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ABSTRACT

QUANTITATIVE PRECIPITATION ESTIMATION FOR AN X-BAND WEATHER RADAR

NETWORK

Currently, the Next Generation (NEXRAD) radar network, a joint effort of the U.S. Department of

Commerce (DOC), Defense (DOD), and Transportation (DOT), provides radar data with updates every

five-six minutes across the United States. This network consists of about 160 S-band (2.7 to 3.0 GHz)

radar sites. At the maximum NEXRAD range of 230 km, the 0.5 degree radar beam is about 5.4 km above

ground level (AGL) because of the effect of earth curvature. Consequently, much of the lower atmosphere

(1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of

today’s weather surveillance radars, and improve the spatial and temporal resolution issues, the National

Science Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere

(CASA) was founded to revolutionize weather sensing in the lower atmosphere by deploying a dense network

of shorter-range, low-power X-band dual-polarization radars. The distributed CASA radars are operating

collaboratively to adapt the changing atmospheric conditions. Accomplishments and breakthroughs after

five years operation have demonstrated the success of CASA program.

Accurate radar quantitative precipitation estimation (QPE) has been pursued since the beginning of

weather radar. For certain disaster prevention applications such as flash flood and landslide forecasting,

the rain rate must however be measured at a high spatial and temporal resolution. To this end, high-

resolution radar QPE is one of the major research activities conducted by the CASA community. A radar

specific differential propagation phase (Kdp)-based QPE methodology has been developed in CASA. Unlike

the rainfall estimation based on the power terms such as radar reflectivity (Z) and differential reflectivity

(Zdr), Kdp-based QPE is less sensitive to the path attenuation, drop size distribution (DSD), and radar

calibration errors. The CASA Kdp-based QPE system is also immune to the partial beam blockage and hail

contamination.

The performance of the CASA QPE system is validated and evaluated by using rain gauges. In CASA’s

Integrated Project 1 (IP1) test bed in Southwestern Oklahoma, a network of 20 rainfall gauges is used for
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cross-comparison. 40 rainfall cases, including severe, multicellular thunderstorms, squall lines and widespread

stratiform rain, that happened during years 2007 - 2011, are used for validation and evaluation purpose. The

performance scores illustrate that the CASA QPE system is a great improvement compared to the current

state-of-the-art.

In addition, the high-resolution CASA QPE products such as instantaneous rainfall rate map and hourly

rainfall amount measurements can serve as a reliable input for various distributed hydrological models. The

CASA QPE system can save lived and properties from hazardous flash floods by incorporating hydraulic

and hydrologic models for flood monitoring and warning.

iii



ACKNOWLEDGEMENTS

First and foremost, I want to express my deep appreciation to Dr. V. Chandrasekar. It has been a great

honor to study and do research under the supervision of Dr. Chandra. This work would never have been

accomplished without his invaluable guidance and encouragement. He is my mentor not only in research,

but also in life.

I also sincerely thank Drs. Branislav M. Notaros and Paul W. Mielke for serving as my graduate

committee members.

I highly appreciate assistance from my colleagues working in the Radar and Communications Group

at Colorado State University and all the CSU-CHILL radar staff, as well as Andy Crane for his amazing

technical support.

I especially want to thank Dr. Yanting Wang from the Naval Research Laboratory, who is a former

student, then a research associate at Colorado State University, for his critical contributions to the early

stage of this work and for great discussions with him.

Last but not least, I would like to thank my family members and friends in China for their encourage-

ment, which has helped me get through all the challenges in my life during the past several years.

This research was supported by the National Science Foundation Engineering Research Center Programs.

iv



DEDICATION

To my parents: Yuying Liu and Shuangyue Chen, and my sisters: Dr. Xudong Chen and Xuhong Chen.

v



TABLE OF CONTENTS

Chapter 1 - Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 CASA Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Focus of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 - CASA Radar Network Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Radar Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 CASA DCAS Observation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 CASA IP1 Test-bed Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Dallas-Fort Worth Test-bed Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 CASA Accomplishments and Breakthroughs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Networked Reflectivity Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Multi-Doppler Vector Wind Retrieval and Tornado Tracking . . . . . . . . . . . . . . . . . . . 17
2.5.3 Nowcasting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Users’ Evaluation and Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.5 Quantitative Precipitation Estimation and Forecasting . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 - Radar QPE Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Overview of Current QPE Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Raindrop Size Distribution (DSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1.1 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1.2 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.3 Log-normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Different Rainfall Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2.1 Traditional Z − R Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2.2 R-KDP Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.3 Hybrid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 CASA QPE Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Clutter Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Beam Height Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Estimation of Specific Differential Propagation Phase . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.7 CASA Dual-polarization Radar Rainfall Algorithm Description . . . . . . . . . . . . . . . . . . 37
3.3 Ground Validation for CASA QPE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4 - Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 5-year Validation of CASA IP1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Sample Real-time Products and Performance Evaluation Results . . . . . . . . . . . . . . . . . . 45
4.2.1 Sample Products from CASA QPE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Five-year Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 5 - Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



5.2.2 Hydrological Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Multisensor Precipitation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



LIST OF TABLES

2.1 Specifications of CASA radar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Coefficients for usage of Z − R relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Coefficients for usage of R(Z,Zdr) algorithm at S-, C-, and X-bands. . . . . . . . . . . . . . . . . 28
3.3 Coefficients for usage of R(Zdr,Kdp) rainfall algorithm at S-, C-, and X-bands. . . . . . . . . . . 29
3.4 20 rain gauges used for cross-validating radar QPE. . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Header information of rain gauge data files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 40 rainfall events to be analyzed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Overall performance of Kdp-based CASA QPE algorithms. . . . . . . . . . . . . . . . . . . . . . . 59

viii



LIST OF FIGURES

1.1 CASA IP-1 Radar layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 DFW urban demonstration network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Distributed targets in a sample volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Range-time characteristics of a pulse radar system. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Distributed collaborative adaptive sensing (DCAS) system driven by end-user data need. . . . . 12
2.4 The layout and location of the IP1 weather radar network. The coverage circles of the IP1 radars

are in a radius of 40 km. KTLX is to the northeast of the test bed and KFDR is to the
southwest of the test bed, both shown with 40 km and 60 km ranges, as indicated. . . . . . . 14

2.5 Layout of the initial 4 radars in the DFW test bed. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 EF-4 Tornado touchdown on May 24, 2011 (the lat/lon information of origin (0 km, 0 km) is

(34.8276◦, -98.1007◦)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Paths of the EF-4 tornadoes that occurred on May 24, 2011 . . . . . . . . . . . . . . . . . . . . . 19

3.1 Logic of CSU-HIDRO algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Beam height vs. radar range at the elevation angles corresponding to one of the scan strategies

of WSR-88D (VCP-12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Estimated Kdp from individual IP1 radars and corresponding merged results at 01:02UTC on

May 20, 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Locations of USDA ground gauges (blue cross) in CASA’s IP1 network. . . . . . . . . . . . . . . 39
3.5 A screen shot of a sample gauge data file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Locations of 25 stream gauges (blue crosses) in DFW urban network . . . . . . . . . . . . . . . . 42

4.1 Sample products of regional rainfall map for March 24, 2009, storm event (UTC: 02:01:30). . . . 45
4.2 Sample products of regional rainfall map for April 27, 2009, storm event (UTC: 04:02:13). . . . . 46
4.3 Sample products of regional rainfall map for May 05, 2009, storm event (UTC: 15:22:35). . . . . 46
4.4 Sample products of regional rainfall map for April 02, 2010, storm event (UTC: 10:53:12). . . . . 46
4.5 Sample products of regional rainfall map for June 14, 2010, storm event (UTC: 18:15:10) . . . . 47
4.6 Sample products of regional rainfall map for May 20, 2011, storm event (UTC: 01:17:13). . . . . 47
4.7 Point-wise line traces against gauges of June 14, 2007, storm event: at the location of gauge 136

(Latitude: 34.927800, Longitude: -97.965600). . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Point-wise line traces against gauges of June 20, 2007, storm event: at the location of gauge 282

(Latitude: 34.845039, Longitude: -98.073473). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Point-wise line traces against gauges of May 05, 2009, storm event at the location of gauge 244

(Latitude: 34.860714, Longitude: -97.911140). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.10 Point-wise line traces against gauges of June 14, 2010, storm event: at the location of gauge 235

(Latitude: 34.933460, Longitude: -98.018777). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.11 Point-wise line traces against gauges of May 20, 2011, storm event: at the location of gauge 234

(Latitude: 34.927445, Longitude: -98.075452). . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.12 Event-wise rainfall rate distribution and statistical properties for May 20, 2011, storm case: radar

vs. gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.13 Event-wise rainfall distribution density comparison for May 20, 2011, storm case: radar vs. gauge. 54
4.14 Statistical properties of event-wise rainfall estimates for May 20, 2011, storm case. . . . . . . . . 55
4.15 Eventwise biases and standard error of the IP1 rainfall rate estimates. . . . . . . . . . . . . . . . 56
4.16 Eventwise biases of the IP1 rainfall estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.17 Standard error of the IP1 rainfall estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Closed loop of urban flash flood monitoring system based on the X-band dual-polarization radar
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



CHAPTER 1

INTRODUCTION

1.1 CASA Background

The United States National Science Foundation Engineering Research Center (NSF-ERC) for Collab-

orative Adaptive Sensing of the Atmosphere (CASA) is dedicated to revolutionizing our ability to observe,

understand, predict, and respond to hazardous weather events using a dense network of small, low-power,

and low-cost X-band radars that can collaboratively and adaptively sense the lower atmosphere [1].

Conventional weather radar networks are designed for observing weather events hundreds of kilometers

from the radars. A typical example of such a network is the Weather Surveillance Radar-1988 Doppler

(WSR-88D or NEXRAD) network jointly owned by the National Weather Service (NWS), Federal Aviation

Administration (FAA), and Department of Defense (DoD). The networks use data collected by high-power,

long-range radars operating at the S band (about 10 cm wavelength). The NEXRAD network provides

radar data with updates every five to six minutes across the United States. However, the networks’ spatial

resolution and temporal sampling are limited because of earth curvature, ground clutter, and low scan

speed, which means that NEXRAD observes the majority of precipitation and wind events only in the

middle to the upper troposphere. For example, at the maximum NEXRAD range of about 230 km and

assuming a 0◦ elevation angle, the beam is at a height about 3.4 km above ground level (AGL) because

of the effect of earth curvature. In addition, current regulations limit the lowest elevation angle used by

NEXRAD to 0.5◦. Thus, much of the lower atmosphere (1-3 km AGL) will not be observed by NEXRAD. To

overcome the fundamental coverage limitations of today’s weather surveillance radars, CASA deploys a series

of X-band radars over short ranges to conduct its weather surveillance, monitoring, and prediction. CASA

radars are located just few tens of kilometers away from each other and they provide high-resolution dual-

polarimetric measurements of the atmosphere close to the ground, with suitable spatial range to facilitate

better observation and study of severe weather events. Besides networking small high-frequency radars

to overcome the deficiencies of earth curvature and resolution issues, CASA also employs an on-demand

adaptive operation architecture to improve its weather sensing and warning systems [1]. To demonstrate

its operational methodologies, CASA deployed its first test bed, known as Integrative Project 1 (IP1), in
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southwestern Oklahoma in fall 2006. Figure 1.1 shows the layout of the CASA IP1 radars. In spring 2012,

the CASA IP1 radars were moved to the Dallas-Fort Worth (DFW) metropolitan area to form part of the

DFW Urban Demonstration Network. In total, eight dual-polarization X-band radars will be deployed in

this urban remote sensing network to demonstrate improved hazardous weather forecasts, warnings, and

responses in a densely populated environment. Figure 1.2 is a possible layout of the eight radars. More

details about these two testbeds will be presented in Chapter 2.

Figure 1.1: CASA IP-1 Radar layout.
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Figure 1.2: DFW urban demonstration network.
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CASA is a collaboration among four core academic partners: Colorado State University, the University of

Massachusetts (lead institution), the University of Oklahoma, and the University of Puerto Rico at Mayagez.

Other collaborating academic institutions include the University of Delaware, the University of Virginia,

McGill University, Indiana University of Pennsylvania, and the University of Colorado at Colorado Springs.

Some industry and government partners are Vaisala, Raytheon, NOAA, ITT, OneNet, EWR Weather Radar

Systems, ParoScientific, Inc., KWTV-NEWS 9 of Oklahoma, and the National Research Institute for Earth

Science and Disaster Prevention (NIED) of Japan. For more information one can consult the official CASA

Web homepage: http : //www.casa.umass.edu/.
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1.2 Focus of Thesis

The measurement of rainfall rate and amount is critical to a wide range of applications including

space and atmospheric sciences, environmental and agricultural research, hydrology, and water resources

management. The point observations based on traditional rain gauges have many limitations because of

the spatial and temporal variability of precipitation. In the past two decades, the use of radar has greatly

changed quantitative rainfall estimation (QPE) by providing spatially continuous estimates of rainfall at

small temporal sampling intervals. This now serves as the primary rainfall observing system in many places

around the world, with the usage of rainfall gauge measurements for bias corrections, and for merging with

the radar estimates. Dual-polarization techniques offer advantages for weather radar applications, including

QPE. Dual-polarization radar QPE is one of the most important accomplishments of CASA. This thesis will

describe the foundations of radar rainfall estimation, particularly from the perspective of dual-polarimetric

techniques. The radar QPE system developed by CASA, including its implementation, ground validation,

and performance evaluation, will also be presented in detail.

1.3 Outline of Thesis

This thesis is organized as follows. In Chapter 2, we present the operation methodologies of the CASA X-

band radar network, starting with a review of radar basics. Some major accomplishments and breakthroughs

of CASA after five years’ operation are also described.

In Chapter 3, an overview of existing radar quantitative precipitation estimation algorithms is provided.

We then primarily focus on the Kdp-based radar QPE system developed by CASA, including various opera-

tional considerations of the CASA QPE system, the adaptive estimation of Kdp, and ground validation and

performance evaluation of the CASA QPE products.

In Chapter 4, we present a five-year validation study of the CASA QPE system. Radar data collected

from 40 storm events that happened during years 2007 - 2011 are used for validation and evaluation purposes.

Sample real-time products, including high-resolution rainfall maps and point-wise line traces of rainfall

estimates, are given. Of course, the performance evaluation results are presented. It is shown that the

proposed CASA QPE methodology has greatly improved the accuracy of rainfall estimates compared with

current methodologies.
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Chapter 5 includes the study’s conclusion and comments on future work on the CASA radar quantitation

precipitation research. A tentative proposal for how to conduct and extend this research in CASA’s urban

demonstration network (i.e., the DFW urban remote sensing network) is made.
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CHAPTER 2

CASA RADAR NETWORK OPERATION

2.1 Radar Basics

RADAR is a abbreviation of the words RAdio Detection And Ranging. It is an electromagnetic system

widely used to sense the position, velocity, and scattering properties of various point or distributed targets.

Radar operates by transmitting a particular type of waveform, a pulse-modulated sine wave or square wave,

for instance, and detecting the properties of the returned signal [2]. Although radar was first developed as a

detection system to warn of approaching hostile aircraft and direct anti-aircraft weapons, today it has become

a very common tool in many areas besides defense, such as air traffic control, space science, meteorology,

and navigation. One of the two milestones worth mentioning in the history of radar development is that

E. V. Appleton and M. A. F. Barnett invented the first device for detecting an object by continuous wave

(CW) on December 11, 1924 [3]. The other is that G. Breit and M. A. Tuve successfully detected an object

by transmitting a pulse signal in 1925 [4]. A pulse radar system works by transmitting a sequence of short

pulses of radio frequency (RF) energy and then listening for its echo off distant objects. Pulse radar needs

more complex technologies than continuous wave radar, but it is more efficient and powerful.

A basic capability of almost all radars is estimating the radial distance between a monostatic radar

and a target. The total distance from radar transmitter to the target and back to the radar receiver is

equal to the product of the speed of light, c, and the round trip time, t, because the electromagnetic energy

propagates at the speed of light (3 × 108 m/s). Theoretically, the radar-target radial range R should be

R =
ct

2
(2.1)

However, meteorological targets such as fog, clouds, rainfall, and snowfall are generally composed of a

large number of hydrometeors moving with different velocities and extending over a large range with widely

different scattering amplitudes. The pulse radar system senses them as distributed targets within a sample

volume, which is defined by the radar’s vertical beamwidth, θ, and horizontal beamwidth, φ, extending a

sample range, △r (see Figure 2.1). The horizontal/vertical beamwidths are parameters based on the physical
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properties of the radar antenna. The sample range dimension, △r, is dependent on the pulse width, T0, by

the relationship as

△r =
cT0

2
(2.2)

The pulse width, T0, is also often called pulse duration.

Figure 2.1: Distributed targets in a sample volume.

The above relationship can be explained by the properties of a finite-duration pulse in the range-time

domain, as shown in Figure 2.2. The leading and trailing edges of a transmitted radar signal can be

characterized as two lines defined by r = ct and r = c(t − T0), respectively [5]. The returned signal/power

at the radar receiver at time t
′

consists of contributions from all the particles in the range between r1 and

r2, which are located along the characteristic line whose slope equals −c. Obviously, the sample range

△r = r2 − r1. The △r is often referred to as the finest theoretical range resolution cell of a radar system. A

well-designed radar should be able to distinguish targets separated by T0/2, which indicates that the pulse

width is the dominant factor of the radar range resolution. The time period between each transmitted pulse

Ts in Figure 2.2 is known as the pulse repetition time, or PRT. The reciprocal of pulse repetition time is

called the pulse repetition frequency, or PRF.

Another important characteristic of a pulse radar is its maximum unambiguous range, rmax, which is

also illustrated in Figure 2.2. rmax essentially represents the maximum range a radar pulse can travel and

return before the next pulse is sent out. It is defined as

rmax =
cTs

2
(2.3)

8



Figure 2.2: Range-time characteristics of a pulse radar system.

9



Of course, the radar can detect targets beyond rmax, but in this case the reflected signal would be aliased

with echoes from the next pulse and even more following pulses, making its range ambiguous. For example,

at time t
′′′

in Figure 2.2, the returned power contains reflected signals from the given two pulses. This

phenomenon is known as range folding or the second-trip echo. An obvious method to resolve this issue

is to increase rmax by increasing the pulse repetition time, but this will conflict with the availability of

maximum unambiguous velocity Vmax, which the radar can determine for a volume of targets. Based on the

effect of Doppler shift, the mathematical relationship between unambiguous velocity and the pulse repetition

frequency can be expressed as

Vmax =
λ ∗ PRF

4
(2.4)

where λ is the radar wavelength.

Recalling equation 2.3, we can see that both rmax and Vmax have a direct relation with the PRF. That

is, rmax has an inverse dependence on the PRF, whereas Vmax has a direct dependence. An increase in

the PRF will result in an increase in Vmax , but a decrease in rmax. On the other hand, a decrease in the

PRF will result in a decrease in the Vmax but an increase in the rmax. Although a high Vmax is preferable

for obtaining high-quality Doppler velocity information, this will come at the expense of using a high PRF,

resulting in a shorter unambiguous range, which may increase the chance of multiple trip echoes. This

contradiction is often called the Doppler Dilemma.

Pulse-Doppler radars essentially sample the atmospheric information with its PRF as the sampling

frequency. Usually, the pulse rate is many orders of magnitude faster than the mechanical scanning motion

even for the cases when the radars are scanning quickly across a wide arc [8]. This will lead to a truth that

each sample volume is actually time-sampled hundreds of times. In this discrete time-sample mechanism,

each sample is an observation of the underlying random process taking place at the corresponding volume.

Numerous time-samples of the volume will form the fundamental unit of radar observation, known as a range

gate or range bin. A beam/ray can be generated from many range bins of a particular radar azimuth; a

sweep will be formed from the many rays of different azimuths; and multiple sweeps across different elevations

and/or azimuths will form a volume. This strategy is often called a radar volume scan.
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For most meteorological radars, the received signal is output as in-phase and quadrature components,

which are also called I and Q components, or time series data. The time series (I and Q) values can

be used to calculate the moment data such as radar reflectivity, mean Doppler velocity, spectrum width,

and dual-polarization parameters like differential reflectivity (Zdr) and differential propagation phase (φdp).

The moment data are critical for further applications, including rainfall estimation and vector wind retrieval.

From Bringi and Chandrasekar (2001) [5], the I and Q components for a pulse Doppler radar can be expressed

as,

I(t) = A cos(2πf0τ)Utr(t − τ) (2.5)

Q(t) = −A sin(2πf0τ)Utr(t − τ) (2.6)

where Utr is the transmitting waveform.

The details of weather radar system design and signal processing are beyond the scope of this thesis.

However, one can refer to an excellent book on the principles and applications of polarimetric Doppler

meteorological radar ( [5]: chapter 5).

2.2 CASA DCAS Observation Methodology

CASA has proposed a new atmospheric sensing paradigm called DCAS, distributed collaborative adap-

tive sensing, to adaptively and collaboratively operate the radar network according to real-time changing

atmospheric conditions, prevailing weather information, and the needs of various end users [6]. Specifically,

“distributed” refers to the use of a large number of small X-band dual-polarization radars to overcome the

earth-curvature blockage and make up the resolution degradation caused by spreading of radar beams at

long ranges and large temporal sampling intervals of the current operational S-band radar network, i.e., the

WSR-88D Next Generation Doppler Radar (NEXRAD). These smaller and less-expensive radars have a cir-

cular shape coverage area with a radius of about 40 km and they are deployed about 30 km away from each

other, which is much closer than in the NEXRAD network. And they operate “collaboratively” through the

proposed detecting, tracking, and predicting schemes. “Adaptive” refers to the dynamic interactions among

the radars, changing atmospheric conditions, prevailing weather information, the associated computing and
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communications infrastructures, and the needs of various end users. Overall, a DCAS system should in-

clude remote sensors, algorithms that detect and predict hydrometeorological hazards such as tornadoes and

heavy storms, an underlying substrate of distributed computation that dynamically processes the collected

data and manages system resources, and interfaces that enable end-users to access and interact with the

system. The main goal of such a DCAS system is to save lives and reduce property loss through improving

precipitation estimates for flood prediction as well as reducing the tornado false alarm rate. For instance,

while providing quantitative precipitation estimation (QPE) information, the DCAS system is able to track

tornadoes for public warning and emergency management (EM). Figure 2.3 is a flow chat showing the DCAS

methodology from a systematic perspective.

Figure 2.3: Distributed collaborative adaptive sensing (DCAS) system driven by end-user data need.

2.3 CASA IP1 Test-bed Overview

The Integrated Project 1 (IP1) is the first test bed developed by CASA. It served as a prototype for a

DCAS system to achieve high temporal and spatial resolution sensing of winds in the lower atmosphere and

the detection, tracking, and anticipation of severe storms, especially fast-formed tornadoes. The location of

the test bed was chosen for its climatological and meteorological properties. The IP1 test bed was located

approximately 30 miles southwest of Oklahoma City, covering a 7,000 km2 region that receives an average

of four tornado warnings and 53 thunderstorm warnings per year. Being in Tornado Alley, the test bed
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has about a 77% chance of experiencing at least one tornado in each year, and severe storms are almost

100% guaranteed every year. The test bed is a network consisting of four mechanically scanning, automated,

short-range X-band, magnetron radars with overlapping coverage domains in southwestern Oklahoma. As

shown in Figure 1.1, these radars, namely, KCYR, KLWE, KRSP, and KSAO, were located near the towns

of Cyril, Lawton, Rush Springs, and Chickasha, respectively. Table 2.1 lists the specifications of the CASA

IP1 radars. The IP1 radars are also under the NEXRAD coverage of the KFDR and KTLX radars, as shown

in Figure 2.4.

Table 2.1: Specifications of CASA radar.

Transmitter

Type Magnetron
Center Frequency 9410± 30 MHz
Peak Power Output 8.0 kW (per channel)
Average Power Output 12 W (per channel)
Pulse Width 660-1000ns
Polarization Dual Linear (Horizontal and Vertical)
Max Duty Cycle 0.16%

Receiver

Type Dual-channel linear output I/Q
Dynamic Range (BW=1.5MHz) 103 dB
Noise Figure 5.5 dB

Antenna and Pedestal

Diameter 1.2 m (Dual-polarized parabolic reflector)
3-dB Beamwidth 1.8◦

Azimuth Scan Rate up to 240◦/s
Elevation Scan Rate up to 30◦/s
Acceleration up to 120◦/s2

Data Acquisition System

Sampling Rate 100 MSps
Dynamic Range (bandwidth = 1.5 MHz) 108 dB
Data Transfer Rate 88.3 Mbps
Decimation Factor Adjustable
Video Bandwidth Adjustable

The four IP1 radars were scanning collaboratively and adaptively under the direction of the Meteo-

rological Command and Control (MC&C) system that performs the system’s main control loop, including

ingesting data from the remote radars, identifying meteorological features from the ingested data, reporting

features to end-users, and determining each radar’s future scan strategy based on detected features and
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Figure 2.4: The layout and location of the IP1 weather radar network. The coverage circles of the IP1 radars
are in a radius of 40 km. KTLX is to the northeast of the test bed and KFDR is to the southwest of the
test bed, both shown with 40 km and 60 km ranges, as indicated.

end-user requirements. The MC&C is executed at a central control site known as the System Operation and

Command Center (SOCC) in the University of Oklahoma. IP1 can be regarded as a closed loop from the

sensing radars through the computing and communication infrastructure and algorithms because the sensing

resources dynamically adapt to end-user needs and preferences.

2.4 Dallas-Fort Worth Test-bed Overview

From spring 2012, CASA, in collaboration with the North Central Texas Council of Governments

(NCTCOG), the National Weather Service (NWS), and some other stakeholders, has embarked on a project

to create the DFW Urban Demonstration Network to demonstrate improved forecasts, warnings, and re-

sponses in a densely populated urban environment. Centered in the demonstration test bed will be a network

of eight boundary-layer observing, dual-pol, X-band radars. The systems to be implemented in this urban

test bed are based on the new technologies and end user research developed by the CASA project. The

DFW remote sensing network is regarded as the first urban weather demonstration network in the United

States.
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The issues to be addressed include (1) a development of high-resolution, two- and three-dimensional

mapping of current atmospheric conditions focusing on the boundary layer to sense, detect, and forecast low-

level wind, tornado, hail, ice, and urban flooding hazards; (2) creation of impacts-based, neighborhood-scale

warnings and forecasts for a range of public and private decision-makers that result in measurable benefits

for public safety and the economy; (3) demonstration of the value of collaborative, adaptive X-band radar

networks to existing and future sensors, products, performance metrics, and decision-making; and assessment

of optimal combinations of observing systems; (4) development of models for federal/municipal/private

partnerships to introduce new observation technologies for ongoing operational and interdisciplinary weather

system research. Data products will include single and multi-radar data, vector wind products, model- based

assimilated data, QPE, nowcasts, numerical weather prediction products, and so forth.

This urban demonstration network is supposed to cover 12 out of the 16 counties in the DFW area,

providing coverage to most of the 6.5 million people in this region. In addition, the existing in situ and

remote sensors, such as WSR-88D, TDWR, and rain gages will be used for creating new products and

for validation purposes. This partnership and test bed are expected to be a prototype of a national-scale

“network-of-networks” in which different users and data providers can exchange observational data across a

common infrastructure. The initial four radars, which are also the CASA IP1 radars moved from Oklahoma

to Texas, have been refurbished and installed in the metroplex. Figure 2.5 shows the layout of the initial 4

radars.
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Figure 2.5: Layout of the initial 4 radars in the DFW test bed.

The locations of the four radars in lat/lon are: radar 1 (Lat: 33.2536, Lon: -97.152), radar 2 (Lat:

32.9814, Lon: -96.8391), radar 3 (Lat: 32.7306, Lon: -97.1125), and radar 4 (Lat: 32.8368, Lon: -97.4257).

2.5 CASA Accomplishments and Breakthroughs

From 2007 to 2011, a series of spring experiments were conducted in CASA’s IP1 test-bed. The 5-year

operation demonstrated the key features of the CASA DCAS concept, including that (1) a short-range X-band

radar network can be configured as an adaptive system to provide high-quality severe weather observations;

(2) such a network can provide higher-resolution views of the lower atmosphere than large S-, or C-band

radars; (3) a shared radar operation system can satisfy the multiple data usages for different uses. The first

two years’ field experiments were mainly focused on the validation of the test-bed itself, whereas in the storm

season of 2009, 2010, and 2011, different precipitation types and tornadoes that occurred in the IP1 test

bed were successfully detected and tracked with excellent spatiotemporal resolutions by the CASA DCAS
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system. In this section, the major accomplishments and breakthroughs during the five-year’ deployment will

be summarized. Some related topics and results can be found in various CASA publications.

2.5.1 Networked Reflectivity Acquisition

Traditionally, data processing is done at each single radar node using the radar-centered coordinate

system, where multiple views of a common radar volume are merged as a “mosaic”. In CASA the DCAS

system, a new reflectivity and attenuation retrieval method, was invented to take advantage of the observation

diversities within the radar network. Combining the forward scatter and back scatter equations of the

precipitation medium with total path attenuation constraints, the reflectivity field and specific attenuation

along each beam can be accurately estimated. In addition, the attenuated observations through multiple

paths are used simultaneously to retrieve the intrinsic reflectivity [7]. The biases evaluation results for both

simulations and real data tests done by CASA have demonstrated good accuracy of the retrieval method [7].

Also, the algorithm was successfully tested for real-time implementation.

2.5.2 Multi-Doppler Vector Wind Retrieval and Tornado Tracking

Doppler weather radars are often the preferred tools for air motion retrieval because of their capability

of 3D coverage. However, multiple Doppler radar products are not very feasible since most of the current op-

erational WSR-88D systems do not have significant overlap. CASA has developed a real-time multi-Doppler

retrieval system that was implemented in the DCAS network. This multi-Doppler system can produce pre-

cise vector wind observations and has a strong ability to detect convective cells and tornadoes. The 3D

wind vector products are generated in accordance with the networked sensing modes to take advantage of

the overlapping coverage for multiple-Doppler synthesis, while still maintaining a high enough resolution to

capture the detailed synoptic features. Figure 2.6 shows the retrieved wind vectors along with the reflectivity

profiles at two sample time frames for a strong tornado that happened on May 24, 2011.

There are two main components in the real-time multi-Doppler system: data interpolation and Doppler

synthesis module. Both of them are composed of new and legacy software controlled by the Perl meta-script.

These modules were implemented based on the retrospective programs known as REORDER and CEDRIC,

which were developed by the National Center for Atmospheric Research (NCAR) for the specific purpose of

gridding radial data onto a common Cartesian space and performing multi-Doppler synthesis.

17



(a) UTC: 22:40:10 (b) UTC: 22:41:12

Figure 2.6: EF-4 Tornado touchdown on May 24, 2011 (the lat/lon information of origin (0 km, 0 km) is
(34.8276◦, -98.1007◦))

.

The first subsystem of the multi-Doppler system is a nc2uf format conversion program that converts

the archived CASA NetCDF format data to Universal Format (UF) which can be ingested by the software

REORDER [8]. Then, the REORDER subprogram will grid and interpolate the UF volumes from their

radial dimensions to Cartesian coordinates through range-weighted averaging of range gates to single grid

points. Subsequently, the subroutine CEDRIC will synthesize the gridded volumes from each radar into a

single composite grid with resolved u, v, and w fields. The CASA multi-Doppler system has been tested

and validated in the IP1 test bed, and the data collected for 2009 and 2010 weather events were also used

for post-processing. For a detailed description of the real-time retrieval system and its implementation

procedure, including the establishments of the two main components, one can refer to Sean Zhang’s work [8].

Using the high-resolution vector wind products observed close to the ground, the CASA DCAS paradigm

can also detect and track tornadoes. This capability was clearly demonstrated during a group of violent EF-4

tornadoes led by strong upper-level dynamics and a warm, moist surface layer within the IP1 network on

May 24, 2011. The storms entered the network from the southwest and later spawned several tornadoes that

affected several towns like Chickasha and Lookeba, Oklahoma. The hook echoes and wind rotations were

clearly seen from the CASA real-time display, which helped the weather service and emergency management

issue a tornado warning and confirm the tornado touchdown. The vorticity was calculated from the horizontal

wind fields and its peaks were used to locate the damage path. Figure 2.7 illustrates the path of two tornadoes

18



that occurred on that day. This demonstrated the capability of DCAS observations for tracking tornadoes

down to the street, with higher resolution and lower level coverage, and the potential to improve tornado

warnings.
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Figure 2.7: Paths of the EF-4 tornadoes that occurred on May 24, 2011
.

2.5.3 Nowcasting System

To provide short-term forecasting, also known as nowcasting, of severe weather events, especially torna-

does and flash floods, a nowcasting method consisting of a Fourier-based dynamic adaptive radar tracking of

storms (DARTS) algorithm for motion estimation has been developed over an innovative space-time model
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and spectral domain solver. The DARTS system can predict weather phenomena up to a 20-minute lead

time, and it was further enhanced by adapting the current state-of-the-art scale filtering techniques. In ad-

dition, the implementation of the DARTS nowcasting system into the closed loop can predict the reflectivity

fields during fast-moving weather events, which will give a better estimation of storm locations for scan

optimization. In this way, the DCAS scans are able to capture the leading edge of moving rainfall storms.

Details about the CASA nowcasting system can be found in the work done by Ruzanski et al. [9].

2.5.4 Users’ Evaluation and Decision-Making

The archived dual-polarization CASA X-band radar data was used by the National Weather Service

(NWS) forecasters to measure the impacts of CASA’s high-resolution, lower troposphere data on their

weather forecasing models and wind predictions. For example, a severe thunderstorm warning will be issued

when NWS forecasters expect a wind speed over 58 mph. It was found that the usage of CASA together

with NEXRAD data could made wind assessments about 30% more accurately in terms of mean absolute

error than assessments made by the NEXRAD data only [10]. A good example that shows the advantage of

using CASA data is the observation of a tornado that touched down near Chickasha, Oklahoma, on May 24,

2011. Both CASA and NEXRAD radar systems were used to monitor the storm formation. The National

Weather Service radar showed the tornado would cross the southern part of Newcastle about 25 miles up

Interstate 44, and officials sent emergency crews to that part of the city. However, as the tornado approached

Newcastle, the emergency manager, based on the frequently updated CASA data, found that the tornado

was actually making a turn to the north. With that information, forecasters could issue warnings more often

and make correct decisions.

2.5.5 Quantitative Precipitation Estimation and Forecasting

Quantitative precipitation estimation (QPE) is an important application of weather radar engineer-

ing and a powerful tool for forecasting flooding risk. QPE and QPF are also critical components of the

CASA DCAS architecture. A high spatial and temporal resolution rainfall estimation methodology has

been developed during observations made over the past several years. The radar polarimetric data-based

algorithms were implemented at the central node in CASA’s IP1 test bed. Once storm cells are detected,

the QPE module will be activated to produce a rainfall map in real time based on the fast scan strategies.
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In addition, the excellent performance of the DARTS nowcasting model in processing the high-resolution

CASA radar reflectivity data encourages the usage of specific differential phase data retrieved from CASA

X-band dual-polarization radars for rainfall field nowcasting [12]. The CASA QPE and/or short QPF prod-

ucts will drive the high-resolution hydrologic integration into the DCAS network to predict runoff response,

especially at the urban drainage networks of particular interest, to significantly improve the applications

for flood warning, mitigation, and advisories, especially for fast-developing urban flash floods. In general,

being an end-to-end system, DCAS will combine several functions into an integrated program, including data

fusion, rainfall estimation, short-term precipitation forecast, and user impacts, as well as people’s responses.

Details about the CASA QPE system will be given in the following chapters. One can refer to Ruzanski and

Chandrasekar’s work [12] for more information about rainfall field nowcasting.

2.6 Summary

A brief review of radar basics was presented in this chapter. The CASA DCAS scanning methodology

was then extensively described, including the description of CASA’s two test beds. The chapter ended with

highlights of CASA research topics.
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CHAPTER 3

RADAR QPE ALGORITHM DESCRIPTION

3.1 Overview of Current QPE Algorithms

Estimation of rainfall rate and amount has been important since the beginning of civilization. Radar is a

powerful tool for measuring rainfall because it can observe precipitation over a wide area in a relatively short

period of time and it can provide advanced warning of precipitation systems that will impact a region. Radars

have been used for detecting precipitation echoes since the beginning of World War II. And radar QPE can

be traced back to the work done by Wexler [13] and Marshall et al. [14]. Cifelli and Chandrasekar classified

the factors influencing radar QPE into two broad categories, basic science aspect and applied engineering

aspect [15]. Both the basic science and engineering issues should be addressed in order to accurately estimate

rainfall. A detailed accounting of the various factors classified as basic and physical science issues affecting

radar quantitative precipitation estimation was presented in [15]. This section will provide an overview of

current radar QPE algorithms, including description of different raindrop size distribution (DSD) models

and different parameter-based rainfall algorithms.

3.1.1 Raindrop Size Distribution (DSD)

Raindrop size distribution describes the probability density distribution function of raindrop sizes, which

forms the building blocks for deriving physically based rainfall algorithms. Understanding the properties of

DSD variability, and determining whether they are random or associated with specific physical processes,

can lead to a better perception of microphysical and dynamic cloud processes involved in the generation

of precipitation particles. A good knowledge of the DSD in the precipitating system is critical for radar

QPE and QPF. Different rainfall algorithms can be developed based on different DSD models, using radar

observations such as reflectivity, differential reflectivity, and/or specific propagation phase. DSD information

is also critical for rainfall field simulation research.

Since the early work of Marshall and Palmer [16], various DSD models (e.g., [17] [18] [19]) have been

proposed. Following are some commonly used DSD models in real applications.
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3.1.1.1 Gamma Distribution

The gamma raindrop size distribution can be expressed as [5],

N(D) = ncfD(D) (3.1)

where D is the raindrop diameter in mm, N(D) is the number of raindrops per unit volume per unit size

interval (D to D + △D) with a unit of m−3mm−1, nc is the concentration, and fD(D) is the probability

density function (PDF) given by [20],

fD(D) =
Λµ+1

Γ(µ + 1)
exp−ΛD Dµ (3.2)

where Λ and µ (µ > −1) are parameters of the gamma PDF.

Other gamma distribution models can be derived from the above description of drop size distribution.

One model worth mentioning was proposed by Ulbrich [18], where DSD was expressed as a modified gamma

function of the form

N(D) = N0D
µ exp(−ΛD) = N0D

µ exp(−(4 + µ)
D

Dm
) (3.3)

Again, D is the diameter, µ denotes the shape parameter, N0 is the scaling parameter, whereas Dm is the

mass-weighted mean diameter defined as

Dm =

∫
D4N(D)dD∫
D3N(D)dD

(3.4)

and Λ is the slope parameter related to Dm by Λ = (4 + µ)/Dm.

If µ is a positive value, N(D) will decreases as the diameter decreases, causing a downward curvature of

the number concentration (N(D)) at small raindrop sizes, whereas the number concentration will increase

as the diameter decreases if µ has negative values [21]. Theoretically, the number of concentrations has

a mathematical infinite value with zero diameter. Illingworth and Blackman concluded that radars that

observe the raindrops within the Rayleigh scattering region cannot resolve the small raindrops, and a fixed

value of the shape parameter is appropriate for describing the DSD when using meteorological radars [22].

For instance, µ can be set to a constant value such as 2.5 or 5 in the gamma distribution (equation 3.3) [22].

In contrast, Brandes et al. [23] and Zhang et al. [24] suggest that the following mathematical relationships

can be applied between µ and Λ in the gamma DSD model,

Λ = 0.0365µ2 + 0.735µ + 1.935 (3.5)
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Based on the relation Λ = (4 + µ)/Dm, the above µ − Λ relation can be converted into a µ − Dm

connection, as

Dm =
4 + µ

0.0365µ2 + 0.735µ + 1.935
(3.6)

However, the particular µ−Λ relationship could be precipitation type and/or region dependent. More work

is needed to validate these relations.

3.1.1.2 Exponential Distribution

The exponential distribution was first proposed by Marshall and Palmer [16], and was used in many

studies before Ulbrich [18] introduced the Gamma distribution model. The DSD was then described as a

function in the following form:

N(D) = N0 exp(−ΛD) (3.7)

Again, D is the diameter, N(D) represents the number of drops per millimetre diameter interval per cubic

meter of air, N is a constant of about 8000 m−3mm−1, and Λ is a parameter that depends on the rainfall

rate, as

Λ = 4.1R−0.21 (3.8)

where R is the rain rate in mm hr−1.

From equations 3.3 and 3.7, it is easy to see that the exponential DSD is actually a special case of the

Gamma distribution model when µ = 0, and it can be expressed as

N(D) = N0 exp(−ΛD) = N0 exp(−4
D

Dm
) (3.9)

3.1.1.3 Log-normal Distribution

The raindrop size distribution can also be described by a log-normal distribution, as in the research

done by Feingold and Levin [25],

N(D) = Nt exp[−ln2(
D

Dm
)(2ln2σ)] (3.10)

where Nt is the total number of drops per unit volume and σ is the width of the distribution. An interesting

property of this log-normal distribution is that N(D) will approach zero as the raindrop diameter approaches

zero.
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3.1.2 Different Rainfall Algorithms

3.1.2.1 Traditional Z − R Algorithm

Traditional rainfall measurements from radars, especially single-polarization radars, often start with

this reflectivity-rainfall relation, commonly referred as the Z − R relation. If we let N(D) denote the DSD,

where D is the equivalent drop size in diameter, the reflectivity factor Z can be defined as [5]

Z =

∫

D

D6N(D)dD (3.11)

It is commonly expressed in the units of mm6m−3. However, the logarithmic transformation 10 log10(Z)

is often used since the precipitation particles can vary in diameter over many orders of magnitude, and its

units are in decibels of Z relative to 1 mm6m−3 (which is 0 dBZ).

The still-air rainfall rate (in mm hr−1) can be written as a relationship [5] with the DSD as,

R = 0.6π × 10−3

∫
v(D)D3N(D)dD (3.12)

Again, D is diameter in mm, N(D)dD is the number of drops m−3 in the interval from D to D + dD, and

v(D) is the drop terminal velocity (in m/s) at sea level, which depends on parameters such as air density,

size and shape of raindrops, etc. The terminal velocity of raindrops can be expressed as a form given by

Atlas et. al [26],

v(D) = 9.65 − 10.3 exp(−0.6D) (3.13)

or a power law form as

v(D) = αDβ (3.14)

where the coefficient α varies from 3.6 and 4.2, and β from 0.6 to 0.67 for precipitation events. For rainfall

rate estimations, the most commonly used sea-level values for α and β are 3.78 and 0.67, respectively [27].

Based on this model, radar-based rainfall algorithms can be developed. All the rainfall algorithms described

in this chapter are assumed to apply at sea level.

From equations 3.11 and 3.12, it can be seen that both Z and R can be approximated as moments of

the DSD. Subsequently, the R(Z) relation can be expressed in a parametric form as

Z = ARb (3.15)
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where A and b are empirically derived constants. Battan suggested some typical relations as: for thunder-

storm rain, Z = 486R1.37; for orographic rain, Z = 31R1.71; for stratiform rain, Z = 200R1.6, [28]. A list of

coefficients recommended by the National Weather Service Radar Operations Center (NWS-ROC) for use

in the U.S. can be found in Table 3.1.

Table 3.1: Coefficients for usage of Z − R relations.

Usage A b Optimum for: Also Recommended
for:

Marshall-Palmer 200 1.6 General stratiform rainfall -
East-Cool Stratiform 130 2.0 Winter stratiform precipitation

(east of continental divide)
Orographic Rain -East

West-Cool Stratiform 75 2.0 Winter stratiform precipitation
(west of continental divide)

Orographic Rain -West

WSR-88D Convective 300 1.4 Summer deep convection Other non-tropical con-
vection

Rosenfeld Tropical 250 1.2 Tropical convective systems -

Source: http : //www.roc.noaa.gov/ops/z2r osf5.asp

3.1.2.2 R-KDP Approach

With the development of dual-polarization techniques (for instance, the NWS WSR-88D has been up-

graded to dual-pol capabilities), we are able to better determine the type and intensity of rainfall. Although

fundamental challenges in radar rainfall estimation remain, dual polarization observations offer a number

of advantages over single polarization radar rainfall estimation because more information about the drop

size distribution (DSD) can be gleaned. In addition, dual-polarimetric estimators can better account for the

existence of ice. Furthermore, the radar dual-polarimetric observations also help significantly in discriminat-

ing smoke from fires, birds, bats, and bugs. In this section, the Kdp based rainfall algorithm will be briefly

presented. More information about the CASA QPE methodologies can be found in follow-on sections and/or

chapters.

It was shown in [5] that the specific differential propagation phase Kdp (in degree km−1) is proportional

to the product of rainwater content and the mass-weighted mean diameter of raindrops,

Kdp ≈ (
180

λ
)10−3CW (0.062Dm) (3.16)

Again, Dm is the mass-weighted mean diameter defined in equation 3.4, whereas W is the rainwater content

in units of g/m3, and λ is radar wavelength in m.
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Reusing the relationship between rainfall rate and DSD (equation 3.12), a general R(Kdp) estimator

can be derived in the following form,

R(Kdp) = aKb
dp (3.17)

where the constants a and b are dependent on different climatic and synoptic properties.

From equation 3.16, we can see that Kdp is inversely proportional to wavelength in the Rayleigh limit

for fixed water content and mass-weighted mean diameter. Thus, the Kdp-based rain rate estimate can be

written as a frequency-scaling form [5],

R(Kdp) = 129(
Kdp

f
)c (3.18)

The frequency-scaling argument is generally valid up to 13 GHz [5].

Obviously, the estimation of Kdp from radar observations is one of the most important issues involved

in the Kdp-based QPE systems. However, being the range derivative of the propagation phase Φdp, Kdp

cannot be easily estimated because of the noise, phase wrapping phenomenon, and associated fluctuation in

the differential propagation phase. To resolve these problems, numerous algorithms have been proposed to

estimate Kdp (e.g., [29], [30], [31], [32], [33]). Among them, the estimation approach developed by Wang and

Chandrasekar [29] is implemented in the CASA QPE system. This estimation method will be described in

more detail later in this chapter. For more information, one can also refer to the related literature [29].

3.1.2.3 Hybrid Algorithm

With the aid of dual-polarimetric observations, researchers often use more than one radar parameter to

conduct rainfall estimations. In this thesis, rainfall algorithms based on more than one polarimetric radar

parameter such as reflectivity (Z), differential reflectivity (Zdr), and specific differential phase (Kdp) are

all classified as hybrid algorithms. Several hybrid algorithms, including R(Z,Zdr) and R(Zdr,Kdp) based

approaches, will be described in this section.

R(Z, Zdr) Algorithm

Recall the definition of reflectivity factor (equation 3.11),

Z =

∫

D

D6N(D)dD (3.19)
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For a gamma DSD model, Z/R can be expressed as [5],

Z/R = F (µ)D2.33
m (3.20)

where F (µ) is a function depending on the gamma PDF parameter µ. It is shown that F (µ) varies very slowly

with µ [34], and Dm = a(Zdr)
b, wherein a and b depend on the radar frequency bands [5]. Subsequently, the

rainfall rate can be derived in the following form

R =
a−2.33

F (µ)
ZZ−2.33b

dr (3.21)

Equation 3.21 can be further refined as a simplistic estimator of the form

R = cZaZb
dr (3.22)

It is worth mentioning that Z in the above equation often refers to horizontal polarization reflectivity (Zh).

Large errors can result from the measurement uncertainties involved in Zdr, especially when mean Zdr

approaches 0 dB [5]. Gorgucci et al. have constructed a modified form [35] as below, which is more robust

R = a1Z
b1100.1c1Zdr (3.23)

A coefficient table (Table 3.2) was presented by Bringi and Chandrasekar by performing a non-linear

regression analysis using the simulated R, Z and Zdr data [5].

Table 3.2: Coefficients for usage of R(Z,Zdr) algorithm at S-, C-, and X-bands.

Frequency Band a1 b1 c1

S-band 6.7 ×10−3 0.93 -3.43
C-band 5.8 ×10−3 0.91 -2.09
X-band 3.9×10−3 1.07 -5.97

R(Zdr, Kdp) Algorithm

Recall equation 3.16,

Kdp ≈ (
180

λ
)10−3CW (0.062Dm) (3.24)

The water content W can be related to rainfall rate as [5]

W

Nw
=

F3(µ)

[F3.67(µ)]4/4.67
(

R

Nw
)4/4.67 (3.25)
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where Nw (in mm−1m−3) is an “intercept” parameter defined as Nw = 2.674

πρω

( 103W
D4

0

). In addition, based on

the Beard-Chuang equilibrium shape relation [36], the mass-weighted mean diameter Dm can be expressed

as

Dm = 1.619(Zdr)
0.485 (3.26)

wherein Dm is in mm and Zdr is in dB.

Combining equations 3.24, 3.25, 3.26, we can obtain the R(Zdr,Kdp) relation as

R(Zdr,Kdp) = cZa
drK

b
dp (3.27)

However, this algorithm has large errors when Zdr tends to 0 dB because of the negative value of b [5].

Gorgucci and Scarchilli proposed a more robust precipitation estimator using differential reflectivity and the

specific differential phase [37] in the form,

R(Zdr,Kdp) = a2100.1b2Zdr (Kdp)
c2 (3.28)

Similarly, a list of coefficients for different radar frequencies was given by Bringi and Chandrasekar by

performing a non-linear regression analysis [5] (see Table 3.3).

Table 3.3: Coefficients for usage of R(Zdr,Kdp) rainfall algorithm at S-, C-, and X-bands.

Frequency Band a2 b2 c2

S-band 90.8 -1.69 0.93
C-band 37.9 -0.72 0.89
X-band 28.6 -1.37 0.95

However, in the actual applications, it is not easy to choose an optimal estimator for a given set

of dual-polarimetric observations and/or a given type of rainfall since we need to determine which radar

parameter can provide superior rainfall estimates (e.g., under which case can the phase term offer a better

measurement relative to the other measurements such as Z and Zdr?). Here, two hybrid algorithms will be

briefly described. One is the radar rainfall relations developed at the National Severe Storms Laboratory

(NSSL) during the Joint Polarization Experiment (JPOLE) designed to test the practicality and utility of a

polarimetric WSR-88D radar, which will be referred to as the JPOLE-method. The other is the CSU-HIDRO

algorithm developed by Cifelli et. al. [38]. For more details about these two approaches, one can refer to the

related literature (for JPOLE-method see Ryzhkov et. al. [39] and for CSU-HIDRO, see Cifelli et. al. [38].
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JPOLE-Method

In the JPOLE-method, the value of the rain rate given by the following standard Weather Surveillance

Radar-1988 Doppler (WSR-88D) R(Z) relation will be used for selecting the rainfall rate expressions:

Z = 300R1.4 (3.29)

where Z is expressed in mm6m−3 and R in mm hr−1 and the magnitude of Z is limited to a maximum of

53dBZ to mitigate hail contamination. The dual-polarimetric rainfall rate is estimated based on the R(Z)

values. If R(Z) < 6mm hr−1, then

R = R(Z)/(0.4 + 5.0|Zdr − 1|1.3) (3.30)

If 50 > R(Z) > 6mm hr−1, then

R = R(Kdp)/(0.4 + 3.5|Zdr − 1|1.7) (3.31)

If R(Z) > 50mm hr−1, then R = R(Kdp), where

R(Kdp) = 44.0|Kdp|
0.822sign(Kdp) (3.32)

where Zdr is the differential reflectivity in a linear scale and Kdp is in degree/km.

CSU-HIDRO Algorithm

The CSU-HIDRO algorithm was based on the hydrometeor identification (HID) results, namely, rain,

mixture, or ice. A fuzzy logic technique-based hydrometeor classification system was developed by Lim et.

al [40] that was implemented in the CSU-HIDRO algorithm to guide the rainfall application. The advantage

of this hydrometeor classification method [40] is to use both additive and product rules in inference for

balancing the metrics of probability error and false positive classification. The weight factor was also used

according to hydrometeor types and radar variables, which means that we can use the observations more

effectively to identify precipitation types, taking their error structure into account. The logic of CSU-HIDRO

is shown as Figure 3.1. The rainfall estimation relations used in the CSU-HIDRO algorithm corresponding

to the flowchart in Figure 3.1 are

R(Kdp) = 40.5K0.85
dp (3.33)
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Figure 3.1: Logic of CSU-HIDRO algorithm.

R(Z) = 0.017Z0.7143 (3.34)

R(Z,Zdr) = 6.7 × 10−3Z0.92710(−0.343Zdr) (3.35)

R(Kdp, Zdr) = 90.8K0.93
dp 10(−0.169Zdr) (3.36)

Using the data from CSU-CHILL radar and a rain gauge network, the authors showed the new HID-

based algorithm could provide good performance for rainfall events in Colorado.

3.2 CASA QPE Methodology

The CASA’s DCAS network maintains a system “heartbeat” of about 30s. After finishing two low-level

full 360-degree scans, CASA radars conduct adaptive scans at different elevations depending on the location

of the precipitation echoes to collect accurate observations. The measured specific differential propagation

phase (Kdp) will be used for QPE processing since Kdp is less sensitive to drop size distribution compared

with other terms such as Z and Zdr. It is also relatively less prone to calibration errors and path attenuation.

Generally, the accuracy of radar QPE relies both on the radar system such as beamwidth and sidelobe, and

on environmental factors such as clutter and storm variability [47]. Radar observations of precipitations can

also be contaminated by hail, melting hydrometeor particles, and/or ground clutter. Especially in urban

environments, strong clutters are expected from scattering of buildings, which are “perfect” reflectors when

radar is steered down low. In addition, radar calibration errors and anomalous propagation can pollute radar

rainfall estimations. Saltikoff et al. summarized the factors leading to the quality assurance of weather radar

data for QPE from a network prospective [41]. In this section, various sensing aspects of the CASA DCAS

system design for QPE will be briefly presented, including spatial and temporal resolution, sensitivity, beam

height, estimation of Kdp, and rainfall algorithm description.
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3.2.1 Spatial Resolution

Maki et al. have developed a high-resolution hydrologic model on the order of tens of meters for

urban flood monitoring and mitigation [42], which is a very good example of a CASA application. Radar

rainfall measurements of commensurate resolution are needed to achieve its full capability. In addition, beam

broadening can affect the quality of dual-polarization radar measurements in the presence of non-uniform

beam filling [43] [44]. The spatial resolution is determined by the beamwidth, system bandwidth, and radar

slant range. For longer ranges, the transmitted beam will extend a wider distance across beam, which can

result in substantial biases. Currently, the National Weather Service Weather Surveillance Radar network

(NEXRAD) provides radar data at the maximum NEXRAD range/radius of about 230 km, or 150 km

in super-resolution mode. This corresponds to a cross-beam distance larger than 5 km at 300 km range,

virtually preventing reliable quantitative rainfall estimates either in vertical or in horizontal direction. The

cross-beam distance will be scaled down to 700 meters when the range is limited within 40 km, which will

result in finer QPE grids. The CASA DCAS system is able to achieve great cross-beam resolution using

a group of short-range X-band dual polarization radars with a maximum range of about 40 km and beam

width of approximately 1.8 degrees to produce a mean cross-beam less than 750 m. Along the radial range,

the radars have a range resolution of better than 100 m. In the overlapping areas of different radars, we can

choose the smaller resolution samples. Junyent and Chandrasekar [45] presented a detailed analysis of the

sampling volume resolution as a function of beam width, network topology and degree of overlap for CASA

Integrated Project 1 (IP1) network.

3.2.2 Temporal Resolution

To evaluate the quick response of fast-moving and/or evolving urban rainfall events, high temporal

resolution real-time rainfall product generation is required. The NEXRAD network renders observations

with updates every five to six minutes across the United States. However, much can happen within five to

six minutes! A short sampling interval is particularly valuable in extreme rain storms since it may only takes

tens of minutes for an urban basin to reach its peak discharge from dry conditions. As flood monitoring

pinpoints down to specific blocks, the temporal variability is even higher and a sampling at five to six minutes

can miss the local peaks. In the CASA radar system, the system update time is of the order of 60 seconds
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due to the implementation of an adaptive, coordinated sector scanning strategy. Such temporal resolution is

very important for the monitoring and mitigation of urban flash floods, where the watersheds can respond

quickly. The DCAS system can also automatically and adaptively change its scan patterns to correspond to

detected atmospheric conditions and user preferences. The CASA scan strategy systems are described by

Zink et al. [46].

3.2.3 Clutter Mitigation

Ground clutter can often lead to misinterpretation of radar observations, which may result in inap-

propriate actions within the closed-loop system. The radar reflectivity for clutter echo can be expressed

as [47],

Zec < dBZ >= 2f(α) + σ0 < dB > +C0 + 10 log10

Ac < km2 >

Vc < km3 >
(3.37)

where f(α) is the sidelobe pattern at clutter incidence angle, σ0 is the surface backscattering coefficient, C0

is the radar constant, Ac is the beam illuminated area, and Vc is the effective radar resolution volume. At

low grazing angles, Ac is proportional to range. Reflection from buildings and other close architectures often

have a high grazing angle, Ac will be independent of range, and σ0 can be larger by several orders under these

circumstances. Substantial beam blockages will result when those buildings and/or architectures intercept

the mainlobe. Chandrasekar et al. proposed a high-performance parametric clutter filter using advanced

spectral approaches (Gaussian Model Adaptive Processing, GMAP [48]), which was implemented in CASA

IP1 test bed [49]. In this clutter filtering approach, clutter spectral coefficients were notched with a spectral

filter based on a Gaussian model for the clutter spectral density. A Gaussian weather spectral density is

recursively fit to the remaining points and the notched spectral coefficients are interpolated and the bias

in reflectivity and velocity due to notch filtering is minimized. In addition, use of small-size radar enables

flexible deployment so that clutter can be effectively reduced by more choice of installation sites. For example,

rooftop installation on tall buildings can be used in an urban environment. It should be mentioned here

that clutter filtering of dual-polarization signals is rather important because CASA QPE is Kdp-based. As

a result, the effect of clutter will be eliminated in the CASA QPE system when combining the networked

radar application and advanced clutter filtering.
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3.2.4 Beam Height Analysis

The radar observations and rainfall measurements will be close to the ground if the radar scanning

angle is lower, which is one of the determining factors of beam heights. However, to avoid QPE biases, the

radar beam should be above the significant mainlobe clutters such as high buildings while containing the

atmospheric conditions below bright bands or melting layers [44]. In addition, the earth’s curvature and

blockage by the local terrain can prevent the coverage of raining regions of interest. At long ranges, the

beam height can be very high because of the earth’s curvature, in which case the lower atmosphere will

not be able to be detected. For instance, at the maximum range of NEXRAD (about 230 km), the beam

height is higher than 3 km at 0◦ scanning elevation angle. What is more, current regulations limit the lowest

elevation angle used by NEXRAD to 0.5◦. Figure 3.2 shows the beam height as a function of the range from

the radar using the 4/3 earth curvature model. It can be seen that 1 km height observation can be achieved
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Figure 3.2: Beam height vs. radar range at the elevation angles corresponding to one of the scan strategies
of WSR-88D (VCP-12).

at 1◦ elevation angle if the maximum range is limited to 50 km. This is another major advantage of using

a dense short-range radar network for precipitation measurement [45]. It is also important to avoid clutter

contamination when we choose lower beam height for better radar QPE.

3.2.5 Sensitivity

Sensitivity is another important parameter that needs to be evaluated since it can reflect minimal

detectable rainfall. The sensitivity of meteorological radar is proportional to the transmit power and inversely
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related to the square of the radar range, as shown below [5],

Zemin = SNR0N0
210(ln2)λ21018

G2
a|Kw|2π3cτθhθv

r2α2 1

Pt
(3.38)

where SNR0 is the minimal signal-to-noise ratio, N0 is the system noise floor, r is radar range, Ga is antenna

gain, τ is pulse duration, α is system loss, θh and θv are beamwidth, and Pt denotes the transmitted power.

Obviously, the use of small, short-range X-band radars can greatly relax the sensitivity constraints

compared with the large S-, or C-band radars. The CASA DCAS radar network can further improve the

system’s reliability because it has large overlapping coverage (i.e., multiple propagation paths exist from

different radars to a common volume). However, for X-band radar systems like CASA radars, an extra

margin needs to be allocated for the transmitted power because of the significant rain attenuation at X-band

frequencies. This attenuation margin is also range dependent and it is more likely to be higher at longer

propagation ranges. Chandrasekar et al. have shown that the attenuation margin needed for X-band radars

is about 12 dB for the South Central United States such as the Oklahoma and Texas region [50], but this

attenuation margin can change with different synoptic characteristics.

3.2.6 Estimation of Specific Differential Propagation Phase

As mentioned in section 3.1.2.2, the estimation of Kdp is not an easy task due to measurement noise,

unreliability in lighter rainfall, and artifacts stemming from the non-uniform beam filling effect. By definition,

the specific differential phase (Kdp) between two horizontally and vertically polarized ‘characteristic’ waves

is [5],

Kdp = −103ℑ(λ1 − λ2) = 103(
2πn

k0
)ℜ[ĥ ·

−→
f (̂i, î) − v̂ ·

−→
f (̂i, î)] (3.39)

where ℑ(∗) and ℜ(∗) are the imaginary and real parts of the complex number (∗), respectively. λ1 and λ2

are eigenvalues of the horizontally and vertically polarized waves.
−→
f (̂i, î) is the forward scattered vector

amplitude and n is the number of the spheres per unit volume.

The specific differential phase can be estimated as the range derivative of the propagation phase Φdp,

Kdp = [Φdp(r2) − Φdp(r1)]/[2(r2 − r1)] (3.40)

Nevertheless, radar does not measure the forward propagation phase Φdp directly. Usually, the total

differential phase Ψdp can be estimated from co-polar covariance that consists of both the phase shifts
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resulting from forward propagation and backscattering. As shown in Bringi and Chandrasekar (2001) [5],

the differential phase between co-polar signals, Ψdp, can be expressed as

Ψdp = arg[(V 10
h )∗(V 01

v )] = arg[exp2(λ2−λ1)r] + arg(S∗

hhSvv)BSA (3.41)

where V 10
h and V 01

v are the voltages at the h-port and v-port, respectively. S∗

hh and Svv are components of

the scattering matrix [5]. Equation 3.41 can also be written as

Ψdp = Φdp + δco (3.42)

where Φdp is the 2-way differential propagation phase (often called differential propagation phase), and δco

is the back scatter differential phase.

But accurate Kdp estimates can only be obtained if δco is constant or negligible along the range gate

or δco can be correctly measured separately. Usually, the total differential phase can be processed for Kdp

estimation. Range filtering of Ψdp profiles is commonly employed to separate Φdp signals from unwanted

components such as environmental and system noise and δco. Unfortunately, we still do not have a standard

processing or universally adopted method to accurately measure Kdp within the radar community even

though numerous algorithms have been proposed in the last two decades to tackle challenges associated with

the aforementioned issues. These algorithms can be classified into two types. In one, the Kdp estimates are

purely based on Ψdp measurements, and the other type uses auxiliary data such as reflectivity and/or the

differential reflectivity and the self-consistency relations between polarimetric observables in order to obtain

a more accurate estimate of Kdp or δco. Assuming any existing method as interchangeable may lead to large

errors for subsequent processing for issues like hydrological applications and flood warning. The challenges

are exacerbated at shorter wavelengths, wherein the expectation for an increased total differential phase

shift (Ψdp) through similar rain conditions can be compromised by significant contributions from a nonzero

differential backscatter phase shift.

In the Kdp-based CASA QPE system, the adaptive estimation method proposed by Wang and Chan-

drasekar is implemented to suppress noise fluctuations and reduce estimation errors [29]. The adaptive

estimation is tuned to local variability and statistical fluctuation and performed in the complex domain. For

computation of rainfall rate, only Kdp from the 2◦ elevation angle is used since the 2◦ elevation scan is the
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surveillance scan in CASA’s DCAS scan strategy. At the 2◦ elevation angle, the impact of sidelobe clutter

will be minimal after clutter filtering. All of the synchronized scans are merged onto latitude-longitude grids

for further processing and usage. That is, the Kdp field from all the radar notes are fused before the rainfall

conversion is applied. Especially in the overlapping area of CASA radars, the “signal” loss resulting from

rain attenuation is compensated and the Kdps from different radars are merged based on the quality of the

individual Kdp. The main factor determining the data quality is the range that represents the lowest beam

height because the scanning elevation for all radars is fixed as 2◦. Overall, the data fusion Kdp can improve

the rainfall application. However, this is not always the best solution for the X-band radar network since

the path attenuations from different directions are different.

Figure 3.3 is an example showing the Kdp from each individual radar and the merged Kdp for rainfall

estimation.

3.2.7 CASA Dual-polarization Radar Rainfall Algorithm Description

Recall the relation between drop size distribution and the instantaneous still-air rainfall rate (equation

3.12) and the expression of specific differential propagation phase (Kdp) through DSD [5]:

R = 0.6π × 10−3

∫
v(D)D3N(D)dD (3.43)

Kdp =
π2

6λ
C

∫
(1 − r)D3N(D)dD (3.44)

Again, C is a constant, r is the axis ratio of raindrops, and λ is the wavelength.

Obviously, both R and Kdp can be approximated as moments of DSD. Thus the R(Kdp) relation can

be expressed in a power-law form as mentioned in above equation 3.17,

R(Kdp) = aKb
dp (3.45)

For the CASA dual-polarization X-band radars at about 9.4 GHz in the IP1 test bed in Southwestern

Oklahoma, the above relation is scaled to [47],

R = 18.15K0.791
dp (3.46)

which is used for rainfall estimation.
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(a) KCYR (b) KSAO

(c) KLWE (d) KRSP

(e) Merged Result

Figure 3.3: Estimated Kdp from individual IP1 radars and corresponding merged results at 01:02UTC on
May 20, 2011.
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3.3 Ground Validation for CASA QPE System

Without loss of generality, CASA is using the surface rainfall measurements from ground rain gauges as

validation and assessment tools. A U.S. Department of Agriculture Agricultural Research Service’s (ARS)

gauge network (Micronet) in the Little Washita River Experimental Watershed (LWREW) is used for the

evaluation purposes. The ARS Micronet is operated and maintained by the Agricultural Research Service’s

Grazinglands Research Laboratory in cooperation with Oklahoma State University and the Oklahoma Cli-

matological Survey. Meteorological and hydrologic conditions in LWREW have been measured since 1961

(information on line at http : //ars.mesonet.org). The LWREW consists of 20 rain gauge stations compris-

ing an area of about 611 km2 that covers parts of Caddo, Comanche, and Grady counties. It is right in the

center of CASA’s IP1 test bed (see Figure 3.4). The location informations for these 20 rain gauges can be

found in table 3.4.
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Figure 3.4: Locations of USDA ground gauges (blue cross) in CASA’s IP1 network.
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Table 3.4: 20 rain gauges used for cross-validating radar QPE.

Station Name Latitude (deg.) Longitude (deg.) Elevation(inch)
ARS Site 121 34.958600 -97.898600 343
ARS Site 124 34.972800 -98.058100 387
ARS Site 131 34.950300 -98.233600 458
ARS Site 132 34.942800 -98.181900 456
ARS Site 133 34.949200 -98.128100 430
ARS Site 136 34.927800 -97.965600 343
ARS Site 146 34.885300 -98.023100 358
ARS Site 148 34.899200 -98.128100 431
ARS Site 152 34.861100 -98.251100 416
ARS Site 154 34.855300 -98.136900 393
ARS Site 159 34.796700 -97.993300 439
ARS Site 234 34.927445 -98.075452 399
ARS Site 235 34.933460 -98.018777 372
ARS Site 244 34.860714 -97.911140 401
ARS Site 249 34.891386 -98.181246 404
ARS Site 250 34.905249 -98.251060 345
ARS Site 253 34.858720 -98.199458 413
ARS Site 256 34.838957 -97.962534 363
ARS Site 262 34.797347 -98.126933 423
ARS Site 282 34.845039 -98.073473 376

The rainfall measurements collected by the 20 gauges are archived as accumulations at five-minute

intervals over every 24-hour period in local time (Central Standard Time) with a resolution of about 0.254

mm. As shown in the following screen-shot of a data file (see figure 3.5), every archived file has a line each for

the “version” string, station ID, and the date, followed by a header line and all recorded data. Table 3.5 is

an explanation of each column parameter header in the archived files. Every observed parameter is followed

by a column of data with a header that starts with “Q”, which indicating the quality check (QC) character:

g stands for “good” (passed QC tests - extremely low probability of error); S stands for “suspect” (QC tests

indicate some suspicion - low probability of error); W stands for “warning” (several QC test failures - high

probability of error); F stands for “failure” (known error); M stands for “missing” (data not received); I

stands for “ignore”; N stands for “not installed”; and U stands for “unknown”. More information about the

climate data can be found on line at http : //ars.mesonet.org/aboutdata/documentation.php. For better

validation, the radar estimates are spatially chosen at the location of each rain gauge, whereas the rain gauge

estimates are temporally interpolated at the scan time of the radar network (i.e., one minute).

Similarly, a rain gauge network in the DFW urban demonstration network will serve as the ground

validation tool to demonstrate CASA QPE in the urban environments. The gauge network includes a
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Figure 3.5: A screen shot of a sample gauge data file.

Table 3.5: Header information of rain gauge data files.

Header
Name

Meaning Header
Name

Meaning

STID station ID TS25 soil temperature at 25 cm depth
(deg C)

TIME CST time (hr min.) TS30 soil temperature at 30 cm depth
(deg C)

RAIN rainfall since 00 UTC (mm) TS45 soil temperature at 45 cm depth
(deg C)

RELH relative humidity at 1.5 m (%) BATV battery voltage (volts)
TAIR air temperature at 1.5 m (deg C) FLSV flag status value
SRAD solar radiation (W/m2) VW05 soil volumetric water at 05 cm depth

(water fraction by volume)
TS05 soil temperature at 05 cm depth

(deg C)
VW25 soil volumetric water at 25 cm depth

(water fraction by volume)
TS10 soil temperature at 10 cm depth

(deg C)
VW45 soil volumetric water at 45 cm depth

(water fraction by volume)
TS15 soil temperature at 15 cm depth

(deg C)
SKIN skin temperature (deg C)
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number of U.S. Geological Survey (USGS) gauges and 25 stream gauges that are part of the High Water

Warning System Sites in the City of Fort Worth, Texas. Figure 3.6 shows the locations of the 25 gauges

relative to the radar umbrellas.
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Figure 3.6: Locations of 25 stream gauges (blue crosses) in DFW urban network

3.4 Error Analysis

Radar QPE is not a simple process. It involves issues both from the physically based inferences and

the engineering aspect. The elements that need to be considered include hardware design, signal process-

ing, electromagnetic wave propagation through the precipitations, microphysics of clouds and precipitation,

quality control, and following hydrologic applications. Rainfall estimation errors can occur in sub-modules

such as radar calibration techniques, improper rainfall relationships, and sub-cloud evaporation of raindrops.

All will lead to departures of estimated rainfall from true rainfall. Identifying and quantifying those var-

ious biases are among the most important steps in characterizing the uncertainties of radar QPE. Using
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dual-polarization techniques, radar rainfall estimation can be improved with additional radar measurements

such as Kdp and Zdr. In addition, the polarimetric measurements provide more information for classifying

precipitation types (rain, hail, graupel, and/or snow) and distinguishing the ground echo due to local clutter

and anomalous propagation conditions from precipitation. How to eliminate the various error sources is

beyond the focus of this thesis. However, to quantify the errors of the CASA QPE system, the mean bias,

normalized mean bias, and the normalized standard error (NSE) are defined as follows, using the gauge

observations as the baseline for cross-comparison:

< e >=< RR − RG > (3.47)

< e >N=
< RR − RG >

RG
(3.48)

NSE =
< |RR − RG| >

RG
(3.49)

where the angle brackets denote the sample average, and RR and RG represent instantaneous rainfall rate

or rainfall accumulation estimated from radar and gauge, respectively.

The evaluation results will be presented in Chapter 4.

3.5 Summary

This chapter has presented an extensive description of different radar parameter-based quantitative

precipitation estimation (QPE) algorithms, starting with a brief review of commonly used raindrop size

distribution (DSD) models. The CASA QPE methodologies were then focused on. Considerations for

implementation of CASA QPE, including analysis of spatial and temporal resolution, clutter mitigation,

beam height, and sensitivity were given. The adaptive estimation of specific differential propagation phase

and CASA dual-polarization rainfall algorithm were also presented. A detailed description of the gauge

network used for ground validation and evaluation of CASA QPE was then provided, including the gauge

management and locations, data format and processing, and the definition of the performance evaluation

metrics. The CASA QPE products and performance evaluation results will be presented in the next chapter.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 5-year Validation of CASA IP1 Experiments

Since the deployment of the CASA IP1 radar network in 2006, numerous experiments have been con-

ducted to demonstrate and evaluate the DCAS concepts. In the storm seasons from 2007 to 2011, tens

of rainfall events were observed passing over the radar coverage and Little Washita Experimental Water-

shed [47] [52]. In this thesis, about 174.4 hours of data from 40 precipitation events are used for performance

evaluation and cross-comparisons, which include singlecells, multicells and supercells. The cross-comparison

pairs were chosen at each rain gauge station for each precipitation event. Table 4.1 summarizes the rainfall

cases during the past five-years’ operations.

Table 4.1: 40 rainfall events to be analyzed.

Date Rough Time
(UTC)

Duration
(≈ hr)

Date Rough Time
(UTC)

Duration
(≈ hr)

2007-05-07 06:10-13:40 7.5 2009-05-05 15:00-17:40 2.7
2007-05-08 07:00-10:40 3.7 2009-05-11 09:40-15:00 5.3
2007-05-10 22:20-24:00 1.7 2009-05-14 03:00-07:00 4.0
2007-06-10 22:50-24:00 1.2 2009-05-16 02:50-08:20 5.5
2007-06-11 00:00-01:00 1.0 2009-06-02 06:20-07:30

18:00-19:30
2.7

2007-06-14 06:40-11:00 4.3 2009-06-03 05:40-09:40 4.0
2007-06-20 05:00-11:40 6.7 2009-06-15 07:40-09:00 1.3
2008-05-27 08:00-10:30 2.5 2010-01-28 11:40-22:00 10.3
2008-06-06 02:20-04:40 2.3 2010-03-20 06:40-08:20 1.7
2008-06-09 08:40-20:00 11.3 2010-04-02 10:40-13:40 3.0
2008-06-17 06:20-07:30

14:00-18:00
5.2 2010-05-13 08:00-10:40 2.7

2008-06-19 08:00-10:30 2.5 2010-06-14 18:00-23:20 5.3
2008-10-06 07:20-11:40 4.3 2010-06-15 02:00-07:40 5.7
2009-02-09 09:00-12:00 3.0 2010-09-08 09:40-24:00 14.3
2009-02-10 23:00-24:00 1.0 2010-09-09 00:00-03:00 3.0
2009-03-24 01:40-03:20 1.7 2011-02-24 13:00-16:20 3.3
2009-03-27 18:20-24:00 5.7 2011-04-24 18:20-21:40 3.3
2009-04-27 02:00-04:40 2.7 2011-05-01 12:30-16:40 4.2
2009-04-29 10:00-15:20 5.3 2011-05-11 16:40-22:00 5.3
2009-05-02 09:00-15:40 6.7 2011-05-20 03:00-05:00

09:30-14:00
6.5

Total Observations: about 174.4 hours
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4.2 Sample Real-time Products and Performance Evaluation Results

4.2.1 Sample Products from CASA QPE System

Normally, the CASA QPE system produces three types of high spatial and temporal resolution rainfall

products updated at every minute, namely, instantaneous rainfall rate map, hourly rainfall measurement

map, and point-wise diagnostic traces for 5-, 10-, 15-, 20-, 30- and 60-minute (hourly) rainfall estimates.

These products were selected according to the system operation requirements and end users’ feedback,

especially for flash flood monitoring and mitigation applications. It should be noted that the extent of

averaging can be adjusted to match the response scale of the watershed of interest. For the IP-1 test bed in

southwestern Oklahoma, this time was set at 60 minutes. The following maps (Figure 4.1 to Figure 4.6) are

some examples of instantaneous rainfall rate and hourly rainfall accumulation maps at CASA IP1 testbed

for several storm events. Figure 4.7 to Figure 4.11 are sample products of the estimated point-wise traces at

some gauge locations for several rainfall events during the storm experiments. The detailed point-wise traces

are used for diagnostic purposes for comparison against rain gauges in the Little Washita River Experimental

Watershed (LWREW).

From the high-resolution products from the CASA QPE system, we can see the great potential of the

networked X-band radar QPE for use in downstream applications such as input to hydrological and hydraulic

models, and further forecasting and mitigation of floods.

(a) rainfall rate map (b) hourly rainfall map

Figure 4.1: Sample products of regional rainfall map for March 24, 2009, storm event (UTC: 02:01:30).
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(a) rainfall rate map (b) hourly rainfall map

Figure 4.2: Sample products of regional rainfall map for April 27, 2009, storm event (UTC: 04:02:13).

(a) rainfall rate map (b) hourly rainfall map

Figure 4.3: Sample products of regional rainfall map for May 05, 2009, storm event (UTC: 15:22:35).

(a) rainfall rate map (b) hourly rainfall map

Figure 4.4: Sample products of regional rainfall map for April 02, 2010, storm event (UTC: 10:53:12).
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(a) rainfall rate map (b) hourly rainfall map

Figure 4.5: Sample products of regional rainfall map for June 14, 2010, storm event (UTC: 18:15:10)

(a) rainfall rate map (b) hourly rainfall map

Figure 4.6: Sample products of regional rainfall map for May 20, 2011, storm event (UTC: 01:17:13).
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(a) 5-min rainfall point-wise trace
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(b) 10-min rainfall point-wise trace
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(c) 15-min rainfall point-wise trace
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(d) 20-min rainfall point-wise trace
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(e) 30-min rainfall point-wise trace
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(f) 60-min rainfall point-wise trace

Figure 4.7: Point-wise line traces against gauges of June 14, 2007, storm event: at the location of gauge 136
(Latitude: 34.927800, Longitude: -97.965600).
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(a) 5-min rainfall point-wise trace
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(b) 10-min rainfall point-wise trace
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(c) 15-min rainfall point-wise trace
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(d) 20-min rainfall point-wise trace
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(e) 30-min rainfall point-wise trace
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(f) 60-min rainfall point-wise trace

Figure 4.8: Point-wise line traces against gauges of June 20, 2007, storm event: at the location of gauge 282
(Latitude: 34.845039, Longitude: -98.073473).
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(a) 5-min rainfall point-wise trace
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(b) 10-min rainfall point-wise trace
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(c) 15-min rainfall point-wise trace
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(d) 20-min rainfall point-wise trace
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(e) 30-min rainfall point-wise trace
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(f) 60-min rainfall point-wise trace

Figure 4.9: Point-wise line traces against gauges of May 05, 2009, storm event at the location of gauge 244
(Latitude: 34.860714, Longitude: -97.911140).
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(a) 5-min rainfall point-wise trace
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(b) 10-min rainfall point-wise trace
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(c) 15-min rainfall point-wise trace
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(d) 20-min rainfall point-wise trace
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(e) 30-min rainfall point-wise trace

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Minutes since 0Z

m
m

Hourly Rainfall <gauge: 235>

 

 
Radar
Gauge

(f) 60-min rainfall point-wise trace

Figure 4.10: Point-wise line traces against gauges of June 14, 2010, storm event: at the location of gauge
235 (Latitude: 34.933460, Longitude: -98.018777).
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(a) 5-min rainfall point-wise trace
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(b) 10-min rainfall point-wise trace
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(c) 15-min rainfall point-wise trace
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(d) 20-min rainfall point-wise trace
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(e) 30-min rainfall point-wise trace
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(f) 60-min rainfall point-wise trace

Figure 4.11: Point-wise line traces against gauges of May 20, 2011, storm event: at the location of gauge
234 (Latitude: 34.927445, Longitude: -98.075452).
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4.2.2 Five-year Evaluation Results

For each storm event, the rainfall rate is estimated from networked radars and compared with the ground

gauges. Figure 4.12 shows the rainfall rate distribution and corresponding statistical properties (“binned”

mean) for the precipitation event of May 20, 2011. In addition, the 5-, 10-, 15, 20-, 30- and 60-minute

rainfalls were also estimated and the color-coded density and ”binned” mean plots were generated for each

storm event. For the rainfall case on May 20, 2011, the “N”-minute rainfall distributions can be found in

figure 4.13; the binned mean plots are shown in figure 4.14.

(a) rainfall rate distribution density comparison
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(b) statistical properties comparison of rainfall rate

Figure 4.12: Event-wise rainfall rate distribution and statistical properties for May 20, 2011, storm case:
radar vs. gauge.

Figure 4.15 shows the biases and standard error of the IP1 instantaneous rainfall rate estimates for

all of the individual events. Similarly, Figure 4.16 and Figure 4.17 represent the event-wise biases and

standard error of the “N”-minute rainfall estimates. From the biases scatter plots, it is easy to see that the

instantaneous rainfall rate mostly has a bias within 3 mm/hr and the “N”-minute rainfall measurements

mostly have biases within 1 mm. We can also see that the bias values do not have an overall trend with respect

to the rainfall intensity of both instantaneous rain rate and period rainfall estimates (from gauges). There

seems to be a general linearity between the standard error and the mean ground truth for both rainfall-rate

and period rainfall estimates. As the mean instantaneous rain rate or the period rainfall intensities increases,

the standard errors exhibit an increasing trend.
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(a) 5-min rainfall distribution density comparison (b) 10-min rainfall distribution density comparison

(c) 15-min rainfall distribution density comparison (d) 20-min rainfall distribution density comparison

(e) 30-min rainfall distribution density comparison (f) 60-min rainfall distribution density comparison

Figure 4.13: Event-wise rainfall distribution density comparison for May 20, 2011, storm case: radar vs.
gauge.
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(a) statistical properties comparison of 5-min rainfall

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

10−min rainfall from gauge (mm)

10
−m

in
 r

ai
nf

al
l f

ro
m

 r
ad

ar
 (

m
m

)

 

 

mean
std

(b) statistical properties comparison of 10-min rainfall
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(c) statistical properties comparison of 15-min rainfall
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(d) statistical properties comparison of 20-min rainfall
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(e) statistical properties comparison of 30-min rainfall
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Figure 4.14: Statistical properties of event-wise rainfall estimates for May 20, 2011, storm case.
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Figure 4.15: Eventwise biases and standard error of the IP1 rainfall rate estimates.
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Figure 4.16: Eventwise biases of the IP1 rainfall estimates.

57



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Mean 5−min Rainfall (mm)

S
ta

nd
ar

d 
E

rr
or

 (
m

m
)

(a) standard error of 5-min rainfall

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Mean 10−min Rainfall (mm)

S
ta

nd
ar

d 
E

rr
or

 (
m

m
)

(b) standard error of 10-min rainfall

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Mean 15−min Rainfall (mm)

S
ta

nd
ar

d 
E

rr
or

 (
m

m
)

(c) standard error of 15-min rainfall

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Mean 20−min Rainfall (mm)

S
ta

nd
ar

d 
E

rr
or

 (
m

m
)

(d) standard error of 20-min rainfall

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Mean 30−min Rainfall (mm)

S
ta

nd
ar

d 
E

rr
or

 (
m

m
)

(e) standard error of 30-min rainfall

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Mean Hourly Rainfall (mm)

S
ta

nd
ar

d 
E

rr
or

 (
m

m
)

(f) standard error of 60-min rainfall

Figure 4.17: Standard error of the IP1 rainfall estimates.
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The overall scores for 40 rainfall cases are computed based on the same performance metrics, taking

into account the entire population. Obviously, this will give a higher weight for the longer-lasting events. As

shown in table 4.2, the composite IP1 instantaneous rainfall rate has a fairly small bias of about -2.64% and

an NSE about 49 % over all of the 40 precipitation events analyzed, and the estimates of 5- ,10-, 15-, 20-,

30- and hourly rainfall have normalized biases of about -2.53%, -2.49%, -2.45%, -2.40%, -2.29% and -2.21%,

respectively, whereas low NSEs are about 40.86%, 35.81%, 32.93%, 31.17%, 28.96% and 25.14% respectively.

These performance evaluation results demonstrate a great improvement compared to the current state-of-

the-art.

Table 4.2: Overall performance of Kdp-based CASA QPE algorithms.

Rainfall Estimates Total Events Analyzed Normalized Bias (%) NSE (%)
Instantaneous rain rate 40 -2.64 49.00
5-min rainfall 40 -2.53 40.86
10-min rainfall 40 -2.49 35.81
15-min rainfall 40 -2.45 32.93
20-min rainfall 40 -2.40 31.17
30-min rainfall 40 -2.29 28.96
60-min (hourly) rainfall 40 -2.21 25.14

4.3 Summary

A five-year evaluation study has been conducted in this chapter. From the validation results from 40

rainfall events, we concluded that the CASA QPE system is an excellent tool for precipitation measurements.

In addition, various rainfall measurement products were also given in this chapter. These rainfall products

are critical candidates for hydrological input for future hydrologic and hydraulic analysis.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

In recent years, X-band (8-12 GHz) radar has gained increasing interest for use in weather sensing

because of its shorter wavelength and lower cost. The National Science Foundation Engineering Research

Center (NSF-ERC) for Collaborative and Adaptive Sensing of the Atmosphere (CASA) has developed a

dual-polarization X-band radar network for detecting the region of the lower atmosphere that is currently

below conventional radar range. The need for a study of the quantitative precipitation estimation (QPE)

by such a dual-polarization X-band radar network is essential. In this thesis, the dual-polarization rainfall

estimation system developed by CASA was studied.

This research begins with a description of the CASA radar network and its operational methodology.

Today’s weather radar network such as the National Weather Service’s (NWS) Weather Surveillance Radar-

1988 Doppler (WSR-88D) network, also known as Next-Generation Radar (NEXRAD) network, and the

Federal Aviation Administration’s (FAA) Terminal Doppler Weather Radar (TDWR) network use either S-

band (2-4 GHz) or C-band (4-8 GHz) radars to detect precipitations, atmospheric movement, and hazardous

wind shear conditions. However, these high-power, long-range radars have limited ability to observe the lower

part of the atmosphere because of the earth curvature effect. As a result, meteorological conditions in the

lower atmosphere will be under-sampled. Thus, it is challenging to make accurate estimations and predictions

of hazardous weather events in this region. By deploying the lower-cost and smaller X-band radars, CASA

is able to see the lower troposphere. Installed just about 30 km apart, these small radars can communicate

with each other and adjust their scanning modes in response to quickly changing weather and different

users’ needs. Through the distributed collaborative adaptive sensing (DCAS) operational methodology

developed by CASA, the radars work collaboratively within a dynamic information technology infrastructure,

conducting high-resolution sensing and accurate predictions. Up-to-the-second radar information can then

be used to make critical decisions about the weather and to issue important warnings. The accomplishments,

breakthroughs, and lessons learned from the past five-years’ operation were also presented in this thesis. The

first urban demonstration network of CASA in the Dallas-Fort Worth area was briefly described in Chapter

2.
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This thesis focuses on the development and evaluation of the CASA QPE system. Before getting into

the details of CASA QPE system, the rainfall drop size distribution (DSD) models and commonly used

rainfall algorithms were reviewed in Chapter 3. The algorithms include traditional Z − R relations, Kdp-

based algorithm, and a couple of hybrid algorithms. The dual-polarization radar QPE system developed

by CASA was then introduced in depth. The high spatio-temporal resolution CASA QPE is based on

the measurement of a specific differential phase (Kdp). Unlike the rainfall estimation based on the power

products such as Z and Zdr, Kdp-based QPE is less sensitive to the DSD. Another advantage of relying on

Kdp to estimate rainfall is that it is relatively less prone to calibration errors. Being the range derivative of

the differential phase shift, Kdp is less susceptible to path attenuation. The R−Kdp estimator is also immune

to partial beam blockage and hail contamination. The use of network radars gives rise to a more accurate

rainfall estimation: since more data are collected from different viewing aspects, a more conclusive set of

Kdp can be obtained. To validate the CASA QPE products, a network of 20 rainfall gauges were used for

cross-comparison. The rainfall measurements from the 20 rainfall gauges are archived as accumulations at

five-minute intervals over every 24-hour period, with a resolution of 0.254 mm. The gauge data format and

rainfall evaluation metrics were presented. The various sensing aspects for CASA QPE and the estimation

of Kdp were also described in Chapter 3.

Sample rainfall products such as the hourly rainfall maps and point-wise line traces of rainfall estimates

are given in Chapter 4. In addition, a five-year validation study of the CASA QPE system was conducted.

Rainfall measurements from 40 precipitation events were used for cross comparisons. Over all of the 40

precipitation events, the composite IP1 instantaneous rainfall rate has a fairly small bias of about -2.64

% and an normalized standard error (NSE) of about 49% and the estimates of 5- ,10-, 15-, 20-, 30- and

60-minute rainfall have normalized biases of about -2.53%, -2.49%, -2.45%, -2.40%, -2.29% and -2.21%,

respectively, whereas they have low NSEs of about 40.86%, 35.81%, 32.93%, 31.17%, 28.96% and 25.14%,

respectively. These evaluation scores show that the CASA QPE system is a great improvement compared

to the current state-of-the-art system.

Overall, this thesis has presented a comprehensive evaluation and description of the CASA QPE system.

The sample rainfall products and evaluation studies provided here show that the system has satisfactory
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operation and is capable of providing accurate, high-resolution rainfall measurements that can be used for

flash flood warning and mitigation.

5.2 Future Work

Although an extensive description and evaluation of the CASA QPE system has been given, this work

can be extended in several ways. Some of these extensions are sensitivity analysis, hydrological application

of CASA QPE products, and the development of multi-sensor precipitation estimation methodology.

5.2.1 Sensitivity Analysis

When the rainfall intensity is very small, say less than 0.3 mm/hr, the estimation of specific differential

propagation phase (Kdp) becomes more difficult. It is entirely possible that the Kdp will be drowned in the

noise, which will make the rainfall measurements unreliable and inaccurate. One possible solution to this

problem is to study the reflectivity estimates and properties in those rain cells. However, the combination

of the reflectivity field will make the QPE system more complicated, which will delay the response of the

hydrological models and emergency management. The sensitivity of CASA QPE system needs further

analysis to reach its full capacity.

5.2.2 Hydrological Applications

Radar quantitative precipitation estimation has a great potential to drive the hydrologic models for

runoff estimation and flood monitoring, prediction, and mitigation ( [53], [54]). Accurate rainfall measure-

ments are a prerequisite for stream flow simulations. The impacts of radar QPE on hydrological models

have gained increasing attention in recent years, but most of the studies are concentrated on S-, or C-band

radar observations. The high-resolution rainfall products from CASA X-band radar QPE system and rainfall

nowcasting products from CASA can serve as a reliable data input for distributed hydrological models so as

to assess the impacts of dual- polarization X-band radars on flash flood monitoring and forecasting. Figure

5.1 is a closed-loop architecture showing the important role of CASA QPE and short-term QPF for urban

flash flood applications [55].

The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by the U.S.

National Weather Service (NWS) Office of Hydrologic Development (OHD) is a great tool for generating
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Figure 5.1: Closed loop of urban flash flood monitoring system based on the X-band dual-polarization radar
network.
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runoff and other hydrological information such as soil moisture, etc ( [56]). Currently, this model is being

tested using hourly rainfall estimates produced by the CASA X-band dual-polarization radar network for

the purpose of flash flood applications. In addition, the Hydrologic Modeling System (HMS) designed in

the U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC) can also simulate the

precipitation-runoff processed in dendritic watershed systems (see http : //www.hec.usace.army.mil/software/hec−

hms/). The HEC-HMS is applicable in a wide range of geographic regions for studies of water availability,

urban drainage, stream flow forecasting, reservoir spillway design, and systems operation. CASA will also

adopt the HEC-HMS in the Dallas-Fort Worth metropolitan area. The impacts of CASA QPE on HL-RDHM

and HEC-HMS will be focused on in future research. Understanding the uncertainties of radar QPE and

hydrological modelling is another essential step in the future research.

5.2.3 Multisensor Precipitation Estimation

Beyond the accurate high-resolution CASA QPE products, we still have many problems related to

estimating precipitation in many remote parts of the world and particularly in developing countries. QPE

is extremely challenging in areas of complex terrain such as the western United States due to the sparse

coverage of ground-based meteorological radars and the effects of beam blockage (e.g., [57]). The combination

of different instruments for rainfall measurements has been focused world wide to provide rainfall maps of

good orographic coverage. The Multisensor Precipitation Estimator (MPE) [58] [59] and National Mosaic

and Multi-sensor QPE (NMQ) [60], developed by NWS and NSSL, respectively, are good examples of such

combinations. Both can produce gridded QPE products that include radar-only, gauge-only, and gauge-

radar-mosaiced, and so forth. How to combine the CASA QPE system with satellite and regional rain gauge

measurements to get an optimal rainfall estimate is another topic to be followed in future research.
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