus (the proto-typical hepacivirus) has a ~9.6 kb genome and pestivirus genomes are ~12.3 kb 

in length (Lindenbach and Rice 2001). Viruses in both genera have highly structured 5’ UTRs 

and several conserved sequence and structural elements in their 3’ UTRs that are diagrammed 

in Figure 2B (Bukh et al. 1992; Lindenbach and Rice 2001; Liu et al. 2009(a)). Two pieces of 

evidence indicate that hepacivirus and pestivirus genomes likely possess a 5’ triphosphate in 

lieu of a methylated cap structure: (1) they are translated by a cap-independent mechanism, 

and (2) their RNA dependent RNA polymerases do not harbor methyltransferase activities (Li et 

al. 2013(a); Lindenbach and Rice 2001; Caillet-Saguy et al. 2014; Le et al. 1996; Wang et al. 

1993). Both viruses use internal ribosome entry sites (IRES) that have similar structural 

elements to undergo cap-independent translation (Le et al. 1996; Wang et al. 1993; Pestova et 

al. 1998).  

 Similar to what is observed in flaviviruses, hepacivirus and pestiviruses genomes may 

circularize for efficient viral RNA replication and/or translation. In HCV, genome cyclization is 

thought to occur via long-range RNA-RNA interactions and/or by interactions between the 

cellular RNA binding proteins (RBPs) including poly(C) binding protein 2 (PCBP2) and a group 

of normally nuclear NFAR proteins with the viral 5’ and 3’ UTRs (Wang et al. 2011; Romero-

Lopez and Berzal-Herranz 2009; Isken et al. 2007). Studies in BVDV replication revealed that 

these NFAR proteins likely form a complex on the viral 3’ UTR and bridge the interaction with 

the viral 5’ UTR to promote viral translation and/or replication (Isken et al. 2003; Isken et al. 

2007). Therefore, in contrast to what is known about flavivirus genome cyclization, it appears 

that hepaciviruses and pestiviruses rely on cellular RBPs to mediate these long range RNA-

RNA interactions.   
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 In further contrast to the flavivirus genome structure, the 5’ UTRs of hepacivirus and 

pestivirus RNAs contain structural motifs that facilitate cap-independent translation. These viral 

5’ UTRs have four distinct conserved structural domains that are numbered I-IV from the 5’ end 

of the genome as depicted in Figure 2B and C (Liu et al. 2009(a); Brown et al. 1992; Fletcher 

and Jackson 2002). Additionally, there are four predicted conserved stem-loops in the open 

reading frame of HCV in the region encoding the core protein adjacent to the IRES element as 

depicted in Figure 2B (Vassilaki et al. 2008). In contrast, pestivirus genomic RNAs appear to 

contain only two highly conserved, short (~20-30 nt) stem-loops in the NS4A- and NS5B-coding 

regions of the open reading frame, quite distant from the IRES element (and therefore not 

depicted in Figure 2) (Thurner et al. 2004). 

 Interestingly, stem-loops I and II in the HCV and BVDV genomes were shown to be 

essential for viral RNA replication (Yu et al. 2000; Kim et al. 2002). The pestivirus and 

hepacivirus IRES elements encompass Domains II, III and IV, all of which were shown to be 

required for viral translation (Liu et al. 2009(a); Lukavsky 2009; Fletcher and Jackson 2002). 

The eukaryotic initiation factor 3 (eIF3) and 40S ribosomal subunits were shown to specifically 

interact with these IRES elements to facilitate translation (Pestova et al. 1998; Sizova et al. 

1998; Kieft et al. 2001). Interestingly, the IRES elements contain a complex pseudoknot-like 

structure in Domain IV that positions the 40S ribosomal subunit appropriately for translation 

initiation (Fletcher and Jackson 2002; Berry et al. 2010; Moes and Wirth 2007). Two of the 

stem-loops in the HCV ORF (5’V and 5’VI in Figure 2B) were shown to be important for viral 

translation and replication in both cell culture and non-human primate models of infection 

(McMullan et al. 2007). Therefore, the 5’ UTRs of hepacivirus and pestivirus RNAs contain 

several highly conserved structural elements that are primarily thought to facilitate cap-

independent translation and mediate viral RNA synthesis. 

 Not only does the HCV 5’ UTR harbor the essential structural elements necessary for 

viral replication and translation, but it uniquely contains two conserved binding sites for a host 
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microRNA, miR-122 (Jopling et al. 2005). A region containing the first 50 nucleotides in the HCV 

5’ UTR has two sites complementary to 2nd – 8th or 2nd-7th nucleotides of miR-122 (Jopling et al. 

2008). This cellular microRNA is highly specific to human hepatocytes, and was shown to be 

essential for HCV propagation in tissue culture cells and in a non-human primate model of 

infection (Jopling et al. 2005; Jopling et al. 2008; Lanford et al. 2010).  Furthermore, miR-122 

was shown to bind the HCV genome in complex with Argonaute-2 (AGO2) to promote efficient 

viral replication, possibly by enhancing viral translation and/or by stabilizing the viral RNA 

(Jopling et al. 2005; Jangra et al. 2010; Li et al. 2013(b); Conrad et al. 2013). Recent evidence 

indicates that miR-122 may mask the 5’ terminus of the HCV genome from exonucleolytic 

decay, potentially stabilizing the RNA as a replacement for the 5’ methylguanosine cap that 

these viruses lack (Machlin et al. 2011; Li et al. 2013(b)). It will be interesting to determine 

whether or not pestiviruses commandeer microRNAs to similarly facilitate viral propagation. 

However, in contrast to HCV, the BVDV 5’ UTR contains a conserved stem-loop at the exact 5’ 

terminus (Yu et al. 2000) that could potentially serve a similar function in protecting the 5’ end of 

the viral RNA from exonucleolytic decay (Figure 2C). Therefore, although the exact mechanism 

by which miR-122 enhances HCV replication and/or translation has yet to be fully elucidated, 

this viral RNA-miRNA interaction is important for mediating viral propagation. 

 The 3’ untranslated regions of hepaciviruses and pestiviruses share several sequence 

and structural elements (Thurner et al. 2004). Both viral 3’ UTRs contain a variable region 

adjacent to the open reading frame, an AU- or UC-rich region, and a conserved region at the 3’ 

terminus (Figure 1B and C). The HCV 3’ UTR variable region is ~50 nt long and is adjacent to a 

conserved poly(U/UC) stretch of ~30-80 nt in length, and the ~100 nt highly conserved 

sequence element called the X-tail is at the 3’ terminus of the viral RNA (Kolykhalov et al. 1996; 

Tanaka et al. 1996; Yamada et al. 1996; Tsuchihara et al. 1997; Thurner et al. 2004). Similarly, 

the 5’ end of the pestivirus 3’ UTR is known to contain a short region of variable sequence and 

length (~50-120 nt), an AU-rich region (of variable location and size), and a ~100 nt highly 
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conserved region at the 3’ terminus (Deng and Brock 1993; Becher et al. 1998; Yu et al. 1999; 

Vilcek et al. 1999). The hepacivirus variable region is not absolutely required for viral replication, 

but deletion of this region was shown to significantly reduce viral RNA replication in one study 

(Friebe and Bartenschlager 2002). The pestivirus variable region contains several conserved 

stem-loop structures and was also shown to be required for efficient BVDV replication in 

addition to translation termination (Isken et al. 2004). Interestingly, the conserved U-rich regions 

in hepacivirus and pestivirus 3’ UTRs are quite important for viral propagation. The HCV 

poly(U/UC) tract was shown to be required for viral replication (Friebe and Bartenschlager 2002; 

Yi and Lemon 2003; You and Rice 2008) and for mediating viral translation (Song et al. 2006; 

Bradrick et al. 2006). Similarly, all pestivirus 3’ UTR sequences compared in one study 

(including BDV, BVDV, and CSFV) harbor conserved AU-rich regions, although these sequence 

motifs are variable in location and size in the viral RNA (Vilcek et al. 1999). The X-tail, or the 3’ 

terminus of the HCV 3’ UTR harbors three highly conserved stem-loops (SL I, II, and III) that are 

also required for HCV replication (Yi and Lemon 2003; Friebe and Bartenschlager 2002). Stem-

loop II was shown to interact with a cruciform RNA structure in the NS5B coding region in a 

long-range RNA-RNA interaction that appears to be required for viral replication (You and Rice 

2002; You et al. 2004; Friebe et al. 2005; You and Rice 2008). The 3’ conserved region of the 

pestivirus RNA has a short conserved sequence element (ACAGCACUUUA) in addition to a 

conserved stem-loop at the 3’ terminus of the RNA that is required for efficient viral replication 

(Deng and Brock 1993; Isken et al. 2004). It is important to note that hepaciviruses and 

pestiviruses do not generate sfRNA-like subgenomic RNAs from their 3’ UTRs. However, as 

described above, the structural and sequence elements in these 3’ UTRs are important for viral 

replication. 
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Flavivirus gene expression strategy 

 
 Flaviviruses use an elegant post-translational processing scheme to generate multiple 

distinct protein products from a single translated polyprotein precursor. A schematic of the 

organization and pre-/post-translational processing of the flaviviral polyprotein is provided in 

Figure 3. As described above, the structural proteins are generally encoded at the 5’ end of the 

viral open reading frame (ORF) and the non-structural proteins are grouped at the 3’ end of the 

viral ORF. A brief description of the flavivirus, hepacivirus, and pestivirus genome organization 

and post-translational processing of the viral polyprotein is provided below. 
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Figure 3. Post- and co-translational processing of gene products in viruses of the 
Flaviviridae family. (A) Flaviviruses have 5’ methylguanosine caps and 5’ and 3’ 
untranslated regions flanking a single open reading frame that is processed by cellular 
and viral proteases to generate distinct protein products. Three structural proteins and 
seven non-structural proteins are made. (B) The hepacivirus genome contains a 5’ 
triphosphate instead of a methylated cap, and is translated via an internal ribosome entry 
site (IRES) that makes up the 5’ untranslated region. Four structural and six non-
structural proteins are generated. (C) Pestiviruses generate up to five structural and 
seven non-structure proteins through cap-independent translation via an IRES element 
and genomes are also likely 5’ triphosphorylated (Linderbach and Rice 2001).  
 
 

 As diagrammed in Figure 3A, the flavivirus RNA encodes three structural proteins, C 

(capsid), M (membrane; the precursor protein is prM), and E (envelope) and seven non-

structural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Lindenbach and Rice 

2001; Chambers et al. 1990). As the viral polyprotein is translated, the C protein first undergoes 

several proteolytic processing events by both cellular and viral proteases (Boege et al. 1983; 

Trent 1977; Lindenbach and Rice 2001). Next, the prM protein is generated by distinct 

proteolytic cleavage events mediated by both cellular and viral proteases. Interestingly, the prM 

protein undergoes proteolysis by the cellular protease furin long after translation is terminated, 

when nascent virions are trafficked through trans-Golgi network (Yamshchikov and Compans 

1994; Stadler et al. 1997). The final structural protein, E, is generated by cellular signal 

peptidase cleavage of the viral polyprotein (Markoff et al. 1994). In contrast, the flaviviral non-

structural proteins are mostly liberated from the polyprotein by the protease activity of the viral 

NS3 protein (Yamshchikov et al. 1997). Importantly, as discussed above, the sequential 

proteolytic cleavage of viral proteins is essential for proper viral gene expression (Lindenbach 

and Rice 2001; Lee et al. 2000).  

 The hepaciviruses and pestiviruses also generate a single polyprotein that is co-and 

post-translationally processed by cellular and viral proteases to generate distinct protein 

products (Figure 3B and C). As occurs in flaviviruses, the three structural proteins core (C), E1 

and E2 of HCV encoded at the 5’ end of the viral open reading frame (ORF) are proteolytically 

cleaved by cellular signal peptidases (Lindenbach and Rice 2001). The E2 envelope protein 



19 

 

then undergoes a second proteolytic cleavage event by a signal peptidase to liberate the non-

structural p7 peptide on the surface of the ER membrane (Lin et al. 1994).  Seven non-structural 

proteins are encoded in the rest of the ORF: a small polypeptide cleaved from the E2 protein 

(p7), NS2, NS3, NS4A, NS4B, NS5A, and NS5B. As is observed in flavivirus polyprotein 

maturation, viral proteases are mostly responsible for processing the HCV non-structural 

proteins. The NS2-NS3 polypeptide acts as an autoprotease, and the liberated NS3 protein 

retains protease activity when directly interacting with NS4A, which acts as a co-factor for this 

process (Bartenschlager et al. 1994; Lin et al. 1994; Failla et al. 1994; Tanji et al. 1994).  

 The pestiviruses are slightly more complex in that they harbor four structural proteins 

and seven non-structural proteins (Figure 3C). Uniquely, the pestiviruses encode a non-

structural protein, N(pro), at the 5’ terminus of the single open reading frame. The N(pro) protein 

acts as an autoprotease, liberating itself from the adjacent C protein during translation (Stark et 

al. 1993; Wiskerchen et al. 1991; Lindenbach and Rice 2001). The four structural proteins that 

are next translated are the core (C) protein and three envelope proteins E(rns), E1, and E2; 

these are mostly processed by cellular proteases (Lindenbach and Rice 2001). The other non-

structural proteins located at the 3’ end of the pestivirus genome from 5’ to 3’ are NS2, NS3, 

NS4A, NS4B, NS5A, and NS5B. In contrast to the hepaciviruses, NS2-NS3 and NS5A-NS5B 

are generated through an initial proteolytic cleavage event, and can then be liberated to form 

distinct protein products or remain covalently linked (Lindenbach and Rice 2001). Interestingly, 

not all pestivirus isolates generate NS2 and NS3 from cleavage of the NS2-NS3 precursor. 

Furthermore, all non-cytopathic BVDV isolates tested to date generate the unprocessed NS2-

NS3 precursor only, but cytopathic BVDV (and CSFV) both generate distinct NS2 and NS3 

products (Donis and Dubovi 1987; Greiser-Wilke et al. 1992; Meyers and Thiel 1996). There is 

some evidence that insertion of host RNA sequences into the pestivirus RNA directly 

contributes to proteolytic processing of the NS2-NS3 precursor. Therefore, pestiviruses are 
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unique in that they normally maintain the NS2-NS3 and NS5A-NS5B as single protein products, 

and cleavage of NS2-NS3 is strongly associated with pathogenicity. 

  To summarize, all members of the Flaviviridae use both cellular and viral proteases to 

generate distinct gene products from a single translated polyprotein. Furthermore, the genome 

organization of these viruses is generally conserved, in which structural and non-structural 

proteins are grouped together. Because flaviviral gene expression relies on translation of a 

single viral mRNA, it is very important for these viruses to evade cellular nucleases to permit 

viral propagation. Furthermore, because RNA-RNA recombination events can influence the 

pathogenicity of pestivirus infections by facilitating the formation of distinct NS2 and NS3 

proteins, the ability of cellular exonucleases to degrade viral RNAs before they can recombine 

could ultimately influence viral pathogenesis. 

 

General host anti-flaviviral innate immune mechanisms 

 A general discussion of the immune mechanisms that are important for anti-flaviviral 

host response is relevant to this discussion, as aberrant or over-active immune responses (e.g. 

inflammation) are known to play important roles in mediating the pathology of flavivirus 

infections (Paton and Greiser-Wilke 2004; Guidotti and Chisari 2006; King et al. 2007; Rossini et 

al. 2013; Yacoub et al. 2013). The rates at which viral and cellular mRNAs are degraded in the 

cell could theoretically influence the innate immune response to viral infection in two ways. First, 

flaviviral RNAs are known to activate host innate immune pathways by triggering cytosolic 

pathogen recognition receptors (PRRs). Therefore, viral RNAs that are resistant to degradation 

would theoretically be available for a longer period of time to stimulate PRRs. Second, the 

expression of pro-inflammatory factors is often heavily regulated at the post-transcriptional level, 

and virus-induced changes in post-transcriptional gene regulatory mechanisms could therefore 

alter the immune response to infection (Anderson 2009; Hao and Baltimore 2009). This 
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discussion will be focused on intrinsic innate anti-flaviviral immune mechanisms including the 

activation of cellular nucleases that are induced as a result of the cellular recognition of viral 

RNAs. 

 Flaviviral RNAs contain several specific motifs, considered pathogen associated 

molecular patterns (PAMPs) that can stimulate PRRs. Importantly, all flaviviruses generate 

double stranded RNA (dsRNA) replication intermediates in the cytoplasmic membranous 

compartments of the host cell that appear to be immunogenic (Errett et al. 2013). Furthermore, 

higher-order RNA structures present in flaviviral RNAs can also be recognized as PAMPs 

(Pichlmair et al. 2009). The 5’ terminal triphosphate of hepacivirus or pestivirus RNAs stimulate 

PRRs, and uniquely, a ~36 nt highly conserved poly(U/UC) tract in the HCV 3’ UTR also 

appears to be immunogenic (Sumpter et al. 2005; Schnell et al. 2012). The PRRs that sense 

these viral RNA motifs include the interferon-induced proteins with tetratricopeptide repeats 

(IFITs), retinoic acid-inducible gene-I (RIG-I) like receptors (RLRs), Toll-like receptors (TLRs) 

the NOD, LRR and pyrin domain containing 3 (NLRP3) inflammasome, oligoadenylate synthase 

(OAS) and the interferon-induced protein kinase R (Samuel et al. 2006; Gilfoy and Mason 2007; 

Li et al. 2011(a); Kaushik et al. 2012; Schnell et al. 2012; Suthar et al. 2013). In general, the 

outcome of PRR stimulation is the activation of intracellular signaling cascades that ultimately 

induce transcription of pro-inflammatory cytokines, chemokines, and/or interferon α or β (the 

type I interferons; IFN) which can exert anti-viral and/or pro-inflammatory effects (Jensen and 

Thomsen 2012). IFNβ is ultimately secreted from the cell and binds to the IFNα and IFNβ 

receptor complex 1 (IFNAR1) located on the same cell or a neighboring cell (Suthar et al. 2013). 

The activation of IFNAR1 ultimately results in activation of a complex containing interferon 

regulatory factor 9 (IRF9), the signal transducer and activator of transcription 1 (STAT1) and 

STAT2 (Horvath 2004). These transcription factors then enter the nucleus and induce the 

expression of distinct interferon stimulated genes (ISGs) and interferon α (Horvath 2004; 
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Tenoever et al. 2007). The recognition of flavivirus RNAs by IFITs, RLRs, TLRs, and OAS, and 

the outcome of PRR stimulation will be discussed further below. 

 

IFIT proteins in flavivirus infections 

 
 Viral transcripts that contain non-methylated cap structures (e.g. hepaciviruses and 

pestiviruses) are recognized by down-stream effectors of the type I interferon pathway called 

IFITs (Daffis et al. 2010; Hyde et al. 2014). Because mammalian IFIT1 (also known as P56)  

has been shown to suppress translation initiation by sequestering subunits of the eiF3 complex, 

inhibition of viral translation was thought to be the mechanism by which IFIT1-mediated virus 

restriction occurred (Guo et al. 2000; Hui et al. 2005; Daffis et al. 2010). Indeed, one study 

demonstrated that IFIT1 likely suppressed IRES-mediated translation of HCV through this 

mechanism (Wang et al. 2003). However, it was later demonstrated that susceptibility of 

flaviviruses to IFIT-mediated restriction largely depended on the presence or absence of the 2’ 

O-methyl group on the 5’ cap of viral RNAs. Although members of the Flavivirus genus normally 

have 5’ methylated cap structures that resemble cellular mRNAs, mutant RNA viruses (including 

WNV) that were incapable of adding the 2’ O-methyl group to the 5’ cap were shown to be much 

more sensitive to IFIT-mediated restriction (Daffis et al. 2010; Szretter et al. 2012). Furthermore, 

it was recently demonstrated that IFIT1 binds directly to 5’ triphosphorylated RNAs, limiting their 

ability to be translated by sequestering these RNAs away from the translation machinery 

(Pichlmair et al. 2011). Therefore, triphosphorylated RNAs generated in HCV and BVDV 

infections are likely recognized directly by IFIT proteins that are induced as a result of the type I 

interferon response to abrogate viral translation. 
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The RIG-I like receptors in flavivirus infections 

 
 The RIG-I like receptors are present in most mammalian cells where they serve as the 

major sensors of viral RNAs and essential activators of the type I interferon response (Kato et 

al. 2005; Jensen and Thomsen 2012). These proteins include RIG-1 and melanoma 

differentiation antigen 5 (MDA5). Both RIG-I and MDA5 also contain caspase recruitment 

domains essential for signal transduction (Yoneyama et al. 2004; Jensen and Thomsen 2012). 

MDA5 appears to have some specificity for RNAs longer than 2,000 nucleotides in length, and 

RIG-I can recognize shorter RNAs (Kato et al. 2005; Triantafilou et al. 2012; Feng et al. 2012). 

Furthermore, MDA5 is stimulated by higher-order RNA structures that contain both single 

stranded and double stranded regions (Pichlmair et al. 2009). Importantly, the stimulation of 

RIG-I by triphosphorylated viral RNAs containing dsRNA-like panhandle structures can occur 

immediately following viral infection upon disassociation of the viral RNA from the capsid protein 

(Weber et al. 2013). In addition to dsRNA recognition, both RIG-I and MDA5 may also recognize 

foreign mRNA 5’ cap structures. Viral RNAs with 5’ triphosphates (e.g. Hepatitis C virus) can 

activate RIG-I (Saito et al. 2008; Kato et al. 2008) and a recent study demonstrated that MDA5 

may recognize viral RNAs lacking the 2’ O methyl group normally present on viral and cellular 

mRNAs (Zust et al. 2011). Upon stimulation, RLRs undergo a conformational change leading to 

oligomerization and re-localize to cellular membranes where they bind the cellular mitochondrial 

antiviral signaling (MAVS) protein, also known as IPS-1 (Loo and Gale 2011; Suthar et al. 2013; 

Horner 2014). This complex then causes interferon regulatory factor 3 (IRF3) and/or nuclear 

factor κ B (NFκB) to re-localize to the nucleus and promote the transcription of interferon β and 

other genes to induce a type I interferon response (Loo and Gale 2011; Suthar et al. 2013). 

 Flaviviruses including WNV, DENV, JEV, and HCV are known to trigger type I IFN 

responses as a result of RIG-I and/or MDA5 stimulation (Li et al. 2011(a); Sumpter et al. 2005; 

Kato et al. 2006; Loo et al. 2008; Fredericksen et al. 2008; Kawai and Akira 2008; Suthar et al. 

2010; Schnell et al. 2012). The pestiviruses also trigger RIG-I and MDA5-mediated signaling 
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pathways, leading to enhanced production of pro-inflammatory cytokines (including IL-1β, IL-6, 

and TNFα) and type I IFN (Smirnova et al. 2012; Dong et al. 2013). Both cytopathic and non-

cytopathic BVDV strains are capable of stimulating type I IFN gene expression in animal and 

cell culture models of infection (Rossi and Kiesel 1980; Smirnova et al. 2008; Palomares et al. 

2013).  

 Several studies have demonstrated that RLR-mediated signaling is essential for an 

effective immune response to flaviviral infection. Mice deficient in MDA5 or RIG-I had decreased 

survival upon WNV infection, and WNV infections in animals lacking both MDA5 and RIG-I or 

the essential downstream signaling molecule IPS-1 were invariably fatal (Errett et al. 2013). 

Furthermore, WNV RNA accumulated to significantly greater levels in mouse embryonic 

fibroblasts lacking both MDA5 and RIG-I in association with dramatic reductions in IFNβ, 

IFNα2a, IL-6, and other RLR-stimulated genes (Errett et al. 2013). However, WNV infection of 

mice lacking the signaling protein IPS-1 displayed enhanced inflammation and early virus entry 

into the CNS (Suthar et al. 2010). Specifically, RLR signaling was shown to be important for 

promoting the survival of CD8+ T cells during WNV infection and facilitating the expansion of 

these cells in the CNS to limit viral spread (Suthar et al. 2012). RLRs are therefore important for 

coordinating adaptive and immune responses in flavivirus infections (Suthar et al. 2010). 

Furthermore, defects in IFN stimulated gene expression in non-cytopathic BVDV infection of 

fetuses can contribute to the establishment of a persistent pestivirus infection (Adler et al. 1997; 

Charleston et al. 2001). Therefore, diverse flaviviruses activate RLR signaling and these 

pathways are likely important for survival, mitigating neuropathology, and eradicating the virus 

from the host. 
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Toll-like receptors in flavivirus infections 

 
  Several endosome-associated Toll-like receptors (TLR3, TLR7, and TLR8) also 

recognize foreign RNAs and signal through two proteins, myeloid differentiation 88 (MYD88) 

and TIR domain-containing adaptor inducing IFNβ (TRIF), ultimately leading to NFκB-, IRF3-, or 

interferon regulatory factor 7 (IRF7)-mediated transcription of pro-inflammatory chemokines, 

cytokines, and interferon stimulated genes (Akira et al. 2006; Li et al. 2011(a); Suthar et al. 

2013). DENV has been shown to activate TLR3 following acidification of the endosomal 

compartment and viral uncoating, leading to the induction of IFN and activation of the 

transcription factors NFκB, AP-1, and IRF3 (Lee et al. 2012(a); Green et al. 2014). HCV also 

induces IFN expression through TLR3-mediated sensing of viral dsRNAs (Wang et al. 2009; 

Eksioglu et al. 2011; Li et al. 2012). Stimulation of TLR3 during HCV infection induces activation 

and translocation of both NFκB and IRF3 into the nucleus, leading to the transcription of 

cytokines and chemokines including CCL5, CXCL10, and CCL4 (Li and Lemon 2013). The 

Pestivirus BVDV is similarly known to induce the expression of TLR3 and TLR7 during infection 

of monocytes, regardless of whether the strain used is cytopathic or non-cytopathic (Lee et al. 

2008). TLR3 and/or TLR7 are likely activated in general in various flavivirus infections and 

probably contribute to the up-regulation of pro-inflammatory immune mediators observed in 

these systems. 

 In addition to the RLRs, TLRs are important for stopping the spread of WNV in the 

central nervous system and may be particularly important for mediating antiviral immunity in 

neurons (Szretter et al. 2010). Mice lacking the signaling protein MYD88 succumbed to WNV 

infection more rapidly than wild-type mice and displayed increased WNV titers in the brain 

(Szretter et al. 2010). Importantly, defects in chemokine induction due to MYD88 depletion likely 

contributed to reduced recruitment of leukocytes into the CNS upon WNV infection (Szretter et 

al. 2010). Therefore, TLR-mediated signaling events are likely very important for facilitating anti-

viral leukocyte recruitment into the brain for WNV clearance.  
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 Interestingly, the CCCH-type zinc finger nuclease 12A (ZC3H112A or MCPIP1) is 

induced upon stimulation of Toll-like receptors (TLR) or expression of the pro-inflammatory 

factors chemokine (C-C motif) ligand 2 (MCP-1) or interleukin-1β (Uehata and Akira 2013; Lin et 

al. 2013). Several RNA viruses including DENV, JEV, and Influenza virus are restricted by 

MCPIP1 expression, likely as a result of the decay of viral RNAs and cellular RNAs by MCPIP1 

(Liu et al. 2013(a); Lin et al. 2013). Upon resolution of an infection, MCPIP1 expression may 

mediate the rapid suppression of pro-inflammatory gene expression to reduce tissue damage 

(Matsushita et al. 2009; Uehata et al. 2013). Of interest, MCPIP1 knockout mice were shown to 

have severe immune disease characterized by enlarged spleens and lymph nodes, widespread 

inflammation, and hypergammaglobulinemia (Matsushita et al. 2009). Therefore, MCPIP1 likely 

serves two roles during viral infection by directly degrading both viral and cellular mRNAs. 

 

The OAS/RNase L pathway 

 
 Another important flaviviral dsRNA PRR is 2’,5’ OAS. The association of OAS with 

dsRNAs activates OAS to convert adenosine triphosphate to 2’,5’ oligoadenylate. 2’,5’ 

oligoadenylate then induces the dimerization of ribonuclease L (RNase L) monomers, resulting 

in the formation of a functional endonuclease (Floyd-Smith et al. 1981; Li et al. 2011; Huang et 

al. 2014). Both OAS and RNase L are constitutively expressed in the cytoplasm and nucleus in 

monomeric, inactive forms, although they are also transcriptionally up-regulated by type I 

interferon signaling (Li et al. 2011(a)). Importantly, RNase L cleaves viral and cellular RNAs, 

including ribosomal RNAs, the U6 small nuclear RNA, and diverse mRNAs (Hovanessian et al. 

1979; Cooper et al. 2014). Similarly to MCPIP1, the activation of RNase L is thought to serve as 

a mechanism by which the cell can limit interferon-mediated gene expression to minimize 

inflammation following viral clearance (Bisbal and Silverman 2007). Accordingly, RNase L can 

degrade the transcripts encoding the RNA stability factor tristetraprolin and several interferon 
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stimulated genes (Li et al. 2000; Khabar et al. 2003; Bisbal and Silverman 2007; Al-Haj et al. 

2012). Another important consequence of RNase L activation is the induction of apoptosis, 

which ultimately results in the death of infected cells to limit viral growth (Castelli et al. 1997; 

Zhou et al. 1998; Bisbal and Silverman 2007). Therefore, RNase L activity can suppress viral 

proliferation by actively degrading viral RNAs and also by altering cellular gene expression to 

induce apoptosis and minimize damaging inflammation. 

 RNase L is induced during HCV infection and cleaves the viral open reading frame when 

it encounters UA and UU dinucleotides in single stranded RNA sequences (Han and Barton 

2002; Washenberger et al. 2007). Furthermore, the generation of endonucleolytic cleavage 

products from the HCV RNA can stimulate RLRs to further amplify the innate immune response 

to infection (Malathi et al. 2007; Malathi et al. 2010). The activation of RNase L also plays an 

important role in limiting WNV replication (Scherbik et al. 2006). Furthermore, the murine 

homolog of OAS (Oas1b) is known to be very important for restricting flavivirus infections 

(Brinton and Perelygin 2003; Courtney et al. 2012). RNase L therefore provides an interesting 

example of an induced cellular nuclease that can suppress viral propagation and influence viral 

pathogenicity. 

 

Viral subversion of the type I interferon response 

 Several flaviviral gene products including subgenomic flavivirus RNA have been 

implicated in viral inhibition of type I IFN signaling. Two recent studies evaluated the ability of 

sfRNA in KUNV and JEV infections to counteract the mammalian type I interferon response. It 

was initially demonstrated that KUNV mutants deficient in sfRNA formation grew to lower titers 

in certain cell lines, including the non-human primate Vero cell line and mosquito C6/36 cells 

(Pijlman et al. 2008). However, growth of an sfRNA-deficient KUNV mutant could be partially 

rescued in mice lacking the type I interferon α/β receptor (IFNAR) and in cell culture when viral 

growth in wild-type mouse embryonic fibroblasts (MEFs) were compared with that in IRF3-/- 
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IRF7-/- MEFs (Schuessler et al. 2012). Furthermore, survival dramatically decreased when mice 

that lacked IRF3, IRF7, or IFNAR were infected with the sfRNA-deficient KUNV, although on 

average the mice died later than mice infected with wild-type virus (Schuessler et al. 2012). 

Pathogenicity due to sfRNA deficient KUNV was therefore partially restored when the type I 

interferon pathway was abrogated, although the mechanism by which this occurs is unknown. 

Recently, JEV sfRNA was shown to play a role in blocking IRF3 phosphorylation and 

subsequent nuclear translocation of this important innate immune transcription factor, although 

the mechanism by which this occurs is also not yet known (Chang et al. 2013). Therefore, 

sfRNA formation directly or indirectly promotes viral evasion of the type I interferon pathway in 

mammalian cells. 

Many viruses have evolved unique mechanisms for suppressing RNase L activation 

directly (reviewed in Bisbal and Silverman 2007; Zhang et al. 2013). Of particular relevance to 

this discussion however is the ability of several viral RNAs to inhibit RNase L direction. A 

conserved element in the group C enterovirus (e.g. poliovirus) RNA inhibits the endonuclease 

activity of RNase L by acting as a competitive inhibitor (Han et al. 2007; Townsend et al. 2008). 

The abundant WNV sfRNA could potentially inhibit RNase L in a similar fashion, as sfRNA-

deficient KUNV growth was partially rescued in cells that lacked RNase L (Schuessler et al. 

2012). However, the exact mechanism by which sfRNA aids in viral evasion of RNase L-

mediated viral restriction remains to be determined.  

 Flaviviral proteins are also implicated in the evasion of type I interferon responses. The 

WNV, YFV, and DENV nonstructural protein 4B was shown to block IFN signaling in one study 

(Munoz-Jordan et al. 2005). Similarly, the NS5 protein of DENV was shown to induce the 

proteolytic degradation of STAT2, leading to decreased activity of the TLR-mediated innate 

immune pathway (Ashour et al. 2009; Morrison et al. 2013). The HCV NS5A has also been 

implicated in the suppression of type I IFN signaling, potentially by blocking STAT1 

phosphorylation, to ultimately suppress the formation of the STAT1-STAT2 heterodimer in the 
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TLR3 pathway (Kumthip et al. 2012). Furthermore, a recent study also demonstrated that HCV 

may impede TLR-mediated signaling by inducing the expression of a host microRNA, miR-21, 

that targets the mRNA of MYD88 (Chen et al. 2013(a)). Pestiviruses appear to take a more 

active approach in shutting down host innate immune responses. The pestivirus N(pro) protease 

has been shown to trigger the degradation of the signaling molecule IRF3 by the cellular 

proteasome during CSFV and BVDV infections (Ruggli et al. 2003; Gil et al. 2006; Chen et al. 

2007; Seago et al. 2007; Bauhofer et al. 2007; Gottipati et al. 2013). Pestiviruses may also limit 

the abundance of immunogenic dsRNAs generated during viral infection by expressing a 

ribonuclease, E(rns). The E(rns) protein has ribonuclease activity and is thought to mediate 

degradation of intracellular and extracellular dsRNAs generated by BVDV during replication 

before they can stimulate cellular PRRs to induce a type I interferon response (Meyers et al. 

2007; Magkouras et al. 2008; Matzener et al. 2009). Therefore, members of the Flavivirus and 

Hepacivirus genera likely impede host innate immune responses by targeting essential 

components of the cytoplasmic signaling pathways that ultimately trigger transcriptional up-

regulation of chemokines and other antiviral immune factors. Because innate immune pathways 

have been shown to be important clearance of flavivirus infections and can also contribute to 

immunopathology, the ability of diverse flaviviruses to modulate type I IFN responses in the host 

can likely dramatically alter the pathogenesis of an infection. 

 

On the role of inflammation in flavivirus-mediated pathology 

 
 Although the previous section discussed how innate immunity is important for protecting 

the host from pathology due to flavivirus infections, excessive inflammation can cause 

pathogenesis in and of itself. Furthermore, because flaviviruses have evolved mechanisms to 

escape some innate immune responses, the host innate immune response to infection may fail 

to clear the virus but still cause damage to the surrounding tissue (i.e. bystander damage). This 



30 

 

section discusses some of the ways that excessive inflammatory responses are known to 

contribute to flavivirus-induced pathology. 

 Flaviviruses can cause a range of clinical outcomes, the most serious of which are 

encephalitis (e.g. JEV or WNV) or hemorrhagic fever (e.g. DENV or YFV).  Interestingly, 

Flavivirus infections that generally lead to hemorrhagic fever in humans oftentimes cause 

encephalitis in mouse models of infection (Burke and Monath 2001). Furthermore, studies have 

revealed that in some instances up to 21% of patients with Dengue fever also display 

neurological abnormalities (Domingues et al. 2008; Carod-Artal et al. 2013). It is therefore 

possible that there are common molecular mechanisms that lead to either hemorrhagic fever or 

encephalitis (or both). A further discussion on the pathogenesis of Flavivirus infections follows 

below with emphasis on the neuropathogenesis of WNV as a representative Flavivirus. 

 Over-zealous immune responses are considered to be a major contributor to DENV-

induced hemorrhagic fever/shock syndrome (Costa et al. 2013, Rothman 2011; Basu and 

Chaturvedi 2008). Furthermore, the encephalitic flaviviruses JEV and WNV are thought to cause 

neuropathology by two mechanisms: indirect immune-mediated processes or direct virus-

mediated cell death (Ghoshal et al. 2007; Rossini et al. 2013). Inflammation is thought to 

contribute to WNV-mediated neurologic disease by contributing to the break-down of the blood 

brain barrier (Wang et al. 2004). Stimulation of TLR3 during WNV infection was shown to induce 

TNF–α production by infected monocytes, leading to increased entry of WNV and immune cells 

into the CNS of mice (Wang et al. 2004). TLR3 depletion lead to less neuropathology, 

inflammation, and viral proliferation and this was correlated with decreased production of the 

pro-inflammatory factors TNF-α, IL-6, IFN-α, and IL-12 (Wang et al. 2004). Importantly 

enhanced permeability of the blood brain barrier is a precursor of WNV neuroinvasive disease 

(Sips et al. 2012; Suthar et al. 2013; Wang et al. 2004). Neuropathogenesis of the related 

Japanese Encephalitis virus is also enhanced by aberrant expression of pro-inflammatory 

factors in neural tissues, ultimately leading to immune-mediated cell death in the central 
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nervous system (Bhattacharyya et al. 2014; Ghoshal et al. 2007; Swarup et al. 2007). Because 

immunopathology/excessive inflammatory responses are known to play major roles in disease 

due to various flavivirus infections, it is possible that a common viral factor contributes to this 

effect in the host by modulating fundamental gene regulatory mechanisms. 

 In contrast to the neuropathology and/or hemorrhagic syndromes caused by many 

Flaviviruses, Hepatitis C virus causes a very different spectrum of disease, oftentimes due to 

persistent infections that can last decades. One of the most serious outcomes of HCV infections 

is hepatocellular carcinoma (HCC). The underlying molecular mechanisms by which HCV 

causes HCC remain unknown, and whether or not the virus directly (or indirectly) causes HCC 

has yet to be elucidated (Lemon and McGivern, 2012). However, the onset of cancer in HCV 

infected patients takes place on average 29 years after infection, and therefore subtle changes 

in cell homeostasis and gene expression that occur over time as a consequence of infection are 

thought to contribute to hepatocellular transformation (Kiyosawa 1998). The HCV core protein or 

non-structural protein 3 have been implicated in HCV-induced carcinogenesis and are known to 

alter host gene expression in several models of infection, but the exact cause of HCV induced 

HCC remains unknown (Marusawa 1999; Moriya 1998; Banerjee et al. 2010; Ray et al. 1997; 

Ray et al. 1998; Bergqvist and Rice 2001; Sakamuro 1995; Thoren et al. 2004). However, pro-

inflammatory factors are up-regulated in human patients and cell culture models of HCV 

infection (Nishitsuji et al. 2013), and there is evidence that excessive production of pro-

inflammatory factors during HCV infections can contribute to HCC in human patients (Matsuzaki 

et al. 2007). Furthermore, it is thought that bystander tissue damage due to chronic 

inflammation in the infected liver is an important contributing factor to the onset of HCC (Flecken 

et al. 2012; Brownell and Polyak 2013).  

 Another mechanism by which HCV-induced carcinogenesis may occur is by 

dysregulation of oncogenes and angiogenic factors in infected cells, some of which are also 

induced during the process of inflammation and/or act as transcription factors for pro-
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inflammatory gene expression. For example, the AP-1 transcription factor complex is comprised 

of c-FOS and JUN family members, and is known to play important roles in transcription of pro-

inflammatory cytokines, cell proliferation, bone development, and oncogenesis (reviewed in 

Zenz et al. 2008; Lee et al. 2012(a); Green 2014). Intriguingly, HCV has been shown to benefit 

from increased abundance of c-FOS (Kang et al. 2011(a)) and c-JUN overexpression can 

contribute to hepatocellular carcinogenesis (Machida et al. 2010). The oncogene c-myc is also 

upregulated in HCV patients that have HCC and this protein has been shown to alter cell cycle 

progression (Higgs et al. 2013). Furthermore, inflammation has long been accepted to 

contribute to the progression of cancer (Coussens et al. 2002; Romagnani et al. 2004; Benelli et 

al. 2006; Porta et al. 2009). Importantly, several angiogenic factors known to be involved in both 

cancer progression and inflammation (Romagnani et al. 2004; Goel and Mercurio 2013) are 

implicated in HCV-induced HCC. Anti-angiogenic therapies have recently extensively 

investigated as systemic treatments for HCC although it is interesting to note that hypoxia 

caused by these agents may lead to metastases (Coulon et al. 2010; Ebos et al. 2009). 

Secretion of vascular endothelial growth factor A (VEGFA) can induce angiogenesis by 

activation of endothelial cells and stimulate the production of hepatic growth factor, which in turn 

causes hepatocyte proliferation (Chiang et al. 2008; Shimizu et al. 2001; LeCouter et al. 2003; 

Hao et al. 2006). Hypoxia inducible growth factor 1α (HIF1A) has been shown to both enhance 

HCV propagation and stimulate migration and altered polarity of hepatic cells in a cell culture 

model of metastasis (Wilson et al. 2012; Mee et al. 2010). Furthermore, HIF1A induces NFκB 

expression, which in turn promotes CXCL2 expression (Scortegagna et al. 2008). The 

chemokine CXCL2 (also known as the Gro2 oncogene or macrophage inflammatory protein-2) 

has been implicated in a variety of cancers (Doll et al. 2010; Kavandi et al. 2012; Dong et al. 

2011; Oue et al. 2012), hepatic and extrahepatic tumor metastasis (Kollmar et al. 2008; Kollmar 

et al. 2006), liver inflammation (Krohn et al. 2009) and has been shown to be upregulated in a 

Tupaia belangeri chinensis hepatocyte culture model of HCV infection (Guitart et al. 2005). 



33 

 

Therefore, the pro-inflammatory response to HCV infection could potentially contribute to the 

onset of hepatocellular carcinoma. 

 Intriguingly, pestiviruses can cause persistent infections in their hosts through a unique 

mechanism that allows the virus to evade adaptive immune responses by infecting their hosts in 

utero early in the gestation period (Peterhans and Schweizer 2010; Hansen et al. 2010). 

Infected calves can shed BVDV in all excretions/secretions and cytopathic BVDV can cause 

mild or lethal mucosal disease (the appearance of ulcers in the gastrointestinal tract) in cattle 

with acute, transient, or persistent infections (Tautz et al. 1998; Fulton et al. 2005). Three 

important potential outcomes of BVDV infections in cattle are (1) defects in fertility, (2) 

conception or development of fetuses of infected pregnant heifers, and (3) mucosal disease. 

Cattle infected with BVDV have decreased conception rates and infection can result in abortion 

and a variety of congenital defects (Collins et al. 2009). Calves persistently infected with BVDV 

can develop a lethal mucosal disease, defined as bloody diarrhea and ulcerations in the mucosa 

including the mouth and intestines (particularly in Peyer’s patches; Peterhans et al. 2010; 

Brownlie et al. 1984). Pregnant heifers that are persistently infected by non-cytopathic BVDV 

can pass the virus on to the fetus early in the gestational period, leading to a persistent infection 

in the calf (Hansen et al. 2010). Intriguingly, BVDV infection in utero results in the breakdown of 

self: non-self-recognition leading to immune tolerance; this ultimately inhibits the calf from 

clearing the virus (Hansen et al. 2010). Furthermore, when a pregnant heifer passes BVDV on 

to the fetus later in the gestation period, defects in fetal growth including bone and nervous 

system abnormalities or abortion can result (Hansen et al. 2010). Importantly, these persistently 

infected calves continue to shed infectious virus throughout their lives, and can die upon super-

infection with a cytopathic BVDV (or if the non-cytopathic BVDV mutates into a cytopathic form; 

Peterhans et al. 2010). In contrast, cytopathic BVDV infections are usually cleared by the host 

through innate and adaptive immune responses that can protect the animal from future 

infections (Brackenbury et al. 2003; Ridpath 2013).  
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 Dysregulation of immune responses or inflammation could contribute to the 

pathogenesis of BVDV. First, there is evidence that cattle infected with BVDV display an anti-

viral immune response. Heifers acutely infected with BVDV show a large increase in the 

abundance of interferon stimulated gene 15 kD (ISG15) which is considered a marker of a 

robust type I interferon-mediated innate immune response (Hansen et al. 2010). A later study 

demonstrated that upon infection with a non-cytopathic strain of BVDV, peripheral blood 

monocytes induce the expression of the chemokines CXCL4 and CXCL12, and several 

interferon stimulated genes (Weiner et al. 2012). Importantly, fetuses and steers with persistent 

BVDV infections also have increased expression of innate immune factors and over-exposure to 

type I interferon may contribute to intrauterine growth restriction in fetuses persistently infected 

with BVDV (Hansen et al. 2010). Furthermore, the trafficking of BVDV into the central nervous 

system of the fetuses of infected cattle was shown to coincide with vasculopathy including 

hypertrophy of endothelial cells and perivascular edema associated with microglial cells that 

stained positive for BVDV antigen in the surrounding tissues. One type I interferon stimulated 

gene, ISG15, was shown to be elevated at the protein and mRNA levels in the brains of infected 

fetuses early in BVDV infection, especially in the vascular endothelial cells of the 

microvasculature of the developing brain (Bielefeldt-Ohmann et al. 2012). The authors 

speculate that type I interferon responses early during infection may enhance virus spread to 

the central nervous system by the extravasation of microglial precursor cells carrying BVDV 

(Bielefeldt-Ohmann et al. 2012). Lesions consistent with destruction of microvasculature due to 

excessive type I interferon-induced gene expression were also observed. Therefore, the ability 

of Pestiviruses to stimulate type I interferon responses through the activation of cellular PRRs 

can potentially contribute to both viral persistence and trafficking to the central nervous system. 

Importantly, cattle that are persistently infected with BVDV show defects in growth and 

development including decreased calve weight at cesarean section and malformation of the 

long bones (Hansen et al. 2010). The exact molecular mechanisms by which these defects in 
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growth and development occur remain unknown, but dysregulated immune responses likely 

contribute to disease symptoms observed in BVDV infected cattle. 

 

A role for aberrant post-transcriptional gene regulation in flavivirus-induced pathology 

 
 From the moment a virus deposits its RNA genome into the cytoplasm of an infected 

cell, the virus must evade or suppress constitutively expressed nucleases that normally degrade 

cellular RNAs to preserve their transcripts and ensure viral gene expression. Therefore, the 

general cellular RNA decay machinery may act in part as an intrinsic anti-viral mechanism, as 

viral RNAs may be rapidly destroyed early in an infection if they do not contain the proper 

stability elements (reviewed in Moon and Wilusz 2013). Understanding how host mRNAs are 

normally turned over in the cytoplasm provides us with a starting framework for how viral RNAs 

may be degraded in the cell. Furthermore, changes in post-transcriptional gene regulatory 

mechanisms due to viral infection could dramatically alter the way the host cell responds to the 

virus. 

 As discussed above, pathology induced by flavivirus infections can oftentimes be directly 

associated with uncontrolled inflammation leading to tissue damage (Ghoshal et al. 2007; 

Rossini et al. 2013), oncogenesis in HCV infections (Iliopoulos et al. 2009; Stauffer et al. 2012), 

and developmental defects in BVDV infections (Bielefeldt-Ohmann et al. 2012). Although 

transcriptional responses are clearly important for inducing a pro-inflammatory response in the 

host when viral PAMPs are detected by PRRs, the post-transcriptional regulation of cytokines, 

chemokines, and other pro-inflammatory factors is also likely very important for modulating this 

response. Many studies on the post-transcriptional regulation of mRNAs containing AU-rich 

elements (AREs) in their 3’ UTRs demonstrate how defects in this important regulatory 

mechanism can lead to pathology. Importantly, many immune factors contain AREs in their 

mRNAs (Caput et al. 1986), and AREs were shown to function as cis-acting destabilizing factors 
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(Shaw and Kamen 1986). Importantly, a later study demonstrated that hundreds of short-lived 

ARE-containing transcripts are induced upon activation of human T cells, and changes in mRNA 

decay rates were thought to therefore be an important mechanism by which T cells respond to a 

given stimulus and become activated (Raghavan et al. 2002). Interestingly, mice lacking 

tristetraprolin (TTP), an RNA binding protein that destabilizes ARE-containing transcripts, 

develop an inflammatory autoimmune syndrome (Taylor et al. 1996). Tristetraprolin was later 

shown to target the ARE-containing mRNA of TNF-α and other pro-inflammatory cytokines 

induced by TLR stimulation for decay, allowing the cell to rapidly modulate the abundance of 

this potent pro-inflammatory factor through post-transcriptional mechanisms (Carballo et al. 

1998; Lai et al. 1999; Carballo et al. 2000; Kang et al. 2011(b); Van Tubergen et al. 2011; Molle 

et al. 2013). These studies demonstrate the importance of adequate post-transcriptional 

regulatory mechanisms to ensure that inflammatory factors can be quickly induced and then 

degraded to perform an effector function without damaging the surrounding tissue. 

 Importantly, some viral infections have been demonstrated to dramatically alter the post-

transcriptional regulation of certain pro-inflammatory immune factors. The rate of degradation of 

TNFα mRNA in human monocytes infected with Measles virus was shown to increase 

substantially in one study, leading to a decrease in the overall abundance of TNF-α mRNA and 

likely dysregulating the normal response to infection (Leopardi et al. 1992). In contrast, the 

stability of the transcript encoding chemokine CXCL8 was shown to be substantially increased 

in several cell lines harboring HCV replicons (Green et al. 2006). Finally, many viruses interact 

directly with the cellular mRNA decay machinery and therefore likely alter the post-

transcriptional regulation of cellular transcripts. Considering the importance of post-

transcriptional regulatory mechanisms in modulating the host immune response to infection, The 

following section aims to describe the major mechanisms by which mRNAs are degraded in the 

cell to provide a framework for how viral manipulation of cellular post-transcriptional regulatory 

mechanisms could contribute to pathology. 
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Section II: Viral interactions with the general mRNA decay machinery 

 
 General mRNA decay mechanisms in the cell serve two important functions. They serve 

as a quality control mechanism to ensure that aberrant transcripts are quickly removed from the 

translatable pool of mRNAs, and they permit the normal turnover of transcripts. Because viral 

RNAs must enter the cytoplasm to undergo translation, they are also likely to encounter cellular 

nucleases that normally degrade cellular mRNAs. Additionally, cellular RNA decay factors may 

recognize viral RNAs as foreign, as they often lack a nuclear experience (and therefore are not 

complexed with ribonucleoproteins that normally associate with cellular mRNAs) and can also 

lack 5’ methylated caps and/or poly(A) tails (e.g. hepacivirus RNAs). Furthermore, mRNA decay 

pathways are likely integral to the rapid host response to viral infection, as transcripts of many 

immune factors are heavily regulated at the post-transcriptional level. The rate at which a 

transcript is degraded can dramatically influence gene expression. Indeed, changes in mRNA 

decay rates can account for up to 50% of all changes in mRNA abundances (Cheadle et al. 

2005(a)). By regulating the stability of a transcript in addition to the rate at which the transcript is 

generated, the cell can fine-tune gene expression and rapidly alter the transcriptome in 

response to any given stimulus. Otherwise, the cellular response to a stimulus would likely be 

much slower, as mRNA synthesis, processing (e.g. splicing), and transport of the mRNA from 

the cytoplasm into the nucleus would have to take place before any changes in gene expression 

could occur. Intriguingly, several recent studies propose that cytoplasmic mRNA decay is 

coordinated with mRNA synthesis, and this will be discussed further below. Therefore, viral 

RNAs may interact with the RNA decay machinery in such a way as to protect their transcripts 

from decay or to alter the cellular response to infection. The following section will outline the 

major mechanisms by which cellular mRNAs are degraded to provide context for a discussion 

on the known interactions between viral RNAs and the mRNA decay machinery.  
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Deadenylation-dependent decay 

 The initial step in the degradation of most mRNAs is deadenylation, the removal of the 

poly(A) tail (Figure 4). Deadenylation is thought to be the rate-limiting step in the degradation of 

many transcripts in yeast and mammalian cells, and the poly(A) tail is an important stabilizing  

element for mRNAs (Wilson and Treisman 1988; Muhlrad and Parker 1992; Shyu et al. 1991).  

 

 
Figure 4. Deadenylation-dependent exonucleolytic decay pathways in the 
cytoplasm of mammalian cells. Transcripts are first deadenylated by members of the 
CCR4-NOT complex, the PAN2-PAN3 complex, or PARN. Following removal of the 
poly(A) tail, the transcript may undergo 3’-5’ decay by the exosome complex (bottom) or it 
may be decapped by DCP1 and DCP2 and degraded in the 5’-3’ direction by XRN1 (top).  
 

The ~150-200 nt poly(A) tail of mammalian mRNAs (Brawerman 1974; Brawerman et al. 1972; 

Nakazato et al. 1973) is removed by deadenylases, proteins that shuttle between nucleus and 

cytoplasm (Yan 2014; Yamashita et al. 2005). In mammalian cells, the major deadenylases 

include homologs of the yeast proteins PAN2, CCR4, CAF1, Nocturnin and the poly(A)-specific 

ribonuclease (PARN) which has no known yeast homolog (Yan 2014; Yamashita et al. 2005). 

Each of these deadenylases forms a complex or homodimer to be functional. The catalytic 



39 

 

activity of the PAN2 deadenylase requires a protein co-factor, PAN3 (Brown et al. 1996). PAN3 

recruits PAN2 to the target mRNA by interacting with the poly(A) binding protein PABP (Mangus 

et al. 2004; Siddiqui et al. 2007; Uchida et al. 2004). In mammalian cells, the CCR4-NOT protein 

family is made up of CAF1, Nocturnin, and CCR4 homologs. Interestingly, CAF1 proteins are 

the major deadenylases in human cells, as knockdown of the two human isoforms of CAF1 

resulted in increased poly(A) tail length and delayed deadenylation of cellular transcripts 

(Schwede et al. 2008). Furthermore, depletion of CAF1 proteins was shown to result in 

differential abundance of more transcripts than depletion of CCR4 proteins in human cells 

(Mittal et al. 2011). This study revealed that CCR4 proteins may degrade a set of transcripts that 

is distinct from that targeted by CAF1 proteins (Mittal et al. 2011). Similarly, PARN was recently 

shown to regulate the stability and abundance of a discrete set of mRNAs in mouse myoblasts 

that encode proteins known to be important for mediating cell migration (Lee et al. 2012(b)). 

Instead of forming a heterogeneous multi-protein complex, PARN must form a homodimer to 

bind to target mRNAs and exhibit catalytic activity (Yan 2014; Yamashita et al. 2005; Wu et al. 

2005). Interestingly, it is possible that several deadenylase complexes work in concert to 

degrade target transcripts. One study indicated that in mammalian cells, transcripts could be 

deadenylated through a biphasic process in which the PAN2-PAN3 complex slowly degrades 

the poly(A) tail until ~100 nt remain, followed by a more rapid removal of the rest of the poly(A) 

tail by the CCR4-NOT complex (Yamashita et al. 2005). Regardless of which deadenylase 

specifically acts on the transcript, the end result is a truncated RNA that contains a short 

oligo(A) tract at the 3’ end (Chowdhury et al. 2007). 

 Upon removal of the poly(A) tail, the majority of mRNAs undergo decapping and 5’-3’ 

decay in eukaryotes (Decker and Parker 1993; Muhlrad et al. 1994; Beelman et al. 1996; 

Anderson and Parker 1998). This occurs when the short oligoadenylate tract (< 20 nt) remaining 

at the 3’ end of the deadenylated transcript is bound by the LSm1-7 complex (Chowdhury et al. 

2007).  The LSm1-7 complex is comprised of seven Sm-like proteins and was shown to interact 
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with the PAT1 homolog PAT1b to promote mRNA decay in yeast (Totaro et al. 2011; Bouveret 

et al. 2000; Chowdhury et al. 2007; Wu et al. 2014). Mutations or deletion of members of the 

LSm1-7-PAT1 complex causes increased mRNA stability and the accumulation of capped and 

oligoadenylated mRNAs in yeast (Tharun et al. 2000). Furthermore, LSm1 protein was shown to 

be essential for the degradation of a reporter RNA containing an AU-rich element in mammalian 

cells (Stoecklin et al. 2006). Therefore, the LSm1-7 complex normally recruits the mRNA 

decapping factors DCP1-DCP2 to promote 5’-3’ decay of mRNAs. 

  Once a transcript is targeted for 5’-3 decay by interacting with the LSm1-7 complex, it 

undergoes decapping, or the removal of the 7-methylguanosine cap at the 5’ end of the mRNA. 

Decapping factors also form a complex in yeast and mammalian cells to facilitate efficient and 

specific hydrolysis of the 5’ methylated caps from transcripts. The decapping factors DCP1 and 

DCP2 were first shown to be required for efficient mRNA decapping in yeast (Beelman et al. 

1996; Dunckley and Parker 1999). Later, EDC1 and EDC2, two additional protein factors 

required for decapping, were identified in yeast (Dunckley et al. 2001). These EDC proteins 

were shown to have the ability to bind RNA, but not decap it directly (Schwartz et al. 2003). It 

was later determined that DCP2 was the major decapping activity in yeast, and its activity was 

enhanced by interactions with DCP1, EDC1, and EDC2 (Steiger et al. 2003). In yeast, DCP1 

and DCP2 directly interact, likely stabilizing the conformation of the DCP2 protein to facilitate 

the decapping reaction (She et al. 2008). Importantly, Wang et al. (2002) demonstrated that the 

yeast homolog of DCP2 was a functional decapping enzyme in mammalian cells. Furthermore, 

in mammalian cells it appears that rather than directly interacting with one another, DCP1 and 

DCP2 are bridged by the EDC4 protein (Fenger-Gron et al. 2005). Structural analyses revealed 

that EDC4 indeed functions as a scaffold for the decapping complex in Drosophila and 

mammalian cells (Braun et al. 2012; Chang et al. 2014). Interestingly, recent studies indicate 

that additional decapping enzymes (NUDT proteins) exist in mammalian cells (Song et al. 2010; 

Song et al. 2013). The decapping factor NUDT16 appears to share some mRNA targets with 



41 

 

DCP2 and have some target specificity (Song et al. 2010; Li et al. 2011(b)), but the exact 

specificities and contributions of DCP2 and NUDT16 to overall mRNA decay in mammalian cells 

remains to be fully characterized. 

 Hydrolysis of the 5’ methylguanosine cap from the deadenylated transcript exposes the 

RNA to rapid degradation by the major cytoplasmic exonuclease 1 (XRN1). The highly 

processive exoribonuclease 1 was first described as an important 5’-3’ mRNA decay factor in 

yeast, as cells lacking XRN1 displayed increased levels of uncapped and deadenylated mRNAs 

(Hsu and Stevens 1993; Stevens 1980). The cytoplasmic XRN1 protein is highly similar to the 

major nuclear 5’-3’ exoribonuclease 2 (XRN2). The N-terminal regions of XRN1 and XRN2 

contain a highly conserved nuclease domain (an alignment of the amino acid sequences of 

XRN1 homologs is presented in Appendix 2). XRN1 contains five additional conserved regions 

adjacent to the the nuclease domain: a PAZ/Tudor domain, a KOW domain, a winged helix 

domain, and an SH3-like domain (Jinek et al. 2011). The PAZ/Tudor domain and the SH3 

domain are thought to stabilize the conformation of XRN1 to allow nuclease activity (Jinek et al. 

2011; Nagarajan et al. 2013). The winged-helix domain is thought to have several functions. It 

exists in close proximity to the nuclease domain and was postulated to shield the entry site 

during nucleolytic decay, it may mediate protein-protein interactions, and it also contains a 

positively charged region that likely interacts with RNA strands to further stabilize the RNA-

protein complex (Jinek et al. 2011). In contrast, the amino acid sequence of the C-terminal 

region of XRN1 is not well conserved and is also quite unstructured (Jones et al. 2012; 

Nagarajan et al. 2013). However, the C-terminus of Drosophila and human XRN1 harbors a 

proline-rich region that mediates the interaction between XRN1 and decapping factors (Braun et 

al. 2012; Chang et al. 2014). Interestingly, the nuclear XRN2 protein does not contain these 

conserved protein domains, and instead associates with protein partners that stabilize the 

nuclease domain (Stevens and Poole 1995; Xue et al. 2000; Nagarajan et al. 2013; Xiang et al. 

2009; Miki et al. 2014). In this manner, the activity of the yeast XRN2 homolog Rat1 is activated 
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by the Rai1 protein (Xiang et al. 2009). A recent study identified a unique XRN2-binding domain 

in the PAXT-1 protein in Caenorhabditis elegans that is also present in the human CDKN2AIP 

(cyclin-dependent kinase inhibitor 2 A interacting protein) and NKRF (NF kappa B repressing 

factor) (Miki et al. 2014). 

 Recently, the crystal structure of the N-terminus of Drosophila XRN1 (pacman) in 

complex with an RNA substrate was solved (Jinek et al. 2011). This structure revealed that 

XRN1 likely sterically blocks the insertion of RNAs with 5’ methylguanosine caps or 

triphosphorylated ends in favor of smaller 5’ monophosphorylated RNAs to permit specific 

decay of uncapped transcripts (Jinek et al. 2011). The nuclear XRN2 protein likely has similar 

specificity to monophosphorylated transcripts, as the nuclease domain is very similar to that of 

XRN1 (Nagarajan et al. 2013). In cell-free assays, yeast XRN1 has been shown to stall on 

stable stem-loop structures and poly(G) tracts. However, yeast XRN1 can degrade highly 

structured ribosomal RNAs (rRNAs); indeed it is routinely used to deplete rRNAs from total RNA 

pools to purify mRNAs. Furthermore, Drosophila XRN1 can effectively degrade RNA duplexes 

in vitro if there is a >5 nt single stranded region at the 5’ end to allow the RNA to enter the active 

site (Jinek et al. 2011). Therefore, viral RNAs that resist XRN1-mediated decay (e.g. the 3’ 

UTRs of flavivirus RNAs) likely contain unique structural or sequence elements that have not 

been previously characterized. 

 Both XRN1 and XRN2 serve important roles in degrading mRNAs (or pre-mRNAs in the 

nucleus in the case of XRN2) and non-coding RNAs that have a 5’ monophosphate as a result 

of decapping or endonucleolytic cleavage (Hsu and Stevens 1993; Muhlrad et al. 1994; Lejeune 

et al. 2003). Furthermore, XRN2 trims the 5’ ends of ribosomal RNA precursors during rRNA 

maturation (Stevens et al. 1991; Henry et al. 1994; Geerlings et al. 2000). Although XRN1 is 

primarily localized to the cytoplasm, recent evidence indicates that it can translocate to the 

nucleus to influence transcription in yeast (Sun et al. 2013(b); Haimovich et al. 2013), and this 

will be discussed in more detail below. The yeast XRN2 homolog serves an important function 
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in mediating transcription termination, and was recently shown to influence the phosphorylation 

state of the C-terminal domain of RNA polymerase II (Kim et al. 2004; Jimeno-Gonzalez et al. 

2014). Therefore, these 5’-3’ exoribonucleases are important for regulating gene expression by 

mediating transcription and post-transcriptional processes. 

 Intriguingly, XRN-deficient organisms exhibit defects in several important biological 

processes (reviewed in Nagarajan et al. 2013 and Jones et al. 2012). Yeast deficient in a 

functional XRN1 enzyme exhibit defects in cell growth, proliferation, and sporulation (Larimer 

and Stevens 1990; Tishkoff et al. 1991; Kim and Kim 2002). More complex organisms (including 

fruit flies) show developmental defects and reduced fertility in the absence of a functional XRN1 

protein (Newbury and Woollard 2004; Grima et al. 2008; Lin et al. 2008; Zabolotskaya et al. 

2008). Defects in XRN2 activity have been shown to reduce cell survival and sporulation in 

yeast and reduce fertility and survival in plants (Amberg et al. 1992; Kenna et al. 1993; Gy et al. 

2007). Therefore, the 5’-3’ exoribonucleases are important for many essential aspects of 

organismic growth and development.   

 How are the seemingly distinct processes of deadenylation, decapping, and 5’-3’ decay 

coordinated? Intriguingly, many of these mRNA decay factors contain disordered domains that 

likely facilitate the assembly of these large multi-protein complexes (Jonas and Izaurralde 

2013).The LSm1-7 complex physically interacts with the decapping complex component DCP1 

in yeast (Tharun et al. 2000) and was later shown to co-localize with decapping factors DCP1, 

DCP2, and the 5’-3’ exoribonuclease XRN1 in discrete cytoplasmic foci in mammalian cells 

(Ingelfinger et al. 2002). Importantly, XRN1 has been shown to interact with EDC4 in 

mammalian and Drosophila cells, coordinating decapping and 5’-3’ decay (Braun et al. 2012; 

Chang et al. 2014). Furthermore, another scaffolding protein, PAT1b, was shown to physically 

associate with the CCR4-NOT deadenylation complex, the DCP1-DCP2 decapping factors, and 

LSm1 protein in human cells (Ozgur et al. 2010). A recent study also demonstrated that XRN1 

activity can be modulated by the decapping scavenger DCS1 in yeast (Sinturel et al. 2012; 
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described below), indicating that coordination between 3’-5’ and 5’-3’ decay may allow fine-

tuning of mRNA decay and cellular gene expression. Therefore, physical interactions between 

distinct RNA decay factors mediated by scaffolding proteins likely facilitate the coordination of 

these unique events. 

 Alternatively, the deadenylated transcript may undergo 3’-5’ decay by the cytoplasmic 

exosome complex comprised of 10 subunits (Januszyk and Lima 2014) or the newly described 

Dis3L2 (Malecki et al. 2013; Lubas et al. 2013). The Dis3L2 exonuclease appears to specifically 

degrade deadenylated RNAs or pre-miRNAs that were oligouridylated by TUTases (Malecki et 

al. 2013; Lubas et al. 2013). In contrast, the interaction of various co-factors in yeast with the 

exosome has been demonstrated to impact the RNA substrates degraded by the exosome 

(Januszyk and Lima 2014). Following 3’-5’ decay of deadenylated transcripts, the scavenger 

decapping enzyme DCPS then hydrolyses the m7GpppG 5’ cap. Interestingly, DCPS (also 

known as DCS1) has been shown to physically associate with members of the exosome 

complex in mammalian cells, and it can mediate decapping of RNAs less than 10 nucleotides in 

length, although it is more efficient at hydrolyzing free cap moieties (Wang and Kiledjian 2001; 

Liu et al. 2002).  

 Although deadenylation-mediated decay is an important mechanism by which many 

cellular mRNAs are degraded in the cell, some mRNAs are degraded via endonucleolytic decay 

pathways. Three such pathways that serve quality control functions in the cell will be discussed 

below. Furthermore, small RNAs also mediate degradation of some transcripts, and these 

pathways serve important functions in regulating both normal gene expression and serving as 

an important anti-viral immune mechanism. Importantly, factors that participate in 

deadenylation-mediated decay pathways are also essential for endonucleolytic and small RNA-

mediated decay pathways, including XRN1 and the exosome complex. 
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Quality control mRNA decay pathways 

 
 Several deadenylation-independent quality control pathways exist that begin with the 

endonucleolytic cleavage of aberrant transcripts and end with exonucleolytic decay of the 3’ and 

5’ mRNA fragments by XRN1 or the exosome. Nonsense-mediated decay (NMD), no-go decay, 

and non-stop decay are three such quality control pathways that are particularly relevant in the 

context of viral infection. Transcripts that contain multiple termination codons and long 3’ 

untranslated regions are targets for NMD, and a major trigger for NMD is the absence of the 

exon junction complex on unspliced RNAs. Importantly, viral RNAs often have one or more of 

these characteristics.  

 Cellular RNAs can be targeted for NMD due to mistakes made during pre-mRNA 

splicing, transposon-containing RNAs, and transcripts that contain mutations from inaccurate 

transcription are all subject to NMD (Maquat and Gong 2009). When a transcript is targeted for 

NMD, UPF1 assembles with other translation factors and upon ribosome stalling upstream of 

the premature termination codon, UPF1 is phosphorylated and recruits SMG6, SMG5, and 

SMG7 (Maquat and Gong, 2009; Eberle et al. 2009; Loh et al. 2013). UPF1 causes translational 

repression and eventual decay of the target transcript through SMG6-dependent 

endonucleolytic cleavage and/or by SMG5- SMG7-mediated recruitment of exonucleolytic decay 

factors (e.g. XRN1) and/or deadenylases (Yamashita et al. 2005; Eberle et al. 2009; Franks et 

al. 2010; Loh et al. 2013). 

  Transcripts that do not contain termination codons (e.g. due to premature 

polyadenylation or mutation) undergo non-stop decay. This process is triggered when the 

translating ribosome becomes vacant as the ribosome falls off the poly(A) tail of the transcript in 

the absence of proper termination (van Hoof et al. 2002; Vasudevan et al. 2002; Frischmeyer et 

al. 2002). The Ski7 protein then recruits the cytoplasmic exosome complex to the mRNA 

(Vasudevan et al. 2002; van Hoof et al. 2002; Klauer and van Hoof 2012). Finally, aside from 

improper translation termination, stalling of the ribosome on mRNAs can also trigger a quality 



46 

 

control pathway called no-go decay (Harigaya and Parker 2010). The ribosome can stall on 

stable stem-loop structures in the open reading frame of an RNA, allowing Dom34p and Hbs1p 

to bind to the ribosome, triggering endonucleolytic cleavage of the RNA (Doma and Parker 

2006; Harigaya and Parker 2010). Importantly, the resulting fragments are degraded by XRN1 

and the exosome complex (Harigaya and Parker 2010). 

 

MicroRNA mediated decay 

 
 MicroRNAs (miRNAs) are ~22 nt RNAs that are derived from endogenous precursor 

RNAs that form long hairpin structures and in mammals are post-transcriptionally cleaved by 

Drosha in the nucleus to form a pre-miRNA and exported to the cytoplasm where the mature 

miRNA duplex is formed by DICER (Bartel 2004). This duplex miRNA is then loaded onto AGO2 

and a helicase activity facilitates the unwinding of the duplex to allow the guide strand to bind its 

target mRNA (Bartel 2004). Interestingly, the stability of the AGO2 protein is enhanced upon 

miRNA binding (Smibert et al. 2013; Martinez and Gregory 2013).  

 MicroRNAs contain a 2-7 nt seed sequence that guides AGO2 to target mRNAs by 

Watson-Crick base pairing with the target (Bartel 2009). Target sites are mostly found in the 3’ 

UTR, possibly because the translation machinery would disrupt RNA induced silencing complex 

(RISC) associated with the target mRNA during translation elongation (Bartel 2009). Transcripts 

targeted by microRNAs may be translationally repressed and/or degraded by a deadenylation-

dependent mechanism (Huntzinger et al. 2013). Several mammalian proteins have been 

identified that mediate the interaction of AGO2 with target transcripts and cause the RISC to 

localize to distinct cytoplasmic granules in the cell (processing bodies; Eystathioy et al. 2003): 

TNRC6A (also called TNRC6A) and the related TNRC6B and TNRC6C proteins (Baillat and 

Shiekhattar 2009; Takimoto et al. 2009). TNRC6A/TNRC6 proteins recruit the CCR4-NOT 

complex (Fabian et al. 2011; Chekulaeva et al. 2011) and the PAN2-PAN3 complex (Christie et 
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al. 2013) to AGO2-bound target mRNAs to facilitate both translational repression and 

deadenylation-dependent decay (Huntzinger et al. 2013; Takimoto et al. 2009; Chen et al. 

2009). Following deadenylation, transcripts then undergo DCP1-DCP2-mediated decapping and 

5’-3’ decay by XRN1 (Rehwinkel et al. 2005; Chen et al. 2009). Therefore, miRNA-mediated 

decay is an important mechanism by which transcripts are targeted for decay pathway in 

mammalian cells. 

 

Small interfering RNA mediated decay 

 
 Small interfering RNAs (siRNAs) are 21-27 nt RNAs generated from dsRNAs, such as 

viral replication intermediates that accumulate in infected cells (Ma et al. 2008). Unlike miRNAs, 

siRNA-mediated decay of target transcripts does not induce deadenylation, but rather results in 

endonucleolytic cleavage of the mRNA by AGO2 followed by exonucleolytic decay of the 

resulting mRNA fragments by XRN1 and the exosome complex (Orban and Izaurralde 2005). 

Recent work has demonstrated that mammalian cells have a functional anti-viral RNAi response 

(Maillard et al. 2013; Li et al. 2013(c)), although there is some debate about whether this is 

significant (Cullen et al. 2013). Although most somatic mammalian cells rely on PRRs and the 

induction of a type I IFN responses that oftentimes result in the expression of induced nucleases 

to combat RNA virus infections, the current literature supports the hypothesis that mammalian 

cells are capable of generating siRNAs from viral dsRNAs that may have anti-viral activity (Li et 

al. 2013(c)). The ability of a mammalian cell to process dsRNAs into siRNAs depends on 

DICER activity, and it was recently shown that an N-terminal truncated isoform of DICER that is 

preferentially expressed in mouse oocytes can dice dsRNAs into siRNAs but the isoform that is 

expressed in differentiated cells does not have this activity (Flemr et al. 2013). Human DICER 

can cleave dsRNAs with perfect complementarity but this process is less efficient than pre-

miRNA cleavage because the N-terminus of the protein serves as an autoinhibitor of DICER 



48 

 

activity (Ma et al. 2008). However, siRNA-mediated gene silencing in human cells is effective 

and therefore human cells contain the necessary dicing and slicing activities for RNAi to take 

place (Caplen et al. 2001). Although RNAi may not be a major anti-viral mechanism in human 

cells, it is very important for anti-viral immunity in mosquito cells which express two unique 

DICER proteins that function in either the miRNA or siRNA pathway (Blair 2011; Sanchez-

Vargas et al. 2009; Campbell et al. 2008). Therefore, arthropod-borne viruses could benefit 

greatly from impaired RNA interference pathways to facilitate efficient viral transmission to the 

next host.  

 

Coordination between mRNA synthesis and decay 

 
 Changes in mRNA stability and synthesis rates are important for the regulation of 

cellular gene expression. Studies using an in vitro model of T cell activation demonstrated that 

up to 50% of changes in polyadenylated mRNA abundance may be due to changes in mRNA 

stability, as nuclear run on experiments demonstrated that altered transcription rates do not 

account for all observed changes in mRNA abundance (Cheadle et al. 2005(a); Cheadle et al. 

2005(b)). A more recent study of gene expression in mouse myoblasts demonstrated that 

coordination between mRNA decay and synthesis may buffer gene expression, as many 

stabilized transcripts were also less abundant (Lee et al. 2012b). This may allow the cell to fine-

tune gene expression through coordination of mRNA synthesis and decay.  

 How could the disparate processes of cytoplasmic mRNA decay and transcription be 

coordinated? Intriguingly, protein factors that mediate transcription may pass between the 

nucleus and the cytoplasm to link these two processes. For example, the RNA polymerase II 

Rpb4/7 complex was shown to shuttle from the nucleus to the cytoplasm and influence the 

stability of mRNAs in yeast (Goler-Baron et al. 2008). The Rpb4/7 complex was later shown to 

associate with cytoplasmic mRNA decay factors in Saccharomyces cerevisiae, and depletion of 
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decapping activators Pat1 and Dhh1 conferred a similar decrease in yeast life span comparable 

to Rpb4-deficient cells (Duan et al. 2013). The nuclear Rpb4 protein was shown to shuttle out of 

the nucleus into the cytoplasm upon shifting cultures of the pathogenic fungus Cryptococcus 

neoformans to 37oC, and Rpb4-deficient organisms had defects in deadenylation (Bloom et al. 

2013). Intriguingly, Rpb4/7 may also coordinate mRNA synthesis and decay with translation in 

yeast (Harel-Sharvit et al. 2010). Therefore, protein factors that facilitate transcription can also 

alter mRNA decay. 

Factors required for mRNA decay in the cytoplasm may also enter the nucleus to 

potentially influence transcription. The CCR4-NOT complex can be observed in the cytoplasm in 

processing bodies, associated with ribosomes, or in the nucleus in yeast (Collart et al. 2013; 

Collart 2003). CCR4-NOT has also been shown to interact with the mRNA export machinery, 

indicating that it could couple the processes of mRNA decay and export to coordinate post-

transcriptional gene regulatory mechanisms in yeast (Kerr et al. 2011). Yeast deficient in the 

Ccr4-NOT complex were shown to have decreased rates of both mRNA decay and mRNA 

synthesis (Sun et al. 2012). The 5’-3’ exoribonuclease XRN1 was also recently shown to shuttle 

between the cytoplasm and the nucleus in yeast and could therefore influence mRNA synthesis 

(Haimovich et al. 2013; Sun et al. 2013b). Several studies have demonstrated that yeast cells 

lacking XRN1 have lower or unchanged mRNA abundances and increased mRNA half-lives (He 

et al. 2003; Haimovich et al. 2013; Sun et al. 2013; Medina et al. 2014) and although Drosophila 

expressing a mutant XRN1 homolog allele displayed phenotypic changes, very few mRNAs 

were differentially expressed compared to wild-type organisms (Jones et al. 2013). However, 

changes in mRNA stability in these flies were not assessed. In general, these studies support 

the hypothesis that gene expression is buffered such that stabilization of a transcript may cause 

decreased transcription (or vice versa) to allow coordination between early and late stages of 

gene expression.  Therefore, interactions between viruses and the mRNA decay machinery 
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could alter both the degradation and synthesis of mRNAs, and potentially cause dramatic 

changes in cellular gene expression. 

 

Sites of mRNA decay in the cytoplasm 

 
 Another important aspect of cellular gene expression that contributes to the stability of 

messenger RNAs and the likelihood that they will be translated is the subcellular localization of 

transcripts in large ribonucleoprotein complexes (e.g. P-bodies or stress granules) that are 

dynamically regulated in the cytoplasm. In general, transcripts exist in RNP complexes that 

facilitate export from the nucleus, translation, and ultimately degradation (Wilusz and Wilusz 

2010). Processing bodies often contain many mRNA decay factors including XRN1, DCP1a, 

and AGO2 (Sheth and Parker 2003). Using an MS2 reporter construct containing a poly(G) tract 

resistant to yeast XRN1-mediated decay, Sheth and Parker (2003) showed that 5’-3’ mRNA 

decay intermediates accumulate in P-bodies, supporting the hypothesis that 5’-3’ decay can 

take place in these discrete RNP granules. It was later shown in both yeast and mammalian 

systems that RNAs may be stored in P-bodies and eventually exit these distinct cytoplasmic foci 

and associate with polysomes to undergo translation (Brengues et al. 2005; Bhattacharyya et al. 

2006). Interestingly, treating human or yeast cells with cyclohexamide to inhibit translation 

elongation results in P-body dispersal, indicating that P-body formation may be seeded by 

mRNAs that have undergone translation and are targeted for decay (Sheth and Parker 2003; 

Cougot et al. 2004). Transcripts targeted for miRNA-mediated decay are guided to P-bodies in 

human cells (Bhattacharyya et al. 2006). Processing bodies therefore may function as discrete 

pseudo-organelles where the fate of an mRNA is decided (Buchan and Parker 2009).  

 Yeast and mammalian cells also form stress granules (SG), which are induced upon 

inhibition of translation initiation by a variety of stressors (Buchan and Parker 2009; Kedersha et 

al. 1999). Puromycin treatment, which causes mRNA-ribosome complexes to disassemble, 
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causes formation of SG in mammalian and yeast systems (Buchan and Parker 2009; Kedersha 

et al. 2000; Buchan et al. 2008). Stress granules and P-bodies likely interact and mRNPs may 

be shuttled between them (Buchan and Parker 2009). Indeed, stress granule assembly in yeast 

depends on P-body formation and may be seeded by mRNP complexes assembled in P-bodies 

(Buchan et al. 2008). Therefore the subcellular localization and mRNP context is likely a major 

contributing factor for the regulation of cellular gene expression.  

 In summary, eukaryotic cells harbor several constitutively expressed nucleases that can 

potentially act on viral RNAs during an infection. These pathways normally allow for the post-

transcriptional regulation of cellular mRNAs and likely play important roles in mediating the 

proper host response to infection by facilitating the rapid induction and degradation of normally 

short-lived pro-inflammatory immune mediators. Therefore, viruses could benefit from altering 

cellular RNA decay processes by influencing host gene expression and potentially protecting 

their transcripts from decay. The following section will discuss some of the known interactions 

between viruses and the cytoplasmic mRNA decay machinery.  

 

Viral evasion of deadenylation 

 
 Several pieces of evidence indicate that polyadenylated viral RNAs are susceptible to 

deadenylation-dependent decay, and many viruses appear to have evolved mechanisms for 

resisting deadenylation. Viral RNAs are known to evade deadenylation-dependant decay by 

either interacting with cellular RNA binding proteins or by forming stable structures that 

essentially hide the poly(A) tail from deadenylases. 

 The arthropod-borne viruses in the Togaviridae family possess positive sense, single 

stranded RNA genomes that have 5’ methylated caps and poly(A) tails, and in this sense they 

mimic cellular transcripts. Intriguingly, Sindbis virus (SINV; a representative member of the 

Alphavirus genus in the Togaviridae family) encodes a conserved U-rich sequence element in 
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the 3’ UTR of the viral RNA that is essential for inhibiting deadenylation-dependent decay 

(Garneau et al. 2008). The cellular RNA stability factor ELAVL1 (also known as HuR) was 

shown to bind with high affinity to this U-rich region of alphavirus RNAs, thus inhibiting 

deadenylation and promoting viral RNA stability in both mosquito and mammalian systems 

(Garneau et al. 2008; Sokoloski et al. 2010). The interaction between HuR and SINV RNAs was 

shown to be very important for viral proliferation, as cells deficient in HuR protein supported less 

viral growth than normal cells, and viruses lacking the U-rich HuR binding site replicated to 

lower levels than wild-type viruses (Sokoloski et al. 2010). Interestingly, HuR is normally present 

in the nucleus of mammalian cells. However, alphavirus infections specifically induce the re-

localization of HuR from the nucleus to the cytoplasm (Sokoloski et al. 2010; Dickson et al. 

2012). Therefore, alphaviruses cause the selective re-localization of the RNA stability factor 

HuR to protect their transcripts from deadenylation-dependent decay, and this is essential for 

optimal viral propagation in mammalian and mosquito cells.  

 Suppressing the deadenylation-dependent decay of viral transcripts can not only 

enhance viral propagation in general, but could also permit the fine-tuning of viral gene 

expression. Rabies virus (a member of the Rhabdoviridae family) contains a negative sense 

RNA genome from which five capped and polyadenylated transcripts (encoding the N, P, M, G, 

and L proteins) are synthesized by the viral polymerase in the cytoplasm (Schnell et al. 2010). 

The abundance of each viral transcript is dictated by its position in the RNA genome such that 

sequences closest to the 3’ end of the negative sense viral RNA genome are transcribed more 

frequently than those at the 5’ end of the genome (Schnell et al. 2010). However, it was recently 

demonstrated that the viral glycoprotein (G) mRNA was present in greater abundance in human 

cells infected with rabies virus than would be expected as a result of the accepted mode of viral 

transcription (Palusa et al. 2012). In an analogous mechanism to alphaviruses, the 3’ UTR of 

the G mRNA was shown to interact specifically with the cellular poly(C) binding protein 2 

(PCBP2) in infected cells (Palusa et al. 2012). Importantly, this interaction was shown to 
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suppress deadenylation of the G transcript in cell extract systems, and the 72 nt element in the 

G mRNA 3’ UTR was shown to act as a stability element in reporter assays (Palusa et al. 2012). 

Therefore, rabies virus G mRNA likely binds specifically to the cellular PCBP2 to permit 

differential viral gene expression. 

 Deadenylation can also be suppressed by unique structural elements that bind and 

sequester the 3’ poly(A) tail of a transcript, essentially hiding the adenylate tract from 

deadenylases in the nucleus. The highly abundant polyadenylated nuclear (PAN) RNA 

generated by Kaposi's sarcoma-associated herpesvirus (a DNA virus in the Herpesviridae 

family) possesses an RNA stability element near the 3’ end of the RNA that associates with the 

poly(A) tail to form a triple helix structure (Mitton-Fry et al. 2010). This triple helix structure was 

shown to suppress deadenylation of an RNA reporter in vitro (Mitton-Fry et al. 2010). 

Importantly, many other viruses and even host non-coding RNAs were later shown to contain 

similar RNA stability elements that likely protect these transcripts from deadenylation (Tycowski 

et al. 2012; Brown et al. 2012). 

 

Viral evasion of 5’-3’ decay 

 
 Many viral RNAs, including flavivirus RNAs, do not contain poly(A) tails. It is not known 

whether or not these RNAs are recognized as deadenylation-mediated decay intermediates or 

are degraded through a deadenylation-independent mRNA decay pathway. However, there is 

some evidence that transcripts can be decapped without first being deadenylated. The yeast 

mRNA EDC1 can be deadenylated without first being decapped (Muhlrad and Parker 2005). 

Therefore, some viral RNAs might undergo 5’-3’ decay even though they lack a poly(A) tail. 

Several pieces of evidence indicate that flaviviral RNAs can be degraded by 5’-3’ and 3’-5’ 

exonucleases without first being deadenylated. First, replication-competent HCV RNAs 

transfected into Huh7.5 human liver cells had increased stability when XRN1 was depleted, and 
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accordingly XRN1 depletion resulted in enhanced HCV replication (Li et al. 2013(b)). Second, 

as described in Section I of the Introduction, subgenomic flavivirus RNAs generated from all 

viruses in the Flavivirus genus tested to date are formed due to incomplete 5’-3’ decay of the 

viral genome by XRN1 (Pijlman et al. 2008; Silva et al. 2010). Furthermore, the exosome may 

potentially also act on flavivirus RNAs, as one study demonstrated that YFV sfRNA was 

truncated from the 3’ end and therefore may be resistant to further 3’-5’ decay as well (Silva et 

al. 2010). Two major mechanisms by which viruses evade or likely shut down 5’-3’ decay by 

XRN1 are discussed below. 

 Some viruses may simply shield the 5’ termini of their RNAs from XRN1 through several 

distinct mechanisms. First, many viruses (including the alphaviruses and members of the 

Flavivirus genus) have 5’ methylguanosine caps added co-transcriptionally by viral proteins. The 

5’ methylated caps likely serve two important functions: proteiction from degradation by XRN1, 

and evasion of IFIT-mediated innate immune responses as discussed above Section I. Viruses 

that do not undergo capping during transcription use other mechanisms to ‘cap’ their RNAs, 

likely serving to protect them from 5’-3’ decay. First, these viral RNAs may acquire a 5’ 

methylated cap by stealing them from cellular RNAs (cap-snatching). The negative- or ambi-

sense RNA viruses including members of the Bunyaviridae, Arenaviridae, and the 

Orthomyxoviridae cap-snatch, likely to protect their transcripts from 5’-3’ decay and also 

undergo cap-dependent translation (Raju et al. 1990; Mir et al. 2008; Hopkins et al. 2013). 

Second, the RNAs of hepaciviruses and pestiviruses appear to contain 5’ triphosphates that are 

likely sterically hindered from entering the active site of XRN1, and as discussed above these 

viruses undergo cap-independent translation via IRES elements (Jinek et al. 2011). Finally, 

some viral RNAs can even be ‘capped’ by a covalently linked viral protein. The genomic RNAs 

of viruses in the Picornaviridae family (e.g. poliovirus) are ‘capped’ by VPg (virus protein, 

genome-linked), which is required for viral RNA synthesis but not viral RNA translation (Nomoto 

et al. 1977(a); Nomoto et al. 1977(b); Racaniello 2001). Therefore, the 5’ methylated cap 
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structure, triphosphate group, or VPg serve as cis-acting stability factors that blocks decay by 

XRN1. However, viral RNAs could become susceptible to XRN1-mediated decay if they are 

decapped or subjected to endonucleolytic cleavage events that reveal a terminal 5’ 

monophosphate group. 

 Finally, picornaviruses cause the RNA decay factors XRN1, the PAN3 deadenylase, 

DCP1 and DCP2 to undergo proteolytic degradation through cellular or viral protease-

dependent mechanisms (Dougherty et al. 2011). Picornavirus RNAs may also be targeted for 

decay by the AUF1, as this cellular protein relocalizes from the nucleus to the cytoplasm and 

binds the 5’ UTRs of poliovirus and human rhinovirus RNAs (Cathcart et al. 2013). These 

viruses avoid being degraded upon binding this destabilizing factor by proteolytically cleaving 

AUF1 during infection (Rozovics et al. 2012). Coxsackievirus B3 also causes redistribution of 

AUF1 into the cytoplasm and cleavage, and this also appears to require the activity of viral 

proteins (Wong et al. 2013). Therefore, these viruses use an aggressive mechanism to combat 

cellular exonucleolytic decay in addition to simply shielding their RNAs from XRN1. 

 

Viral evasion of quality control mRNA decay pathways 

 
 Although there is a dearth of research into the role of constitutive quality control mRNA 

decay pathways in degrading viral RNAs, there are several reasons why viral RNAs may be 

targeted for decay in this manner. First, as discussed above most viral RdRps lack proof-

reading activity, and therefore some viral transcripts likely contain aberrantly placed termination 

codons (or lack them altogether). Second, many viral RNAs do not have a nuclear experience 

and contain multiple open reading frames, and are therefore likely to undergo NMD. Indeed, 

although retroviral transcripts do have a nuclear experience, they are unspliced and susceptible 

to NMD (Hogg and Goff, 2010). Third, many viral RNAs contain stable structural elements that 

could potentially cause ribosome stalling during translation elongation and trigger no-go decay. 
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However, viruses have likely evolved mechanisms to avoid degradation by these pathways. For 

example, a structured RNA element in the avian Rous sarcoma virus was shown to be essential 

for protecting the transcript from NMD (Withers and Beemon 2011). It is likely that other viruses 

also suppress or evade these important quality control pathways in the cell. Finally, suppression 

of exoribonucleases (e.g. XRN1) could cause a reduction in the efficicacy of these quality 

control pathways. 

 

Unconventional miRNA-viral RNA interactions 

 
 Diverse viruses are known to generate unconventional miRNAs from their RNAs during 

infection, and can be positively or negatively regulated by host cellular miRNAs. Intriguingly, 

Shapiro et al. (2012) showed that SINV infection causes relocalization of the microprocessor 

Drosha from the nucleus to the cytoplasm, allowing miRNAs to be generated from viral RNAs. 

Therefore cellular miRNAs could serve an anti-viral function in mammalian cells (Shapiro et al. 

2012). Furthermore, miRNA target sites can be introduced into RNA viruses to restrict their 

replication to specific cell types. Influenza A virus that encodes a miR-192 binding site can 

replicate and be transmitted by ferrets (which don’t express miR-192) but is attenuated in mice, 

which express miR-192 in respiratory tract epithelial cells (Langlois et al. 2013). This implies 

that the tissue expression of certain host miRNAs could modulate where a virus may 

successfully propagate. 

 Conversely, HCV is known to steal a specific host miRNA to promote viral RNA 

replication; indeed HCV requires the host microRNA-122 to propagate effectively in human liver 

cells (Jopling et al. 2005). Although the exact function of miR-122 in enhancement of HCV 

replication remains unknown, recent studies have shown that miR-122 may serve to protect the 

HCV genome from degradation by shielding the terminus of the viral RNA from decay factors 

(Machlin et al. 2011; Shimakami et al. 2012; Mortimer and Doudna 2013; Li et al. 2013(b)).  
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 Finally, several herpesviruses deplete specific cellular miRNAs via highly abundant non-

coding viral RNAs. Herpesvirus saimiri (HVS) and murine cytomegalovirus (mCMV) both 

generate unique virus-derived RNAs that sponge up cellular miRNAs and cause their 

degradation (Buck et al. 2010; Cazalla et al. 2010; Libri et al. 2012). The mCMV transcript m169 

is predicted to contain an open reading frame, is polyadenylated and capped, and contains a 

miR-27 binding site in its 3’ UTR (Libri et al. 2012). Upon expression of m169 during mCMV 

infection or when expressed via an adenovirus vector, miR-27a and miR-27b are rapidly and 

specifically depleted (Libri et al. 2012; Marcinowski et al. 2012). ). HVS also selectively targets 

miR-27 for degradation via U-rich non-coding viral RNA called HSUR1 (Cazalla et al. 2012). 

Although the exact function of miR-27 in the context of herpesvirus infection remains unknown, 

it is possible that miR-27 negatively regulates the abundance of host cellular transcripts that 

would otherwise be beneficial to these disparate herpesviruses.  

 Poxviruses also appear to have evolved a unique mechanism by which many cellular 

miRNAs can be degraded during an infection. The poxvirus poly(A) polymerase induces cellular 

miRNA degradation by polyadenylating these small RNAs, targeting them for decay (Backes et 

al. 2012). Interestingly, the 3’ ends of virus-derived siRNAs generated during Vaccinia virus 

infection of Drosophila cells are 2’-O methylated, and this motif blocks the addition of a poly(A) 

tail and subsequent decay of these small RNAs. Therefore, diverse viral RNAs are susceptible 

to miRNA-mediated decay in cells and many use unique mechanisms by which they 

successfully interact with this RNA decay pathway. 

 

Dispersal of processing bodies during flavivirus infections 

 
 Several recent studies have shown that XRN1 may be involved in degradation of the 

HCV genome and the subcellular localization of XRN1 is altered during HCV infection. XRN1 is 

usually localized to processing bodies, discrete cytoplasmic foci that may be localized sites of 
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mRNA decay. Processing body composition is altered during HCV infection (Perez-Vilaro et al. 

2012). Intriguingly, XRN1, miR-122, and AGO2 have been shown to be localized in ring-like 

structures with the HCV core protein in lipid droplets (Ariumi et al. 2011; Berezhna et al. 2011). 

XRN1 is similarly re-localized to viral replication complexes in West Nile virus infected cells 

(Chahar et al. 2013). Furthermore, as observed in DENV and WNV infections, processing 

bodies are dispersed during HCV and poliovirus infections (Emara and Brinton 2007; Dougherty 

et al. 2011; Pager et al. 2013). Furthermore, a slew of RNA decay factors including XRN1, 

LSM1, TNRC6A, and DDX6 were shown to re-localize to viral replication complexes and 

increase viral replication in HeLa cells infected with WNV (Chahar et al. 2013).  

 Interestingly, DDX6 and CAPRIN1 are known to bind to the DENV 3’ UTR but the 

functional importance of many of these interactions remains to be characterized (Ward et al. 

2011; Roby et al. 2014). Furthermore, a recent study showed that the JEV C protein interacts 

directly with Caprin 1 (Katoh et al. 2013). However, CAPRIN1 and the G3BP1 proteins are 

known to interact with cellular factors present in stress granules (Solomon et al. 2007; Ward et 

al. 2011; Matsuki et al. 2013). The sequestration of these and other stress granule-associated 

proteins (e.g. TIA-1 and TIAR) in flavivirus replication complexes may therefore be an 

underlying mechanism for the observed defects in stress granule formation in flavivirus 

infections (Emara and Brinton 2007; Ward et al. 2011; Matsuki et al. 2013). 

 

Pathogenic consequences of viral interactions with the cellular RNA decay machinery 

 
 The regulation of cellular gene expression relies on a complex interplay between RNA 

synthesis, degradation, and translation as described above. Because changes in mRNA stability 

can influence the steady-state level of an mRNA, the ability of a virus to manipulate or inactivate 

mRNA decay factors could have multiple complex profound effects on host cellular gene 

expression. In addition to the constitutively expressed mRNA decay factors that regulate host 
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gene expression, cells may express a variety of virus-induced nucleases that are part of the 

anti-viral innate immune response to infection. Furthermore, many different viruses have been 

shown to influence the formation of mRNP granules, which likely also contributes to changes in 

cellular gene expression (Beckham and Parker 2008; Lloyd 2013). The mechanisms that 

underlie the innate immune response to viral infection leading to induced nuclease expression 

and how viruses interfere with the constitutive mRNA decay machinery are therefore important 

to understand in order to determine how cellular gene expression is changed during infection 

and how this contributes to pathogenesis. Viral RNAs can sponge host RNA stability factors, 

suppress host exoribonucleases, and disperse cytoplasmic RNA granules, all of which likely 

contribute to virus-induced pathology (Moon and Wilusz 2013). 

 Considering the importance of post-transcriptional mechanisms in controlling cellular 

gene expression, perturbation of the cellular RNA decay machinery likely causes dramatic 

changes in how the cell responds to infection or cell biology in general. The following discussion 

will focus on how pathology may be induced by three viral mechanisms: sponging/sequestration 

of host miRNAs or RNA binding proteins by viral RNAs, the production of viral nucleases that 

degrade cellular mRNAs, and the proteolytic degradation of host mRNA decay factors (depicted 

in Figure 5). For a more detailed review on this topic, please see Moon and Wilusz (2013).  
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Figure 5. Mechanisms that viruses use to evade or suppress general host RNA 
decay factors and how this may contribute to virus-induced pathogenesis. HVS: 
Herpesvirus saimiri, mCMV: murine Cytomegalovirus, PV: Poliovirus, HRV: Human 
rhinovirus, DENV: the dengue viruses, HCV: hepatitis C virus, SINV: Sindbis virus, RV: 
Rabies virus, WNV: West Nile virus, KSHV: Kaposi Sarcoma-associated herpesvirus, 
SARS-CoV: Severe Acute Respiratory Syndrome coronavirus.Taken from: Moon SL, 
Wilusz J (2013) Cytoplasmic Viruses: Rage against the (Cellular RNA Decay) Machine. 
PLoS Pathog 9(12): e1003762.  

 

Sponging/stealing host miRNAs and RNA-binding proteins   

 
 Recent studies have demonstrated that viral RNAs can serve as sponges for cellular 

miRNAs and RBPs, consequently altering cellular gene expression. The seven HVS non-coding 

U-rich RNAs were discovered by northern blots targeting RNA products of the viral genome 

associated with T cell transformation (Cazalla et al. 2010; Lee et al. 1988). These HVS non-

coding RNAs (ncRNAs) are also associated with T cell activation and may increase the growth 

rate of transformed T cells (Cazalla et al. 2010). As discussed above, several of these HVS 

RNAs and an RNA generated by mCMV appear to selectively bind and degrade the host 

microRNA miR-27 (Buck et al. 2010; Cazalla et al. 2010; Libri et al. 2012). Could the sponging 

of miR-27 alter host gene expression and potentially cause pathology during infection with these 

lymphotropic viruses? Interestingly, the transcription factors RUNX1 and FOXO1, have been 
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identified as miR-27 targets, all of which are known to function in development and/or cell 

proliferation (Ben-Ami et al. 2009; Guttilla et al. 2009; Crist et al. 2009). The RUNX1 

transcription factor is essential for the development of lymphoid cells and differentiation of all 

hematopoietic cell lineages, and mutations in the RUNX1 gene are associated with leukemia 

(Kuo et al. 2009, Ichikawa et al. 2004; Schnittger et al. 2011; Kuo et al. 2009; Grossmann et al. 

2011). The FOXO1 protein has been shown to play a role in apoptosis, cell cycle progression, 

proliferation, and muscle cell differentiation (Guttilla et al. 2009; Crist et al. 2009). Therefore, the 

sponging and degradation of miR-27 by diverse herpesviruses could contribute to virus-induced 

oncogenesis or cause pathogenesis by aiding viral propagation. In support of this idea, mutant 

mCMV unable to target miR-27 were attenuated in a mouse model of infection and significantly 

fewer viruses were detected in lungs, spleen, and salivary glands compared to wild-type virus 

infections (Marcinowski et al. 2012). Therefore, viral interferance with normal miRNA-mediated 

decay processes can contribute to pathology. 

 We recently demonstrated that the sequestration of HuR by Sindbis virus RNA leads to 

changes in mRNA stability, polyadenylation, and splicing (Barnhart et al. 2013). Not only is HuR 

required for robust viral proliferation as the RNAs are stabilized by their interaction with HuR 

(Sokoloski et al. 2010), but the sponging of HuR in the cytoplasm of infected cells may also 

contribute indirectly to virus-induced pathology by altering host gene expression. The HuR 

protein is known to interact with a wide array of cellular transcripts in different cell types and 

stabilizes mRNAs (Lebedeva et al. 2011; Mukherjee et al. 2011; Peng et al. 1998). HuR 

associates with both intronic and exonic regions of transcripts in HeLa cells and can mediate 

alternative splicing (Lebedeva et al. 2011; Mukherjee et al. 2011). Furthermore, Mukherjee et al. 

(2011) showed that transcripts that bound to HuR in intronic sequences were also more stable, 

indicating that HuR couples pre-mRNA processing events with stabilization of the mature 

transcript, possibly by loading onto the mRNA in the nucleus. Mammalian Hu proteins regulate 

alternative splicing, as they bind U-rich transcripts and block the polyadenylation machinery 
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from recognizing upstream alternative polyadenylation signals (Zhu et al. 2007). Intriguingly, 

global analyses of HuR and AGO2 associated transcripts showed that HuR may compete with 

AGO2 to relieve miRNA-mediated gene silencing (Mukherjee et al. 2011), and it was later 

determined that HuR can cause the miRISC to dissociate from target transcripts (Kundu et al. 

2012). 

  Many studies have sought to characterize the RNAs that HuR associates with in a 

variety of cell types using several different experimental approaches. An analysis by St Laurent 

et al. (2012) of 4 published datasets containing all detected HuR interacting RNAs (St Laurent et 

al. 2012; Kishore et al. 2011; Mukherjee et al. 2011; Lebedeva et al. 2011) determined that 

1,156 RNAs were represented in all 4 datasets that were compared, and 3,508 RNAs were 

represented in 3 out of 4 datasets. These results indicate that HuR contributes to the post-

transcriptional regulation of many cellular transcripts, and sequestration of HuR on viral RNAs 

could have dramatic consequences for the cellular response to viral infection. Indeed, it may be 

that the sponging of HuR in the cytoplasm on viral RNAs could be one mechanism by which 

alphaviruses shut down host gene expression during infection. Surprisingly, HuR was shown to 

play a role in the post-translational regulation of the pro-inflammatory factor NFkB (Rhee et al. 

2010). This study showed that depletion of HuR by siRNA treatment in human embryonic 

vascular endothelial cells reduced monocyte binding, induction of ICAM-1 and VCAM-1 

expression, and NFkB phosphorylation upon two different pro-inflammatory stimuli (Rhee et al. 

2010). The authors determined that rather than altering mRNA stability, HuR regulated the 

phosphorylation state of the constitutively expressed inhibitors of NFkB, IκBα and IKKα/β, 

leading to NFkB activation and subsequent increased transcription of pro-inflammatory factors 

including VCAM-1 (Rhee et al. 2010). However, HuR is also known to be important for 

mediating proper immune responses by stabilizing AU-rich element containing transcripts (Fan 

and Steitz 1998). In a cell culture model of T cell activation, HuR was shown to relocalize from 

the nucleus into the cytoplasm where it stabilizes the short-lived transcripts of potent pro-
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inflammatory cytokines, including TNF-α and interferon-γ (Wang et al. 2006). Therefore there 

are a variety of interesting defects in post-transcriptional regulatory mechanisms that may arise 

due to the sponging of HuR on high affinity binding sites in alphavirus RNAs that could 

contribute to virus evasion of immune mechanisms or potentially immunopathogenesis.  

 

Inactivation of cellular RNA decay factors 

 
 As described above, poliovirus causes the rapid depletion of XRN1, DCP1, DCP2 and a 

PAN deadenylase through the activity of a viral protease or by targeting these proteins for decay 

by the proteasome (Dougherty et al. 2011). Because the 5’-3’ decay pathway is important for 

turnover of cellular mRNAs, reducing the abundance of XRN1 and the decapping enzymes 

likely has major effects on host gene expression. XRN1 is important for proper organismic 

development and growth (Grima et al. 2008; Till et al. 1998; Jones et al. 2013; Szankasi et al. 

1996; Larimer and Stevens 1990; Larimer et al. 1992). Furthermore, mutations in XRN1 have 

been associated with osteosarcoma in humans (Zhang et al. 2002; Kruzelock et al. 1997). 

Therefore the selective depletion of cellular decay factors could contribute to virus-induced 

defects in development, growth, and/or cell differentiation. 

 Picornaviruses are also known to induce the proteolytic decay of AUF1. Interestingly, 

AUF1 has been shown to participate in the degradation of AU-rich element containing mRNAs 

including those encoding cytokines and oncogenes (Laroia et al. 1999). It would therefore be 

interesting to determine if changes in the post-transcriptional regulation of ARE-containing 

transcripts results from the degradation of AUF1 by these positive-sense RNA viruses, and if 

this could play a role in virus-induced pathology. 
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Subgenomic flavivirus RNAs are generated by XRN1 and contribute to pathogenesis 

 
 Disparate viruses are known to interact with the cellular RNA decay machinery and as a 

result likely cause dramatic changes in cellular gene expression that could ultimately contribute 

to pathology. Although there is ample evidence that flavivirus-mediated pathology can derive 

from changes in host cellular gene expression (as discussed above in Section I), the exact 

mechanisms by which this occurs remain to be fully characterized. Because some viral RNAs 

interact with cellular RNA binding proteins (e.g. the SINV 3’ UTR) and microRNAs (e.g. mCMV 

RNAs) that likely contribute to changes in cellular gene expression during infection, we 

wondered if the flaviviruses might influence post-transcriptional regulatory processes in a similar 

manner. As discussed above, all members of the Flavivirus genus tested to date generate 

subgenomic RNAs that may be generated by incomplete 5’-3’ decay of the viral genome by 

XRN1 (Pijlman et al. 2008; Silva et al. 2010). Intriguingly, these sfRNAs are required for viral 

pathogenesis (Pijlman et al. 2008; Liu et al. 2014). Therefore, sfRNA serves as an important 

point of interaction between the cellular RNA decay machinery and viral gene products. 

 What is known about how sfRNA is formed in the cell? Two pieces of evidence inducate 

that sfRNAs are generated as XRN1 stalls on conserved elements in the flavivirus 3’ UTR upon 

processive 5’-3’ decay of viral RNAs. First, depletion of XRN1 using siRNAs reduced the 

abundance of Kunjin virus sfRNA in infected human cells, and second, it was later shown that 

YFV sfRNA could be generated by incubating a reporter RNA containing the viral 3’ UTR with 

recombinant yeast XRN1 (Pijlman et al. 2008; Silva et al. 2010). However, the XRN1 homologs 

in yeast and in trypanosomes known to stall on G-tracts and long, highly stable G-C stem-loops 

in reporter RNAs, but mammalian XRN1 has not been previously documented to stall on such 

sequence or structural elements (Muhlrad et al. 1994; Li et al. 2006). Mutational analyses of 

several conserved pseudoknot motifs revealed that they are important for formation of sfRNAs 

from the YFV and KUNV 3’ UTRs (Funk et al. 2010; Silva et al. 2010). However, the exact 
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mechanism by which these viral RNAs stall XRN1, and whether or not other sequence or 

structural determinants were necessary for sfRNA formation remains to be determined.  

 What is the role of sfRNA during viral infection? Intriguingly, these non-coding viral 

RNAs were shown to be essential for virus-induced pathology in WNV and DENV-2 infections 

(Pijlman et al. 2008; Liu et al. 2014). Mutant flaviviruses deficient in sfRNA formation display 

defects in viral growth in certain cell lines; therefore these viral RNAs likely aid viral propagation 

(Pijlman et al. 2008; Silva et al. 2010). Furthermore, several studies have demonstrated that 

sfRNA formation is important for viral evasion of innate immune responses in mammalian and 

insect cells, and DENV sfRNA was recently shown to trigger apoptosis (Schnettler et al. 2012; 

Schuessler et al. 2012; Chang et al. 2013; Liu et al. 2014; Roby et al. 2014). However, although 

the pathogenicity and growth of KUNV was partially restored when innate immune modulators 

were depleted, these observations do not directly implicate sfRNA accumulation in the 

suppression or evasion of innate immune pathways in mammals. Alternatively, altered cellular 

gene expression that occurs as a result of sfRNA accumulation could enhance viral growth 

and/or indirectly suppress innate immune pathways. Furthermore, sfRNA may play a role in 

allowing arthropod-borne flaviviruses to evade the anti-viral RNA interference response, as 

sfRNA has been shown to moderately suppress RNA interference activity in mosquito and non-

human primate cells (Schnettler et al. 2012). Arthropods rely on this small RNA-mediated decay 

pathway for antiviral immunity, and many viruses are known to suppress RNAi to enhance their 

propagation (Nayak et al. 2010; van Mierlo et al. 2012; Blair 2011). Considering that many RNA 

viruses successfully interface with the cellular RNA decay machinery by suppressing or evading 

decay factors, flaviviruses likely also interfere with RNA decay in the cell to suppress these 

activities. The following studies aimed to determine if sfRNA formation might allow flaviviruses 

to evade or otherwise successfully interact with the normal RNA decay machinery, thereby 

contributing to the dys-regulation of cellular gene expression. 
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RATIONALE 

 
 
 
 As discussed above, viruses in the Flaviviridae replicate exclusively in the cytoplasm of 

the host cell (Lindenbach and Rice 2001). Importantly, the cytoplasm of eukaryotic cells 

contains constitutively expressed ribonucleases (e.g. XRN1) that participate in quality control 

pathways, normal turnover of cellular transcripts and in targeting invading viral transcripts for 

destruction. Flaviviral RNAs interact with cellular RNA decay enzymes (e.g. XRN1, RNAse L) 

and other factors known to play important roles in post-transcriptional processes (e.g. HuR, 

PCBP2, miR-122) but little is known regarding how these interactions might promote viral RNA 

stabilization and/or interfere with normal cellular gene expression, leading to virus induced 

pathology. Furthermore, although the importance of sfRNA to viral pathogenesis is clear 

(Pijlman et al. 2008; Liu et al. 2014), the mechanism by which sfRNA benefits the virus and/or 

impairs the host response is unknown. 

 

Hypotheses 
 

 The studies described herein test the following hypotheses:  

(1) In addition to being a key factor in generating sfRNA, the major host exoribonuclease 

XRN1 is functionally inhibited by sfRNA, contributing to pathogenic changes in cellular 

gene expression during flavivirus infections.  

(2) Other members of the Flaviviridae (namely HCV and BVDV) generate XRN1 inhibitory 

RNAs through a similar mechanism via highly structured RNA elements present in their 

5’ UTRs, and these also contribute to virus-induced changes in cellular gene expression. 

(3) The subgenomic flavivirus RNA suppresses RNAi by associating with the cellular 

nuclease AGO2. 
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MATERIALS AND METHODS 
 
 
 
Cell culture  

 

 All mammalian cells were cultured at 37C and mosquito cells were grown at 28C. All 

cells were maintained in 5% CO2 and media was routinely supplemented with 1% streptomycin 

and penicillin (Fisher Scientific-Hyclone). Human embryonic kidney 293T cells were maintained 

in Dulbecco’s Modified Eagle’s medium (DMEM; Mediatech) with 10% fetal bovine serum (FBS; 

Atlas Biologicals) and were a gift of the laboratory of Dr. Chaoping Chen at Colorado State 

University. Madin-Darby bovine kidney (MDBK) cells (Bos taurus) from ATCC (CCL-22) were 

cultured in Modified Eagle’s medium (MEM; Corning) with 10% donor equine serum (Hyclone) 

to prevent potential contamination with non-cytopathic BVDV that could be present in FBS 

stocks (Xia et al. 2011). The Macaca mulatta kidney epithelial cell line (LLC-MK2; a gift from the 

CSU Arthropod-borne Infectious Diseases Laboratories) and the baby hamster kidney cell line 

BHK-21 (ATCC CCL-10; Mesocricetus auratus) were maintained in MEM plus 10% FBS. Vero 

cells (Cercopithecus aethiops) were cultured in DMEM plus 5% FBS and Aedes albopictus 

C6/36 cells were grown in MEM plus 5% FBS (both cell lines were a gift of the Bowen laboratory 

at Colorado State University). All mammalian cells were split before cultures reached confluency 

by washing monolayers once with ice-cold phosphate buffered saline (PBS; Corning), 

incubating at 37C with 0.25% trypsin solution (Fisher Scientific-Hyclone) until cells detached 

and ~1/10 of each culture re-seeded for passaging. Mosquito cells were passaged by scraping 

only. All cells were routinely screened for Mycoplasma contamination using the Universal 

Mycoplasma PCR-based detection kit (ATCC 30-1012K) and DAPI staining for extra-nuclear 

DNA detection by immunofluorescence microscopy to confirm PCR results. MDBK cells were 

screened frequently for non-cytopathic BVDV by RT-PCR (Ridpath et al. 1994) and by using 
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immunofluorescence microscopy with a monoclonal antibody that recognizes both cytopathic 

and non-cytopathic BVDV antigens (Veterinary Medical Research and Development, 3.12F1).  

 

Virus production 

Lentiviruses 

 
 Lentiviruses were generated with the pLKO.1 plasmid or one that produces an shRNA 

that targets XRN1 mRNA (Sigma Aldrich, TRCN0000049677) were generated as follows 

(described in Stewart et al. 2003). Equal amounts (10 g) of each plasmid pCMVRΔ8.2, pVSV-

G, and TRCN0000049677 (i.e. XRN1 shRNA containing pLK0.1) or pLK0.1 (vector only control) 

were added to 1 mL of calcium chloride solution (0.3 M) and mixed gently. One mL of 2x HBS 

buffer (10 mM D-glucose, 10 mM potassium chloride, 40 mM HEPES, 1.5 mM dibasic sodium 

phosphate, 270 mM sodium chloride, pH 7.1) was then added to the calcium chloride solution. 

This solution was then used to transfect a 50% confluent monolayer of 293T cells in a T-75 flask 

in 5 mL of maintenance medium (MEM with 10% FBS). Medium was replaced with fresh 

maintenance medium containing 60 L of 5% butyric acid in PBS the following morning. 

Lentivirus was collected 48 hours later by centrifuging the medium to clarify at 1000xg for 10 

minutes in a tabletop centrifuge at 4 C and immediately frozen in 1 mL aliquots at -80 C. Each 

aliquot was used once and discarded to avoid loss of lentivirus integrity due to repeated freeze-

thaw cycles. Transductions of 293T cells were performed by rinsing a 75% confluent monolayer 

in a T-75 flask once with ice-cold PBS and adding 1 mL of lentivirus stock plus 3 mL fresh 

growth medium containing 5 g/mL polybrene. The cells were incubated for 1-2 hours and 

rinsed once with PBS, then overlaid with fresh maintenance medium. The next day, the medium 

was replaced. On the third day post-transduction, the cells were fed with maintenance medium 

containing 5 g/mL puromycin to select for cells expressing the puromycin resistance gene. 
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Puromycin-resistant cell pools were maintained in medium containing 1 g/mL puromycin. 

XRN1 expression levels were determined by RT-qPCR using the primers reported in Table 3. 

 

Flaviviruses 

 
 Dengue virus type 2 strain Jamaica 1409 (GenBank M20558.1; received from Dr. Irma 

Sanchez-Vargas at Colorado State University) was amplified by seeding T-25 flasks of C6/36 

cells with a low multiplicity of infection (MOI) of a low passage virus stock (<4 passages) and 

incubated for 10 days in maintenance medium. Virus was harvested by scraping cells and 

clarified by centrifugation for 10 minutes at 1000xg at 4C in a tabletop centrifuge. Viral stock-

containing supernatants were adjusted to 20% FBS and 1 mL aliquots were immediately frozen 

at -80C and were used once and discarded to avoid loss due to repeated freeze-thaw cycles. 

Viral stocks were titered by making ten-fold serial dilutions in cold DMEM with 10% FBS and 

plating 0.5 mL of each dilution per well of confluent monolayers of LLC-MK2 cells in 12 well 

plates. The virus was allowed to adsorb for 2 hours at 37C in the incubator and then cultures 

were overlaid with a solution containing 2% methylcellulose in 0.5x MEM growth medium in PBS 

and allowed to incubate for 14 days at 37C. Virus was inactivated by addition of 7% 

formaldehyde (v/v in PBS) and incubation at room temperature for 2 hours. The viscous overlay 

was removed by pipetting and monolayers were washed gently with cold water. Crystal violet 

stain (2% crystal violet in 80% methanol) was added to each monolayer for 10 minutes then 

rinsed multiple times with cold water to visualize plaques.  

 Kunjin virus (KUNV) strain FLSDX (GenBank AY274504.1; a gift from the Khromykh 

laboratory but initial stocks were grown by the Bowen laboratory) and the mutant KUNV 

IRAΔCS3 (described in Pijlman et al. 2008) were amplified on Vero or BHK-21 cells. At four 

days post infection (or when cytopathic effect was evident) virus was collected as described 
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above. The concentration of virus stocks was determined by plaque titrations on BHK-21 or 

Vero cells as described above, except that plates were incubated for 5 days. 

 For BVDV propagation, we first received an aliquot of cytopathic bovine viral diarrhea 

virus, Singer strain type 1a (GenBank DQ088995.2) from Dr. Hana van Campen (Colorado 

State University) and virus was amplified on MDBK cells. BVDV was collected at 3 days post 

infection, medium was clarified by centrifugation, and aliquots were frozen at -80C. Virus was 

titered on MDBK cells for 8-10 days until plaques were visible as described above. 

 

Viral infections 

 
 Possession of all viral stocks and basic uses thereof was approved by the CSU 

Biosafety Office. Viral infections were performed as follows. Sub-confluent 293T cells (flavivirus 

infections) or MDBK cells (BVDV infections) were infected at an MOI of 1 or higher as indicated 

for each experiment. Virus was adsorbed for 2 or more hours and washed twice with warm 

(37oC) maintenance medium to remove residual viral particles. Cells were collected 24, 36, 48, 

or 96 hours later as indicated for analyses. Mock infected cells were also washed twice with 

warm maintenance medium. Hepatitis C virus infections (JFH-1 strain or using a replicon) were 

performed by Dr. Shelton Bradrick at Duke University and samples were collected for RNA 

isolation at 72 hours post infection. 

 

Kunjin virus mutagenesis and analysis of small RNAs from the viral 3’ UTR 

 
 Mutant Kunjin viruses predicted (by Chapman and Kieft, UC-Denver, personal 

communication and described in Chapman et al. 2014) to have defective sfRNA formation 

during infection were generated by overlap extension PCR. The FLSDXpro_HDVr Kunjin virus 

infectious clone (from the Khromykh laboratory; Liu et al. 2003) was used as a template for the 

construction of six individual mutant viruses. The high fidelity Phusion Hot Start II polymerase 
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(Thermo Scientific) was used for PCR using the mutagenic primers listed in Table 1 and 

assembled PCR products were inserted into the Age1 and Xho1 restriction sites. Plasmids were 

screened for the proper mutations by sequencing PCR amplicons or maxiprepped clones using 

the following primers: FLSDX Fw: 5’- ACTTTGTTAATTGTAAATAAATATTGTTAT; FLSDX Rv: 

5’-GCGTGGGACGTTGATTCGCCTTTGT. Plasmids were linearized with Xho1 and in vitro 

transcriptions performed using the MEGAscript® SP6 transcription kit (Life Technologies) 

followed by Turbo DNase treatment to remove template. Viral RNAs were purified by phenol-

chloroform-isoamyl alcohol (25:24:1) extraction and ethanol precipitation before RNA 

concentrations were determined. BHK-21 cells (one 90% confluent T-75 flask per virus) were 

electroporated with 5-10 µg of viral RNA, and virus was amplified by passaging once on BHK-21 

cells to generate working stocks. Viral titers were assessed by plaque titrations, infections were 

performed in 293T cells (MOI of 10), and total cellular RNA was collected at 48 hpi using 

TRIzolTM (Invitrogen). Total RNA was treated with DNase I (Fermentas) to remove residual 

genomic DNA. Northern blotting was performed as described below using 2 µg of total RNA 

from each sample and sfRNAs detected by using a probe complementary to the entire KUNV 3’ 

UTR.   

Table 1. Mutagenic primers used for the construction of six KUNV mutants predicted to 
be defective in sfRNA formation. 

Mutation/primer 
set 

Forward Reverse 

Flanking primers CATACCGGTCGGAAAAGTGATCGACCTTGG CATCTCGAGCAATTGTTGTTGTTAACTTG 

UCA10498 AGTGAGGATCACAGGCCGG CCGGCCTGTGATCCTCACT 

G10519 TTCCCGGCACCGGAAGTTGAG CTCAACTTCCGGTGCCGGGAA 

G10680 TGGCGTGGCACTCTGCGGAG CTCCGCAGAGTGCCACGCCA 

ACA10658 CAAGGCCCAAACACAGACCACG CGTGGTCTGTGTTTGGGCCTTG 

 

Plasmids 

 
 For mammalian transfections, the peGFP-N1 plasmid (Clontech; GenBank U55762.1) 

was used as a reporter plasmid. The DENV-2 3’ UTR (Jamaica 1409, 10273-10723) was 

amplified by RT-PCR from infected cell RNA and cloned into the Not1 site of the 3’ UTR of 
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eGFP. For in vitro transcription templates, viral sequences were inserted into the pGEM-4 

(GenBank X65303.1) multiple cloning site to permit either SP6 or T7 transcription to generate 

reporter RNAs, competitor RNAs, or internally labeled riboprobes. The first stem-loop of the 

DENV-2 3’ UTR was cloned into pGEM-4 in the XbaI and HindIII sites and was used as a 

reporter RNA for in vitro XRN1 decay assays (by John Anderson). For the DENV-2 competitor 

RNA, the 5’ half of the viral 3’ UTR was inserted into the XbaI and HindIII sites of pGEM-4 (by 

John Anderson). The HCV IRES element (nucleotides 1-389; Strain H77, GenBank 

AF009606.1) was cloned into pGEM-4 using the HCV16LUC plasmid (Bradrick et al. 2006) as a 

PCR template and inserted into the EcoRI and XbaI sites. The BVDV IRES element 

(nucleotides 1-440; GenBank DQ088995.2) was cloned into the EcoRI and HindIII sites of 

pGEM-4 using RNA from infected MDBK cells as RT-PCR template to amplify the BVDV insert. 

The first 200 nucleotides of the JEV 3’ UTR (isolate TC2009-1 GenBank JF499790.1, 

nucleotides 10395-10965) was cloned by assembly PCR into pGEM-4 in the HindIII and EcoRI 

sites (by Benjamin Dodd). All sequences are reported in Table 2. The probe template for sfRNA-

like decay intermediates from the peGFP-N1 plasmid containing the DENV-2 3’ UTR was 

generated by cloning the 3’ UTR of eGFP into the EcoRI and HindIII restriction sites of pGEM-4. 

All plasmids were verified by sequencing before use. 
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Table 2. Sequences inserted into the pGEM-4 or peGFP-N1 vectors for this study.  
Insert Sequence (5’-3’) 

DENV-2 
SL-1 

AAGAAGUCAGGCCAUCACAAAUGCCACAGCUUGAGUAAACUGUGCAGCCUGUAGCUCCACC 

DENV-2 5’ 
half of the 

3’ UTR 

AAGGCAAAACUAACAUGAAACAAGGCUAAAAGUCAGGUCGGAUCAAGCCAUAGUACGGAAAAAA
CUAUGCUACCUGUGAGCCCCGUCCAAGGACGUUAAAAGAAGUCAGGCCAUCACAAAUGC 
CACAGCUUGAGUAAACUGUGCAGCCUGUAGCUCCACCUGAGAAGGUGUAAAAAAUCUGGGA 
GGCCACAAACCAUGGAAGCUGUACGCAUGGCGUAG 

DENV-2 3’ 
UTR 

AAGGCAAAACTAACATGAAACAAGGCTAAAAGTCAGGTCGGATCAAGCCATAGTACGGAAAAAA 
CTATGCTACCTGTGAGCCCCGTCCAAGGACGTTAAAAGAAGTCAGGCCATCACAAATGCCACAG 
CTTGAGTAAACTGTGCAGCCTGTAGCTCCACCTGAGAAGGTGTAAAAAATCTGGGAGGCCACAA 
ACCATGGAAGCTGTACGCATGGCGTAGTGGACTAGCGGTTAGAGGAGACCCCTCCCTTACAAAT 
CGCAGCAACAACGGGGGCCCAAGGTGAGATGAAGCTGTAGTCTCACTGGAAGGACTAGAGGTT 
AGAGGAGACCCCCCCAAAACAAAAAACAGCATATTGACGCTGGGAAAGACCAGAGATCCTGCTG 
TCTCCTCAGCATCATTCCAGGCACAGAACGCCAGAAAATGAATGGTGCTGTTGAATCAACAGGTTC
T 

JEV 5' end 
of 3’ UTR 

GACAGGATAAAGTCATGTGTGTAATGTGAGATAAGAAAATGTGCATGTGGAGTCAGGCCAGCAAC 
AGCTGCCACCGGATACTGAGTAGACGGTGCTGCCTGCGCCTCAGTCCCAGGAGGACTGGGTTAA 
CAAATCTGACAACGGAAGGTGGGAAAGCCCTCAGAACCGTCTCGGAAGCAGGTCCCTGCTCACC 
GGAAGTT 

HCV IRES 
element 

GCCAGCCCCCTGATGGGGGCGACACTCCACCATGAATCACTCCCCTGTGAGGAACTACTGTCTT 
CACGCAGAAAGCGTCTAGCCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTC 
CCGGGAGAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGT 
CCTTTCTTGGATAAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCAAGACTGCTAGCC 
GAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGG 
GAGGTCTCGTAGACCGTGCACCATGAGCACGAATCCTAAACCTCAAAGAAAAACCAAACGTAACA 
CCAAC 

BVDV 
IRES 

element 

ATTCGCCCTTCTCGTATACGTATTGGGGCAATTAAAATAATAATTAGGCCTAGGGAACAAAAGTCC 
CCCTCAGCGAAGGCCGAAAAGAGGCTAGCCATGCCCTTAGTAGGACTAGCATAAAGAGGGGGGT 
AGCAGCAGTGGTGAGTTCGTTGGATGGCTTAAGCCCTGAGTACAGGGTAGTCGTCAGTGGTTCG 
ACGCCTTGGAATAAAGGTCTCGAGATGCCACGTGGACGAGGGCATGCCCAAAGCACATCTTAAC 
CTGAGCGGGGGTCGCCCAGGTAAAAGCAGTTCTAACCGACTGTTACGGATACAGCCTGATAGGG 
TGCTGCAGAGGCCCACTGTTCTGCTACTAAAAATCTCTGCTGTACATGGCACATGGAGTTGATCA 
CAAATGAACTTTTATACAAAACTTACAAACAAAAACCCGTCAGGGTGGAAGAA 

 
 

Templates for generation of radiolabeled RNA constructs 

 
 Templates for in vitro transcriptions to generate radiolabeled reporter or competitor 

RNAs were obtained by linearizing pGEM-4 plasmids containing segments of the DENV-2 or 

JEV 3’ UTR or the HCV or BVDV IRES elements (as described above). To make the control 

reporter RNA or the DENV-2 sfRNA reporter, the pGEM-4 plasmid with or without the first stem-

loop of the DENV-2 3’ UTR (respectively) was linearized with Ear1 (Figure 6). In Figure 8, the 5’ 

half of the DENV-2 and the 5’ proximal 200 nt of the JEV reporter RNAs were generated by 
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linearizing the respective plasmids with HindIII. All DENV-2 competitor RNAs were generated by 

digesting the pGEM-4 plasmid containing the 5’ half of the DENV-2 3’ UTR with HindIII. For all 

competition assays, the control competitor template was made by digesting the empty pGEM-4 

vector with Sml1, and the reporter RNA was generated by linearizing pGEM-4 with Ear1. The 

reporter and competitor RNAs containing the HCV or BVDV 5’ UTRs were made by digesting 

the pGEM-4 plasmids containing the HCV or BVDV IRES elements with HindIII. 

 

In vitro transcriptions and in vitro XRN1 decay assays 

 
 Radiolabeled, capped or monophosphorylated reporter or competitor RNAs were 

transcribed using SP6 polymerase with linearized pGEM-4 templates as previously described 

(Wilusz and Shenk 1988) and gel purified. Probes for northern blots were generated using T7 

polymerase and EcoRI linearized pGEM-4 derivative templates (described above) and were 

also gel purified.  Radiolabeled RNAs were generated using α 32P-UTP with 10x molar excess 5’ 

GMP or 7meGpppG cap analog to create 5’ monophosphorylated (permissive) or 5’ capped 

(non-permissive) substrates for XRN1. About 30 fmol of radioactive RNAs were incubated in 

mosquito C6/36 or human HeLa cell cytoplasmic extracts (S100, prepared as described in 

Sokoloski et al. 2008 and Ford et al. 1999, respectively) or with recombinant yeast XRN1 

protein (New England Biolabs) and samples were collected at the indicated times by addition to 

400 µL HSCB solution. For competition assays, a 30x molar excess of lightly radiolabeled 

DENV-2 or JEV 3’ UTR or 66.7x molar excess of the BVDV or HCV 5’ UTR constructs were 

incubated with ~30 fmol of the reporter RNA. RNAs were purified by phenol chloroform isoamyl 

alcohol (25:24:1) extraction and ethanol precipitation using tRNA or glycogen as carrier and 

resolved on 5% denaturing polyacrylamide gels containing 7M urea. Decay products were 

visualized by phosphorimaging.  
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Plasmid transfections 

 
 All plasmids were amplified in DH5α and purified using the Invitrogen PureLink HiPure 

plasmid maxiprep kit. Residual endotoxin was removed using the MiraClean endotoxin removal 

kit (Mirus). Human 293T cells were transfected using Lipofectamine 2000 (Life Technologies) 

with Opti-MEM1 Reduced Serum Medium according to the manufacturer’s instructions. Total 

RNA from transfected cells was collected using TRIzolTM (Invitrogen).  

 

Immunofluorescence assays 

 
 Cells were grown on coverslips or in 8-well chamber slides and at the indicated times 

post-infection were washed with cold PBS. Coverslips or chamber slides were then incubated 

with rocking at room temperature under 4% paraformaldehyde in PBS, then methanol, then 70% 

ethanol to fix and permeabilize cells. Cells were then blocked with 6% bovine serum albumin 

(Fraction V; Fisher) in PBS for 1 hour at room temperature or 4C overnight and stained with 

primary antibody to BVDV (Veterinary Medical Research and Development; bovine viral 

diarrhea virus types 1 and 2 Mab 3.12F1; 1:100) in 0.6% bovine serum albumin in PBS 

overnight at 4C with rocking. Coverslips were washed three times with PBS and incubated with 

secondary antibody (goat anti-mouse AlexaFluor 594; Life Technologies; 1:2,000) for 1 hour at 

room temperature, washed 5 times with PBS, and mounted using ProLong Gold with DAPI 

(Invitrogen). Cells were visualized using an Olympus IX71 inverted microscope and 

photographed using a digital camera (Q Imaging Retiga 2000R). 

 

Western blots 

 
 Protein lysates from MDBK cells infected with BVDV for 24 hours or mock infected were 

generated by pelleting the cells, washing twice with cold PBS, and resuspending the pellets in 

RIPA buffer (50 mM Tris-Cl pH 7.5, 0.5% sodium deoxycholate [w/v], 1% NP-40 [v/v], 0.05% 
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sodium dodecyl sulfate (SDS) [w/v], 150 mM sodium chloride, 1 mM EDTA). Protein 

concentrations were determined by the Bradford assay (BioRad) and 20 g (for anti-JUN blots) 

or 30 g (for anti-FOS blots) total protein were separated by SDS-PAGE and transferred onto 

nitrocellulose membranes using a Trans-Blot Semi-dry Transfer cell (BioRad). Membranes were 

blocked with 5% milk in TBST (10 mM Tris -Cl pH 8, 150 mM sodium chloride, 1% Tween 20) 

overnight at 4C or 1 hour at room temperature, and primary antibody (rabbit anti-c-JUN [H-79; 

Santa Cruz Biotechnology; 1:200]; rabbit anti-c-FOS [H-125; Santa Cruz Biotechnology; 

1:1,000]; mouse anti-GAPDH [Millipore; 1:1,000]) was added to the blocking solution and rocked 

overnight at 4C. Blots were washed three times with TBST and secondary antibody (goat anti-

rabbit IgG HRP conjugate [BioRad; 1:20,000]; goat anti-mouse IgG HRP conjugate [Santa Cruz 

Biotechnology; 1:20,000]) in 5% milk (in TBST) was added and incubated for 1 hour at room 

temperature or overnight at 4C. SuperSignal West Pico chemiluminescent substrate (Thermo 

Scientific) was used to visualize HRP conjugates using a VersaDoc Imager and ImageLab 

software (BioRad). Relative band quantification was done by volumetric analysis and c-JUN or 

c-FOS values were normalized to GAPDH.  

 

Analysis of sfRNA-like decay intermediates by northern blotting 

 
For analysis of intermediates generated from eGFP RNAs containing the DENV-2 3’ 

UTR, 1 g of total RNA from transfected cells at 48 hpt was analyzed by northern blotting 

(described below). To determine if treatment of cells transfected with peGFP-N1 +/- the DENV-2 

3’ UTR with an siRNA to eGFP enhanced the formation of the DENV-2 sfRNA-like decay 

intermediate, 1 g of total RNA from cells collected at 24 hpt was analyzed. Decay 

intermediates generated from eGFP RNAs containing the BVDV or HCV IRES elements were 

detected at 48 hours post transfection in cells co-transfected with an anti-eGFP siRNA 

(described below) by northern blotting using 2 g of total RNA from cells that had been exposed 
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to actinomycin D for 30 minutes. For flavivirus sfRNA detection, 1 g of total RNA from cells 

infected with KUNV (0, 36, and 48 hpi) or DENV-2 (0, 3, and 4 dpi) was analyzed. 

For the detection of sfRNA-like decay intermediates from eGFP reporters or sfRNAs 

from DENV-2 or KUNV infected cells, total cellular RNA (1 or 2 g as indicated above) was 

separated on 5% denaturing polyacrylamide gels. To assess eGFP knockdown by northern blot, 

5 g of total RNA from transfected and infected (or mock-infected) cells was resolved on a 

denaturing agarose gel, and ethidium bromide-stained ribosomal RNA was visualized to ensure 

equal loading. RNA was then transferred onto a nylon membrane (Hybond-XL; GE Healthcare) 

by capillary action (agarose gels) or using a tank transfer unit (acrylamide gels). The blots were 

UV cross-linked before blocking for 30 minutes at 60C in hybridization solution (50% 

formamide, 1 mg/mL bovine serum albumin, 750 mM sodium chloride, 75 mM sodium citrate, 

0.1 mg/mL salmon sperm DNA, 1% SDS, 1 mg/mL polyvinylpyrrolidone, 1 mg/mL ficoll). In vitro 

transcribed, internally radiolabeled RNA probes (gel purified) complementary to the 3’ UTR of 

either KUNV, DENV-2, or a probe complementary to a region surrounding the siRNA-cleavage 

site of the eGFP open reading frame were used to detect sfRNAs by probing in hybridization 

buffer overnight at 60C. Blots were washed three times with wash solution (300 mM sodium 

chloride, 0.1% SDS, 30 mM sodium citrate) and three times with stringent wash solution (30 mM 

sodium chloride, 0.1% SDS, 3 mM sodium citrate) for twenty minutes each at 60C. Hybridized 

RNAs were visualized by exposing the blot on storage phosphor screens and imaging on the 

Typhoon Trio Imager (GE Healthcare).  

 

Analysis of mRNA stability and abundance 

 
 To generate mRNA decay curves, 293T cells were either mock infected or infected with 

DENV-2 (MOI of 1) or KUNV (MOI of 5), or MDBK cells were mock infected or infected with 

cytopathic BVDV (MOI of 10). At the indicated times post infection (3 or 4 dpi for DENV-2; 36 or 
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48 hpi for KUNV; 24 hpi for BVDV) the medium was replaced with fresh maintenance medium 

containing 5 g/mL of actinomycin D (Sigma) and incubated for 30 minutes before collecting the 

initial time point by resuspending the cell monolayer in TRIzolTM. The pLKO.1 and XRN1 shRNA 

expressing stable cell pools were analyzed after puromycin selection in the same manner. 

Analysis of mRNA stability in cells transiently transfected cells expressing the eGFP reporter 

with or without the DENV-2 3’ UTR was done by transcriptional shutoffs at 48 hours post 

transfection. Following transcription shut-off, RNA was extracted following the manufacturer’s 

protocol and treated with DNase I (Fermentas) to remove any residual genomic DNA. Total 

RNA from HCV (JFH-1 strain) infected Huh7.5 cells was obtained from Dr. Shelton Bradrick for 

half-life analysis. Reverse transcription using Improm-II reverse transcriptase (Promega) was 

performed by first annealing 0.5 or 1 g of total RNA with random hexamer primers (0.5 µg per 

reaction in a total volume of 5 µL) at 70ºC for 5 minutes and reaction tubes were immediately 

placed on ice. Each reaction then received 4 µL reverse transcription buffer (5x), 5.6 µL water, 1 

µL dNTPs (10 mM each), 2.4 µL magnesium chloride (25 mM), 1 µL RNase inhibitor, and 1 µL 

reverse transcriptase. The reactions were then incubated at 25ºC for 5 minutes, 42ºC for 1 hour, 

and 70ºC for 5 minutes in a thermocycler. The resulting cDNA was then diluted 1:1 with water to 

yield a total volume of 40 µL. 

 Quantitative PCR (qPCR) using the CFX96 real time PCR system (Bio-Rad) was then 

performed using SYBR green supermix. Each 10 µL qPCR reaction was generated by dividing a 

~30 µL master mix containing 2.64 µL cDNA solution plus 15 µL SYBR green supermix, 10.2 µL 

water, and 1.2 µL each primer (at 2.5 µM) into 3 reactions. All qPCR reactions were done using 

a two-step amplification procedure with an annealing temperature of 60ºC using clear 96 well 

plates. The abundance of each transcript in each time point indicated was determined relative to 

GAPDH (human cells) or ACTB (bovine cells) using the Ct method and plotted to determine 

half-life using an exponential decay curve. Primers were designed using the NCBI Primer-
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BLAST tool such that the annealing temperature was ~60ºC, the amplicon was ~100-200 nt in 

length, and all RNA isoforms in GenBank would be amplified (if applicable). Primers used for all 

qPCR experiments were standardized using ten-fold serial dilutions of plasmid or cDNA and 

only used if they had 89-110% efficiency (listed in Table 3). The average half-life plus or minus 

the standard deviation of two independent infections (for DENV-2 and KUNV infections) or three 

infections (BVDV and HCV) are reported, and Student’s t-test was used to determine 

significance. Error bars indicate standard deviation of each qPCR measurement from a 

representative decay curve. 

Table 3. Primers used for qPCR analyses. 

Target 
GenBank 

Accession 
Number 

Organism/Virus Forward Reverse 
Efficiency 

(%) 

RN7SL1 NR_002715.1 Homo sapiens 
GGAGTTCTGGGCTGTAGT
GC 

ATCAGCACGGGAGTTTTG
AC 

89 

ACTB AY141970.1 Bos taurus 
CTGAGCGCAAGTACTCC
GTG 

CAGCTAACAGTCCGCCTA
GA 

92.5 

AQP3 DQ083949.1 Homo sapiens 
ACCAGCTTTTTGTTTCGG
GC 

GGCTGTGCCTATGAACTG
GT 

103.7 

ARMCX4 NM_001256155.1 Homo sapiens 
TGCAGTTGGCTGGACTAA
GG 

GTTTCTCCACTTCCCACC
GT 

94.2 

BVDV DQ088995.2 
Bovine viral 

diarrhea virus 
(Singer) 

ACCTGTGAGCGGGATCTA
CT 

TCTTCAAAGAGCTCCAGC
GG 92.7 

CCL2 NM_002982.3 Homo sapiens 
TGAAGCTCGCACTCTCGC
CT 

TGAGCGAGCCCTTGGGG
AATGA 

105.9 

CLTC NM_004859.3 Homo sapiens 
CCTTGCAGGGTGCCAGA
TTA 

ACCACACGATTTTGCTGT
GC 

100.1 

CTNNB1 NM_001904.3 Homo sapiens 
GCTGGGACCTTGCATAAC
CT 

CCAAGCATTTTCACCAGG
GC 

101.6 

CXCL11 NM_005409.4 Homo sapiens 
CATGAGTGTGAAGGGCAT
GGCT 

CCAGGGCCTATGCAAAG
ACAGCG 

100.5 

CXCL2 NM_002089.3 Homo sapiens 
AGGGGTTCGCCGTTCTC
GGA 

ATGGGGCTCAGCAGGCG
GTT 

94 

DENV 3’ 
UTR 

M20558.1 
Dengue virus type 
2 (Jamaica 1409) 

AGGCCATCACAAATGCCA
CAGC 

ACGCCATGCGTACAGCTT
CCA 96.2 

DENV 
ORF 

M20558.1 
Dengue virus type 
2 (Jamaica 1409) 

GTGCGTGTGCAAAGACC
AACACC 

AAGGCCATAGGTGCCGA
CTTGC 95.8 

eGFP U55762.1 N/A 
GACGGCGACGTAAACGG
CCA 

CAGCTTGCCGGTGGTGC
AGA 

91.5 

FOS V01512.1 Homo sapiens 
GTGGGAATGAAGTTGGC
ACT 

CTACCACTCACCCGCAGA
CT 

95.8 

FOS AY322482.1 Bos taurus 
GCAAAACGCATGGAGTGT
GT  

AAAAGAGACGCAGACCC
AGG 

103.2 

GAPDH NM_002046.5 Homo sapiens 
TCTTTTGCGTCGCCAGCC
GA 

ACCAGGCGCCCAATACG
ACC 

94.9 

HIF1A NM_001530.3 Homo sapiens 
GCGCGAACGACAAGAAA GAAGTGGCAACTGATGA

GCA 
109.7 

IL6 NM_000600.3 Homo sapiens 
TCGAGCCCACCGGGAAC
GAA 

GCAACTGGACCGAAGGC
GCT 

101 

JUN NM_001077827.1 Bos taurus 
ACGACCTTCTACGACGAT
GC 

GCCAGATTCAGGGTCATG
CT 

106.4 

JUN NM_002228.3 Homo sapiens GCCAGGTCGGCAGTATA TCTGGACACTCCCGAAAC 91.7 
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GTC AC 

KUNV 3’ 
UTR 

AY274504.1 
Kunjin virus 

(FLSDX) 
GGAGACCCCGTGCCGCA
AAA 

CACTGTGCCGTGTGGCT
GGT 

93.1 

KUNV 
ORF 

AY274504.1 
Kunjin virus 

(FLSDX) 
TGGACGGGGAATACCGA
CTTAGAGG 

ACCCCAGCTGCTGCCAC
CTT 

95 

MOSPD2 NM_152581.3 Homo sapiens 
CCACGGTTCCTTCGTCCA
TT 

TGTATGTGTTCCCCTCCA
CG 

103.3 

MYC NM_002467.4 Homo sapiens 
TGTCAAGAGGCGAACACA
CA 

ACCTTGGGGGCCTTTTCA
TT 

90 

OASL NM_003733.3 Homo sapiens 
TCCTTCAGCGAGCTGCAG
AGAAAT 

CCGGATCCAGGATGATG
GGCCT 

98.1 

pGEM-4 
X65303.1 

 
N/A 

GAATACACGGAATTCGAG
CTCGGTA 

TCATTAATGCAGCTGGCT
TATCGAA 

100.4 

TUT1 NM_022830.2 Homo sapiens 
AGGCAGCCCAAGAATGG
TC 

GCCACCACTCAGTCCTTT
CA 

98.6 

VEGFA NM_001171623.1 Homo sapiens 
AGGAGGAGGGCAGAATC
ATCAC 

ATGTCCACCAGGGTCTCG
ATTG 

94 

XRN1 NM_019001.4 Homo sapiens 
GCGGCACCTGCCATCTTC
TGA 

GAACTGTCAGCTTGCTGT
GCTCAA 

106 

 

For all mRNA abundance experiments, the average, plus or minus the standard 

deviation of three infections are reported. RNA from Kunjin virus infected 293T cells (MOI of 5) 

was analyzed at 48 hpi for CXCL11, OASL, IL6, and CCL2 abundances. HCV (72 hpi) infected 

(or HCV replicon-expressing) purified cellular RNA was obtained from Dr. Shelton Bradrick. To 

determine the relative abundances of transcripts previously shown to be up-regulated upon 

AGO2 and/or DICER knockdown (Schmitter et al. 2006), human 293T cells were infected with 

KUNV (MOI of 10) or DENV-2 (MOI of 3) and RNA was collected at 60 hpi or 4 dpi 

(respectively). For transcript abundances in BVDV infections, MDBK cells were infected at a 

multiplicity of infection of 10 and RNA was collected at 24 hpi. 

 

Global analysis of RNA stability by RNA-seq 

 
 To determine if XRN1 suppression by sfRNA was correlated with stabilization of host 

mRNAs in general, we performed global analyses of RNA stability using RNA-seq. Another 

positive-sense ssRNA arthropod-borne virus, SINV, was used as a control for these studies and 

was previously shown to alter cellular mRNA stability by sequestering the cellular HuR protein 

(Barnhart et al. 2013). Human 293T cells were mock infected or infected with SINV (strain 

MRE16; MOI of 10) or the Kunjin viruses (MOI of 5) in triplicate cultures. Cells were treated with 
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actinomycin D (5 g/mL) for transcriptional shutoff at 24 hpi (Sindbis virus) or 48 hpi (KUNV or 

IRAΔCS3 KUNV). Four time points were collected: 0 (30 minutes post addition of actinomycin 

D), 0.5 hours, 1.5 hours, and 3 hours post shut-off. RNA was extracted from cell monolayers 

using TRIzolTM (Invitrogen) and 5 g of total RNA were sent to Rutgers University- New Jersey 

Medical School for library preparation and bioinformatics analysis by Drs. Bin Tian, Mainul 

Hoque, and Liu Liang. The purity and quality of all RNA samples was verified using a 

Bioanalyzer (Agilent) before pooling each triplicate sample and processing. Relative RNA 

abundances were gleaned from the 0 time point. For mRNA abundance comparisons, only 

transcripts that were detected in both conditions (RPKM >0.01) were analyzed. Gene Ontology 

analyses were done using DAVID and functional annotation of transcripts was done using the 

GOTERM_BP_FAT tool (Huang et al. 2009(a), Huang et al. 2009(b)). 

 

Global analysis of mRNA abundances by microarray 

 
 All microarray sample preparation and bioinformatic analyses were performed by Dr. 

Alexander Khromykh (University of Queensland, Brisbane, Australia), Dr. Yutaro Kumagai and 

Dr. Shizuo Akira (both at Osaka University, Suita, Osaka, Japan). Interferon-α receptor knock-

out mouse embryonic fibroblasts (IFNAR-/- MEF) were infected with either the sfRNA-deficient 

mutant IRAΔCS3 KUNV or the wild-type KUNV (FLSDX) at an MOI of 1 (described in Pijlman et 

al. 2008). Total RNA was collected from the cell monolayers at 48 hpi using TRIzolTM 

(Invitrogen), purified using an RNeasy Mini kit (Qiagen) and cDNA libraries were generated with 

the WT-Ovation RNA Amplification System and Encore Biotin Module (Nugen). Mouse 430 2.0 

Arrays (Affymetrix) were hybridized with the cDNA library and processed according to the 

manufacturer’s recommendations. For analysis, robust multiarray analyses values were 

generated and genes with a 3-fold or higher difference after transforming to yield a mean value 

of 0 with standard deviation of 1 underwent hierarchical clustering according to Akaike’s 
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information criteria to generate six clusters. The programs R and Bioconductor were used for all 

calculations.    

 
 
Fractionation of capped and uncapped mRNAs 
 
 To determine the relative amount of uncapped transcripts in infected cells, RNA was 

extracted from cells at 4 dpi (DENV-2), 2 dpi (KUNV) or 3 dpi (HCV JFH-1 strain or from Huh7.5 

cells expressing an HCV replicon from Dr. Shelton Bradrick) using TRIzolTM and 5 g was 

fractionated by immunoprecipitation using an antibody to the m3G and m7G cap structure 

(Synaptic Systems) using the manufacturer’s protocol with sepharose G beads. RNA was 

isolated from 10% of the input, the unbound supernatant fraction, and the immunoprecipitated 

fraction.   RNA from all fractions was reverse transcribed for the analysis of mRNA stability as 

described above. qPCR was done to detect the relative abundance of two short-lived transcripts 

FOS and TUT1, using the uncapped 7SL RNA as a reference gene to account for differences in 

fractionation efficiencies. For DENV-2 and KUNV infections, a representative graph depicting 

FOS and TUT1 mRNA abundance in the supernatant fraction normalized to the 10% input is 

shown. For HCV infections and HCV replicon expressing cells, the average amount of FOS and 

TUT1 relative to 7SL in the supernatant fraction normalized to the 10% input is reported plus or 

minus standard deviation of values from three independent infections. The relative abundances 

of capped and polyadenylated mRNAs were determined by performing reverse transcriptions 

using equal volumes of immunoprecipitated (capped) RNA and oligo-d(T) primer. The Ct 

method was used to normalize each transcript to GAPDH using the primers reported in Table 3.  

 

Co-immunoprecipitation of XRN1, AGO2, or DICER and viral RNAs 

 
 Human 293T cells were infected with KUNV (MOI of 5, 2 dpi) or DENV-2 (MOI of 1, 4 

dpi), or MDBK cells were infected with BVDV (MOI of 10, 1 dpi). XRN1-RNA co-
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immunoprecipitations from BVDV infected cells were performed as described in 

(Niranjanakumari et al. 2002) using the commercially available XRN1 C-1 antibody (Santa Cruz 

Biotechnology). For other immunoprecipitations, cells were washed three times with ice-cold 

PBS, overlaid with 1% formaldehyde (in PBS) to capture protein-RNA interactions, and rocked 

at room temperature for 15 minutes. To quench the reaction, glycine was added to a 

concentration of 0.25 M and cells were again rinsed with cold PBS three times. Cells were 

scraped into 500 L of cold RIPA buffer plus 1 L of RiboLock RNase Inhibitor (Fermentas) and 

frozen at -80C. Samples were then thawed on ice, sonicated to lyse cells and were then 

centrifuged to clarify. To immunoprecipitate XRN1-RNA complexes, 10% of the input was saved 

at -80C and lysate was incubated with either 2 L of XRN1 antibody (a gift from Dr. Jens 

Lykke-Andersen, UCSD), 20L of rabbit anti-DICER (Santa Cruz Biotechnology; clone H-212; 

sc-30226), 12 L of rat anti-AGO2 (Millipore; clone 11A9; MABE253) or an equal amount of 

normal rabbit (Santa Cruz Biotechnology; sc-2027) or mouse (Santa Cruz Biotechnology; sc-

2025) IgG plus 1 L of RNase Inhibitor (Fermentas) for 1 hour, rotating at 4C. Rehydrated 

Pansorbin Staph A-positive cells (Calbiochem) (or protein G sepharose 4 fast flow (GE 

Healthcare) for AGO2 immunoprecipitations) were then added to the lysates and rotated for 15 

minutes at 4 C. Pansorbin cells were pelleted and resuspended in RIPA buffer containing 1 M 

urea and washed five times with vigorous intermittent vortexing. Pellets were resuspended 

finally in TEDS buffer (50 mM Tris-Cl pH 7.0, 5 mM EDTA, 1% SDS and 10 mM DTT). All 

samples (including the 10% input) were then incubated at 70 C with shaking for 45 minutes to 

reverse cross-links. Pansorbin was pelleted and RNA was isolated from supernatants using 

TRIzolTM and glycogen as a carrier. Any residual genomic DNA was removed by treating with 

DNase I (Fermentas), and an equal volume of RNA from each fraction was reverse transcribed 

with Improm-II reverse transcriptase as described above. Either semi-quantitative PCR using 

GoTaq Flexi polymerase (Promega) or quantitative real time PCR (SYBR green, as above) was 
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performed with primers to the DENV-2 3’ UTR or open reading frame, the KUNV 3’ UTR or open 

reading frame, or the BVDV 5’ UTR (see Table 3 for sequence information). For qPCR 

quantification, the abundance of viral 3’UTR was compared to the abundance of viral open 

reading frame sequences and both were normalized to the 10% input fraction. For semi-

quantitative PCR, products were resolved on a 2% agarose gel and stained with ethidium 

bromide. 

 

eGFP knockdowns for RNA interference analysis 

 
 Human 293T cells were mock infected or infected with KUNV (MOI of 10) or DENV-2 

(MOI of 3) and at 24 hpi (KUNV-2) or 3 dpi (DENV-2) cells were transfected with 1 g of peGFP-

N1 plasmid with an siRNA to eGFP (5’-GCAAGCUGACCCUGAAGUUCAU) or an equal volume 

of water. After 24 hours, cell monolayers were dissolved in TRIzolTM and RNA was extracted 

according to the manufacturer’s protocol. Residual plasmid DNA was removed by digesting with 

DpnI and/or EcoRI (New England Biolabs) in the presence of RNase Inhibitor (Fermentas) 

followed by Turbo DNase treatment (Life Technologies) as done by Lee et al. (2012b). The 

abundance of eGFP mRNA in each sample was determined by northern blotting using 5 g of 

total RNA and quantified using RT-qPCR as above using the primers to the eGFP open reading 

frame spanning the siRNA cleavage site, indicated in Table 3. To measure the relative amount 

of eGFP knockdown in each condition by RT-qPCR, eGFP abundance in the siRNA treated 

samples was determined relative to the eGFP plus water control, and GAPDH was used as a 

reference gene. A representative northern blot is shown from each infection and the average +/- 

the standard deviation of RT-qPCR measurements from two independent transfections per 

condition is reported. 
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RESULTS 

 
 

Section I. Modulation of cellular mRNA stability by a non-coding flavivirus RNA  
 

Dengue virus type 2 sfRNA is generated by XRN1-mediated decay 

 
 Previous studies implicated XRN1 in the formation of sfRNA by demonstrating that 

XRN1-depleted cells infected with KUNV or YFV generated less sfRNA than wild-type cells 

(Pijlman et al. 2008; Silva et al. 2010). Furthermore, incubation of RNAs containing the YFV 3’ 

UTR with recombinant yeast XRN1 caused an sfRNA-like decay intermediate to form in vitro 

(Silva et al. 2010). We sought to expand these findings to determine if DENV-2 sfRNA formation 

by XRN1 was recapitulated in mammalian and mosquito systems. Because XRN1 specidically 

degrades monophosphorylated RNAs, we used 5’ monophosphorylated radiolabeled reporter 

RNAs containing either a control sequence or the DENV-2 3’ UTR to assess sfRNA formation in 

cytoplasmic extracts under conditions that favored 5’-3’ decay by XRN1. Reactions using 

recombinant yeast XRN1 were also performed to generalize the findings reported in Silva et al. 

(2010) for YFV and determine if other cellular factors were required for sfRNA formation.  
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Figure 6. Dengue virus type 2 sfRNA is formed as XRN1 stalls on the viral 3’ UTR. 
5’ monophosphorylated, radiolabeled reporter RNAs containing either the pGEM-4 
plasmid control sequence (Reporter Only) or the dengue virus type 2 3’ UTR (Reporter + 
DenV 3’ UTR) were incubated with (A) recombinant yeast XRN1 enzyme, (B) HeLa cell 
cytoplasmic extract, or (C) C6/36 mosquito cell cytoplasmic extract for the indicated times 
under conditions that favored 5’-3’ decay by XRN1. Decay products were separated on 
5% polyacrylamide gels and visualized by phosphorimaging. sfRNA-like decay products 
are indicated at right. This experiment was performed in our laboratory by John R. 
Anderson.  

 
When incubated with recombinant yeast XRN1, the control reporter RNA degraded rapidly and 

did not generate any decay intermediates. However, the addition of the DENV-2 3’ UTR to the 

reporter RNA caused an sfRNA-like decay intermediate to accumulate as the full-length RNA 

was rapidly degraded (Figure 6A). Importantly, a robust sfRNA-like decay intermediate was also 

observed as the 3’ UTR of DENV-2 was degraded in cytoplasmic extracts from HeLa cells 

(Figure 6B) or C6/36 mosquito cells (Figure 6C). These experiments strongly suggest that the 

structural elements in the DENV 3’UTR responsible for sfRNA formation can stall both 

mammalian and mosquito 5’-3’ exoribonuclease (presumably XRN1) activity, and that 

cytoplasmic extracts lack other activities capable of efficiently degrading sfRNA. 

 

sfRNA formation suppresses XRN1 activity 

 
 sfRNA accumulates to high levels during flavivirus infections (Pijlman et al. 2008) and 

therefore could potentially have a significant effect on cellular gene expression if it is able to 

sequester host factors.. Because XRN1 is highly processive and is able to degrade many 

endogenous highly structured RNAs (Jinek et al. 2011; Stevens 2001; Stevens 1978), and yeast 

XRN1 has been shown to stall on G-tracts or artificial C-G stem-loops (Decker and Parker 1993; 

Vreken and Raue 1992), we wondered if the stalling of XRN1 on flavivirus RNAs could also 

suppress XRN1 activity. If sfRNA remained associated with XRN1 for a time after stalling 

because the enzyme could not rapidly dissociate from the RNA substrate, then overall 

availability of XRN1 would be compromised by sfRNA formation and cellular substrates for 
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XRN1-mediated decay (i.e. decapped 5’ monophosphorylated transcripts) would be stabilized, 

much as is seen when XRN1 is depleted in yeast (Blewett et al. 2011).  

We used cytoplasmic extracts from HeLa and C6/36 cells as well as recombinant yeast 

XRN1 protein in competition assays to determine if the ability of XRN1 to degrade a 

monophosphorylated control RNA was impeded by sfRNA formation. Figure 7A shows the 

results of our competition assays in HeLa extract. On average, ~30% of a monophosphorylated 

reporter RNA remained after incubation in HeLa cytoplasmic extract for 30 minutes. Similar 

levels of the reporter RNA remained when a 30-fold molar excess of a lightly radiolabeled non-

specific competitor transcript (generated from the linearized pGEM-4 vector) was added to the 

reaction. Interestingly, the addition of a 5’ capped DENV-2 3’ UTR competitor RNA that contains 

the necessary structures required for sfRNA formation but is not a substrate for XRN1 due to its 

blocked 5’ end, had no effect on the decay of the reporter RNA as ~31% of the RNA remained 

after 30 minutes. However, when the DENV-2 3’ UTR competitor RNA contains a 5’ 

monophosphate and is therefore a substrate for XRN1, the reporter RNA was dramatically 

stabilized and ~70% of the RNA remained following the 30 minute incubation. Importantly, this 

effect was not only observed in human cell extracts, but also in C6/36 mosquito cell extracts 

(Figure 7B). Finally, the suppression of XRN1 activity observed in human and mosquito extracts 

did not require other cellular factors, as incubation of recombinant yeast XRN1 with the DENV-2 

competitor RNA also caused the uncapped reporter RNA to become more stable (Figure 7C). 
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Figure 7. Subgenomic flavivirus RNA formation inhibits XRN1 activity. A 5’ 
monophosphorylated RNA containing the DENV-2 3’ UTR inhibits 5’-3’ decay in (A) HeLa 
cell cytoplasmic extract, (B) C6/36 mosquito cell cytoplasmic extract and (C) with 
recombinant yeast XRN1 alone. The Control lanes do not contain competitor RNA. A 
lightly radiolabeled competitor RNA bearing either a 5’ cap or monophosphate was used 
at 30X molar excess of the 5’ monophosphorylated, radiolabeled reporter RNA for the 
indicated times. Non-specific competitor RNA was generated from a pGEM-4 template 
and compared to the DENV-2 3’ UTR competitor containing the 5’ half of the DENV-2 3’ 
UTR. Products were resolved on 5% polyacrylamide gels and visualized by 
phophorimaging. Numbers below the gels are the average +/- standard deviation of the 
percent RNA remaining in the last time point from three independent experiments. This 
experiment was performed in our laboratory by John R. Anderson. 

 
 

Suppression of XRN1 activity is likely a general property of sfRNAs 

 
 To determine if suppression of XRN1 activity is a general property of subgenomic 

flavivirus RNAs, we cloned the 5’ proximal 200 nucleotides of the JEV 3’ UTR which was 

predicted to harbor sfRNA-forming sequences/structures (Pijlman et al. 2008) and used our in 

vitro RNA decay assays to assess XRN1 activity. Figure 8A shows that a monophosphorylated 

reporter RNA containing the JEV 3’ UTR formed an abundant sfRNA in HeLa cell extracts as 

well as when incubated with recombinant yeast XRN1 in the absence of any other factors. A 
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monophosphorylated RNA containing the 5’ half of the DENV-2 3’ UTR (a ~230 nt RNA) was 

used as a positive control in these experiments. Furthermore, the presence of the JEV 3’ UTR 

radiolabeled competitor RNA provided at 30-fold molar excess was strongly associated with the 

stabilization of the monophosphorylated control RNA (Figure 8B), albeit not as potently as the 

DENV 3’ UTR. The JEV 3’ UTR RNA may have less apparent ability to suppress XRN1 activity 

compared to the DENV 3’ UTR RNA in this experiment for two reasons. First, the DENV 3’ UTR 

RNA harbors two XRN1-resistant structures capable of forming two sfRNAs (data not shown) 

and the JEV 3’ UTR RNA has only one XRN1-resistant structure. The DENV 3’ UTR RNA may 

therefore be more resistant to XRN1 than the JEV 3’ UTR RNA because of additional secondary 

or tertiary RNA structural elements that stabilize the sfRNA. Second, the DENV 3’ UTR RNA 

may be less susceptible to 3’-5’ decay in HeLa cytoplasmic extract than the JEV 3’ UTR RNA, 

as in Figure 8A we observe the depletion of the JEV sfRNA-like decay intermediate more rapidly 

than the DENV sfRNA-like decay intermediate, possibly through 3’-5’ decay. Therefore, the 

suppression of 5’-3’ exonucleolytic decay in HeLa cytoplasmic extract by the JEV 3’ UTR 

(Figure 8B) could be less potent than that of the DENV 3’ UTR because the JEV sfRNA-like 

decay intermediate is less stable (and therefore accumulates to lower levels) than the DENV 

sfRNA. These data indicate that sfRNA formation in and of itself is capable of repressing XRN1 

activity, and this may be a conserved function of all flavivirus sfRNAs. 
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Figure 8. Suppression of XRN1 activity is likely a conserved function of flavivirus 
sfRNAs. (A) JEV sfRNA is formed as XRN1 stalls on the viral 3’ UTR. Radiolabeled, 5’ 
monophosphorylated reporter RNAs were incubated in HeLa cytoplasmic extract under 
conditions that favor 5’-3’ decay (left panel) or with recombinant yeast XRN1 (right panel) 
containing either pGEM-4 reporter sequence (Control RNA), the 5’ (proximal) 200 nt of 
the JEV 3’ UTR, or the 5’ half of the DENV-2 3’ UTR (used as a positive control). (B) 5’-3’ 
decay of a reporter RNA is inhibited in HeLa cytoplasmic extract in the presence of a 
competitor RNA containing the first 200 nt of the JEV 3’ UTR. A 5’ monophosphorylated 
radiolabeled reporter RNA containing the pGEM-4 sequence was incubated with a 30x 
molar excess of competitor RNA bearing a 5’ monophosphate containing either pGEM-4 
sequence (Control RNA), the first 200 nt of the JEV 3’ UTR (JEV 3’ UTR) or the 5’ half of 
the DENV-2 3’ UTR (DENV 3’ UTR) in HeLa cytoplasmic extract. RNAs were isolated 
from the reaction at the indicated times, resolved on 5% denaturing polyacrylamide gels, 
and exposed to a phosphorimager screen to visualize. The numbers below the gel in (B) 
are the average percent RNA remaining in each time point +/- the standard deviation. 
The experiment shown in (B) was performed by John R. Anderson and the first 200 
nucleotides of the JEV 3’ UTR was assembled by PCR and cloned into pGEM-4 by 
Benjamin J. Dodd.  

 
 Finally, to determine if XRN1 activity is suppressed during infection of human cells with 

flaviviruses, we measured the relative abundance of uncapped cellular transcripts that would 

likely normally be substrates for XRN1. We used an antibody that recognizes 5’ methylated 

RNA cap structure to fractionate total RNA purified from human 293T cells infected with DENV-

2 when sfRNA had accumulated to high levels (4 days post infection; dpi) or from mock infected 

cells. Antibody was used in excess so that all capped RNAs would be immunoprecipitated away 

from the uncapped RNAs. We used the uncapped 7SL RNA as a reference gene for RT-qPCR 

measurements and confirmed that its abundance was unchanged during viral infection. The 



91 

 

amount of uncapped transcripts in mock or DENV-2 infected cells relative to 10% of the RNA 

input was then determined. Figure 9 (top panels) shows that there was an increase in the 

relative abundance of two short-lived mRNAs, FOS and TUT1, in the uncapped fraction of RNA 

purified from DENV-2 infected cells relative to mock infected cells. Furthermore, this effect was 

not specific to DENV-2 infections, as uncapped mRNAs accumulated in KUNV infected cells (2 

dpi; bottom panels of Figure 9). Importantly, this increase in uncapped mRNAs was strongly 

associated with sfRNA formation. Cells infected with a mutant KUNV that cannot generate 

sfRNA (the CS3ΔIRA mutant described in Pijlman et al. 2008) did not cause an increase in the 

relative abundance of uncapped cellular transcripts (Figure 9, bottom panels). Therefore, we 

have observed defects in XRN1 activity due to sfRNA accumulation using both cell extract-

based experiments and cell culture models of infection.  

 

 
Figure 9. sfRNA accumulation during two flavivirus infections is correlated with an 
increase in the abundance of uncapped mRNAs. Human 293T cells were infected with 
dengue virus type 2 (DenV; top panels), Kunjin virus (KUN) or a Kunjin virus mutant that 
does not make sfRNA1 or sfRNA2 (KUN sfRNA-) at an MOI of 1, and total RNA collected 
2 dpi or 4 dpi (respectively). Following fractionation of total RNA with an antibody to the 5’ 
methylguanosine cap structure, RT-qPCR was performed to measure the relative 
abundance of two endogenous transcripts FOS and TUT1. Values shown above are from 
one representative experiment with standard error of the mean from three technical 
replicates. 
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XRN1 may be sequestered by sfRNA 

 
 If sfRNA formation inhibited XRN1 activity, we hypothesized that the most likely scenario 

by which this could occur would be if the sfRNA acted as a reversible inhibitor of the enzyme. 

Therefore, the RNA should be physically associated with XRN1 for a time, potentially due to a 

slow rate of dissociation as XRN1 frees itself from the stable RNA decay product. To look for an 

association between sfRNA and XRN1, cells were infected with DENV-2 or KUNV, and at 4 dpi 

or 2 dpi (respectively) we assessed the interaction between XRN1 and sfRNA by RNA co-

immunoprecipitations using an antibody against XRN1. Protein-RNA interactions were stabilized 

in infected cells by formaldehyde cross-linking prior to cell lysis. As depicted in Figure 10A, we 

can observe the specific physical interaction between RNAs containing the DENV-2 or KUNV 3’ 

UTRs and XRN1 by semi-quantitative RT-PCR. Furthermore, RNAs containing the viral 3’ UTRs 

were enriched in the XRN1-co-immunoprecipitated fraction by ~4x or ~2x (respectively) 

compared to RNAs that contained the viral open reading frames as determined by qRT-PCR 

(Figure 10B). We normalized the abundances of the RNAs containing the viral 3’ UTR or open 

reading frame (ORF) in the XRN1 immunoprecipitation fraction to the 10% input fraction to 

account for the minimal increase in the overall amount of viral 3’ UTR-containing RNAs 

observed in infected cells due to sfRNA accumulation. Additionally, the efficiencies of the 

primers used to amplify the viral 3’ UTR or ORF were within 2% of each other, and therefore 

differences in primer efficiency did not account for these observations. Overall, these data 

indicate that 3’ UTR-containing RNAs (e.g. sfRNAs) were physically associated with XRN1 

during infection. 
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Figure 10. Subgenomic flavivirus RNA is physically associated with XRN1 during 
infection. Lysates generated from formaldehyde cross-linked 293T cells infected with 
dengue virus type 2 (DenV; MOI of 1) or Kunjin virus (KUN; MOI of 1) for 4 days or 2 
days (respectively) were immunoprecipitated with XRN1 antibody (α-XRN1 lanes) or 
matched quantities of normal rabbit IgG (IgG lanes) and co-precipitating RNAs were 
detected by RT-PCR (A) or RT-qPCR (B) using primers to the viral open reading frame 
(ORF) or the 3’ untranslated region (3’ UTR). In (B), the relative RNA levels in the XRN1 
immunoprecipitation (IPPT) fraction were determined by normalizing to the 10% input 
fractions. 

 
 

Cellular mRNA stabilization is strongly associated with sfRNA accumulation 

 
 Because XRN1 is the major 5’-3’ exoribonuclease in the cytoplasm of yeast and 

mammalian cells (Nagarajan et al. 2013; Bashkirov et al. 1997; Stevens 1978), and deletion or 

siRNA-mediated depletion of XRN1 results in increased mRNA stability in yeast (Blewett et al. 

2011; Haimovich et al. 2013; Sun et al. 2013) and an ARE-containing reporter RNA in 

mammalian cells (Stoecklin et al. 2006), we wondered if defects in XRN1 activity due to sfRNA 

formation might influence the rate at which cellular mRNAs were degraded. Therefore, we first 

created a pool of human 293T cells stably expressing a short hairpin RNA (shRNA) to XRN1 to 

deplete the exonuclease. Figure 11A shows that the abundance of XRN1 mRNA in this cell pool 

was reduced to ~30% compared to cells stably expressing the pLKO.1 empty vector. To 

determine if XRN1 depletion alters the stability of endogenous cellular mRNAs, we performed 
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transcriptional shut-offs using actinomycin D and followed the degradation of two short-lived 

transcripts (FOS and TUT1) by RT-qPCR over a time course. Figure 11B shows that TUT1 and 

FOS mRNAs are significantly stabilized in the cells deficient in XRN1 compared to the control 

cells harboring pLKO.1. The TUT1 mRNA was 1.6-fold more stable and FOS was 1.8-fold more 

stable on average in cells depleted of XRN1 (average half-lives are reported in the graph insets 

in Figure 11). These transcripts, therefore, are very likely to be degraded by XRN1 in human 

293T cells.  

 
 
Figure 11. XRN1 depletion leads to increased stability of two short-lived transcripts 
in human 293T cells. (A) The abundance of XRN1 mRNA was assessed using RT-
qPCR to show XRN1 knockdown efficiency in human 293T cells stably expressing an 
shRNA to XRN1(XRN1 KD) compared to cells expressing the empty vector pLKO.1 
(LKO.1).  (B) The stability of FOS and TUT1 mRNAs was determined after transcriptional 
shutoff by actinomycin D treatment by RT-qPCR using GAPDH as a reference gene. 
Average half-lives (minutes) +/- the standard deviation are reported from two 
independent experiments. * indicates p<0.05 by Student’s t-test. 

 

As reduction of XRN1 activity leads to stabilization of cellular mRNAs (Figure 11) and 

sfRNA inhibits XRN1 in vitro (Figure 8) we predicted that cellular mRNAs were likely to be 

stabilized during flavivirus infections. To test this, we performed transcriptional shut-off 
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experiments by applying actinomycin D to mock infected or DENV-2 infected cells at 4 days 

post infection and collecting total RNA samples over a 3 hour time course at 3 or 4 days post 

infection. As DENV-2 sfRNA accumulated (Figure 12A), both TUT1 and FOS mRNAs became 

more stable over the course of the DENV-2 infection (Figure 12B). By 4 dpi, when sfRNA was 

most abundant, FOS was 2.7-fold and TUT1 was 2.1-fold more stable in DENV-2 infections than 

in mock infected cells. Therefore, the accumulation of sfRNA in a DENV-2 infection was 

associated with stabilization of two endogenous cellular transcripts that are likely substrates of 

XRN1. This indicates that XRN1 activity is repressed during DENV-2 infection. 

 
Figure 12. DENV-2 sfRNA accumulation is associated with stabilization of two 
short-lived cellular mRNAs. (A) Northern blotting was performed to visualize dengue 
virus type 2 (DenV2) sfRNA accumulation over the course of an infection (0, 3, and 4 
days post infection). (B) The stability of TUT1 and FOS mRNAs was assessed by 
actinomycin D transcriptional shutoff of cells infected with DENV-2 at 0, 3 and 4 days 
post infection by RT-qPCR using GAPDH as a reference gene. Average transcript half-
life (minutes) plus or minus the standard deviation of two independent infections are 
shown. * indicates p<0.05 by Student’s t-test. 

 

To determine if mRNA stability was also altered in another flavivirus infection, we 

examined TUT1 and FOS mRNA stability at 36 and 48 hpi with KUNV when sfRNA 

accumulated to high levels as assessed by northern blot (Figure 13A, left panel). Intriguingly, 
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both cellular transcripts were significantly stabilized in conjunction with sfRNA accumulation 

(Figure 13A, right panels). Furthermore, the stabilization of FOS and TUT1 mRNAs only 

occurred during KUNV infection when sfRNA was present, as an sfRNA-deficient Kunjin virus 

(that replicated to the same level as wild-type KUNV, Figure 15C) did not alter cellular mRNA 

stability during infection (Figure 13B). Additionally, we later determined that TUT1 mRNA is 

destabilized during Sindbis virus infection (Barnhart et al. 2013; Appendix 6). These results 

provide more substantial evidence that stabilization of cellular mRNAs is dependent on sfRNA 

production (and therefore XRN1 inhibition) rather than just a general cellular response to 

infection. 

 
 

Figure 13. The stabilization of short-lived cellular mRNAs during Kunjin virus 
infection depends on sfRNA accumulation. Human 293T cells were infected with wild-
type Kunjin virus (KUN) (A) or an sfRNA-deficient mutant Kunjin virus (KUN MUT) at an 
MOI of 1 (B) and transcription was inhibited by actinomycin-D treatment at 0, 36, and 48 
hours post infection. Northern blotting was performed to assess sfRNA accumulation over 
the course of an infection (left panels) and mRNA stability of TUT1 and FOS was 
determined by RT-qPCR using GAPDH as a reference gene (right panels). The average 
half-lives (minutes) from two independent infections +/- standard deviation are shown. * 
indicates p<0.05 using Student’s t-test. 

 
 



97 

 

 Although the results above demonstrated that sfRNA formation was necessary for the 

stabilization of cellular mRNAs (Figure 13), we also wished to determine whether sfRNA 

production is sufficient on its own to facilitate changes in mRNA stability in the complete 

absence of other aspects of a viral infection. We therefore cloned the DENV-2 3’ UTR into the 

peGFP-N1 reporter plasmid to express GFP containing the 3’ UTR of DENV-2 downstream of 

the GFP open reading frame. We transfected equal amounts of each peGFP plasmid into 293T 

cells and 48 hours post transfection performed transcriptional shut-offs with actinomycin D to 

assess changes in mRNA stability. As depicted in Figure 14A, the presence of the DENV-2 3’ 

UTR facilitated the formation of an sfRNA-like RNA decay product that accumulated in 

transfected cells. Cells transfected with the sfRNA-producing DENV 3’ UTR construct displayed 

a 2.1-fold increase in the half-lives of both FOS and TUT1. Of note, the stability of both FOS 

and TUT1 mRNAs was not enhanced by the peGFP-N1 empty vector alone (Figure 14B).These 

results support that sfRNA formation in the absence of viral infection is capable of suppressing 

Xrn1 activity in human cells.  

 
Figure 14. The accumulation of sfRNA in the absence of viral infection is 
associated with the stabilization of cellular transcripts. Plasmids expressing GFP 
alone (“GFP Only”) or a GFP mRNA containing the dengue virus type 2 3’ UTR in the 
GFP 3’ UTR(“DenV 3’ UTR”) were transfected into 293T cells and samples were taken 48 
hours post transfection. (A) Northern blotting for the DENV2 3’ UTR shows an sfRNA-like 
decay intermediate forms in transfected cells. (B) Transfected cells were treated with 
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actinomycin D to shut off transcription and FOS and TUT1 mRNA stability was assessed 
by RT-qPCR using GAPDH as a reference gene. The mean of two independent 
experiments plus or minus the standard deviation are reported and * indicates p<0.05 by 
Student’s t-test. 

 
 

sfRNA accumulation is correlated with dramatic changes in cellular gene expression 

 
 Considering that sfRNA formation significantly stabilizes cellular transcripts during 

infections with two different flaviviruses and that changes in mRNA stability are often tightly 

coordinated with mRNA abundance, we sought to determine if sfRNA accumulation influences 

cellular gene expression during an infection. Our collaborators Dr. Khromykh (University of 

Queensland) and Drs. Kumagai and Akira (Osaka University) assessed changes in host gene 

expression at 48 hpi by microarray using mouse embryonic fibroblasts deficient in the interferon 

/ receptor (IFNAR-/-). This cell line is highly permissive for KUNV replication and there was 

no difference in the intracellular level of wild-type and mutant KUNV RNA at 48 hpi when total 

RNA samples were collected (Figure 15C). For analysis, these cells were either mock infected, 

infected with the wild-type KUNV, or the sfRNA-deficient KUNV.  Figure 15A depicts a heat map 

representing 416 mRNAs that were 3-fold or more over-expressed in the wild-type KUNV 

infected cells compared to mock infected cells. Importantly, 378 of these transcripts were not 

over-expressed upon infection with the sfRNA-deficient KUNV. Gene Ontology analysis of this 

set of transcripts revealed that factors involved in cell adhesion, innate immune response, 

inflammation, stress responses and cell proliferation were significantly over-represented 

(p<0.01). Furthermore, human 293T cells showed similar up-regulation of four of these immune 

factors as determined by RT-qPCR in the wild-type KUNV infected cells compared to the 

sfRNA-deficient KUNV infections (Figure 15B). In 293T cells the abundances of OASL and 

CXCL11 were dramatically increased (by ~575- and ~472-fold, respectively) during wild-type 

KUNV infections versus mock infected cells. In contrast, the murine Oasl1, Oasl2 and Cxcl11 

transcripts were elevated to a lesser extent as determined by microarray (by 20-, 12.97-, and 
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15.9-fold, respectively). These differences are likely due to the absence of type I interferon 

signaling in the IFNAR-/- MEFs compared to the interferon-competent human 293T cells. In 

contrast, the transcripts encoding interleukin-6 (IL6) and the chemokine CCL2 were elevated by 

4.5- and 3.5-fold (respectively) in human 293T cells, and by 15.2- and 4.71-fold (respectively) in 

the IFNAR-/- MEFs. These results both generalize our findings to other cell types (and species) 

and confirm the results derived from microarray analysis. 

Interestingly, previous studies reported that transcripts encoding the four immune factors 

IL6, OASL, CCL2, and CXCL11 were elevated in other flavivirus infections. The interferon-

induced transcript OASL was shown to be elevated in DENV, HCV, and WNV infections and 

plays an important role in the host antiviral response (Fink et al. 2007; Schoggins et al. 2011; 

Yakub et al. 2005; Perelygin et al. 2002). The chemokine CXCL11 is induced by type I 

interferon, NFκB, and/or pro-inflammatory cytokines and is a T cell chemoattractant that has 

been suggested to be involved in neuroinflammatory disorders (Cole et al. 1998). Furthermore, 

CXCL11 was elevated in cell culture models of DENV infection and in human patients (Fink et 

al. 2007). Finally, IL6 and CCL2 have previously been shown to be elevated in WNV, DENV, 

JEV, and other flavivirus infections (Cheeran et al. 2005; Munoz-Erazo et al. 2012; Tolfvenstam 

et al. 2011; Nazmi et al. 2011; Palus et al. 2013). Therefore, sfRNA accumulation is likely 

contributing to dramatic changes in cellular gene expression in a cell-type independent manner 

that could substantially alter the host response to infection and potentially enhance 

immunopathogenesis.  

Short-lived cellular transcripts may be elevated in flavivirus infections as a result of direct 

suppression of XRN1 activity leading to mRNA stabilization. However, transcripts might also be 

over-expressed as an indirect result of XRN1 suppression. We observed that the transcription 

factor FOS and the uridyl transferase TUT1 were significantly stabilized at the mRNA level 

during WNV and DENV-2 infections. As discussed above, FOS over-expression could 

potentially contribute to increased transcription as part of the AP-1 transcription factor complex. 
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Furthermore, TUT1 modifies miRNAs by adding uridines to their 3’ ends, causing a reduction in 

miRNA abundance likely by targeting the miRNAs for decay (Wyman et al. 2011; Knouf et al. 

2013). Therefore, because TUT1 was stabilized in several flavivirus infections in an sfRNA-

dependent manner, this protein is likely upregulated during infection. Consequently, the 

observed over-expression of transcripts in wild-type KUNV infections could also result from 

elevated levels of transcription factors and repressors of miRNA-mediated decay like FOS and 

TUT1. 

 Interestingly, a subset of mRNAs was less abundant in the wild-type KUNV infected cells 

compared to mock infected cells and cells infected with the sfRNA-deficient KUNV (bottom 

portion of the heat map shown in Figure 15A). Gene Ontology analysis of the down-regulated 

transcripts showed that stress responses, cellular response to viral infection, and negative 

regulators of apoptosis were over-represented (p<0.01). These changes in gene expression 

could be either direct or indirect effects of sfRNA accumulation. Because XRN1 has been 

previously demonstrated in yeast systems to directly affect transcription, transcripts that are 

reduced in abundance during sfRNA-producing viral infections could be down-regulated as a 

direct result of XRN1-suppression (Sun et al. 2013; Haimovich et al. 2013). Otherwise, 

suppression of XRN1 by sfRNA could indirectly reduce the abundance of many mRNAs by 

causing the stabilization (and up-regulation) of other RNA-decay factors. 
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Figure 15. sfRNA accumulation leads to dramatic changes in cellular gene 
expression. (A) Mouse embryonic fibroblasts lacking the interferon α/β receptor (MEF 
IFNAR-/-) were mock treated or infected with Kunjin virus (KUN WT) or an sfRNA 
deficient mutant Kunjin virus (KUN sfRNA MUT) and total RNA was isolated from each 
sample at 48 hours post infection. The relative abundance of cellular transcripts was 
determined by microarray analysis and following robust multiarray analysis (RMA), 
hierarchical clustering was done for genes with threefold or more difference in RMA 
values after transformation to give a mean of 0 and a standard deviation of 1. The red-
blue color key below the heat map depicts the transformed values. (B) The relative 
abundances of four transcripts shown to be up-regulated in wild-type KUNV infected MEF 
IFNAR-/- cells in (A), IL6, CCL2, CXCL11, and OASL were assessed in infected 293T 
cells (48 hours post infection) using RT-qPCR with GAPDH set as a reference gene. The 
average +/- standard deviations of three independent infections are shown and 
significance determined by Student’s t-test. The sfRNA-deficient mutant KUNV replicate 
to similar levels in (C) 293T cells and in (D) MEF IFNAR-/- as determined by RT-qPCR 
for the Kunjin virus open reading frame from total RNA isolated at 48 hours post infection. 
Average genome copy number +/- standard deviation from three independent infections 
is shown. Experiments and results shown in (A) and (D) were performed by the Akira 
laboratory at Osaka University.  
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Global changes in cellular mRNA stability in arthropod-borne virus infections  

 
 Because sfRNA accumulation appears to correlate with (1) stabilization of two short-

lived transcripts and (2) dysregulation of cellular mRNA abundances, we next sought to 

determine the global impact of sfRNA accumulation on cellular RNA stability during infection. 

Therefore, we compared cellular RNA stability in mock-infected cells or cells infected with either 

wild-type KUNV or two viruses that do not generate sfRNA (Sindbis virus and the sfRNA-

deficient CS3ΔIRA Kunjin virus). Human 293T cells were mock infected or infected with Sindbis 

virus (MOI of 5), wild-type or the CS3ΔIRA Kunjin virus (MOI of 5) and transcription was halted 

using actinomycin D at 24 hpi (mock or SINV) or 48 hpi (the Kunjin viruses). Samples were 

collected in triplicate at 0 (30 minutes post-actinomycin D addition), 0.75, 1.5, and 3 hours post 

transcriptional shut-off. Mike Barnhart performed transcriptional shutoffs and RNA isolations 

from the SINV and mock infected cells. Total RNA was isolated from triplicate infections and 

Drs. Bin Tian, Mainul Hoque and Liu Liang performed library preparation and RNA-seq analysis 

at Rutgers New Jersey Medical School. For sequencing analyses, the triplicate samples 

collected for each time point in each infection were pooled. 

 

Changes in mRNA abundance and stability in KUNV and SINV infections 

 
  We determined that ~3000 cellular RNAs had acceptable half-lives (i.e. they had >10 

mapped reads in the ‘0’ time point, a half-life > 0 and p<0.05 as determined by Dr. Liu Liang), 

and were present in both mock infected cells and cells infected with SINV, KUNV, or the sfRNA-

deficient KUNV to enable direct comparisons of RNA stability (Figure 16A). Of note, the level of 

depth that these samples were sequenced at likely excluded an interesting set of transcripts that 

are of low abundance (<10 reads/sample) in mock infected cells. Therefore, short-lived 

transcripts may be under-represented in these datasets. Accordingly, neither TUT1 nor FOS 

(that we analyzed previously (e.g. Figures 11-13) were present in these RNA-seq data sets. 
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However, we were able to observe some interesting trends in the analyses of the more 

abundant transcripts present in each condition. 

 
 

Figure 16. Global analysis of mRNA stability in sfRNA-forming and sfRNA-deficient 
arthropod-borne virus infected cells. (A) Venn diagrams indicate the number of 
comparable half-lives generated in mock and Sindbis, Kunjin, or sfRNA(-) Kunjin virus 
infected cells that can be compared directly for analysis. (B) A list of the median RNA 
half-life (minutes) in each sample. 

 

The median RNA half-life for each condition was compared to determine if sfRNA 

accumulation corresponded with overall stabilization of cellular RNA. Some interesting trends 

emerged from this comparison. As depicted above in Figure 16B, cellular RNA from KUNV 

infected cells had the longest median half-life at 243 minutes, and RNA from the sfRNA-

deficient KUNV infected cells had the shortest median half-life of 171 minutes. The shorter 

median RNA half-life observed in cells infected with the sfRNA-deficient KUNV could be due to 

the induction of antiviral nucleases that target cellular mRNAs. Considering that KUNV infected 

cells have the most stable median RNA half-life and the sfRNA-deficient KUNV has the least 
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stable median RNA half-life, these results could potentially indicate that sfRNA formation leads 

to an overall stabilization of RNAs. This is consistent with the cellular RNA stabilization by 

sfRNA that we noted above (in Figures 11-13).  

Intriguingly, some striking patterns emerge when we compare the distribution of RNAs 

that were determined to be >2x differentially stabilized during each infection compared to mock 

infected cells. Cells infected with KUNV have only 75 destabilized RNAs compared to mock 

infected cells, but the sfRNA-deficient KUNV infected cells had 478 destabilized RNAs (Figure 

17A, left). Therefore, in the absence of sfRNA accumulation, Kunjin virus-infected cells have 

more destabilized RNAs than stabilized RNAs. If the normal cellular response to infection is to 

destabilize a substantial portion of transcripts, then suppression of XRN1 activity by sfRNA 

formation could impede the normal cellular response.  

 Correspondingly, cells infected with wild-type KUNV have many more stabilized RNAs 

(259) than those infected with the sfRNA-deficient KUNV (76; Figure 17A). Furthermore, when 

we directly compare the RNAs that were 2-fold or more stabilized or destabilized in KUNV 

infections with the sfRNA(-) KUNV infections, we can see very strong association between 

sfRNA accumulation and RNA stabilization (Figure 17A). Wild-type KUNV infected cells have 

740 stabilized transcripts and only 58 destabilized transcripts when directly compared to the 

sfRNA-deficient KUNV infections (Figure 17B). It is important to note that with the size of these 

datasets (~3,000 RNAs/set), changes in stability or abundance that alter <150 RNAs could 

potentially be due to random chance (as 5% of a sample size of ~3,000 is ~150). Accordingly, 

analysis of RNAs from cells infected with SINV did not reveal dramatic differences in host 

mRNA stability. Figure 17C shows the distribution of >2x destabilized or stabilized RNAs in 

SINV infected cells and reveals a very slight over-representation of destabilized transcripts 

overall (which may not be significant). Thus, only infection with the sfRNA-forming KUNV shifts 

the distribution of differentially stabilized transcripts to yield more stabilized transcripts in 

general. 
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Figure 17. sfRNA accumulation is correlated with the stabilization of the majority of 
differentially stabilized transcripts in Kunjin virus infections. (A) The number of 
transcripts that were >2x or more destabilized in cells infected with the wild-type KUNV or 
the sfRNA-deficient KUNV (left panel), and the number of transcripts that were >2x or 
more stabilized in wild-type KUNV or sfRNA-deficient KUNV infected cells at 48 hpi (MOI 
of 5) compared to mock infected cells (right panel). (B) The RNAs that are >2x or more 
stabilized or destabilized in the wild-type KUNV infected cells compared directly to the 
sfRNA-deficient Kunjin virus infected cells are shown. (C) Differentially stabilized (>2x vs 
mock) RNAs in cells infected with SINV at 24 hpi at an MOI of 5 are also reported. 

  

 We were next interested in ascertaining the relative changes in cellular RNA 

abundances of our subset of ~3,000 transcripts (Figure 16A) during each viral infection. We 

hypothesized that sfRNA-forming flavivirus infections would have more up-regulated transcripts 

than sfRNA-deficient virus infections, as sfRNA accumulation was previously shown to be 

associated with the stabilization of mRNAs. As depicted in Figure 18A , cells infected with 

KUNV had more transcripts that were 2-fold or more increased in abundance (323 RNAs) than 

transcripts that were 2-fold or more reduced in abundance (171 RNAs) compared to mock 
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infected cells. This is precisely what one might expect since sfRNA accumulation is strongly 

associated with stabilization of cellular mRNAs.  Interestingly, cells infected with the sfRNA-

deficient KUNV also had only slightly more up-regulated RNAs (242 RNAs) than down-regulated 

RNAs (196 RNAs; Figure 18B). This is again consistent with the absence of significant cellular 

mRNA stabilization due to the lack of sfRNA production by these viruses. 

 
Figure 18. Transcripts that were >2x more or less abundant in virus infected cells 
compared to mock-infected cells by RNA-seq analysis. Values were derived from the 
‘0’ time point of actinomycin D shutoff samples. Only RNAs that were detectable 
(RPKM>0.01) in both mock and infected cells were compared. Substantially up- or down-
regulated RNAs in (A) Kunjin virus (KUNV) versus mock (B) sfRNA(-) Kunjin virus and 
(C) Sindbis virus (SINV) infected cells compared to mock infected cells are reported. 

 

To reinforce this observation, we analyzed the dysregulation of cellular mRNA stability during 

SINV infections (which naturally do not make sfRNA). SINV-infected cells had slightly more 

RNAs that were reduced in abundance (170 RNAs) than were increased in abundance (121 

RNAs) compared to mock infected cells (Figure 18C). The twenty transcripts that were most up- 

or down-regulated in each viral infection are reported in 3. Therefore, although limitations in the 

depth of sequencing performed may have excluded observations of the stability of many 

mRNAs in each infection, the available data do suggest that sfRNA formation is associated with 

increases in RNA abundances during infection. 

 

 
 



107 

 

Analysis of the relationship between transcript abundance and stability in arbovirus 
infected cells 

 
 During viral infection, one might expect that overall cellular gene expression would be 

significantly altered as the cell attempts to respond to the presence of foreign nucleic acids and 

proteins as well as the stresses of viral replication/remodeling of the cell. As described in the 

Introduction, recent studies suggest that transcription and mRNA decay are co-regulated in the 

cell by a crosstalk-type of mechanism that results in a significant buffering of mRNA 

abundances following disruption of decay or transcription (Sun et al. 2013; Haimovich et al. 

2013). Studies in yeast suggest that XRN1 is involved in mediating this buffering mechanism 

(Sun et al. 2013).  However, during the cellular response to infection, buffering is likely to be 

inactivated in order to allow mRNA decay and transcription to act together to achieve rapid 

changes in gene expression. Thus since we speculate that cells would likely substantially alter 

the level of many mRNAs upon infection, one might expect to see a positive correlation between 

mRNA half-lives and overall transcript abundance, as the buffering between transcription and 

mRNA stability is relaxed in infected cells to promote a more rapid response. As seen in Figure 

19A, this is precisely what we observed in SINV infected cells. Buffering of gene expression 

appears to be relaxed as destabilized mRNAs are generally reduced in abundance and 

stabilized mRNAs are generally increased in abundance.  
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Figure 19. Relationships between mRNA abundance and stability in arthropod-
borne virus infected cells. Log transformed fold-change values for transcripts that had 
acceptable abundances and stability in mock infected cells compared to (A) Sindbis virus 
infected cells (SinV), (B) sfRNA-deficient KUNV infected cells (sfRNA(-) KunV) and (C) 
wild-type Kunjin virus infected cells (KunV) reveal the degree to which changes in mRNA 
abundance correlate with changes in mRNA stability in each infection. Scatterplots were 
fit with a linear regression line and the R

2
 value and number of transcripts per chart 

indicated in the inset panels. Abundance values were obtained from the ‘0’ time point of 
actinomycin D shutoffs (30 minutes post drug application). Pearson coefficients were 
used to calculate statistical significance:  Mock vs KunV p = 0.811; Mock vs sfRNA(-) 
KunV p<0.0001; Mock vs SinV p<0.0001.  

 

As seen in Figure 19B, the exact same trend of relaxed buffering of cellular gene expression is 

observed in cells infected with the KUNV mutant that fails to express sfRNA. Interestingly, cells 

infected with wild-type KUNV that generates high levels of sfRNA during infection fail to show a 

positive correlation between cellular mRNA abundance and mRNA stability (Figure 19C). Given 

the recent suggestion that XRN1 may play a major role in regulating the buffering of gene 

expression in yeast (Sun et al. 2013; Haimovich et al. 2013), our observation that cells infected 
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with sfRNA-producing KUNV fail to be able to regulate buffering lends support to the idea that 

XRN1 also regulates this process in mammalian cells. These data also suggest that sfRNA-

producing viruses are targeting not only mRNA decay/stability by repressing XRN1, but also are 

targeting transcriptional regulaton through interfering with the buffering process. Thus additional 

studies with KUNV and other sfRNA-producing viruses may allow insight into mechanistic 

aspects of the crosstalk between mRNA stability and transcription in mammalian cells.      

 

Section II. Investigation of hepacivirus and pestivirus suppression of XRN1 activity 

 

XRN1 stalls on RNA structures in the 5’ UTR of hepaciviruses and pestiviruses 

 
 Our prior results showed that sfRNA formation was a highly conserved mechanism by 

which all arthropod-borne flaviviruses tested to date suppress XRN1 activity and dramatically 

alter cellular mRNA stability during infection. Although viruses in the Flaviviridae family in the 

Hepacivirus and Pestivirus genera do not form sfRNAs from their 3’ UTRs (Pijlman et al. 2008), 

we wondered if they could use an analogous mechanism for suppressing XRN1 activity. Figure 

20 shows representative predicted secondary structures of the 3’ UTR of flaviviral RNAs and the 

5’ UTRs of hepacivirus and pestivirus RNAs (adapted from Liu et al. (2009a)). Interestingly, 

there are conserved secondary and higher-order structures predicted to occur within the 5’ 

UTRs of HCV and BVDV RNAs that could potentially stall the XRN1 exoribonuclease.  

 
Figure 20. Diagrams of the predicted conserved secondary structures of 
representative flavivirus UTRs. The flavivirus 3’ UTR is known to harbor pseudoknot 
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structures and additional structural elements implicated in sfRNA formation. Both 
hepacivirus and pestivirus 5’ UTRs also have higher order structures that are implicated 
in cap-independent translation via internal ribosome entry site (IRES) elements (modified 
from Liu et al. 2009(a)). UTR = untranslated region; sfRNA = subgenomic flavivirus RNA.  

 
 To test the hypothesis that XRN1 stalls on the 5’ UTRs of hepacivirus and pestivirus 

RNAs, we use our in vitro assay to compare the 5’-3’ decay of reporter RNAs containing a 

control sequence or the HCV or BVDV 5’ UTRs. As depicted in Figure 21A, the BVDV 5’ UTR 

generated at least one distinct RNA decay intermediate when incubated with recombinant 

XRN1. Furthermore, the HCV 5’ UTR also generated a decay intermediate  in HeLa cell extract 

under conditions that favor 5’-3’ decay (Figure 21B, left panel) and when the RNA is incubated 

with recombinant yeast XRN1 (Figure 21B, right panel). Therefore the ability of XRN1 to 

degrade these RNAs may be hampered by RNA structure in an analogous fashion to that used 

by the flaviviruses. An unconventional interaction between the liver-specific microRNA miR-122 

(Lagos-Quintana et al. 2002) and the HCV 5’ UTR was previously shown to facilitate viral 

replication (Jopling et al. 2005). Importantly, our results indicate that formation of the HCV RNA 

decay intermediate does not per se rely on the presence of miR-122, as this liver-specific 

microRNA is not expressed in HeLa cells nor is it present in the recombinant XRN1 assay.  
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Figure 21. XRN1 stalls on the BVDV and HCV 5’ untranslated regions. (A) A 5’ 
monophosphorylated RNA containing the BVDV 5’ UTR forms an sfRNA-like decay 
intermediate when degraded by recombinant yeast XRN1. This experiment was 
performed in our laboratory by John R. Anderson. (B) The hepatitis C virus 5’ UTR also 
makes an sfRNA-like decay intermediate in HeLa cytoplasmic extract under conditions 
that highly favor 5’-3’ decay (left panel) and when the RNA is incubated with recombinant 
yeast XRN1 (right panel). Arrows in (B) indicate the sfRNA-like decay intermediates 
formed as the HCV 5’ UTR is degraded in the 5’-3’ direction by XRN1. 

 
We next wished to determine if HCV and BVDV 5’ UTRs generated decay intermediates 

in human cells in culture using GFP reporter constructs, as we previously demonstrated that 

insertion of the DENV-2 3’ UTR into the 3’ UTR of GFP caused the formation of a distinct 5’-3’ 

decay intermediate (Figure 14A). Human 293T cells were therefore transfected with the empty 

reporter plasmid peGFP-N1, or peGFP-N1 with the DENV-2 3’ UTR, the HCV 5’ UTR, or the 

BVDV 5’ UTR inserted into the Not-1 site of the peGFP-N1 plasmid (shown in Figure 22A). As 

expected, we were able to detect a distinct 5’-3’ decay intermediate in cells transfected with the 

DENV-2 3’ UTR-containing GFP construct at 24 hours post transfection in 293T cells (Figure 

22B, center lane). However, we were unable to detect distinct decay intermediates in cells 

transfected with the HCV or BVDV 5’ UTR-containing reporter constructs alone (data not 

shown). Because the GFP reporter transcript is likely quite stable, we hypothesized that the 

addition of an siRNA that targets a region in the open reading frame of GFP (upstream of the 3’ 

UTR) would stimulate 5’-3’ decay of the reporter transcript following endonucleolytic cleavage 

by the loaded AGO2-containing RISC.  



112 

 

 
 

Figure 22. Distinct decay intermediates are generated from GFP reporter 
constructs containing the HCV and BVDV 5’ UTRs. (A) Schematic of the transcript 
produced by the reporter constructs used for this experiment. The 3’ UTR of DENV or the 
5’ UTR of either HCV or BVDV were inserted into the GFP 3’ UTR of the peGFP-N1 
reporter plasmid. (B) One μg of total RNA from 293T cells transfected with the empty 
GFP vector (GFP only) or GFP containing the DENV-2 3’ UTR with or without treatment 
with anti-GFP siRNA (24 hours post transfection) was separated on a 5% denaturing 
PAGE gel and northern blots were done using a probe to the DENV-2 3’ UTR. The 
sfRNA-like decay intermediates are indicated by the arrow. (C) The empty GFP vector 
(GFP only) or GFP with the HCV or BVDV 5’ UTR inserted as indicated in (A) were 
transfected into 293T cells, all with siRNA against GFP added. Total RNA was collected 
48 hours post transfection and 2 μgs of RNA were resolved on a 5% denaturing PAGE 
gel. Northern blots were done using a probe to the GFP 3’ UTR (3’ to the BVDV or HCV 
5’ UTR insertion) to detect 5’-3’ decay intermediates. The sfRNA-like decay intermediates 
are indicated by the arrow at right. Both (B) and (C) show representative northern blots. 

 
 

Figure 22B shows that when the anti-GFP siRNA is transfected into cells expressing the 

GFP + DENV-2 3’ UTR reporter construct, the sfRNA-like decay intermediate accumulates to 

much higher levels. Furthermore, co-transfection of 293T cells with the anti-GFP siRNA and 

peGFP-N1 with the HCV 5’ UTR or the BVDV 5’ UTR revealed distinct sfRNA-like decay 

intermediates (Figure 22C). Therefore, the BVDV and HCV 5’ UTRs can generate distinct 5’-3’ 

decay intermediates in human cells, albeit to a lesser extent than those formed by as the DENV-

2 3’ UTR degrades. These results are consistent with our in vitro cell extract based experiments 



113 

 

that support the hypothesis that other host and viral factors are not required for the stalling of 

XRN1 on the HCV and BVCV 5’ UTRs (Figure 21).  

 

XRN1 enzymatic activity is repressed by the HCV and BVDV 5’ UTRs 

 
 Because sfRNA was previously shown to stall and suppress XRN1 activity, we next 

wished to assess the ability of HCV and BVDV 5’ UTRs to inhibit XRN1 activity. Using 

competition assays in HeLa cell extracts, we determined that the accumulation of decay 

intermediates from both the HCV and BVDV 5’ UTRs was associated with suppression of 

XRN1-mediated decay of a reporter RNA (Figure 23). Interestingly, the RNA decay 

intermediates formed by HCV and BVDV are not as robust as those formed by DENV-2 and 

JEV in the same assay. However, we observed a significant increase in reporter RNA stability 

when the HCV and BVDV competitor RNAs were supplied at 66.7-fold the molar amount of the 

reporter RNA (versus 30-fold the molar amount of DENV-2 and JEV 3’ UTRs used for the 

competition assays reported above in Figures 5 and 6). This may indicate that the HCV and 

BVDV 5’ UTRs are not as strongly inhibitory as the DENV-2 and JEV 3’ UTRs in our HeLa cell 

extract system. 

 
Figure 23. Subgenomic RNAs generated from hepacivirus and pestivirus 5’ UTRs 
suppress XRN1 activity in HeLa cytoplasmic extracts. (A) A 5’ monophosphorylated 
reporter RNA susceptible to XRN1-mediated decay was incubated with ~66.7x molar 
excess of 5’ monophosphorylated competitor RNAs in HeLa cell extract and RNA was 
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isolated at 0, 5, and 10 minutes to resolve on a 5% denaturing polyacrylamide gel. The 
percent reporter RNA remaining was determined by quantification following 
phosphorimaging. (A) Shows the average +/- standard deviation of the percent reporter 
RNA remaining in each time point from three independent experiments with an HCV 5’ 
UTR competitor RNA or a control competitor RNA. (B) Shows the average +/- standard 
deviation of the percent reporter RNA remaining at each time point in the presence of 
BVDV 5’ UTR competitor or a control RNA competitor from two independent experiments. 
Student’s t-test was used to assess significance, with * indicating p<0.05 and ** p< 0.01. 
The above experiments were performed by John R. Anderson in our laboratory. 

 

 To determine if XRN1 activity was suppressed in human Huh7.5 cells infected with HCV, 

we analyzed the relative abundance of uncapped cellular transcripts. We hypothesized that if 

XRN1 activity was compromised by the formation of HCV subgenomic RNA, we would observe 

a significant increase in uncapped cellular RNAs compared to mock-infected cells. HCV 

infections were performed in collaboration with Dr. Shelton Bradrick (Duke University).  As 

depicted in Figure 24A, human Huh7.5 liver cells infected with HCV (JFH-1 strain) showed a 

small but significant increase in the relative abundance of uncapped cellular mRNAs compared 

to mock infected cells. Interestingly, this effect was not dependent on the presence of HCV 

structural proteins, as Huh7.5 cells harboring a replicon HCV RNA also had an increase in the 

abundance of uncapped short-lived cellular transcripts (Figure 24B; the I389/NS3-3′ replicon is 

described in Lohmann et al. 1999). Thus we conclude that XRN1 activity is likely suppressed in 

HCV infections, as uncapped mRNAs accumulate to a similar degree as observed in DENV-2 

and KUNV infected cells (Figure 8) and the 5’-3’ decay of a reporter transcript in HeLa cell 

extract is significantly reduced in the presence of HCV or BVDV 5’ UTR competitor RNAs 

(Figure 23). 
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Figure 24. Uncapped mRNAs accumulate in HCV infected cells. (A) Total RNA from 
Huh7.5 cells either mock infected or infected with the JFH-1 strain of HCV (72 hpi) was 
fractionated into capped and uncapped portions, and the relative abundance of FOS and 
TUT1 mRNAs in the uncapped fraction (normalized to the 10% input fraction) was 
determined by RT-qPCR using the uncapped 7SL RNA as a reference gene. (B) RNA 
from Huh7.5 cells harboring an HCV replicon (I389/NS3-3'UTR) was fractionated and 
analyzed as in (A). Shown above are the averages +/- standard deviations of the relative 
abundances of each transcript from three independent infections. Infections and RNA 
extractions were performed by Dr. Shelton Bradrick at Duke University. Student’s t-test 
was performed to assess significance, with * indicating p < 0.05 and ** p < 0.001. 

 

 Previously published data show that the HCV 5’ UTR is degraded in the 5’-3’ direction, 

presumably by XRN1 (Li et al. 2013(b)). Although it was not interpreted as stalling of the XRN1 

exonuclease, the accumulation of what appears to be distinct 5’-3’ decay intermediates of the 5’ 

end of the HCV genome were observed (Li et al. 2013(b)). The authors of this study used an 

RNA ligation procedure to capture monophosphorylated HCV RNAs from infected cells in 

culture for cloning and sequence analysis of the HCV 5’ UTR (Li et al. 2013(b)). Interestingly, 

the 5’ end of the majority of these reported sequences was ~55 nt or ~80 nt from the end of the 

full-length 5’ UTR of the HCV genomic RNA (Li et al. 2013(b)). Furthermore, it was recently 

demonstrated that an in vitro transcribed RNA containing the HCV 5’ UTR physically associates 
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with XRN1 in 293T cells (Bradrick et al. 2013). These data indicate that the stalling of XRN1 on 

the HCV/BVDV 5’ UTR may similarly cause a delay in the dissociation of the enzyme from the 

RNA substrate, leading to XRN1 suppression. Consistent with this, we have preliminary 

evidence indicating that BVDV RNA is associated with XRN1 during infections of bovine MDBK 

cells (Figure 25). Co-immunoprecipitation of XRN1 and associated RNAs from infected cells 

revealed a specific interaction between the BVDV genomic RNA and XRN1. 

  

 
Figure 25. The BVDV genomic RNA is physically associated with XRN1 during 
infection. Bovine MDBK cells infected with cytopathic BVDV were formaldehyde cross-

linked and lysed for co-immunoprecipitation with antibody to XRN1 (XRN1) or a non-
specific control antibody (IgG). Total RNA from the 10% input fraction and the 
immunoprecipitated fraction was reverse transcribed and the relative abundance of 
BVDV RNA was assessed in each fraction using primers to the BVDV 5’ UTR. Shown 
above is an intriguing preliminary result from one experiment showing the relative amount 
of BVDV RNA +/- the error of measurement in the immunoprecipitation fraction relative to 
the 10% input fraction from one experiment. 

 

The stability of mRNAs encoding oncogenes and angiogenic factors is dysregulated in 
hepacivirus and pestivirus infected cells 

 
 Previous studies have demonstrated that several oncogenes and angiogenic factors are 

up-regulated in various models of HCV infection and/or in patient tissues. The oncogene c-FOS 

has been shown to positively regulate HCV replication in cell culture (Kang et al. 2011(a)) and c-

JUN over-expression can contribute to HCV-induced hepatocellular carcinoma (HCC) (Machida 
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et al. 2010). The oncogene c-myc is increased in the livers of HCV patients and in a transgenic 

mouse model of HCV infection (Higgs et al. 2013). Vascular endothelial growth factor A 

(VEGFA) is angiogenic and is known to be over-expressed in non-tumor regions of livers from 

patients with HCV-associated HCC (Chiang et al. 2008). Interestingly, VEGFA treatment was 

shown to increase liver mass by inducing liver sinusoidal endothelial cells to produce 

hepatocyte growth factor, ultimately leading to liver cell proliferation (LeCouter et al. 2003). 

Hypoxia inducible growth factor 1α (HIF1A) is another angiogenic factor that enhances HCV 

propagation and also stimulates the migration and altered cell polarity of hepatocytes in a cell 

culture model of metastasis (Wilson et al. 2012; Mee et al. 2010). Finally, chemokine (C-X-C 

motif) ligand 2 (CXCL2) is induced by the pro-inflammatory transcription factor NFκB, and is up-

regulated in a tree-shrew (Tupaia spp.) hepatocyte model of HCV infection (Guitart et al. 2005). 

It follows then that hepatocellular carcinoma may be a result of the over-expression of potent 

oncogenic and angiogenic factors in HCV infected liver cells. 

  We previously demonstrated that sfRNA formation/XRN1 repression by arthropod-borne 

flaviviruses is correlated with increased expression of several pro-inflammatory factors and 

XRN1 suppression, and that HCV RNAs can inhibit XRN1 activity (Figures 14 and 22). We 

therefore sought to determine if changes in mRNA stability might account for the increased 

expression of several factors implicated in the development of hepatocellular carcinoma due to 

HCV. As seen in Figure 26A, the transcripts of three oncogenic factors, c-FOS (FOS), c-JUN 

(JUN), and c-myc (MYC), are significantly increased in abundance in HCV infected cells 

compared to mock infected cells. The three angiogenic factors vascular endothelial growth 

factor A (VEGFA), hypoxia induced factor 1 (HIF1A), and the chemokine CXCL2 are also 

significantly increased compared to control cells. We next evaluated mRNA stability in cells 

infected with HCV (JFH-1 strain) or mock infected by actinomycin D transcriptional shut-offs at 

72 hpi. Figure 26B shows representative mRNA decay curves of all six transcripts of oncogenes 

or angiogenic factors in mock and HCV infections and the average half-life from three 
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independent infections is also reported (graph insets). Strikingly, all six transcripts were 

significantly more stable in HCV infected cells when compared to mock infected cells. 

Therefore, changes in mRNA stability during HCV infection could account for the increased 

expression of several oncogenes and angiogenic factors implicated in HCV-induced 

hepatocellular carcinoma. One potential mechanism by which this could occur is by suppression 

of XRN1 by HCV RNAs, as we demonstrated occurs in flavivirus infections. 

 
Figure 26. Six oncogenic or angiogenic factors implicated in HCV-induced 
hepatocellular carcinoma are up-regulated and stabilized at the mRNA level in HCV 
infected human cells. (A) Human Huh7.5 cells were infected with the JFH-1 strain of 
HCV and at 72 hpi RT-qPCR analysis was performed to assess the relative abundance of 
FOS, JUN, MYC, VEGFA, HIF1A, and CXCL2 using GAPDH as a reference gene. 
Shown are the averages +/- standard deviations of the relative mRNA abundances from 
three independent infections. (B) The stability of each transcript was assessed by 
actinomycin D shut-off and RT-qPCR analysis of mock infected or HCV-infected cells (72 
hpi). A representative decay curve for each transcript is shown with the average +/- 
standard deviation of the half-life (minutes) calculated from three independent infections 
in the inset panels. Hepatitis C virus infections and RNA isolations were done by Dr. 
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Shelton Bradrick at Duke University. Student’s t-test was used to assess significance with 
* indicating p < 0.05, **p<0.01, and ***p<0.005. 

 
 If changes in mRNA stability during HCV infection were due to the stalling of XRN1 on 

highly structured viral RNAs, then we hypothesized that the related pestiviruses would also 

cause stabilization of short-lived cellular RNAs. To address this, we infected bovine MDBK cells 

with cytopathic BVDV and assessed the abundance and stability of two short-lived mRNAs, JUN 

and FOS, which were shown to be up-regulated and stabilized in human liver cells infected with 

HCV. Importantly, c-JUN and c-FOS are oncogenes, but are also known to play important roles 

in organism development and growth- and thus could have a major impact on the pathogenesis 

of BVDV infections. A large-scale bioinformatics and literature mining approach to identify novel 

transcription factors important for bovine embryo development identified c-FOS as one such 

factor (Turenne et al. 2012). Furthermore, studies using a murine cell culture model of 

mammalian development revealed that c-FOS and c-JUN expression can be induced only in 

differentiated cells, and c-JUN expression increases over the course of chemical-induced 

differentiation of mouse embryonal carcinoma cells (de Groot et al. 1990). In mammalian cells, 

c-FOS and c-JUN proteins can together form a heterodimer called the AP-1 transcription factor 

complex, which is specifically known to be important for proper bone development and growth 

(Wang et al. 1992) in addition to promoting carcinogenesis in certain systems (as discussed 

above). The c-FOS protein regulates mammalian bone development, growth, and 

hematopoiesis (Ruther et al. 1987; Wang et al. 1992). Intriguingly, c-FOS and c-JUN were 

shown to be up-regulated at the mRNA level in bovine B cell lymphosarcoma BL3 cells infected 

with cytopathic BVDV through an unknown mechanism (Neill and Ridpath 2008). Infection of 

pregnant heifers with BVDV can lead to abortions (Brownlie et al. 1989), defects in fetal growth 

(Grooms et al. 2004; Done et al. 1980), and fetal bone malformations (Webb et al. 2012; Webb 

et al. 2013). These developmental abnormalities could be contributed to by dysregulated host 
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gene expression resulting from BVDV infection, potentially by aberrant expression of short-lived 

growth factors including c-FOS or c-JUN in the developing embryo. 

At 24 hpi, when all cells are infected with BVDV (as determined by immunofluorescence 

assays (Figure 27A), both JUN and FOS are significantly up-regulated at the mRNA level 

(Figure 27B).  Furthermore, as observed in HCV infected cells, the stability of JUN and FOS 

mRNAs is significantly increased in cells infected with BVDV compared to mock infected cells 

(Figure 27C). These results indicate that significant changes in mRNA stability are observed in 

HCV and BVDV infections, possibly due to the suppression of XRN1 by highly structured viral 

RNAs. Because we have demonstrated that distinct decay intermediates are detected in cells 

transfected with reporter constructs bearing the 5’ UTRs of BVDV and HCV (Figure 22), we are 

currently working to determine if changes in mRNA stability consistent with suppression of 

XRN1 activity occur in the absence of viral infection.  

 

 
Figure 27. The abundance and stability of FOS and JUN mRNAs are significantly 
increased in BVDV infected cells. (A) Indirect immunofluorescence analysis of MDBK 
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cells mock infected or infected with BVDV (24 hpi, MOI of 10) using a primary antibody 
that recognizes all strains of cytopathic and non-cytopathic BVDV and a secondary 
antibody tagged with Alexafluor 594 (red). Nuclei are stained by DAPI and are shown in 
blue. Photographs are representative of three independent infections. (B) The two short-
lived mRNAs FOS and JUN are more abundant in BVDV infected cells as determined by 
RT-qPCR analysis with beta actin (ACTB) set as the reference gene. The average +/- 
standard deviation of each transcript abundance from three independent infections are 
shown. (C) Both FOS and JUN are significantly stabilized during BVDV infection 
compared to mock-infected cells as determined by actinomycin D transcriptional shut-offs 
and RT-qPCR using ACTB as a reference gene. Representative decay curves are shown 
with the average +/- standard deviation of each half-life (minutes) from three independent 
replicates reported in the inset panels. Statistics reported in (B) and (C) are p-values from 
Student’s t-test with * indicating p < 0.05, **p<0.01, ***p<0.005. 

 
 

Cellular mRNAs that are stabilized and increased in abundance in HCV and BVDV 
infections are intact and translatable 

 
 If the changes in post-transcriptional regulation of gene expression that were reported 

above in HCV and BVDV infected cells are contributing to changes in cell or organism biology 

as a result of infection (e.g. hepatocellular carcinoma due to HCV infection), then the proteins 

encoded in those transcripts must be expressed differentially. We therefore assessed the 

relative abundance of the translatable form (i.e. capped and polyadenylated) of the six 

transcripts we determined to be up-regulated and stabilized at the mRNA level in HCV infections 

(Figure 26). We fractionated total RNA from Huh7.5 cells mock infected or infected with HCV 

using an antibody that recognizes the 7-methylguanosine cap structure to generate a pool of 

RNA that contained capped RNAs only. We then reverse transcribed the capped RNA using an 

oligod(T) primer to capture polyadenylated RNAs. Using qPCR to quantify the relative 

abundance of each transcript in mock and HCV infected cells, we found a significant increase in 

the amount of capped and polyadenylated mRNAs encoding oncogenes or angiogenic factors in 

HCV infected cells (Figure 28A). Furthermore, bovine MDBK cells infected with BVDV showed a 

significant increase in the abundance of both FOS and JUN proteins as assessed by western 

blotting (Figure 28B). These results contrast with previous findings that FOS and JUN proteins 

are down-regulated in BL3 cells infected with BVDV, although the abundance of ACTIN was 
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also surprisingly severely reduced in BVDV infected samples in that study (Neill and Ridpath 

2008). These data imply that there could be cell-type specific defects in general protein 

synthesis during BVDV infections. However, in MDBK cells, we did not observe a comparable 

decrease in the house-keeping protein GAPDH, and western blots were performed using equal 

quantities of total protein from mock and BVDV infected cells (Figure 28B). Furthermore, 

monocytes infected with cytopathic BVDV were shown to have no change in the abundance of 

actin protein by western blot in another study (Lee et al. 2008). Our results indicate that the 

abundance of polyadenylated and capped mRNAs or protein is positively correlated with the 

stability of several important cellular transcripts encoding oncogenic or growth factors in BVDV 

and HCV infected cells. 

 
 

 
Figure 28. Inhibition of XRN1 may feedback and inhibit the entire 5’-3’ decay 
pathway during HCV infection. (A) Stabilized, up-regulated transcripts encoding 
oncogenes and angiogenic factors are capped and polyadenylated. Total RNA from 
Huh7.5 cells mock infected or infected with HCV was fractionated to remove uncapped 
RNAs, and oligo d(T) was used to selectively reverse transcribe polyadenylated RNAs. 
The relative abundance of each mRNA was then assessed by qPCR using GAPDH as a 
reference gene. The average +/- standard deviation of three independent infections is 
shown above with significance assessed by Student’s t-test (* indicates p < 0.05, ** p < 
0.01, *** p < 0.005). Hepatitis C virus infections and isolation of total RNA were 
performed by Dr. Shelton Bradrick at Duke University. (B) Bovine MDBK cells infected 
with BVDV have increased levels of JUN and FOS proteins compared to mock infected 
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cells. Representative western blots are shown above with the average +/- standard 
deviation of the chemiluminescent signal from three independent infections is shown 
relative to GAPDH. Student’s t-test was done to determine significance and * indicates 
p<0.01, ** indicates p<0.001. 

 
 

Section III. Towards the elucidation of the structure of the XRN1-resistant sfRNA 

 

Kunjin virus sfRNA formation requires a three-helix junction in vivo 

 
 Previous work identified several conserved pseudoknot-like structural motifs in the 3’ 

UTRs of flaviviruses that were associated with sfRNA formation (Pijlman et al. 2008; Funk et al. 

2010; Silva et al. 2010), but the exact structure required to stall XRN1 remained unknown. 

Recent work in the Kieft laboratory (University of Colorado, Denver, Anschutz School of 

Medicine) demonstrated that formation of sfRNA likely depends on a more complex structure 

that involves the interactions of several pseudoknots together to stabilize the RNA and prevent 

XRN1-mediated decay (Chapman et al. 2014; Chapman et al. in press). Using phylogenetic and 

biochemical approaches, each XRN1-resistant (sfRNA-forming) viral 3’ UTR motif was shown to 

contain a conserved three-helix junction upstream from a pseudoknot and a hairpin. Importantly, 

the ~19 nucleotides required for these structures to form were conserved among all sfRNA-

forming flaviviruses tested using in silico analyses (Chapman et al. 2014). Furthermore, the 

crystal structure of the XRN1-resisant sfRNA formed by the Murray Valley encephalitis virus 

(MVEV) 3’ UTR determined by the Kieft laboratory (Chapman et al. in press) indicated that the 

resistance of these sfRNAs to XRN1 was likely conferred by a set of interwoven pseudoknots 

that stabilizes the 5’ end of the viral RNA, keeping the 5’ end from entering the active site of 

XRN1 (Chapman et al. in press). This complex three-dimensional structure was predicted to be 

stabilized by a short, highly conserved sequence element found in all sfRNA-forming flavivirus 3’ 

UTRs. 
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 We therefore generated six mutant Kunjin viruses using the FLSDX(pro)_HDV infectious 

clone (Liu et al. 2003) to determine the impact on XRN1 stalling in living cells of mutating 

conserved sequences in the 3’ UTR predicted to be essential for sfRNA formation. Three 

sfRNAs are usually formed from the KUNV 3’ UTR during infection.  The largest one, sfRNA1, is 

the most abundant sfRNA in wild-type KUNV infections and sfRNAs 1 and 2 are likely the most 

biologically relevant.  In support of this, the low cytopathogenic sfRNA-deficient KUNV 

(CS3ΔIRA) used in the studies depicted in section I of this results section fails to generate both 

sfRNA1 and sfRNA2, but sfRNA3 accumulates to low levels as shown in Figure12B. The 

CS3ΔIRA KUNV has a 3 nt substitution in stem-loop II of the KUNV 3’ UTR that abrogates 

sfRNA1 formation, and a 10 nt deletion near stem-loop IV that abolishes sfRNA2 formation 

(Pijlman et al. 2008). In collaboration with the Kieft laboratory, we made targeted mutations in 

the KUNV 3’ UTR that were predicted to abrogate the formation of sfRNA1 and/or sfRNA 2 (the 

sequences of each mutant virus 3’ UTR are reported in Appendix 5). Based on biochemical, 

phylogenetics, and structural studies, the Kieft laboratory determined that C10519 and C10680 

were required for stabilization of the interwoven pseudoknot structures that allowed the 

formation of sfRNA1 and sfRNA2 (respectively) in the KUNV 3’ UTR.They also determined that 

nucleotides AGU10498-10500 and UGU10658-10660 were likely essential for KUNV sfRNA1 

and sfRNA2 formation (respectively) based on the crystal structure of MVEV sfRNA (Chapman 

et al. in press). Therefore, three viruses with a G substituted for C10519 and/or C10680 were 

generated, and three viruses with AGUUCA10498-10500 and/or UGUACA10658-10660 

mutations were made to determine if these nucleotides were required for sfRNA formation in 

viral infections in cell culture. 



125 

 

 
 
Figure 29. Kunjin virus sfRNA formation depends on the formation of a three-helix 
junction involving interwoven pseudoknots. Mutation of nucleotides in the 3’ UTR of 
Kunjin virus predicted to disrupt (A) the closing of a ring structure to protect the viral RNA 
from XRN1-mediated decay or (B) the stabilization of a three-helix junction abrogate or 
severely limit sfRNA1 or sfRNA2 formation. 

 
 

Human 293T cells were infected (MOI of 10) with each virus and total RNA collected at 

48 hpi was separated on a 5% polyacrylamide gel for northern blotting to assess sfRNA 

formation. The northern blot shown in Figure 29A show that AGU10498-10500 and UGU10658-

10660 are required for the formation of sfRNA1 and sfRNA2 (respectively). Similarly, the 

northern blot shown in Figure 29B shows that the CG10519 and CG10680 mutations also 

abrogated sfRNA1 and sfRNA2 formation as predicted. These data demonstrate that in the 

context of a KUNV infection of human cells, sfRNA formation relies on the formation of a 

complex three-dimensional structure that will be reported in detail in Chapman et al. (in press 

(b)). 

 

 



126 

 

Section IV. Additional functions of sfRNA: suppression of RNA interference 

 

sfRNA-mediated inhibition of Argonaute-2 may inhibit RNAi 

 
 Our data indicate that one important role of sfRNA during viral infection is to suppress 

the host exoribonuclease XRN1. However, sfRNA from DENV-2 and WNV has also been shown 

to suppress RNA interference (RNAi) in non-human primate and mosquito cells, although the 

mechanism by which this occurs has not been fully characterized (Schnettler et al. 2012). 

Furthermore, the single previous study on sfRNA and RNAi that was published while our studies 

were ongoing used replicon constructs or RNA transfections in lieu of viral infections (Schnettler 

et al. 2012). Thus conclusions that can be drawn may be limited by this experimental design.  

One possible mechanism by which sfRNA suppresses RNAi is by acting as a competitive 

inhibitor or sink for DICER and/or AGO2 (the cytoplasmic effector proteins required for this 

process) due to its highly-structured nature (Rauscher et al. 1997).   

 Intriguingly, AGO2 can bind long hairpin-containing miRNA precursors (Cifuentes et al. 

2010; Yang et al. 2010; Cheloufi et al. 2010) and shRNAs (Yang et al. 2012; Liu et al. 2013(b)) 

in vertebrate cells. These results indicate that AGO2 can bind and process RNAs that are larger 

than typical siRNAs or miRNAs. Therefore, we hypothesized that the mechanism by which 

sfRNA suppresses RNAi is through the binding and sequestration of Argonaute-2 (AGO2) and 

DICER. To test the hypothesis that AGO2 may be inhibited by sfRNA, we first assessed AGO2 

activity in human cells during DENV-2 infection. Human 293T cells were infected with DENV-2 

(MOI of 3) or mock infected, and 3 days later were transfected with a reporter plasmid encoding 

eGFP and an siRNA to eGFP or water as a negative control. After 24 hours, total RNA was 

collected from the cells and the abundance of eGFP mRNA was assessed by northern blotting 

(Figure 30A) or RT-qPCR (Figure 30B) to determine if there were any defects in eGFP 

knockdown by the siRNA during viral infection. 
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Figure 30. siRNA-mediated knockdown of the reporter eGFP is suppressed in 
DENV-2 infected cells when sfRNA is abundant. (A) A representative northern blot to 
detect eGFP mRNA using a probe that spans the siRNA-target site, with ethidium 
bromide-stained 18S rRNA as a loading control depicted at the bottom of the panel. Mock 
and DENV-2 infected cells (MOI of 3) were transfected with peGFP-N1 plasmid +/- an 
siRNA to eGFP (or water as the negative control) at 3 days post infection. Twenty-four 
hours later, total RNA was collected and 5 micrograms from each sample was resolved 
on a denaturing agarose gel and probed for eGFP. (B) To quantify the relative repression 
of eGFP knockdown in DENV-2 infected cells relative to mock infected cells, RT-qPCR 
was done using primers that span the siRNA-target site to detect the relative abundance 
of intact eGFP mRNA using GAPDH as a reference gene. The siRNA-containing samples 
were normalized to the samples that were not transfected with siRNA (water only). 
Shown above is the average +/- standard deviation of two independent infections. * 
indicates p <0.05 by Student’s t-test. Abbreviations: DV= dengue virus type 2. 

 

 As depicted in Figure 30A, eGFP mRNA was dramatically reduced in abundance by 24 

hours post-transfection with an siRNA targeted to the eGFP open reading frame. Interestingly, 

human 293T cells infected with DENV-2 showed a repression of eGFP knockdown by siRNA as 

measured by northern blot (Figure 30A). For a more quantitative assessment of the relative 

suppression of siRNA-mediated eGFP knockdown, the relative abundance of intact eGFP 

mRNA was assessed using primers that span the siRNA-mediated AGO2 cleavage site (Figure 

30B). This method was used to ensure that qRT-PCR measurements were actually measuring 

intact eGFP mRNA that was not cleaved endonucleolytically by the siRNA-AGO2 complex. We 

determined that cells infected with DENV-2 slightly (~2-fold) de-repress eGFP expression in the 

presence of anti-eGFP siRNA. This is in agreement with previous findings that Vero cells 

harboring a WNV or dengue virus type 1 replicon have a ~2-fold increase in luciferase activity in 
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the presence of anti-luciferase shRNA compared to untransfected Vero cells (Schnettler et al. 

2012).  

 
Figure 31. siRNA-mediated knockdown of the reporter eGFP is suppressed in an sfRNA-
dependent manner in Kunjin virus infected 293T cells. (A) A representative northern blot showing 
eGFP mRNA abundance with 18S rRNA stained with ethidium bromide as a loading control. Human 293T 
cells were mock infected or infected with wild-type Kunjin virus (WT) or an sfRNA-deficient Kunjin virus 
(MUT) lacking sfRNA1 and sfRNA2 (MOI of 10). After 24 hours, the cells were transfected with peGFP-N1 
and either water (- siRNA) or an siRNA to eGFP (+ siRNA). Total RNA from each sample was collected 
48 hpi and 5 micrograms of each was resolved on a formaldehyde agarose gel and blotted using an RNA 
probe to the eGFP open reading frame. (B) RT-qPCR was done to quantify the relative knockdown of 
eGFP by siRNA using GAPDH as a reference gene. Results are the average +/- standard deviation of two 
independent infections. The * indicates p<0.05 using Student’s t-test. 

 
 To determine if sfRNA formation is required for the de-repression of eGFP gene 

expression during other flavivirus infections, we infected human 293T cells with a wild-type 

Kunjin virus or an sfRNA-deficient Kunjin virus. As shown in Figure 31, KUNV infection also 

partially rescues eGFP mRNA expression in the presence of anti-eGFP siRNA. As determined 

by RT-qPCR of RNAs from mock infected and infected cells, the relative knockdown of eGFP is 

significantly decreased in wild-type but not sfRNA-deficient Kunjin virus infected cells. Similar to 

the DENV-2 infections, the reduction in eGFP knockdown was calculated to be ~3-fold. Of note, 

the sfRNA-deficient Kunjin virus used in this study is capable of generating at least one small 

sfRNA (sfRNA3, visible in the left panel of Figure 13B) that could be responsible for these small 

increases in gene expression. This may be particularly relevant in this experiment, as cells were 

infected at a high multiplicity of infection (10) and collected 60 hpi, when the smaller sfRNA3 
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had likely accumulated to a potentially significant level. Our results indicate that one major 

mechanism by which RNAi is suppressed by sfRNA in human cells is through the inhibition of 

AGO2 activity. 

 Schmitter et al. (2006) showed that when AGO2 and/or DICER are knocked down in 

293T cells, subtle but significant changes in the abundance of many mRNAs results. 

Accordingly, as an alternative method of measuring AGO2 and/or DICER activity in cells 

infected with DENV-2 or KUNV, we looked for changes in the abundance of a set of transcripts 

that was shown to be increased (less than 2-fold) when AGO2 and/or DICER were depleted by 

shRNA-mediated knock-downs (Schmitter et al. 2006). This set of transcripts included 

aquaporin 3 (AQP3), armadillo repeat containing, X-linked 4 (ARMCX4), clathrin, heavy chain 

(CLTC), catenin (cadherin-associated protein) β 1 (CTNNB1), and motile sperm domain 

containing 2 (MOSPD2). Intriguingly, a small but significant increase in the expression of five 

transcripts shown to be elevated upon depletion of AGO2 and/or DICER was observed in cells 

infected with DENV-2 (Figure 32A). To assess the impact of sfRNA formation on these changes 

in mRNA abundances during infection and to determine if this was a DENV-2 specific effect, we 

next assessed the abundance of these transcripts in KUNV infected cells. Cells infected with 

wild-type KUNV had a significant increase in four out of five transcripts evaluated (Figure 32B, 

dark grey bars). Interestingly, although cells infected with the sfRNA-deficient KUNV also 

showed a slight increase in the abundance of two of these transcripts, overall the increased 

abundance of four of the transcripts correlated with sfRNA accumulation. However, as 

discussed above, the sfRNA-deficient KUNV generates a small sfRNA (sfRNA3), albeit to lower 

levels than sfRNA1 and sfRNA2 in wild-type virus infections. Therefore, the enhanced 

abundance of two of the four transcripts in the sfRNA-deficient KUNV infected cells could be 

due to the low amount of sfRNA3 that accumulates by 60 hpi.  

As an aside, AQP3, ARMCX4, and MOSPD2 were not represented in the RNA-seq 

datasets from KUNV or sfRNA-deficient KUNV infections (Figure 17). Furthermore, the 
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abundance of CLTC and CTNNB1 were not substantially altered in KUNV or sfRNA-deficient 

KUNV infected cells (Figure 18). This is likely due to the lower multiplicity of infection and/or 

earlier time post infection that the RNA samples for sequencing analysis were collected at. 

However, our qRT-PCR results indicate that changes in gene expression consistent with AGO2 

and/or DICER depletion are altered in flavivirus infected cells, potentially as a result of the direct 

inhibition of AGO2 or DICER activity by sfRNA.  

 

Figure 32. Changes in mRNA abundances in sfRNA-forming viral infections 
recapitulate those observed upon AGO2 and/or DICER knockdown. (A) Human 293T 
cells were infected with dengue virus type 2 (MOI of 3) or mock infected, and total RNA 
was collected 4 dpi. The relative abundance of five mRNAs, aquaporin 3 (AQP3), 
armadillo repeat containing, X-linked 4 (ARMCX4), clathrin, heavy chain (CLTC), catenin 
(cadherin-associated protein) β 1 (CTNNB1) and motile sperm domain containing 2 
(MOSPD2) was assessed by RT-qPCR using GAPDH as a reference gene. (B) Total 
RNA from human 293T cells were mock infected or infected with Kunjin virus (KunV) or 
an sfRNA-deficient Kunjin virus (sfRNA-KunV) (MOI of 10) were collected 60 hpi and 
differences in mRNA abundances were assessed as in (A). The significance of the 
observed differences transcript abundance in infected cells compared to mock infected 
cells was evaluated using Student’s t-test with * indicating p<0.05, **p<0.01, *** p<0.005. 

 
 

sfRNA may bind and sequester AGO2 and DICER to alter RNA interference 

 
One previous study indicated that DICER activity was specifically suppressed by sfRNA 

in WNV and DENV-2 replicon systems (Schnettler et al. 2006). However, our data suggest that 

AGO2 may also be suppressed by sfRNA. To test the hypothesis that sfRNA sequesters either 
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of these nucleases, we performed RNA-protein co-immunoprecipitation assays to determine if 

sfRNA was physically bound to either nuclease during infection. 

 
 

Figure 33. Kunjin virus sfRNA is physically associated with DICER and AGO2 
during infection in human cells. Human 293T cells were infected with Kunjin virus 
(MOI of 10) and formaldehyde cross-linked to preserve RNA-protein interactions before 
immunoprecipitation with (A) anti-DICER antibody or (B) anti-AGO2 antibody. A normal 
IgG control antibody was used to account for non-specific interactions. Genomic RNAs 
were distinguished from sfRNAs by RT-PCR analysis using primers to the open reading 
frame (ORF) or the 3’ untranslated region (3’ UTR) as indicated above the panels. One 
co-immunoprecipitation experiment is shown. 

 
Importantly, both DICER and AGO2 were shown to be physically associated with Kunjin virus 

RNAs containing the 3’ UTR but not the viral open reading frame (Figure 33). These results will 

be validated by assessing DENV-2 sfRNA association with DICER and AGO2 and quantified by 

RT-qPCR. Future experiments will investigate the ability of DICER and AGO2 to bind to the 

highly structured sfRNAs using electrophoretic mobility shift assays. Finally, sfRNA may serve 

as an inhibitor of AGO2, DICER, and XRN1, leading to dysregulated gene expression during 

flavivirus infections in human cells. 

 
 
 
 
 
 



132 

 

DISCUSSION 

 
 

 
 The above studies sought to test the hypothesis that the formation of sfRNA during 

flavivirus infection suppresses the activity of the 5’-3’ exoribonuclease XRN1. We demonstrated 

that sfRNA is formed by XRN1-mediated decay in mammalian, mosquito, and yeast systems as 

a result of highly structured conserved elements in the flaviviral 3’ UTRs. The formation of 

sfRNA was then found to be strongly associated with defects in XRN1 activity as measured in 

cell-free extract systems and in infected cells in culture. Furthermore, global analysis of mRNA 

decay in cells infected with Kunjin virus or two sfRNA-deficient viruses revealed sfRNA-

dependent changes in the relationship between stability and abundance of cellular RNAs 

consistent with XRN1 depletion observed in previous studies in yeast. Interestingly, these 

results may indicate that the cellular response to infection is compromised in sfRNA-producing 

viral infections. Finally, we demonstrated that suppression of XRN1 via highly structured viral 

RNAs may be conserved among all members of the Flaviviridae, as the 5’ UTRs of HCV and 

BVDV form distinct decay intermediates upon 5’-3’ decay by XRN1 and suppress XRN1 activity 

in vitro. These studies have therefore identified a novel mechanism by which all members of the 

Flaviviridae suppress a major aspect of the cellular RNA decay machinery, and this potentially 

contributes to virus-induced pathology. 

 

Conserved structural elements in flaviviral untranslated regions suppress XRN1 activity 

 
 The results presented herein and findings from other laboratories demonstrate that the 

XRN1 exoribonuclease in yeast, mammal, and mosquito systems stalls on highly structured 

conserved viral RNA elements in the 3’ UTRs of flavivirus RNAs. How do these RNAs disrupt 

XRN1-mediated decay of the viral genomic and/or messenger RNAs? Interestingly, although 

previous studies demonstrated that pseudoknot-like structures present in flavivirus 3’ UTRs are 
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major contributors to the stalling of XRN1 (Pijlman et al. 2008; Silva et al. 2010; Funk et al. 

2010), in collaboration with the Kieft laboratory (University of Colorado-Denver), we have 

demonstrated that sfRNA formation in cells relies on the interaction between multiple 

pseudoknots mediated by a conserved cytosine upstream of the stem-loops previously 

implicated in sfRNA formation (Chapman et al. 2014; Chapman et al. in press). Mutagenesis of 

the KUNV 3’ UTR in which this essential cytosine was converted to a guanine completely 

abrogated sfRNA formation in infected 293T cells (Figure 29). Furthermore, structural analyses 

of the XRN1-resistant RNA structure in the MVEV sfRNA revealed that a three-helix junction 

centered on the conserved cytosine nucleotide was responsible for the stalling of XRN1 

(Chapman et al. in press). Mutation of three nucleotides at the base of either of two stem-loops 

implicated in KUNV sfRNA formation predicted to disrupt this three-helix junction abrogated 

sfRNA formation in infected cells in culture (Figure 29). Importantly, these studies will likely 

enhance our ability to design effective drugs to target the sfRNA structure present in all 

flavivirus infections. Chemicals that disrupt the secondary structure of flavivirus RNAs could be 

used to potentially destabilize the structure and facilitate effective 5’-3’ decay by XRN1. We are 

currently assessing the ability of small molecules used to disrupt stable stem-loop structures 

formed by CUG repeat elements in toxic RNAs observed in myotonic dystrophy (Lee et al. 2009; 

Coonrod et al. 2013) to abrogate sfRNA formation in vitro as a proof of concept. Furthermore, 

oligonucleotides with perfect complementarity to the regions in the flavivirus 3’ UTR that span 

the base of each stem-loop could be applied to again facilitate XRN1-mediated decay by 

opening up the stable triple-helix structure. Finally, as has been suggested in other works 

(Pijlman et al. 2008; Liu et al. 2014), sfRNA-deficient flaviviruses should be tried as potential 

vaccine candidates as they are less pathogenic than wild-type viruses.  

 Intriguingly, we have observed that the HCV and BVDV 5’ UTRs also stall XRN1, leading 

to the formation of distinct XRN1-mediated decay intermediates. We are currently cloning out 

the 5’ ends of monophosphorylated BVDV and HCV RNAs that had been incubated with XRN1 
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to determine the exact RNA sequence/structures that stall XRN1. However, based on the sizes 

of the HCV and BVDV 5’ UTR decay intermediates we observe in our cell extract and 

recombinant yeast XRN1 decay assays, we notice that the 5’ ends of these decay intermediates 

roughly correspond with the bases of several predicted stem-loop structures conserved 

throughout the genera (Isken et al. 2007). We are currently generating deletion mutant 

constructs of the HCV 5’ UTR to determine which region is required for the stalling of XRN1. 

Furthermore, because the stalling of XRN1 appears to be a common function of the IRES 

elements of both BVDV and HCV, we are currently working to determine if other viral IRES 

elements (e.g. Poliovirus) can stall XRN1. It will be interesting to determine if the stalling of 

XRN1 on distinct viral RNA structures is a function conserved among flaviviruses or potentially 

shared among viral RNAs that lack 5’ methylated cap structures. 

 Intriguingly, other viral RNAs may also be resistant to XRN1-mediated decay. The RNAs 

generated by the yeast Narnavirus contain a long stem-loop at their 5’ ends that was shown to 

block XRN1 (Esteban et al. 2008). However, this mechanism is likely distinct from what is 

observed in the decay of flavivirus RNAs. Rather than allow XRN1 to initiate degradation of 

these RNAs, this structure likely ‘hides’ the 5’ end of the RNA. A recent study of the structure of 

Drosophila XRN1 revealed that the processive exonucleolytic activity of the enzyme works in 

concert with an unwinding activity to effectively process RNA duplexes only when a 5’ overhang 

on the RNA is >8 in length (Jinek et al. 2011). Therefore, these RNAs likely do not act as 

competitive inhibitors of XRN1 to reduce XRN1 activity like sfRNAs. However, some plant 

viruses (e.g. Soybean dwarf virus and Red clover necrotic mosaic virus) are known to generate 

small subgenomic non-coding RNAs (<500 nt) that could potentially be a result of incomplete 5’-

3’ decay of the viral genome by XRN1 (Yamagishi et al. 2003; Iwakawa et al. 2008). Indeed, 

one study demonstrated that Red clover necrotic mosaic virus and other members of the 

Dianthovirus genus (positive-sense single-stranded RNA viruses of plants) generate these 

subgenomic RNAs as a result of incomplete 5’-3’ decay in tobacco protoplast extracts (Iwakawa 
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et al. 2008). Furthermore, these RNAs appear have some ability to suppress viral translation 

(similar to what was observed in a study of the JEV sfRNA; Fan et al. 2011). However, unlike 

KUNV sfRNAs, the Red Clover Necrotic Mosaic virus subgenomic RNA appears to be packaged 

into nascent virions (Pijlman et al. 2008; Iwakawa et al. 2008). The role of these sgRNAs in viral 

pathogenesis remains uncharacterized. 

 

Could endogenous cellular transcripts stall and suppress XRN1 activity? 

 
 One important finding from these studies is the observation that multiple viral RNAs are 

capable of stalling and suppressing XRN1 activity. Although we have discussed this capability in 

the context of viral infection and pathogenesis, it is possible that cellular transcripts also may 

encode XRN1-resistant structural elements. For example, some cellular transcripts are thought 

to be translated via IRES-mediated mechanisms, potentially to allow gene expression under 

conditions that suppress cap-mediated translation mechanisms (e.g. during mitosis or hypoxia) 

and/or to facilitate ribosome scanning through highly structured RNA elements (reviewed in 

Komar and Hatzoglou 2011; Le Quesne et al. 2001). If conserved structural elements in internal 

ribosome entry sites that are essential for translation initiation also happen to be resistant to 

XRN1-mediated decay, then cellular mRNAs that have been demonstrated to undergo IRES-

mediated translation may stall and suppress XRN1 activity.  

 At least three other sets of transcripts with unique properties could be capable of stalling 

XRN1. First, a recent study demonstrated that the 3’ UTRs of many transcripts in human and 

mouse cells are expressed at different levels than the associated open reading frames (Mercer 

et al. 2011). In other words, it appears that different regions of an mRNA show different 

abundances – which is strongly suggestive of differential decay of portions of the transcript. This 

study also demonstrated using in situ hybridization that the subcellular and/or tissue-specific 

localization of the 3’ UTRs of three transcripts (Col1a1, Nfia, and Myadm) were different from 
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the corresponding open reading frames in mice during development (Mercer et al. 2011). Thus 

these cellular mRNAs could potentially be generating sfRNA-like decay intermediates from 

structured elements in their 3’ UTRs. Second, transcripts that have been characterized as 

having unconventional transcription start sites or splice sites may potentially be generated as a 

result of incomplete degradation of the parent transcript by XRN1. Therefore, re-analyzing 5’-

RACE data may reveal some interesting stall sites for RNA decay factors in cellular mRNAs. 

Finally, changes in the structure of mRNAs due to mutations or altered temperature could 

potentially facilitate the stalling of XRN1 on cellular mRNAs. For example, temperature-induced 

changes in RNA secondary structure have been described in Influenza A virus (Chursov et al. 

2012) and tick-borne encephalitis virus (Elvang et al. 2011). A recent study demonstrated that 

up to 15% of transcribed single nucleotide variants cause local changes in mRNA structure in 

humans (Wan et al. 2014), indicating that small changes in the sequence of a transcript can 

impact RNA structure. Furthermore, recent studies demonstrated that single nucleotide 

variations in the 5’ UTR of thrombin-activatable fibrinolysis inhibitor can significantly alter the 

structure and stability of the transcript (Boffa et al. 2008; Halvorsen et al. 2010). Therefore, 

because XRN1 is capable of stalling on structured viral RNAs, unique mRNA structures 

resulting from mutations or enhanced structural stability due to decreased temperature could 

potentially stall XRN1 in human cells. The identification of potential XRN1-resistant cellular 

transcripts will be important, because suppression of XRN1 could lead to defects in post-

transcriptional regulatory mechanisms that may cause disease. Interestingly, transcripts that 

change conformation and adopt more stable higher-order structures at low temperatures and/or 

potentially during stress responses due to alterations in salt availability or concentration in the 

cytoplasm) and suppress XRN1 activity could dramatically alter the host response, potentially 

leading to disease. 
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Changes in gene expression during sfRNA-forming viral infections are consistent with 
studies of XRN1-deficient organisms  

 
We hypothesized that sfRNA-forming viral infections would cause a global increase in 

the stability of cellular transcripts, and that this would also correspond with an overall increase in 

the steady-state abundance of cellular transcripts. In support of this hypothesis, we found that in 

conjunction with sfRNA-mediated suppression of the major exonuclease XRN1, there are 

substantial changes in the steady-state abundance of certain cellular RNAs including pro-

inflammatory innate immune factors and the stability of short-lived transcripts was significantly 

increased (Figures 14, 16, 17). However, although we expected a substantial increase in the 

overall abundance of mRNAs as a result of XRN1 suppression in flavivirus infected cells, out of 

the ~3000 transcripts assessed in KUNV infections, the vast majority of transcripts were not 

substantially altered in abundance (e.g. most were less than 2-fold reduced or increased in 

abundance relative to mock infected cells). Fruit flies engineered to have reduced expression of 

the XRN1 homolog pacman also show few changes in the overall abundance of transcripts, 

although they also display dramatic phenotypic changes including developmental defects 

(Grima et al. 2008; Jones et al. 2013). Therefore, XRN1 depletion and/or enzymatic suppression 

can contribute to phenotypic changes without altering the steady-state abundance of the 

majority of mRNAs in a given system.  

We also determined that sfRNA formation in Kunjin virus infections was strongly 

associated with the stabilization of cellular transcripts (Figure 17). In agreement with these 

findings, previous studies using XRN1-deficient yeast demonstrated that a majority of transcripts 

are generally more stable in these systems compared to wild-type yeast (He et al. 2003; 

Haimovich et al. 2013; Sun et al. 2013; Medina et al. 2014). The analysis of global changes in 

mRNA stability in KUNV and the sfRNA-deficient KUNV and SINV infections therefore provided 

another piece of evidence that XRN1 activity is suppressed as sfRNA accumulates. Although 

dramatic changes in overall mRNA abundance were not observed in Drosophila lacking XRN1, 
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it was also demonstrated that several mRNAs, including the mRNA of heat shock protein 

Hsp67Bc were increased in abundance in the XRN1-deficient Drosophila wing imaginal discs 

(Jones et al. 2013). Importantly, these changes in mRNA abundance were likely due to mRNA 

stabilization, as the abundance of the intron-containing pre-mRNAs were not substantially 

altered in the mutant flies compared to controls (Jones et al. 2013). These results indicate that 

changes in the post-transcriptional regulation of certain mRNAs could impact organism 

phenotype in the absence of global changes in mRNA abundance. Indeed, the Arabidopsis 

homolog of XRN1, XRN4, may have some sequence specificity (Rymarquis et al. 2011). 

However, this is potentially an indirect result, as certain transcripts undergoing 5’-3’ turnover 

more rapidly than others and/or targeted for 5’-3’ decay by RNA binding proteins (or miRNAs) 

that have sequence and/or RNA structure specificity might be over-represented in an XRN-

deficient organism (Jones et al. 2012). Furthermore, the decapping complex can be specifically 

recruited to mRNAs that undergo miRNA-mediated decay, ARE-mediated decay, or to 

transcripts that contain other unique structural or sequence elements (reviewed in Ling et al. 

2011). In this fashion, the suppression of XRN1 could lead to the stabilization and/or over-

expression of a specific subset of transcripts, although the mammalian XRN1 exonuclease itself 

does not appear to exhibit sequence specificity. 

Our global analyses RNA stability in arbovirus infected cells supports the idea that XRN1 

suppression does not lead to the up-regulation of mRNAs on a global scale. Furthermore, these 

results may indicate that altered abundance and/or stability of a select subset of transcripts 

occurs upon XRN1 suppression, as appears to be the case in Drosophila wing morphogenesis 

(Jones et al. 2013). Although our RNA-seq approach to determine global changes in mRNA 

stability and abundance during arthropod-borne virus infections yielded important insights into 

the relationships between rates of mRNA decay and steady-state mRNA abundances, 

potentially very interesting groups of transcripts that are likely expressed at levels below the 

depth of sequencing were unfortunately not included in our datasets. These include FOS, TUT1 
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and the pro-inflammatory cytokines detected by qRT-PCR and microarray reported in Figure 15. 

Therefore, our global analyses of mRNA stability and abundance were not adequate for directly 

answering the question of whether or not short-lived transcripts induced by viral infections were 

stabilized by sfRNA. Importantly, we were able to directly assess the stability and steady-state 

abundance of a set of short-lived transcripts in HCV and BVDV infected cells known to be 

involved in pathologies associated with these viral infections. We determined that stabilization of 

these transcripts may be an important mechanism by which they are elevated in abundance 

overall. Therefore, XRN1 suppression by viral RNAs could contribute to pathology by altering 

the abundance and stability of a select group of normally short-lived transcripts. 

 

Dysregulation of mRNA stability and abundance in arbovirus infections points to defects 
in homeostatic mechanisms that likely coordinate mRNA synthesis and decay 

 
The relationship between mRNA stability and mRNA abundance in the constitutively 

expressed transcripts that likely serve a more general house-keeping function was analyzed 

using the datasets generated using RNA-seq for viral infections (Figures 16, 17 and 18). We 

demonstrated that sfRNA-deficient KUNV or SINV infected cells display a positive correlation 

between mRNA stability and abundance (Figure 19A and B). This might be expected if the cell 

undergoes a highly coordinated anti-viral response that requires concerted changes in mRNA 

abundance and stability. In contrast, cells infected with the sfRNA-forming KUNV displayed no 

correlation between changes in mRNA stability and abundance (Figures 18C and 19D). We 

hypothesize that this lack of coordination between mRNA stability and abundance in cells 

infected with sfRNA-forming flaviviruses indicates a defect in the host response to infection that 

may be involved in the sfRNA-dependent pathologies observed in other studies (Pijlman et al. 

2008; Liu et al. 2014). How could this apparent defect in coordinated changes in cellular gene 

expression regulatory mechanisms contribute to pathology? If the cell is unable to rapidly react 

to the presence of viral pathogen associated molecular patterns (as discussed in the 
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Introduction), then the virus could gain a foothold in the cell for the establishment of replication 

complexes and host cell re-modeling earlier in the infection. Furthermore, post-transcriptional 

regulatory mechanisms are essential for controlling the expression of pro-inflammatory factors 

like TNF-α (also discussed in the Introduction). Defects in the coordinated regulation of 

transcription and mRNA decay could therefore promote excessive inflammation in infected cells 

that could perhaps not rapidly reduce the expression of pro-inflammatory factors. Exactly how 

mRNA decay processes influence mRNA synthesis in mammalian cells remains to be explored.  

 

Coordination between XRN1 and early steps in the deadenylation-dependent RNA decay 
pathway 

 
We demonstrated that short-lived oncogenes and angiogenic factors are more abundant 

and stable at the mRNA level in HCV and BVDV infected cells. Importantly, these mRNAs are 

not uncapped decay intermediates (although we determined that a small amount (~<10%) of 

cellular transcripts lacking 5’ caps do accumulate in HCV, DENV-2, and KUNV infections) and 

the majority of these transcripts are polyadenylated, capped, and therefore theoretically 

translatable (Figure 28). In BVDV infected cells, c-FOS and c-JUN were more abundant at the 

RNA and protein levels, demonstrating that stabilization of these mRNAs could contribute to 

elevated gene expression. How could changes in XRN1 activity influence the abundance of 

capped and polyadenylated mRNAs and/or protein? Aside from mechanisms that mediate 

coordination of mRNA decay and synthesis as discussed above, it is also likely that the distinct 

enzymatic processes in the 5’-3’ deadenylation-dependent decay pathway are also coordinated. 

There are three pieces of evidence that would support this idea. First, mRNA decay factors 

including CCR4-NOT family members, XRN1, DCP1a, DCP2, and AGO2 are often co-localized 

in discrete cytoplasmic foci (P-bodies) in human cells (Cougot et al. 2004; Liu et al. 2005; Sen 

and Blau et al. 2005), and XRN1 is known to directly interact with EDC4 in the decapping 

complex in human cells (Braun et al. 2012). Therefore these factors exist in close physical 
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proximity to one another and could directly or indirectly interact. Second, the decapping factor 

DCS1 has been shown to regulate XRN1 activity, potentially by causing a change in the XRN1 

protein conformation and/or stabilizing the protein to increase the affinity of XRN1 for its RNA 

substrate (Sinturel et al. 2012). Therefore, there is precedence for the ability of a protein factor 

involved in a distinct mRNA decay process to regulate XRN1. Finally, as discussed in the 

Introduction, the proteins involved in deadenylation, decapping, and 5’-3’ decay directly or 

indirectly interact through protein scaffolds, and the presence of disordered regions in many of 

these proteins may facilitate ribonucleoprotein aggregation (Decker et al. 2007; Reijns et al. 

2008; Ozgur et al. 2010; Braun et al. 2012; Chang et al. 2014; Jonas and Izaurralde 2013). We 

have demonstrated that sfRNA formation directly inhibits XRN1 activity and that changes in 

mRNA stability consistent with XRN1-deficiency are observed in flavivirus infections. In addition 

to these findings, P-bodies are dispersed in DENV, WNV and HCV infected cells, indicating that 

the interactions between these various mRNA decay factors are potentially disturbed upon 

infection (Emara and Brinton 2007; Pager et al. 2013). Furthermore, as discussed in the 

Introduction, HeLa cells infected with WNV recruit XRN1, LSm1, TNRC6A, and the RNA 

helicases DDX3, and DDX6 to viral replication complexes (Chahar et al. 2013). The 3’ UTR or 

sfRNA of DENV-2 was shown to interact with the P-body components DDX6 (Ward et al. 2011) 

and XRN1 (Figure 10). Furthermore, the HCV 5’ UTR interacts with AGO2 (Conrad et al. 2013; 

Bradrick et al. 2013), LSm1-7 (Scheller et al. 2009) and XRN1 (Bradrick et al. 2013). It is 

therefore possible that viral RNAs (either full-length or sfRNAs/sfRNA-like HCV RNA decay 

intermediates) bind and sequester several RNA binding proteins normally present in 

ribonucleoprotein complexes that may coordinate disparate steps in the mRNA decay process. 

Therefore, the formation and accumulation of sfRNA/sfRNA-like decay intermediates could 

directly and indirectly perturb P-body formation by sequestering RNA binding proteins and 

nucleases like XRN1 and AGO2. Furthermore, recent studies have demonstrated that XRN1 

may have the ability to act as a transcription factor in yeast (Sun et al. 2013; Haimovich et al. 
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2013; Medina et al. 2014), although XRN1 in mammalian and yeast cells is predominantly 

localized in the cytoplasm and therefore may not directly regulate transcription (Heyer et al. 

1995; Ingelfinger et al. 2002). The potential sequestration of XRN1 on sfRNAs in flavivirus 

infected cells could also potentially disrupt feedback mechanisms that normally exist in the cell 

to coordinate mRNA synthesis in decay. Consequently, defects in coordination between early 

steps in the deadenylation-dependent mRNA decay pathway and coordination between mRNA 

synthesis and decay could be caused by XRN1-mediated formation of sfRNA as illustrated in 

Figure 34. 

 
Figure 34. The suppression of XRN1 activity by highly structured flaviviral RNAs 
could disrupt normal feed-back mechanisms that regulate mRNA synthesis and 
decay. The coordination between XRN1 and other RNA decay factors (e.g. 
deadenylases and decapping factors) and/or transcription factors is represented by the 
gray dotted lines, and this coordination is likely dysregulated in flavivirus infections.  
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A role for XRN1 suppression in flavivirus-mediated pathology 

 
 Suppression of XRN1 activity by flaviviruses could lead to pathology by enhancing viral 

replication (either by stabilization of viral RNAs or other impacts on viral replication) or by 

dysregulating the host response to infection. We did not measure the rate of viral RNA decay 

during infection, although our data support the hypothesis that sfRNA accumulation would lead 

to increased viral RNA stability. This is highly likely, as a recent manuscript demonstrated that 

XRN1 is the primary exonuclease involved in degrading HCV RNAs (Li et al. 2013(b)) and the 

formation of sfRNAs in flavivirus infections relies on XRN1-mediated decay of the parent 

transcript. Furthermore, there are some clues in the literature that innate immune mechanisms 

are dysregulated during flavivirus infections of mammalian cells as a result of sfRNA 

accumulation (Schuessler et al. 2012, Chang et al. 2013). There are several potential 

mechanisms discussed below by which XRN1 suppression could contribute to flavivirus-, 

hepacivirus-, and pestivirus-induced pathology. 

 

XRN1 is important for proper cell growth/proliferation and development 

 
 The suppression of XRN1 by highly structured flavivirus RNAs could contribute to 

changes in cell biology that may enhance or promote virus-induced pathology in the host. As 

discussed above, XRN1 depletion in yeast causes changes in mRNA stability- but how does 

XRN1 deficiency affect the biology of the cell? Several studies have demonstrated that XRN1 is 

likely important for regulating basic processes in cell growth, proliferation, and development. In 

the yeast Schizosaccharomyces pombe, XRN1 deficiency was shown to increase cell size, 

cause a loss of cell viability in the stationary phase, and also made these organisms 

hypersensitive to anti-mitotic drugs (Szankasi et al. 1996). Furthermore, Saccharomyces 

cerevisiae lacking XRN1 also have increased cell size and increased doubling time in 

conjunction with stabilization of cellular mRNAs (Larimer and Stevens 1990; Larimer et al. 



144 

 

1992). These studies demonstrate that XRN1 activity is strongly associated with defects in 

essential cell behaviors including cell growth and proliferation.   

 In more complex organisms, XRN1 has been implicated in the processes of 

development, response to stress/stimuli, and has even been suggested as a tumor suppressor 

protein. Studies in Drosophila demonstrate that XRN1 is differentially expressed during 

organism development, indicating that it may play an important regulatory role in mediating this 

complex process (Till et al. 1998). As discussed above, further studies in Drosophila showed 

that XRN1 is essential for normal wing development (Jones et al. 2013), epithelial sheet sealing 

(Grima et al. 2008) and spermatogenesis (Zabolotskaya et al. 2008). In mammals, less is known 

about the role of XRN1 in development and cell growth; however, a role for XRN1 in neuronal 

cell differentiation was proposed in one study. XRN1 expression can be induced by glial-cell 

derived neurotropic factor (GDNF) in human neuroblastoma cells (Shimoyama et al. 2003). 

Because GDNF induces differentiation of these neuronal cells, XRN1 could play a role in 

mediating this process (Shimoyama et al. 2003). Finally, XRN1 may potentially be important for 

the regulation of cell growth and proliferation, as it may be involved in the onset and/or 

progression of osteogenic sarcoma (Kruzelock et al. 1997; Zhang et al. 2002). Osteogenic 

sarcoma-derived cell lines and patient-derived osteogenic sarcoma biopsy specimens were 

shown to have reduced XRN1 expression when compared to a control human fetal osteoblast 

cell line (Zhang et al. 2002).  

 XRN1 activity in yeast is suppressed in the presence of lithium (Dichtl et al. 1997). 

Interestingly, lithium toxicity in yeast was abrogated by the overexpression of HAL2 protein, an 

enzyme known to break down adenosine 3’, 5’ bisphosphate (pAp) into 5’ adenosine 

monophosphate and inorganic phosphate (Dichtl et al. 1997). The authors of this study 

demonstrated that XRN1 may be regulated in this context by the build-up of pAp as a result of 

lithium-mediated suppression of HAL2 activity as XRN1 activity was abrogated in vitro in the 

presence of pAp (Dichtl et al. 1997). A later study demonstrated that HAL2 expression is likely 
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regulated by BDF1, a member of the Fsh/Brd bromodomain-containing protein family, and that 

in the absence of BDF1 yeast cells were particularly sensitive to salt stress (Liu et al. 2009(b); 

Chen et al. 2013(b)). Over-expression of HAL2 rescued resistance to salt stress in a Bdf1 

deletion strain (Chen et al. 2013(b)). These studies are potentially interesting in the context of 

mammalian development, because BRD4, another Fsh/Brd bromodomain-containing protein, 

was shown to be essential for normal development in mice (Houzelstein et al. 2002). Mice with 

reduced BRD4 expression have pre- and post-natal defects including malformation of the head, 

liver defects (including reduced liver cell proliferation), lack subcutaneous fat, and cataracts 

(Houzelstein et al. 2002). Mice lacking BRD4 completely are embryonic lethal (Houzelstein et al. 

2002). If BRD4 similarly regulates HAL2 expression in mammalian cells as occurs in yeast, 

when BRD4 is under-expressed, we might expect to see a reduction in Hal2 expression. 

Reduced HAL2 expression could cause an accumulation of pAp, potentially leading to XRN1 

suppression. Although these data are indirectly implicating XRN1 in the cellular response to 

lithium and salt stress, there are other pieces of evidence that implicate that XRN1 activity is 

important for organism response to stress. Intriguingly, the plant homolog of XRN1, XRN4, is 

known to be important for mediating the organism response to a variety of stresses, including 

heat and ethylene toxicity (Potuschak et al. 2006; Olmedo et al. 2006; Merret et al. 2013). 

Therefore, XRN1 might be important for mediating the cellular anti-flaviviral response. 

 

Inhibition of RNA interference by sfRNA 

 
 RNA interference is arguably the most important innate immune response that 

arthropods use to protect themselves from flavivirus induced pathology (Blair 2011; Sanchez-

Vargas et al. 2009). Therefore, the ability of flaviviruses to suppress the RNAi pathway to some 

degree is likely very important for these viruses to exist in the arthropod vector long enough to 

be transmitted to the next host. Our studies have demonstrated that siRNA-mediated silencing 
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of gene expression in mammalian cells is limited during DENV-2 and KUNV infections in an 

sfRNA-dependent fashion (Figures 29 and 30). Because RNAi is likely most important in the 

context of the viral infection of the arthropod vector, we are currently assessing the degree to 

which RNAi is suppressed in vivo in the mosquito vector. Although sfRNA formation in the 

mosquito vector has not been demonstrated in the literature, preliminary evidence suggests that 

sfRNA accumulates to high levels in DENV-2 infected Aedes aegypti mosquitoes (data not 

shown). Furthermore have demonstrated using cytoplasmic extracts from Aedes albopictus 

C6/36 cells that sfRNA also inhibits XRN1 activity in this system (Figure 7C). As discussed in 

the Introduction, there is some evidence that sfRNA reduces DICER activity in non-human 

mammalian cells (Schnettler et al. 2012) and a recent manuscript demonstrated that microRNAs 

are significantly reduced in abundance DENV-2 infected cells (Kakumani et al. 2013), possibly 

indicating that DICER and/or AGO2 activity is suppressed during flavivirus infections. Disruption 

of both AGO2 and DICER by sfRNA would be possible considering the importance of RNAi to 

the arthropod anti-viral response. However, another possibility that we are currently assessing is 

the potential for feedback mechanisms to exist between components of the RNAi pathway. If 

AGO2 suppression feeds back and reduces DICER activity, or if XRN1 (known to degrade 

AGO2-mediated endonucleolytic decay products; Orban and Izaurralde 2005) suppression 

feeds back and suppresses AGO2 activity, then sfRNA could be indirectly suppressing RNAi 

during infection. We are pursuing this by assessing the knockdown efficiency of a reporter RNA 

in cells deficient in XRN1, AGO2, or DICER. However, the intriguing preliminary finding that the 

3’ UTR of KUNV is directly associated with AGO2 and DICER in infected cells implies that 

sfRNA is likely a direct inhibitor of all three nucleases. 
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Future directions  

Determine the impact of sfRNA formation on viral RNA stability 

 
 Co-opting cellular RNA stability factors can stabilize viral RNAs (Sokoloski et al. 2010), 

and the sponging of the host HuR protein by Sindbis virus RNAs can dramatically alter cellular 

mRNA stability and processing (Barnhart et al. 2013). Therefore, the suppression of the major 

cytoplasmic 5’-3’ exoribonuclease XRN1 by sfRNA likely stabilizes both viral and cellular RNAs. 

We demonstrated that sfRNA formation requires XRN1 to actively degrade viral RNAs and that 

RNAi-mediated decay of a reporter transcript containing the DENV-2 3’ UTR or the 5’ UTR of 

HCV or BVDV enhances the formation of sfRNA. Therefore, some flaviviral genomes may act 

as bait for the RNA decay machinery to ultimately cause the stabilization of viral RNAs later in 

the infection. Answering this question of flaviviral RNA stability will require overcoming a 

technical limitation in the system. Although there is not currently a commercially available 

inhibitor of flavivirus transcription (homologous to actinomycin D in mammalian cells) to directly 

address this hypothesis, several other experimental approaches could be undertaken. A broad-

spectrum antiviral drug, HPA-23 ((NH4)18(NaW21Sb9O86)17), was demonstrated to inhibit 

transcription of a diverse array of viruses (Werner et al. 1976; Tsiang et al. 1978), including 

DENV-2 (Bartholomeusz et al. 1994). Initial experiments using HPA-23 were not successful in 

shutting off flaviral transcription in our laboratory, perhaps due to the low solubility and perhaps 

stability of this compound in aqueous solutions. Alternatively, a metabolic labeling approach in 

which labeled ribonucleosides are applied to infected cells in culture and integrated into nascent 

viral genomes may also be attempted (assuming viral RNA dependent RNA polymerases can 

efficiently incorporate these modified ribonucleotides) as reported in Azarkh et al. (2011). 

Finally, as was done in Sokoloski et al. (2010), the use of a temperature-sensitive flaviviruses 

engineered to lose RdRp activity upon transfer to a higher temperature could yield viral RNA 

stability data. However, no temperature sensitive mutants with defects in the flaviviral 
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polymerase have been described in the literature to our knowledge, although targeted mutations 

predicted to abrogate polymerase activity at higher temperatures by disrupting the tertiary 

structure of the enzyme could be employed to potentially generate such mutants. Therefore, 

future studies should seek to address the role of XRN1 suppression in the stabilization of 

flavivirus RNAs. 

 

Examine the mechanisms by which flavivirus RNAs are degraded in the cell 

 
 Although XRN1 is likely a key player in mediating the degradation of flavivirus RNAs, as 

demonstrated by sfRNA accumulation, the initial steps in the decay of flavivirus RNAs are 

unknown. It would be interesting to determine if induced nucleases (e.g. RNase L) contribute to 

endonucleolytic cleavage of viral RNAs to facilitate XRN1-mediated decay of 5’ phosphorylated 

RNAs. Furthermore, although RNAi is likely not a major mechanism by which viral RNAs are 

targeted for decay in mammalian somatic cells, AGO2-mediated decay of viral transcripts in 

mammalian cells has been recently documented (Li et al. 2013(c); Maillard et al. 2013). Indeed, 

we demonstrated that targeting a reporter RNA containing the 3’ UTR of DENV-2 or the HCV or 

BVDV 5’ UTR with an upstream siRNA lead to increased accumulation of sfRNA-like decay 

intermediates in human 293T cells. Because flavivirus RNAs are not polyadenylated but contain 

5’ methylguanosine caps, it would be interesting to determine if they are shunted directly into 

the decapping and 5’-3’ decay pathway. Interestingly, there is some evidence that the YFV 

genome undergoes 3’-5’ decay, as a 3’ truncated sfRNA was detected in infected mammalian 

cells (Silva et al. 2010). The hepacivirus and pestivirus RNAs lack methylated 5’ caps, and 

because XRN1 is unable to effectively degrade 5’ triphosphorylated RNAs (Jinek et al. 2011) it 

would be interesting to determine how these RNAs are dephosphorylated to allow XRN1-

mediated decay. It is also likely that viral RNAs can be targeted by quality control pathways in 

the cell, considering that they (1) do not have a nuclear experience and thus are not present in 
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proper ribonucleoprotein complexes (Wilusz and Wilusz 2010) and (2) viral RNA-dependent 

RNA polymerases are error-prone and likely integrate premature termination codons, fail to add 

a termination codon, or highly structured viral RNAs could stall on the ribosome during 

translation. Using a combination of RNAi-mediated gene silencing of key endo- and 

exonucleases and assessment of viral RNA stability using one of the methods described above 

should enable the elucidation of how flavivirus RNAs are degraded in the cell. 

 

Directly assess the role of XRN1 suppression in pathology 

 
 Although we have demonstrated that the major 5’-3’ exoribonuclease XRN1 is 

suppressed by sfRNAs and that significant changes gene expression occur in association with 

sfRNA accumulation, future studies should directly address the hypothesis that XRN1 inhibition 

during viral infection leads to pathology. Two studies have demonstrated that sfRNA is 

important for KUNV and DENV-2 mediated cytotoxicity/pathogenicity in either a mouse model of 

infection or in cell culture (Pijlman et al. 2008; Liu et al. 2014). How exactly do sfRNAs from 

diverse flaviviruses mediate pathology, and could the sfRNA-like decay intermediates observed 

in BVDV and HCV infections also contribute to pathology?  

 Because XRN1 has been implicated as a tumor suppressor protein (Zhang et al. 2002), 

it is possible that the suppression of XRN1 by sfRNA-like decay intermediates observed in HCV 

infections could contribute to the onset of HCV-induced HCC. We are currently assessing the 

relationship between carcinogenesis and XRN1 suppression using focus formation assays in 

Huh7 and NIH3T3 cell culture models. Hepatitis C virus infections can also cause fibrosis 

(Razavi et al. 2013), and XRN1 has been demonstrated to be important for epithelial sheet 

sealing in Drosophila, a model for wound healing. To determine if XRN1 suppression by viral 

RNAs could contribute to defects in wound healing/fibrosis during infection, we are also 

performing in vitro wound healing/cell migration assays (as done in Lee et al. 2012(b)). 
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 As discussed above, XRN1 is important for proper organismic development, cell 

growth/proliferation, and respond to various stimuli. It has therefore been postulated that XRN1 

coordinates a proper cellular response to various cues that permit a dramatic change in global 

gene expression (Jones et al. 2012). Because we observed dramatic changes in cellular gene 

expression in flavivirus infections that occurred in an sfRNA-dependent fashion, it is possible 

that XRN1 is also important for mediating the proper cellular response to viral infection. The 

observation that transcript abundances were generally not correlated with transcript stability in 

wild-type KUNV infected cells, but that there is a positive correlation between these values in 

two sfRNA-deficient RNA virus infections supports the hypothesis that sfRNA disrupts the 

normal cellular response to infection.  

 Gene ontology analysis of the transcripts that were >2-fold more stable in KUNV infected 

cells relative to the sfRNA-deficient KUNV infected cells revealed that several biological 

processes may be altered as a result of sfRNA formation. There was a significant enrichment 

(p<0.001) in transcripts encoding factors involved in the cell cycle process, microtubule 

cytoskeleton organization, nuclear division, ribosome biogenesis, and the cellular response to 

stress. As discussed in the Introduction, organisms that have defects in XRN1 expression also 

display abnormalities in many of these processes, including cell proliferation (Jones et al. 2012; 

Nagarajan et al. 2013). These results lend further support to the idea that sfRNA suppresses 

XRN1 activity during infection. Furthermore, the transcripts that were selectively stabilized in 

association with sfRNA formation may encode factors that are particularly important for the 

cellular response to viral infection. Gene ontology analysis revealed a significant enrichment 

(p<0.001) in transcripts of proteins involved in RNA processing, RNA splicing, protein 

catabolism, macromolecular complex subunit organization, regulation of protein ubiquitination, 

and other processes that are likely important for remodeling the cell by altering cellular gene 

expression. The full list of GO terms that are significantly enriched (p<0.001) is reported in 

Appendix 4. 
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 Flavivirus infected cells undergo ER stress, as demonstrated by several studies (e.g. Yu 

et al. 2013; Ambrose and Mackenzie 2011). This is further supported by our RNA-seq data as 

GO analysis of the transcripts >2x increased in abundance in KUNV or sfRNA(-) KUNV 

infections showed a significant (p<0.01) enrichment in transcripts encoding factors involved in 

the response to ER stress, ER overload response, and the unfolded protein response. 

Therefore, one possible experiment to demonstrate the importance of XRN1 in mediating cell 

responses to stress would be to deplete human cells of XRN1 (by shRNA-mediated gene 

silencing) or treat cells with sfRNA-forming constructs, and challenge cells with chemical 

inducers of ER stress (e.g. brefeldin A; Klausner et al. 1992) to determine if post-transcriptional 

changes in gene expression and/or cytotoxicity are observed in association with XRN1 

suppression. These studies will provide insight into the direct mechanisms by which XRN1 

suppression could lead to pathology during a viral infection. 

 

Determine if XRN1 suppression enhances viral RNA recombination 

  As described above in the Introduction, the gene expression strategy of flaviviruses 

relies on the translation and proteolytic processing of a polyprotein encoded in a single viral 

RNA. However, the organization of the viral genome and the generation of distinct viral proteins 

can be greatly influenced by changes in the viral RNA sequence caused by mutation or 

recombination events. Furthermore, sfRNAs have been shown to be essential for Kunjin virus 

pathogenesis (Pijlman et al. 2008). Theoretically, changes in the organization /sequence of the 

viral RNA due to recombination events or mutations could alter the RNA structures such that 

sfRNA formation is enhanced or suppressed. Therefore, changes in the flaviviral RNA sequence 

due to recombination or mutation could ultimately contribute to viral pathogenesis. 

 It is likely that mutation of nascent viral genomes due to error-prone flavivirus RdRp 

activity is the primary mechanism by which genetic diversity is expanded in these viruses. For 
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example, the error rate of DENV RdRp is known to be fairly high and is in the same range as 

other single stranded RNA viruses at 10-3-10-5 mutations per nucleotide (Jin et al. 2011; Drake 

1993; Holmes and Burch 2000). Similarly, HCV mutation rates were estimated to be ~3×10⁻⁵ 

mutations per nucleotide in human patients (Ribeiro et al. 2012). However, recombination of 

viral RNA genomes can occur as viral RdRps dissociate from one template and re-initiate 

transcription on another template to generate a novel RNA sequence (i.e. template switching; 

Simon-Loriere and Holmes 2011). Recombination can therefore change the genome structure 

and substantially alter the protein products generated by a virus. Interestingly, viral genomes of 

members of all three genera in the Flaviviridae family have been reported to undergo RNA 

recombination events, the outcome of which leads to either deletion of internal segments or 

results in the insertion of host or viral RNA sequences into the viral genome (Tautz et al. 1994; 

Tautz et al. 1996; Meyers et al. 1989; Meyers et al. 1998; Simon-Loriere and Holmes 2011 

Pesko et al. 2012). Although some phylogenetic studies have pin-pointed specific instances in 

which certain flaviviruses including DENV have likely undergone recombination events, 

experimental evidence indicates that flavivirus recombination is probably a rare event (Holmes 

et al. 1999; Tolou et al. 2001; Uzcatequi et al. 2001; Taucher et al. 2010; Faye et al. 2014). 

However, the pestiviruses and hepaciviruses are known to undergo recombination events quite 

frequently (Gallei et al. 2005; Cristina and Colina 2006; Moreno et al. 2006; Reiter et al. 2011; 

Simon-Loriere and Holmes 2011; Scheel et al. 2013). Importantly, recombination is a significant 

mechanism by which changes in cytopathogenicity of BVDV infections can occur (Meyers et al. 

1991; Gallei et al. 2005). In some cases, viral or host protease recognition sites are inserted into 

the BVDV genome between NS2 and NS3 (likely through recombination events) leading to 

proteolysis; however, some insertions do not have an obvious proteolysis target site and cause 

cleavage of NS2 and NS3 through unknown mechanisms (Tautz et al. 1996, Meyers et al. 1989; 

Meyers et al. 1991, Mendez et al. 1998; Becher et al. 2002). 
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 Intriguingly, studies in plants have demonstrated that XRN1 is likely involved in 

suppressing viral RNA recombination events (Serviene et al. 2005; Cheng et al. 2006; Jaag and 

Nagy 2009). This may be because XRN1 is involved in degrading viral and cellular transcripts, 

effectively removing decapped (and therefore potential substrates for RNA-RNA recombination) 

RNAs from the cytoplasm that could be incorporated into nascent viral genomic RNAs during 

RdRp template switching. Importantly, as discussed above, non-cytopathic BVDV can transform 

into cytopathic BVDV and therefore cause severe mucosal disease in infected animals (Tautz et 

al. 1998). Therefore, if XRN1 suppression enhances viral recombination events in mammalian 

systems as well as plant systems, then this could be an important mechanism by which 

flaviviruses evolve to become more pathogenic. 

 It would be particularly interesting to determine if the suppression of XRN1 by viral RNAs 

could increase the recombination frequency in flavivirus infections. There are three experiments 

that could be done to test this hypothesis. First, SINV is known to undergo RNA-RNA 

recombination (Weiss and Schlesinger 1991; Raju et al. 1995) in tissue culture models of 

infection. The 3’ UTR of DENV-2 or the 5’ UTRs of HCV or BVDV could be provided in trans to 

determine if (1) there are more viral recombinants (by sequence) or (2) there is an increase in 

defective interfering particles (non-infectious virions that likely increase in abundance in 

association with increased RNA-RNA recombination events). Finally, we are currently working 

to determing the exact sequences/structures necessary in the BVDV and 5’ UTRs by deletion 

mutagenesis that facilitates XRN1 suppression. This should facilitate the construction of replicon 

constructs and/or infectious clones that lack the XRN1 resistance element that can be used to 

screen for viral RNA recombinants. 
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Development of a novel screening assay for anti-flavivirals 

 
 Although there are accepted vaccines in use for several flaviviruses including YFV and 

JEV, there are no targeted, highly effective treatments for any pathogens in the Flavivirus 

genus. There is a profound need for novel, targeted anti-flaviviral therapies. Because all of 

these viruses have similar replication cycles, they likely use similar aspects of the cellular gene 

expression machinery to promote viral proliferation that could be targeted for new anti-viral 

therapeutics. The research presented herein describes a unique mechanism that all members of 

the Flaviviridae may use to successfully interact with the host RNA decay machinery. 

The formation of sfRNA during flavivirus infection has been shown to be important for viral 

replication in certain cell lines (Pijlman et al. 2008; Silva et al. 2010). Furthermore, we have 

demonstrated that the up-regulation of cytokines, chemokines, and other pro-inflammatory 

factors is dramatically enhanced by sfRNA formation in Kunjin virus infections. Cells infected 

with HCV and BVDV have significant defects in mRNA stability consistent with XRN1 

suppression that likely contribute to the over-expression of cellular transcripts implicated in viral 

pathogenesis including hepatocellular carcinoma due to HCV infection. Because these viruses 

also appear to suppress XRN1 activity through unique structures in their 5’ UTRs, anti-viral 

compounds that destabilize the RNA structures required for XRN1 suppression will likely have 

two important functions: suppression of both viral replication and pathogenesis. A high 

throughput cell-free drug screening assay in which sfRNA formation is monitored could 

therefore provide a starting point for the generation of novel anti-viral compounds that could 

potentially mitigate disease caused by any virus in the Flaviviridae family. Importantly, 

carcinogenesis due to HCV could potentially be inhibited through treatment with one such 

compound.  
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Conclusions 

 
  Through the experiments presented herein, we have demonstrated several important 

findings. First, the stalling of XRN1 on complex, conserved structural elements in flavivirus 3’ 

UTRs also suppress XRN1 activity. Secondly, other members of the Flaviviridae family, namely 

hepatitis C virus and bovine viral diarrhea virus, generate XRN1-mediated decay intermediates 

from their highly structured 5’ UTRs. Furthermore, the stalling of XRN1 on these RNA structures 

also suppresses XRN1 activity, indicating that inhibition of the major 5’-3’ exonuclease XRN1 is 

likely conserved among all members of the Flaviviridae. Third, XRN1 suppression by viral RNAs 

contributes to dramatic changes in cellular mRNA stability and likely dampens the host 

response to infection. This could contribute to the enhancement of virus-induced pathology that 

is observed in wild-type sfRNA forming KUNV and DENV-2 infections but not during infections 

with mutant viruses deficient in sfRNA formation (Pijlman et al. 2008; Liu et al. 2014). The 

studies presented herein will therefore contribute to our understanding of how post-

transcriptional mechanisms regulate cellular gene expression in the context of viral infection.  

Additionally, our studies suggest that one mechanism by which sfRNA suppresses RNA 

interference is by binding to AGO2 and DICER to suppress their activities during infection. This 

is potentially important for persistent infections of the arthropod vectors of many of the 

flaviviruses, as RNAi is an essential antiviral immune mechanism in these organisms (Blair 

2011). Finally, we provide a foundation for the further study of how viruses evade and suppress 

the host cellular RNA decay machinery to promote a productive infection.  

 

 
 
 
 
 
 
 
 
 



156 

 

CITATIONS 
 
 

Acosta EG, Castilla V, Damonte EB. Functional entry of dengue virus into Aedes albopictus 
mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol. 2008 Feb;89(Pt 
2):474-84 

Adler B, Adler H, Pfister H, Jungi TW, Peterhans E. Macrophages infected with cytopathic 
bovine viral diarrhea virus release a factor(s) capable of priming uninfected macrophages for 
activation-induced apoptosis. J Virol. 1997 Apr;71(4):3255-8. 

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006 Feb 
24;124(4):783-801. 

Al-Haj L, Blackshear PJ, Khabar KS. Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest 
by RNase L and tristetraprolin, and involvement of AU-rich elements. Nucleic Acids Res. 2012 
Sep;40(16):7739-52. 

Alvarez DE, Lodeiro MF, Ludueña SJ, Pietrasanta LI, Gamarnik AV. Long-range RNA-RNA 
interactions circularize the dengue virus genome. J Virol. 2005 Jun;79(11):6631-43. 

Amberg DC, Goldstein AL, Cole CN. Isolation and characterization of RAT1: an essential gene 
of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. 
Genes Dev. 1992 Jul;6(7):1173-89. 
 
Ambrose RL, Mackenzie JM. West Nile virus differentially modulates the unfolded protein 
response to facilitate replication and immune evasion. J Virol. 2011 Mar;85(6):2723-32.  

Anderson JS, Parker RP. The 3' to 5' degradation of yeast mRNAs is a general mechanism for 
mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the 
exosome complex. EMBO J. 1998 Mar 2;17(5):1497-506. 

Anderson P. Intrinsic mRNA stability helps compose the inflammatory symphony. Nat Immunol. 
2009 Mar;10(3):233-4. 

Angusti A, Manfredini S, Durini E, Ciliberti N, Vertuani S, Solaroli N, Pricl S, Ferrone M, 
Fermeglia M, Loddo R, Secci B, Visioli A, Sanna T, Collu G, Pezzullo M, La Colla P. Design, 
synthesis and anti flaviviridae activity of N(6)-, 5',3'-O- and 5',2'-O-substituted adenine 
nucleoside analogs. Chem Pharm Bull (Tokyo). 2008 Apr;56(4):423-32. 

Ariumi Y, Kuroki M, Kushima Y, Osugi K, Hijikata M, Maki M, Ikeda M, Kato N. Hepatitis C virus 
hijacks P-body and stress granule components around lipid droplets. J Virol. 2011 
Jul;85(14):6882-92. 

Armstrong GL, Wasley A, Simard EP, McQuillan GM, Kuhnert WL, Alter MJ. The prevalence of 
hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med. 2006 May 
16;144(10):705-14. 

Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A. NS5 of dengue virus mediates STAT2 
binding and degradation. J Virol. 2009 Jun;83(11):5408-18.  



157 

 

Azarkh Y, Dölken L, Nagel M, Gilden D, Cohrs RJ. Synthesis and decay of varicella zoster virus 
transcripts. J Neurovirol. 2011 Jun;17(3):281-7.  

Backes S, Shapiro JS, Sabin LR, Pham AM, Reyes I, Moss B, Cherry S, tenOever BR. 
Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA 
methylation as a protective antiviral mechanism. Cell Host Microbe. 2012 Aug 16;12(2):200-10.  

Baillat D, Shiekhattar R. Functional dissection of the human TNRC6 (TNRC6A-related) family of 
proteins. Mol Cell Biol. 2009 Aug;29(15):4144-55. 

Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses. 2010 
Sep;2(9):2108-33. 

Barnhart MD, Moon SL, Emch AW, Wilusz CJ, Wilusz J. Changes in cellular mRNA stability, 
splicing, and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus. 
Cell Rep. 2013 Nov 27;5(4):909-17.  

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 
23;116(2):281-97 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 
23;136(2):215-33. 

Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H. Kinetic and structural analyses of 
hepatitis C virus polyprotein processing. J Virol. 1994 Aug;68(8):5045-55. 

Bartholomeusz A, Tomlinson E, Wright PJ, Birch C, Locarnini S, Weigold H, Marcuccio S, Holan 
G. Use of a flavivirus RNA-dependent RNA polymerase assay to investigate the antiviral activity 
of selected compounds. Antiviral Res. 1994 Aug;24(4):341-50. 

Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD. A mouse cytoplasmic 
exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol. 1997 Feb 
24;136(4):761-73. 

Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS 
Immunol Med Microbiol. 2008 Aug;53(3):287-99.  

Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. Classical swine 
fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal 
degradation. J Virol. 2007 Apr;81(7):3087-96. 

Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, König M, Schweizer M, Stalder H, 
Schirrmeier H, Thiel HJ.Genetic and antigenic characterization of novel pestivirus genotypes: 
implications for classification. Virology. 2003 Jun 20;311(1):96-104. 

Becher P, Orlich M, Thiel HJ. Complete genomic sequence of border disease virus, a pestivirus 
from sheep. J Virol. 1998 Jun;72(6):5165-73. 

Becher P, Thiel HJ, Collins M, Brownlie J, Orlich M. Cellular sequences in pestivirus genomes 
encoding gamma-aminobutyric acid (A) receptor-associated protein and Golgi-associated 
ATPase enhancer of 16 kilodaltons. J Virol. 2002 Dec;76(24):13069-76. 



158 

 

Beckham CJ, Parker R. P bodies, stress granules, and viral life cycles. Cell Host Microbe. 2008 
Apr 17;3(4):206-12. 

Beelman CA, Stevens A, Caponigro G, LaGrandeur TE, Hatfield L, Fortner DM, Parker R. An 
essential component of the decapping enzyme required for normal rates of mRNA turnover. 
Nature. 1996 Aug 15;382(6592):642-6. 

Ben-Ami O, Pencovich N, Lotem J, Levanon D, Groner Y. A regulatory interplay between miR-
27a and Runx1 during megakaryopoiesis. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):238-43.  

Benelli R, Lorusso G, Albini A, Noonan DM. Cytokines and chemokines as regulators of 
angiogenesis in health and disease. Curr Pharm Des. 2006;12(24):3101-15.  

Berezhna SY, Supekova L, Sever MJ, Schultz PG, Deniz AA. Dual regulation of hepatitis C viral 
RNA by cellular RNAi requires partitioning of AGO2 to lipid droplets and P-bodies. RNA. 2011 
Oct;17(10):1831-45. 

Bergqvist A, Rice CM. Transcriptional activation of the interleukin-2 promoter by hepatitis C 
virus core protein. J Virol. 2001 Jan;75(2):772-81. 

Berry KE, Waghray S, Doudna JA. The HCV IRES pseudoknot positions the initiation codon on 
the 40S ribosomal subunit. RNA. 2010 Aug;16(8):1559-69. 

Bhattacharyya S, Sen U, Vrati S. Regulated IRE1-dependent decay pathway is activated during 
Japanese encephalitis virus-induced unfolded protein response and benefits viral replication. J 
Gen Virol. 2014 Jan;95(Pt 1):71-9. 

Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Stress-induced reversal 
of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp 
Quant Biol. 2006;71:513-21. 

Bielefeldt-Ohmann H, Smirnova NP, Tolnay AE, Webb BT, Antoniazzi AQ, van Campen H, 
Hansen TR. Neuro-invasion by a 'Trojan Horse' strategy and vasculopathy during intrauterine 
flavivirus infection. Int J Exp Pathol. 2012 Feb;93(1):24-33. 

Bisbal C, Silverman RH. Diverse functions of RNase L and implications in pathology. Biochimie. 
2007 Jun-Jul;89(6-7):789-98.  
 
Blair CD. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and 
transmission. Future Microbiol. 2011 Mar;6(3):265-77. 

Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouillé Y. 
Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006 Jul;80(14):6964-
72. 

Blewett N, Coller J, Goldstrohm A. A quantitative assay for measuring mRNA decapping by 
splinted ligation reverse transcription polymerase chain reaction: qSL-RT-PCR. RNA. 2011 
Mar;17(3):535-43.  



159 

 

Boege U, Heinz FX, Wengler G, Kunz C. Amino acid compositions and amino-terminal 
sequences of the structural proteins of a flavivirus, European Tick-Borne Encephalitis virus. 
Virology. 1983 Apr 30;126(2):651-7. 

Boffa MB, Maret D, Hamill JD, Bastajian N, Crainich P, Jenny NS, Tang Z, Macy EM, Tracy RP, 
Franco RF, Nesheim ME, Koschinsky ML. Effect of single nucleotide polymorphisms on 
expression of the gene encoding thrombin-activatable fibrinolysis inhibitor: a functional analysis. 
Blood. 2008 Jan 1;111(1):183-9. 

Bouveret E, Rigaut G, Shevchenko A, Wilm M, Séraphin B. A Sm-like protein complex that 
participates in mRNA degradation. EMBO J. 2000 Apr 3;19(7):1661-71. 

Brackenbury LS, Carr BV, Charleston B. Aspects of the innate and adaptive immune responses 
to acute infections with BVDV. Vet Microbiol. 2003 Nov 7;96(4):337-44. 

Bradrick SS, Nagyal S, Novatt H. A miRNA-responsive cell-free translation system facilitates 
isolation of hepatitis C virus miRNP complexes. RNA. 2013 Aug;19(8):1159-69.  

Bradrick SS, Walters RW, Gromeier M. The hepatitis C virus 3'-untranslated region or a poly(A) 
tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Res. 2006 
Mar 1;34(4):1293-303. 

Braun JE, Truffault V, Boland A, Huntzinger E, Chang CT, Haas G, Weichenrieder O, Coles M, 
Izaurralde E. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' 
exonucleolytic degradation. Nat Struct Mol Biol. 2012 Dec; 19(12):1324-31. 

Brawerman G, Mendecki J, Lee SY. A procedure for the isolation of mammalian messenger 
ribonucleic acid. Biochemistry. 1972 Feb 15;11(4):637-41. 

Brawerman G. Eukaryotic messenger RNA. Annu Rev Biochem. 1974;43(0):621-42. 

Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and 
cytoplasmic processing bodies. Science. 2005 Oct 21;310(5747):486-9. 

Brinton MA, Dispoto JH. Sequence and secondary structure analysis of the 5'-terminal region of 
flavivirus genome RNA. Virology. 1988 Feb;162(2):290-9. 

Brinton MA, Fernandez AV, Dispoto JH. The 3'-nucleotides of flavivirus genomic RNA form a 
conserved secondary structure. Virology. 1986 Aug;153(1):113-21. 

Brinton MA, Perelygin AA. Genetic resistance to flaviviruses.  Adv Virus Res. 2003;60:43-85. 
 
Brinton MA. Replication cycle and molecular biology of the West Nile virus. Viruses. 2013 Dec 
27;6(1):13-53. 

Brown CE, Tarun SZ Jr, Boeck R, Sachs AB. PAN3 encodes a subunit of the Pab1p-dependent 
poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Oct;16(10):5744-53. 

Brown EA, Zhang H, Ping LH, Lemon SM. Secondary structure of the 5' nontranslated regions 
of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992 Oct 11;20(19):5041-
5. 



160 

 

Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical 
structures by the 3'-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci 
U S A. 2012 Nov 20;109(47):19202-7. 

Brownell J, Polyak SJ. Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory 
road to liver cancer. Clin Cancer Res. 2013 Mar 15;19(6):1347-52. 

Brownlie J, Clarke MC, Howard CJ. Experimental infection of cattle in early pregnancy with a 
cytopathic strain of bovine virus diarrhoea virus. Res Vet Sci. 1989 May;46(3):307-11. 

Brownlie J, Clarke MC, Howard CJ. Experimental production of fatal mucosal disease in cattle. 
Vet Rec. 1984 Jun 2;114(22):535-6. 

Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces 
cerevisiae. J Cell Biol. 2008 Nov 3;183(3):441-55.  

Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009 
Dec 25;36(6):932-41. 

Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, Cognat V, Marcinowski L, Dölken L, 
Pfeffer S. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA. 
2010 Feb;16(2):307-15. 

Bukh J, Purcell RH, Miller RH. Sequence analysis of the 5' noncoding region of hepatitis C virus. 
Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4942-6. 

Burbelo PD, Dubovi EJ, Simmonds P, Medina JL, Henriquez JA, Mishra N, Wagner J, Tokarz R, 
Cullen JM, Iadarola MJ, Rice CM, Lipkin WI, Kapoor A. Serology-enabled discovery of 
genetically diverse hepaciviruses in a new host. J Virol. 2012 Jun;86(11):6171-8.  

Burke DS and Monath TP. 2001. Flaviviruses. In Knipe DM and Howley PM (eds), Fields 
Virology. Lippincott-Williams & Wilkins, Philadelphia, PA, pp. 1043–1125. 

Caillet-Saguy C, Lim SP, Shi PY, Lescar J, Bressanelli S. Polymerases of hepatitis C viruses 
and flaviviruses: Structural and mechanistic insights and drug development. Antiviral Res. 2014 
Feb 19. pii: S0166-3542(14)00049-7. 

Campbell CL, Black WC 4th, Hess AM, Foy BD. Comparative genomics of small RNA regulatory 
pathway components in vector mosquitoes. BMC Genomics. 2008 Sep 18;9:425. 

Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by 
small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 
2001 Aug 14;98(17):9742-7. 

Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A. Identification of a common 
nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory 
mediators. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670-4. 

Carballo E, Lai WS, Blackshear PJ. Evidence that tristetraprolin is a physiological regulator of 
granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. 
Blood. 2000 Mar 15;95(6):1891-9.  



161 

 

Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-
alpha production by tristetraprolin. Science. 1998 Aug 14;281(5379):1001-5. 

Carod-Artal FJ, Wichmann O, Farrar J, Gascón J. Neurological complications of dengue virus 
infection. Lancet Neurol. 2013 Sep;12(9):906-19.  

Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF, Youle RJ. A 
study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med. 
1997 Sep 15; 186(6):967-72. 
 
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates 
enterovirus and human rhinovirus infections. J Virol. 2013 Oct;87(19):10423-34. 

Cazalla D, Yario T, Steitz JA. Down-regulation of a host microRNA by a Herpesvirus saimiri 
noncoding RNA. Science. 2010 Jun 18;328(5985):1563-6. 

Centers for Disease Control and Prevention (2012). Dengue. Retrieved from 
http://www.cdc.gov/dengue/ 

Centers for Disease Control and Prevention. Locally acquired Dengue--Key West, Florida, 
2009-2010. MMWR Morb Mortal Wkly Rep. 2010 May 21;59(19):577-81. 

Chahar HS, Chen S, Manjunath N. P-body components LSM1, TNRC6A, DDX3, DDX6 and 
XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology. 
2013 Feb 5;436(1):1-7. 

Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and 
replication. Annu Rev Microbiol. 1990;44:649-88. 

Chandriani S, Skewes-Cox P, Zhong W, Ganem DE, Divers TJ, Van Blaricum AJ, Tennant BC, 
Kistler AL. Identification of a previously undescribed divergent virus from the Flaviviridae family 
in an outbreak of equine serum hepatitis. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1407-
15. 

Chang CT, Bercovich N, Loh B, Jonas S, Izaurralde E. The activation of the decapping enzyme 
DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic 
Acids Res. 2014 Feb 8 

Chang KS, Luo G. The polypyrimidine tract-binding protein (PTB) is required for efficient 
replication of hepatitis C virus (HCV) RNA. Virus Res. 2006 Jan;115(1):1-8. 

Chang RY, Hsu TW, Chen YL, Liu SF, Tsai YJ, Lin YT, Chen YS, Fan YH. Japanese 
encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear 
translocation of interferon regulatory factor 3. Vet Microbiol. 2013 Sep 27;166(1-2):11-21.  

Chapman EG, Moon SL, Wilusz J, Kieft JS. RNA Structures that Resist Degradation by XRN1 
Produce a Pathogenic Dengue Virus RNA. eLife 2014;3:e01892. 

Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS. The structural 
basis of pathogenic flavivirus subgenomic RNA (sfRNA) production. Science. in press. 



162 

 

Charleston B, Fray MD, Baigent S, Carr BV, Morrison WI.Establishment of persistent infection 
with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce 
type I interferon. J Gen Virol. 2001 Aug;82(Pt 8):1893-7. 

(a) Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. Control 
of gene expression during T cell activation: alternate regulation of mRNA transcription and 
mRNA stability. BMC Genomics. 2005 May 20;6:75. 

(b) Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. Stability 
regulation of mRNA and the control of gene expression. Ann N Y Acad Sci. 2005 Nov;1058:196-
204. 

Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses 
of human brain cells to West Nile virus infection. J Neurovirol. 2005 Dec;11(6):512-24. 

Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W.miRNA 
repression involves TNRC6A-mediated recruitment of CCR4-NOT through conserved W-
containing motifs. Nat Struct Mol Biol. 2011 Oct 7;18(11):1218-26.  

Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A DICER-independent miRNA biogenesis 
pathway that requires Ago catalysis. Nature. 2010 Jun 3;465(7298):584-9.  

Chen CY, Zheng D, Xia Z, Shyu AB. Ago-TNRC6 triggers microRNA-mediated decay by 
promoting two deadenylation steps. Nat Struct Mol Biol. 2009 Nov;16(11):1160-6. 

(a) Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S, Liu Y, Wu J. HCV-induced miR-21 contributes 
to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog. 
2013;9(4):e1003248.  

(b) Chen L, Liu L, Wang M, Fu J, Zhang Z, Hou J, Bao X. Hal2p functions in Bdf1p-involved salt 
stress response in Saccharomyces cerevisiae. PLoS One. 2013 Apr 17;8(4):e62110.  

Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. Dengue virus 
infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997 
Aug;3(8):866-71. 

Chen Z, Rijnbrand R, Jangra RK, Devaraj SG, Qu L, Ma Y, Lemon SM, Li K. Ubiquitination and 
proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic 
bovine viral diarrhea virus. Virology. 2007 Sep 30;366(2):277-92. 

Cheng CP, Serviene E, Nagy PD. Suppression of viral RNA recombination by a host 
exoribonuclease. J Virol. 2006 Mar;80(6):2631-40 

Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, LeBlanc AC, Donovan DJ, 
Thung SN, Solé M, Tovar V, Alsinet C, Ramos AH, Barretina J, Roayaie S, Schwartz M, 
Waxman S, Bruix J, Mazzaferro V, Ligon AH, Najfeld V, Friedman SL, Sellers WR, Meyerson M, 
Llovet JM. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. 
Cancer Res. 2008 Aug 15;68(16):6779-88.  



163 

 

Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex 
has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA. 
2007 Jul;13(7):998-1016.  

Christie M, Boland A, Huntzinger E, Weichenrieder O, Izaurralde E. Structure of the PAN3 
pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the TNRC6A 
proteins. Mol Cell. 2013 Aug 8;51(3):360-73.  

Chu JJ, Ng ML. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic 
pathway. J Virol. 2004 Oct;78(19):10543-55. 

Chursov A, Kopetzky SJ, Leshchiner I, Kondofersky I, Theis FJ, Frishman D, Shneider A. 
Specific temperature-induced perturbations of secondary mRNA structures are associated with 
the cold-adapted temperature-sensitive phenotype of influenza A virus. RNA Biol. 2012 
Oct;9(10):1266-74. 

Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, 
Lawson ND, Wolfe SA, Giraldez AJ. A novel miRNA processing pathway independent of DICER 
requires Argonaute2 catalytic activity. Science. 2010 Jun 25;328(5986):1694-8.  

Clyde K, Harris E.RNA secondary structure in the coding region of dengue virus type 2 directs 
translation start codon selection and is required for viral replication. J Virol. 2006 
Mar;80(5):2170-82. 

Clyde K, Barrera J, Harris E. The capsid-coding region hairpin element (cHP) is a critical 
determinant of dengue virus and West Nile virus RNA synthesis. Virology. 2008 Sep 
30;379(2):314-23.  

Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser 
B, Wood DE, Sahagan BG, Neote K. Interferon-inducible T cell alpha chemoattractant (I-TAC): 
a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high 
affinity binding to CXCR3. J Exp Med. 1998 Jun 15;187(12):2009-21. 

Collart MA, Panasenko OO, Nikolaev SI. The Not3/5 subunit of the Ccr4-Not complex: a central 
regulator of gene expression that integrates signals between the cytoplasm and the nucleus in 
eukaryotic cells. Cell Signal. 2013 Apr;25(4):743-51. 

Collart MA. Global control of gene expression in yeast by the Ccr4-Not complex. Gene. 2003 
Aug 14;313:1-16. 

Collins ME, Heaney J, Thomas CJ, Brownlie J. Infectivity of pestivirus following persistence of 
acute infection. Vet Microbiol. 2009 Sep 18;138(3-4):289-96. 

Conrad KD, Giering F, Erfurth C, Neumann A, Fehr C, Meister G, Niepmann M. MicroRNA-122 
dependent binding of AGO2 protein to hepatitis C virus RNA is associated with enhanced RNA 
stability and translation stimulation. PLoS One. 2013;8(2):e56272. 

Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter AG, 
Haley MM, Thornton CA, Berglund JA. Reducing levels of toxic RNA with small molecules. ACS 
Chem Biol. 2013 Nov 15;8(11):2528-37.  



164 

 

Cooper DA, Jha BK, Silverman RH, Hesselberth JR, Barton DJ. Ribonuclease L and metal-ion-
independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res. 2014 
Feb 5. 
 
Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and innate immune responses 
in dengue infection: protection versus disease induction. Am J Pathol. 2013 Jun;182(6):1950-
61. 

Cougot N, Babajko S, Séraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J 
Cell Biol. 2004 Apr;165(1):31-40.  

Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P. From vessel 
sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor 
oxygen-sensing machinery. Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2331-6. 

Courtney SC, Di H, Stockman BM, Liu H, Scherbik SV, Brinton MA. Identification of novel host 
cell binding partners of Oas1b, the protein conferring resistance to flavivirus-induced disease in 
mice. J Virol. 2012 Aug;86(15):7953-63.  
 
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002 Dec 19-26;420(6917):860-7. 

Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M. 
Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl 
Acad Sci U S A. 2009 Aug 11;106(32):13383-7.  

Cristina J, Colina R. Evidence of structural genomic region recombination in Hepatitis C virus. 
Virol J. 2006 Jun 30;3:53. 

Cullen BR, Cherry S, tenOever BR. Is RNA interference a physiologically relevant innate 
antiviral immune response in mammals? Cell Host Microbe. 2013 Oct 16;14(4):374-8. 

Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S, Zust R, Dong H, 
Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, Buller RM, Gale M Jr, Shi PY, Diamond 
MS. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. 
Nature. 2010 Nov 18;468(7322):452-6.  

de Groot RP, Schoorlemmer J, van Genesen ST, Kruijer W. Differential expression of jun and 
fos genes during differentiation of mouse P19 embryonal carcinoma cells. Nucleic Acids Res. 
1990 Jun 11;18(11):3195-202. 

Decker CJ, Parker R. A turnover pathway for both stable and unstable mRNAs in yeast: 
evidence for a requirement for deadenylation. Genes Dev. 1993 Aug;7(8):1632-43. 

Decker CJ, Teixeira D, Parker R. EDC3p and a glutamine/asparagine-rich domain of Lsm4p 
function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol. 2007 Nov 5; 
179(3):437-49. 

Deng R, Brock KV. 5' and 3' untranslated regions of pestivirus genome: primary and secondary 
structure analyses. Nucleic Acids Res. 1993 Apr 25;21(8):1949-57. 



165 

 

Depner K, Bauer T, Liess B. Thermal and pH stability of pestiviruses. Rev Sci Tech. 1992 
Sep;11(3):885-93. 

Dichtl B, Stevens A, Tollervey D. Lithium toxicity in yeast is due to the inhibition of RNA 
processing enzymes. EMBO J. 1997 Dec 1;16(23):7184-95. 

Dickson AM, Anderson JR, Barnhart MD, Sokoloski KJ, Oko L, Opyrchal M, Galanis E, Wilusz 
CJ, Morrison TE, Wilusz J. Dephosphorylation of HuR protein during alphavirus infection is 
associated with HuR relocalization to the cytoplasm. J Biol Chem. 2012 Oct 19;287(43):36229-
38. 

Doll D, Keller L, Maak M, Boulesteix AL, Siewert JR, Holzmann B, Janssen KP. Differential 
expression of the chemokines GRO-2, GRO-3, and interleukin-8 in colon cancer and their 
impact on metastatic disease and survival. Int J Colorectal Dis. 2010 May;25(5):573-81. 

Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation 
elongation. Nature. 2006 Mar 23;440(7083):561-4. 

Domingues RB, Kuster GW, Onuki-Castro FL, Souza VA, Levi JE, Pannuti CS. Involvement of 
the central nervous system in patients with dengue virus infection. J Neurol Sci. 2008 Apr 
15;267(1-2):36-40.  

Done JT, Terlecki S, Richardson C, Harkness JW, Sands JJ, Patterson DS, Sweasey D, Shaw 
IG, Winkler CE, Duffell SJ. Bovine virus diarrhoea-mucosal disease virus: pathogenicity for the 
fetal calf following maternal infection. Vet Rec. 1980 Jun 7;106(23):473-9. 

Dong QM, Zhang JQ, Li Q, Bracher JC, Hendricks DT, Zhao XH. Clinical significance of serum 
expression of GROβ in esophageal squamous cell carcinoma. World J Gastroenterol. 2011 Jun 
7;17(21):2658-62. 

Dong XY, Liu WJ, Zhao MQ, Wang JY, Pei JJ, Luo YW, Ju CM, Chen JD. Classical swine fever 
virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-κB activation to 
promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages. 
Virol J. 2013 Sep 13;10:286. 

Donis RO, Dubovi EJ. Differences in virus-induced polypeptides in cells infected by cytopathic 
and noncytopathic biotypes of bovine virus diarrhea-mucosal disease virus. Virology. 1987 
May;158(1):168-73. 

Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, 
Catanese MT, Burton DR, Law M, Rice CM, Ploss A. A genetically humanized mouse model for 
hepatitis C virus infection. Nature. 2011 Jun 8;474(7350):208-11.  

Dougherty JD, White JP, Lloyd RE. Poliovirus-mediated disruption of cytoplasmic processing 
bodies. J Virol. 2011 Jan;85(1):64-75.  

Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A. 1993 
May 1;90(9):4171-5. 

Drexler JF, Corman VM, Müller MA, Lukashev AN, Gmyl A, Coutard B, Adam A, Ritz D, Leijten 
LM, van Riel D, Kallies R, Klose SM, Gloza-Rausch F, Binger T, Annan A, Adu-Sarkodie Y, 



166 

 

Oppong S, Bourgarel M, Rupp D, Hoffmann B, Schlegel M, Kümmerer BM, Krüger DH, 
Schmidt-Chanasit J, Setién AA, Cottontail VM, Hemachudha T, Wacharapluesadee S, 
Osterrieder K, Bartenschlager R, Matthee S, Beer M, Kuiken T, Reusken C, Leroy EM, Ulrich 
RG, Drosten C. Evidence for novel hepaciviruses in rodents. PLoS Pathog. 
2013;9(6):e1003438. 

Duan R, Rhie BH, Ryu HY, Ahn SH. The RNA polymerase II Rpb4/7 subcomplex regulates 
cellular lifespan through an mRNA decay process. Biochem Biophys Res Commun. 2013 Nov 
8;441(1):266-70. 

Dukhan D, Leroy F, Peyronnet J, Bosc E, Chaves D, Durka M, Storer R, La Colla P, Seela F, 
Gosselin G. Synthesis of 5-aza-7-deazaguanine nucleoside derivatives as potential anti-
flavivirus agents. Nucleosides Nucleotides Nucleic Acids. 2005;24(5-7):671-4. 

Dunckley T, Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces 
cerevisiae and contains a functional MutT motif. EMBO J. 1999 Oct 1;18(19):5411-22. 

Dunckley T, Tucker M, Parker R. Two related proteins, EDC1p and EDC2p, stimulate mRNA 
decapping in Saccharomyces cerevisiae. Genetics. 2001 Jan;157(1):27-37. 

Eberle AB, Lykke-Andersen S, Mühlemann O, Jensen TH. SMG6 promotes endonucleolytic 
cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol. 2009 Jan;16(1):49-55. 

Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated 
metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 
2009 Mar 3;15(3):232-9. 

Egger D, Wölk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of hepatitis 
C virus proteins induces distinct membrane alterations including a candidate viral replication 
complex. J Virol. 2002 Jun;76(12):5974-84. 

Eksioglu EA, Zhu H, Bayouth L, Bess J, Liu HY, Nelson DR, Liu C. Characterization of HCV 
interactions with Toll-like receptors and RIG-I in liver cells. PLoS One. 2011;6(6):e21186. 

Elshuber S, Allison SL, Heinz FX, Mandl CW. Cleavage of protein prM is necessary for infection 
of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol. 2003 Jan;84(Pt 1):183-91. 

Elvang A, Melik W, Bertrand Y, Lönn M, Johansson M. Sequencing of a tick-borne encephalitis 
virus from Ixodes ricinus reveals a thermosensitive RNA switch significant for virus propagation 
in ectothermic arthropods. Vector Borne Zoonotic Dis. 2011 Jun;11(6):649-58.  

Emara MM, Brinton MA. Interaction of TIA-1/TIAR with West Nile and dengue virus products in 
infected cells interferes with stress granule formation and processing body assembly. Proc Natl 
Acad Sci U S A. 2007 May 22;104(21):9041-6. 

Epstein JH, Quan PL, Briese T, Street C, Jabado O, Conlan S, Ali Khan S, Verdugo D, Hossain 
MJ, Hutchison SK, Egholm M, Luby SP, Daszak P, Lipkin WI. Identification of GBV-D, a novel 
GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. PLoS 
Pathog. 2010 Jul 1;6:e1000972. 



167 

 

Errett JS, Suthar MS, McMillan A, Diamond MS, Gale M Jr. The essential, nonredundant roles 
of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol. 2013 
Nov;87(21):11416-25 

Esteban R, Vega L, Fujimura T. 20S RNA narnavirus defies the antiviral activity of SKI1/XRN1 
in Saccharomyces cerevisiae. J Biol Chem. 2008 Sep 19;283(38):25812-20.  

Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating 
JA, Bieniasz PD, Rice CM. Claudin-1 is a hepatitis C virus co-receptor required for a late step in 
entry. Nature. 2007 Apr 12;446(7137):801-5.  

Eystathioy T, Jakymiw A, Chan EK, Séraphin B, Cougot N, Fritzler MJ. The TNRC6A protein 
colocalizes with mRNA degradation associated proteins hDCP1 and hLSm4 in cytoplasmic GW 
bodies. RNA. 2003 Oct;9(10):1171-3. 

Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, 
Raught B, Duchaine TF, Sonenberg N. miRNA-mediated deadenylation is orchestrated by 
TNRC6A through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol. 2011 
Oct 7;18(11):1211-7.  

Failla C, Tomei L, De Francesco R. Both NS3 and NS4A are required for proteolytic processing 
of hepatitis C virus nonstructural proteins. J Virol. 1994 Jun;68(6):3753-60. 

Fan XC, Steitz JA. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases 
the in vivo stability of ARE-containing mRNAs. EMBO J. 1998 Jun 15;17(12):3448-60. 

Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM, Sall AA. 
Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop 
Dis. 2014 Jan 9;8(1):e2636. 

Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BL, van Rij 
RP, van Kuppeveld FJ. MDA5 detects the double-stranded RNA replicative form in picornavirus-
infected cells. Cell Rep. 2012 Nov 29;2(5):1187-96. 

Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and 
the ARE binding protein TTP activate mRNA decapping. Mol Cell. 2005 Dec 22;20(6):905-15. 

Filomatori CV, Iglesias NG, Villordo SM, Alvarez DE, Gamarnik AV. RNA sequences and 
structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem. 
2011 Mar 4;286(9):6929-39. 

Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5' RNA 
element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006 Aug 
15;20(16):2238-49. 

Fink J, Gu F, Ling L, Tolfvenstam T, Olfat F, Chin KC, Aw P, George J, Kuznetsov VA, 
Schreiber M, Vasudevan SG, Hibberd ML. Host gene expression profiling of dengue virus 
infection in cell lines and patients. PLoS Negl Trop Dis. 2007 Nov 21;1(2):e86. 

Flecken T, Spangenberg HC, Thimme R. Immunobiology of hepatocellular carcinoma. 
Langenbecks Arch Surg. 2012 Jun;397(5):673-80. 



168 

 

Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P. A 
retrotransposon-driven DICER isoform directs endogenous small interfering RNA production in 
mouse oocytes. Cell. 2013 Nov 7;155(4):807-16.  

Fletcher SP, Jackson RJ. Pestivirus internal ribosome entry site (IRES) structure and function: 
elements in the 5' untranslated region important for IRES function. J Virol. 2002 
May;76(10):5024-33. 

Flores EF, Kreutz LC, Donis RO. Swine and ruminant pestiviruses require the same cellular 
factor to enter bovine cells. J Gen Virol. 1996 Jun;77 ( Pt 6):1295-303. 

Floyd-Smith G, Slattery E, Lengyel P. Interferon action: RNA cleavage pattern of a (2'-5') 
oligoadenylate-dependent endonuclease. Science. 1981 May 29;212(4498):1030-2. 

Franks TM, Singh G, Lykke-Andersen J. Upf1 ATPase-dependent mRNP disassembly is 
required for completion of nonsense- mediated mRNA decay. Cell. 2010 Dec 10;143(6):938-50.  

Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M Jr. Establishment and maintenance of 
the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through 
IPS-1. J Virol. 2008 Jan;82(2):609-16.  

Friebe P, Bartenschlager R. Genetic analysis of sequences in the 3' nontranslated region of 
hepatitis C virus that are important for RNA replication. J Virol. 2002 Jun;76(11):5326-38. 

Friebe P, Boudet J, Simorre JP, Bartenschlager R. Kissing-loop interaction in the 3' end of the 
hepatitis C virus genome essential for RNA replication.J Virol. 2005 Jan;79(1):380-92 

Friebe P, Harris E. Interplay of RNA elements in the dengue virus 5' and 3' ends required for 
viral RNA replication. J Virol. 2010 Jun;84(12):6103-18. 

Frischmeyer PA, van Hoof A, O'Donnell K, Guerrerio AL, Parker R, Dietz HC. An mRNA 
surveillance mechanism that eliminates transcripts lacking termination codons. Science. 2002 
Mar 22;295(5563):2258-61. 

Fulton RW, Briggs RE, Ridpath JF, Saliki JT, Confer AW, Payton ME, Duff GC, Step DL, Walker 
DA.Transmission of bovine viral diarrhea virus 1b to susceptible and vaccinated calves by 
exposure to persistently infected calves. Can J Vet Res. 2005 Jul;69(3):161-9. 

Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, Edmonds J, Dong H, Shi 
PY, Khromykh AA. RNA structures required for production of subgenomic flavivirus RNA. J 
Virol. 2010 Nov;84(21):11407-17. 

Furuichi Y, Morgan M, Shatkin AJ, Jelinek W, Salditt-Georgieff M, Darnell JE. Methylated, 
blocked 5 termini in HeLa cell mRNA. Proc Natl Acad Sci U S A. 1975 May;72(5):1904-8. 

Gallei A, Orlich M, Thiel HJ, Becher P. Noncytopathogenic pestivirus strains generated by 
nonhomologous RNA recombination: alterations in the NS4A/NS4B coding region. J Virol. 2005 
Nov;79(22):14261-70. 



169 

 

Garneau NL, Sokoloski KJ, Opyrchal M, Neff CP, Wilusz CJ, Wilusz J. The 3' untranslated 
region of sindbis virus represses deadenylation of viral transcripts in mosquito and Mammalian 
cells. J Virol. 2008 Jan;82(2):880-92. 

Geerlings TH, Vos JC, Raue HA. The final step in the formation of 25S rRNA in Saccharomyces 
cerevisiae is performed by 5'-->3' exonucleases. RNA. 2000 Dec;6(12):1698-703. 

Germi R, Crance JM, Garin D, Guimet J, Lortat-Jacob H, Ruigrok RW, Zarski JP, Drouet E. 
Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C 
virus adsorption. J Med Virol. 2002 Oct;68(2):206-15. 

Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A. Proinflammatory 
mediators released by activated microglia induces neuronal death in Japanese encephalitis. 
Glia. 2007 Apr 1;55(5):483-96. 

Gil LH, van Olphen AL, Mittal SK, Donis RO. Modulation of PKR activity in cells infected by 
bovine viral diarrhea virus. Virus Res. 2006 Mar;116(1-2):69-77.  

Gilfoy FD, Mason PW. West Nile virus-induced interferon production is mediated by the double-
stranded RNA-dependent protein kinase PKR. J Virol. 2007 Oct;81(20):11148-58. 

Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013 Dec;13(12):871-
82.  

Goler-Baron V, Selitrennik M, Barkai O, Haimovich G, Lotan R, Choder M. Transcription in the 
nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev. 2008 Aug 
1;22(15):2022-7.  

Gollins SW, Porterfield JS. Flavivirus infection enhancement in macrophages: an electron 
microscopic study of viral cellular entry. J Gen Virol. 1985 Sep;66 (Pt 9):1969-82. 

Gottipati K, Ruggli N, Gerber M, Tratschin JD, Benning M, Bellamy H, Choi KH. The structure of 
classical swine fever virus N(pro): a novel cysteine Autoprotease and zinc-binding protein 
involved in subversion of type I interferon induction. PLoS Pathog. 2013;9(10):e1003704.  

Gouttenoire J, Roingeard P, Penin F, Moradpour D. Amphipathic alpha-helix AH2 is a major 
determinant for the oligomerization of hepatitis C virus nonstructural protein 4B. J Virol. 2010 
Dec;84(24):12529-37. 

Green AM, Beatty PR, Hadjilaou A, Harris E. Innate Immunity to Dengue Virus Infection and 
Subversion of Antiviral Responses. J Mol Biol. 2014 Mar 20;426(6):1148-1160. 

Greiser-Wilke I, Dittmar KE, Liess B, Moennig V. Heterogeneous expression of the non-
structural protein p80/p125 in cells infected with different pestiviruses. J Gen Virol. 1992 Jan;73 
( Pt 1):47-52. 

Griffin SD, Beales LP, Clarke DS, Worsfold O, Evans SD, Jaeger J, Harris MP, Rowlands DJ. 
The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, 
Amantadine. FEBS Lett. 2003 Jan 30;535(1-3):34-8. 



170 

 

Grima DP, Sullivan M, Zabolotskaya MV, Browne C, Seago J, Wan KC, Okada Y, Newbury SF. 
The 5'-3' exoribonuclease pacman is required for epithelial sheet sealing in Drosophila and 
genetically interacts with the phosphatase puckered. Biol Cell. 2008 Dec;100(12):687-701.  

Grooms DL. Reproductive consequences of infection with bovine viral diarrhea virus. Vet Clin 
North Am Food Anim Pract. 2004 Mar;20(1):5-19. 

Grossmann V, Kern W, Harbich S, Alpermann T, Jeromin S, Schnittger S, Haferlach C, 
Haferlach T, Kohlmann A. Prognostic relevance of RUNX1 mutations in T-cell acute 
lymphoblastic leukemia. Haematologica. 2011 Dec;96(12):1874-7 

Grummer B, Grotha S, Greiser-Wilke I. Bovine viral diarrhoea virus is internalized by clathrin-
dependent receptor-mediated endocytosis. J Vet Med B Infect Dis Vet Public Health. 2004 
Dec;51(10):427-32. 

Gu M, Rice CM. Structures of hepatitis C virus nonstructural proteins required for replicase 
assembly and function. Curr Opin Virol. 2013 Apr;3(2):129-36. 

Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. 
Trop Med Health. 2011 Dec;39(4 Suppl):3-11.  

Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol. 
2006;1:23-61. 

Guirakhoo F, Bolin RA, Roehrig JT. The Murray Valley encephalitis virus prM protein confers 
acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E 
glycoprotein. Virology. 1992 Dec;191(2):921-31. 

Guitart A, Riezu-Boj JI, Elizalde E, Larrea E, Berasain C, Aldabe R, Civeira MP, Prieto J. 
Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies 
variants, induction of interferon-stimulated genes and NF-kappaB nuclear translocation. J Gen 
Virol. 2005 Nov;86(Pt 11):3065-74. 

Guo J, Hui DJ, Merrick WC, Sen GC. A new pathway of translational regulation mediated by 
eukaryotic initiation factor 3. EMBO J. 2000 Dec 15;19(24):6891-9. 

Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in 
breast cancer cells. J Biol Chem. 2009 Aug 28;284(35):23204-16.  

Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, 
Mallory AC. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing 
suppressors. Plant Cell. 2007 Nov;19(11):3451-61. 
Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, Strauss JH. Conserved elements 
in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol. 
1987 Nov 5;198(1):33-41. 

Haimovich G, Medina DA, Causse SZ, Garber M, Millán-Zambrano G, Barkai O, Chávez S, 
Pérez-Ortín JE, Darzacq X, Choder M. Gene expression is circular: factors for mRNA 
degradation also foster mRNA synthesis. Cell. 2013 May 23;153(5):1000-11. 



171 

 

Halvorsen M, Martin JS, Broadaway S, Laederach A. Disease-associated mutations that alter 
the RNA structural ensemble. PLoS Genet. 2010 Aug 19;6(8):e1001074. 

Han JQ, Barton DJ. Activation and evasion of the antiviral 2'-5' oligoadenylate 
synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA. 2002 Apr;8(4):512-25. 

Han JQ, Townsend HL, Jha BK, Paranjape JM, Silverman RH, Barton DJ. A phylogenetically 
conserved RNA structure in the poliovirus open reading frame inhibits the antiviral 
endoribonuclease RNase L. J Virol. 2007 Jun;81(11):5561-72.  
 
Hansen TR, Smirnova NP, Van Campen H, Shoemaker ML, Ptitsyn AA, Bielefeldt-Ohmann H. 
Maternal and fetal response to fetal persistent infection with bovine viral diarrhea virus. Am J 
Reprod Immunol. 2010 Oct;64(4):295-306.  

Hao JH, Yu M, Li HK, Shi YR, Li Q, Hao XS. Inhibitory effect of antisense vascular endothelial 
growth factor RNA on the profile of hepatocellular carcinoma cell line in vitro and in vivo. World 
J Gastroenterol. 2006 Feb 21;12(7):1140-3. 

Hao S, Baltimore D. The stability of mRNA influences the temporal order of the induction of 
genes encoding inflammatory molecules. Nat Immunol. 2009 Mar;10(3):281-8. 

Harada T, Tautz N, Thiel HJ. E2-p7 region of the bovine viral diarrhea virus polyprotein: 
processing and functional studies. J Virol. 2000 Oct;74(20):9498-506. 

Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, Choder M. RNA polymerase II 
subunits link transcription and mRNA decay to translation. Cell. 2010 Nov 12;143(4):552-63. 

Harigaya Y, Parker R. No-go decay: a quality control mechanism for RNA in translation. Wiley 
Interdiscip Rev RNA. 2010 Jul-Aug;1(1):132-41.  

He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A. Genome-wide analysis of mRNAs 
regulated by the nonsense-mediated and 5' to 3' mRNA decay pathways in yeast. Mol Cell. 
2003 Dec;12(6):1439-52. 

Heinz FX, Stiasny K. Flaviviruses and flavivirus vaccines. Vaccine. 2012 Jun 19;30(29):4301-6.  

Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S, Tollervey D. The 5' end of yeast 5.8S 
rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 1994 May 
15;13(10):2452-63. 

Heuer C, Healy A, Zerbini C. Economic effects of exposure to bovine viral diarrhea virus on 
dairy herds in New Zealand. J Dairy Sci. 2007 Dec;90(12):5428-38. 

Heyer WD, Johnson AW, Reinhart U, Kolodner RD. Regulation and intracellular localization of 
Saccharomyces cerevisiae strand exchange protein 1 (Sep1/XRN1/Kem1), a multifunctional 
exonuclease. Mol Cell Biol. 1995 May;15(5):2728-36. 

Higgs MR, Lerat H, Pawlotsky JM. Hepatitis C virus-induced activation of β-catenin promotes c-
Myc expression and a cascade of pro-carcinogenetic events. Oncogene. 2013 Sep 
26;32(39):4683-93.  



172 

 

Hilgard P, Stockert R. Heparan sulfate proteoglycans initiate dengue virus infection of 
hepatocytes. Hepatology. 2000 Nov;32(5):1069-77. 

Hogg JR, Goff SP. Upf1 senses 3'UTR length to potentiate mRNA decay. Cell. 2010 Oct 
29;143(3):379-89.  
 
Holmes EC, Burch SS.The causes and consequences of genetic variation in dengue virus. 
Trends Microbiol. 2000 Feb;8(2):74-7. 

Holmes EC, Worobey M, Rambaut A. Phylogenetic evidence for recombination in dengue virus. 
Mol Biol Evol. 1999 Mar;16(3):405-9. 

Hovanessian AG, Wood J, Meurs E, Montagnier L. Increased nuclease activity in cells treated 
with pppA2'p5'A2'p5' A. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3261-5. 
 
Hoover S, Striker R. Thiopurines inhibit bovine viral diarrhea virus production in a thiopurine 
methyltransferase-dependent manner. J Gen Virol. 2008 Apr;89(Pt 4):1000-9.  

Hopkins KC, McLane LM, Maqbool T, Panda D, Gordesky-Gold B, Cherry S. A genome-wide 
RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools 
of DCP2-accessible targets for cap-snatching. Genes Dev. 2013 Jul 1;27(13):1511-25. 

Horner SM. Activation and Evasion of Antiviral Innate Immunity by Hepatitis C Virus. J Mol Biol. 
2014 Mar 20;426(6):1198-1209. 

Horvath CM. The Jak-STAT pathway stimulated by interferon alpha or interferon beta. Sci 
STKE. 2004 Nov 23;2004(260):tr10. 

Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS. Growth and 
early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. 
Mol Cell Biol. 2002 Jun;22(11):3794-802. 

Hsu CL, Stevens A. Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that 
are poly(A) deficient and partially lack the 5' cap structure. Mol Cell Biol. 1993 Aug;13(8):4826-
35. 

(a) Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13.  

(b) Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene 
lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57. 

Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, Thevakumaran N, Talukdar M, Pillon 
MC, Ceccarelli DF, Wan LC, Juang YC, Mao DY, Gaughan C, Brinton MA, Perelygin AA, 
Kourinov I, Guarné A, Silverman RH, Sicheri F. Dimeric Structure of Pseudokinase RNase L 
Bound to 2-5A Reveals a Basis for Interferon-Induced Antiviral Activity. Mol Cell. 2014 Jan 
23;53(2):221-34. 

Hui DJ, Terenzi F, Merrick WC, Sen GC. Mouse p56 blocks a distinct function of eukaryotic 
initiation factor 3 in translation initiation. J Biol Chem. 2005 Feb 4;280(5):3433-40. 



173 

 

Hulst MM, Moormann RJ. Inhibition of pestivirus infection in cell culture by envelope proteins 
E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J 
Gen Virol. 1997 Nov;78 ( Pt 11):2779-87. 

Huntzinger E, Kuzuoglu-Öztürk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E. The 
interactions of TNRC6A proteins with PABP and deadenylases are required for both 
translational repression and degradation of miRNA targets. Nucleic Acids Res. 2013 
Jan;41(2):978-94.  

Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, Huang C, Tonelli M, Paessler 
S, Takeda K, Klimstra WB, Amarasinghe GK, Diamond MS. A viral RNA structural element 
alters host recognition of nonself RNA. Science. 2014 Feb 14;343(6172):783-7.  

Ichikawa M, Asai T, Chiba S, Kurokawa M, Ogawa S. Runx1/AML-1 ranks as a master regulator 
of adult hematopoiesis. Cell Cycle. 2004 Jun;3(6):722-4. 

Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 
MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009 Nov 13;139(4):693-706. 

Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T. The human LSm1-7 proteins colocalize 
with the mRNA-degrading enzymes DCP1/2 and Xrnl in distinct cytoplasmic foci.  RNA. 2002 
Dec;8(12):1489-501. 

Iqbal M, Flick-Smith H, McCauley JW.  Interactions of bovine viral diarrhoea virus glycoprotein 
E(rns) with cell surface glycosaminoglycans. J Gen Virol. 2000 Feb;81(Pt 2):451-9. 

Isken O, Baroth M, Grassmann CW, Weinlich S, Ostareck DH, Ostareck-Lederer A, Behrens 
SE. Nuclear factors are involved in hepatitis C virus RNA replication. RNA. 2007 
Oct;13(10):1675-92.  

Isken O, Grassmann CW, Sarisky RT, Kann M, Zhang S, Grosse F, Kao PN, Behrens SE. 
Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA 
virus. EMBO J. 2003 Nov 3;22(21):5655-65. 

Isken O, Grassmann CW, Yu H, Behrens SE. Complex signals in the genomic 3' nontranslated 
region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA. 
2004 Oct;10(10):1637-52. 

Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE, Bisaillon M. The 
flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to 
form the RNA cap structure. RNA. 2009 Dec;15(12):2340-50.  

Iwakawa HO, Mizumoto H, Nagano H, Imoto Y, Takigawa K, Sarawaneeyaruk S, Kaido M, Mise 
K, Okuno T. A viral noncoding RNA generated by cis-element-mediated protection against 5'->3' 
RNA decay represses both cap-independent and cap-dependent translation. J Virol. 2008 
Oct;82(20):10162-74. 

Jaag HM, Nagy PD. Silencing of Nicotiana benthamiana XRN4p exoribonuclease promotes 
tombusvirus RNA accumulation and recombination. Virology. 2009 Apr 10;386(2):344-52. 



174 

 

Jangra RK, Yi M, Lemon SM. Regulation of hepatitis C virus translation and infectious virus 
production by the microRNA miR-122. J Virol. 2010 Jul;84(13):6615-25. 

Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol. 2014 Feb 
10;24C:132-140. 

Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved 
in recognizing RNA virus invasion. J Virol. 2012 Mar;86(6):2900-10. 

Jia XY, Briese T, Jordan I, Rambaut A, Chi HC, Mackenzie JS, Hall RA, Scherret J, Lipkin WI. 
Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet. 1999 Dec 
4;354(9194):1971-2. 

Jimeno-Gonzalez S, Schmid M, Malagon F, Haaning LL, Jensen TH. Rat1p maintains RNA 
polymerase II CTD phosphorylation balance. RNA. 2014 Apr;20(4):551-8. 

Jin Z, Deval J, Johnson KA, Swinney DC. Characterization of the elongation complex of dengue 
virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity. J Biol Chem. 
2011 Jan 21;286(3):2067-77. 

Jinek M, Coyle SM, Doudna JA. Coupled 5' nucleotide recognition and processivity in XRN1-
mediated mRNA decay. Mol Cell. 2011 Mar 4;41(5):600-8.  

Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping 
complexes and RNP granules. Genes Dev. 2013 Dec 15;27(24):2628-41. 

Jones CI, Grima DP, Waldron JA, Jones S, Parker HN, Newbury SF. The 5'-3' exoribonuclease 
Pacman (XRN1) regulates expression of the heat shock protein Hsp67Bc and the microRNA 
miR-277-3p in Drosophila wing imaginal discs. RNA Biol. 2013 Aug 1;10(8):1345-55.  

Jones CI, Zabolotskaya MV, Newbury SF. The 5' → 3' exoribonuclease XRN1/Pacman and its 
functions in cellular processes and development. Wiley Interdiscip Rev RNA. 2012 Jul-
Aug;3(4):455-68.  

Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM. Hepatitis C virus p7 and NS2 proteins 
are essential for production of infectious virus. J Virol. 2007 Aug;81(16):8374-83. 

Jopling CL, Schütz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-
binding site located in the hepatitis C virus RNA genome. Cell Host Microbe. 2008 Jul 
17;4(1):77-85 

Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA 
abundance by a liver-specific MicroRNA. Science. 2005 Sep 2;309(5740):1577-81. 

Junjhon J, Edwards TJ, Utaipat U, Bowman VD, Holdaway HA, Zhang W, Keelapang P, 
Puttikhunt C, Perera R, Chipman PR, Kasinrerk W, Malasit P, Kuhn RJ, Sittisombut N. Influence 
of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J Virol. 2010 
Aug;84(16):8353-8.  



175 

 

Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra 
P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication 
and identification of NS4B as an RNAi suppressor. J Virol. 2013 Aug;87(16):8870-83. 

(a) Kang SM, Lim S, Won SJ, Shin YJ, Lim YS, Ahn BY, Hwang SB. c-FOS regulates hepatitis 
C virus propagation. FEBS Lett. 2011 Oct 20;585(20):3236-44.  

(b) Kang JG, Amar MJ, Remaley AT, Kwon J, Blackshear PJ, Wang PY, Hwang PM. Zinc finger 
protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation. J Immunol. 
2011 Sep 1;187(5):2696-701. 

Kapoor A, Simmonds P, Gerold G, Qaisar N, Jain K, Henriquez JA, Firth C, Hirschberg DL, Rice 
CM, Shields S, Lipkin WI. Characterization of a canine homolog of hepatitis C virus. Proc Natl 
Acad Sci U S A. 2011 Jul 12;108(28):11608-13. 

Kapoor A, Simmonds P, Scheel TK, Hjelle B, Cullen JM, Burbelo PD, Chauhan LV, Duraisamy 
R, Sanchez Leon M, Jain K, Vandegrift KJ, Calisher CH, Rice CM, Lipkin WI. Identification of 
rodent homologs of hepatitis C virus and pegiviruses. MBio. 2013 Apr 9;4(2):e00216-13. 

Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, 
Fujita T, Takeuchi O, Akira S. Cell type-specific involvement of RIG-I in antiviral response. 
Immunity. 2005 Jul;23(1):19-28. 

Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, 
Fujita T, Akira S. Length-dependent recognition of double-stranded ribonucleic acids by retinoic 
acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med. 2008 Jul 
7;205(7):1601-10. 

Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai 
T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, 
Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. 
Nature. 2006 May 4;441(7089):101-5. 

Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, Mori Y, Kamitani W, Matsuura Y. 
Japanese encephalitis virus core protein inhibits stress granule formation through an interaction 
with Caprin-1 and facilitates viral propagation. J Virol. 2013 Jan;87(1):489-502. 

Kaufusi PH, Kelley JF, Yanagihara R, Nerurkar VR. Induction of endoplasmic reticulum-derived 
replication-competent membrane structures by West Nile virus non-structural protein 4B. PLoS 
One. 2014 Jan 20;9(1):e84040.  

Kaushik DK, Gupta M, Kumawat KL, Basu A. NLRP3 inflammasome: key mediator of 
neuroinflammation in murine Japanese encephalitis. PLoS One. 2012;7(2):e32270.  

Kavandi L, Collier MA, Nguyen H, Syed V. Progesterone and calcitriol attenuate inflammatory 
cytokines CXCL1 and CXCL2 in ovarian and endometrial cancer cells. J Cell Biochem. 2012 
Oct;113(10):3143-52.  

Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008 
Nov;1143:1-20. 



176 

 

Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link 
the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 
1999 Dec 27;147(7):1431-42. 

Kenna M, Stevens A, McCammon M, Douglas MG. An essential yeast gene with homology to 
the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease 
activity. Mol Cell Biol. 1993 Jan;13(1):341-50. 
 
Kerr SC, Azzouz N, Fuchs SM, Collart MA, Strahl BD, Corbett AH, Laribee RN. The Ccr4-Not 
complex interacts with the mRNA export machinery. PLoS One. 2011 Mar 28;6(3):e18302. 

Khabar KS, Siddiqui YM, al-Zoghaibi F, al-Haj L, Dhalla M, Zhou A, Dong B, Whitmore M, 
Paranjape J, Al-Ahdal MN, Al-Mohanna F, Williams BR, Silverman RH. RNase L mediates 
transient control of the interferon response through modulation of the double-stranded RNA-
dependent protein kinase PKR.J Biol Chem. 2003 May 30; 278(22):20124-32. 
 
Khromykh AA, Meka H, Guyatt KJ, Westaway EG. Essential role of cyclization sequences in 
flavivirus RNA replication. J Virol. 2001 Jul;75(14):6719-28. 

Kieft JS, Zhou K, Jubin R, Doudna JA. Mechanism of ribosome recruitment by hepatitis C IRES 
RNA. RNA. 2001 Feb;7(2):194-206. 

Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol. 2013 
Mar;19(1):17-25. 

Kim J, Kim J. KEM1 is involved in filamentous growth of Saccharomyces cerevisiae. FEMS 
Microbiol Lett. 2002 Oct 29;216(1):33-8. 

Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S. The yeast 
Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature. 2004 Nov 
25; 432(7016):517-22. 

Kim YK, Kim CS, Lee SH, Jang SK. Domains I and II in the 5' nontranslated region of the HCV 
genome are required for RNA replication. Biochem Biophys Res Commun. 2002 Jan 
11;290(1):105-12. 

King E, Trabue C, Yin D, Yao ZQ, Moorman JP. Hepatitis C: the complications of immune 
dysfunction. Expert Rev Clin Immunol. 2007 Mar;3(2):145-57. 

Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A quantitative analysis of 
CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 2011 May 
15;8(7):559-64.  

Kiyosawa K, Tanaka E, Sodeyama T. Hepatitis C virus and hepatocellular carcinoma. Curr Stud 
Hematol Blood Transfus. 1998;(62):161-80 

Klauer AA, van Hoof A. Degradation of mRNAs that lack a stop codon: a decade of nonstop 
progress. Wiley Interdiscip Rev RNA. 2012 Sep-Oct;3(5):649-60. 

Klausner RD, Donaldson JG, Lippincott-Schwartz J. Brefeldin A: insights into the control of 
membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071-80. 



177 

 

Knouf EC, Wyman SK, Tewari M. The human TUT1 nucleotidyl transferase as a global regulator 
of microRNA abundance. PLoS One. 2013 Jul 18;8(7):e69630.  
 
Kollmar O, Junker B, Rupertus K, Scheuer C, Menger MD, Schilling MK. Liver resection-
associated macrophage inflammatory protein-2 stimulates engraftment but not growth of 
colorectal metastasis at extrahepatic sites. J Surg Res. 2008 Apr;145(2):295-302. 

Kollmar O, Scheuer C, Menger MD, Schilling MK. Macrophage inflammatory protein-2 promotes 
angiogenesis, cell migration, and tumor growth in hepatic metastasis. Ann Surg Oncol. 2006 
Feb;13(2):263-75. 

Kolykhalov AA, Feinstone SM, Rice CM. Identification of a highly conserved sequence element 
at the 3' terminus of hepatitis C virus genome RNA. J Virol. 1996 Jun;70(6):3363-71. 

Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in 
pathophysiological states. Cell Cycle. 2011 Jan 15;10(2):229-40. 

Krey T, Thiel HJ, Rümenapf T. Acid-resistant bovine pestivirus requires activation for pH-
triggered fusion during entry. J Virol. 2005 Apr;79(7):4191-200. 

Krohn N, Kapoor S, Enami Y, Follenzi A, Bandi S, Joseph B, Gupta S. Hepatocyte 
transplantation-induced liver inflammation is driven by cytokines-chemokines associated with 
neutrophils and Kupffer cells. Gastroenterology. 2009 May;136(5):1806-17. 

Kruzelock RP, Murphy EC, Strong LC, Naylor SL, Hansen MF. Localization of a novel tumor 
suppressor locus on human chromosome 3q important in osteosarcoma tumorigenesis. Cancer 
Res. 1997 Jan 1;57(1):106-9. 

Kumthip K, Chusri P, Jilg N, Zhao L, Fusco DN, Zhao H, Goto K, Cheng D, Schaefer EA, Zhang 
L, Pantip C, Thongsawat S, O'Brien A, Peng LF, Maneekarn N, Chung RT, Lin W. Hepatitis C 
virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J Virol. 
2012 Aug;86(16):8581-91. 

Kundu P, Fabian MR, Sonenberg N, Bhattacharyya SN, Filipowicz W. HuR protein attenuates 
miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic 
Acids Res. 2012 Jun;40(11):5088-100. 

Kuo MC, Liang DC, Huang CF, Shih YS, Wu JH, Lin TL, Shih LY. RUNX1 mutations are 
frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might 
predict acute myeloid leukemia transformation. Leukemia. 2009 Aug;23(8):1426-31.  

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of 
tissue-specific microRNAs from mouse. Curr Biol. 2002 Apr 30;12(9):735-9. 

Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ. Evidence that 
tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of 
tumor necrosis factor alpha mRNA. Mol Cell Biol. 1999 Jun;19(6):4311-23. 

Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, 
Ørum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus 
infection. Science. 2010 Jan 8;327(5962):198-201. 



178 

 

Langlois RA, Albrecht RA, Kimble B, Sutton T, Shapiro JS, Finch C, Angel M, Chua MA, 
Gonzalez-Reiche AS, Xu K, Perez D, García-Sastre A, tenOever BR. MicroRNA-based strategy 
to mitigate the risk of gain-of-function influenza studies. Nat Biotechnol. 2013 Sep;31(9):844-7. 

Lanyon SR, Hill FI, Reichel MP, Brownlie J. Bovine viral diarrhoea: Pathogenesis and diagnosis. 
Vet J. 2014 Feb;199(2):201-209. 

Larimer FW, Hsu CL, Maupin MK, Stevens A. Characterization of the XRN1 gene encoding a 5'-
->3' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of 
gene-disrupted yeast cells. Gene. 1992 Oct 12;120(1):51-7. 

Larimer FW, Stevens A. Disruption of the gene XRN1, coding for a 5'3' exoribonuclease, 
restricts yeast cell growth. Gene. 1990 Oct 30;95(1):85-90. 

Laroia G, Cuesta R, Brewer G, Schneider RJ.  Control of mRNA decay by heat shock-ubiquitin-
proteasome pathway. Science. 1999 Apr 16;284(5413):499-502. 

Le Quesne JP, Stoneley M, Fraser GA, Willis AE. Derivation of a structural model for the c-myc 
IRES. J Mol Biol. 2001 Jun 29;310(1):111-26. 

Le SY, Siddiqui A, Maizel JV Jr. A common structural core in the internal ribosome entry sites of 
picornavirus, hepatitis C virus, and pestivirus. Virus Genes. 1996;12(2):135-47. 

Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, Rajewsky N. 
Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol 
Cell. 2011 Aug 5;43(3):340-52. 

LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ, Ferrara N. 
Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science. 2003 Feb 
7;299(5608):890-3. 

Lee E, Stocks CE, Amberg SM, Rice CM, Lobigs M. Mutagenesis of the signal sequence of 
yellow fever virus prM protein: enhancement of signalase cleavage In vitro is lethal for virus 
production. J Virol. 2000 Jan;74(1):24-32. 

(b) Lee JE, Lee JY, Trembly J, Wilusz J, Tian B, Wilusz CJ. The PARN deadenylase targets a 
discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet. 
2012;8(8):e1002901.  

(a) Lee KG, Xu S, Kang ZH, Huo J, Huang M, Liu D, Takeuchi O, Akira S, Lam KP.Bruton's 
tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad 
Sci U S A. 2012 Apr 10;109(15):5791-6. (a) 

Lee MM, Pushechnikov A, Disney MD. Rational and modular design of potent ligands targeting 
the RNA that causes myotonic dystrophy 2. ACS Chem Biol. 2009 May 15;4(5):345-55.  

Lee SI, Murthy SC, Trimble JJ, Desrosiers RC, Steitz JA. Four novel U RNAs are encoded by a 
herpesvirus. Cell. 1988 Aug 26;54(5):599-607. 



179 

 

Lee SR, Pharr GT, Boyd BL, Pinchuk LM. Bovine viral diarrhea viruses modulate toll-like 
receptors, cytokines and co-stimulatory molecules genes expression in bovine peripheral blood 
monocytes. Comp Immunol Microbiol Infect Dis. 2008 Sep;31(5):403-18. 

Lejeune F, Li X, Maquat LE. Nonsense-mediated mRNA decay in mammalian cells involves 
decapping, deadenylating, and exonucleolytic activities. Mol Cell. 2003 Sep;12(3):675-87. 

Lemon SM, McGivern DR. Is hepatitis C virus carcinogenic? Gastroenterology. 2012 
May;142(6):1274-8. 

Leopardi R, Vainionpää R, Hurme M, Siljander P, Salmi AA. Measles virus infection enhances 
IL-1 beta but reduces tumor necrosis factor-alpha expression in human monocytes. J Immunol. 
1992 Oct 1;149(7):2397-401. 

Li CH, Irmer H, Gudjonsdottir-Planck D, Freese S, Salm H, Haile S, Estévez AM, Clayton C. 
Roles of a Trypanosoma brucei 5'->3' exoribonuclease homolog in mRNA degradation. RNA. 
2006 Dec;12(12):2171-86. 

Li K, Lemon SM. Innate immune responses in hepatitis C virus infection. Semin Immunopathol. 
2013 Jan;35(1):53-72. 

Li K, Li NL, Wei D, Pfeffer SR, Fan M, Pfeffer LM. Activation of chemokine and inflammatory 
cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 
sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology. 2012 
Mar;55(3):666-75. 

Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG. The flavivirus precursor 
membrane-envelope protein complex: structure and maturation.Science. 2008 Mar 
28;319(5871):1830-4. 

(a) Li SH, Dong H, Li XF, Xie X, Zhao H, Deng YQ, Wang XY, Ye Q, Zhu SY, Wang HJ, Zhang 
B, Leng QB, Zuest R, Qin ED, Qin CF, Shi PY. Rational design of a flavivirus vaccine by 
abolishing viral RNA 2'-O methylation. J Virol. 2013 May;87(10):5812-9. 

Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek KM, Moreno GT, Brinton MA. Cell 
proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary 
minus-strand RNA and facilitate virus replication. J Virol. 2002 Dec;76(23):11989-2000. 

Li XL, Blackford JA, Judge CS, Liu M, Xiao W, Kalvakolanu DV, Hassel BA. RNase-L-
dependent destabilization of interferon-induced mRNAs. A role for the 2-5A system in 
attenuation of the interferon response. J Biol Chem. 2000 Mar 24; 275(12):8880-8. 
 
(c)Li Y, Lu J, Han Y, Fan X, Ding SW. RNA interference functions as an antiviral immunity 
mechanism in mammals.Science. 2013 Oct 11;342(6155):231-4.  

(b) Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. Competing and noncompeting 
activities of miR-122 and the 5' exonuclease XRN1 in regulation of hepatitis C virus replication. 
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1881-6.  

(a) Li XL, Ezelle HJ, Hsi TY, Hassel BA. A central role for RNA in the induction and biological 
activities of type 1 interferons. Wiley Interdiscip Rev RNA. 2011 Jan-Feb;2(1):58-78.  



180 

 

 
(b) Li Y, Song M, Kiledjian M. Differential utilization of decapping enzymes in mammalian mRNA 
decay pathways. RNA. 2011 Mar;17(3):419-28. 

Libri V, Helwak A, Miesen P, Santhakumar D, Borger JG, Kudla G, Grey F, Tollervey D, Buck 
AH. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad 
Sci U S A. 2012 Jan 3;109(1):279-84. 

Lin C, Lindenbach BD, Prágai BM, McCourt DW, Rice CM. Processing in the hepatitis C virus 
E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini. 
J Virol. 1994 Aug;68(8):5063-73. 

Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL. MCPIP1 ribonuclease exhibits 
broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res. 
2013 Mar 1;41(5):3314-26.  

Lindenbach BD and Rice,CM. 2001.Flaviviridae: the viruses and their replication. In Knipe DM 
and Howley PM (eds), Fields Virology. Lippincott-Williams & Wilkins, Philadelphia, PA, pp. 991–
1041. 

Liu H, Rodgers ND, Jiao X, Kiledjian M. The scavenger mRNA decapping enzyme DCPS is a 
member of the HIT family of pyrophosphatases. EMBO J. 2002 Sep 2;21(17):4699-708. 

Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of 
targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005;7:719–723.  

(a) Liu S, Qiu C, Miao R, Zhou J, Lee A, Liu B, Lester SN, Fu W, Zhu L, Zhang L, Xu J, Fan D, 
Li K, Fu M, Wang T. MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T 
cells. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19083-8. 

Liu WJ, Chen HB, Khromykh AA. Molecular and functional analyses of Kunjin virus infectious 
cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a 
nonconservative residue in NS3 in RNA replication. J Virol. 2003 Jul;77(14):7804-13. 

(b) Liu X, Yang H, Zhang X, Liu L, Lei M, Zhang Z, Bao X. Bdf1p deletion affects mitochondrial 
function and causes apoptotic cell death under salt stress. FEMS Yeast Res. 2009 
Mar;9(2):240-6.  

Liu Y, Liu H, Zou J, Zhang B, Yuan Z. Dengue virus subgenomic RNA induces apoptosis 
through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology. 2014 Jan 5;448:15-25. 

(a) Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA 
viruses. Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):495-517. 

(b) Liu YP, Schopman NC, Berkhout B. DICER-independent processing of short hairpin RNAs. 
Nucleic Acids Res. 2013 Apr 1;41(6):3723-33. 

Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley 
Interdiscip Rev RNA. 2013 May-Jun;4(3):317-31. 



181 

 

Lodeiro MF, Filomatori CV, Gamarnik AV. Structural and functional studies of the promoter 
element for dengue virus RNA replication. J Virol. 2009 Jan;83(2):993-1008. 

Loh B, Jonas S, Izaurralde E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT 
deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes 
Dev. 2013 Oct 1;27(19):2125-38.  

Lohmann V, Körner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of 
subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999 Jul 2;285(5424):110-
3. 

Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, 
García-Sastre A, Katze MG, Gale M Jr. Distinct RIG-I and MDA5 signaling by RNA viruses in 
innate immunity. J Virol. 2008 Jan;82(1):335-45. 

Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011 May 
27;34(5):680-92.  

Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A. Exonuclease 
hDIS3L2 specifies an exosome-independent 3'-5' degradation pathway of human cytoplasmic 
mRNA. EMBO J. 2013 Jul 3;32(13):1855-68. 

Lukavsky PJ. Structure and function of HCV IRES domains. Virus Res. 2009 Feb;139(2):166-
71. 

Luo D, Xu T, Watson RP, Scherer-Becker D, Sampath A, Jahnke W, Yeong SS, Wang CH, Lim 
SP, Strongin A, Vasudevan SG, Lescar J. Insights into RNA unwinding and ATP hydrolysis by 
the flavivirus NS3 protein. EMBO J. 2008 Dec 3;27(23):3209-19. 

Luo G. Cellular proteins bind to the poly(U) tract of the 3' untranslated region of hepatitis C virus 
RNA genome. Virology. 1999 Mar 30;256(1):105-18. 

Ma E, MacRae IJ, Kirsch JF, Doudna JA. Autoinhibition of human DICER by its internal helicase 
domain. J Mol Biol. 2008 Jun 27;380(1):237-43. 

Machida K, Tsukamoto H, Liu JC, Han YP, Govindarajan S, Lai MM, Akira S, Ou JH. c-JUN 
mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of 
transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology. 2010 
Aug;52(2):480-92. 

Machlin ES, Sarnow P, Sagan SM. Masking the 5' terminal nucleotides of the hepatitis C virus 
genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A. 2011 
Feb 22;108(8):3193-8.  

Mackenzie JM, Khromykh AA, Jones MK, Westaway EG. Subcellular localization and some 
biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology. 
1998 Jun 5;245(2):203-15. 

Magkouras I, Mätzener P, Rümenapf T, Peterhans E, Schweizer M. RNase-dependent inhibition 
of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of 
pestiviruses. J Gen Virol. 2008 Oct;89(Pt 10):2501-6. 



182 

 

Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O. Antiviral RNA interference 
in mammalian cells. Science. 2013 Oct 11;342(6155):235-8.  

Malathi K, Dong B, Gale M Jr, Silverman RH. Small self-RNA generated by RNase L amplifies 
antiviral innate immunity. Nature. 2007 Aug 16;448(7155):816-9. 
 
Malathi K, Saito T, Crochet N, Barton DJ, Gale M Jr, Silverman RH. RNase L releases a small 
RNA from HCV RNA that refolds into a potent PAMP. RNA. 2010 Nov;16(11):2108-19.  
 
Malecki M, Viegas SC, Carneiro T, Golik P, Dressaire C, Ferreira MG, Arraiano CM. The 
exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 2013 
Jul 3;32(13):1842-54 

Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, Heinz FX. Adaptation 
of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan 
sulfate binding sites in the envelope protein and attenuation in vivo. J Virol. 2001 
Jun;75(12):5627-37. 

Mangus DA, Evans MC, Agrin NS, Smith M, Gongidi P, Jacobson A. Positive and negative 
regulation of poly(A) nuclease. Mol Cell Biol. 2004 Jun;24(12):5521-33. 

Maquat LE, Gong C. Gene expression networks: competing mRNA decay pathways in 
mammalian cells. Biochem Soc Trans. 2009 Dec;37(Pt 6):1287-92. 

Marcinowski L, Tanguy M, Krmpotic A, Rädle B, Lisnić VJ, Tuddenham L, Chane-Woon-Ming B, 
Ruzsics Z, Erhard F, Benkartek C, Babic M, Zimmer R, Trgovcich J, Koszinowski UH, Jonjic S, 
Pfeffer S, Dölken L. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is 
important for efficient virus replication in vivo. PLoS Pathog. 2012 Feb;8(2):e1002510. 

Markoff L, Chang A, Falgout B. Processing of flavivirus structural glycoproteins: stable 
membrane insertion of premembrane requires the envelope signal peptide. Virology. 1994 Nov 
1;204(2):526-40. 

Martinez NJ, Gregory RI. Argonaute2 expression is post-transcriptionally coupled to microRNA 
abundance. RNA. 2013 May;19(5):605-12. 

Marusawa H, Hijikata M, Chiba T, Shimotohno K. Hepatitis C virus core protein inhibits Fas- and 
tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation. J Virol. 1999 
Jun;73(6):4713-20. 

Mathapati BS, Mishra N, Rajukumar K, Nema RK, Behera SP, Dubey SC. Entry of bovine viral 
diarrhea virus into ovine cells occurs through clathrin-dependent endocytosis and low pH-
dependent fusion. In Vitro Cell Dev Biol Anim. 2010 May;46(5):403-7. 

Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M. Both G3BP1 and G3BP2 
contribute to stress granule formation. Genes Cells. 2013 Feb;18(2):135-46. 

Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, 
Tsujimura T, Nakamura H, Akira S. Zc3h12a is an RNase essential for controlling immune 
responses by regulating mRNA decay. Nature. 2009 Apr 30;458(7242):1185-90. 



183 

 

Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, Sakaida N, Kaibori M, Kamiyama 
Y, Nishizawa M, Fujisawa J, Okazaki K, Seki T. Chronic inflammation associated with hepatitis 
C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis 
and hepatocellular carcinoma. Hepatology. 2007 Jul;46(1):48-57. 

Matzener P, Magkouras I, Rümenapf T, Peterhans E, Schweizer M.The viral RNase E(rns) 
prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res. 2009 
Mar;140(1-2):15-23. 

Maurer K, Krey T, Moennig V, Thiel HJ, Rümenapf T. CD46 is a cellular receptor for bovine viral 
diarrhea virus. J Virol. 2004 Feb;78(4):1792-9. 

McMullan LK, Grakoui A, Evans MJ, Mihalik K, Puig M, Branch AD, Feinstone SM, Rice CM. 
Evidence for a functional RNA element in the hepatitis C virus core gene. Proc Natl Acad Sci U 
S A. 2007 Feb 20;104(8):2879-84. 

Medina DA, Jordán-Pla A, Millán-Zambrano G, Chávez S, Choder M, Pérez-Ortín JE. 
Cytoplasmic 5'-3' exonuclease XRN1p is also a genome-wide transcription factor in yeast. Front 
Genet. 2014 Feb 6;5:1.  

Mee CJ, Farquhar MJ, Harris HJ, Hu K, Ramma W, Ahmed A, Maurel P, Bicknell R, Balfe P, 
McKeating JA. Hepatitis C virus infection reduces hepatocellular polarity in a vascular 
endothelial growth factor-dependent manner. Gastroenterology. 2010 Mar;138(3):1134-42.  

Mercer TR, Wilhelm D, Dinger ME, Soldà G, Korbie DJ, Glazov EA, Truong V, Schwenke M, 
Simons C, Matthaei KI, Saint R, Koopman P, Mattick JS. Expression of distinct RNAs from 3' 
untranslated regions. Nucleic Acids Res. 2011 Mar;39(6):2393-403. 

Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, Charng YY, Deragon 
JM, Bousquet-Antonelli C. XRN4 and LARP1 are required for a heat-triggered mRNA decay 
pathway involved in plant acclimation and survival during thermal stress. Cell Rep. 2013 Dec 
12;5(5):1279-93.  

Meyers G, Ege A, Fetzer C, von Freyburg M, Elbers K, Carr V, Prentice H, Charleston B, 
Schürmann EM. Bovine viral diarrhea virus: prevention of persistent fetal infection by a 
combination of two mutations affecting Erns RNase and Npro protease. J Virol. 2007 
Apr;81(7):3327-38.  

Meyers G, Rümenapf T, Thiel HJ. Ubiquitin in a togavirus. Nature. 1989 Oct 12;341(6242):491. 

Meyers G, Stoll D, Gunn M. Insertion of a sequence encoding light chain 3 of microtubule-
associated proteins 1A and 1B in a pestivirus genome: connection with virus cytopathogenicity 
and induction of lethal disease in cattle. J Virol. 1998 May;72(5):4139-48. 

Meyers G, Tautz N, Dubovi EJ, Thiel HJ. Viral cytopathogenicity correlated with integration of 
ubiquitin-coding sequences. Virology. 1991 Feb;180(2):602-16. 

Meyers G, Thiel HJ. Molecular characterization of pestiviruses. Adv Virus Res. 1996;47:53-118. 

Miki TS, Richter H, Rüegger S, Großhans H. PAXT-1 promotes XRN2 activity by stabilizing it 
through a conserved domain. Mol Cell. 2014 Jan 23;53(2):351-60. 



184 

 

Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R. The non-structural protein 4A 
of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-
regulated manner.J Biol Chem. 2007 Mar 23;282(12):8873-82 

Miller S, Sparacio S, Bartenschlager R. Subcellular localization and membrane topology of the 
Dengue virus type 2 Non-structural protein 4B. J Biol Chem. 2006 Mar 31;281(13):8854-63. 

Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J, Bartenschlager R, Marcello A. 
Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of 
the replicated RNA. J Virol. 2013 Jun;87(11):6469-81.  

Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT. Storage of cellular 5' mRNA caps in P 
bodies for viral cap-snatching. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19294-9.  

Mittal S, Aslam A, Doidge R, Medica R, Winkler GS. The Ccr4a (CNOT6) and Ccr4b (CNOT6L) 
deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death 
and senescence. Mol Biol Cell. 2011 Mar 15;22(6):748-58. 

Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. Poly(A) tail recognition by a viral 
RNA element through assembly of a triple helix.  Science. 2010 Nov 26;330(6008):1244-7. 

Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus 
envelope glycoprotein. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6986-91.  

Moes L, Wirth M. The internal initiation of translation in bovine viral diarrhea virus RNA depends 
on the presence of an RNA pseudoknot upstream of the initiation codon. Virol J. 2007 Nov 
22;4:124. 

Molle C, Zhang T, Ysebrant de Lendonck L, Gueydan C, Andrianne M, Sherer F, Van Simaeys 
G, Blackshear PJ, Leo O, Goriely S. Tristetraprolin regulation of interleukin 23 mRNA stability 
prevents a spontaneous inflammatory disease. J Exp Med. 2013 Aug 26;210(9):1675-84.  

Moon SL, Wilusz J. Cytoplasmic viruses: rage against the (cellular RNA decay) machine. PLoS 
Pathog. 2013 Dec;9(12):e1003762. 

Moreno MP, Casane D, López L, Cristina J. Evidence of recombination in quasispecies 
populations of a Hepatitis C Virus patient undergoing anti-viral therapy. Virol J. 2006 Oct 
24;3:87. 

Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, 
Miyamura T, Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in 
transgenic mice. Nat Med. 1998 Sep;4(9):1065-7 

Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, Mulder LC, 
Fernandez-Sesma A, García-Sastre A. Dengue virus co-opts UBR4 to degrade STAT2 and 
antagonize type I interferon signaling. PLoS Pathog. 2013 Mar;9(3):e1003265. 

Mortimer SA, Doudna JA. Unconventional miR-122 binding stabilizes the HCV genome by 
forming a trimolecular RNA structure. Nucleic Acids Res. 2013 Apr;41(7):4230-40. 



185 

 

Muhlrad D, Decker CJ, Parker R. Deadenylation of the unstable mRNA encoded by the yeast 
MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev. 1994 
Apr 1;8(7):855-66. 

Muhlrad D, Parker R. Mutations affecting stability and deadenylation of the yeast MFA2 
transcript. Genes Dev. 1992 Nov;6(11):2100-11. 

Muhlrad D, Parker R. The yeast EDC1 mRNA undergoes deadenylation-independent decapping 
stimulated by Not2p, Not4p, and Not5p. EMBO J. 2005 Mar 9;24(5):1033-45. 

Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, 
Tuschl T, Ohler U, Keene JD. Integrative regulatory mapping indicates that the RNA-binding 
protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell. 2011 Aug 
5;43(3):327-39. 

Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJ. Microarray analysis of gene 
expression in West Nile virus-infected human retinal pigment epithelium. Mol Vis. 2012;18:730-
43. 

Munoz-Jordán JL, Laurent-Rolle M, Ashour J, Martínez-Sobrido L, Ashok M, Lipkin WI, García-
Sastre A. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol. 
2005 Jul;79(13):8004-13. 

Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5'→3' exoribonucleases: structure, 
mechanisms and functions. Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):590-603.  

Nakazato H, Kopp DW, Edmonds M. Localization of the polyadenylate sequences in messenger 
ribonucleic acid and in the heterogeneous nuclear ribonucleic acid of HeLa cells. J Biol Chem. 
1973 Feb 25;248(4):1472-6. 

Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, Krutchinsky A, Gross J, 
Antoniewski C, Andino R. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral 
defense in Drosophila. Nat Struct Mol Biol. 2010 May;17(5):547-54. 

Nazmi A, Dutta K, Basu A. RIG-I mediates innate immune response in mouse neurons following 
Japanese encephalitis virus infection. PLoS One. 2011;6(6):e21761. 

Neill JD, Ridpath JF. Increase in proto-oncogene mRNA transcript levels in bovine lymphoid 
cells infected with a cytopathic type 2 bovine viral diarrhea virus. Virus Res. 2008 
Aug;135(2):326-31.  

Newbury S, Woollard A. The 5'-3' exoribonuclease xrn-1 is essential for ventral epithelial 
enclosure during C. elegans embryogenesis. RNA. 2004 Jan;10(1):59-65. 
 
Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral 
diseases: Bovine viral diarrhea, classical swine fever and border disease. Antiviral Res. 2013 
Oct;100(1):133-50. 

Ng ML. Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells. J Gen Virol. 1987 
Feb;68 ( Pt 2):577-82. 



186 

 

Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA. Reversible cross-linking combined 
with immunoprecipitation to study RNA-protein interactions in vivo.Methods. 2002 
Feb;26(2):182-90. 

Nishitsuji H, Funami K, Shimizu Y, Ujino S, Sugiyama K, Seya T, Takaku H, Shimotohno K. 
Hepatitis C virus infection induces inflammatory cytokines and chemokines mediated by the 
cross talk between hepatocytes and stellate cells. J Virol. 2013 Jul;87(14):8169-78. 

(a) Nomoto A, Detjen B, Pozzatti R, Wimmer E. The location of the polio genome protein in viral 
RNAs and its implication for RNA synthesis. Nature. 1977 Jul 21;268(5617):208-13. 

(b) Nomoto A, Kitamura N, Golini F, Wimmer E. The 5'-terminal structures of poliovirion RNA 
and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci U S A. 
1977 Dec;74(12):5345-9. 

Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, 
Ecker JR. ETHYLENE-INSENSITIVE5 encodes a 5'-->3' exoribonuclease required for regulation 
of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci U S A. 2006 Sep 
5;103(36):13286-93. 

Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, 
and the exosome. RNA. 2005 Apr;11(4):459-69.  

Oue E, Lee JW, Sakamoto K, Iimura T, Aoki K, Kayamori K, Michi Y, Yamashiro M, Harada K, 
Amagasa T, Yamaguchi A. CXCL2 synthesized by oral squamous cell carcinoma is involved in 
cancer-associated bone destruction. Biochem Biophys Res Commun. 2012 Aug 3;424(3):456-
61.  

Ozgur S, Chekulaeva M, Stoecklin G. Human Pat1b connects deadenylation with mRNA 
decapping and controls the assembly of processing bodies. Mol Cell Biol. 2010 
Sep;30(17):4308-23.  

Pager CT, Schütz S, Abraham TM, Luo G, Sarnow P. Modulation of hepatitis C virus RNA 
abundance and virus release by dispersion of processing bodies and enrichment of stress 
granules. Virology. 2013 Jan 20;435(2):472-84.  

Palomares RA, Walz HG, Brock KV. Expression of type I interferon-induced antiviral state and 
pro-apoptosis markers during experimental infection with low or high virulence bovine viral 
diarrhea virus in beef calves. Virus Res. 2013 May;173(2):260-9.  

Palus M, Vojtiskova J, Salat J, Kopecky J, Grubhoffer L, Lipoldova M, Demant P, Ruzek D. Mice 
with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing 
antibody response and inflammatory reaction in the central nervous system. J 
Neuroinflammation. 2013 Jun 27;10:77. 

Palusa S, Ndaluka C, Bowen RA, Wilusz CJ, Wilusz J. The 3' untranslated region of the rabies 
virus glycoprotein mRNA specifically interacts with cellular PCBP2 protein and promotes 
transcript stability. PLoS One. 2012;7(3):e33561. 

Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication 
factories. World J Virol. 2013 May 12;2(2):32-48. 



187 

 

Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N. The 
hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar 
derivatives. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6104-8. 

Peng SS, Chen CY, Xu N, Shyu AB. RNA stabilization by the AU-rich element binding protein, 
HuR, an ELAV protein. EMBO J. 1998 Jun 15;17(12):3461-70. 

Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA. Positional cloning of the 
murine flavivirus resistance gene. Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9322-7. 

Perez-Vilaro G, Scheller N, Saludes V, Díez J. Hepatitis C virus infection alters P-body 
composition but is independent of P-body granules. J Virol. 2012 Aug;86(16):8740-9. 

Pesko KN, Fitzpatrick KA, Ryan EM, Shi PY, Zhang B, Lennon NJ, Newman RM, Henn MR, 
Ebel GD. Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in 
cells, mosquitoes, and mice. Virology. 2012 May 25;427(1):10-7. 

Pestova TV, Borukhov SI, Hellen CU. Eukaryotic ribosomes require initiation factors 1 and 1A to 
locate initiation codons. Nature.1998 Aug 27;394(6696):854-9. 

Peterhans E, Bachofen C, Stalder H, Schweizer M. Cytopathic bovine viral diarrhea viruses 
(BVDV): emerging pestiviruses doomed to extinction. Vet Res. 2010 Nov-Dec;41(6):44. 

Peterhans E, Schweizer M. Pestiviruses: how to outmaneuver your hosts. Vet Microbiol. 2010 
Apr 21;142(1-2):18-25. 

Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, 
Reis e Sousa C. Activation of MDA5 requires higher-order RNA structures generated during 
virus infection. J Virol. 2009 Oct;83(20):10761-9. 

Pichlmair A, Lassnig C, Eberle CA, Górna MW, Baumann CL, Burkard TR, Bürckstümmer T, 
Stefanovic A, Krieger S, Bennett KL, Rülicke T, Weber F, Colinge J, Müller M, Superti-Furga G. 
IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol. 2011 Jun 
5;12(7):624-30.  

Pierson TC, Kielian M. Flaviviruses: braking the entering. Curr Opin Virol. 2013 Feb;3(1):3-12. 

Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, 
Shi PY, Hall RA, Khromykh AA. A highly structured, nuclease-resistant, noncoding RNA 
produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008 Dec 11;4(6):579-
91. 

Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin 
is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009 Feb 
12;457(7231):882-6. 

Polacek C, Foley JE, Harris E. Conformational changes in the solution structure of the dengue 
virus 5' end in the presence and absence of the 3' untranslated region. J Virol. 2009 
Jan;83(2):1161-6. 



188 

 

Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein 
sequences. Bioinformatics. 2007 May 1;23(9):1073-9.  

Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, Sica A. Cellular and 
molecular pathways linking inflammation and cancer. Immunobiology. 2009;214(9-10):761-77.  

Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P. The exoribonuclease 
XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell. 2006 
Nov;18(11):3047-57.  

Premkumar A, Wilson L, Ewart GD, Gage PW. Cation-selective ion channels formed by p7 of 
hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 2004 Jan 16;557(1-3):99-
103. 

Proutski V, Gould EA, Holmes EC. Secondary structure of the 3' untranslated region of 
flaviviruses: similarities and differences. Nucleic Acids Res. 1997 Mar 15;25(6):1194-202. 

Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison JA, 
Gilbert AT, Kuzmin IV, Niezgoda M, Osinubi MO, Recuenco S, Markotter W, Breiman RF, 
Kalemba L, Malekani J, Lindblade KA, Rostal MK, Ojeda-Flores R, Suzan G, Davis LB, Blau 
DM, Ogunkoya AB, Alvarez Castillo DA, Moran D, Ngam S, Akaibe D, Agwanda B, Briese T, 
Epstein JH, Daszak P, Rupprecht CE, Holmes EC, Lipkin WI. Bats are a major natural reservoir 
for hepaciviruses and pegiviruses. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8194-9.  

Racaniello, VR. 2001. Picornaviridae: the viruses and their replication. In Knipe DM and Howley 
PM (eds), Fields Virology. Lippincott-Williams & Wilkins, Philadelphia, PA, pp. 685-722. 

Raghavan A, Ogilvie RL, Reilly C, Abelson ML, Raghavan S, Vasdewani J, Krathwohl M, 
Bohjanen PR. Genome-wide analysis of mRNA decay in resting and activated primary human T 
lymphocytes. Nucleic Acids Res. 2002 Dec 15;30(24):5529-38. 

Raju R, Raju L, Hacker D, Garcin D, Compans R, Kolakofsky D. Nontemplated bases at the 5' 
ends of Tacaribe virus mRNAs. Virology. 1990 Jan;174(1):53-9. 

Raju R, Subramaniam SV, Hajjou M. Genesis of Sindbis virus by in vivo recombination of 
nonreplicative RNA precursors. J Virol. 1995 Dec;69(12):7391-401. 

Rauscher S, Flamm C, Mandl CW, Heinz FX, Stadler PF. Secondary structure of the 3'-
noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities. 
RNA. 1997 Jul;3(7):779-91. 

Ray RB, Meyer K, Steele R, Shrivastava A, Aggarwal BB, Ray R. Inhibition of tumor necrosis 
factor (TNF-alpha)-mediated apoptosis by hepatitis C virus core protein. J Biol Chem. 1998 Jan 
23;273(4):2256-9. 

Ray RB, Steele R, Meyer K, Ray R. Transcriptional repression of p53 promoter by hepatitis C 
virus core protein. J Biol Chem. 1997 Apr 25;272(17):10983-6. 

Razavi H, Elkhoury AC, Elbasha E, Estes C, Pasini K, Poynard T, Kumar R. Chronic hepatitis C 
virus (HCV) disease burden and cost in the United States. Hepatology. 2013 Jun;57(6):2164-70. 



189 

 

Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. A crucial role for TNRC6A and the 
DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA. 2005 
Nov;11(11):1640-7. 

Reijns MA, Alexander RD, Spiller MP, Beggs JD. A role for Q/N-rich aggregation-prone regions 
in P-body localization.J Cell Sci. 2008 Aug 1;121(Pt 15):2463-72.  

Reiter J, Pérez-Vilaró G, Scheller N, Mina LB, Díez J, Meyerhans A. Hepatitis C virus RNA 
recombination in cell culture. J Hepatol. 2011 Oct;55(4):777-83. 

Rhee WJ, Ni CW, Zheng Z, Chang K, Jo H, Bao G. HuR regulates the expression of stress-
sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells. 
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6858-63. 

Ribeiro RM, Li H, Wang S, Stoddard MB, Learn GH, Korber BT, Bhattacharya T, Guedj J, 
Parrish EH, Hahn BH, Shaw GM, Perelson AS. Quantifying the diversification of hepatitis C 
virus (HCV) during primary infection: estimates of the in vivo mutation rate. PLoS Pathog. 
2012;8(8):e1002881. 

Ridpath JF, Bolin SR, Dubovi EJ. Segregation of bovine viral diarrhea virus into genotypes. 
Virology. 1994 Nov 15;205(1):66-74. 

Ridpath JF. Immunology of BVDV vaccines. Biologicals. 2013 Jan;41(1):14-9. 

Roby JA, Pijlman GP, Wilusz J, Khromykh AA. Noncoding Subgenomic Flavivirus RNA: Multiple 
Functions in West Nile Virus Pathogenesis and Modulation of Host Responses. Viruses. 2014 
Jan 27;6(2):404-27. 

Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S. CXC chemokines: the 
regulatory link between inflammation and angiogenesis. Trends Immunol. 2004 Apr;25(4):201-9. 

Romero TA, Tumban E, Jun J, Lott WB, Hanley KA. Secondary structure of dengue virus type 4 
3' untranslated region: impact of deletion and substitution mutations. J Gen Virol. 2006 
Nov;87(Pt 11):3291-6. 

Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, Haselman U, Santarella-Mellwig R, 
Habermann A, Hoppe S, Kallis S, Walther P, Antony C, Krijnse-Locker J, Bartenschlager R. 
Three-dimensional architecture and biogenesis of membrane structures associated with 
hepatitis C virus replication. PLoS Pathog. 2012;8(12):e1003056.  

Romero-Lopez C, Berzal-Herranz A. A long-range RNA-RNA interaction between the 5' and 3' 
ends of the HCV genome. RNA. 2009 Sep;15(9):1740-52. 

Rossi CR, Kiesel GK. Factors affecting the production of bovine type I interferon on bovine 
embryonic lung cells by polyriboinosinic-polyribocytidylic acid.Am J Vet Res. 1980 
Apr;41(4):557-60. 

Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S. Innate host responses to West Nile 
virus: Implications for central nervous system immunopathology. World J Virol. 2013 May 
12;2(2):49-56. 



190 

 

Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine 
storms. Nat Rev Immunol. 2011 Jul 15;11(8):532-43. 

Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, Wilusz J, Semler BL. 
Picornavirus modification of a host mRNA decay protein. MBio. 2012 Nov 6;3(6):e00431-12. 

Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A. Classical 
swine fever virus interferes with cellular antiviral defense: evidence for a novel function of 
N(pro). J Virol. 2003 Jul;77(13):7645-54. 

Ruther U, Garber C, Komitowski D, Müller R, Wagner EF. Deregulated c-FOS expression 
interferes with normal bone development in transgenic mice. Nature. 1987 Jan 29-Feb 
4;325(6103):412-6. 

Rymarquis LA, Souret FF, Green PJ. Evidence that XRN4, an Arabidopsis homolog of 
exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular 
functional categories. RNA. 2011 Mar;17(3):501-11.  

Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr. Innate immunity induced by 
composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature. 2008 Jul 
24;454(7203):523-7.  

Sakai A, Claire MS, Faulk K, Govindarajan S, Emerson SU, Purcell RH, Bukh J. The p7 
polypeptide of hepatitis C virus is critical for infectivity and contains functionally important 
genotype-specific sequences. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11646-51.  

Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms 
NIH 3T3 cells.J Virol. 1995 Jun;69(6):3893-6 

Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, 
Diamond MS. PKR and RNase L contribute to protection against lethal West Nile Virus infection 
by controlling early viral spread in the periphery and replication in neurons. J Virol. 2006 
Jul;80(14):7009-19. 

Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson 
KE, Blair CD. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's 
RNA interference pathway. PLoS Pathog. 2009 Feb;5(2):e1000299. 

Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, 
Cortese R, Vitelli A.The human scavenger receptor class B type I is a novel candidate receptor 
for the hepatitis C virus. EMBO J. 2002 Oct 1;21(19):5017-25. 

Scheel TK, Galli A, Li YP, Mikkelsen LS, Gottwein JM, Bukh J. Productive homologous and non-
homologous recombination of hepatitis C virus in cell culture. PLoS Pathog. 2013 
Mar;9(3):e1003228. 

Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly 
effective therapies. Nat Med. 2013 Jul;19(7):837-49. 

Scheller N, Mina LB, Galão RP, Chari A, Giménez-Barcons M, Noueiry A, Fischer U, 
Meyerhans A, Díez J. Translation and replication of hepatitis C virus genomic RNA depends on 



191 

 

ancient cellular proteins that control mRNA fates. Proc Natl Acad Sci U S A. 2009 Aug 
11;106(32):13517-22.  

Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA. RNase L plays a role in 
the antiviral response to West Nile virus. J Virol. 2006 Mar;80(6):2987-99. 

Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, Svoboda P, Filipowicz W. 
Effects of DICER and Argonaute down-regulation on mRNA levels in human HEK293 cells. 
Nucleic Acids Res. 2006;34(17):4801-15. 

Schnell G, Loo YM, Marcotrigiano J, Gale M Jr. Uridine composition of the poly-U/UC tract of 
HCV RNA defines non-self recognition by RIG-I. PLoS Pathog. 2012;8(8):e1002839. 

Schnell MJ, McGettigan JP, Wirblich C, Papaneri A. The cell biology of rabies virus: using 
stealth to reach the brain. Nat Rev Microbiol. 2010 Jan;8(1):51-61.  

Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, 
Khromykh AA, Pijlman GP. Noncoding flavivirus RNA displays RNA interference suppressor 
activity in insect and Mammalian cells. J Virol. 2012 Dec;86(24):13486-500. 

Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, Haferlach C, 
Haferlach T. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and 
confer an unfavorable prognosis. Blood. 2011 Feb 24;117(8):2348-57. 

Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse 
range of gene products are effectors of the type I interferon antiviral response. Nature. 2011 Apr 
28;472(7344):481-5. 

Schuessler A, Funk A, Lazear HM, Cooper DA, Torres S, Daffis S, Jha BK, Kumagai Y, 
Takeuchi O, Hertzog P, Silverman R, Akira S, Barton DJ, Diamond MS, Khromykh AA. West 
Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-
mediated antiviral response. J Virol. 2012 May;86(10):5708-18. 

Schwartz D, Decker CJ, Parker R. The enhancer of decapping proteins, EDC1p and EDC2p, 
bind RNA and stimulate the activity of the decapping enzyme. RNA. 2003 Feb;9(2):239-51. 

Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C. A role for Caf1 in mRNA 
deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res. 2008 
Jun;36(10):3374-88. 

Scortegagna M, Cataisson C, Martin RJ, Hicklin DJ, Schreiber RD, Yuspa SH, Arbeit JM. HIF-
1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine 
stromal remodeling. Blood. 2008 Apr 1;111(7):3343-54. 

Seago J, Hilton L, Reid E, Doceul V, Jeyatheesan J, Moganeradj K, McCauley J, Charleston B, 
Goodbourn S. The Npro product of classical swine fever virus and bovine viral diarrhea virus 
uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol. 2007 
Nov;88(Pt 11):3002-6. 

Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as 
cytoplasmic bodies. Nat Cell Biol. 2005;7:633–636. 



192 

 

Serviene E, Shapka N, Cheng CP, Panavas T, Phuangrat B, Baker J, Nagy PD. Genome-wide 
screen identifies host genes affecting viral RNA recombination. Proc Natl Acad Sci U S A. 2005 
Jul 26;102(30):10545-50.  

Shapiro JS, Langlois RA, Pham AM, Tenoever BR. Evidence for a cytoplasmic microprocessor 
of pri-miRNAs. RNA. 2012 Jul;18(7):1338-46.  

Shaw G, Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF 
mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659-67. 

She M, Decker CJ, Svergun DI, Round A, Chen N, Muhlrad D, Parker R, Song H. Structural 
basis of DCP2 recognition and activation by DCP1. Mol Cell. 2008 Feb 15;29(3):337-49.  

Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing 
bodies. Science. 2003 May 2;300(5620):805-8. 

Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM. Stabilization 
of hepatitis C virus RNA by an AGO2-miR-122 complex. Proc Natl Acad Sci U S A. 2012 Jan 
17;109(3):941-6. 

Shimizu H, Miyazaki M, Wakabayashi Y, Mitsuhashi N, Kato A, Ito H, Nakagawa K, Yoshidome 
H, Kataoka M, Nakajima N. Vascular endothelial growth factor secreted by replicating 
hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial 
hepatectomy in rats. J Hepatol. 2001 May;34(5):683-9. 

Shimoyama Y, Morikawa Y, Ichihara M, Kodama Y, Fukuda N, Hayashi H, Morinaga T, Iwashita 
T, Murakumo Y, Takahashi M. Identification of human SEP1 as a glial cell line-derived 
neurotrophic factor-inducible protein and its expression in the nervous system. Neuroscience. 
2003;121(4):899-906. 

Shin D, Richards SL, Alto BW, Bettinardi DJ, Smartt CT. Genome sequence analysis of dengue 
virus 1 isolated in Key West, Florida. PLoS One. 2013 Sep 30;8(9):e74582.  

Shyu AB, Belasco JG, Greenberg ME. Two distinct destabilizing elements in the c-FOS 
message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 
Feb;5(2):221-31. 

Siddiqui N, Mangus DA, Chang TC, Palermino JM, Shyu AB, Gehring K. Poly(A) nuclease 
interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-
binding protein. J Biol Chem. 2007 Aug 24;282(34):25067-75. 

Silva PA, Pereira CF, Dalebout TJ, Spaan WJ, Bredenbeek PJ. An RNA pseudoknot is required 
for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol. 2010 
Nov;84(21):11395-406. 

Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nat Rev Microbiol. 2011 Jul 
4;9(8):617-26.  

Sinturel F, Bréchemier-Baey D, Kiledjian M, Condon C, Bénard L. Activation of 5'-3' 
exoribonuclease XRN1 by cofactor DCS1 is essential for mitochondrial function in yeast. Proc 
Natl Acad Sci U S A. 2012 May 22;109(21):8264-9. 



193 

 

Sips GJ, Wilschut J, Smit JM. Neuroinvasive flavivirus infections. Rev Med Virol. 2012 
Mar;22(2):69-87.  

Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CU. Specific interaction of 
eukaryotic translation initiation factor 3 with the 5' nontranslated regions of hepatitis C virus and 
classical swine fever virus RNAs. J Virol. 1998 Jun;72(6):4775-82. 

Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by 
microRNA availability. Nat Struct Mol Biol. 2013 Jul;20(7):789-95. 

Smietanski M, Werner M, Purta E, Kaminska KH, Stepinski J, Darzynkiewicz E, Nowotny M, 
Bujnicki JM. Structural analysis of human 2'-O-ribose methyltransferases involved in mRNA cap 
structure formation. Nat Commun. 2014;5:3004. 

Smirnova NP, Bielefeldt-Ohmann H, Van Campen H, Austin KJ, Han H, Montgomery DL, 
Shoemaker ML, van Olphen AL, Hansen TR. Acute non-cytopathic bovine viral diarrhea virus 
infection induces pronounced type I interferon response in pregnant cows and fetuses. Virus 
Res. 2008 Mar;132(1-2):49-58. 

Smirnova NP, Webb BT, Bielefeldt-Ohmann H, Van Campen H, Antoniazzi AQ, Morarie SE, 
Hansen TR. Development of fetal and placental innate immune responses during establishment 
of persistent infection with bovine viral diarrhea virus. Virus Res. 2012 Aug;167(2):329-36. 

Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J. Flavivirus cell entry and membrane fusion. 
Viruses. 2011 Feb;3(2):160-71. 

Smith BD, Morgan RL, Beckett GA, Falck-Ytter Y, Holtzman D, Ward JW. Hepatitis C virus 
testing of persons born during 1945-1965: recommendations from the Centers for Disease 
Control and Prevention. Ann Intern Med. 2012 Dec 4;157(11):817-22. 

Sokoloski KJ, Dickson AM, Chaskey EL, Garneau NL, Wilusz CJ, Wilusz J. Sindbis virus usurps 
the cellular HuR protein to stabilize its transcripts and promote productive infections in 
mammalian and mosquito cells. Cell Host Microbe. 2010 Aug 19;8(2):196-207. 

Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D, Schrader JW. Distinct structural 
features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of 
eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective 
interaction with a subset of mRNAs. Mol Cell Biol. 2007 Mar;27(6):2324-42 

Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity. 
RNA. 2013 Mar;19(3):390-9. 

Song Y, Friebe P, Tzima E, Jünemann C, Bartenschlager R, Niepmann M. The hepatitis C virus 
RNA 3'-untranslated region strongly enhances translation directed by the internal ribosome 
entry site. J Virol. 2006 Dec;80(23):11579-88.  

St Laurent G 3rd, Shtokalo D, Heydarian M, Palyanov A, Babiy D, Zhou J, Kumar A, Urcuqui-
Inchima S Insights from the HuR-interacting transcriptome: ncRNAs, ubiquitin pathways, and 
patterns of secondary structure dependent RNA interactions. Mol Genet Genomics. 2012 
Dec;287(11-12):867-79. 



194 

 

Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus 
by furin. J Virol. 1997 Nov;71(11):8475-81. 

Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P. The GB viruses: a review and 
proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the 
family Flaviviridae. J Gen Virol. 2011 Feb;92(Pt 2):233-46.  

Stark R, Meyers G, Rümenapf T, Thiel HJ. Processing of pestivirus polyprotein: cleavage site 
between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol. 1993 
Dec;67(12):7088-95. 

Stauffer JK, Scarzello AJ, Jiang Q, Wiltrout RH. Chronic inflammation, immune escape, and 
oncogenesis in the liver: a unique neighborhood for novel intersections. Hepatology. 2012 
Oct;56(4):1567-74. 

Steiger M, Carr-Schmid A, Schwartz DC, Kiledjian M, Parker R. Analysis of recombinant yeast 
decapping enzyme. RNA. 2003 Feb;9(2):231-8. 

Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn 
WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in 
primary cells. RNA. 2003 Apr;9(4):493-501. 

Stevens A. 5'-exoribonuclease 1: XRN1. Methods Enzymol. 2001;342:251-9. 

Stevens A. An exoribonuclease from Saccharomyces cerevisiae: effect of modifications of 5' 
end groups on the hydrolysis of substrates to 5' mononucleotides. Biochem Biophys Res 
Commun. 1978 Mar 30;81(2):656-61. 

Stevens A. An mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae. 
Biochem Biophys Res Commun. 1980 Oct 16;96(3):1150-5. 

Stevens A, Hsu CL, Isham KR, Larimer FW. Fragments of the internal transcribed spacer 1 of 
pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5'----3' exoribonuclease 1. J 
Bacteriol. 1991 Nov;173(21):7024-8. 

Stevens A, Poole TL. 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features 
of ribonuclease activity with comparison to 5'-exonuclease-1. J Biol Chem. 1995 Jul 
7;270(27):16063-9. 

Stiasny K, Allison SL, Schalich J, Heinz FX. Membrane interactions of the tick-borne 
encephalitis virus fusion protein E at low pH. J Virol. 2002 Apr;76(8):3784-90. 

Stoecklin G, Mayo T, Anderson P. ARE-mRNA degradation requires the 5'-3' decay pathway. 
EMBO Rep. 2006 Jan;7(1):72-7. 

Suksanpaisan L, Susantad T, Smith DR. Characterization of dengue virus entry into HepG2 
cells. J Biomed Sci. 2009 Feb 4;16:17. 

Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale M Jr. Regulating 
intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a 
cellular RNA helicase, RIG-I. J Virol. 2005 Mar;79(5):2689-99. 



195 

 

Sun M, Schwalb B, Pirkl N, Maier KC, Schenk A, Failmezger H, Tresch A, Cramer P. Global 
analysis of eukaryotic mRNA degradation reveals XRN1-dependent buffering of transcript 
levels. Mol Cell. 2013 Oct 10;52(1):52-62. 

Suthar MS, Diamond MS, Gale M Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 
2013 Feb;11(2):115-28. 

Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, Rudensky AY, Bevan MJ, Clark 
EA, Kaja MK, Diamond MS, Gale M Jr. IPS-1 is essential for the control of West Nile virus 
infection and immunity. PLoS Pathog. 2010 Feb 5;6(2):e1000757.  

Suthar MS, Ramos HJ, Brassil MM, Netland J, Chappell CP, Blahnik G, McMillan A, Diamond 
MS, Clark EA, Bevan MJ, Gale M Jr. The RIG-I-like receptor LGP2 controls CD8(+) T cell 
survival and fitness. Immunity. 2012 Aug 24;37(2):235-48.  

Swarup V, Das S, Ghosh S, Basu A. Tumor necrosis factor receptor-1-induced neuronal death 
by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem. 2007 
Oct;103(2):771-83 

Szankasi P, Smith GR. Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae 
Sep1, for normal mitotic growth and viability. Curr Genet. 1996 Sep;30(4):284-93. 

Szretter KJ, Daniels BP, Cho H, Gainey MD, Yokoyama WM, Gale M Jr, Virgin HW, Klein RS, 
Sen GC, Diamond MS. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-
dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 
2012;8(5):e1002698. 

Takimoto K, Wakiyama M, Yokoyama S. Mammalian TNRC6A contains multiple Argonaute-
binding sites and functions in microRNA-mediated translational repression. RNA. 2009 
Jun;15(6):1078-89.  

Tanaka T, Kato N, Cho MJ, Sugiyama K, Shimotohno K. Structure of the 3' terminus of the 
hepatitis C virus genome. J Virol. 1996 May;70(5):3307-12. 

Tanji Y, Hijikata M, Hirowatari Y, Shimotohno K. Hepatitis C virus polyprotein processing: 
kinetics and mutagenic analysis of serine proteinase-dependent cleavage. J Virol. 1994 
Dec;68(12):8418-22. 

Taucher C, Berger A, Mandl CW. A trans-complementing recombination trap demonstrates a 
low propensity of flaviviruses for intermolecular recombination. J Virol. 2010 Jan;84(1):599-611.  

Tautz N, Meyers G, Stark R, Dubovi EJ, Thiel HJ. Cytopathogenicity of a pestivirus correlates 
with a 27-nucleotide insertion. J Virol. 1996 Nov;70(11):7851-8. 

Tautz N, Meyers G, Thiel HJ. Pathogenesis of mucosal disease, a deadly disease of cattle 
caused by a pestivirus. Clin Diagn Virol. 1998 Jul 15;10(2-3):121-7. 

Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, Schenkman DI, Gilkeson 
GS, Broxmeyer HE, Haynes BF, Blackshear PJ. A pathogenetic role for TNF alpha in the 
syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. 
Immunity. 1996 May;4(5):445-54. 



196 

 

Tenoever BR, Ng SL, Chua MA, McWhirter SM, García-Sastre A, Maniatis T. Multiple functions 
of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science. 2007 
Mar 2;315(5816):1274-8. 

Tharun S, He W, Mayes AE, Lennertz P, Beggs JD, Parker R. Yeast Sm-like proteins function in 
mRNA decapping and decay. Nature. 2000 Mar 30;404(6777):515-8. 

Thoren F, Romero A, Lindh M, Dahlgren C, Hellstrand K. A hepatitis C virus-encoded, 
nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH 
oxidase-derived oxygen radicals. J Leukoc Biol. 2004 Dec;76(6):1180-6.  

Thurner C, Witwer C, Hofacker IL, Stadler PF. Conserved RNA secondary structures in 
Flaviviridae genomes. J Gen Virol. 2004 May;85(Pt 5):1113-24. 

Till DD, Linz B, Seago JE, Elgar SJ, Marujo PE, Elias ML, Arraiano CM, McClellan JA, 
McCarthy JE, Newbury SF. Identification and developmental expression of a 5'-3' 
exoribonuclease from Drosophila melanogaster. Mech Dev. 1998 Dec;79(1-2):51-5. 

Tishkoff DX, Johnson AW, Kolodner RD. Molecular and genetic analysis of the gene encoding 
the Saccharomyces cerevisiae strand exchange protein Sep1. Mol Cell Biol. 1991 
May;11(5):2593-608. 

Tolfvenstam T, Lindblom A, Schreiber MJ, Ling L, Chow A, Ooi EE, Hibberd ML. 
Characterization of early host responses in adults with dengue disease. BMC Infect Dis. 2011 
Aug 2;11:209. 

Tolou HJ, Couissinier-Paris P, Durand JP, Mercier V, de Pina JJ, de Micco P, Billoir F, Charrel 
RN, de Lamballerie X. Evidence for recombination in natural populations of dengue virus type 1 
based on the analysis of complete genome sequences. J Gen Virol. 2001 Jun;82(Pt 6):1283-90. 

Totaro A, Renzi F, La Fata G, Mattioli C, Raabe M, Urlaub H, Achsel T. The human Pat1b 
protein: a novel mRNA deadenylation factor identified by a new immunoprecipitation technique. 
Nucleic Acids Res. 2011 Jan;39(2):635-47. 

Townsend HL, Jha BK, Han JQ, Maluf NK, Silverman RH, Barton DJ. A viral RNA competitively 
inhibits the antiviral endoribonuclease domain of RNase L. RNA. 2008 Jun;14(6):1026-36.  

Trent DW. Antigenic characterization of flavivirus structural proteins separated by isoelectric 
focusing. J Virol. 1977 Jun;22(3):608-18. 

Triantafilou K, Vakakis E, Kar S, Richer E, Evans GL, Triantafilou M. Visualisation of direct 
interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA 
viruses. J Cell Sci. 2012 Oct 15;125(Pt 20):4761-9. 

Tscherne DM, Jones CT, Evans MJ, Lindenbach BD, McKeating JA, Rice CM. Time- and 
temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol. 2006 
Feb;80(4):1734-41. 

Tsiang H, Atanasiu P, Chermann JC, Jasmin C. Inhibition of rabies virus in vitro by the 
ammonium-5-tungsto-2-antimoniate. J Gen Virol. 1978 Sep;40(3):665-8. 



197 

 

Tsuchihara K, Tanaka T, Hijikata M, Kuge S, Toyoda H, Nomoto A, Yamamoto N, Shimotohno 
K. Specific interaction of polypyrimidine tract-binding protein with the extreme 3'-terminal 
structure of the hepatitis C virus genome, the 3'X. J Virol. 1997 Sep;71(9):6720-6. 

Turenne N, Tiys E, Ivanisenko V, Yudin N, Ignatieva E, Valour D, Degrelle SA, Hue I. Finding 
biomarkers in non-model species: literature mining of transcription factors involved in bovine 
embryo development. BioData Min. 2012 Aug 29;5(1):12.  

Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA. Conservation of a triple-helix-forming RNA 
stability element in noncoding and genomic RNAs of diverse viruses. Cell Rep. 2012 Jul 
26;2(1):26-32. 

Uchida N, Hoshino S, Katada T. Identification of a human cytoplasmic poly(A) nuclease 
complex stimulated by poly(A)-binding protein. J Biol Chem. 2004 Jan 9;279(2):1383-91.  

Uehata T, Akira S. mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. 
Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):708-13. 

Uzcategui NY, Camacho D, Comach G, Cuello de Uzcategui R, Holmes EC, Gould EA. 
Molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution 
and recombination. J Gen Virol. 2001 Dec;82(Pt 12):2945-53. 

van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit 
JM. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. 
PLoS Pathog. 2008 Dec;4(12):e1000244.  

van Hoof A, Frischmeyer PA, Dietz HC, Parker R. Exosome-mediated recognition and 
degradation of mRNAs lacking a termination codon. Science. 2002 Mar 22;295(5563):2262-4. 

van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström JO, Heestermans M, 
Hultmark D, Antoniewski C, van Rij RP. Convergent evolution of argonaute-2 slicer antagonism 
in two distinct insect RNA viruses. PLoS Pathog. 2012;8(8):e1002872.  

Van Tubergen E, Vander Broek R, Lee J, Wolf G, Carey T, Bradford C, Prince M, Kirkwood KL, 
D'Silva NJ. Tristetraprolin regulates interleukin-6, which is correlated with tumor progression in 
patients with head and neck squamous cell carcinoma. Cancer. 2011 Jun 15;117(12):2677-89. 

Vassilaki N, Friebe P, Meuleman P, Kallis S, Kaul A, Paranhos-Baccalà G, Leroux-Roels G, 
Mavromara P, Bartenschlager R. Role of the hepatitis C virus core+1 open reading frame and 
core cis-acting RNA elements in viral RNA translation and replication. J Virol. 2008 
Dec;82(23):11503-15. 

Vasudevan S, Peltz SW, Wilusz CJ. Non-stop decay--a new mRNA surveillance pathway. 
Bioessays. 2002 Sep;24(9):785-8. 

Vilcek S, Paton D, Lowings P, Björklund H, Nettleton P, Belák S. Genetic analysis of 
pestiviruses at the 3' end of the genome. Virus Genes. 1999;18(2):107-14. 

Vreken P, Raue HA. The rate-limiting step in yeast PGK1 mRNA degradation is an 
endonucleolytic cleavage in the 3'-terminal part of the coding region. Mol Cell Biol. 1992 
Jul;12(7):2986-96. 



198 

 

Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, 
Segal E, Chang HY. Landscape and variation of RNA secondary structure across the human 
transcriptome. Nature. 2014 Jan 30;505(7485):706-9. 

Wang C, Pflugheber J, Sumpter R Jr, Sodora DL, Hui D, Sen GC, Gale M Jr. Alpha interferon 
induces distinct translational control programs to suppress hepatitis C virus RNA replication. J 
Virol. 2003 Apr;77(7):3898-912. 

Wang C, Sarnow P, Siddiqui A. Translation of human hepatitis C virus RNA in cultured cells is 
mediated by an internal ribosome-binding mechanism. J Virol. 1993 Jun;67(6):3338-44. 

Wang CC, Huang ZS, Chiang PL, Chen CT, Wu HN. Analysis of the nucleoside triphosphatase, 
RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 
protein. FEBS Lett. 2009 Feb 18;583(4):691-6. 

Wang JG, Collinge M, Ramgolam V, Ayalon O, Fan XC, Pardi R, Bender JR. LFA-1-dependent 
HuR nuclear export and cytokine mRNA stabilization in T cell activation. J Immunol. 2006 Feb 
15;176(4):2105-13. 

Wang L, Jeng KS, Lai MM. Poly(C)-binding protein 2 interacts with sequences required for viral 
replication in the hepatitis C virus (HCV) 5' untranslated region and directs HCV RNA replication 
through circularizing the viral genome. J Virol. 2011 Aug;85(16):7954-64.  

Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 
mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004 
Dec;10(12):1366-73. 

Wang Z, Jiao X, Carr-Schmid A, Kiledjian M. The hDCP2 protein is a mammalian mRNA 
decapping enzyme.  Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12663-8.  

Wang Z, Kiledjian M. Functional link between the mammalian exosome and mRNA decapping. 
Cell. 2001 Dec 14;107(6):751-62. 

Wang ZQ, Ovitt C, Grigoriadis AE, Möhle-Steinlein U, Rüther U, Wagner EF. Bone and 
haematopoietic defects in mice lacking c-FOS. Nature. 1992 Dec 24-31;360(6406):741-5. 

Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA. 
Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box 
RNA helicase DDX6 binds the DB1 and DB2 3' UTR structures. RNA Biol. 2011 Nov-
Dec;8(6):1173-86. 

Washenberger CL, Han JQ, Kechris KJ, Jha BK, Silverman RH, Barton DJ. Hepatitis C virus 
RNA: dinucleotide frequencies and cleavage by RNase L. Virus Res. 2007 Dec;130(1-2):85-95.  
 
Webb BT, McGilvray KC, Smirnova NP, Hansen TR, Norrdin RW. Effects of in utero pestivirus 
infection on bovine fetal bone geometry, biomechanical properties and composition. Vet J. 2013 
Nov;198(2):376-81.  

Webb BT, Norrdin RW, Smirnova NP, Van Campen H, Weiner CM, Antoniazzi AQ, Bielefeldt-
Ohmann H, Hansen TR. Bovine viral diarrhea virus cyclically impairs long bone trabecular 
modeling in experimental persistently infected fetuses. Vet Pathol. 2012 Nov;49(6):930-40.  



199 

 

Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, 
Devignot S, Kochs G, García-Sastre A, Weber F. Incoming RNA virus nucleocapsids containing 
a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe. 2013 
Mar 13;13(3):336-46. 

Weiner CM, Smirnova NP, Webb BT, Van Campen H, Hansen TR. Interferon stimulated genes, 
CXCR4 and immune cell responses in peripheral blood mononuclear cells infected with bovine 
viral diarrhea virus. Res Vet Sci. 2012 Oct;93(2):1081-8.  

Weiskircher E, Aligo J, Ning G, Konan KV. Bovine viral diarrhea virus NS4B protein is an 
integral membrane protein associated with Golgi markers and rearranged host membranes. 
Virol J. 2009 Nov 3;6:185.  

Weiss BG, Schlesinger S. Recombination between Sindbis virus RNAs. J Virol. 1991 
Aug;65(8):4017-25. 

Werner GH, Jasmin C, Chermann JC. Effect of ammonium 5-tungsto-2-antimoniate on 
encephalomyocarditis and vesicular stomatitis virus infections in mice. J Gen Virol. 1976 
Apr;31(1):59-64. 

Werner M, Purta E, Kaminska KH, Cymerman IA, Campbell DA, Mittra B, Zamudio JR, Sturm 
NR, Jaworski J, Bujnicki JM. 2'-O-ribose methylation of cap2 in human: function and evolution in 
a horizontally mobile family. Nucleic Acids Res. 2011 Jun;39(11):4756-68.  

Westaway EG, Mackenzie JM, Khromykh AA. Replication and gene function in Kunjin virus. 
Curr Top Microbiol Immunol. 2002;267:323-51. 

Wilson GK, Brimacombe CL, Rowe IA, Reynolds GM, Fletcher NF, Stamataki Z, Bhogal RH, 
Simões ML, Ashcroft M, Afford SC, Mitry RR, Dhawan A, Mee CJ, Hübscher SG, Balfe P, 
McKeating JA. A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and 
hepatoma migration. J Hepatol. 2012 Apr;56(4):803-9.  

Wilson T, Treisman R. Removal of poly(A) and consequent degradation of c-FOS mRNA 
facilitated by 3' AU-rich sequences. Nature. 1988 Nov 24;336(6197):396-9. 

Wilusz CJ, Wilusz J. Consequences of mRNA wardrobe malfunctions. Cell. 2010 Dec 
10;143(6):863-5. 

Wilusz J, Shenk T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA 
polyadenylation motif. Cell. 1988 Jan 29;52(2):221-8. 

Wise M, Finelli L, Sorvillo F. Prognostic factors associated with hepatitis C disease: a case-
control study utilizing U.S. multiple-cause-of-death data. Public Health Rep. 2010 May-
Jun;125(3):414-22. 

Wiskerchen M, Belzer SK, Collett MS. Pestivirus gene expression: the first protein product of 
the bovine viral diarrhea virus large open reading frame, p20, possesses proteolytic activity. J 
Virol. 1991 Aug;65(8):4508-14. 

Withers JB, Beemon KL. Structural features in the Rous sarcoma virus RNA stability element 
are necessary for sensing the correct termination codon. Retrovirology. 2010 Aug 5;7:65. 



200 

 

 
Wong J, Si X, Angeles A, Zhang J, Shi J, Fung G, Jagdeo J, Wang T, Zhong Z, Jan E, Luo H. 
Cytoplasmic redistribution and cleavage of AUF1 during coxsackievirus infection enhance the 
stability of its viral genome. FASEB J. 2013 Jul;27(7):2777-87. 

Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, Lemon SM, Weinman SA. Intracellular 
proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus 
production. PLoS Pathog. 2010 Sep 2;6(9):e1001087. 

Wu D, Muhlrad D, Bowler MW, Jiang S, Liu Z, Parker R, Song H. Lsm2 and Lsm3 bridge the 
interaction of the Lsm1-7 complex with Pat1 for decapping activation. Cell Res. 2014 
Feb;24(2):233-46. 

Wu M, Reuter M, Lilie H, Liu Y, Wahle E, Song H. Structural insight into poly(A) binding and 
catalytic mechanism of human PARN. EMBO J. 2005 Dec 7;24(23):4082-93.  

Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, 
Tewari M. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases 
contributes to miRNA transcriptome complexity. Genome Res. 2011 Sep;21(9):1450-61 
 
Xia H, Vijayaraghavan B, Belák S, Liu L. Detection and identification of the atypical bovine 
pestiviruses in commercial foetal bovine serum batches. PLoS One. 2011;6(12):e28553. 

Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL, Tong L. Structure and function of 
the 5'3' exoribonuclease Rat1 and its activating partner Rai1. Nature. 2009 Apr 9; 
458(7239):784-8. 

Xue Y, Bai X, Lee I, Kallstrom G, Ho J, Brown J, Stevens A, Johnson AW. Saccharomyces 
cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds 
the nuclear exoribonuclease Rat1p. Mol Cell Biol. 2000 Jun;20(11):4006-15. 

Yacoub S, Mongkolsapaya J, Screaton G. The pathogenesis of dengue. Curr Opin Infect Dis. 
2013 Jun;26(3):284-9. 

Yakub I, Lillibridge KM, Moran A, Gonzalez OY, Belmont J, Gibbs RA, Tweardy DJ. Single 
nucleotide polymorphisms in genes for 2'-5'-oligoadenylate synthetase and RNase L inpatients 
hospitalized with West Nile virus infection. J Infect Dis. 2005 Nov 15;192(10):1741-8. 

Yamada N, Tanihara K, Takada A, Yorihuzi T, Tsutsumi M, Shimomura H, Tsuji T, Date T. 
Genetic organization and diversity of the 3' noncoding region of the hepatitis C virus genome. 
Virology. 1996 Sep 1;223(1):255-61. 

Yamagishi N, Terauchi H, Kanematsu S, Hidaka S. Characterization of the small subgenomic 
RNA of Soybean dwarf virus. Arch Virol. 2003 Sep;148(9):1827-34. 

Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB. Concerted action 
of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol. 
2005 Dec;12(12):1054-63.  



201 

 

Yamshchikov VF, Compans RW. Processing of the intracellular form of the west Nile virus 
capsid protein by the viral NS2B-NS3 protease: an in vitro study. J Virol. 1994 Sep;68(9):5765-
71. 

Yamshchikov VF, Trent DW, Compans RW. Upregulation of signalase processing and induction 
of prM-E secretion by the flavivirus NS2B-NS3 protease: roles of protease components. J Virol. 
1997 Jun;71(6):4364-71. 

Yan YB. Deadenylation: enzymes, regulation, and functional implications. Wiley Interdiscip Rev 
RNA. 2014 Feb 12. 

Yang JS, Maurin T, Lai EC. Functional parameters of DICER-independent microRNA 
biogenesis. RNA. 2012 May;18(5):945-57.  

Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, 
Sadelain M, O'Carroll D, Lai EC. Conserved vertebrate mir-451 provides a platform for DICER-
independent, AGO2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA. 
2010;107:15163–15168. 

Yang S, He M, Liu X, Li X, Fan B, Zhao S. Japanese encephalitis virus infects porcine kidney 
epithelial PK15 cells via clathrin- and cholesterol-dependent endocytosis. Virol J. 2013 Aug 
12;10:258. 

Yap LJ, Luo D, Chung KY, Lim SP, Bodenreider C, Noble C, Shi PY, Lescar J. Crystal structure 
of the dengue virus methyltransferase bound to a 5'-capped octameric RNA. PLoS One. 2010 
Sep 17;5(9).  

Yi M, Lemon SM. Structure-function analysis of the 3' stem-loop of hepatitis C virus genomic 
RNA and its role in viral RNA replication. RNA. 2003 Mar;9(3):331-45. 

Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, 
Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced 
innate antiviral responses. Nat Immunol. 2004 Jul;5(7):730-7. 

You S, Rice CM. 3' RNA elements in hepatitis C virus replication: kissing partners and long 
poly(U). J Virol. 2008 Jan;82(1):184-95. 

You S, Stump DD, Branch AD, Rice CM. A cis-acting replication element in the sequence 
encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA 
replication. J Virol. 2004 Feb;78(3):1352-66. 

Yu C, Achazi K, Niedrig M. Tick-borne encephalitis virus triggers inositol-requiring enzyme 1 
(IRE1) and transcription factor 6 (ATF6) pathways of unfolded protein response. Virus Res. 
2013 Dec 26;178(2):471-7.  

Yu H, Grassmann CW, Behrens SE. Sequence and structural elements at the 3' terminus of 
bovine viral diarrhea virus genomic RNA: functional role during RNA replication. J Virol. 1999 
May;73(5):3638-48. 



202 

 

Yu H, Isken O, Grassmann CW, Behrens SE. A stem-loop motif formed by the immediate 5' 
terminus of the bovine viral diarrhea virus genome modulates translation as well as replication 
of the viral RNA. J Virol. 2000 Jul;74(13):5825-35. 

Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann 
MG, Chen J. Structure of the immature dengue virus at low pH primes proteolytic maturation. 
Science. 2008 Mar 28;319(5871):1834-7. 

Zabolotskaya MV, Grima DP, Lin MD, Chou TB, Newbury SF. The 5'-3' exoribonuclease 
Pacman is required for normal male fertility and is dynamically localized in cytoplasmic particles 
in Drosophila testis cells. Biochem J. 2008 Dec 15;416(3):327-35.  

Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, Kenner L, Tschachler E, 
Wagner EF. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. 
Arthritis Res Ther. 2008;10(1):201. 

Zhang K, Dion N, Fuchs B, Damron T, Gitelis S, Irwin R, O'Connor M, Schwartz H, Scully SP, 
Rock MG, Bolander ME, Sarkar G. The human homolog of yeast SEP1 is a novel candidate 
tumor suppressor gene in osteogenic sarcoma. Gene. 2002 Oct 2;298(2):121-7.  

Zhang R, Jha BK, Ogden KM, Dong B, Zhao L, Elliott R, Patton JT, Silverman RH, Weiss SR. 
Homologous 2',5'-phosphodiesterases from disparate RNA viruses antagonize antiviral innate 
immunity. Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13114-9. 

Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss 
JH, Rossmann MG, Kuhn RJ. Visualization of membrane protein domains by cryo-electron 
microscopy of dengue virus. Nat Struct Biol. 2003 Nov;10(11):907-12.  

Zhou A, Paranjape JM, Hassel BA, Nie H, Shah S, Galinski B, Silverman RH. Impact of RNase 
L overexpression on viral and cellular growth and death. J Interferon Cytokine Res. 1998 Nov; 
18(11):953-61. 
 
Zhu H, Zhou HL, Hasman RA, Lou H. Hu proteins regulate polyadenylation by blocking sites 
containing U-rich sequences. J Biol Chem. 2007 Jan 26;282(4):2203-10.  

Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker 
SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. Ribose 2'-O-methylation provides 
a molecular signature for the distinction of self and non-self mRNA dependent on the RNA 
sensor Mda5. Nat Immunol. 2011 Feb;12(2):137-43. 

 
 
 
 
 
 
 
 
 
 



203 

 

APPENDICES 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



204 

 

Appendix 1. List of abbreviations used. 

 
AGO2 argonaute 2 

ARE AU-rich element 

BDV border disease virus 

BVDV  bovine viral diarrhea virus 

C core or capsid protein 

CDC Centers for Disease Control 

cHP capsid hairpin 

CNS central nervous system 

CSFV classic swine fever virus 

DENV dengue virus 

DENV-2 dengue virus type 2 

DMEM Dulbecco's modified Eagle's medium 

dsRNA double stranded RNA 

E envelope protein 

eiF3 eukaryotic translation initiation factor 3 

ER endoplasmic reticulum 

G glycoprotein 

GBV G.B. viruses 

GFP green fluorescent protein 

GO gene ontology 

HCC hepatocellular carcinoma 

HCV hepatitis C virus 

HIF1A hypoxia inducible factor 1A 

HIV-1 human immunodeficiency virus type 1 

HVS herpesvirus saimiri 

IFIT interferon induced proteins with tetratricopeptide repeats 

IFN interferon 

IFNAR1 IFNα and IFNβ receptor complex 1   

IL interleukin 

IRES internal ribosome entry site 

IRF interferon response factor 

ISG interferon stimulated gene 

JEV japanese encephalitis virus 

KUNV Kunjin virus 

MAVS mitochondrial antiviral signaling  

mCMV murine cytomegalovirus 

MDA5 melanoma differentiation antigen 5  

MDBK Madin-Darby bovine kidney 

MEF mouse embryonic fibroblasts 

MEM modified Eagle's medium 

miR/miRNA microRNA 
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mRNA messenger RNA 

MYD88 myeloid differentiation 88  

NFκB nuclear factor κ B 

NLRP3 NOD, LRR and pyrin domain containing 3  

NMD nonsense-mediated decay 

NS nonstructural protein 

OAS oligoadenylate synthetase 

ORF open reading frame 

PABP poly(A) binding protein 

PAGE polyacrylamide gel electrophoresis 

PAMP pathogen associated molecular pattern 

PAN polyadenylated nuclear 

PARN poly(A) specific ribonuclease 

P-body processing body 

PBS phosphate buffered saline 

PCBP2 poly( C) binding protein 2 

PCR polymerase chain reaction 

PRR pathogen recognition receptor 

qPCR quantitative polymerase chain reaction 

RdRp RNA-dependent RNA polymerase 

RIG-I official symbol: DDX58; retinoic acid-inducible gene 1 

RISC RNA induced silencing complex 

RNAi RNA interference 

RNase L ribonuclease L 

RNP ribonucleoprotein 

RT reverse transcription 

SD standard deviation 

SEM standard error of the mean 

sfRNA subgenomic flavivirus RNA 

SG stress granule 

SINV sindbis virus 

siRNA small-inderfering RNAs 

SL stem-loop 

STAT signal transducer and activator of transcription  

TLR Toll-like receptors 

TNF tumor necrosis factor 

TRIF TIR domain-containing adaptor inducing IFNβ  

UTR untranslated region 

VEGF vascular endothelial growth factor 

VpG viral protein, genome-linked 

WNV West Nile virus 

XRN1 exoribonuclease 1 

XRN2 exoribonuclease 2 
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YFV yellow fever virus 
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Appendix 2. Conservation of the amino acid sequences of XRN1. 

 
Amino acid sequences of XRN1 homologs in human, fruit fly, house mouse, mosquito, and two 

species of yeast were aligned using COBALT (Papadopoulos and Agarwala 2007). The full 

protein name, species, and NCBI or GenBank reference sequence are indicated below.  

 

Name Species ID 

5'-3' exoribonuclease 1 isoform a Homo sapiens NP_061874.3 

pacman, isoform a Drosophila melanogaster AAF48958.1 

5'-3' exoribonuclease 1 Mus musculus NP_036046.2 

5'-3' exoribonuclease 1 Culex quinquefasciatus EDS29953.1 

KLLA0F22385p Kluyveromyces lactis CAG98788.1 

5'-3' exoribonuclease 
Saccharomyces 

cerevisiae 
AAA35219.1 

 

 

 
COBALT alignment of XRN1 homolog amino acid sequences. 
 

 
 
 
 

H. sap.  1     MGVPKFYRWISERYPCLSEVVKEHQIPEFDNLYLDMNGIIHQCSHPNDDDVHFRISDDKIFTDIFHYLEVLFRIIKPRKV  80 

D. mel.  1     MGVPKFFRYISERYPCLSELAREHCIPEFDNLYLDMNGIVHNCSHPDDNNIHFHLEEEQIFQEIFNYVDKLFYLIKPQRL  80 

M. mus.  1     MGVPKFYRWISERYPCLSEVVKEHQIPEFDNLYLDMNGIIHQCSHPNDDDVHFRISDDKIFTDIFHYLEVLFRIIKPRKV  80 

C. qui.  1     MGVPKFFRYMSERYPCLGELVRENQVPDFDNLYLDMNGIIHNCSHPNDSDVFFRITEEQIFSDIFHYLEFLFRMIRPQKL  80 

K. lac.  1     MGIPKFFHFISERWPQISQLIDGSQIPEFDNLYLDMNSILHNCTHGDGSEVNSRLSEEEVYSKIFSYIDHLFHTIKPKQT  80 

S. cer.  1     MGIPKFFRYISERWPMILQLIEGTQIPEFDNLYLDMNSILHNCTHGNDDDVTKRLTEEEVFAKICTYIDHLFQTIKPKKI  80 

 

H. sap.  81    FFMAVDGVAPRAKMNQQRGRRFRSAKEAEDKIKKAIEKGETLPTEARFDSNCITPGTEFMARLHEHLKYFVNMKISTDKS  160 

D. mel.  81    FFLSVDGVAPRAKMNQQRSRRFRTAREAEQQEAKAAQRGELRE-HERFDSNCITPGTEFMVRLQEGLRAFLKTKISTDPL  159 

M. mus.  81    FFMAVDGVAPRAKMNQQRGRRFRSAKEAEDKIKKAIEKGETLPTEARFDSNCITPGTEFMARLHEHLKYFVNMKISTDKS  160 

C. qui.  81    FFIAVDGVAPRAKMNQQRGRRFRSAREAQEQVEQAEKKGDVLPLEARFDSNCITPGTSFMVRLQRALEHFIKVKVSTNPL  160 

K. lac.  81    FYMAIDGVAPRAKMNQQRARRFRTAMDAEKALQKAIENGDELPKGEPFDSNAITPGTEFMAKLTENLKYFIHDKITNDTR  160 

S. cer.  81    FYMAIDGVAPRAKMNQQRARRFRTAMDAEKALKKAIENGDEIPKGEPFDSNSITPGTEFMAKLTKNLQYFIHDKISNDSK  160 

 

H. sap.  161   WQGVTIYFSGHETPGEGEHKIMEFIRSEKAKPDHDPNTRHCLYGLDADLIMLGLTSHEAHFSLLREEVRFgGKKTQRVCA  240 

D. mel.  160   WQRCTVILSGQEAPGEGEHKIMDYIRYMKTQPDYDPNTRHCLYGLDADLIILGLCTHELHFVVLREEVKF-GRNVKRTS-  237 

M. mus.  161   WQGVTIYFSGHETPGEGEHKIMEFIRSEKAKPDHDPNTRHCLYGLDADLIMLGLTSHEAHFSLLREEVRFgGKKTQRVCA  240 

C. qui.  161   WKHCKVVLSGHETPGEGEHKIMEYIRHAKASPGFDSNTRHCLYGLDADLIMLGLCTHERHFSLLREEVKF-GKNDKKSSI  239 

K. lac.  161   WQNVKVIFSGHEVPGEGEHKIMDYIRAIRAQEDYNPNTRHCIYGLDADLIILGLSTHDHHFCLLREEVTF-GKRSSSVKT  239 

S. cer.  161   WREVQIIFSGHEVPGEGEHKIMNFIRHLKSQKDFNQNTRHCIYGLDADLIMLGLSTHGPHFALLREEVTF-GRRNSEKKS  239 

 

H. sap.  241   PEETTFHLLHLSLMREYIDYEFSVLK-EKITFKYDIERIIDDWILMGFLVGNDFIPHLPHLHINHDALPLLYGTYVTILP  319 

D. mel.  238   VEETRFFLLHLGLLREYLELEFDALRtDEHKLDIA--QLIDDWVLMGFLVGNDFIPHLPCLHISSNALPLLYRTYIGIYP  315 

M. mus.  241   PEETTFHLLHLSLMREYIDYEFSALK-EKITFKYDIEKIIDDWILMGFLVGNDFIPHLPHLHINHDALPLLYGTYIAILP  319 

C. qui.  240   VEETRFYLLHLTLLREYLELEFAPVR-DKLKFEFNPYKLIDDWVLMGYMVGNDFIPHLPNLHINENALPTLFQAYMDVLP  318 

K. lac.  240   LETQNFFLLHLSILREYLALEFEEIT-DSVQFEYDFERVLDDFIFVLFTIGNDFLPNLPDLHLKKGAFPVLLQTFKEALQ  318 

S. cer.  240   LEHQNFYLLHLSLLREYMELEFKEIA-DEMQFEYNFERILDDFILVMFVIGNDFLPNLPDLHLNKGAFPVLLQTFKEALL  318 

 

H. sap.  320   ELGGYINESGHLNLPRFEKYLVKLSDFDREHFSEVFVDLKWFESKVG-NKYLNEAAGVAAEEARNYKEKKKLKGQE      394 

D. mel.  316   TLGGNINENGKLNLRRLQIFISALTEVELDHFKEHADDLKYMN-----NK--SEAFDMDVGEITESQNLDSDLGAL      384 

M. mus.  320   ELGGYINESGHLNLPRFERYLVKLSDFDREHFSEVFVDLKWFESKVG-NKYLNEAAGAAAEEAKNCKEKRKPKGQE      394 

C. qui.  319   GLDGYINEGGILNLERLEVLMERLARFDRDIFLENYTDLQYFKAKRG--ANDTEAFDVTLEEIK--ADMDMDLSAL      390 

K. lac.  319   HMDGYINEQGKINLARFSIWLKYLSDFEYLNFEKKDIDVEWFNQQLEnISLEGERKRTRMGKKLLMKQQKKLIGAV[51]  445 

S. cer.  319   HTDGYINEHGKINLKRLGVWLNYLSQFELLNFEKDDIDVEWFNKQLEnISLEGERKRQRVGKKLLVKQQKKLIGSI[51]  445 

 

H. sap.  395   NSLCWTAL    DKNEGEMITSKDNL    EDETEDDDLFETEFRQYKRTYYMTKMGVDVVSDDFLADQAACYVQAIQWI  466 

D. mel.  385   INKSMLLY    DDDSE---------    EDCSDENAVLLKEFQNYKRNFYRNKFKR-DPNDELIEELCHHYVNALQWV  446 

M. mus.  395   NSLSWAAL    DKSEGEGVASRDNF    EDETEDDDLFETEFRQYKRTYYMTKMGVDVVSDEFLANQAACYVQAIQWI  466 

C. qui.  391   IKASEDMF    LDDDEDGGGERYST    EDIENDPELFEKEFAAYKRNYYMTKMGYGDFNEETRAEQAECYIRALQWT  462 

K. lac.  446   HSKSKDLY[11]QETDEEHEARIHET[16]EELEEEREIYSERFVEWKDQYYKDKLDFSINDTDSLKEMTENYVGGLQWV  544 

S. cer.  446   HSKSKGSY[11]DETEEEFQNRVNSI[16]EELETEKTIYNERFERWKHEYYHDKLKFTTDSEEKVRDLAKDYVEGLQWV  544 

 

H. sap.  467   LHYYYHGVQSWSWYYPYHYAPFLSDIHNISTLKIHFELGKPFKPFEQLLAVLPAASKNLLPACYQHLMTNEDSPIIEYYP  546 

D. mel.  447   LDYYYRGVQSWDWYYPFHYTPFISDLKNIEQVEIAFHMGTPFLPFQQLLAVLPAASAKLLPVAYHDLMLLPTSPLAEFYP  526 

M. mus.  467   LHYYYHGVQSWSWYYPYHYAPFLSDIRSISTLKIHFELGKPFKPFEQLLAVLPSASKNLLPTCYQHLMTSEDSPIIEYYP  546 

C. qui.  463   LLYYYRGVSSWAWYYPHHYAPFISDVQNFKNIKLNFEMGKPFLPFQQLLSVLPAASKDHLPTAYHKLMTDPDSSVIDYYP  542 

K. lac.  545   LYYYYRGCPSWSWYYRYHYAPRISDVIKGIDQNIEFHKGQPFKPFQQLMAVLPERSKNLIPVVYRPLMYDEHSPILDFYP  624 

S. cer.  545   LYYYYRGCPSWSWYYPHHYAPRISDLAKGLDQDIEFDLSKPFTPFQQLMAVLPERSKNLIPPAFRPLMYDEQSPIHDFYP  624 

 

H. sap.  547   PDFKTDLNGKQQEWEAVVLIPFIDEKRLLEAMETCNHSLKKEERKRNQHSECLMCWYDRDTEFIYPSPWPEKFPAIER--  624 

D. mel.  527   LEFESDLNGKKHDWEAVVLIPFIDEGRLLAAMLPCEAQLSLEERERNRHGPMYVYKYSTVAQGPMPAYPPLRALPVLY--  604 

M. mus.  547   PDFKTDLNGKQQEWEAVVLIPFIDETRLLEAMETCNHSLKKEERKRNQHSECLMCWYDRDTEFTYSSPWPEKFPAIER--  624 

C. qui.  543   ENFGTDLNGKQQAWEAVVLIPFIDEKRLLKAMEPCDAFLTDEEKQRNVHGPMMLFQYDEQGSAFLGANYGLDDVAELK--  620 

K. lac.  625   NEVELDLNGKTADWEAVVKISFVDQKRLVEAMAPYDAKLSPDEKKRNSFGTDLIFIFNPQVDTVYKTPLAGLFNDIEHnh  704 

S. cer.  625   AEVQLDKNGKTADWEAVVLISFVDEKRLIEAMQPYLRKLSPEEKTRNQFGKDLIYSFNPQVDNLYKSPLGGIFSDIEHnh  704 

 

H. sap.  625   -CCTRYKIISLDAWRVDINKNKITRIDQKAL----YFCGFPTLKHIRHKFFLKKSGVQVFQQSSRGENMMLEILVDAESD  699 

D. mel.  605   -C----TEVAKWSHEIAVNLPYSVCIELPNAArtvFFPGFPTMQHLPFDFELRNDRVKVFEQVSRNQNIVLKP--RKRQL  677 

M. mus.  625   -CCTRYKMISLDAWRVDINKNKITRVDQKAL----YFCGFPTLKHIKHKFFLKKSGVQVFQQSSRGENLMLEISVNAEPD  699 

C. qui.  621   -----VKEIPIYRDDLYVPENKLVLGPSKGAIldgYIKGFPTMKHLKYHGILKEIRVKVFNFPSRNASMVVAI--DKEGD  693 

K. lac.  705   cIEREFIPESMENVKFLFGLPKGAKLGASSLA------GFPSLKTLPLTAELAYNSSVVFNFPSKQQSMVLHIQDLYKEN  778 

S. cer.  705   cVEKEYITIPLDSSEIRYGLLPNAKLGAEMLA------GFPTLLSLPFTSSLEYNETMVFQQPSKQQSMVLQITDIYKTN  778 

 

H. sap.  700   ELTVENVASSVLGKSVFVNWPHLEEARVVAVSDGETKFYLEEPpGTQKLYSGRTAPPSKVVHLGDKEQSNWAKeVQGISE  779 

D. mel.  678   EDTLTAVASQYLGKVIHVGWPHLVKAIVVRVATRDQRV------------------DSEGITLNDSRRFDSEC--KALQE  737 

M. mus.  700   ELRIENIASAVLGKAVFVNWPHLEEARVVAVSDGETKFYIEEPpGTQKVYLGKTAPPSKVIQLTDKEQSNWTKeIQGISE  779 

C. qui.  694   DKSTAQLAQELLGSIVYVSWPHLTEAKVVKVADAKTVYEKDRE------------------ERPNNEKFFGTC-VKAIVE  754 

K. lac.  779   GISLSDLAKRHMGKIVYSRWPFLRESKLLSLITEETVYEGVKS-GKLTKV--IERKPQDF----ERKEFRELK--MTLKS  849 

S. cer.  779   NVTLEDFSKRHLNKVIYTRWPYLRESKLVSLTDGKTIYEYQES-NDKKKFGFITKPAETQ----DKKLFNSLK--NSMLR  851 

 

H. sap.  780   HYLRRKGIIINETSAVVYAQLLTGRKYQINQNGEVRLEKQWSKQVVPFVYQTIVKDIRAFDSRFSNIKTL--DDLFPLRS  857 

D. mel.  738   HFINRMGIQFANYDVLVYVRTFAGNSTEFRDKGALMVRDSWSSSVTGYPAQGVVADLTVWERMRKNFLNV--EHYFPVGS  815 

M. mus.  780   QYLRRKGIIINETSAVVYAQLLTGRKYQISQNGEVRLEKQWSKQILPFVYQTIVKDIRAFDSRFSNIKTL--DDLFPPRT  857 

C. qui.  755   HHSNRLAIDLGEIRQLVHVKTCVGSEY-VLKDDRYVLNKLWNQGETMYPVQAIVTDLREALRTLKPYQEV--QEMFPENC  831 

K. lac.  850   NYQRTKAILLDDISALAKVVPVNG----LVRNSDGSYSKSFNETIEYYPLQLIVEDVKNKDERYIEKEPLpiNKEFPKGS  925 

S. cer.  852   MYAKQKAVKIGPMEAIATVFPVTG----LVRDSDGGYIKTFSPTPDYYPLQLVVESVVNEDERYKERGPIpiEEEFPLNS  927 

 

H. sap.  858   MVFMLGTPYYGCTGEVQDSGDVITEGRIRVIF---SIPCEPNLDALIQNQHKYSIKYNPGYVLASRLGVSGYLVSRFTGS  934 

D. mel.  816   TIFLITDPYYGSEGTVQDPRLAYTNGRIQVSI---MVRPEPKVNAARQLQEERDRDYLSTFQVCNLLRISGRTLGRLSGT  892 

M. mus.  858   MVFMLGTPYYGCTGEVQDSGDLITEGRIRVVF---SIPCEPNLDALIQNQHKYSIKYNPGYVLAGRLGVSGYLVSRFTGS  934 

C. qui.  832   VVFLRATQWYGSMGHVVDVT--AGHKRIKTRFE---IYEEPNLDTVLKIDDEARSHYLTTYDAASSIGISANLLSRLSST  906 

K. lac.  926   KVVFLGDYAYGGEATVDGYN---SETRLKLTVKkgSLRAEPNIGKVRAKLDSQALRFYPTQVFSKIARVHPLFLSKITSR  1002 

S. cer.  928   KVIFLGDYAYGGETTIDGYS---SDRRLKITVEkkFLDSEPTIGKERLQMDHQAVKYYPSYIVSKNMHLHPLFLSKITSK  1004 
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Appendix 2. Continued. 
 

 

 
 
 

H. sap.  1     MGVPKFYRWISERYPCLSEVVKEHQIPEFDNLYLDMNGIIHQCSHPNDDDVHFRISDDKIFTDIFHYLEVLFRIIKPRKV  80 

D. mel.  1     MGVPKFFRYISERYPCLSELAREHCIPEFDNLYLDMNGIVHNCSHPDDNNIHFHLEEEQIFQEIFNYVDKLFYLIKPQRL  80 

M. mus.  1     MGVPKFYRWISERYPCLSEVVKEHQIPEFDNLYLDMNGIIHQCSHPNDDDVHFRISDDKIFTDIFHYLEVLFRIIKPRKV  80 

C. qui.  1     MGVPKFFRYMSERYPCLGELVRENQVPDFDNLYLDMNGIIHNCSHPNDSDVFFRITEEQIFSDIFHYLEFLFRMIRPQKL  80 

K. lac.  1     MGIPKFFHFISERWPQISQLIDGSQIPEFDNLYLDMNSILHNCTHGDGSEVNSRLSEEEVYSKIFSYIDHLFHTIKPKQT  80 

S. cer.  1     MGIPKFFRYISERWPMILQLIEGTQIPEFDNLYLDMNSILHNCTHGNDDDVTKRLTEEEVFAKICTYIDHLFQTIKPKKI  80 

 

H. sap.  81    FFMAVDGVAPRAKMNQQRGRRFRSAKEAEDKIKKAIEKGETLPTEARFDSNCITPGTEFMARLHEHLKYFVNMKISTDKS  160 

D. mel.  81    FFLSVDGVAPRAKMNQQRSRRFRTAREAEQQEAKAAQRGELRE-HERFDSNCITPGTEFMVRLQEGLRAFLKTKISTDPL  159 

M. mus.  81    FFMAVDGVAPRAKMNQQRGRRFRSAKEAEDKIKKAIEKGETLPTEARFDSNCITPGTEFMARLHEHLKYFVNMKISTDKS  160 

C. qui.  81    FFIAVDGVAPRAKMNQQRGRRFRSAREAQEQVEQAEKKGDVLPLEARFDSNCITPGTSFMVRLQRALEHFIKVKVSTNPL  160 

K. lac.  81    FYMAIDGVAPRAKMNQQRARRFRTAMDAEKALQKAIENGDELPKGEPFDSNAITPGTEFMAKLTENLKYFIHDKITNDTR  160 

S. cer.  81    FYMAIDGVAPRAKMNQQRARRFRTAMDAEKALKKAIENGDEIPKGEPFDSNSITPGTEFMAKLTKNLQYFIHDKISNDSK  160 

 

H. sap.  161   WQGVTIYFSGHETPGEGEHKIMEFIRSEKAKPDHDPNTRHCLYGLDADLIMLGLTSHEAHFSLLREEVRFgGKKTQRVCA  240 

D. mel.  160   WQRCTVILSGQEAPGEGEHKIMDYIRYMKTQPDYDPNTRHCLYGLDADLIILGLCTHELHFVVLREEVKF-GRNVKRTS-  237 

M. mus.  161   WQGVTIYFSGHETPGEGEHKIMEFIRSEKAKPDHDPNTRHCLYGLDADLIMLGLTSHEAHFSLLREEVRFgGKKTQRVCA  240 

C. qui.  161   WKHCKVVLSGHETPGEGEHKIMEYIRHAKASPGFDSNTRHCLYGLDADLIMLGLCTHERHFSLLREEVKF-GKNDKKSSI  239 

K. lac.  161   WQNVKVIFSGHEVPGEGEHKIMDYIRAIRAQEDYNPNTRHCIYGLDADLIILGLSTHDHHFCLLREEVTF-GKRSSSVKT  239 

S. cer.  161   WREVQIIFSGHEVPGEGEHKIMNFIRHLKSQKDFNQNTRHCIYGLDADLIMLGLSTHGPHFALLREEVTF-GRRNSEKKS  239 

 

H. sap.  241   PEETTFHLLHLSLMREYIDYEFSVLK-EKITFKYDIERIIDDWILMGFLVGNDFIPHLPHLHINHDALPLLYGTYVTILP  319 

D. mel.  238   VEETRFFLLHLGLLREYLELEFDALRtDEHKLDIA--QLIDDWVLMGFLVGNDFIPHLPCLHISSNALPLLYRTYIGIYP  315 

M. mus.  241   PEETTFHLLHLSLMREYIDYEFSALK-EKITFKYDIEKIIDDWILMGFLVGNDFIPHLPHLHINHDALPLLYGTYIAILP  319 

C. qui.  240   VEETRFYLLHLTLLREYLELEFAPVR-DKLKFEFNPYKLIDDWVLMGYMVGNDFIPHLPNLHINENALPTLFQAYMDVLP  318 

K. lac.  240   LETQNFFLLHLSILREYLALEFEEIT-DSVQFEYDFERVLDDFIFVLFTIGNDFLPNLPDLHLKKGAFPVLLQTFKEALQ  318 

S. cer.  240   LEHQNFYLLHLSLLREYMELEFKEIA-DEMQFEYNFERILDDFILVMFVIGNDFLPNLPDLHLNKGAFPVLLQTFKEALL  318 

 

H. sap.  320   ELGGYINESGHLNLPRFEKYLVKLSDFDREHFSEVFVDLKWFESKVG-NKYLNEAAGVAAEEARNYKEKKKLKGQE      394 

D. mel.  316   TLGGNINENGKLNLRRLQIFISALTEVELDHFKEHADDLKYMN-----NK--SEAFDMDVGEITESQNLDSDLGAL      384 

M. mus.  320   ELGGYINESGHLNLPRFERYLVKLSDFDREHFSEVFVDLKWFESKVG-NKYLNEAAGAAAEEAKNCKEKRKPKGQE      394 

C. qui.  319   GLDGYINEGGILNLERLEVLMERLARFDRDIFLENYTDLQYFKAKRG--ANDTEAFDVTLEEIK--ADMDMDLSAL      390 

K. lac.  319   HMDGYINEQGKINLARFSIWLKYLSDFEYLNFEKKDIDVEWFNQQLEnISLEGERKRTRMGKKLLMKQQKKLIGAV[51]  445 

S. cer.  319   HTDGYINEHGKINLKRLGVWLNYLSQFELLNFEKDDIDVEWFNKQLEnISLEGERKRQRVGKKLLVKQQKKLIGSI[51]  445 

 

H. sap.  395   NSLCWTAL    DKNEGEMITSKDNL    EDETEDDDLFETEFRQYKRTYYMTKMGVDVVSDDFLADQAACYVQAIQWI  466 

D. mel.  385   INKSMLLY    DDDSE---------    EDCSDENAVLLKEFQNYKRNFYRNKFKR-DPNDELIEELCHHYVNALQWV  446 

M. mus.  395   NSLSWAAL    DKSEGEGVASRDNF    EDETEDDDLFETEFRQYKRTYYMTKMGVDVVSDEFLANQAACYVQAIQWI  466 

C. qui.  391   IKASEDMF    LDDDEDGGGERYST    EDIENDPELFEKEFAAYKRNYYMTKMGYGDFNEETRAEQAECYIRALQWT  462 

K. lac.  446   HSKSKDLY[11]QETDEEHEARIHET[16]EELEEEREIYSERFVEWKDQYYKDKLDFSINDTDSLKEMTENYVGGLQWV  544 

S. cer.  446   HSKSKGSY[11]DETEEEFQNRVNSI[16]EELETEKTIYNERFERWKHEYYHDKLKFTTDSEEKVRDLAKDYVEGLQWV  544 

 

H. sap.  467   LHYYYHGVQSWSWYYPYHYAPFLSDIHNISTLKIHFELGKPFKPFEQLLAVLPAASKNLLPACYQHLMTNEDSPIIEYYP  546 

D. mel.  447   LDYYYRGVQSWDWYYPFHYTPFISDLKNIEQVEIAFHMGTPFLPFQQLLAVLPAASAKLLPVAYHDLMLLPTSPLAEFYP  526 

M. mus.  467   LHYYYHGVQSWSWYYPYHYAPFLSDIRSISTLKIHFELGKPFKPFEQLLAVLPSASKNLLPTCYQHLMTSEDSPIIEYYP  546 

C. qui.  463   LLYYYRGVSSWAWYYPHHYAPFISDVQNFKNIKLNFEMGKPFLPFQQLLSVLPAASKDHLPTAYHKLMTDPDSSVIDYYP  542 

K. lac.  545   LYYYYRGCPSWSWYYRYHYAPRISDVIKGIDQNIEFHKGQPFKPFQQLMAVLPERSKNLIPVVYRPLMYDEHSPILDFYP  624 

S. cer.  545   LYYYYRGCPSWSWYYPHHYAPRISDLAKGLDQDIEFDLSKPFTPFQQLMAVLPERSKNLIPPAFRPLMYDEQSPIHDFYP  624 

 

H. sap.  547   PDFKTDLNGKQQEWEAVVLIPFIDEKRLLEAMETCNHSLKKEERKRNQHSECLMCWYDRDTEFIYPSPWPEKFPAIER--  624 

D. mel.  527   LEFESDLNGKKHDWEAVVLIPFIDEGRLLAAMLPCEAQLSLEERERNRHGPMYVYKYSTVAQGPMPAYPPLRALPVLY--  604 

M. mus.  547   PDFKTDLNGKQQEWEAVVLIPFIDETRLLEAMETCNHSLKKEERKRNQHSECLMCWYDRDTEFTYSSPWPEKFPAIER--  624 

C. qui.  543   ENFGTDLNGKQQAWEAVVLIPFIDEKRLLKAMEPCDAFLTDEEKQRNVHGPMMLFQYDEQGSAFLGANYGLDDVAELK--  620 

K. lac.  625   NEVELDLNGKTADWEAVVKISFVDQKRLVEAMAPYDAKLSPDEKKRNSFGTDLIFIFNPQVDTVYKTPLAGLFNDIEHnh  704 

S. cer.  625   AEVQLDKNGKTADWEAVVLISFVDEKRLIEAMQPYLRKLSPEEKTRNQFGKDLIYSFNPQVDNLYKSPLGGIFSDIEHnh  704 

 

H. sap.  625   -CCTRYKIISLDAWRVDINKNKITRIDQKAL----YFCGFPTLKHIRHKFFLKKSGVQVFQQSSRGENMMLEILVDAESD  699 

D. mel.  605   -C----TEVAKWSHEIAVNLPYSVCIELPNAArtvFFPGFPTMQHLPFDFELRNDRVKVFEQVSRNQNIVLKP--RKRQL  677 

M. mus.  625   -CCTRYKMISLDAWRVDINKNKITRVDQKAL----YFCGFPTLKHIKHKFFLKKSGVQVFQQSSRGENLMLEISVNAEPD  699 

C. qui.  621   -----VKEIPIYRDDLYVPENKLVLGPSKGAIldgYIKGFPTMKHLKYHGILKEIRVKVFNFPSRNASMVVAI--DKEGD  693 

K. lac.  705   cIEREFIPESMENVKFLFGLPKGAKLGASSLA------GFPSLKTLPLTAELAYNSSVVFNFPSKQQSMVLHIQDLYKEN  778 

S. cer.  705   cVEKEYITIPLDSSEIRYGLLPNAKLGAEMLA------GFPTLLSLPFTSSLEYNETMVFQQPSKQQSMVLQITDIYKTN  778 

 

H. sap.  700   ELTVENVASSVLGKSVFVNWPHLEEARVVAVSDGETKFYLEEPpGTQKLYSGRTAPPSKVVHLGDKEQSNWAKeVQGISE  779 

D. mel.  678   EDTLTAVASQYLGKVIHVGWPHLVKAIVVRVATRDQRV------------------DSEGITLNDSRRFDSEC--KALQE  737 

M. mus.  700   ELRIENIASAVLGKAVFVNWPHLEEARVVAVSDGETKFYIEEPpGTQKVYLGKTAPPSKVIQLTDKEQSNWTKeIQGISE  779 

C. qui.  694   DKSTAQLAQELLGSIVYVSWPHLTEAKVVKVADAKTVYEKDRE------------------ERPNNEKFFGTC-VKAIVE  754 

K. lac.  779   GISLSDLAKRHMGKIVYSRWPFLRESKLLSLITEETVYEGVKS-GKLTKV--IERKPQDF----ERKEFRELK--MTLKS  849 

S. cer.  779   NVTLEDFSKRHLNKVIYTRWPYLRESKLVSLTDGKTIYEYQES-NDKKKFGFITKPAETQ----DKKLFNSLK--NSMLR  851 

 

H. sap.  780   HYLRRKGIIINETSAVVYAQLLTGRKYQINQNGEVRLEKQWSKQVVPFVYQTIVKDIRAFDSRFSNIKTL--DDLFPLRS  857 

D. mel.  738   HFINRMGIQFANYDVLVYVRTFAGNSTEFRDKGALMVRDSWSSSVTGYPAQGVVADLTVWERMRKNFLNV--EHYFPVGS  815 

M. mus.  780   QYLRRKGIIINETSAVVYAQLLTGRKYQISQNGEVRLEKQWSKQILPFVYQTIVKDIRAFDSRFSNIKTL--DDLFPPRT  857 

C. qui.  755   HHSNRLAIDLGEIRQLVHVKTCVGSEY-VLKDDRYVLNKLWNQGETMYPVQAIVTDLREALRTLKPYQEV--QEMFPENC  831 

K. lac.  850   NYQRTKAILLDDISALAKVVPVNG----LVRNSDGSYSKSFNETIEYYPLQLIVEDVKNKDERYIEKEPLpiNKEFPKGS  925 

S. cer.  852   MYAKQKAVKIGPMEAIATVFPVTG----LVRDSDGGYIKTFSPTPDYYPLQLVVESVVNEDERYKERGPIpiEEEFPLNS  927 

 

H. sap.  858   MVFMLGTPYYGCTGEVQDSGDVITEGRIRVIF---SIPCEPNLDALIQNQHKYSIKYNPGYVLASRLGVSGYLVSRFTGS  934 

D. mel.  816   TIFLITDPYYGSEGTVQDPRLAYTNGRIQVSI---MVRPEPKVNAARQLQEERDRDYLSTFQVCNLLRISGRTLGRLSGT  892 

M. mus.  858   MVFMLGTPYYGCTGEVQDSGDLITEGRIRVVF---SIPCEPNLDALIQNQHKYSIKYNPGYVLAGRLGVSGYLVSRFTGS  934 

C. qui.  832   VVFLRATQWYGSMGHVVDVT--AGHKRIKTRFE---IYEEPNLDTVLKIDDEARSHYLTTYDAASSIGISANLLSRLSST  906 

K. lac.  926   KVVFLGDYAYGGEATVDGYN---SETRLKLTVKkgSLRAEPNIGKVRAKLDSQALRFYPTQVFSKIARVHPLFLSKITSR  1002 

S. cer.  928   KVIFLGDYAYGGETTIDGYS---SDRRLKITVEkkFLDSEPTIGKERLQMDHQAVKYYPSYIVSKNMHLHPLFLSKITSK  1004 

 
H. sap.  935   IFIGRGSRRNPHGDH--KANVGLNLKFNKKNEEVPGYTKKVGSEWMYSSAAEQLLAEYLERAPELFSYIAKNSQE-DVFY  1011 

D. mel.  893   VWVVLGPRRQ-KMENvtKHNIGLQLKYPRQNEERAGYCFRTNNQWYYSSLAVDLMRNYCQRYPDVIDFFGDSNDRaEFVF  971 

M. mus.  935   IFIGRGSRRNPHGDH--KANVGLNLKFNKKNEEVPGYTKKVGNEWMYSSAAEQLLAEYIERAPELFSYIAKNSQE-DVFY  1011 

C. qui.  907   IYMVTGGRRSLNVDEkgKMNIGLQLRLVSQDIETVGYTRKMAKNWMYSDKAIELVKAYYDKVPQVFEKLESFGNR-DVLF  985 

K. lac.  1003  YLVNDSKKKS--------HNVGLMIKFKARNQKVLGYARCSSNKWEYSDVALGLLEQFRSTFPEFFAKLSNSKEQ-AIPS  1073 

S. cer.  1005  FMITDATGKH--------INVGIPVKFEARHQKVLGYARRNPRGWEYSNLTLNLLKEYRQTFPDFFFRLSKVGND--IPV  1074 

 

H. sap.  1012  EDDIWP---GENENGAEKVQEIITWLKGHPVSTLSRSSCDLQILDAAIVEKIEEEVEKCKQRKNNKKVRVTVK-PHLLYR  1087 

D. mel.  972   EQDVFPNAvGHRRVE-----ELANWVRQQPHMKVERISCGSKTVCRETIELLIAA-VDDLRSLPVKHVKLQVK-PHLLIK  1044 

M. mus.  1012  EDDIWP---GENENGAEKVQEIITWLKGHPVSTLSRSSCDLHILDAAIVEKIEEEVEKCKQRKSNKKVRVTVK-PHLLYR  1087 

C. qui.  986   EDEIFGEK----REEGSGLKELVAWIKAQDHAKAEKRSCGTKILEPAAVEELVKIRAESVRQLPTMQT-MFVH-PKDLYK  1059 

K. lac.  1074  ITDLFPNK--SSAEADSILKTVADWLS-EARKPFVVVSLESDSLTKASMAAVESEIIKYVSLPDSSEQKKLAKvPREAIL  1150 

S. cer.  1075  LEDLFPDT--STKDAMNLLDGIKQWLK-YVSSKFIAVSLESDSLTKTSIAAVEDHIMKYAANIEGHERKQLAKvPREAVL  1151 

 

H. sap.  1088  PLEQQHGVIpDRDAEFCLFDRVVNVRENFSVPVGLRGTIIGIKGAN    READVLFEVLFDEEFPGGLTIRCSPG---R  1160 

D. mel.  1045  PNVTLPDVY-RSKRPVRLFDRVVIVRTIYMVPVGTKGTVIGIHPVT[10]HAVDTFCKVLFDSPVPNCNNIHGIAE--DR  1127 

M. mus.  1088  PLEQQHGVIpDRDAEFRLFDRVVNVRESFSVPVGLRGTVIGIKGAS    READVLFEVLFDEEFPGGLTIRCSPG---R  1160 

C. qui.  1060  PGMKQARSI-DYMANYELLDRVIIARETEVVPLGYRGTIIGIHLAK[10]SKEDKYFDILFDKQFPNGTHIFGIEQTrNR  1144 

K. lac.  1151  NAESSYVLL--RSQRFHLGDRVMYIQDSGKVPLHSKGTVVGYTSIG    --KNVSIQVLFDNEIIAGNNFGGRLQT-RR  1221 

S. cer.  1152  NPRSSFALL--RSQKFDLGDRVVYIQDSGKVPIFSKGTVVGYTTLS    --SSLSIQVLFDHEIVAGNNFGGRLRT-NR  1222 

 

H. sap.  1161  GYRLPTSALVNLSHGSRSETGNQKLTAIVKPQPAVHQhSSSSSVSSGHLGALNHSPQSLfVPTQVPTKDDDEFCNIWQSL  1240 

D. mel.  1128  VYKVPEIALVIIKTDEEGKKQNDCELPVRDPQPNQAQdEPVRATSSRYVTAAGSTSV----PITMKTQISDEFVKTR-S-  1201 

M. mus.  1161  GYRLPTSALVNLSHGSRCETGNQKLTAIVKPQPSV---SHCSAAPSGHLGGLNHSPQSPfLPTQVPTKGDDEFCNIWQSL  1237 

C. qui.  1145  VVRVAEGAILNISFGVADFEYKQ----VDPAQPIMLP-------AEEFCPGGLASKQ----PSTVRSV---ETIRVKPS-  1205 

K. lac.  1222  GLGLDSSFLLNLSDRQL----------------------------------VYHSKASK-SADKKPKAVPNDKQVAL---  1263 

S. cer.  1223  GLGLDASFLLNITNRQF----------------------------------IYHSKASK-KALEKKKQSNNRNNNTKTAH  1267 

 

H. sap.  1241  QGSGKMQYFQPTIQEKGAVLPQEISQVNQHHKSGFNDNSVKYQQRKHDPHRKFKEECKSPKAECWS-QKMSNKQ------  1313 

D. mel.  1202  DPIARTDSYKPSSEPKPVPVPEQITNWRERVSTPTN-KPQPAPNNWRINRSSSRQQGGSIF------VAPPTKTPDAAAS  1274 

M. mus.  1238  QGAGKIQHLQPTVQEKGAVLPQEISQVTEGHKSGFTDHSVRHQQRKHDSQRKFKEEYKSPKAECQS-QKLSSKQTSGGSA  1316 

C. qui.  1206  KPTAKSESIKKRLNERIEKNPNPMKAFVMANRKPLEENGA-------------NSQAGCDFEKVWNkLREPNQTTTTTLD  1272 

K. lac.  1264  ---AKKKRVEELKKKQAHELLNHIKKDNAESNTES-----------------------------------------GSAP  1299 

S. cer.  1268  KTPSKQQSEEKLRKERAHDLLNFIKKDTNEKNSESVD----------------NKSMGSQKDSKPAkKVLLKRPAQKSSE  1331 

 

H. sap.  1314  -------------------------------PNSGIENFLASLNISKENEVQSSHHGEPPSEEHL-SPQSFAM-GTRmlK  1360 

D. mel.  1275  TASTAFTAASSATLTPLDQTLALM-SVLGVGEDQSSPPLQEAVQQQRPPLLQQQRAPFPGQMPNLPKPPLFWQ------Q  1347 

M. mus.  1317  RCSIKLLKRNESPGTSEAQKVVTSyPNAVHKPPSGIENFLASLNLSKENEAQLPHHGEPPDEADL-SPQSFAMkGTRmlK  1395 

C. qui.  1273  ERDIKSFLANAAPAAQESAPVPTN-PLAPSSDPTDMLKKMLKISADQEPAVQTPPQLNIPMPKNLPKPPSSWRsDHK---  1348 

K. lac.  1300  QIAVNTLN--------PSAANNVF------------------------NAVLNQIKPG--SQQQIQPPP-----------  1334 

S. cer.  1332  NVQVDLANFEKAPLDNPTVAGSIF------------------------NAVANQYSDGIGSNLNIPTPPHPMN-------  1380 

 

H. sap.  1361  EILKIDGSNTVDHKNEIKQIANEIPVSSNRRDEYGLPSQPKQNKKLASYMNKP----HSANEYHNVQSMDNMCWPAPSQI  1436 

D. mel.  1348  EAQKQEALQQEAQQQEAQKKQQQAHAQME--PERINSQHFYRSGQTGAALNQPplgAPSKRQWHE--------WVHPRMQ  1417 

M. mus.  1396  EILKIDSPDTRDSKNDMKKSDNEATVSS-RRDERGVSAHPKPSKKLTCHMNKP----HGTNEFQNVASVDSVCWPG--QM  1468 

C. qui.  1349  -----SAKDTVKQQHPADKPQQKQNHQMPMPPQPFAQFQPYQLAHQQNRYQPPp-gQFLPNQYQ----------PMPRYQ  1412 

K. lac.  1335  -----------------------------------------------------------ANS-----LPYNFTVPPHMV-  1349 

S. cer.  1381  ------------------------------------------------VVGGP---IPGANDVADVGLPYN--IPPGFMT  1407 

 

H. sap.  1437  PPVSTP[13]PQPDFSFLRMPQTMTVCQVKLSNGLLVHGPQCHS   ENE--AKEKAALFALQQLGSLGMNFPLPSQVFA  1520 

D. mel.  1418  HANAFH    AGVNNGYQMRPKKNIAAQSTFNNNVHMHLQQPYY   PNQqqQQQQQQPLQLTEINNAPPRYSTIQD---  1487 

M. mus.  1469  PPVSTP[13]PQPDFSFLRTTQTMTVCQVKLSNGLLVHGPQCHS   ESE--AKERAALFALQQLGSLGVSFPLPPPIFT  1552 

C. qui.  1413  PQMPMP    PQKNNNHSAYQQF---------NQHHQQLQQQLY[7]NGPqnNNNNNQHHLRQRGPNGPQNLSFNRNTPA  1483 

K. lac.  1350  -PGGIP    ----------------------HPLMMQ-PPFIP   NNE------------------HIAYAAPPQ---  1377 

S. cer.  1408  HPNGL-    ----------------------HPLHPH-QMPYP   NMN------------------GMSIPPPAPHGF  1438 

 

H. sap.  1521  NYPSAVPPGTIPPAFPPPTG[6]NYA[10]SHLFGSMPWGPSVPVPGKPFHHTLYSGTMP[16]QVTKKRVANKKNFENK  1621 

D. mel.  1488  ----FVPIQAYRPKKL----   NRV    -----QPAGRQDVDAT----KNPSRSPVLQ    QPTNETIDTKAS----  1535 

M. mus.  1553  NYPPAVPPGAVPPVFTQPT-   ---[ 7]SHLFGSVSWRPPVPVAGNAFHYPSYPGTMP[16]QVTKKRVANRKNFENK  1640 

C. qui.  1484  GTGAFVPLQAIIKSKTRPNG[2]NKS    -----NKAGSSNANSTGFAQKNAELRQKVE    QKQQENKQDFASFLGG  1549 

K. lac.  1378  SQPVQNPP-------LDKEA   SRN[ 1]KNLLIRDENGRTANVE--------------    ---NKDSDDTKRSSHS  1423 

S. cer.  1439  GQPISFPP-------PPPMT   N--    ----VSDQGSRIV-VN--------------    ---EKESQDLKKFING  1476 

 

H. sap.  1622  EAQSSQATPVQTSQPDSSNIVKVSPRESSSASLKSSPIAQPASS[4]TASQGHSISHHKSTPiSSSRRKSRKLAVNFGVS  1702 

D. mel.  1536  SSLPVQSAGEQVIGLMQTLEIKPAASQSESDGVSTGSANAPTAT   TSSQAVNRRKHRVPRiGAKFDLEYILPDSPHPT  1612 

M. mus.  1641  EAQSSQATPLQTNKPGSSEATKMTPQESPPASSSSSQAAQPVSS[3]TASQGHVGSQPRSAP-SSSKRKSRKLAVNFSVS  1719 

C. qui.  1550  AGKSVEAAAAAVVTTADEKCDKPERKKDDG-----GDGVQKTAS   TSPK---------PP----KVRQMRIAANFSQA  1608 

K. lac.  1424  RGGRRGRSNRGRGASGRGGHFKNSP-------------------   ------------------KKTET----------  1453 

S. cer.  1477  KQHSNGSTIGGETKNSRKGEIKPSSGTNSTECQSPKSQSNAADR   ----------------DNKKDEST---------  1528 

 

H. sap.  1703  Kpse  1706 

D. mel.        ----   

M. mus.  1720  Kpse  1723 

C. qui.  1609  D---  1609 

K. lac.        ----   

S. cer.        ----   
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H. sap.  935   IFIGRGSRRNPHGDH--KANVGLNLKFNKKNEEVPGYTKKVGSEWMYSSAAEQLLAEYLERAPELFSYIAKNSQE-DVFY  1011 

D. mel.  893   VWVVLGPRRQ-KMENvtKHNIGLQLKYPRQNEERAGYCFRTNNQWYYSSLAVDLMRNYCQRYPDVIDFFGDSNDRaEFVF  971 

M. mus.  935   IFIGRGSRRNPHGDH--KANVGLNLKFNKKNEEVPGYTKKVGNEWMYSSAAEQLLAEYIERAPELFSYIAKNSQE-DVFY  1011 

C. qui.  907   IYMVTGGRRSLNVDEkgKMNIGLQLRLVSQDIETVGYTRKMAKNWMYSDKAIELVKAYYDKVPQVFEKLESFGNR-DVLF  985 

K. lac.  1003  YLVNDSKKKS--------HNVGLMIKFKARNQKVLGYARCSSNKWEYSDVALGLLEQFRSTFPEFFAKLSNSKEQ-AIPS  1073 

S. cer.  1005  FMITDATGKH--------INVGIPVKFEARHQKVLGYARRNPRGWEYSNLTLNLLKEYRQTFPDFFFRLSKVGND--IPV  1074 

 

H. sap.  1012  EDDIWP---GENENGAEKVQEIITWLKGHPVSTLSRSSCDLQILDAAIVEKIEEEVEKCKQRKNNKKVRVTVK-PHLLYR  1087 

D. mel.  972   EQDVFPNAvGHRRVE-----ELANWVRQQPHMKVERISCGSKTVCRETIELLIAA-VDDLRSLPVKHVKLQVK-PHLLIK  1044 

M. mus.  1012  EDDIWP---GENENGAEKVQEIITWLKGHPVSTLSRSSCDLHILDAAIVEKIEEEVEKCKQRKSNKKVRVTVK-PHLLYR  1087 

C. qui.  986   EDEIFGEK----REEGSGLKELVAWIKAQDHAKAEKRSCGTKILEPAAVEELVKIRAESVRQLPTMQT-MFVH-PKDLYK  1059 

K. lac.  1074  ITDLFPNK--SSAEADSILKTVADWLS-EARKPFVVVSLESDSLTKASMAAVESEIIKYVSLPDSSEQKKLAKvPREAIL  1150 

S. cer.  1075  LEDLFPDT--STKDAMNLLDGIKQWLK-YVSSKFIAVSLESDSLTKTSIAAVEDHIMKYAANIEGHERKQLAKvPREAVL  1151 

 

H. sap.  1088  PLEQQHGVIpDRDAEFCLFDRVVNVRENFSVPVGLRGTIIGIKGAN    READVLFEVLFDEEFPGGLTIRCSPG---R  1160 

D. mel.  1045  PNVTLPDVY-RSKRPVRLFDRVVIVRTIYMVPVGTKGTVIGIHPVT[10]HAVDTFCKVLFDSPVPNCNNIHGIAE--DR  1127 

M. mus.  1088  PLEQQHGVIpDRDAEFRLFDRVVNVRESFSVPVGLRGTVIGIKGAS    READVLFEVLFDEEFPGGLTIRCSPG---R  1160 

C. qui.  1060  PGMKQARSI-DYMANYELLDRVIIARETEVVPLGYRGTIIGIHLAK[10]SKEDKYFDILFDKQFPNGTHIFGIEQTrNR  1144 

K. lac.  1151  NAESSYVLL--RSQRFHLGDRVMYIQDSGKVPLHSKGTVVGYTSIG    --KNVSIQVLFDNEIIAGNNFGGRLQT-RR  1221 

S. cer.  1152  NPRSSFALL--RSQKFDLGDRVVYIQDSGKVPIFSKGTVVGYTTLS    --SSLSIQVLFDHEIVAGNNFGGRLRT-NR  1222 

 

H. sap.  1161  GYRLPTSALVNLSHGSRSETGNQKLTAIVKPQPAVHQhSSSSSVSSGHLGALNHSPQSLfVPTQVPTKDDDEFCNIWQSL  1240 

D. mel.  1128  VYKVPEIALVIIKTDEEGKKQNDCELPVRDPQPNQAQdEPVRATSSRYVTAAGSTSV----PITMKTQISDEFVKTR-S-  1201 

M. mus.  1161  GYRLPTSALVNLSHGSRCETGNQKLTAIVKPQPSV---SHCSAAPSGHLGGLNHSPQSPfLPTQVPTKGDDEFCNIWQSL  1237 

C. qui.  1145  VVRVAEGAILNISFGVADFEYKQ----VDPAQPIMLP-------AEEFCPGGLASKQ----PSTVRSV---ETIRVKPS-  1205 

K. lac.  1222  GLGLDSSFLLNLSDRQL----------------------------------VYHSKASK-SADKKPKAVPNDKQVAL---  1263 

S. cer.  1223  GLGLDASFLLNITNRQF----------------------------------IYHSKASK-KALEKKKQSNNRNNNTKTAH  1267 

 

H. sap.  1241  QGSGKMQYFQPTIQEKGAVLPQEISQVNQHHKSGFNDNSVKYQQRKHDPHRKFKEECKSPKAECWS-QKMSNKQ------  1313 

D. mel.  1202  DPIARTDSYKPSSEPKPVPVPEQITNWRERVSTPTN-KPQPAPNNWRINRSSSRQQGGSIF------VAPPTKTPDAAAS  1274 

M. mus.  1238  QGAGKIQHLQPTVQEKGAVLPQEISQVTEGHKSGFTDHSVRHQQRKHDSQRKFKEEYKSPKAECQS-QKLSSKQTSGGSA  1316 

C. qui.  1206  KPTAKSESIKKRLNERIEKNPNPMKAFVMANRKPLEENGA-------------NSQAGCDFEKVWNkLREPNQTTTTTLD  1272 

K. lac.  1264  ---AKKKRVEELKKKQAHELLNHIKKDNAESNTES-----------------------------------------GSAP  1299 

S. cer.  1268  KTPSKQQSEEKLRKERAHDLLNFIKKDTNEKNSESVD----------------NKSMGSQKDSKPAkKVLLKRPAQKSSE  1331 

 

H. sap.  1314  -------------------------------PNSGIENFLASLNISKENEVQSSHHGEPPSEEHL-SPQSFAM-GTRmlK  1360 

D. mel.  1275  TASTAFTAASSATLTPLDQTLALM-SVLGVGEDQSSPPLQEAVQQQRPPLLQQQRAPFPGQMPNLPKPPLFWQ------Q  1347 

M. mus.  1317  RCSIKLLKRNESPGTSEAQKVVTSyPNAVHKPPSGIENFLASLNLSKENEAQLPHHGEPPDEADL-SPQSFAMkGTRmlK  1395 

C. qui.  1273  ERDIKSFLANAAPAAQESAPVPTN-PLAPSSDPTDMLKKMLKISADQEPAVQTPPQLNIPMPKNLPKPPSSWRsDHK---  1348 

K. lac.  1300  QIAVNTLN--------PSAANNVF------------------------NAVLNQIKPG--SQQQIQPPP-----------  1334 

S. cer.  1332  NVQVDLANFEKAPLDNPTVAGSIF------------------------NAVANQYSDGIGSNLNIPTPPHPMN-------  1380 

 

H. sap.  1361  EILKIDGSNTVDHKNEIKQIANEIPVSSNRRDEYGLPSQPKQNKKLASYMNKP----HSANEYHNVQSMDNMCWPAPSQI  1436 

D. mel.  1348  EAQKQEALQQEAQQQEAQKKQQQAHAQME--PERINSQHFYRSGQTGAALNQPplgAPSKRQWHE--------WVHPRMQ  1417 

M. mus.  1396  EILKIDSPDTRDSKNDMKKSDNEATVSS-RRDERGVSAHPKPSKKLTCHMNKP----HGTNEFQNVASVDSVCWPG--QM  1468 

C. qui.  1349  -----SAKDTVKQQHPADKPQQKQNHQMPMPPQPFAQFQPYQLAHQQNRYQPPp-gQFLPNQYQ----------PMPRYQ  1412 

K. lac.  1335  -----------------------------------------------------------ANS-----LPYNFTVPPHMV-  1349 

S. cer.  1381  ------------------------------------------------VVGGP---IPGANDVADVGLPYN--IPPGFMT  1407 

 

H. sap.  1437  PPVSTP[13]PQPDFSFLRMPQTMTVCQVKLSNGLLVHGPQCHS   ENE--AKEKAALFALQQLGSLGMNFPLPSQVFA  1520 

D. mel.  1418  HANAFH    AGVNNGYQMRPKKNIAAQSTFNNNVHMHLQQPYY   PNQqqQQQQQQPLQLTEINNAPPRYSTIQD---  1487 

M. mus.  1469  PPVSTP[13]PQPDFSFLRTTQTMTVCQVKLSNGLLVHGPQCHS   ESE--AKERAALFALQQLGSLGVSFPLPPPIFT  1552 

C. qui.  1413  PQMPMP    PQKNNNHSAYQQF---------NQHHQQLQQQLY[7]NGPqnNNNNNQHHLRQRGPNGPQNLSFNRNTPA  1483 

K. lac.  1350  -PGGIP    ----------------------HPLMMQ-PPFIP   NNE------------------HIAYAAPPQ---  1377 

S. cer.  1408  HPNGL-    ----------------------HPLHPH-QMPYP   NMN------------------GMSIPPPAPHGF  1438 

 

H. sap.  1521  NYPSAVPPGTIPPAFPPPTG[6]NYA[10]SHLFGSMPWGPSVPVPGKPFHHTLYSGTMP[16]QVTKKRVANKKNFENK  1621 

D. mel.  1488  ----FVPIQAYRPKKL----   NRV    -----QPAGRQDVDAT----KNPSRSPVLQ    QPTNETIDTKAS----  1535 

M. mus.  1553  NYPPAVPPGAVPPVFTQPT-   ---[ 7]SHLFGSVSWRPPVPVAGNAFHYPSYPGTMP[16]QVTKKRVANRKNFENK  1640 

C. qui.  1484  GTGAFVPLQAIIKSKTRPNG[2]NKS    -----NKAGSSNANSTGFAQKNAELRQKVE    QKQQENKQDFASFLGG  1549 

K. lac.  1378  SQPVQNPP-------LDKEA   SRN[ 1]KNLLIRDENGRTANVE--------------    ---NKDSDDTKRSSHS  1423 

S. cer.  1439  GQPISFPP-------PPPMT   N--    ----VSDQGSRIV-VN--------------    ---EKESQDLKKFING  1476 

 

H. sap.  1622  EAQSSQATPVQTSQPDSSNIVKVSPRESSSASLKSSPIAQPASS[4]TASQGHSISHHKSTPiSSSRRKSRKLAVNFGVS  1702 

D. mel.  1536  SSLPVQSAGEQVIGLMQTLEIKPAASQSESDGVSTGSANAPTAT   TSSQAVNRRKHRVPRiGAKFDLEYILPDSPHPT  1612 

M. mus.  1641  EAQSSQATPLQTNKPGSSEATKMTPQESPPASSSSSQAAQPVSS[3]TASQGHVGSQPRSAP-SSSKRKSRKLAVNFSVS  1719 

C. qui.  1550  AGKSVEAAAAAVVTTADEKCDKPERKKDDG-----GDGVQKTAS   TSPK---------PP----KVRQMRIAANFSQA  1608 

K. lac.  1424  RGGRRGRSNRGRGASGRGGHFKNSP-------------------   ------------------KKTET----------  1453 

S. cer.  1477  KQHSNGSTIGGETKNSRKGEIKPSSGTNSTECQSPKSQSNAADR   ----------------DNKKDEST---------  1528 

 

H. sap.  1703  Kpse  1706 

D. mel.        ----   

M. mus.  1720  Kpse  1723 

C. qui.  1609  D---  1609 

K. lac.        ----   

S. cer.        ----   
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Appendix 3. Fold change in RNA abundances in 293T cells infected with SINV, the 
sfRNA(-) KUNV, or the wild-type KUNV as determined by RNA-seq analysis.  
 
Gene symbol, GenBank ID numbers, and fold-change in RNA abundance are indicated below. 
 

Appendix 3A. The twenty most elevated transcripts in wild-type KUNV infected 293T 
cells compared to 293T cells infected with the sfRNA(-) KUNV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 

 

Transcripts elevated in wild-type KUNV infected 293T 
cells relative to sfRNA(-) KUNV infected 293T cells 

Gene symbol ID Fold change 

SPSB2 NM_032641 11.94 

RIC3 NR_045405 10.61 

SPATA25 NM_080608 10.61 

TPPP3 NM_016140 9.29 

PLIN5 NM_001013706 7.96 

UCP3 NM_003356 7.30 

NCAM2 NM_004540 6.63 

C2orf81 NM_001145054 6.63 

FILIP1L NM_001042459 6.34 

GRIP2 NM_001080423 6.19 

FXYD6-FXYD2 NM_001204268 5.97 

ADSSL1 NM_199165 5.31 

CRLF1 NM_004750 5.31 

TRIM7 NM_203297 5.31 

FGF5 NM_004464 5.31 

OLFM2 NM_058164 4.64 

VWCE NM_152718 4.64 

SYTL5 NM_001163335 4.64 

FOXB1 NM_012182 4.64 

DENND2A NM_015689 4.42 
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Appendix 3. Continued. 
 

Appendix 3B. The twenty most reduced transcripts in wild-type KUNV infected 293T 
cells compared to 293T cells infected with the sfRNA(-) KUNV.  

 

Transcripts reduced in wild-type KUNV infected 293T 
cells relative to sfRNA(-) KUNV infected 293T cells 

Gene symbol ID Fold change 

SLC2A3 NM_006931 -12.81 

FILIP1 NM_015687 -8.29 

RBM24 NM_001143942 -6.03 

TGFB2 NM_001135599 -6.03 

PTGES NM_004878 -5.28 

ACOT11 NM_147161 -4.90 

GPRC5C NM_022036 -4.52 

C10orf55 NM_001001791 -4.52 

SPATA24 NM_194296 -4.52 

DENND1C NM_024898 -4.52 

CEBPD NM_005195 -4.52 

FRMPD1 NM_014907 -4.15 

HTR6 NM_000871 -3.77 

TOX3 NM_001146188 -3.77 

XKRX NM_212559 -3.77 

RBFOX3 NM_001082575 -3.77 

SNCG NM_003087 -3.77 

LPPR4 NM_014839 -3.77 

FAM150A NM_207413 -3.77 

ICA1 NM_004968 -3.58 
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Appendix 3. Continued. 
 
Appendix 3C. The twenty most elevated transcripts in wild-type KUNV infected 293T 
cells relative to mock infected cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcripts elevated in wild-type KUNV infected 
293T cells relative to mock infected 293T cells 

Gene symbol ID Fold change 

IFIT2 NM_001547 54.59 

FILIP1L NM_001042459 39.13 

ATF3 NM_001040619 22.02 

FUT1 NM_000148 18.20 

TAC1 NM_003182 15.47 

OAZ3 NM_016178 13.65 

SH2D3C NM_170600 12.74 

C1QTNF3 NM_181435 11.83 

ANKRD1 NM_014391 11.28 

SPAG4 NM_003116 10.01 

PCDP1 NR_073132 10.01 

TRPM6 NM_017662 9.10 

DUSP8 NM_004420 7.73 

CHAC1 NM_024111 7.73 

HSPB8 NM_014365 7.28 

IKZF2 NM_001079526 7.28 

SPATA25 NM_080608 7.28 

NUDT13 NM_015901 6.73 

FBXL13 NM_145032 6.55 

RASGRP1 NM_005739 6.37 



213 

 

Appendix 3. Continued. 

 
Appendix 3D. The twenty most down-regulated transcripts in wild-type KUNV infected 
293T cells relative to mock infected cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transcripts reduced in wild-type KUNV infected 
293T cells relative to mock infected 293T cells 

Gene symbol ID Fold change 

UNC5A NM_133369 -8.79 

GPRC5C NM_022036 -7.14 

SLC2A3 NM_006931 -6.59 

FAM43B NM_207334 -6.59 

PSD4 NM_012455 -6.04 

KIAA1984 NM_001039374 -5.50 

SPATA24 NM_194296 -5.50 

CYP27A1 NM_000784 -5.50 

S1PR1 NM_001400 -4.95 

CEBPD NM_005195 -4.95 

C17orf67 NM_001085430 -4.95 

JAKMIP1 NM_001099433 -4.67 

FILIP1 NM_015687 -4.40 

CSPG4 NM_001897 -4.40 

ACOT11 NM_147161 -4.40 

NECAB2 NM_019065 -4.40 

FAM131C NM_182623 -4.40 

RASGEF1C NM_175062 -4.40 

RBFOX3 NM_001082575 -4.40 

C8orf73 NM_001100878 -4.40 
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Appendix 3. Continued. 
 

Appendix 3E. The twenty most up-regulated transcripts in sfRNA(-) KUNV infected 
293T cells relative to mock infected cells. 

 

Transcripts elevated in sfRNA(-) KUNV infected 
293T cells relative to mock infected 293T cells 

Gene symbol ID Fold change 

IFIT2 NM_001547 17.83 

FUT1 NM_000148 11.66 

ATF3 NM_001040619 11.08 

TRPM6 NM_017662 10.97 

C11orf96 NM_001145033 8.92 

CD207 NM_015717 8.23 

TAC1 NM_003182 8.23 

PPAPDC1B NM_001102559 7.37 

ANKRD1 NM_014391 6.72 

FILIP1L NM_001042459 6.17 

SH2D3C NM_170600 6.17 

SPAG4 NM_003116 6.17 

AKNA NM_030767 5.90 

CHAC1 NM_024111 5.83 

HSPB8 NM_014365 5.83 

NUDT13 NM_015901 5.76 

SNAP91 NM_001256717 5.49 

OAZ3 NM_016178 5.49 

ADM2 NM_024866 5.21 

PTGES NM_004878 4.80 
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Appendix 3. Continued. 
 
Appendix 3F. The twenty most down-regulated transcripts in sfRNA(-) KUNV infected 
293T cells relative to mock infected cells. 

 

Transcripts reduced in sfRNA(-) KUNV infected 
293T cells relative to mock infected 293T cells 

Gene symbol ID Fold change 

C2orf81 NM_001145054 -10.21 

CEL NM_001807 -10.21 

UCP3 NM_003356 -8.02 

RPRML NM_203400 -7.29 

SPSB2 NM_032641 -7.29 

S1PR1 NM_001400 -6.56 

DMRT3 NM_021240 -6.32 

VWCE NM_152718 -5.83 

CRLF1 NM_004750 -5.83 

NPIPL3 NM_130464 -5.83 

UNC5A NM_133369 -5.83 

PSD4 NM_012455 -5.35 

ADSSL1 NM_199165 -5.10 

NKX1-2 NM_001146340 -5.10 

GTF2IRD2B NM_001003795 -5.10 

CTXN1 NM_206833 -5.00 

KIAA1984 NM_001039374 -4.86 

SEPT1 NM_052838 -4.86 

RCN3 NM_020650 -4.62 

MMEL1 NM_033467 -4.62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



216 

 

Appendix 3. Continued. 
 
Appendix 3G. The twenty most up-regulated transcripts in SINV infected 293T cells 
relative to mock infected cells. 

 

Transcripts elevated in SINV infected 293T 
cells relative to mock infected 293T cells 

Gene symbol ID Fold change 

TRPM6 NM_017662 11.8 

TAS2R20 NM_176889 10.3 

C1QTNF3 NM_181435 7.4 

FCGR2A NM_001136219 7.4 

C10orf111 NM_153244 5.9 

SPAG4 NM_003116 5.9 

NUPR1 NM_001042483 5.9 

C11orf96 NM_001145033 5.9 

HIST1H4B NM_003544 4.4 

EGFLAM NM_001205301 4.4 

OAZ3 NM_016178 4.4 

COL23A1 NM_173465 4.4 

PRSS27 NM_031948 4.4 

SNAP91 NM_001256717 4.4 

SMAGP NM_001031628 4.0 

C17orf108 NM_001076680 3.9 

MTMR8 NM_017677 3.8 

HEATR7A NM_032450 3.8 

CDA NM_001785 3.7 

ANP32D NM_012404 3.7 

 

 

 

 

 

 

 

 



217 

 

 
Appendix 3. Continued. 

 
Appendix 3H. The twenty most down-regulated transcripts in SINV infected 293T cells 
relative to mock infected cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Transcripts reduced in SINV infected 293T cells 
relative to mock infected 293T cells 

Gene symbol ID Fold change 

RGS20 NM_170587 -8.8 

OLFML2B NM_015441 -6.1 

C17orf67 NM_001085430 -6.1 

HOMER3 NR_027297 -5.4 

ZNF222 NM_001129996 -5.4 

TTC39B NM_152574 -5.4 

HOPX NM_001145460 -5.4 

DMRTA2 NM_032110 -4.8 

NKX1-2 NM_001146340 -4.8 

GAL3ST1 NM_004861 -4.8 

SUSD4 NM_017982 -4.8 

ALOXE3 NM_001165960 -4.8 

PAX7 NM_001135254 -4.8 

DENND6B NM_001001794 -4.8 

IL6R NM_000565 -4.4 

MYLK2 NM_033118 -4.1 

PLAC8L1 NM_001029869 -4.1 

UBE2QL1 NM_001145161 -4.1 

KCNK5 NM_003740 -3.9 

DDIT3 NM_001195056 -3.8 
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Appendix 4. Functional annotation of stabilized RNAs in wild-type KUNV infections 
compared to sfRNA(-) KUNV infections. 
 
Significantly enriched (p<0.001) annotated functions of transcripts that were 2-fold or more 

increased in stability in KUNV infected cells relative to sfRNA(-) KUNV infected cells by RNA-

seq were determined using the DAVID GOTERM_BP_FAT tool (Huang et al. 2009(a), Huang et 

al. 2009(b)) and are listed below from most to least significant. 

Term p-value 

RNA processing 5.90E-15 

RNA splicing 6.30E-14 

ubiquitin-dependent protein catabolic process 1.60E-11 

mRNA processing 1.70E-11 

mRNA metabolic process 1.20E-10 

mitotic cell cycle 1.20E-10 

cell cycle 1.90E-10 

cellular macromolecule catabolic process 3.50E-09 

cell cycle process 6.10E-09 

macromolecule catabolic process 1.00E-08 

ncRNA metabolic process 2.20E-08 

protein catabolic process 5.80E-08 

proteolysis involved in cellular protein catabolic process 1.10E-07 

ribonucleoprotein complex biogenesis 1.30E-07 

cellular protein catabolic process 1.40E-07 

anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein 
catabolic process 

1.50E-07 

modification-dependent protein catabolic process 1.80E-07 

modification-dependent macromolecule catabolic process 1.80E-07 

regulation of ubiquitin-protein ligase activity during mitotic cell cycle 4.80E-07 

macromolecular complex subunit organization 7.40E-07 

negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle 1.00E-06 

microtubule cytoskeleton organization 1.00E-06 

macromolecular complex assembly 1.10E-06 

negative regulation of ubiquitin-protein ligase activity 1.50E-06 

negative regulation of ligase activity 1.50E-06 

regulation of ubiquitin-protein ligase activity 1.60E-06 

proteasomal protein catabolic process 1.90E-06 

proteasomal ubiquitin-dependent protein catabolic process 1.90E-06 

cell cycle phase 2.10E-06 

regulation of ligase activity 2.50E-06 

organelle fission 3.10E-06 

response to DNA damage stimulus 3.60E-06 

negative regulation of protein ubiquitination 4.80E-06 

M phase 4.90E-06 

mitosis 5.00E-06 

nuclear division 5.00E-06 

M phase of mitotic cell cycle 6.80E-06 

regulation of protein ubiquitination 6.90E-06 

nuclear mRNA splicing, via spliceosome 7.60E-06 
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RNA splicing, via transesterification reactions 7.60E-06 

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 7.60E-06 

cellular macromolecular complex subunit organization 9.80E-06 

positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle 1.10E-05 

tRNA metabolic process 1.30E-05 

chromosome segregation 1.30E-05 

chromosome organization 1.40E-05 

positive regulation of ubiquitin-protein ligase activity 1.40E-05 

protein complex assembly 1.50E-05 

protein complex biogenesis 1.50E-05 

cellular macromolecular complex assembly 1.80E-05 

regulation of cellular protein metabolic process 1.90E-05 

positive regulation of protein ubiquitination 2.00E-05 

positive regulation of ligase activity 2.20E-05 

cell division 3.40E-05 

microtubule-based process 5.20E-05 

ribosome biogenesis 7.60E-05 

DNA metabolic process 8.00E-05 

protein localization 1.00E-04 

ncRNA processing 1.30E-04 

negative regulation of protein modification process 2.10E-04 

negative regulation of cellular protein metabolic process 2.30E-04 

RNA biosynthetic process 2.30E-04 

ribonucleoprotein complex assembly 3.10E-04 

rRNA metabolic process 3.40E-04 

protein transport 3.50E-04 

tRNA aminoacylation for protein translation 3.50E-04 

amino acid activation 3.50E-04 

tRNA aminoacylation 3.50E-04 

negative regulation of protein metabolic process 3.70E-04 

RNA transport 3.70E-04 

establishment of RNA localization 3.70E-04 

nucleic acid transport 3.70E-04 

cytoskeleton organization 4.30E-04 

establishment of protein localization 4.40E-04 

transcription, DNA-dependent 4.60E-04 

RNA localization 4.90E-04 

protein folding 5.40E-04 

translation 5.40E-04 

cellular response to stress 7.40E-04 

DNA repair 7.40E-04 

positive regulation of cellular protein metabolic process 7.80E-04 

rRNA processing 8.60E-04 

regulation of translational initiation 9.20E-04 

positive regulation of protein modification process 1.00E-03 
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Appendix 5. Nucleotide sequences of the 3’ UTRs of sfRNA-deficient Kunjin viruses. 

  
 

Below is a ClustalOmega sequencing alignment of the 3’ UTRs of sequenced Kunjin 

virus mutants generated to assess the importance of the three-helix junction in the sfRNA in 

XRN1 resistance (related to Figure 29). Mutated nucleotides are in red. Abbreviations: FLSDX = 

wild-type Kunjin virus; all other names indicate mutated nucleotides and the position in the full-

length KUNV genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FLSDX             ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGAAGTCAGGCCGGAAAATT 

UCA10498_ACA10658 ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGATCACAGGCCGGAAAATT 

ACA10658          ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGAAGTCAGGCCGGAAAATT  

UCA10498          ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGATCACAGGCCGGAAAATT  

G10519_G10680     ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGAAGTCAGGCCGGAAAATT  

G10680            ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGAAGTCAGGCCGGAAAATT 

G10519            ATAGTGTTTAGTGTGTTTAGAGTTAGAAAAATTTTAGTGAGGAAGTCAGGCCGGAAAATT  

                  *******************************************: :**************  

FLSDX             CCCGCCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT 

UCA10498_ACA10658 CCCGCCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT  

ACA10658          CCCGCCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT  

UCA10498          CCCGCCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT  

G10519_G10680     CCCGGCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT  

G10680            CCCGCCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT  

G10519            CCCGGCACCGGAAGTTGAGTAGACGGTGCTGCCTGCGACTCAACCCCAGGAGGACTGGGT  

                  **** ******************************************************* 

FLSDX             GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA 

UCA10498_ACA10658 GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA 

ACA10658          GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA 

UCA10498          GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA  

G10519_G10680     GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA  

G10680            GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA  

G10519            GAACAAAGCTGCGAAGTGATCCATGTAAGCCCTCAGAACCGTCTCGGAAAGAGGACCCCA  

                  ************************************************************  

FLSDX             CATGTTGTAGCTTCAAGGCCCAATGTCAGACCACGCCATGGCGTGCCACTCTGCGGAGAG  

UCA10498_ACA10658 CATGTTGTAGCTTCAAGGCCCAAACACAGACCACGCCATGGCGTGCCACTCTGCGGAGAG  

ACA10658          CATGTTGTAGCTTCAAGGCCCAAACACAGACCACGCCATGGCGTGCCACTCTGCGGAGAG  

UCA10498          CATGTTGTAGCTTCAAGGCCCAATGTCAGACCACGCCATGGCGTGCCACTCTGCGGAGAG  

G10519_G10680     CATGTTGTAGCTTCAAGGCCCAATGTCAGACCACGCCATGGCGTGGCACTCTGCGGAGAG  

G10680            CATGTTGTAGCTTCAAGGCCCAATGTCAGACCACGCCATGGCGTGGCACTCTGCGGAGAG  

G10519            CATGTTGTAGCTTCAAGGCCCAATGTCAGACCACGCCATGGCGTGCCACTCTGCGGAGAG  

                  ***********************: :******************* **************  
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Appendix 6. Sindbis virus perturbs cellular mRNA stability due to sequestration of HuR. 

 
 
 Our findings that sfRNA formation during flavivirus infections was strongly associated 

with dramatic changes in cellular mRNA stability prompted us to determine if other viruses may 

similarly alter post-transcriptional regulation of gene expression. The Wilusz laboratory had 

previously demonstrated that Alphaviruses contained U-rich elements in their 3’ UTRs that were 

high affinity binding sites for the host HuR protein (Sokoloski et al. 2010) as discussed in the 

Introduction. We therefore hypothesized that (1) the high affinity binding sites in the SINV 3’ 

UTR could effectively act as a ‘sponge’ for the HuR protein, leading to the sequestration of HuR 

in the cytoplasm, and (2) the sequestration of the HuR protein by Sindbis virus (the prototypical 

Alphavirus) could influence post-transcriptional gene regulation in the cell as HuR was no longer 

available to perform its normal functions in stabilizing RNAs and influencing the nuclear 

processes of alternative polyadenylation and splicing. We found that transfection of GFP 

expression vectors or in vitro transcribed RNAs containing the SINV 3’ UTR alone was enough 

to cause the re-localization of the HuR protein from the nucleus to the cytoplasm. Furthermore, 

we used deletion constructs to demonstrate the essential ~60nt U-rich region in the SINV 3’ 

UTR required for this effect. To test the hypothesis that the commandeering of HuR by SINV 

caused changes in post-transcriptional regulation of cellular transcripts, we first analyzed the 

stability of several cellular mRNAs using actinomycin D transcriptional shut-off assays in 293T 

cells infected with SINV (or mock infected). Several transcripts were destabilized upon SINV 

infection, and RNA-protein co-immunoprecipitation analyses demonstrated that these mRNAs 

were less associated with HuR protein during SINV infection. Furthermore, we determined that 

alternative splicing and polyadenylation were disrupted in SINV infected cells. Major aspects of 

this project were reported in Michael Barnhart’s thesis (towards a master’s degree); however, I 

contributed to the publication of this work by performing all experiments necessary to address 

reviewer’s comments for re-submission to the journal Cell Reports. I was therefore co-first 
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author of the manuscript published in 2013 and my contributions to this manuscript were as 

follows.  

 Figure 1D: analysis of the region of the 3’ UTR necessary for re-localization of the HuR 

protein from the nucleus to the cytoplasm. 

 Figure 2B and 2D: analysis of the changes in mRNA stability in cells transfected with 

the 3’ UTR of SINV compared to a control RNA. 

 Figure 3B: qRT-PCR analysis of HuR-RNA co-immunoprecipitations from SINV and 

mock infected cells. 

 Figure 4C and 4D: analysis of alternative splicing of two transcripts in SINV infected 

and mock infected cells; analysis of alternative polyadenylation/splicing of CALCA in 

cells transfected with an RNA containing the SINV 3’ UTR or a control RNA. 

 Finally, I also determined that the minimum amount of in vitro transcribed RNA 

containing the SINV 3’ UTR that caused a re-distribution of the HuR protein from the 

nucleus to the cytoplasm was similar to the amount of SINV 3’ UTR RNA present in 

the cell during an infection. 

This study further contributed to our understanding of how RNA viruses can cause dramatic 

changes in the post-transcriptional regulation of gene expression by interacting with host RNA 

binding proteins during infection. Furthermore, although several studies had demonstrated that 

viral RNAs can sponge host microRNAs (as discussed in the Introduction), this study 

demonstrated that RNA binding proteins can be similarly ‘sponged up’ by viral RNAs. The 

citation for this manuscript is as follows and the article is available from Cell Reports: 

Barnhart MD, Moon SL, Emch AW, Wilusz CJ, Wilusz J. Changes in cellular mRNA stability, 
splicing, and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus. 
Cell Rep. 2013 Nov 27;5(4):909-17.  

 

 


