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ABSTRACT

VIRTUAL AND TOPOLOGICAL COORDINATE BASED ROUTING, NDBILITY

TRACKING AND PREDICTION IN 2D AND 3D WIRELESS SENSONETWORKS

A Virtual Coordinate System (VCS) for Wireless Sansetworks (WSNs) characterizes
each sensor node’s location using the minimum nurobRops to a specific set of sensor nodes
called anchors. VCS does not require geographialilation hardware such as Global
Positioning System (GPS), or localization algorithrhased on Received Signal Strength
Indication (RSSI) measurements. Topological Coatdis (TCs) are derived from Virtual
Coordinates (VCs) of networks using Singular ValDecomposition (SVD). Topology
Preserving Maps (TPMs) based on TCs contain 2DDm8twork topology and directional
information that are lost in VCs. This thesis exiethe scope of VC and TC based techniques to
3D sensor networks and networks with mobile no@gecifically, we apply existing Extreme
Node Search (ENS) for anchor placement for 3D WSWsGeo-Logical Routing (3D-GLR), a
routing algorithm for 3D sensor networks that alsges between VC and TC domains is
evaluated. VC and TC based methods have hithero biged only in static networks. We
develop methods to use VCs in mobile networks,uigiclg the generation of coordinates, for
mobile sensors without having to regenerate VCsyetmme the topology changes. 2D and 3D
Topological Coordinate based Tracking and Predic(iBD-TCTP and 3D-TCTP) are novel
algorithms developed for mobility tracking and potién in sensor networks without the need of
physical distance measurements.

Most existing 2D sensor networking algorithms failperform poorly in 3D networks.

Developing VC and TC based algorithms for 3D semstworks is crucial to benefit from the



scalability, adjustability and flexibility of VCssawell as to overcome the many disadvantages
associated with geographic coordinate systemstiBgi&ENS algorithm for 2D sensor networks
plays a key role in providing a good anchor placeinaed we continue to use ENS algorithm for
anchor selection in 3D network. Additionally, weopose a comparison algorithm for ENS
algorithm named Double-ENS algorithm which uses itwtependent pairs of initial anchors and
thereby increases the coverage of ENS anchors im&fdorks, in order to further prove if
anchor selection from original ENS algorithm iseally optimal. Existing Geo-Logical Routing
(GLR) algorithm demonstrates very good routing @enfance by switching between greedy
forwarding in virtual and topological domains in 2Bnsor networks. Proposed 3D-GLR extends
the algorithm to 3D networks by replacing 2D TC2mBD TCs in TC distance calculation.
Simulation results show that the 3D-GLR algorithmthw ENS anchor placement can
significantly outperform current Geographic Cooatas (GCs) based 3D Greedy Distributed
Spanning Tree Routing (3D-GDSTR) algorithm in vasonetwork environments. This
demonstrates the effectiveness of ENS algorithm3b LR algorithm in 3D sensor networks.
Tracking and communicating with mobile sensors Basfar required the use of
localization or geographic information. This thegissents a novel approach to achieve tracking
and communication without geographic informatidm)g significantly reducing the hardware
cost and energy consumption. Mobility of sensor$Vi8Ns is considered under two scenarios:
dynamic deployment and continuous movement. Artiefit VC generation scheme, which uses
the average of neighboring sensors’ VCs, is propdee newly deployed sensors to get
coordinates without flooding based VC generatidfor the second scenario, a prediction and
tracking algorithm called 2D-TCTP for continuousipving sensors is developed for 2D sensor

networks. Predicted location of a mobile sensoa &iture time is calculated based on current



sampled velocity and direction in topological domdihe set of sensors inside an ellipse-shaped
detection area around the predicted future locasaalerted for the arrival of mobile sensor for
communication or detection purposes. Using TPMa 8B guide map, tracking and prediction
performances can be achieved similar to those baisgaCs. A simple modification for TPMs
generation is proposed, which considers radial rmé&tion contained in the first principle
component from SVD. This modification improves ttempression or folding at the edges that
has been observed in TPMs, and thus the accuracgabing. 3D-TCTP uses a detection area in
the shape of a 3D sphere. 3D-TCTP simulation resafe similar to 2D-TCTP and show
competence comparable to the same algorithms base&Cs although without any 3D

geographic information.
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CHAPTER 1

INTRODUCTION

Wireless Sensor Networks (WSNs) consist of a lamg@ber of sensor nodes, deployed over an
area to collaboratively monitor or sample data frphysical or environmental phenomenon such as
humidity in soil, temperature of water, densitychEmicals in air, suspicious event or target inldfa!d,
etc. Recent developments in Microelectromechan®gtems (MEMS) manufacturing and on-chip
technology have brought revolutionary changes ¢odibsign and performance of sensors. Sensor nodes
have become tiny in size, affordable in cost, robugperformance, imbedded with powerful processor
and have satisfactory computation capability andnorg [3][49][61]. Large-sale WSNs are able to
accomplish complicated sensing tasks in harsh ambetous environments. Sensors periodically
communicate with each other and report sampled tdataBase Station (BS) so that large area sensing
process can be managed intelligently. WSNs haviaisdrawn much attention from researchers, and
intensive research work has been done in 2D WSNseaas such as localization, routing, and tracking
[21[31[4]115]116][9][11][23][30][39]. However, many poblems remain to be solved especially in 3-
dimensiaonl (3D) WSNs and Mobile Wireless Sensdmigeks (MWSNS).

Compared with 2D WSNs, 3D WSNs can be placed indimgis [51][56], under-water
monitoring [27][48], SkyMedia camera system [41Haaven artificial eye vision system for human to
restore vision [52]. Although a significant body relsearch exists on geographic information based 2D
WSNs, many such schemes are not effective, doaade svell, or cannot be used with 3D WSNs. The
difficulty of applying 2D to 3D stems from two magauses: a) the differences in geometric and imhere
network properties of 2D and 3D networks, and [® tonstraints related to radio or other signal
communication among nodes in open 2D networksrnv&D deployments. First, consider the inherent
geometric and network properties. The difficuliie®xtending 2D algorithm to 3D in sensor netwogkin
context is addressed in [44], with examples rela@dnode deployment, coverage, and structural

restrictions. While solutions to certain 2D probkerare directly applicable to 3D, many require a



significant increase in computational complexitiere are also several other problems that do not
generalize to 3D at all [44]. The second factat tinakes it difficult or in some cases almost ingae
to apply solutions designed for 2D networks to 3Dreélated to the restrictions from communication
signals. 3D networks in many cases are deploydthish and irregular environments, which contain 3D
obstacles, surfaces reflecting or absorbing raigiweds. Some of these networks, e.g., those deglope
3D surfaces or 3D volumes enclosing regions dewbigsensors, introduce complex geographical voids.
Such environments render many technologies sudBlaisal Positioning System (GPS) and distance
measurements using Received Signal Strength ImoiicgdRSSI), ineffective. Furthermore, in such
environments, the communication topology can becaigaificantly decoupled from the Geographic
Coordinates (GCs) of the nodes. Two sensor nddgsate on different floors of a building may jbst
feet apart, but require complex communication padubsurface contaminant tracking, where nodes are
placed in wells, is another such example [31]. Tlewsn if GCs are obtained by means other than@PS
RSSI, the algorithms based on GCs will perform i§iggmtly poorly in 3D networks. Several recent
works has focused on GC based 3D WSN related tiicappns such as those for underwater sensing [48]
or indoor building environments [51][56]. In 3D WS, sensor nodes need to be equipped with specific
sensors to get altitude or depth information an@® @Buipment to get horizontal plane position [36].
3D Underwater Sensor Network (USNs), normally aitmwsng algorithm is required for localization
because GPS does not work well underwater [27]B&%ically, 3D geographic position of beacon sensor
nodes near water surface will be projected to oflamsor nodes to get comparative location for these
sensor nodes [48]. GC based 3D WSNs have to aéidrd money, energy and computation cost not only
from localization equipment to get 3D geographifoimation but also from redesigning related
algorithms to adjust to 3D networks, thus stillifecface challenges in areas such as localizatouring,
etc. [27][42][48].

An example of 3D USNs can be seen in Figurel.l,chwhs from Georgia Institute of

Technology's Underwater Acoustic Sensor NetworkKé/(ASNs) project [59] .
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Figure 1.1: Example of 3D USNs [59]

As a class of WSNs, MWSNs have advantages of mifiddeat energy usage, more channel
capacity, better targeting and data fidelity ovhe ttraditional static WSNs [2][38][55]. Mobility
applications include mobile object tracking in maity renaissance, animal and habitat protection and
traffic control in city area. Figure 1.2 gives atample of MWSNSs from Ohio State University’s prdjec
Wireless Multimedia Sensor Networks [60] in whi@nsors are carried by mobile objects such as human,
vehicle and aircraft. However, challenges brouditua by mobility also exist such as mobile sensor’s
localization and tracking [1][2][30][39]. MWSNs magonsume higher power energy and have more
dynamic topology [2]. Mobility increases the diffity in getting sensor nodes accurately localized a
localization issue remains a hot topic among rebess. Traditional localization technologies indhe
GPS, RSSI, Time of Arrival (TOA), Direction of Aual (DOA), Angle of Arrival (AOA), etc., are used
to obtain geographic position information for seissa sensor networks. These techniques however hav
limitations related to energy consumption, measgpaocuracy and applicable environments [2][43][55],

which become the main obstacles in developing taogde MWSNSs.



| % Video Camera
| & Infrared Camera
| ® Microphones

Figure 1.2: Example of MWSNSs [60]

1.1 Motivation and problem statement

Further development of both 3D WSNs and MWSNs wilffer from hardware cost, power
consumption from geographic localization equiprmeemd usage limitations from physical environments,
especially when the scale of WSNs becomes largedanger. Virtual Coordinate System (VCS) based
WSNs are free of geographic information and physicstance measurement. Different from traditional
localization system based on GCs, VCS is estaldilased on hop distances from each sensor node to a
specific set of sensor nodes called anchors omanks [13][17][19][37]. Suppose there @&feanchors in
network, each node in VCS is characterized by adinate vector of siz& containing the shortest hop
distance to each of a set Mfanchors [13][17][19][37]. Virtual Coordinates (VCseplace GCs for
sensors to get location in multi-dimensional vittdemain instead of 2D or 3D geographic domain.sfhu
VCS is free of geographic localization equipmerthsas GPS and localization algorithm such as RSSI,
etc. Additionally, VCS is insensitive to physicaligs and the VC generation based on hop countssnake
it easy to extend from 2D to 3D sensor network.réfaee, VCS can adapt to various environments and
conditions in 2D or 3D indoor, outdoor or underwateea sensor networks. Due to the advantages state

above, VCS based sensor networks have received dboaftention from researchers



[10][13][14][16][17][18][19][20][21][37][45]. Howe\er, the main drawback of VCS is that 2D or 3D
directional information is lost because VCs propagadially. To overcome this drawback, Topology
Preserving Maps (TPMs) [17][18] is a novel techeigquhich can generate topology maps of 2D and 3D
networks and obtain lost direction information fraf€S. Singular Value Decomposition (SVD) based
dimensionality reduction scheme is used to derigpological Coordinates (TCs) of sensor nodes from
VCs. TPMs are able to preserve the internal anereat boundaries and basic shape of both 2D and 3D
network, validated to provide a good alternative?bf physical maps for applications in mapping [17],
routing [20] and boundary detection [18]. Extremedd Search (ENS) algorithm [19] is another key
technique for VCS based 2D WSNs. ENS algorithmrrsed at providing a good set of anchors, which is
necessary basis for TPMs technique. In VCS baseW/3DNs, Geo-Logical Routing (GLR) algorithm is a
state-of-art routing technique [20]. Since GLR aitdon proposed in [20] is used only in 2D WSNs, we
call it 2D-GLR in the rest of this thesis. 2D-GLRvikhes between virtual domain and topological
domain to reach the best routing performance. Ugiegdy forwarding, the sensor node compares d@s an
the neighbors’ norms? of VC/TC distance to destination and forward taeket to the neighbor who has
the minimum distance [20]. If the packet is stuakdcal minima in both VC and TC routing mode, the
packet will be routed to the nearest anchor toimksbn and then routing is switched back to the VC
routing mode again. 2D-GLR algorithm shows deseablting performance for 2D networks compared
with Greedy Perimeter Stateless Routing (GPSR) E4brithm and some other VC based routing
algorithms such as Logical Coordinate Routing (LEER3] and Convex Subspace Routing (CSR) [16].
Since VC generation and TC derivation is basedagmdount and network connectivity, which is free of
geographic dimensional information. 2D-GLR routalgorithm is expected to be extended to 3D sensor
networks without complicated modification.

Although VC generation doesn’t depend on dimensiotie network and TPMs technique apply
in both 2D and 3D sensor networks, VCS based 3D 8VSII face challenge from proper anchor
selection. Anchor placement plays key role in ofS/Rased techniques such as TPMs and 2D-GLR and
poor anchor selection will result in a large amoahtidentical coordinates and thus huge Topology
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Preserving ErrorE;p) [17][19], which will severely decrease the accyra€ TCs and performance of
routing algorithm. In this thesis, we are motivateduse existing ENS algorithm in order to provide
effective anchor selection for VCS based 3D WSNkoAIn this thesis, routing performance and
effectiveness of 3D-GLR with ENS anchor placemar8D WSNs are explored for the first time.

In MWSNSs, mobility of sensors makes it possiblesense and monitor dynamic events in
environment or collecting data in a more flexiblaywIn general, mobility can be understood in the
following two aspects: objects of mobility and jeatts of mobility. Mobile objects in MWSNSs include
mobile BS, mobile sensor nodes, mobile relay naatesd mobile cluster heads [55]. For patterns of
mobility, basically there are two types of scenaffi]. The first scenario is that the mobile seasane
deployed dynamically. They may be dropped fromraftcand vehicle or placed as additional new
sensors manually in the original network environtnémthis scenario, change in network connectiigty
due to the dynamic deployment of sensors, and theagy introduced mobile sensors normally stay in
stationary status or change location very slowlyctSnew sensors are deployed in sensing area when
there is a need of increasing sensing granulariseasing tasks. In the second scenario, mobilgosen
such as the mobile sensors equipped in robotstite beeld or attached to animals in habitat prétac
projects move within a WSNs [2]. In this thesis, mainly focus on communication of mobile sensor
nodes in both scenarios of dynamic deployment amiirctuous movement, including dynamic deployed
mobile sensor’s routing performance and continugasing mobile sensors’ tracking and detection
performance.

In VCS based MWSNSs, an important question is howammunicate with the mobile sensors,
e.g., how to route packets to the mobile sensoahillel sensors are newly inserted into the origatatfic
sensor network. These nodes do not have VCs or tmbation information in virtual domain which is
necessary for address based routing algorithmg1@JB20][37]. Obtaining VCs for mobile sensors in
virtual domain is the initial, but also an import@hase. Re-flooding VC generation messages contgin
hop distances information from anchor set to emt@®vork is both time and energy consuming. What's
worse, when mobile sensors keep changing positbmes time, the VCs obtained from flooding are

6



always out of date and thus of little use due t® diynamic topology change in network. As a result,
taking concern of time, energy, computation of gatieg VCs, a simple VC generation scheme without
VC re-flooding from anchors should be applied foshihe sensors. Mobile sensors are equipped with
radios to be able to communicate with neighbor @aneithin a certain range. In this thesis, we sOKC
generation problem for mobile sensors by makingaigbeir neighboring sensors’ VCs, which we name
as Average Scheme, Mixture Scheme and Minimum Seh&hus, mobile sensors’ generated VCs come
from average value, minimum value from neighboegsors’ VCs. When evaluating the effectiveness
of VC generation schemes, two main aspects ofrrguierformance of mobile sensors are considered:
mobile sensors receive packets from original stagitvork, and mobile sensors pass packets over the
original static network. Ideally, mobile sensamsuting performance under such cases should kst |
as good as the routing performance of the origitatic sensor network. In addition, the insertibmew
mobile sensors should not affect the routing pertorce of the original network. For mobile sensars i
continuous movement, prediction based tracking detgction strategy is widely used in GCs based
MWSNSs. However, this strategy has not yet beenieghph topological domain where exact geographic
position and physical distance don't exist. In tihissis, we borrow the idea of prediction baseckirmg

and detection from geographic domain and applyitiéa in topological domain which is derived from
VC set of the network. We propose an algorithmrfmbile sensor detection, prediction and tracking
algorithm, named as Topological Coordinate baseatking and Prediction (TCTP) algorithm. The 2D
and 3D versions of this algorithm are called 2D-PJB2] and 3D-TCTP respectively. TCTP algorithm
detects mobile sensor’'s future location based srciirrent velocity and direction, estimated in the
topological domain. 2D-TCTP and 3D-TCTP are ableatcomplish mobile sensor tracking, and thus

communication without any geographic informatiod @hysical distance measurements.

1.2 Contributions
Since anchor selection plays a crucial role in gremince of VCS based algorithm and
techniques such as mapping [17] and routing [20hroper anchor placement can greatly degrades
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mapping accuracy and routing performance in VC®¢t#a&SNs. Before any anchor selection scheme
becomes available, anchors are selected eitheomagdr manually [13][37] for VCS based algorithms.
ENS algorithm [19] provides a good set of anchorsniprove performances in mapping and routing
algorithms [19]. The possibility and performanceestending ENS algorithm in 3D WSNs need to be
explored in order to provide necessary basis foS\M@ased techniques in 3D networks. Among VCS
based routing algorithms [10][13][16][20][21][372D-GLR algorithm is a novel routing technique [7].
2D-GLR switches greedy forwarding routing in threedes: VC mode, TC mode and anchor mode to
reach the best routing performance. In VCS whasgeriibn information is lost, TCs are derived from
VCs of network using SVD from TPMs technique [20Hal Cs act as 2D/3D Cartesian coordinates well
to preserve the internal and external boundaridsbasic shape of both 2D and 3D networks [17][18].
greedy forwarding of 2D-GLR, the sensor node com@aneighboring nodes’ nornig of VC/TC
distances to destination with the distance froelfitshen, forward the packet to the neighbor whe the
minimum distance [20]. If the packet is stuck ircdb minima in both VC and TC routing mode, the
packet will be routed to the nearest anchor toimsbn and then routing is switched back to the VC
mode again [20]. 2D-GLR algorithm shows satisfactmuting performance for 2D networks compared
with GC based GPSR algorithm and some other VCdoamgting algorithms such as LCR [13] and CSR
[16]. However, the routing performance of GLR alon has not yet been studied in 3D WSNSs. In 3D
WSNs, the comparison of routing performance of GSeld and VC/TC based routing algorithm still
remain unknown. Although VCS base WSNs have adgastaf saving hardware and energy cost from
GPS localization equipment, its effectiveness intimg and communication performance need to be
further validated for 3D WSNSs.

Contributions of this thesis include the following:

Firstly, the extension of ENS algorithm in 3D WSNgresented. To prove the effectiveness of
ENS anchor selection in 3D networks, another ansbf#ction algorithm named Double-ENS algorithm
based on ENS algorithm is proposed as comparisgorigdm. In Double-ENS algorithm, two
independent ENS anchor set will be generated idsiéane set so that the amount and coverage of ENS

8



anchors in 3D sensor networks can be increasedpiiitpmse of proposal of Double-ENS algorithm is to
figure out if increased amount of ENS anchor wékessarily increase the routing performance for 3D
networks, compared with original ENS anchors. Th2D;GLR algorithm is extended to 3D-GLR
algorithm by simply replacing 2D TCs with 3D TCs TiC distance calculation in TC based greedy
forwarding mode. Performance of 3D-GLR algorithmeimluated via simulation of five 3D network
examples. 3D-GLR’s performance is compared with I&&Sed 3D Greedy Distributed Spanning Tree
Routing (3D-GPSTR), in order to further prove tbheatmg effectiveness and efficiency of ENS and 3D-
GLR algorithm in 3D WSNSs.

The second main contribution addresses the VC ggoemwhen new sensor nodes are introduced
or mobile sensors move around in a sensor netWtnee VC generation schemes for mobile sensors are
designed that require only simple computations rmméhdditional floodings from anchor nodes, namely
Average Scheme, Mixture Scheme and Minimum Schédine.routing performances of mobile sensors’
receiving packets and passing packets in the nktaar evaluated by simulation in both 2D and 3D
networks under these three VC generation schentmesrduting performances are compared with that of
the original static network without the mobile sarss Thirdly, considering the mobile sensors are in
continuous moving status, a prediction based trackind detecting algorithms called 2D-TCTP for VCS
based 2D WSNs is proposed. The detecting perforenah2D-TCTP algorithm in mobile sensor tracking
and perdition is compared with the same approasbdan GC information. Detection failure rate il
used as the main evaluation matric. Also, a simpladification of TPMs which considers radial
information present in the first principle compon&om SVD is also developed to improve the folding
problem at the edges of TPMs so that the accurb@yPbls can be increased. TPMs with more accurate
topology are used to provide a more helpful guiég fior 2D-TCTP algorithm.

The fourth contribution in this thesis is to extearti modify 2D-TCTP algorithm for 3D WSNSs.
Performance of 3D-TCTP algorithm is compared waims tracking and prediction algorithm based on

GCs.



1.3 Outline

The rest of thesis is organized as followed. Bamltgd and related work is reviewed in Chapter 2.
Chapter 3 presents the extension of the ENS dtgorib 3D networks. Also, simulation results and
discussion for 3D-GLR algorithm with ENS anchorgaement are presented. In Chapter 4, VC generation
schemes for mobile sensor nodes and related rostmglation results are given. TPMs modification
schemes and related simulation results are shov2hapter 5. Following Chapter 5, 2D-TCTP algorithm
is developed and tested in Chapter 6. Also in Ghrapt extension of 2D-TCTP to 3D-TCTP is

accomplished. Summary and future work is givenhialer 7.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The reviews of background and related work arerorga as followed. VCS based techniques
such as TPMs, ENS and boundary detection are gezbén Section 2.1. Section 2.2 mainly focuses on
existing GC and VC based routing algorithms in 2id 8D WSNs. In Section 2.3, recent tracking and

prediction techniques in MWSNSs are reviewed.

2.1 Virtual Coordinate System (VCS) and relagghhiques

A VCS is based on a set of anchors, which correspom subset of nodes, selected randomly or
by an anchor selection strategy [17][18]. Each riadee network, including anchors, is charactetibg
a VC vector, consisting of shortest hop distancegdch of the anchors [13][17][19][37]. Figure 2.1
below shows an example of VCS and corresponding ¥Gsach of the nodes. In general, for sensor
network ofN sensor nodes, if number 8f anchors is selected, there will b& & M matrix for VC of
the network. Figure 2.2 shows VC matrix for a natweonsisting of 100 nodes and 10 anchors.
Compared with traditional WSN in which sensors obgeographic location from GPS, sensor network
based on VCS does not have either directional imgion or topology map of the network.

Anchorl (0.7} (1.6) (2.5) {3.4) (4,3) (5.2

(1,6) (6,1)

o G o o
(2.5 (34 (43 (52  (61) Anchor2 (7.0)

Figure 2.1: Example of VCS based sensor networlk taio anchors
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1 2 3 4 5 6 7 8 9 10

1 10 41 39 23 27 6 28 37 29 40

2 9 A0 40 24 28 7 27 36 30 41

3 8 39 41 25 29 8 26 35 31 42

4 7 33 40 20 30 9 25 34 32 41

5 6 37 39 27 31 10 24 33 33 40
100 3 32 34 24 26 7 21 28 30 35

Figure 2.2: VC matrix for network of 100 nodes dfidanchors

Without any geographic information, one importaedtiire of VCS is that physical void becomes
invisible in virtual domain [16]. VCs based on hdigtance are able to provide topological connggtivi
information of the network better than GCs, whi@ips in VC based routing algorithms. In GC based
routing, distance between two sensor nodes is leddrlias the exact straight-line distance, whicasdo
not contain any route information. With this distanthere may be no actual path between these two
nodes at all. However, in VC based routing, VCs geaerated from hop distances and are related to
actual available paths [16]. Thus, VC based routilgprithms have demonstrated satisfactory routing
performance [10][13][16][20][21][37]. However, thaformation of minimum number of hops to a
certain set of anchors is far from enough to ob&iy 2D and 3D topology information of the network.
Since geographic topology is the key and indispalesaformation for many important applicationsdik
boundary detection and tracking, a topology exingcinethod using SVD is presented in [17] named as
TPMs. VCS based WSNs only have higher dimensionébrination of the network based on
connectivity. For example, the networkMfanchors has! dimensional information. SVD is applied to
extract 2D or 3D topology information from this hay dimensional information and therefore retam th
lost directional information.

Consider a network withf anchors and/ sensor nodes (Normally << N). Thus, each node is
characterized by a VC vector of lendththei™ element of which corresponds to the number of hops
from the node to thé" anchor. LeP be theN x M matrix containing VCs of all sensor nodes in the

network. The method to generate the TPM of netwisikg SVD method as follows [17]:
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P=U.5.VT (2.1)
Pgyp = PXV (2.2)
(X7, Yr] = [PSVD(Z)J PSVD(g)] (2.3)
Psyp is aN X M matrix containing sensor nodes’ principal compdseand can be seen as the
projection of network’s VCs set on unitary mat¥ix The first columrPg,,(* is the most significant
component but contains 1D radial information whishnot sufficient for 2D or 3D TMPs [17][18].
Meanwhile second cqum?gVD(Z)and third columrPs,,® contain the topological information that can
be translated to angular information and theseamomns can be seen as 2D Cartesian coordinaterset
sensor nodes in topological domain [1¥}.andY, are eaclV x 1 column vectors, anfXr, Y] in egn.
(2.3) is the TC set for the 2D network. i.e.,iffsrow corresponds to the TCs of tifenode. Then the
generated maps containing lost topology informa#ios called TPMs in [17]. The direction information
and network topology are well obtained without &ejp from GPS localization equipment. In [17], athe
methods to generate TPMs of VCS based WSN andamgplexities of each method are also described
and analyzed. The key idea is to find which sataifes to do SVD with lowest computation complexity
and then generate its unitary matrixBesides using VC set of entire nodes in netwanky partial nodes
in network such as anchor node set or randomlyctlenode set can also be used to generate unitary
matrix V. ConsiderA is the matrix containing VCs of anchor noddsis aM X M matrix. SVD
components of are obtained by replacingwith I/, from matrix4’s SVD in eqn. (2.4) and (2.5). 2D
TCs are still extracted from second and third caluoh P, in egn. (2.6). When random nodes are
selected as node set for SVD, consider the nunfllandom nodes is R isr X r matrix containing VCs
of selected random nodes. Similarly, SVD componeni are obtained by replacingwith V; in eqn.
(2.7) and (2.8). 2D TCs are extracted in the samg. WhenP is used for SVD calculation, the
complexity is approximately (4°M + 8NM? + 9M3) operations [17]. When only subset of nodes isluse

for SVD calculation, the complexity is less thaM@V + 8M3) [17]. Moreover, TPMs extraction from
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SVD not only works for 2D network, but also is peoivto be an effective method for 3D sensor network

topology extraction [18].

A=UyS,. VT (2.4)
Psyp = P XV, (2.5)
(X7, Yr] = [PSVD(Z)' Psyp®] (2.6)
R = Ug.Sg.Vi" (2.7)
Psyp = P X Vg (2.8)

Generating TPMs using SVD for 3D networks is simtta 2D networks. SVD components can
be generated based on entire node set in netwqolréial node set [18]. Differently, the fourth soin
Pgyp™ of generateds,p, is seen as the coordinates Znaxis, which can be seen from eqgn. (2.9).
Thus Xr, Yr andZ; are eaclV x 1 column vectors anXr, Yy, Zr] in eqn. (2.9) [18] is the TC set for
the 3D network. i.e., it&" row corresponds to the TCs of tiffenode. Although the topology information
of network can be retained with help of SVD, TPMjust approximate map and distortion of map,
flipping order of nodes, folding effects and eto. ekist [17][18]. Modifying TPMs for more accurate
direction information plays crucial role if TPMstaas guidance map replacing geographic map in
practical applications.

(X7, Yr, Z7] = [PSVD(Z): PSVD(3): PSVD(4)] (2.9)

Anchor placement has significant effects on pertoroe of VCS based WSNs. Poor anchor
placement will result in huge identical VC problemdE;p, which means a pair of sensor nodes is out of
order compared to original geographic topology [19] TPMs and VCS related techniques will suffer
from poor anchor placement. ENS algorithm [19] istate-of-art technique for VCS based 2D sensor
networks. ENS algorithm is aimed at providing a dyeet of anchors, which is the important basis for
TPMs technique. Basically, one pair of random areli®selected to initiate the VC generation messag
flooding [19]. Then Directional Virtual Coordina(®VC) is generated from a pair of VCs [19]. Conside

sensor noda;'s VCs from anchod; andA,are h;j, hy]. The DVC ofn; is given in eqgn. (2.10) [19].
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hA].Ak is the shortest hop count from anchgro A,. After DVC calculation is finished, local sensor

nodes having with the minimum value or the maxinuatue of DVC among its neighboring nodes will be
selected as anchors. Simulation results show tB& Wased sensor networks with ENS anchor placement
have less topology errorEyp) and better routing performances [19] compared w#&ndom anchor
placement.
f (hijohi) = (hij® — hix”)/2 ha;a, (2.10)

Boundary detection for 2D and 3D VCS based WSNm@her novel technique based on TPMs
technique [18]. By replacing GCs with TCs in Heoformula [18], boundary nodes will be detected in
topological domain instead of geographic domairurgtary detection based on TPMs works in both 2D
networks and 3D surface networks [18].

In all, TPMs are able to preserve the internal exteérnal boundaries and basic shape of both 2D
and 3D network, validated to provide a good suligtibf 2D physical maps for applications in mapping

[17], routing [20] and boundary detection [18] irSNs.

2.2 Routing algorithms in geographic and virtdainain
2.2.1 Geographic coordinate based routing algmstfor 2D and 3D WSNs

In large-scale WSNs, a large number of sensor nadeslensely scattered in large area. The
communication is done either among each sensor anodl@s neighbor nodes or between sensor node and
BS. Routing performance is a crucial criterion whealuating WSN’s communication system because
routing can affect many areas such as power maragemata dissemination, etc. [4]. Capability of
routing packets among sensor nodes effectivelgdsired in today’s WSNs development. When a new
model of network is designed, routing performarséne first thing to be evaluated. The big diffeen
between traditional wired networks routing and WSHsting is that IP address based routing is not
feasible in WSNs. Since a large amount of sensersieployed in unplanned physical environmensg it i

not realistic to set up certain number of sensas‘rauters”. Additionally, sensors’ computation
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capability and memory are limited to maintain sucbuting table”. Therefore, a global addressing
scheme is not suitable in WSNs [4]. WSNs havewts unique features and these features need to be
considered before any routing algorithm is designadmany situations and cases, the purposes of
communication in WSNs are reporting sensing datk baBS or BS sends control or request commands
to sensors in a particular sensing area. In WShish @ensor can play the role of data packet sender,
receiver and passer. Besides, unlike the wiredriatethe topology of WSNs is hard to stay the same
over long time. The changes due to the unpredietpbysical environment and sensing task can lead to
changes in the networks topology even though theéilityo of certain sensor nodes can be ignored.
Therefore more adaptive routing algorithms are irequin WSNs. GPSR [34] is commonly used
responsive routing algorithm designed for fast gian mobile and wireless networks. In GPSR
algorithm, packets and data are routed based owdheectivity information and physical position. A
sensor node evaluates its neighbors’ norm distanagsographic domain to the destination and fodsar
the packet to the neighbor sensor which has thémin distance to the destination. GPSR is based on
greedy forwarding and requires the global geog@fdation information of the network. However, in
today’s WSNs, sensing tasks in the unpredictabl® ewen dangerous environment such as volcano
sensing, under water sensing or indoor sensingtvadiow the use of GPS.

Additionally, GPSR can hardly be practical for 3DSWs because of local minima problem.
Several works have been published to find solutim€&GC based routing algorithm for 3D sensor
networks. Greedy Random Greedy routing (GRG) igloamzed algorithm and tries to route packets
based on random walk only for network with Unit Bataph (UBG) topology [22]. Greedy Hull Greedy
(GHG) routing algorithm uses planarization to camstnetwork hulls [36]. GRG algorithm suffers from
limitation of sensor networks types and GHG aldgonitsuffers from complexity from planarization
computation. J. Zhou et al. proposed 3D Greedyribiged Spanning Tree Routing (3D-GDSTR) [56]
algorithm which is extended from B. Leong’'s 2D-GD%Talgorithm [35]. 3D-GDSTR is free of
planarization algorithm and tested on both reaksemetworks test-bed and TOSSIM simulation. 3D-
GDSTR uses GC based greedy forwarding to find closgghbor to destination in 1-hop communication
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range. When packet is stuck in local minima, 3D-GRBSincreases communication range to 2-hop
neighborhood to find closer neighbor. If local mnai still exists in 2-hop range, routing will switth

hull trees (which are generated from minimal spagniess) routing mode to find sensor node who has
destination as its child node. 3D-GDSTR is statettfical and to be able to achieve near 100% dglive
rate in designed network with satisfactory nodereleg[56]. However, the cost from localization
equipment and hull tree generation are the maiwlisiaks of 3D-GDSTR algorithm.

Due to the disadvantages of GC based routing #lhgosi stated above, routing algorithms with
limited use of GPS or free of GPS are highly recemded nowadays to adapt to the varied sensing tasks
and application. Techniques like RSSI, TOA, DOA, Atc. are also used by today’'s WSN [8] so that
only a small number of sensors are equipped wit® @Pget geographic location and the other sensors
obtain their own locations by estimating the sigastiength with neighboring nodes. However, these
techniques are error-prone [43] thus the accurddpaations is far from enough for application like
tracking. Solutions to find appropriate technigaplacing GPS or other localization algorithm arange
researched these decades and one of the most pspluiions is VC based routing algorithm.

2.2.2 Virtual coordinate based routing algorithiors2D WSNs

Since 2000, researchers have started to find aligen solutions to replace GPS based
localization technique in WSNs and some results @aqeer related to routing performances from GPS-
free routing algorithms are published. Differemtnfr geographic domain, the domain without GPS based
techniques is called virtual domain. Like GC basmating algorithms, greedy forwarding is commonly
used in VC based routing algorithms [10][13][16][[2Q][37]. Packet is routed to the neighbor who has
the shortest distance to destination node in \lidieanain. The distance between two nodes in Mirtua
domain is thd.? norm. Consider a network witf anchors and thus nodeis identified by VC vector of
sizeM: (x4, x5, ...,%;). Similarly, nodeY is identified by a VC vector dfy;, y,, ..., ). The distance

between nod& and Y node in virtual domain is defined in eqn. (2.113][16].

Dyy = Zlivil(xi - y)? (2.11)
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Local minima caused by inappropriate anchor seeatir identical VCs are the main problem
deteriorating routing performance of greedy fornvirgdn virtual domain. The following will give a ief
review of VC based routing algorithms in recentyg@rs.

LCR algorithm [13] was developed by Q. Cao et al.2004. In LCR algorithm, packet is
forwarded to the nearest node to destination anHitizcking function is called when it comes to kbeal
minima. In 2005, A. Caruso et al. established #adbta coordinate-based routing algorithm for rogtin
GPS-free domain [10]. Greedy forwarding is usedréarting data [10]. When the data is stuck in local
minima, a ring search is conducted until a closmtenis found. Thus routing algorithm is improved by
delivering data to a zone of nodes without idehtocsrdinates. The improved method is able to avoid
identical coordinate problem although only a sraatbunt of anchors are selected as anchors. In RD06,
Liu et al. analyzed local minima in VC based rogtis quantization noise for the first time. A new
algorithm called Aligned Virtual Coordinates foregedy Routing [37] in WSNSs is proposed to remove
the quantization noise by taking average VCs obpheighboring sensor nodes as the node’s VCs. The
larger the range of neighborhood range is, the racoeiracy will be obtained for sensor node’s virtua
location thus packet delivery rate performance banimproved. However, enlarging communication
range will also increase communicate cost and posagrsumption. In 2007, Axis-Based Virtual
Coordinate Assignment Protocol (ABVCap) [50] ispoeed by M. J. Tsai et al. In this protocol, VCs of
nodes in network are generated in such way thdt eade is assigned a five tuple VC corresponding to
longitude, latitude, ripple, up and down. In 2011, C. Dhanapala et al. developed Convex Subspace
Routing (CSR) [16] algorithm for VCS based WSNstHis algorithm, not all of the VCs corresponding
to each anchor are used for distance calculatioadting. Only a triplet of anchors which can compa
convex sub space for the node is selected as andéborouting. When the packet is stuck in local
minima, another triplet of anchors will be seledte@&nsure packet is routed in convex space foaeket
escape from local minima. CSR is effective to awmthg anchors which may cause local minima issue.
Simulations show that CSR outperforms GPSR and rCRuting delivery rate [16]. In the same year,
2D-GLR algorithm was designed by the same auth2@% JAll the routing algorithms which have been

18



mentioned so far take place only in virtual domdihus all related distance calculation and comparis
happen only in virtual domain. 2D-GLR algorithm fttre first time combines greedy forwarding in
virtual and topological domain together [20]. ThEMs generation technique provides TC set for the
network. TC set is very similar to GC set but isaamehow distorted topology domain. There are three
modes in 2D-GLR algorithm [20]. The first one i®gdy forwarding in virtual domain using VCs. The
second one is routing in topological domain usiagegated TCs from SVD. The last one is anchor mode,
which means the packet is routed to the nearestoario the destination and then routing is switched
back to greedy forwarding in virtual domain. Theting is accomplished in the switching among these
three modes. The packet is routing in virtual donaithe beginning. If it gets stuck in local miinthe
mode is switched to topological domain. If the pcls stuck in local minima in both virtual and
topological domain, the packet will be routed tamst anchor. In 2D-GLR algorithm, high packet
delivery rate can be guaranteed because algorédkestadvantage of three domains. From the simalatio
results, 2D-GLR algorithm can achieve the best paobuting performance so far compared with LCR
and CSR algorithms in virtual domain and GPSR oggaphic domain. Another routing algorithm called
Direction Virtual Coordinate Routing (DVCR) [21] gdrithm is using generated coordinates named
DVCs for greedy forwarding and good routing perfane is also reported [21].

The routing algorithms mentioned above are desigmed/CS based 2D WSNs. Routing
performance plays the most crucial role in senstwork’s communication system. High packet delivery
rate and low hop distance of routing packets aghlhi desired in today’s large-scale WSN. The
assumptions of all above algorithms are: 1. Thevoe type is 2D WSNs. 2. The sensor nodes are all
static thus the sensor network is static withoutahgic sensor node deployment. However, performance
of the VC based routing algorithms remains stiknown in 3D WSNSs. Also, when tacking mobility into
consideration, the routing algorithm for mobile sers needs to be proposed to avoid regeneration of

VCs and guarantee acceptable routing performance.
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2.3 Mobility tracking and prediction algorithmar fWSNs

WSNSs are no longer static as the sensing demaogs M\WSNs make it possible to implement
sensing in more dynamic environment. Robots tedgylcan execute sensing task in environments
which are dangerous to human being such as batleé 6r forest fire. In habitat protection and
monitoring, equipping animals with sensors helgeagcher better track, monitor and study theingvi
habits and thus better protect them and the nalNwematter in which application, the collaboration
among mobile sensors, static sensors and BS is bpremmunication between mobile sensors and
static sensors. So far, many tracking and monigomobile object algorithm are proposed. In eariyes,
this used to be called Object Tracking Sensor N&RWOTSN) [39]. In OTSN, the placement of mobile
sensors can be pre-defined or random. The numbaobile sensor can be single or multiple. The neobil
sensor(s) can enter the WSN at random time or efgpéme. In all, the activities of mobile sengsy
can be both in a flexible or a fixed way dependinghe specific requirements of applications.

Any tracking or monitoring algorithm should achiets general goal: ho matter in which way
the mobile sensor moves or is operated, there dhHmeilsome methods helping BS or human being to
track, detect and then communicate with the matidiect. The exact or comparative location of mobile
object should be known. The detection success shtmld be high as much as possible. Also,
communication between mobile sensor and BS shauleffective and at the same time energy efficient.
Many aspects need to be reconsidered or redesliedouting protocols, data aggregation strategies
mobility of the target, localization algorithms ascheduling algorithms.

Generally, tracking algorithms can also be clasgifin the following three aspects: network
structure, number of mobile objects being tracked e type of mobile object. The common structures
for sensor networks are: leader based structuwe iased structure and cluster based structuredBams
the number of mobile objects, tracking algorithras be designed for single mobile object or multiple
mobile objects. For the type of objects, algoritheas be classified into continuous object trackamgl
discrete object tracking. Consider the followingotacenarios. First is a mobile node that moves in a
sensor field, to be detected or tracked by theaenslit could be a friendly node that cooperatét w
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Sensors or a passive target. Either way its gpbgragosition is found using the GCs of the sensbhings

lets the node navigate further (using GCs) or al@ensors to track its position using GCs. Secordly

a mobile node moves in a sensor field, it may bmessary to predict its position at some time it

The GCs are used to estimate the velocity andtirecand then using some mobility model, to predic
the target's position at a future time. Such preéairs may be used to alert nodes downstream, for
example. Another situation occurs when the molddencooperates and communicates with other sensor
nodes. Suppose there is a BS that wishes to semessage or program updates to rendezvous with the
mobile node at a future time. Rather than routing message along the path that the mobile node
followed, a prediction of its future position widllow the BS to send the messages directly to the
rendezvous point.

So far, prediction scheme is widely used in tragkind detection algorithm in GCs based WSNs
and can be applied in different structures of nekwsuch as tree based structure and cluster based
structure. The following of this section will giebrief review of existing prediction based trackand
detection algorithms in GC based WSNs. When maglesor keeps changing position at comparatively
high velocity during sensing operation time, lozation method cannot provide sufficient location
information if BS wants to route to or reach thehite® sensors. If this case, prediction based tragki
algorithms are designed to reach the mobile olg¢dhe future time by calculating future position
linearly from sampling current velocity and directi In [54], Distributive Predictive Tracking (DP19
proposed for cluster-based WSNs. Cluster headscptbe mobile target’s future position and wakeaup
triplet of sensors to wait for mobile target’s aali Prediction-based Optimistic Object Trackin@®T)
scheme in [28] combines collecting and maintairtiggking information to minimize routing distance
for predictive tracking. In [53], dual predictioteske place at both BS and sensor nodes to impteve t
detection accuracy. Such predictions may, for exeyipe used to alert nodes downstream. In these
prediction based tracking algorithms, it's assurtieat mobile sensors get localized by either GPS or

Radio Frequency (RF) techniques such as RSSICettsidering the large cost and error from GPS and
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RF based techniques, track algorithms without gagaigic information are of great interest and prongsi
potential.

However, the protocols or algorithms cannot beiaggh VCS based MWSNSs directly and need
to be changed or modified due to the differencenvben virtual domain and geographic domain.
Considering applications related to VCS based MW 3Ns may be interested in the following scenarios:

1. Mobile sensor contacts other sensors or BS. Conslidemobile object is a friendly sensor. It
moves in a certain area to collect data from emvitent such as humidity and temperature. Or
animals are equipped with sensor so human beingneaitor this animal. Sensors in this kind of
objects need to send data to other sensors or Bf fine purpose of reporting.

2. Mobile objects are reached by other sensors ofdB®is case, BS may want to send commands
to mobile objects for specific tasks.

For the first scenario, since mobile sensor aaleda sender, sending data to somewhere in the
network so it is not hard to find a neighbor wham gass the packet to the destination in VCS based
MWSNSs. However in the second scenario, traditigmebliction based tracking algorithms in geographic
main for tracking and detecting mobile objects a@drire applied in VCS based MWSNSs directly since
geographic information is not available. Trackimg grediction algorithms are needed to be recorside

in topological domain instead of virtual domaingirder to adjust to VCS based WSNSs.
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CHAPTER 3

EXTREME NODE SEARCH AND GEO-LOGICAL ROUTING FOR 3W¥SNS

The performance of mapping [17] and routing [16][@€eatly rely on anchor placement in VCS
based WSNs. Identical coordinates problem restitted improper anchor selection can lead to idehtica
TC problem because SVD transition from VCs to T€a linear operation. Thus, nodes which are located
in different geographic position will have the sapmsition in generated topological domain, which
greatly decreases the accuracy of generated TPMat'$\worse, identical coordinates problem in both
virtual and topological domain can result in seveoal minima problem and poor performance of gyeed
forwarding based routing would be expected. Betorg anchor selection algorithm becomes available,
anchors are selected either randomly or manualBj[3Z] for VCS based algorithms. However,
performance of VCS based techniques cannot be njea because the effectiveness of random anchor
selection is unknown.

In this chapter, we firstly introduce existing Eldigorithm and related evaluation in Section 3.1.
In Section 3.2, 3D-GLR algorithm is proposed. Tovar the effectiveness of 3D-GLR with ENS anchor
placement, routing performance simulations of 3DRGare given in Section 3.3, compared with GC

based routing algorithm 3D-GDSTR. Section 3.4 gwaimple summary.

3.1 Extreme Node Search (ENS) for 3D WSNs

Selecting the number of anchors and the nodesdone anchors is critical for many VCS based
algorithms. Due to the difficulty of solving thesgo problems together, random anchors are ofted.use
With random anchor selection, a relatively largefion of nodes have to serve as anchors to achime
performance, but the number of anchors directlytrdmntes to overhead and complexity. The ENS
algorithm in [19] identifies a small set of extremedes as anchors. Results in [19] show that it can

achieve better topology maps and very good rouigrfprmance in 2D networks. In ENS algorithm, one
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DVC is generated using a pair of random ancholignfiose a directional relationship among the nodes,
and to identify extreme nodes based on this doeaticoordinate value [19][21].

In this thesis, we continue to use ENS algorithmdiachor selection for 3D WSNs. In order to
prove the effectiveness of ENS algorithm in 3D rwfs, ENS algorithm is compared with random anchor
selection in routing performance of 3D-GLR algamthAdditionally, another anchor selection algorithm
called Double-ENS algorithm for 3D networks is aldesigned as comparison algorithm for ENS.
Basically in Double-ENS algorithm, two separatess#tENS anchors are generated instead of ond set o
ENS anchors. The purpose is to figure out if thmaased amount and coverage of extreme node anchors
in network will also increase the routing perforro@nthus to prove if the original ENS algorithmealdy
provides an optimal selection of anchors with semaimount for 3D networks. The detailed descriptibn
Double-ENS algorithm is given below.

In original ENS algorithm, DVC for each node inwetk is generated using one pair of random
anchors in VCS and lost directional informatiomastored in DVC [19][21]. Suppose sensor nagds VC
vector from two random anchafls andA; are hyy4,, hia,], containing minimum hop distances to two

anchors. Generation ef’'s DVC is given in eqn. (3.1) arig, 4, is the shortest hop distance from anchor
A; to A,. Then each node in the network checks wheth@\&8 value is the local minimum/maximum in
h-hop neighborhood. If so, node will be selecte&MS anchor.
fove (hiAlr hiAz) = (hiA12 - hiAZZ)/Z ha,a, (3.1)
In Double-ENS algorithm, the anchor selection atgar starts by selecting four random nodes
A4, A5, A5 and4, as initial anchors. After VC generation, eachenadw is in the possession of its initial
VC vector containing minimum hop distances to tharfanchors. This initial coordinates at nade

denoted byH;s,, hia, hia, hia,l; WherehiAj correspond to the shortest hop distance betwgand node
i. Each node now calculates a pair of DVC [19][Zlfe first,fpyc (hiAl,hiAz) in egn. (3.1), is based
onA; andA4,, and the seconf},, (hiA3,hiA4) is based od; andA,, which can be obtained from eqn.

(3.2).

24



fove(hiag hia,) = (hia,? = hia,?)/2 ha,a, (3.2)

In a VCS, each anchor establishes a radially pratpagydistance profile from itself. For example,
all the nodes that have a vallg,, = 30 are at a hop distance 30 frem This is similar ta- coordinate
in a(r, 8) coordinate system. As described in [19][21], a D¥@nbines two such VCs, to impose a
directional relationship, similar to the x coordiman a directional coordinate system such(:ay)
Cartesian system. Thus each node now is in poesessbf its DVC pair
[fove (Riag hia,) s fove (hiay hia,)] that  imposes a two-dimensional coordinate systatieit not
orthogonal to each other.

Each node now checks whether it is a local minima maxima in ith-hop neighborhood with
respect tofpyc (hia,, hia,) OF fovc (hia, hia,) OF both. If it is, the node selects itself asamehor for
the final VC generation. We call such anchors BEN&hors to avoid confusion with the initial anchdrs
avoid too many anchors close to each other, that ma@pen because the initial four anchors cannot
discriminate among those adequately, a localizediipg process is carried out. Each of these selecte
anchors checks whether any of its direct neighb@rs,those within 1-hop communication range,ase
ENS anchors. If so, only one of those anchorscgalerandomly, remain an ENS anchor, while others
cease being ENS anchors. The purpose of thisistepremove multiple anchors that do not provide
additional connectivity information, and to keepnher to be the minimal to reduce unnecessary oost f
VC generation. The Double-ENS anchor selection gatate is shown in Figure 3., (n;) is the set of

nodes in node;’s h-hop neighborhood in Figure 3.1.
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{4,, A, A, A,} =pick four random nodes
Initiate floodings on {4,, A, 4. 4,} and generate a VCS
For eachnode
locally generates two DVCs
End
For eachnode
//checks whether current node is a local minimum/ maximum h-hop neighborhood
I fovc (hi'.ﬁx_Jhi'A;_} < fove {hjg.‘_: th:} 1 Van; € Ky(n;)
Or fove (hus: hi.q,,:} = fove (thsJ h’;’A,,}; V'ﬂ;‘ € Kn(n;)
n; is an anchor
End
If fove (hi.a._: h;‘Az} > fove {th._s th;}; ¥n; €Ky(ng)
Or fovc (hi.qsl h:‘.h = fove (thSJ hjg,,}i v n; € Ky(n;)
1; is an anchor
End
End
For eachnodein anchor set
For each neighbor in 1-hop neighborhood of current ancher node
If neighboris in anchor set
record current anchor node once and neighbor node in redundant node set
End
End
If redundant node setis not empty
Pick and mark one node randomly in redundant node set
Remove other nodes except for the marked node in redundant node set from the anchor set
Update anchor set
Clear redundant node set
End
End
Selected anchor nodes generate the VCS

Figure 3.1: Double-ENS anchor selection algorithm

3.2 Geo-Logical Routing (GLR) for 3D WSNs

As outlined in Chapter 2, the TPMs of a networkdahen the VCs of nodes preserves are a
distorted version of the physical map of a netwdtlhas been shown in [20] that the VCs are in fact

better than GCs for identifying the next node famfarding the packet in 2D networks due to the tlet

distortion accounts for the connectivity.

GLR algorithm uses greedy forwarding to route pataeneighbor node which has the minimum
distance to the destination and switches greedydialing between virtual and topological domain. The

distance is calculated as norm 2 distakfca both virtual and topological domain. Supposer¢hareV
anchors in VCS, two nodd$, andN, are each characterized by a VC vecfas, a,, ...,ay) and

(bl, b, ...,bM) correspondingly. The norm 2 distaride between nod#&/, andN,, in virtual domain is

given in eqgn. (3.3) [20].
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Dup, virtuar = | Ziz1(@i — b;)? (3.3)

Suppose generated TCs using TPMs technique of ngdand N, are [Xr¢g,Yrcq]and

[Xrcp Yrep] correspondingly. The norm 2 distante between nod#/, andN, in 2D topological

domain is given in eqn. (3.4) [20].

D4, topotogical = V&rci = Xrea)? + (Yrei — Yrea)? (3.4)
Local minima problem is the main obstacle detetiogathe performance of greedy forwarding,
in which the node sending the packet has the mimiistance to the destination and cannot find aeclos
neighbor node to route packet to. GLR algorithmsusEmbination of three routing mode (VC mode, TC
mode and anchor mode) to let packet escape froml lodnima and thus achieve better routing
performance [20]. In GLR algorithm, the packetasted using greedy forwarding in virtual domain (VC
routing mode) at first place. If the packet is &tirc virtual domain, the routing is switched to gdy
forwarding in topological domain (TC routing modH)the packet is stuck in local minima in bothtutl
and topological domain, the packet is routed tongs@rest anchor node to the destination and theémgp
mode is switched back to VC mode (anchor mode). Glgprithm is easy to extend to 3D sensor
network since generation of VC and TC only relymmtwork connectivity and SVD computation, which
is independent from geographic dimensional inforomatin this thesis, we keep using the original
algorithm proposed in [20] as 3D-GLR. We only rgel&D TCs with 3D TCs when calculating norm

distanceD,p in topological domain between two nodég (whose TCs areXrc 4, Yrcar Z7c,q]) and

Np(whose TCs areXc ,, Yrc p, Z1c p]) In TC routing mode, which is given in egn. (3.5)

D4p, topotogical = V&rca = Xrep)? + OVrca = Yrep)? + Zrea — Zrep)? (3.5)
The matric for evaluating 3D-GLR algorithm in thigesis is average routability, which is defined

below:

Total number of packet reached destination

Average Routability [16][20][21]=

X 100% (3.6)

Total number of packet generated
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3.3 Simulation and discussion

In this section, 3D-GLR algorithm is simulated iivef test networks of different shapes,
connectivity information and scales, which areddtrced in Section 3.3.1. To further prove the ancho
selection effectiveness of original ENS algorithan 8D networks, routing performances of 3D-GLR
algorithm using anchor selection from original ENSBuble-ENS and random anchor placement are
compared in Section 3.3.2. 3D-GLR algorithm is camsg with GCs based 3D-GDSTR algorithm, in
order to validate the routing performance of 3D-G&lRorithm, which is given in detail in Section 33
The performance of routing algorithms is evaluabsd matric average routability. A simulator was
developed using MATLAB® 2013a.

3.3.1 Test networks for simulation

In this section we introduce five types of 3D netkgodesigned for simulation. These five 3D test
networks include networks with a fixed or randomdimgy, in concave or non-concave shape, with full
network connectivity or low connectivity and of féifent scales. ENS algorithm is used to select@nch
node for each test network.

Figure 3.2(a) and Figure 3.3(a) show the geograptaps of Test Networkl (TN1) and Test
Network2 (TN2). TN1 and TN2 are both networks vatfixed topology in 2000unit1000unit1000unit
cubic area and have physical sphere voids insel@¢tworks. To help in viewing the big sphere viaid
the center of TN1, void is drawn as grey spheretarde is no sensor placement inside sphere void in
Figure 3.2(a). Similarly, three small sphere vaaiSN2 are drawn in grey color in Figure 3.3(a). TN
consists of 792 sensor nodes and 6 of them aretedlas anchors using ENS algorithm. TN3 consfsts o
791 sensor nodes and 9 nodes are selected as EN&@rENS anchors are marked as black triangles in
both Figure 3.2 and Figure 3.3. The communicatamge of each sensor is 100unit and the average node
degree is 5 for TN1 and TN2. Figure 3.2(b) and Fedti3(b) show TN2 and TN3's generated TPMs with

ENS anchor placement.
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Figure 3.2: a) Geographic map of TN1 with one bgible sphere void inside and b) generated TPM of
TN1 with 6 ENS anchors
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Figure 3.3: a) Geographic map of TN2 with threalswisible sphere voids inside and b) generate TP
of TN2 with 9 ENS anchors
Test Network3 (TN3) used for simulation is showrFigure 3.4(a). TN4 has a concave shape in
1000unitx 1000unitx 1000unit cubic area and 760 sensor nodes are plase&te the concave shape.
Figure 3.5 shows the top view of TN3. Each nodemmunication range is 100 units and average node
degree of TN3 is also 5. 6 ENS anchors are seleamédgenerated TPM of TN3 is shown in Figure

3.4(b). ENS anchors are shown as black triangl€sguare 3.4.
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Figure 3.4: a) Geographic map of TN3 and b) geadr&PM of TN3 with 6 ENS anchors
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Figure 3.5: Top view of TN3

TN1, TN2 and TN3 are designed to test 3D-GLR atbariin different network shape with
imperfectness inside network. The following to hrdduced Test Network4 (TN4) and Test Network5
(TN5) are designed with different network connettiinformation.

TN4 are a group of networks based on a full gritivoek in 2000unik1000unitk1000unit cubic
area which consists of 1000 nodes. Each node ramitGs communication range. A certain number of

random chosen nodes are removed from the full getivork so that the average node degree will
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decrease. For TN4, number of 0, 100, 200, 300,0408ndom nodes are removed from full grid network
and they are named as TN4(a), TN4(b), TN4(c), TIN4ftl TN4(e) respectively. For each of TN4(b),

TN4(c), TN4(d) and TN4(e), 5 random topologies gemerated for simulation. The number of nodes,
average number of ENS anchors and average nodeedefjfive TN4 networks are given in Table 3.1.

The average node degree gradually decreases amuthiger of removal nodes grows. 3D geographic
maps and generated TPMs of TN4(a), TN4(b), TN4[&)4(d) and TN4(e) (each is selected from five

random topologies) are shown in Figure 3.6 to F@gBI10 respectively, with ENS anchors marked as
black triangles.

Table 3.1: Number of nodes, average number of EidBa@s and average node degree of TN4(a),
TN4(b), TN4(c), TN4(d) and TN4(e)

Network Topology
TN4(a) TN4(b) TN4(c) TN4(d) TN4(e)
Number of nodes 1000 900 800 700 600
Average number of ENS anchdrs 5 6 7 7 6
Average node degree 54 4.9 4.3 3.8 3.4
(b)

1000

ny S00

1000

1000

Figure 3.6: a) Geographic map of TN4(a) and b) gerd TPM of TN4(a) with 5 ENS anchors
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Figure 3.10: a) Geographic map of TN4(e) and begmed TPM of TN4(e) with 6 ENS anchors

What's more, TN4(c) with 20% random nodes remowveninf full grid network is chosen for
scalability related simulation for 3D-GLR algorithifiN4(c) is scaled in 0.5times, 2times, 4times 8nd
times of the volume of original TN4(c), which aranmed as TN4(f), TN4(g), TN4(h) and TN4(i). The
sizes of TN4(f), TN4(g), TN4(h) and TN4(i) are givén Table 3.2. The number of nodes, number of

ENS anchors and average node degree of TN4(f), IN#N4(h) and TN4(i)are given in Table 3.3.
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Table 3.2: Size of TN4(f), TN4(g), TN4(h) and TN¥4(i

Network Topology Size
TNA4(f) 800unitx800unitx800unit
TN4(g) 1200unitx1200unik 1200unit
TN4(h) 1600unitk1600unik 1600unit
TNA4(i) 2000unix2000unit2000unit

Table 3.3: Number of nodes, number of ENS anchudsaaerage node degree of TN4(f), TN4(g),
TN4(h) and TNA4(i)

Network Topology
TNA4(f) TN4(g) TN4(h) TNA4(i)
Number of nodes 411 1383 3276 6400
Number of ENS anchors 6 6 5 7
Average node degree 4.2 4.4 4.5 4.6

The last one Test Network5 (TN5)'s geographic ma@ generated TPM are shown in Figure
3.11 with 7 ENS anchors marked in black trianglédd5 consists of 729 sensor nodes placed in random
locations inside 1000umtL000unit1000unit cubic area with a random topology. The momication
range of each sensor is 130units. TN5 is designitd two different average node degree. TN5(a) has
high node degree of 7 and TN5(b) has low node @egfd. Similarly, for each type of TN5, five ramdo

topologies are generated for simulation.

(®)

10000

Figure 3.11: a) Geographic map of TN5 and b) geaedraPM of TN5 with 7 ENS anchors
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These five test networks include networks withtfipology (TN1, TN2 and TN3) and random
topology (TN4 and TN5), in concave shape (TN3) and-concave shape (TN1, TN2, TN3 and TN4),
having physical voids inside network (TN1, TN2 ard4) or not (TN3 and TN5) and in different scales
(TN4). They are designed to fully evaluate the irmutperformance of 3D-GLR in various network
environments. When simulating for evaluation matierage routability in eqn. (3.6), packets are
generated from each sensor node in the networkr@umeéd to the rest of sensors in the network. For
large-scale network like TN4(g), TN4(h) and TN4{gackets are routed only to a certain number of
random destination nodes from each node in the arktwihere are approximately 640,000 packets
generated for each large-scale test network.

3.3.2 Effects of anchor selection on performasfc@D-GLR

In this section, we compare 3D-GLR algorithm usElS, Double-ENS and random anchor
selection placements, so as to validate the ars#lection effectiveness of ENS algorithm. Basicaty
order to prove the effectiveness of ENS algorithhe routing performance of 3D-GLR using ENS
algorithm is expected to be better than the on@gusandom topology. Additionally, the routing
performance of 3D-GLR using Double-ENS algorithnthamore extreme node anchors is expected not to
outperform much than original ENS algorithm if anigl ENS algorithm already provides an optimal
number of optimal anchor selection for the network.

In our simulation, random anchor placement shanessame number of anchors with ENS
algorithm. Table 3.4 and Table3.5 show the numbanohor in TN1, TN2, TN3 and TN5 using different
anchor placement. Double-ENS algorithm providesenaxtreme anchor node than ENS algorithm.

Table 3.4: Number of anchors in TN1, TN2, TN3 amdbTusing three anchor placements

Anchor Network Topology
Selection TN1 TN2 TN3 TN5(a) TN5(b)
ENS 6 9 6 8 8
Double-ENS 7 10 8 12 15
Random 6 9 6 8 8
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Table 3.5: Number of anchors in TN4 with differepairseness using three anchor placements

Anchor Network Topology
Selection TN4(a) TN4(b) TNA4(c) TNA4(d) TN4(e)
ENS 5 6 7 7 6
Double-ENS 8 7 8 8 8
Random 5 6 7 7 6

The routing performance of 3D-GLR algorithm usihgee anchor placements in TN1, TN2, TN3,
TN4 and TN5 are shown in Figure 3.12, Figure 3.8 &able 3.6 respectively. In all five types of
networks, routing performance of 3D-GLR using EN&leor selection greatly outperforms random
anchor placement and almost the same with Doubl8-&ijorithm. For networks with low average node
degree like TN1, TN2, TN3, TN4 and TN5(b). Morerexte nodes chosen by Double-ENS algorithm
provide almost the same routing performance for@DR algorithm, compared with original ENS
algorithm. It also means the original ENS algorithas already provided an optimal number of optimal
anchors, to guarantee the effectiveness of anckarsrouting performance. For networks with
comparatively high average node degree like TNSjage more nodes within enlarged communication
range will share the identical VCs due to the langde degree, the difficulty of finding extreme aed
with maximum/minimum DVC value increases, thus #msount of extreme node anchors may not be
sufficient. As a result, using another DVC genetdtem another separate pair of random nodes wip) h
in finding more extreme node anchors for netwoilkge conclusion is that both ENS and Double-ENS
algorithm are able to provide good anchor selectisriow connected networks however more anchors
generated from Double-ENS algorithm will lead torsnenergy consumption, memory cost and overhead
compared with ENS algorithm. For networks with higverage node degree or where ENS algorithm
cannot generate enough number of anchors as rdgub@uble-ENS algorithm is a good choice to

provide more extreme node anchors.
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Figure 3.13: Average routability of 3D-GLR in TN4tlvdifferent sparseness using three anchor
placements

Table 3.6: Average routability of 3D-GLR in TN5 Witlifferent average node degree using three anchor

placements
Anchor Network Topology
Selection TN5(a) TN5(b)
ENS 81.86% 57.03%
Double-ENS 91.07% 60.26%
Random 60.23% 46.87%
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3.3.3 Routing performance comparison between BB-@&d 3D-GDSTR

In this section, the performance comparison betvB24GLR using anchors selected from ENS
algorithm and GCs based 3D-GDSTR is presentedc&mparison algorithm 3D-GDSTR, we continue
to use two 2D hull trees and maximum of 5 childi@neach node in hull trees (generated from minimum
spanning trees), which are proposed in [56].
3.3.3.1 Routing performance comparison in TN12HExd TN3

The routing simulating results of 3D-GLR and 3D-GIBSalgorithm in TN1, TN2, and TN3 are
shown in Table 3.7. Comparing 3D-GLR algorithm wBB-GDSTR algorithm, 3D-GLR algorithm
outperform the existing 3D-GDSTR algorithm in dif¢e network types, achieving almost 100% average
routability. It's reported that 3D-GDSTR can acladull success delivery rate when the network sze
small (less than 200 nodes) and average node disgremparatively large (more than 10) [56]. Howeve
for 3D-GDSTR algorithm in TN3, routing performance GCs based greedy forwarding can hardly be
improved by increasing node degree because TN8sgked to be in concave shape in which packet is
easily stuck in local minima and thus GCs basecdyeforwarding performance will be severely
deteriorated. We increase the node degree from B3téor TN3 and the average routability of 3D-
GDSTR is increased only to 89.45% from 87.53%)] &tilver than average routability of 3D-GLR
without increasing node degree. Generated TPM gurei 3.4(a) of concave-shaped TN4 somehow
decreases the concave level of the network sathatghbor node closer to the destination may bedo
We also test 3D-GDSTR algorithm in TN3 using geteztdopology from TPM, in which 3D GCs are all
replaced by generated 3D TCs. Without any increasel® degree, TCs based 3D-GDSTR can achieve
93.76% average routability compared with GCs ba&3@d5DSTR whose routability is 87.53%. High
routing performance of 3D-GLR algorithm benefit¢ anly from the combination of three routing modes
in different coordinate domains but also from a enproper network topology representation for rautin
in topological domain for some types of networke ITN3, compared with original network topology in

geographic domain.
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Table 3.7: Average routability of 3D-GLR and 3D-GIFSin TN1, TN2 and TN3

Routing Network Topology
Algorithm TN1 TN2 TN3
3D-GLR 97.81% 99.12% 100.00%
3D-GDSTR 87.23% 83.30% 87.53%

3.3.3.2 Routing performance comparison in TN4 BN8

In this section, we gradually decrease the avenage degree of network using TN4(a), TN4(b),
TN4(c), TN(d) and TN(e) and compare the routinggenance of 3D-GLR and 3D-GDSTR in these five
TN4 networks. The average routability of 3D-GLRfime TN4 with decreased average node degree is

shown in Figure 3.14.
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Figure 3.14: Average routability of 3D-GLR and 3IDSTR in TN4 with decreased average node degree

The routing performances of 3D-GLR and 3D-GDSTRoatgm are both affected by the
decreased node degree since the connectivity ofonket are deteriorated gradually. When TN4 is fully
connected, both 3D-GLR and 3D-GDSTR can achieveafidrage routability. Average routability of 3D-

GDSTR decreases drastically as the average nodealdgcreases, only achieving 57.37% and 39.04%
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with low network connectivity (average node degoée3.8 and 3.4). However, 3D-GDSTR can still
achieve comparatively satisfactory average routgatwf 88.14% and 74.96% at such low average node
degree. Compared with 3D-GDSTR, 3D-GLR not onlyieats much better routing performance but
also is more insensitive to the decrease of nodesdeof the network and provides a more stabldngut
performance as the node degree of the network asese

We also test the routing performances of anothealaan topology network TN5 with high node
degree 7 (TN5(a)) and low node degree 4 (TN5(b)) tae results are shown in Table 3.8. 3D-GLR still
outperforms 3D-GDSTR in networks with nodes in @ndocations and topology. 3D-GDSTR shows
very poor routing performance when the random togphetwork has low average node degree however
3D-GLR is able to provide a comparatively satisiagtrouting performance.

Table 3.8: Average routability of 3D-GLR and 3D-GIFSin TN5 with different average node degree

Routing Network Topology
Algorithm TN5(a) TN5(b)
3D-GLR 81.86% 59.89%
3D-GDSTR 81.34% 18.80%

3.3.3.3 Routing performance comparison in scailed

In this section, we compare the routing performaot@D-GLR and 3D-GDSTR in different
scales of TN4(c) in which 20% random nodes are veaidrom full grid networks using TN4(f), TN4(qg),
TN4(h) and TNA4(i), to explore the scalability of ZELR algorithm. The size of network ranges from
800unitx 800unitx 800unit to 2000unik 2000unitx 2000unit. The number of nodes ranges from
approximately 400 to 6400. Figure 3.15 shows tleragye routability of five scaled TN4 using 3D-GLR
and 3D-GDSTR algorithm. As we can see from Figulié 3the average routability of 3D-GLR stays the
same around 95% in networks with 0.5times, 2 tiMdsnes and 8 times volume of the original TN4(c).
Moreover, the stable 95% average routability frod-GLR also greatly outperforms 3D-GDSTR
algorithm which can only provide 82.94% averagetability at the best. Simulation results show that

3D-GLR can provide satisfactory routing performamdéh great adjustability and scalability. For 3D-

40



GDSTR algorithm, generating multiple spanning/tiides and increasing children number for each node
can help in improving routing performance but thif also introduce large cost in both computatard
power, which becomes impractical for large-scale N&'S Compared with 3D-GDSTR, 3D-GLR
algorithm shows more flexibility, adjustability anmmost importantly, better routing performance in
different network environments. The generation @fsvand the computation of SVD components can be
easily applied in 3D WSNs from 2D WSNs. From ounudations, VCS based ENS and 3D-GLR

algorithms show great effectiveness and potendratduting application in 3D WSNSs.
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Figure 3.15: Average routability of 3D-GLR and 3IPSTR in TN4 with different scales

3.4 Summary

In this chapter, the extensions of 2D-GLR to 3Dssemetworks have been accomplished. From
simulation in five designed networks, the routirgrfprmance of 3D-GLR with ENS anchor placement
show great advantage over current existing GC bamedthg algorithm 3D-GPSTR. The effectiveness of
3D-GLR algorithm is of great significance for 3Dtwerks like USNs where geographic localization

equipment and algorithm can hardly work.
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CHAPTER 4

VIRTUAL COORDINATE GENERATION SCHEMES FOR MOBILE ¥SOR

As stated in Chapter 1, mobile sensors can be asemew sensors dynamically deployed in
original network. They can be in placed manuallyhliynan labor or dropped from mobile vehicle or plan
in one place for certain time (hours or days, dar.monitoring tasks or moving in very slow velgyciin
this situation, mobile sensor node can be treatestatic nodes newly inserted in a network andoitglo
can be ignored when considering communication dbilasensors in the network. VCs for mobile node
need to be generated properly at the first placéhablocation information of mobile nodes in vatu
domain can be known by the network for applicatismsh as VC based routing. VCs can be generated by
network’ flooding messages again from anchors histwill lead to expensive energy, time and message
cost in large-scale WSNs. Thus simple re-floodiag rhobile sensor is not an efficient VC generation
method. Normally, sensors are equipped with radib @n communicate within a certain range. Mobile
sensors are aware of their static neighbor sermdeswithin communication range and can obtain VCs
from simple computation of neighboring nodes’ caamates in order to estimate their location in \attu
domain.This is analogous to RSSI technique in geograpbmain but only approximate virtual location
will be obtained for mobile sensor.

In general, newly inserted mobile sensor nodes fiage roles in routing: sending packets,
receiving packets and passing packets to othepseosles. In this thesis, we only focus mobile gesis
receiving packets and passing packets performaiben mobile sensor receives packets, generated VCs
can have great effects on calculating greedy fatimgrdistance [13]. Improper VC generation scheare c
lead to very low receiving packet capability forlite sensor nodes especially when mobile sensaesod
are located in a special position which we naméRasg’ position. In ‘Ring’ position, the node is
surrounded by neighbors whose gap is greater tharhbps which can be seen in Figure 4.1(b). As in
Figure 4.1(b), new sensor node marked in greerr bale two anchor neighbor nodes whose VCs are (0,6)

and (6,0). Normally, if the communication rangesehsor node is one unit, the largest distance eetwe
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node’s neighbors should be no more than 2 unitghwik shown in Figure 4.1(a). If this distanceriere
than two units, a gap in virtual domain betweenghieors exists, which might result from the
imperfectness or void of the network. As a resiltp nodes with physical distance of two units are
actually far away from each other in virtual domaiinis distance mismatch may lead to poor routing
performance for the new sensors in such positientduhe local minima problem if improper VCs are
generated for new sensors. In the example showigimre 4.1(b), if new sensor node in green colkega
average of neighboring sensor nodes’ VCs whicl8,8)( a local minima exists when new sensor node
tries to receive packets from static sensor nodedncolor whose VCs are (3,3). When passing panket
the network, new sensor nodes should cause aadgssive effects to the entire network as possHie.
example, the average routing path length of thgiral network shouldn’t be increased much and the

average routing performance shouldn’t be impairedhm

(a) (b)
(2,4) (1.5) (0.,6) (2,4) (1,5) (0,6)
@ e ® ® Anchorl & @ ® Anchorl
(3.3) ¢ New SensorNode (3.3)e @® New SensorNode
® ® @® Anchor2 © © @ Anchor?
(4.2) (5.1) (6,0 (4.2) (5.1) (6.0)

Figure 4.1: a) Example of new inserted mobile semmsoegular position and b) example of new ingirte
mobile sensor in “Ring” position
The organization of Chapter 4 is as followed. Thsgmaple VC generation schemes for mobile
sensors are introduced in Section 4.1. Simula@salts for VC generation schemes are given in &ecti
4.2. More specifically, evaluation matric is debed in Section 4.2.1. Simulations results for 2id 8D
networks are analyzed in Section 4.2.2 and Se&i@ar8 correspondingly. Simple summary is given in

Section 4.3
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4.1 Virtual coordinate generation schemes foritadensor

Simple, energy and time efficient VC generatingesol would be ideal for newly inserted
mobile sensors. Thus making advantages of neighbods computing new VCs from neighboring
sensors’ VCs is our main idea. Three schemes angoped to generate VCs and they are: Average
Scheme, Mixture Scheme, and Minimum Scheme. Hex@letailed descriptions of the three schemes to
generate VCs for new sensor nodes:

a. Average Scheme (Average): Take average of neighdposensor nodes’ VCs to the
corresponding anchor as new node’s VCs.
b. Mixture Scheme (Mixture): Use average scheme whem node is located in regular position.

When new node is located in ‘Ring’ position, fiystit selects the neighbor with minimum sum of

VCs and uses this neighbor’'s VCs as new node’s \Besondly, a random anchor is selected,

plus one to new node’s VC corresponding to thidhanc

c. Minimum Scheme (Minimum): Take the minimum valuengighboring sensor nodes’ VCs and
then plus one to the corresponding anchor as nele’si/Cs.

Average Scheme is easy to understand and it blysiakés the average location for inserted new
node among the surrounding neighbors. To avoidticercoordinate problem, Average Scheme will add
one to VC corresponding to a randomly picked andramd only if there is only one neighbor arouhd t
new mobile sensor node. Minimum Scheme is very fleeding process from anchor set. Mixture
Scheme is designed based on Average Scheme. Fanawwin ‘Ring’ position, Mixture Scheme keeps
the new node close to the neighbor which is contpatyg nearest to anchors than other neighbors,
instead of keeping new node in the middle of the igavirtual domain. Figure 4.2 and Table 4.1 gige
simple example of three schemes, in which mobilescein green color is surrounded by four neighbor

nodes in red color.
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N4(5,8,9,10)

——

New Sensor Node
N3(9,9,7.12) @ o) ® N1(3.4.7.8)

N2(5,6,9,10)

Figure 4.2: Example of newly inserted mobile semsut its neighboring sensors

Table 4.1: Example of generated VCs for new nodiegusiree schemes

VC generation Scheme Virtual Coordinates of New&dd
Average Scheme (5.5, 6.75, 8, 10)
Mixture Scheme (4,4,7,8)

Minimum Scheme (4,5, 8,9)

The above schemes can be used in both 2D and 3Db#€&1 WSNs. Since VCs are generated
from hop distances in multi-dimensional space araliadependent on geographic dimension, sensor

network with 2D or 3D geographic topology doesfifeet estimating VCs for mobile sensor nodes.

4.2 Simulation and discussion
4.2.1 Evaluation matrics

Average routability and average path length arerwadrics for evaluating VC generation schemes’
effectiveness in routing performance for mobilesserand the network. The definition of them areegiv
in egn. (3.1) and (3.2). Routing performances aofipenserted mobile sensors include two parts: the
average routability and path length of new nodesnwhew sensors receive packets from network. The
other part is the average routability and path tleraf the original network when new nodes just play
passing packets role in the original network. Tleéeaced routing algorithm for simulation is LCR

algorithm [13] which is based on greeding forwagdim virtual domain.

Average Routability [16] [20][21]= Total number of packet reached destination % 100% (4.1)

Total number of packet generated
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Cumilative number of hops that each packet traversed

Average Path Length [16][20][21F x 100% (4.2)

Total number of packet generated
Since generated VCs come from neigbhoring nodes, Wew node’s routing performance can be
expected to be close to or better than its neighibouting performance if VC generation schemercppr
and effective. Also, when new mobile sensors aserted, the routing performance of the originaivoek
should at least remain the same and could be eyaoved by the inserted new nodes.
4.2.2 Simulation results for 2D networks
For 2D network, 4 types of network are used in ginrulation which can be seen in Figure 4.3.
The number of nodes ranges from 300 to 800. They (@) Circular network with three voids of 496
nodes (Circle) [16][17][19][20][21], (b) Grid netwio with 100 holes network of 800 nodes (Grid with
100 Holes) [20], (c) Grid network with 200 holeswerk of 700 nodes (Grid with 200 Holes), (d) Pipe
network with 368 nodes (Pipe). Holes in networkd-igure 4.3(b) and 4.3(c) are randomly picked. In

Figure 4.3, nodes marked as red triangle are aad®bected by ENS algorithm.
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Figure 4.3: a) Circular network with three voids486 nodes; b) Grid with 100 holes network of 800

nodes; c) Grid with 200 holes network of 700 noaled d) Pipe network of 368 nodes

For each network, anchor selection using ENS algoriand random anchor placement (10

random anchors) are both used for routing perfoomaimulation. In our simulation, we place 200 new

sensor nodes randomly in circular network with ¢hweids, 100 new nodes in the hole locations id gri

with 100 holes network, 197 new nodes in the hotations in grid with 200 holes network and 312 new

nodes in the slot locations in pipe network. Irtgiar network with three voids, new nodes areaalated

in regular positions. In the other three networley nodes are located in both regular position‘ By’

position. The ratio of regular position over ‘Ringpsition varies in these three networks. Grid €9

holes network has the smallest portion of ring fhms$ for new nodes and pipe network has the larges
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portion of ring positions for new nodes. The insdrhew sensor nodes in four networks can be seen in

Figure 4.4. The red star nodes are new insertedlensdmsors in four types of network.
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Figure 4.4: a) Circular network with three voidsi&00 testing new nodes; b) Grid with 100 holes
network and 100 testing new nodes; c¢) Grid with BO@és network and 197 testing new nodes and d)

Pipe network and 312 testing new nodes

4.2.2.1 Mobile sensors receive packets from 2ixoeks

In this section, the simulation results of avereméability and path length of new nodes receiving

packets in four test networks using ENS anchorssamvn in Figure 4.5(a) and 4.5(b). Results for

networks using 10 random anchors are shown in €igufi(a) and Figure 4.6(b). Each new node actseas t

destination receiving packets from other staticasoih the original networks. The average routabditd

path length are calculated by taking average afltsesbtained from each new testing sensor nodggusi
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three VC generation schemes, compared with avemgability of original network without introductio

of new sensors.

(a)
100 T
- M Average Scheme
~ g [ IMixture Scheme
£ 80 [ Minimum Scheme
z - M Original Network
£ 60 —
E]
&
o 40r 4
(=11}
fan]
5
< 201 H |
4 Circle Grid with l()O Holes Grid with 200 Holes Pipe
(b)
40¢ :
B Average Scheme
[TMixture Scheme
40k ["!Minimum Scheme
Eﬂ M Original Network
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Figure 4.5: a) Average routability of new insertadbile sensors in four networks with ENS anchor
placement and b) average path length of new irgenteile sensors in four networks with ENS anchor
placement
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Figure 4.6: Average routability of new inserted nt®lensors in four networks with random anchor
placement and b) average path length of new irdent#bile sensors in four networks with random
anchor placement
From our simulations, we can see in regular looatike the testing new sensor nodes in circular

network with three voids, new sensor nodes usingradge scheme, Mixture scheme and Minimum
Scheme can reach the almost same routability ofotiggnal network and even better. But in ‘Ring’
position which exists in the other three networkgerage Scheme and Minimum Scheme do not work
well and routability of new nodes decreases. Howermew nodes using Mixture Scheme can reach
desirable routability. In simulations of four testworks with ENS anchor set and random anchor set,
new nodes in Mixture Scheme can reach the routalaifithe original network except in gird with 200

holes network using ENS anchors but still betterdther two schemes. Also, the average path lesfgth
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Mixture Scheme is less than the average path lepfgthe original network. In all, when mobile nodes
are inserted and receive packets from the netwilikfure Scheme can be good choice for VC
generation.

4.2.2.2 Mobile sensors pass packets in 2D network

In simulation for this section, we set number ofviyeinserted mobile sensor nodes as 1%, 2%,
4%, 6%, 8% and 10% of total number of static nademiginal network. A certain number of new nodes
will be inserted into the original static networKshe locations are randomly selected from new reobil
nodes’ locations from Figure 4.5. All new nodes atintermediate nodes passing packets to othér sta
nodes in the original network. The average routstaind path length are calculated by taking averaiy
results obtained from all static nodes in the oagnetwork.

Table 4.2, Table 4.3, Table 4.4 and Table 4.5 shtwvaverage routability of four types of
networks in Figure 4.3(a), 4.3(b), 4.3(c) and 4 3@respondingly. Table 4.6, Table 4.7, Table ahd
Table 4.9 show the average path length of our tgpestworks in Figure 4.3(a), 4.3(b), 4.3(c) ang(d)
correspondingly. From simulations results, we gamthat as more new nodes are inserted, more change
might be brought to the network. When a very smathber of new nodes are inserted like 1% and 2%,
the average routability of static nodes in originetwork remain almost the same. When a compakhative
larger number of new nodes are inserted like 10%,average routability of original network can be
greatly decreased if using improper schemes onipeoved by using proper schemes for inserted new
nodes. In regular locations, average routabilityciofular network with three voids with 10% insetrte
new mobile sensor nodes in Average Scheme, Mix&careeme and Minimum Scheme remain almost the
same with the original network. However, in othen@&works which have ‘Ring’ position, Mixture
Scheme brings drastic decrease for routabilityhefdriginal network. In this case, Average Scheare c
make new mobile sensor nodes behave like a bridgeecting two neighbors far away from each other
in virtual domain. Mixture Scheme can hardly dotthacause it is designed to make new sensor node
very close to one of its neighbors. Compared withiiium Scheme, Average Scheme has less average
path length especially when ‘Ring’ position problénsevere like pipe network, which can be seen in
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Table 4.9. In all, when mobile nodes pass packktsrage Scheme can be a good choice. Average

routability and path length of four types of net®using 10 random anchors show very similar ttend

networks using ENS anchors.

Table 4.2: Average routability of original circulaetwork with three voids with different percentage
inserted new nodes

% New nodes|

ENS anchor placement

Random anchoemknt

Network | Average| Mixture| Minimum Network Average ifure | Minimum
1% 59.41%| 59.34% 58.509 59.109 50.16% 50.06% 49.99%9.81%
2% 59.41%| 59.23% 59.279 59.229 50.16% 50.2P% 49.62%9.98%
4% 59.41%| 60.04% 59.809 58.679 50.16% 50.04% 49.93%9.05%
6% 50.41%| 60.11% 59.919 58.409 50.16% 50.08% 50.03%8.66%
8% 59.41%| 59.43% 59.499 58.109 50.16% 49.6P% 49.84%7.46%
10% 59.41%| 60.98% 60.55% 59.95¢9 50.16% 50.17% 56.10 46.16%

Table 4.3: Average routability of original grid wiLOO holes network with different percentage of
inserted new nodes

% New nodes

ENS anchor placement

Random anchocemknt

Network | Average| Mixture] Minimum| Network Average ifure | Minimum
1% 89.48% | 90.80%| 89.88% 90.67% 57.61% 58.14% 54.62%8.18%
2% 89.48% | 91.82%| 90.78% 91.82% 57.61% 58.75% 55.66%8.86%
4% 89.48% | 92.19%| 90.16% 91.82% 57.61% 58.16% 50.67%8.58%
6% 89.48% | 94.78%| 85.64% 93.83% 57.61% 59.47% 51.04%9.64%
8% 89.48% | 95.71%| 84.43% 94.91% 57.61% 60.6/% 48.51%0.72%
10% 89.48%| 97.50% 87.10% 96.23% 57.61% 60.88% 47.40 61.36%

Table 4.4: Average routability of original grid WwiR00 holes network with different percentage of
inserted new nodes

% New nodes|

ENS anchor placement

Random anchoemknt

Network | Average| Mixture] Minimum Network Average ifure | Minimum
1% 63.33%| 63.84%| 62.12%  63.419 35.70% 35.6RP% 35.16%5.63%
2% 63.33%| 63.35%| 59.95%  61.929 35.70% 35.58% 33.87%5.79%
4% 63.33%| 66.51%| 57.98%  64.819 35.70% 35.11% 32.37%5.63%
6% 63.33%| 62.61%| 51.84%  60.649 35.70% 34.40% 30.54%4.65%
8% 63.33% | 66.75%| 54.139 64.539 35.70% 34.47% 30.60%5.73%
10% 63.33%| 62.90%| 50.189 59.769 35.70% 34.11% 28.06 35.31%
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Table 4.5: Average routability of original pipe werk with different percentage of inserted new reode

% New nodes| ENS anchor placement Random anchocemknt

Network | Average| Mixture] Minimum Network Average ifure | Minimum
1% 37.42%| 36.67%| 37.27%  37.36% 19.6606 19.95% 20.42%0.96%
2% 37.42%| 37.41%| 38.12%  37.98% 19.66% 20.41% 20.48%l1.20%
4% 37.42%| 38.43%| 39.17%  38.97% 19.6606 21.17% 21.60%3.27%
6% 37.42%| 38.33%| 38.35%  39.70% 19.66%0 21.79% 21.65%3.82%
8% 37.42%| 36.78%| 38.94%  39.07% 19.66%0 22.77/% 22.00%b.82%
10% 37.42%| 39.47%| 38.45%  41.67% 19.66% 23.99% 28.2527.69%

Table 4.6: Average path length of original circutetwork with different percentage of inserted new

nodes
% New nodes| ENS anchor placement Random anchoemknt
Network | Average| Mixture| Minimum Network Average ilure | Minimum
1% 15.40 15.37 15.20 15.26 13.69 13.47 13.67 13.65
2% 15.40 15.37 15.39 15.40 13.69 13.68 13.69 13.61
4% 15.40 15.44 15.37 14.99 13.69 13.70 13.68 13.52
6% 15.40 15.55 15.57 15.12 13.69 13.47 13.65 13.837
8% 15.40 15.41 15.43 15.16 13.69 13.63 13.67 13.22
10% 15.40 15.61 15.46 15.36 13.69 13.75 13.71 12.95

Table 4.7: Average path length of original gridiwitO0 holes network with different percentage of
inserted new nodes

% New nodes| ENS anchor placement Random anchoermplnt
Network | Average| Mixture| Minimum Network Average ifure | Minimum
1% 19.50 19.58 19.39 19.56 15.41 15.48 14.88 15.47
2% 19.50 19.69 19.63 19.68 15.41 15.54 14.94 15.55
4% 19.50 19.62 19.29 19.56 15.41 15.39 13.92 15.43
6% 19.50 19.83 18.57 19.70 15.41 15.69 14.03 15.62
8% 19.50 19.92 18.26 19.80 15.41 15.70 13.48 15.65
10% 19.50 20.05 18.65 19.86 15.41 15.13 13.14 15.f2
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Table 4.8: Average path length of original gridm®00 holes network with different percentage of
inserted new nodes

% New nodes| ENS anchor placement Random anchoemknt
Network | Average| Mixture| Minimum Network Average ifure | Minimum
1% 17.66 17.92 17.46 17.70 13.12 13.14 12.93 13.13
2% 17.66 17.53 16.91 17.25 13.12 12.83 12.46 1291
4% 17.66 18.11 16.60 17.70 13.12 12.83 12.p5 12.94
6% 17.66 17.40 15.16 16.95 13.12 12.49 11.p1 12.55
8% 17.66 17.83 15.93 17.16 13.12 12.97 1141 12.13
10% 17.66 17.19 14.92 16.43 13.12 12.40 1114 12.60

Table 4.9: Average path length of original pipénuek with different percentage of inserted new esd

% New nodes| ENS anchor placement Random anchoemknt
Network | Average| Mixturgl Minimum Network Average iiure | Minimum
1% 25.13 23.50 24.94 24.96 14.62 13.95 14.65 14.50
2% 25.13 23.86 25.10 25.07 14.62 13.87 14.66 14.51
4% 25.13 24.18 25.36 25.32 14.62 12.97 14.73 14.42
6% 25.13 22.36 24.66 25.05 14.62 12.28 14.55 14.41
8% 25.13 20.50 23.45 24.84 14.62 11.81 14.34 14.85
10% 25.13 20.97 22.80 24.94 14.62 11.61 14.70 14.80

4.2.3 Simulation results for 3D networks

For 3D network, a volume network model in 1000unit0O00unitx 1000unit cubic area is
developed, which is similar to USNs. 712 sensoresate randomly placed in the volume cube area. The
communication range of sensors is 130units. Thear&tis shown in Figure 4.7(a) and 8 ENS anchoes ar
marked in red triangle using Double-ENS algorith@00 mobile nodes are randomly placed in network
area and they are located in both regular posits“Ring” positions. The inserted new mobile rode
are marked as red star in Figure 4.7(b). Agairsitnulation of average routability and path lengtie,

choose 8 ENS anchors and 15 random anchors faraesbrk.
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Figure 4.7: a) 3D USN of 712 sensor nodes with &ENchors and b) 200 new mobile sensors inserted
in 3D USN

4.2.3.1 Mobile sensors receive packets from 3fvowk

In 3D network, mobile sensors are considered i $tareceive packets from other nodes in the
network. The average routability and path lengthe# mobile sensors receiving packets in 3D netsvork
are shown in Figure 4.8(a). The simulation resaitts quite similar to the results in 2D network. e
scheme still out performs than the other two sclsemenew mobile sensors’ routability, both in ENS
anchors and random anchors based network. Alsotulkdixscheme shows shorter average path length
compared with other two schemes.
4.2.3.2 Mobile sensors pass packets in 3D network

In our simulation, we still set number of new tegthodes as 1%, 2%, 4%, 6%, 8% and 10% of
total number of network static nodes which are rieseto the original network. The locations are
randomly selected from locations in Figure 4.7fWhen mobile sensors only pass packets in network,
Table 4.10 and Table 4.11 give the average roittabihd path length of original network. Also satoe
2D network simulation results, Average Scheme shgwesl performance when new nodes are inserted as
intermediate nodes passing packets to other nadestivork. When a comparatively small humber of

mobile nodes which are new to the network are tadertthe impacts on routing performance are little
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when proper VC generation scheme is selected. Bimulation in both ENS and random anchor set based
3D networks, results for routing performance shieesame trend with 2D network.

(a)

100

Il Average Scheme
90+ [ IMixture Scheme
[ IMinimum Scheme

80 Il Original Network

70+

60+

50

400-

Average Routability (%)

30

1
Network with ENS Anchors Network with Random Anchorts

(®)

[l Average Scheme
[ IMixture Scheme
[ Minimum Scheme
[ ] Original Network

—_
(=3
T

1

Average Path Length

W
T
1

1 1
Network with ENS Anchors Network with Random Anchors

Figure 4.8: a) Average routability of new insertadbile sensors in 3D USN and b) average path length
of new inserted mobile sensors in 3D USN

Table 4.10: Average routability of original 3D umdeter network with different percentage of inserte

new nodes
% New nodes| ENS anchor placement Random anchoemknt

Network | Average | Mixturg Minimum Network Average ifure | Minimum
1% 78.82% 78.77% | 77.10%  78.84%  54.80% 55.06% 53.96%4.96%
2% 78.82% 78.81% | 74.73% 78.96% 54.80% 55.17% 53.49%6.07%
4% 78.82% 78.98% | 73.13% 79.01% 54.80% 55.39% 52.39%5.24%
6% 78.82% 79.76% | 71.78% 79.60% 54.80% 55.73% 51.10%6.53%
8% 78.82% 79.89% | 70.15%  79.76%  54.80% 56.04% 50.15%56.84%
10% 78.82% 80.30% 67.52% 79.98% 54.80% 56.63% 48.4856.42%
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Table 4.11: Average path length of original 3D umdser network with different percentage of insérte

new nodes
% New nodes| ENS anchor placement Random anchoemknt
Network | Average | Mixture Minimum Network Average itture | Minimum
1% 9.31 9.27 9.14 9.28 10.29 10.27 10.21L 10.33
2% 9.31 9.16 8.90 9.29 10.29 10.24 10.14 10.33
4% 9.31 9.07 8.69 9.28 10.29 10.16 10.01 10.45
6% 9.31 8.99 8.46 9.21 10.29 10.09 9.85 10.40
8% 9.31 8.89 8.20 9.16 10.29 9.97 9.67 10.42
10% 9.31 8.78 7.89 9.11 10.29 9.81 9.5( 10.41

4.3 Summary

So far, three VC generation schemes are proposisdusded and simulated for routinng
performance of new mobile sensor nodes’ receiving passing packets in both 2D and 3D networks.
Average Scheme is a good choice when new nodetveemed pass packets in the network and they are
placed in regular positions. Average Scheme falilswnew nodes are place in “Ring” positions and new
nodes’ receiving packets ability severely decreakeshis case, Mixture Scheme can replace Average
Scheme in order to get closer to one of the neighbmr mobile sensor to improve receiving packets
performance. Average and Mixture Schemes are aféeict both 2D and 3D VCS based WSNs for newly

deployed mobile sensors.
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CHAPTER 5

TOPOLOGY PRESERVING MAPS MODIFICATION SCHEMES

Although TPMs technique provides good substitutegp f@ mapping [17], routing [20] and
boundary detection [18], the compression resultethfignoring first significant component from SVD
introduces topology inaccuracy in TPMs, especifdlythe sensor nodes at the outer boundary of TPMs
which are far from the center in radial distancee do the lack of radial distance information. This
compression thus leads to significant errors andimear distortion compared with a physical m#ipe
accuracy of tracking performance at the edges twfork will suffer from this inaccuracy. For exampie
TPMs are used as mobility guide map providing limeainformation for calculating current velocityan
direction, the distorted edges with inaccuratetiocainformation will cause wrong results for cdkting
velocity and direction. Thus in this chapter, madifion schemes for TPMs are proposed in order to
resolve the edge compression problem. Basic TPMsrgton algorithm is reviewed in Section 5.1. Two
TPMs modification schemes are discussed and reftedlation results are shown in Section 5.2 and

Section 5.3 correspondingly. Simple summary isgiveSection 5.4.

5.1 Topology preserving maps generation

A VCS is based on a set of anchors, which corresporm subset of nodes, selected randomly or
by an anchor selection strategy [17][19]. Each nadhe network, including anchors, is charactetizg a
VC vector, consisting of shortest hop distancesaoh of the anchors [13][17][19][37]. Directionaida
geographic information are not available in VCStlas VCs propagate radially. A method to extract
directional information from VCs in the form of T@spresented in [17]. TPM of a network based o8 TC
is a somewhat distorted version of the physical ofape network. It however has been shown to pvese
relative position information, and is a good subsi for physical information in applications forSMs
such as routing [20] and boundary detection [1&}d® eye view of an area is an example of a distbr

physical map, which can still be used for such fians, even though it is not an exact physical niap.
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this paper, we consider dealing with tracking arabitity related applications directly in the TC daim
instead of the physical domain, which is somewlmatiagous to using a bird’s eye view map. In this
chapter, the distortion problem of TPMs and modifimn schemes are discussed, in order to provide mo
accurate topology map as preparation for mobitdagking in Chapter 6.

Consider a network witifanchors and/sensor nodes. Thus each node is characterized/iy a
vector of lengthV, thei™ element of which corresponds to the minimum nunabérops from the node to
thei™ anchor. Le® be theN x M matrix containing VCs of all sensor nodes in teework. Efficient and
sensor network-friendly implementation of the SV@mputation is addressed in [17]. lRRbe aN X N
matrix containing VCs of all sensor nodes in théwoek. Generating TCs frorl set using SVD is

presented below [17]:

P=U.SVT (5.1)
PSVD = P X V (52)
[XT' YT] = [PSVD(Z)'PSVDB)] (5-3)

Psyp is aN X M matrix containing sensor nodes’ principal compasemnhe first cqumnPSVD(l)
is the most significant component but containsrietisional radial information which is not suffididar
2-dimensional TMPs [2]. Meanwhile second coluy,® and third columnPg,,® contain the
topological information that can be translatednigwdar information and these two columns can ba ase
2D Cartesian coordinate set for sensor nodes wldgal domain [2]X; andY;, are bothV X 1 column
vectors andXr, Y] in egn. (5.3) is the TC set for the network. iitsi" row corresponds to the TCs of the
i" node. Considering the extensive computation ch&MD in deriving TCs from VC set of all sensor
nodes which is matriR, calculating SVD components from anchor set isnenacal choice for large-
scale WSNs. Letl be aM x M matrix containing VCs of anchor sensor nodes. Geimg TCs from
anchor nodes set using SVD is presented in eg). ttbeqn.(5.6) [17]:

A=Uu8..V," (5.4)

PSVD = PXx VA (55)
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(X7, Yr] = [Psyp®, Psyp®)] (5.6)
TPMs generation methods from SVD based on entit@ark node seP and anchor node sét

are both used for TPMs modification schemes sinmrat

5.2 Modification schemel and simulation results

Although Psyp @ and Py, @ from eqgn. (5.3) and (5.6) which are derived froither entire
network node set or anchor node set reconstruclotiedirectional map, ignoring the most significan
componenPs,, ™ leads to compression, especially for the sensdesat the outer boundary of TPM
which are far from the center in radial distancee do the lack of radial distance information. This
compression thus introduces significant errors aowHinear distortion compared with a physical map.
The accuracy of TCs at the edges of network wifiesifrom this inaccuracy.

Therefore we use the following modification to gexte a 2D TPM that is less distorted. We sitill
keep the 2D angular information obtained frég,® andPs,,and at the same time take radial
information inPSVD(l) into consideration. Consider a node in sensor orétwith TCs &, y;). Note that
(x7, yr) is the row corresponding to the node[iy, Yr] given by egn. (5.3) and (5.6). The corresponding
SVD components for this node a18,,™, psyp @, Psyp @, etc., which are extracted from this node’s
corresponding vector iR, . We keep the directional information as the amjleensor node’s TCs to
the origin in TPM:

Or = tan™"(yr/xr) (5.7

The distance; between sensor node and the origin in TPM is:

rr = Vxf +yf = \/(PSVD(Z))Z + svp™®)? (5.8)

We modifyry by weightingr; by the radial information ipg,, P as followed:

rr = J(pSVD(l))Z + (pSVD(Z))Z + (pSVD(3))2 (5.9

Modified TCs of this nodext, yr) can be rewritten as:
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Xp = Tr X cosfr (510)
yr = rr X sinOp (5.11)
We denote byXr, Y7] the matrix of modified TCs obtained by applyingne (5.7), (5.9) — (5.11)
to [Xr, Yr] in egn. (3) and eqgn. (6). In this modificatidor each node the directional information in
psypPandpg,, @ is kept and the radial distancepig,, ™ is also considered in modified so that the
compression at map edges can be redu&edYf] are referred to as TCs in the remainder of thapter.
Three networks from [17] are used to evaluate nwatibn schemes and they are circular network
with three voids in Figure 5.1(a) with 496 nodeg, dircle network in Figure 5.1(b) with 596 nodexla
odd network in Figure 5.1(c) with 550 nodes. A¢ tame time, Test Network (TN6) is also used for
evaluation, whose geographic map can be seen ureFig2. TN6 is in 120un90unit irregular field and
consists of 5137 sensor nodes, each with commimricedinge of 1 unit. In these four networks, nodes
with red triangle in network are the anchors. Anshior networks in Figure 5.1(b) and Figure 5.2 are

chosen by ENS algorithm. 15 anchors for network&igiire 5.1(a) and Figure 5.1(c) are chosen rangloml
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Figure 5.1: Geographic maps of a) circular netweitk three voids with 15 random anchors; b) big
circle network with 5 ENS anchors and c) odd nekweith 15 random anchors
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Unmodified and modified TPMs for four networks ateown in Figure 5.3, Figure 5.4 and Figure
5.5. Figure 5.3(a), Figure 5.4(a) and Figure 5.5f@w original TPMs generated using egn. (5.1).3)(5
and Figure 5.3(b), Figure 5.4(b) and Figure 5.5{w modified TPMs for networks in Figure 5.3(a),
Figure 5.4(a) and Figure 5.5(a) based on eqgn.,(&8) — (5.11). Figure 5.3(a), Figure 5.4(c) &iglure
5.5(c) show ariginal TPMs generated using eqn.)(5.66.6) and Figure 5.3(d), Figure 5.4(d) and Fégu
5.4(d) show modified TPMs for networks in Figur8(®), Figure 5.4(c) and Figure 5.5(c) based on egn
(5.7), (5.8) — (5.11). From modified maps showrFigure 5.3(b), Figure 5.4(b), Figure 5.5(b), Figure
5.3(d), Figure 5.4(d) and Figure 5.5(d), edgeddammmpressed significantly. Modification schemetkso
well with different SVD component generation metho@onsidering large computation cost of SVD in
deriving TCs from VC set of all sensor nodes for6TiN Figure5.2 calculating SVD components from
anchor set using eqn. (4) — (6) is used. In FiguBéb), edges are decompressed significantly coedpiar

those of Figure 5.6(a).

62



Figure 5.3: Circular network with three voids’ @M generated from SVD based on entire network node
set; b) modified TPM of network in Figure 5.3(a);T®®M generated from SVD based on anchor node set
and d) modified TPM of network in Figure 5.3(c)
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Figure 5.6: TN6's a) original TPM generated fromBBkased on anchor node set and b) modified TPM
generated from SVD based on anchor node set

5.3 Modification scheme2 and simulation results
Similar to schemel, in scheme?2, directional infdfomaas the angle of sensor node’s TCs to the
origin in TPM is still kept in egn. (5.12)
Or = tan~'(yr/xr) (5.12)
The distance between sensor node and the origin in TPM is mexdliéind simplified as the first
SVD component since it is the most significant comgnt. We modify by weightingr; by the radial
information inpg,, ™ as followed:
rr = psyp™ (5.13)
Modified TCs of this nodex, yr) can be rewritten as:
Xy = T X cosOr (5.14)
yr = rr X sinOp (5.15)
So [X7,Y7] is the matrix of modified TCs obtained by applyiegn. (5.12), (5.13) — (5.15) to
[Xr, Yr] inegn. (5.3) and eqgn. (5.6). In this modifioati for each node the directional information in
psypPandpgyp® is kept and the radial distancers,, " is modifiedr; in eqn. (5.13) so that the

compression at map edges can be reduced. Theatadauk less for large-scale WSNs however accuracy
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in the center of TPM decreases. Modification scheared scheme?2 can be selected according to differen
requirements of application.

In evaluations, two SVD generation methods onedaseanchor node set is used under scheme2.
Modified TPMs for four networks using shceme?2 dreven Figure 5.7(c), Figure 5.8(c) and Figure 5.9(c)
and Figure 5.10(b). Compared with TPMs without anodification, the edges are well unfolded but cente
folding is introduced due to the ignorance of otlsignificant components ipgy,p®? and psyp® .
Modification scheme?2 brings obvious unfolding effeat the edges however decreases the accuracy of
TCs in the center of TPMs. If the application onbguires more accurate topology information at the
edges, modification scheme2 can be considered siodéfication computation is reduced compared with

modification schemel.
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scheme?2
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X

Figure5.10: TN6's a) original TPM generated fromCBbased on anchor node set; b) modified TPM
based on schemel and c¢) modified TPM based on g&hem
5.4 Summary
In this chapter, two modification schemes to imgrdoke folding edge at the boundary of TPMs
are designed. Two schemes both provide unfoldedseflyy TPMs and increase the accuracy of TPMs at
the boundary. The modification of TPMs gives neagsbasis for TPMs related techniques especially fo
TCTP algorithm which will be discussed in next deaecause TPMs act as a guide map of tracking

instead of traditional geographic maps.
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CHAPTER 6

TOPOLOGICAL COORDINATE BASED MOBILITY TRACKING ANDPREDICTION

In this chapter, 2D-TCTP algorithm is proposed, chhis TC based approach for performing
sensor tracking as well as prediction. To our kealgk, this is the first tracking algorithm that i@tes in
such a virtual domain thus not requiring geograptfiormation based on physical distance measuresnent
Modification schemel from Chapter 5 is used to cedadge distortions in 2D TPMs to enhance its
accuracy. The VCs of the mobile node are derivatiomt resorting to additional flooding’s by anchors
The detecting performance of 2D-TCTP algorithm iabite sensor tracking and perdition is compared
with the same approach based on geographic orgahyisformation. Additionally, we also extend 2D-
TCTP algorithm to 3D WSNSs. In this chapter, Sectdhintroduces the TC generation scheme for mobile
sensor. Detailed description of 2D-TCTP algoritlngiven in Section6.2. Section 6.2.1 shows simafati
results of 2D-TCTP using three mobility models. BDTP is presented and simulated in Section 6.3 Las

Section 6.4 is a brief summary.

6.1 Topological coordinate generation schemerialpile sensor
Recalling SVD from anchor sdtin deriving TCs from VCs is used in 2D-TCTP in e(f1) and

eqgn. (6.2). Xy andYr, are bothV x 1 column vectors anfiX;, Yr] in eqn. (6.3) is the TC set for the

network [17].
A=U;8..V," (6.1)
Pgyp = P XV, (6.2)
(X7, Yr] = [PSVD(Z)r PSVD(3)] (6.3)

TPMs modification schemel proposed in Chapter &séd in TCTP, which can be seen in egn.
(6.4), (6.6)—(6.8).
Or = tan~'(yr/xr) (6.4)

rr is modified as:
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= J @svo ™) + Psvp®)? + svp™)? (6.5)

Modified TCs of this nodex, yr) can be rewritten as:

Xy = T X cosOr (6.6)
yr = rr X sinfr (6.7)

To do the tracking in TC domain, TCs of mobile sengeed to be generated. To generate TCs of
the mobile node at a point using existing appro&®s of it is generated using Average Scheme from
Chapter 4. Firstly, VCs of mobile sensor is obtdibg taking average of neighboring sensors’ VC® Th
averaged VCs provide mobile sensor’s location in dé@nain. Secondly by applying SVD in eqn. (6.3)
and modification in eqn. (6.4)-(6.7), TCs of molsknsor are generated which can be seen as aatestim
location in TPM. Note that the accuracy of TCshaf mobile node in the network highly depends @n th
accuracy of this approximation.

Consider mobile sensor that is surrounded: Imgighbor sensors. L8T, al x M vector, be the
mobile sensor's VCs amg},,, al x M vector, be theit" neighbor sensor's VCs. 36T can be obtained
by eqn. (6.8):

MT = ¥5_1Py,/n (6.8)
MTgyp = MT X V, (6.9)

In eqn. (6.9)MTgyp is al X M vector of mobile sensor's SVD components. Secamdl third

element of MTsy,, are selected as original TCs4, yyr) for mobile sensor. Modified TCep7, yyr) Can

be obtained using eqgn. (6.4)-(6.7).

6.2 2D Topological coordinate based tracking rdliction algorithm
This section proposes the 2D-TCPC algorithm for ititgliracking and prediction in TC domain.
Following terms are used in TCTP algorithm:
1. Sampling time: the time difference tviEen two consecutive sensing locations for

mobile sensor.
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2. Detection ellipse: The area surrounding mobile e@eéngpredicted position, in which the maobile
sensor is predicted to appear at a given future.tirhe area is in the shape of an ellipse. Detectio
ellipse compensates for errors in prediction of plesition. The major axis and minor axis of
detection ellipse can be adjusted so that it caverca@rea of different sizes to meet the
requirements of different applications.

3. Detecting sensors: Static sensors inside deteetipse. The number of detecting sensors varies
with the size of ellipse.

4. (Prediction) Time Window: Mobile sensor’s track amhation is sampled at timg and its
position is to be predicted at future time= t, + t,, wheret,, is prediction time. Mobile sensor is
expected to appear at predicted location at tym&/e set up a time windowt and we expect
mobile sensor’s arrival to be within timg & At, t; + At).

5. Detection failure rate: Detection failure ratetli®e probability that the mobile sensor is not
detected by any detecting sensor in the time windowDetection failure rate is the main
evaluation metric for proposed algorithm.

In TCTP algorithm and related simulation, we maiefbllowing assumption:

1. There is one mobile sensor node (sensor) traveltirige network. BS tries to track and monitor
this mobile sensor in TC domain.

2. The time delay caused by communication among semsaonsidered to be negligible compared
to the time it takes the node to change its neigiduml.

3. BS possesses the network’s TPM, receives mobilsossnaveraged location in VC domain,
calculates its corresponding TCs, tracks its carpasition in TC domain, predicts the future
location and then alerts the sensors in the deteetiipse so that they can wait for the arrival of
mobile sensor.

Traditional tracking and prediction algorithms ieographic domain operate by recording the

motion track. Information such as current motiotogity and direction are then used to linearly joed
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mobile sensor’'s position at a future time [28][%&. 2D-TCTP algorithm follows this basic idea for
prediction, but replaces GCs by TCs for currenb@iéy and direction calculation as well as futuosigon
prediction. Mobile sensor’'s TC position at curréinte ¢; is (xyr,, yur;) and at previous timg_; is
(Xmr,_,»Ymr;_,)- The TC domain velocity; and direction angler can be calculated using eqn. (6.10)

and (6.11):

J(xMTi_xMTi_l)z +mr;~YmT;_)?

Vp = (6)10

ti—ti—q

- XMT; = XMT;_
ar = cos™! it (6.11)
\/(xMTi_xMTi_l)z+(J/MTi_YMTi_1)2

Xmryy, = Xmr; T Vrtpcos(ar) 6.12)
YMT;y, = Yur; T Vrtpsin(ar) 6.13)
(xmr,,, YMT,,,) @re calculated using eqn. (6.12) and (6.13) @ae#timated future position at tirtyg, for
mobile sensor in TC domain after prediction titpdrom current time;.
There are three phases in TCTP algorithm as follows
1. Estimation of TCs of mobile sensor (sampling)
Every sampling time, mobile sensor communicate$ witighbor sensors within 1-hop range.
VCs of mobile sensor’s current position are cal@dausing egn. (6.9) and sent to BS, e.g., by raobil
sensor. BS uses SVD method to calculate correspgmiddified TCs in egn. (6.10) and eqgn. (6.4)-(6.7)
2. BS predicts and sets up detecting sensors
BS receives updated VCs of mobile sensor every kagnfime and records its motion history in
TC domain. To predict mobile sensor’s future positiBS calculates current TC velocity and direction
using eqn. (6.11) and (6.12). Then based on cuifé€ntvelocity and direction, BS calculates mobile
sensor’s position in future using eqn. (6.13) ahd4). After locating the future position in TPMSBets
the detection area as an ellipse. The predictetigross the center of ellipse and major axis dipsk is

set to be perpendicular to the estimated direatfanotion in TC domain.
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Figure 6.1 shows an example of ellipse detecti@a.afhe solid line with arrow is the linear
prediction path for mobile sensor in TC domain, émeldashed line with arrow is its actual motiothpa
The setup of detecting sensors in ellipse is design guarantee the detection of mobile sensoouin
its track is nonlinear in TC domain. In the caseskehthe predicted position is out of the bound&rfRiM,
detection ellipse will be adjusted so that the lolauy nodes surrounding the projected path are deresi
to be the candidate sensors downstream for trackiggre 6.2 shows detecting sensors on the boyndar

that are alerted when the prediction position isabmetwork’s boundary.

: previous sampled location of mobile target

: current sampled location of mobile target

: predicted future location of mobile target

: actual future location of mobile target

-] : active detecting sensors

— : predictied path of mobile target in TPM
----»: actual path of mobile target in TPM

10 D%+

Figure 6.1: Detecting sensors setup when predigtigition is within network’s boundary

nnnnn

v o+ o +:previous sampled location of mobile target
"= 7 4 current sampled location of mobile target
A - predicted future location of mobile target
out of boundary
O : actual future location of mobile target
+] : active detecing sensors

Figure 6.2: Detecting sensor setup when predigimsition is out of network’s boundary

3. Detecting sensors wait for mobile sensor’s arrival
Detection ellipse is determined at the BS. Any rageghat is to be delivered to the mobile node

around future time; is sent to the detecting sensors inside detecltpse. Alternatively, in other

scenarios of operation, detecting sensors may lemap by BS to wait for mobile sensor’s arrival.
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6.2.1 Simulation results

In this section we evaluate the performance of T@G8rithm. A simulator was developed using
MATLAB® 2012a. First we use test network TN6 withrggrated TPM in Figure 6.3(a) and 6.3(b). We
evaluate the algorithm using two mobility modelsgeenerate the movement in the physical domain,
namely, the random direction and random waypointleéi® [15]. In random direction model, mobile
sensor travels in a random direction until reachimg boundary of the network. After pausing for a
certain time, mobile sensor node continues trageilina new random direction. In random waypoint
model, mobile sensor randomly selects a physicsitipo as destination to move to, and after reaghin
mobile sensor randomly selects another positiomeas destination [15]. The results presented aseda
on approximately 900 prediction test positions glomotion track for each mobility model.

Mobile sensor’s tracks in geographic domain witlo tmodels are shown in Figure 6.4(a) and
6.4(b). Mobility of the node occurs in the geodriapgdomain, i.e., moving in a straight line corresging

to one in geographic domain. The velocity of mob#asor in geographic domain is constant at Ot#suni

Figure 6.3: TN6’s a) original TPM generated fromCsWased anchor nodes and b) modified TPM
generated from SVD based on anchor node set
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Figure 6.4: Mobile sensor’s motion track in TN@jnrandom direction mobility model and b) random
waypoint mobility model

To evaluate the effectiveness of TCTP algorithnt thzerates in the TC domain without any
physical information, we also use the same trackilggrithm in geographic domain, in which case the
tracking and prediction are both based on GCs. iBhise existing approach, and as such it servélseas
baseline for comparison. Note that the GC basedoapp has the added advantage of having a constant
velocity due to the mobility models used. In oungiation, we sample the position of the mobile node
every 1s, 2s, 4s, 6s, 8s and 10s. Every sampling, tihe nodes position in the appropriate coordinat
system is informed to BS. We set time window fardiction as Os, 2s, 4s, 6s and 8s. We predictimobi
sensor’s position after prediction time 5s, 10s 208l For the number of detecting sensors, we ehb0s
and 20 per each prediction test position, whicliesponds on average to 0.19% and 0.39% of semsors i
the network respectively.

Before comparing tracking in TC and GC domains, ppit out that the geographic distance
measurement provides continuous changes, whereasof@e mobile node change only at discrete
instances as its neighborhood changes. This igaltiee fact that the VCs of the sensor are obtabed
averaging neighbors’ VCs. As such tracking in T@ndo is not very effective when sampling is done at
very fine granularity. This is different from GCdmal tracking and prediction algorithm where shorter

sampling time leads to optimal detection failurte rgp4]. Figure 6.5(a) shows the variation of detec
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failure rate vs. sampling time for TN6 in randomedtion mobility model in time window 4s when there
are 20 detecting sensors in detection ellipse. Véaempling time is short, i.e., when the travellestashce
during the period is shorter than the communicatamge, this estimated average position is lessrate
compared with actual position, due to the averagation approximation. If the distance travelled in
sampling interval is longer, the accuracy increastsvever, if sampling time is too long, the tramki

information cannot be updated in time so trackiegfg@mance deteriorates in both TC and GC based

methods.
(a) (b)
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Figure 6.5: Detection failure rate for TN5 in randdirection mobility model with 20 detection sersor
vs. sampling time a) when time window is 4s and/b¢n sampling time is 4s

Figure 6.6 and Figure 6.7 compare the variatiodedéction failure rate for TN6 in different time
windows for tracking in TC and GC domains when damggtime is 4s. For short-term prediction like 5s
and 10s under motion velocity of 0.5 unit/s, we sae that the detection failure rate in TC and GC
domains are quite close to each other when timdawviris 2s or longer. For long-term prediction, €8s
into future, the longer the time window the lowetettion failure rate will be obtained. It's a dbafe to
do long term prediction, both in TC and GC domaihg to the linear prediction model. This weakness
can be improved by increasing the number of detg&éensor nodes or area of detection ellipse. Heryvev
the important conclusion is that the TC domainkirag is very competitive with that in the GC domain

Furthermore, the lower cost of TC domain trackiegy., in terms of power due to absence of GPS or
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localization algorithms, also means that we mawlile to increase the size of the detection ellipsEC

domain, thus enhancing its effectiveness.
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Figure 6.6: Detection failure rate comparison befw&C domain and GC domain for TN6 in random
direction mobility model, with a) 10 detecting serssand b) 20 detecting sensors
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Figure 6.7: Detection failure rate comparison befw&C domain and GC domain for TN6 in random
waypoint mobility model a) with 10 detecting serssand b) with 20 detecting sensors
We have also evaluated TCTP algorithm in Test Netwb (TN7) with 2500 sensor nodes in

random placement, a part of which is shown in FguB(a). Unlike TN6, the distances between adjacen
nodes in TN7 are not constant. Mobile node follearsdom waypoint mobility model and the number of
detecting sensors is 10. Mobile node’s velocit9.i units/s. Figure 6.9 shows the detection faitate
when sampling time is 10s. TC based approach cavitegr 20% of the GC based approach for a wide
range of time windows, with lower rates at higheret windows (within 10% of GC based approach after
time window 6s). TCTP shows competitive trackingl aetection performance compared with GC based

approach although physical distances among sewsi@srare random and unknown. It's significant,that
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although without any geographic information, TCBRable to achieve similar failure rate comparedh wit

geographic information based approaches.
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Figure 6.8: a) Part of physical topology of TN7miandom placed nodes and b) detection failurevsate
sampling time for TN7 in time window 6s
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Figure 6.9: Detection failure rate comparison betw&C domain and GC domain for TN7 when
sampling time is 10s
There is large amount of research and study onlityoimiodels because different mobility models
have great effects on the performance of ad haeankt Traditional and classical mobility models lirae
random walk mobility model, random direction malyilmodel and random waypoint mobility model,

which have been widely applied in research [12][2[33][46][58]. These mobility models are repatte
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to be unrealistic in real physical world due to lingitations such as sharp turn and speed decdip[[5

A novel mobility model called Semi-Markov SmoothMS) mobility model [57] combines existing
Gauss-Markov mobility model and actual speedinglaywh phases to mimic movements in real physical
world. In SMS model, three phases exist in movemgmted-up phase, middle smooth Gauss-Markov
phase and slow-down phase [57]. It is assumedntiodiile object accelerates before reaching a stable
velocity and decelerates to full stop in straighe | with certain acceleration rate and no directibange.

In the middle Gauss-Markov phase, suppose the mdltiject reaches velocity, in direction®,after
speed-up phase, the following velocity and directioeach time slot fluctuate with respectjoand®,,
which can be seen in eqn. (6.14) and eqn. (6.18) [6 eqn. (6.14) and eqgn. (6.1%)ndicates the time
slot. ¢ is parameter for memory level addE [0,1]. V:l and@ff1 are two random Gaussian variables
with zero mean and unit variance [15][57]. By ath, the degree of temporal correlation of velocity
and direction between two consecutive time slots loa controlled and the velocity and direction in
current time slot fluctuate aroumg and@,. This mobility model is validated to have no agerapeed
decay problem and avoid sharp turn problem. ThHeisuted for research and simulation in work sited i
[71[25][26][47]. Besides simulation work is bases simulation results from random direction and
random way point mobility models. Here, SMS mobpitihodel is salso elected for simulation to see how

proposed schemes and algorithms work in more tieati®tion tracks.

vi={vj1+ (1-Dv, + 1—(21/}Fj1 (6.14)
0;=(0, 1+ (1-0,+1-720,, (6.15)

We continue to use TN6 and the same method to ;nddM in eqn. (6.4)-(6.7). The mobility
model is selected as SMS. In SMS mobility modedhich is degree of temporal correlation of velocity
and direction between two consecutive time sloggido 0.5. Same with static schemes for mobite@s,
simulation for TCTP algorithm will be done. The egas still 0.5 unit/sec, but the direction chantje®
to time. In our simulation, we sample the positainthe mobile node every 1s, 2s, 4s, 6s, 8s and 10s

Every sampling time, the nodes position in the appate coordinate system is informed to BS. We se
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time window for prediction as 0s, 0.5, 1s, 2s, @s,and 8s. We predict mobile sensor’s positionr afte
prediction time 3s, 6s and 10s. For the numberretéaing sensors, we choose 20 per each predietsbn

position, which corresponds on average to 0.39%eufsors in the network. The tracks in geograhic

domain and topological domain are shown in Figui®©.6
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Figure 6.10: Mobile sensor’s motion track in TN6SKIS mobility model in a) geographic domain and b)
topological domain

We also test the TCTP algorithm in the same testorglitions in which the static sensors in the
network are equipped with GPS and know their GGsbil sensor is not equipped with GPS and GCs are
calcuated by taking average of neigibhors’ GCsufeéd.11(a) shows the variation of detection failiate

vs. sampling time for test network in SMS mobilitydel in time window 2s when there are 20 detecting

sensors in detection ellipse.
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Figure 6.11: Detection failure rate for TN6 in SM®bility model with 20 detection sensors vs. sangli
time a) when time window is 2s and b) when samgiimg is 4s

Figure 6.12 compares the variation of detectiolufairate for TN6 in different time windows for
tracking in TC and GC domains when sampling timésis For short-term prediction like 3s and 6s unde
motion velocity of 0.5 unit/s, we can see that die¢ection failure rate in TC and GC domains areequi
close to each other. For long-term prediction,, é.gs into future, the longer the time window thevér
detection failure rate will be obtained. TC baspgraach comes within 12% of the GC based appraach f
a wide range of time windows, with lower rates ighkr time windows (within 5% of GC based approach
after time window 2s). The detecting performandé&dknce between 2D-TCTP and GC based tracking
and prediction algorithm become smaller if motianchosen mobility model is more realistic. Thisoals
demonstrate the feasibility of applying in 2D-TCirPtracking application in real WSNs because GC
based tracking and prediction algorithm’s decreadetbction accuracy when motion velocity and

direction change in unpredicted way.
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Figure 6.12: Detection failure rate comparison leemwTC domain and GC domain for TN6 in SMS
model with 20 detecting sensors when sampling tgwes

6.3 3D Topological coordinate based tracking rdliction algorithm

In previous sections, mobility tracking and preidicthas been accomplished in 2D WSNs without
geographic information and physical distance measant, which can be used for mobile sensor
communication and detection in 2D WSNs. Such migttilacking and prediction algorithm is also needed
in 3D WSNs. For example, SkyMedia camera systeras to catch flying objects’ pictures and report
them back to BS. Protected animals living underwate equipped with sensor and USN tries to
communicate with this mobile sensor. In such sonamiere GPS has limition to work in, a mobility
tracking prediction algorithm without geographidoimation is highly desired. In this section, 2D-TRC
algorithm is extended to 3D WSNs and nhamed as 3DPTalgorithm. A 3D volume networks is designed
for simulation which can be applied in underwagdy or indoor building environments and simulation
results are presented in Section 6.3.1

2D-TCTP algorithm proposed before will be extenét®md3D network and the basic idea of 2D-

TCTP algorithm will remain the same. Predicted tmraat future time is linearly calculated based on
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current sampled velocity and direction. In 2D-TCdlBorithm, mobile object equipped with sensor gets
its VC/TC by taking average of neighbors’ VC/TC,ialhcan be extended to 3D network without any
change. 3D velocity sampling and prediction calgtolaprocedures are similar to 2D and 3D TCs will
replace 2D TCs in current 3D velocity and directiahculation. Suppose current velocity and directo
sampled from current locatioffxyr, Yur, zZyr,) @t current timet; and previous location
(Xmr,_,» YMT;_,» ZMT,_,) At previous time;_,, sampled velocity and direction are given in el7),
(6.18) and (6.19). Predicted future locat@wr,, ,, Ymr,,,, Zur,,) after timet, from current time; is
given in egn. (6.20), (6.21) and (6.22); in eqn. (6.16) is the distance between currerdation and

previous location in 3D topological domain.

Dr = \/(xMTL- = xur_)* + Omr, — Ymr_ ) + @ur, — Zur,_,)? (6.16)
Dr
Vr = P—— (6.17)
O = sin~1 20 M iz (6.18)
Dt
— —1 XMT;~XMT;_,

ar = CoS™ (6.19)
Xmryy, = Xmr; T Vrtpcos(ar) cos(07) (6.20)
VM7, = Yur; + Vrtpsin(ar)cos(6r) (6.21)

ZMTH_l == ZMTL' + VTtpSin(eT) (622)

The terms of sampling time, detecting sensors,igied time window and detection failure rate
will remain the same from 2D-TCTP algorithm. Thenhher of wall sensors is set up to a fixed number
according to requirements of different applicatioisfferently, the shape of detection ellipse D-2CTP
is changed to 3D detection sphere. The center tettien sphere is the future location of mobilessen
estimated from eqn. (6.20), (6.21) and (6.22). Exeie sphere will tolerate prediction errors in all
directions and try to keep TCTP algorithm and eslatalculation still simple when extended for 3D

network. The radius will be enlarged until the nembf wall sensors reaches the fixed value. Detecti
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failure rate is the main evaluation metric for 309IP algorithm. Detection failure rate is still the
probability that the mobile object is not detedbgcany detecting sensor in the time windbty
6.3.1 Simulation results

When evaluating the performance of 3D-TCTP algarjtrandom waypoint mobility model [15]
is used to generate the movement of mobile objette physical domain for 3D-TCTP. Figure 6.13(a)
shows the 3D geographic map and generated TPMstfNetwork 8(TN8) used for 3D-TCTP algorithm.
TN8 is in 20unixk20unitx20unit cube area and consists of 8000 sensor nodesdom topology. The
communication range of each sensor is 1.3unit.aMeeage node degree of TN8 is 8. 23 ENS anchors are
selected using Double-ENS algorithm and the geedr&PM of TN8 is shown in Figure 6.13(b). ENS

anchor nodes are marked red triangles in Figur&®)and 6.13(b).

(a) (b)

10

Figure 6.13: TN8'’s a) geographic map with 23 EN&hams and b) generated TPM with 23 ENS anchors

Mobile object is set to move in a straight linegeographic domain. The velocity of mobile
object in geographic domain is constant at 0.5(mitbgure 6.14(a) gives mobile object’'s motiorckrin
geographic domain which is marked as red star agdré 6.14(b) gives the corresponding track in

topological domain. There are approximately 100@varediction test points along the track.
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Figure 6.14: Mobile sensor’s motion track in TN8&ingeographic domain and b) topological domain

Similar to 2D simulation of TCTP presented in poasd section, the mobile object’s position is
sampled every 0.5s, 1s, 2s, 3s, 4s and 5s. Eveplisg time, the mobile object’'s VC/TC positiontime
appropriate coordinate system is informed to B&e€Twindow for prediction is set to 0s, 0.5, 1s,43s,
6s and 8s.

We predict mobile object’s position after prediatiime 3s, 6s and 10s. For the number of
detecting sensors, we still choose 20 per eachigtied test position, which corresponds to 0.25% of
sensors in the network. We also test the 3D-TCHBrihm in the same testing conditions in which the
static sensors in the network are equipped with @REknow their GCs. Maobile object is not equipped
with GPS and GCs are calcuated by taking averageedibhors’ GCs. Figure 6.15(a) shows the
variation of detection failure rate vs. samplingdifor TN8 under random waypoint mobility model in
time window 2s when there are 20 detecting serisoudgtection sphere. Very similar to the 2D-TCTP’s
simulation results, sampling time for 3D-TCTP caitimer be too short nor too long in order to obtain

accurate average position for current velocity dinelction calculation.
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Figure 6.15: Detection failure rate for TN8 in randwaypoint mobility model with 20 detection serssor
vs. sampling time a) when time window is 2s and/bgn sampling time is 4s

Figure 6.16 compares the variation of detectiolufairate for TN8 in different time windows in
TC and GC domains when sampling time is 4s. Stitilar to 2D-TCTP simulation results in previous
section, detection failure rate in TC and GC domaire quite close to each other for short-termigtied
like 3s and 6s under motion velocity of 0.5unité/sng-term prediction like 10s into future in 3Dnser
network is still a challenge both in TC and GC doma@C based approach comes within 12% of the GC
based approach for a wide range of time windowt) leiwer rates at higher time windows (within 6% of
GC based approach after time window 2s). Figur@ &Hows detection failure rate results when the
number of detection sensors is increased to 4@¥0.6f sensors in the network), TC based approach
comes within 5% of the GC based approach. After F@&Tlextended in 3D sensor network, performance
of TC domain tracking and prediction algorithm &y close to the one in GC domain. More importantly
the 3D extension of TCTP is free of complicated riication and reduces power due to absence of
localization equipment and algorithms. 3D-TCTP d¢sn used for tracking and prediction in sky or

underwater sensor networks where more hardwargtion from environment exists.
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Figure 6.16: Detection failure rate comparison leemvTC domain and GC domain for TN8 with 20
detection sensors when sampling time is 4s
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Figure 6.17: Detection failure rate comparison leetwTC domain and GC domain for TN8 with 40
detection sensors when sampling time is 4s

6.4 Summary
In this chapter, a prediction based tracking atgorifor 2D WSNs called 2D-TCTP to reach and

detect mobile sensor node in continous movemengrésented and simulation results are analyzed.
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Simulation based results demonstrate that 2D-TCGHReges similar performance compared with physical
information based approaches. This paper alscspgheeway for use of TC domain for many other senso
network applications that usually rely on GCs. TGHews effectiveness in 2D network and competitive
detection performance can be achieved without aeggaphic and physical localization method.
Additionally, Extension of 2D-TCTP for 3D WSNSs teach and detect mobile sensor node in continous
movement is also presented and related simulagisults are analyzed. 3D-TCTP shows effectiveness in
3D volume network and competitive detection perfange can be achieved without using any geographic

localization methods in 3D WSNSs.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary and conclusion

Wireless Sensor Networks (WSNs) consist of distédu sensors to monitor physical or
environmental condition such as temperature andidityn Sensors cooperatively exchange their data
through the network among each other or to a B&es#o8 (BS) or other terminal. As the demands from
WSNs application grow day by day, WSNs need to takely deployed in all kinds of environments, e.g.,
underwater, indoor building, sky, and factoriess@lthe recent concept of Internet of Things impose
additional intelligence requirements for sensowaeks that bridging the gap between physical warld
computer processors. In all, technology changegineduture WSNs to be able to contain large number
of sensors with low deployment and energy costd, @nthe same time require powerful actuation
performances from the sensors in various physivdlenments.

Virtual Coordinate System (VCS) shows great po#ritr these future WSNs because it's free
of geographic distance measurement requirementd, aar also adjustable to different physical
environments. In this thesis, the main focus ishenextensions of current VCS based techniquesdh s
as Extreme Node Search (ENS) for anchor placemmeh2B Geo-Logical Routing (2D-GLR) algorithm
for routing in 3D WSNs. In Chapter 3, the curreMSEand 2D-GLR algorithms are extended for 3D
sensor networks. 3D-GLR with ENS anchor placemaftiexes much greater routing performance
compared with 3D Greedy Distributed Spanning TreaitRg (3D-GDSTR), a routing algorithm that
requires the Geographic Coordinates (GCs), in B@tmetworks with random and fixed topologies, in
both concave and non-concave shapes, with low mhdaverage node degree and in different scales.

This thesis for the first time demonstrates howkizg and prediction of the position of mobile
nodes can be done purely using the Topological dinate (TC) system which only contains topology
information of network without exact geographic tdice measurement. TC based tracking and

prediction algorithms are presented for both 2D 8Bdnetworks. VC generation schemes for newly
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deployed sensors are proposed in Chapter 4, wittemutiring the regeneration of coordinates for the
entire network. Among the three schemes evalu#itecaverage based scheme is able to provide efecti

VCs for a new sensor to get its approximate loaaitiovirtual domain. Effectiveness of new coordasat

is characterized by the routing performance of sewsors in both receiving and passing packetsein th
network. The existing Topology Preserving Maps (HpMxhibit folding problem closer to the edges,
which decreases the accuracy of layout informafmmtracking purposes. Modification schemes are
developed for TPMs in Chapter 5, in order to imgrdhis boundary compression. The improved
accuracy of TPMs results in better guide map fgpdlogical Coordinate based Tracking and Prediction
(TCTP), an algorithm for mobility tracking, predam and detection in 2D WSNs, which is proposed in
Chapter 6 and named as 2D-TCTP for 2D WSNs. TCausee as 2D location coordinates to obtain
current velocity and direction of a mobile node atud predict the future location using linear

extrapolation. Not limited to 2D networks, TCTPailso easily extended to 3D WSNs for tracking and
prediction, which is named as 3D-TCTP in Chapter 6.

In summary, extension of existing VC related altjoris, ENS and 2D-GLR, to 3D sensor
networks has been accomplished. 3D-GLR algorithesd involve any planarization computation or
geographic localization hardware/software. With thelp of the ENS anchor placement, 3D-GLR
algorithm shows very strong effectiveness and Hffitiency for 3D sensor networks, compared with
existing 3D-GPSTR algorithm that is based on GC# wiore adjustability and energy saving. Simple
VC generation schemes in virtual domain are progpgdse mobile sensor nodes for communication with
dynamically deployed sensor nodes in the netwoyka@&juiring the VCs of mobile nodes’ neighbors, the
mobile node estimates its location in the virtuaingiin. Three schemes for generating VCs are eealua
for routing performance when mobile sensor nodésscestination and intermediate nodes in network.
Generating VCs is the very initial step for molsknsor’s various applications in VCS based WSNs. Th
schemes which we evaluated can satisfy both effsotiss and efficiency in VCS based 2D and 3D
networks. Considering the velocity of mobile sessdracking and prediction of position of mobile
targets using sensor networks have been accomglighilg TCs in the proposed new tracking and
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prediction algorithm called TCTP algorithm. TCTPedonot require physical distance information.
Instead of doing tracking in geographical domaingaes the tracking in TC domain. Our simulation
results show that even without any geographic médion, tracking and prediction of positions of a
mobile target using TCs is effective. Both 2D-TCHAd 3D-TCTP algorithm have competitive
performance compared with the same algorithm ograt the GC domain for a wide range of mobility
parameters in both 2D and 3D networks.

The research work presented in this thesis pawesvéty for applying and designing VCS based
techniques in 3D WSNs and MWSNs for the first tirReuting and mobility tracking and prediction in
3D WSNs have been accomplished without any geograpiformation and physical distance

measurements.

7.2 Future work

Research in this thesis paves the way for applyi@® based techniques for anchor placement
and routing in 3D sensor networks. 3D sensor nédsvare mainly used in underwater area so far. in ou
research, we assume that sensors obtain their X@s &nchors’ initial floodings of VC generation
messages, and the nodes hold the same VCs alhtbe However, in real USNs, one big challenge in
localization comes from the dynamic topology changéhis is due to the nature of underwater
environment where ocean currents and waves caty easirganize the placement of sensors in
unpredictable ways [40]. The change of geograpbpolbgy results in location change in virtual or
topological domain for sensor nodes. In other wong$work topology in virtual and topological domai
changes over time. In this case, sensor networlts dyihamic topology related to time domain can also
be researched and explored. Thus a dynamic VC gemeischeme is required for networks to avoid re-
flooding VC generation messages from anchors avéroaer again. As a result, dynamic VC generation
and intelligent self-reorganization in VCS based 3BNs are important and promising research topics,

which will help extend application of VCS from reseh environments to real application environments.
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Additionally, future work also includes further foof ENS algorithm’s effectiveness in anchor
selection and design of topology evaluation mawic3D TPMs. More evaluation matric for 2D-GLR

and 3D-GLR algorithm rather than average routabditd average path length can also be designed.
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APPENDIX A

SIMULATOR OF TCTP ALGORITHM

MATLAB codes for TCTP algorithm are given below.cBen A.1 is the main function of TCTP
algorithm.
A.1 Main function

%INPUT: Network, Mobile sensor's track, Samplingdi Prediction time,
%Time Window, Number of detection sensors
%OUTPUT: Detection failure rate in time window
TimeSlot = Tsample/Ttest; % get time slot of sampliime over testing time
%do SVD operation to matrix of anchor set
anchormatrix = zeros(Anchor_NO,Anchor_NO);
for j =1:Anchor_NO
for i =1:Anchor_NO
anchormatrix(i,j) = Grid1(i,AnchorArray(}),
end
end
[U,S,V] = svd(anchormatrix’); %get SVD componentsetwork

[sizel,size?2] = size(trackxy);
j1 = 1;%flag for testtrack
fori=1:1:size2
if mod(single(trackxy(1,i)),single(Ttest)) ©%4if it's testing time
¢ = 0; %neighbor counter
for i2 = 1:NoNodes
if sgrt((trackxy(2,i)-XY(i2,1))"2 + (tikxy(3,i)-XY(i2,2))"2) <=
communicaterange %find neighbordiwicommunication range
¢ = c+1; %how many valid neighbors
AddinodeNeighbor(c+1,1) = i2;
end
end
%get average VC from neighbors
AddinodeNeighbor(1,1)=c;
ADDIVC = zeros(Anchor_NO(1,1),1);
for i3 = 1:Anchor_NO(1,1)
forj=2:c+1
if AddinodeNeighbor(j,1) ~= 0
C(1,j-1) = Grid1(i3,AddinodeNeigitgj, 1));
else
C(1j-1)=0;
end
end
%if only one neighbor is found
if AddinodeNeighbor(1,1) ==1
ADDIVC(i3,1) = sum(C(1,:));
A2 = randperm(Anchor_NO(1,1));
ADDIVC(A2(1,1),1) = ADDIVC(A2(1,1),1)1,;
else
ADDIVC(i3,1) = sum(C(1,:))/Addinodeigdbor(1,1);
end
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end

MAXI = ADDIVC™*V; %do SVD operation to arage VC of mobile sensor
%get location of mobile sensor in TC domain

currentX = MAXI(1,2);

currentY = MAXI(1,3);

%record motion track
ADDIVC =];
testtrackxy(1,j1) = trackxy(1,i);%curreime
testtrackxy(2,j1) = trackxy(2,i);%real xardinate in XY for testing
testtrackxy(3,j1) = trackxy(3,i);%real yardinate in XY for testing
testtrackxy(4,j1) = currentX;%sampled agera coordinate in TC
testtrackxy(5,j1) = currentY;%sampled agerg coordinate in TC
j1=j1+1;
end
end

TestNO=j1-1;% testing points including invalidesn
predictTC = zeros(3,TestNO);% predicted futuratoon in TC domain
fori= 1:TestNO
currentTCx = testtrackxy(4,);
currentTCy = testtrackxy(5,i);
%if the time exceeds the time which can belioted
if single(testtrackxy(1,i)+ Tpredict) > sinffesttrackxy(1,TestNO)) || single(testtrackxy(1g)3ingle(Tsample)
PredictTC(1,i) = 0;
PredictTC(2,i) = 0;
PredictTC(3,i) = 0;
else
%if mobile sensor stops moving
if testtrackxy(4,i-TimeSlot) == currentT @& testtrackxy(5,i-
TimeSlot) == currentTCy %
PredictTC(1,i) = 0;
PredictTC(2,i) = 0;
PredictTC(3,i) = 0;
else
PredictTC(1,i) = 1;
Vtc(1,i) = testtrackxy(1,i);%Vtc forlaksting points
DistanceTC = sqrt((testtrackxy(4,i3tteackxy(4,i-
TimeSlot))"2+(testtrackxy(5,i)-testtkag(5,i-TimeSlot))"2);
Vtc(2,i) = DistanceTC/Tsample;%Velocity
if (Vtc(2,i) == 0 && Vtc(3,i) == 0) %ifmobile sensor stops moving
PredictTC(1,i)) = 0;
PredictTC(2,i) = 0;
PredictTC(3,i) = 0;
else
predictdistancel = Vtc(2,i)*Tpredigtlinear prediction
[predictTCx,predictTCy]=solve('(pied Cx-prea)/pree = (prea-
prec)/sqrt((prea-prec)*2+(preb-pted,
'(predictTCy-preb)/pree = (preb-predrt((prea-
prec)"2+(preb-pred)*2)','predictTahedictTCy");
prea = currentTCx;
preb = currentTCy;
prec = testtrackxy(4,i-TimeSlot);
pred = testtrackxy(5,i-TimeSlot);
pree = predictdistancel;
predictTCx=eval(predictTCXx);
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predictTCy=eval(predictTCy);
PredictTC(2,i) = predictTCx; %pre@d X coordinate in TC domain
PredictTC(3,i) = predictTCy; %pre@d Y coordinate in TC domain
PredictTC(4,i) = 0;
end
end
end
end
WALLSENSOR = zeros(13,TestNO);%detection sensors
Windowresult = zeros(TimewindowNO, TestNO);
OutofBoundaryCounter = 0;
fori=2:TestNO
if PredictTC(1,i) ~= 0 % valid testing point
detectrangea = 1; % major axis of dedectilipse
detectrangeb = 0.2; % minor axis of dédecellipse
ee=1; %counter of wall sensors
mode = 1;
if outboundary ==
while ee < NOwallsensor+1
if mode ==
ellipsea = detectrangea;
ellipseb = detectrangeb;
end
if mode ~= 1
ellipsea = (1+mode/100)*ellipsea
ellipseb = (1+mode/100)*ellipseb
end
% draw the ellipse
ellipsetan = (testtrackxy(5,i)-temtkxy(5,i-
TimeSlot))/(testtrackxy(4,i)-testtkxy(4,i-TimeSlot));
if ellipsetan < 0
ellipseangle = pi+atan(ellipsgta
else
ellipseangle = atan(ellipsetan);
end
ellipseangle = ellipseangle-pi/2;
% get detecting sensors inside alips
for e= 1:NoNodes
X =
PSVD(e,1)*cos(ellipseangle)+PY¥R)*sin(ellipseangle);
Y = PSVD(e,2)*cos(ellipseangle)-
PSVD(e,1)*sin(ellipseangle);
newx0 = x0*cos(ellipseangle)+gbi(ellipseangle);
newy0 = yO*cos(ellipseangle)-sbt{ellipseangle);
if ((X-newx0)"2)/(ellipsea™2))tY-
newy0)"2)/(ellipseb”2))<=1
WALLSENSOR(ee+3,i) = e;%lbdetecting sensor nodes
ee=ee+1,
end
end
if ee <NOwallsensor+1 %remove exlegecting sensor nodes
mode=mode+1;
for eee = 1:ee+3
WALLSENSOR(eee,i) = 0;
end
ee=1,
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end
TCNO = ee-1;
WALLSENSOR(1,i) = TCNO;%number of lsensors
WALLSENSOR(2,i) = ellipsea;%long &xef detect ellipse
WALLSENSOR(3,i) = ellipseb;%shortsexof detect ellipse
end
end
if outboundary == 1 %if mobile sensor nmayof out boundary of network
OutofBoundaryCounter = OutofBoundary@ier+1;
for h = 1:BOUNDARYNODENO %get nearbstundary nodes of network
boundarydistance(h,1) = BOUNDARYNBID(h,1);
boundarydistance(h,2) = sqrt((PEBOUNDARYNODEID(h,1),1)-
x0)"2+(PSVD(BOUNDARYNODEID(h,1) 30)"2);
end
boundarydistance = sortrows(boundatggice,2);
WALLSENSOR(1,i) = NOwallsensor;
WALLSENSOR(2,i) = 0;
WALLSENSOR(3,i) = 0;
for h = 1:NOwallsensor
WALLSENSOR(3+h,i) = boundarydista(h,1);
end
boundarydistance = [];
end
%remove extra detecting sensor nodes
if WALLSENSOR(1,i) > NOwallsensor
for mm = 1:WALLSENSOR(1,i)
wallsort(mm,1) = WALLSENSOR(mm+3,i
wallsort(mm,2) = sqrt((XY (walls@mm,1),1)-
X0)"2+(XY (wallsort(mm,1),2)-y0)"2)
wallsort = sortrows(wallsort,2);
end
for mm = 1:WALLSENSOR(1,i)
WALLSENSOR(3+mm,i) = 0;
end
for mm = 1:NOwallsensor
WALLSENSOR(3+mm,i) = wallsort(mny, 1
end
WALLSENSOR(Z1,i) = NOwallsensor;
wallsort = [J;
end
%check if mobile sensor is detected bychitg sensor at future time
futuretime = testtrackxy(1,i)+Tpredict; Qtiire time
for i2 = 1:TimewindowNO %check in differtetime window
timewindow = TimeWindow(1,i2);
for i3 = 1:size2 %
if single(trackxy(1,i3)) >= singfaturetime-timewindow) &&
single(trackxy(1,i3)) <= sinffleuretime+timewindow)
for i4 = 4:3+NOwallsensor
wallsensorx = XY(WALLSEN®Q4,i),1);
wallsensory = XY(WALLSEN®Q4,i),2);
if sgrt((wallsensorx-tragk2,i3))"2+(wallsensory-
trackxy(3,i3))"2) <=camnicaterange

Windowresult(i2,i) 3%4Windowresult each row corresponds to detectisnltén each

timewindow
break;
end
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end
end
if Windowresult(i2,i) ==
break;
end
end
if Windowresult(i2,i) == 1
for i5 = i2:TimewindowNO
Windowresult(i5,i) = 1;
end
break;
end
end
end
end
ValidTestNO = sum(PredictTC(1,:)); %number of vakdting points along the track
%ocalculate detection results in different time vandg
windowresultl = 1-sum(Windowresult(1,:))/ValidTe€N
windowresult2 = 1-sum(Windowresult(2,:))/ValidTe €N
windowresult3 = 1-sum(Windowresult(3,:))/ValidTe€N
windowresult4 = 1-sum(Windowresult(4,:))/ValidTe€N
windowresult5 = 1-sum(Windowresult(5,:))/ValidTe€IN
windowresulté = 1-sum(Windowresult(6,:))/ValidTe$N
windowresult7 = 1-sum(Windowresult(7,:))/ValidTe€IN
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LIST OF ABBREVIATIONS

AOA Angle of Arrival

BS Base Station

CSR Convex Subspace Routing

DOA Direction of Arrival

DPT Distributive Predictive Tracking

DvC Directional Virtual Coordinate

DVCR Directional Virtual Coordinate Routing
ENS Extreme Node Search

GC Geographic Coordinate

GLR Geo-Logical Routing

GDSTR Greedy Distributed Spanning Tree Routing
GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing
LCR Logical Coordinate based Routing
MEMS Microelectromechanical Systems
MWSN Mobile Wireless Sensor Network
OSTN Object Tracking Sensor Network
POOT Prediction-based Optimistic Object Tracking
RF Radio Frequency

RSSI Received Signal Strength Indication
SMS Semi-Markov Smooth (Mobility Model)
SvD Singular Value Decomposition

TOA Time of Arrival

TPM Topology Preserving Map

TC Topological Coordinate

TCTP Topological Coordinate based Tracking andlietien (2D-TCTP and 3D-TCTP)
TN Test Network

USN Underwater Sensor Network

VvC Virtual Coordinate

VCS Virtual Coordinate System

WSN Wireless Sensor Network
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