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ABSTRACT 
 

 

USING MODELLING TOOLS TO ADVANCE THE UNDERSTANDING OF  

AMMONIA DRY-DEPOSITION AND BIDIRECTIONAL FLUX PROCESSES 

NEXT TO LARGE ANIMAL FEEDING OPERATIONS 

 
 
 

 Ammonia in the atmosphere is a trace gas that can play a big role in the Earth’s climate, as 

well as human and ecological health. Due to its stickiness and solubility, ammonia can enter the 

biosphere via wet and dry deposition, where excess ammonia input often results in soil 

acidification, disruption of natural ecological equilibria, and loss of biodiversity. Additionally, 

ammonia is the most abundant alkaline species in the atmosphere and can react with atmospheric 

acids to form aerosols, which can affect the earth’s radiative balance as well as human health. 

Ammonia emissions tend to be associated with agricultural sources, such as fertilized fields or 

animal waste at Concentrated Animal Feeding Operations (CAFOs). Consequently, ammonia 

emissions tend to be dynamic and highly heterogeneous, and ammonia surface-fluxes are difficult 

to measure. However, in regions with many large CAFOs, ammonia can be an important regional 

pollutant, especially if there are sensitive ecosystems or other regional sources of atmospheric 

acids present. 

In this dissertation, I study ammonia dry-deposition fluxes immediately downwind of 

CAFOs using a variety of modelling tools. First, I discuss original research where I use a coupled 

K-epsilon model with a Lagrangian-Stochastic ammonia bidirectional exchange surface model to 

simulate the dispersion and deposition of ammonia downwind of an idealized CAFO. Based on 

these simulations, the amount of ammonia that undergoes dry deposition depends greatly on the 
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land surface downwind of the CAFO; replacing bare soil or unmanaged grassland with leafier 

surfaces such as cropland or forests can increase the fraction of total ammonia emissions that 

deposits from 2 - 10% to 30 - 50%, though this is sensitive to the ammonia emission potential in 

the model plant canopy. Next, I describe a separate study where I use a 3-D Large-Eddy Simulation 

model to simulate the dispersion of ammonia and methane from a CAFO with a time-resolved 

modelling tool. I use this modelling system to produce synthetic observations, which are used to 

develop an inversion approach to quantify the ammonia dry deposition near a CAFO with co-

located mobile measurements of ammonia and methane. While I demonstrate that such an 

inversion technique is feasible with surface-based measurements, considerable value is added, in 

terms of minimizing method bias and increasing method precision, by mounting measurements on 

a small Unmanned Aerial System (sUAS). 

Finally, I present measurements of PM2.5 concentration and composition that were made in 

Palapye, Botswana. Botswana is a developing country with a hot and arid climate. Beef and 

livestock production are important economic activities in Botswana; however, the agricultural 

practices differ considerably from the CAFOs discussed in the rest of the dissertation. Furthermore, 

these livestock activities occur against a backdrop of emissions and air pollutants that differ 

considerably from the United States and Europe. The measurements show that PM2.5 

concentrations were on average 9 𝜇g m-3 during the 5-week measurement period. While below 

levels that are typically considered hazardous, there was considerable variability in the measured 

concentrations, and the measurement period is too short to conclusively determine that air 

pollution is not a public health concern in this region. The aerosol composition is dominated by 

carbonaceous species, probably from biomass burning, though inorganic sulfate also is abundant 
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in the aerosol phase. As Botswana continues to undergo economic development, the types of 

emissions and pollution present will continue to change. 
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CHAPTER 1. INTRODUCTION 
 
 
 
1.1 The Nitrogen Cycle, Ammonia, the Colorado Front Range, and CAFOs 

 With the exception of meteorites, spacecraft launches, and extremely small quantities of 

trace gases escaping from the top of the atmosphere, Earth does not exchange matter with its 

surroundings. On Earth, chemically active elements and their respective chemical compounds are 

continuously cycled between large reservoirs. A particularly well-known example of a 

biogeochemical cycle is the global carbon cycle, which describes the flux of carbon between the 

atmosphere, biosphere, and Earth’s crust. The global carbon cycle is famous because of its 

importance for anthropogenic climate change; by removing carbon from a deep crust reservoir (i.e., 

fossil fuels) and burning the carbon to make CO2, humans are increasing the atmospheric loading 

of CO2, which perturbs the Earth's radiative balance. However, other biogeochemical cycles (e.g., 

water, phosphorous, sulfur) are also critically important for maintaining climatic, and also 

biochemical equilibrium on Earth (Fisher, 2017). 

The nitrogen cycle is another important biogeochemical cycle on Earth, especially for its 

role in biochemistry. Most nitrogen on earth is diatomic N2 gas in the atmosphere. N2 is chemically 

very inert, and only undergoes chemical reactions in extreme environments (e.g., inside lightning 

bolts) to form nitrogen oxides (NOx) or in special microbially-catalyzed reactions (inside soils, 

plant roots, and in the oceans) to form ammonia (NH3); these processes are called “nitrogen 

fixation”. NH3 and NOx are chemically reactive nitrogen species (NR) and are essential chemical 

constituents of amino acids, nucleic acids, a.k.a. “the building blocks of life”. Life as we know it 

could not exist without NR compounds. However, the nitrogen fixation processes are naturally very 

slow and are balanced by denitrification reactions which convert NR, back to N2. The scarcity of, 
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and competition for, NR has been a driver of natural selection for billions of years (Galloway et al., 

2013; Galloway and Cowling, 2002). However, in the early 20th century, industrial scale adoption 

of the Haber-Bosch process has allowed synthetic nitrogen fixation for production of fertilizers 

(Galloway et al., 1995). Additionally, combustion of fossil fuels in vehicles and industrial 

combustion processes, such as power generation, can produce NOx. Anthropogenic nitrogen 

fixation now exceeds natural nitrogen fixation, and these excess NR compounds have resulted in 

large perturbations to the nitrogen cycle (Battye et al., 2017; Vitousek et al., 1997). NR deposition 

or leakage into “sensitive ecosystems” (i.e., ecosystems that have evolved under nitrogen-limited 

conditions) can cause many negative impacts such as allowing invasive species to thrive (e.g., 

cheat grass in the Rocky Mountains, red tide), decreases in biodiversity, or catastrophic loss of life 

(e.g., eutrophication from algal blooms) (Vitousek et al., 2013).  Additionally, reactive nitrogen 

species such as ammonium and nitrate can react to form aerosols in the atmosphere, which can 

directly affect human health (Dockery et al., 1993), and can affect climate by scattering or 

absorbing radiation or impacting cloud processes (Boucher et al., 2015). Globally, in response to 

the impact of NOx on air pollution and human health, regulations on combustion and other NOx 

emission processes has decreased the impact of oxidized nitrogen species, and reduced nitrogen 

species are becoming an increasingly important source of NR to the atmosphere and environment 

(Li et al., 2016). 

The most abundant reduced nitrogen species in the global nitrogen cycle is ammonia. NH3 

(g) is a gaseous compound that is soluble in water, and dissociates in aqueous solution to form 

ammonium (NH4
+); because NH3 is an alkaline species, it reacts with acids in the atmosphere (e.g., 

nitric acid, sulfuric acid, or organic acids) to form aerosols. Ammonia is a polar “sticky” molecule 

and can undergo dry deposition or complex bidirectional interactions with biomass. In these 
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bidirectional interactions, it is either emitted or absorbed by surface vegetation or soils, depending 

on the surface, climate, environmental conditions, and atmospheric ammonia concentration 

(Behera et al., 2013). Ammonia is also extremely difficult to measure with high temporal 

resolution because it sticks to instrument inlets (Pollack et al., 2019), and therefore the surface 

fluxes of ammonia are poorly constrained. While soil and vegetation fluxes contribute to ambient 

background ammonia concentrations, large point or area sources can produce elevated local or 

regional concentrations of ammonia. Examples of ammonia sources include the following: 

ammonia volatilization from fertilizers, biological and decomposition processes in wastewater 

treatment or landfills, and animal waste from livestock operations (Behera et al., 2013). 

Metabolic products such as urea can rapidly decompose into ammonia in the environment. 

Because animals produce waste (Gomi, 2001), large livestock operations can be important local 

and regional sources of ammonia. In highly industrialized agricultural systems, a large fraction of 

livestock is produced in Concentrated Animal Feeding Operations (CAFOs), which can house 

many thousands of individual animals in concentrated facility (Hristov et al., 2011). For example, 

in Colorado, there are several CAFOs housing more than 40,000 head of cattle, and a few with a 

maximum capacity exceeding 100,000 head of cattle (“Colorado Cattlemen’s Association,”). 

CAFOs of this size have had ammonia concentration measurements as high as 20 ppm made 

nearby (Hacker et al., 2016; Shonkwiler and Ham, 2018; Sun et al., 2015, 2014), compared to an 

ambient background of 1 ppb. CAFOs in Colorado, and other places in the Western US are visible 

“ammonia hotspots” based on satellite observations (Van Damme et al., 2018). While the ammonia 

emissions from CAFOs are a complex function of environmental conditions, CAFO size, and 

management practices, many studies have measured the emissions flux of ammonia, and both 

empirical and process-based models of ammonia emissions are becoming available (Hristov et al., 
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2011). However, there are large uncertainties in the impact that large CAFOs can have on regional 

air quality and NR deposition, in part due to the complexity and heterogeneity of the complex 

surface interactions immediately downwind of the CAFO. While it is generally thought that a large 

fraction of CAFO ammonia emissions may undergo dry deposition near the feedlot boundary, the 

exact size of this fraction is poorly constrained (Hao et al., 2005). The determination of this 

fractional deposition is a function of two primary processes: dispersion of the CAFO emission 

plume in a turbulent boundary layer, and the interaction with the surface and dry 

deposition/bidirectional flux physics. 

 

1.2 Boundary-layer turbulence theory and modelling 

  The Planetary Boundary Layer (PBL) is defined as the region of the atmosphere where the 

behavior is directly influenced by interaction with the surface; such interactions include: friction, 

latent and sensible heat flux, as well as environmental conditions such as atmospheric stability. 

The focus of this dissertation is the dispersion of ammonia downwind of feedlots, which is a 

process that occurs close to the surface; therefore, all modelling tools that are useful for this 

application require the capability to represent atmospheric turbulence and surface interactions in 

the PBL (Foken, 2008).  The atmosphere is a fluid, and therefore the physics and dynamics of the 

atmosphere are represented by the Navier-Stokes Equations, coupled to the continuity equation for 

conservation of mass, and the thermodynamics of adiabatic compression and expansion of the fluid. 

Atmospheric motions span spatial scales of thousands of km (e.g., Rossby waves) to millimeters 

(viscous and frictional damping) (Holton and Hakim, 2012), and PBL motions include eddies that 

are the height of the entire PBL, several thousand meters under some conditions; direct numerical 

simulation (DNS) requires temporally and spatially resolving this broad range of spatial and 
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temporal scales, and is beyond the capability of modern computing systems. Therefore, numerical 

solutions of the atmospheric dynamics equations require careful selection of relevant processes to 

simulate, and parameterization of subgrid-scale or supergrid-scale processes.  

One class of approaches that is applied in a variety of Computational Fluid Dynamics 

(CFD) applications where DNS is not feasible is Reynolds-Averaged Navier-Stokes equations 

(RANS) equations. The RANS equations are obtained by performing a Reynolds decomposition 

on the native Navier-Stokes equations to separate the mean flow characteristics from the 

temporally varying flow characteristics; the time-varying “fluctuation” terms are commonly 

referred to as the Reynolds Stress tensor. The representation of the Reynolds Stress tensor is 

referred to as the “turbulence closure”, and this term has no analytical solution, and chaotic 

numerical behavior; its representation is a major challenge for modern physics. Different RANS 

techniques use different approaches to parameterize the Reynolds Stress tensor in terms of known 

quantities (Tennekes and Lumley, 1972). One example of a commonly-applied RANS technique 

is the K-epsilon model, which expresses the Reynolds stress tensor as a function of the turbulent 

kinetic energy (TKE or K) and the TKE dissipation rate (epsilon), as defined below: 

    𝐾 = 12𝑢′2;  ϵ = ν2 |∇𝑢′ + 𝑢′𝑇|2    (1.1) 

The K-epsilon model also adds two additional equations to model the transport, production, and 

destruction of k and epsilon, which are coupled to the momentum transfer equation. These models 

are used to estimate the average flow characteristics for a given scenario, which includes the mean 

flow as well as the TKE, and TKE dissipation rate. K-epsilon models are used by representing 

interactions with the surface by using wall functions to parameterize frictional effects on surface 

mean winds (U), as well as TKE and TKE dissipation (Launder and Spalding, 1974). K-epsilon 

models are used to simulate flow through and above plant and urban canopies by representing 
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these flow obstacles as porous media, and representing the fluid interaction with the canopy with 

source functions in the K-epsilon equations. The K-epsilon model has been shown to perform well 

in situations where large pressure gradients are absent and the atmospheric boundary layer is 

neutral. However, a major shortcoming of this approach for use in atmospheric cases is the inability 

to represent buoyancy effects on the mean and turbulent flow fields; therefore, K-epsilon models 

do a poor job representing dispersion under stable or unstable conditions. Additionally, 

representing the Reynolds Stress as a function of U, k, and epsilon is equivalent to assuming 

isotropic turbulence, which is not often not true in the atmosphere (Lovejoy et al., 2007). 

Nevertheless, the K-epsilon model has been widely adopted for a range of atmospheric modelling 

applications, such as wind-power generation (Hargreaves and Wright, 2007; Richards and Hoxey, 

1993) and forest edge and in-canopy flow (Hanjalic, 2005; Högström et al., 1989; Svensson and 

Häggkvist, 1990). 

Another alternative approach to DNS for modelling the PBL is to apply a low-pass filter to 

the Navier-Stokes equations to derive a temporally evolving version of the Navier-Stokes 

equations without resolving the smallest length and temporal scales; this approach is called Large 

Eddy Simulation (LES) (Smagorinsky, 1963). In LES models, a subgrid-scale model is required 

to represent processes that the model cannot resolve, such as viscous dissipation or scalar diffusion 

(Deardorff, 1970). At the model resolution, LES models do not require any assumptions about the 

Reynolds Stress, and consequently, there is no assumption of isotropic turbulence. Additionally, 

representing buoyancy effects and atmospheric stability is more straightforward. However, 

compared to K-epsilon models, LES models require more computing resources to perform 

simulations, and the representation of surface features such as topography or plant canopies is 

much more complex. Often, LES simulations that represent in-canopy processes require numerous 
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K-epsilon simulations of the same system in order to derive model parameters for the canopy 

inertial effects on the fluid flow (Zhiyin, 2015). 

 

1.3 Dry deposition and bidirectional flux 

 Gases and aerosols can be deposited to the ground through two processes: wet deposition 

and dry deposition. Wet deposition occurs when the gas dissolves, or the particle is engulfed in, 

water and is deposited to the surface as rain, snow, graupel, or fog; while these processes can be 

responsible for large fluxes between the atmosphere and surface, they only occur during active 

precipitation, and are governed by a separate set of physical processes relative to dry deposition. 

Therefore, wet deposition is beyond the scope of this dissertation. 

 The dry deposition flux is usually modelled as a first order loss process according to 

Equation 2: 

      𝐹 = −𝑣𝑑𝐶     (1.2) 

where F is the flux (mass per unit area per time), C is the atmospheric concentration (mass per 

volume), and vd is the deposition velocity (distance per time). Dry deposition is actually a series 

of different physical processes that are governed by different physics: (1) a gas or particle is 

transported by atmospheric turbulence from a height above the surface (commonly referred to as 

the “reference height”) to the edge of the quasi-laminar boundary layer, (2) diffuses across the 

laminar boundary layer, and then (3) sticks to the surface. These three processes each often 

modelled analogously to electrical conduction (or inversely as resistances) are referred to as the 

atmospheric, quasi-laminar, and surface conductivity. Under this conceptual model, the deposition 

velocity for gases can be calculated as follows: 

     𝑣𝑑−1 = 𝑅𝑎 + 𝑅𝑏 + 𝑅𝑠     (1.3) 
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where Ra is the atmospheric resistance, Rb is the quasi-laminar boundary layer resistance, and Rs 

is the surface resistance. The advantage of this approach is that the various processes in dry 

deposition can be modelled separately. For example, Ra is a function of turbulence and stability in 

the boundary layer, Rb is a function of the gas diffusivity and quasi-laminar boundary layer 

thickness, and Rs depends on the affinity of the gas to the surface in question (Seinfeld and Pandis, 

2016). In general, Ra is often the rate-limiting step (Phillips et al., 2004) and atmospheric models 

have had general success representing Ra and Rb in larger-scale models (Wu et al., 2012), 

suggesting that the physical parameterizations of these processes are sufficiently accurate. 

However, the representation of Rs is more challenging, and in some cases, can dominate the 

resistance. 

 For the specific case of ammonia interacting with a soil or vegetated surface, there are 

additional layers of complexity. Plants and soils can be sources of ammonia under the right 

environmental conditions, but become sinks under other environmental conditions. This 

bidirectional behavior is modelled with a compensation point as follows: 

     𝐹 = −𝑣𝑑(𝐶 − χ𝑐)     (1.4) 

where 𝜒c is the canopy compensation point. According to Equation 4, when Ca > 𝜒c, the canopy is 

a sink for atmospheric ammonia, but when 𝜒c > C, the canopy is a source; 𝜒c is the equivalent 

concentration of ammonia inside the plant canopy, while vd behaves as a mass-transfer coefficient 

for the system (Farquhar et al., 1980). Within the plant canopy, determining 𝜒c can be complicated. 𝜒c is the “effective” canopy compensation point, and is determined by the sources and sink of 

ammonia inside the plant canopy. A simple conceptual model, the “big leaf” model, assumes that 

the ammonia exchange occurs only with the leaf surface. This model assumes that ammonia has 

two parallel paths within the plant canopy; it can deposit in a unidirectional process to the leaf 
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cuticle, with resistance depending on the leaf cuticle pH and RH, or it can undergo bidirectional 

exchange with the leaf apoplast inside the plant stomata. 𝜒s, the stomatal compensation point, is 

modeled by the effective Henry’s law solubility of NH3 gas and dissociation of NH3 into NH4
+, 

which are functions of T, pH, and NH4
+ concentration inside the plant (Sutton et al., 1998, 1995). 

In this model, the canopy compensation point (𝜒c) is the algebraic solution of the complicated 

resistance diagram equations such that it is in equilibrium with atmospheric exchange, as well as 

the two in-canopy fates for ammonia (cuticular deposition or stomatal uptake). Other more 

complex bidirectional exchange models also consider ammonia bidirectional exchange with the 

soil (e.g., two-layer model) or with multiple layers inside the plant canopy (multi-layer model) 

(Nemitz et al., 2001, 2000); the details of these parameterizations require many hard-to-measure 

parameters that are literally in the weeds, and can vary over orders of magnitude and over small 

spatial scales. While ammonia bidirectional flux models of varying complexity are becoming more 

common in deposition parameterizations inside regional and global chemical transport models, 

more studies are needed to constrain model parameters, and to test the accuracy of these models 

under different conditions. For example, few studies have applied these models to conditions with 

extreme ammonia concentrations such as next to CAFOs, and to date, only one study has attempted 

to measure some of the parameters for a bidirectional flux model in this type of environment (Shen 

et al., 2018), despite evidence that these parameters are a strong function of the NR inputs to 

ecosystem (Massad et al., 2010). 

1.4 Dissertation Overview 

 Large CAFOs are major sources of ammonia to the surrounding environment, and have 

the potential to impact regional air quality and NR deposition. However, the actual impact is quite 

uncertain due to the fact that a large, but poorly-constrained, fraction of the total ammonia 



10 
 

emissions undergo dry deposition within a few km of the CAFO boundary. There is potential to 

reduce the net impact CAFOs have on regional NR deposition and air quality by leveraging this 

surface loss to sequester more ammonia in the land-surface ecosystem next to these feedlots. 

However, the fractional deposition is governed by two main physical processes: the turbulent 

dispersion from these sources, and the complex interaction with the surface. The combination of 

these processes makes this system challenging to study. Moreover, the challenge of measuring 

directly ammonia deposition has complicated study of this system and consequently, deposition is 

a major knowledge gap in our understanding of how important CAFOs are for air quality and NR. 

 In this dissertation, I will apply models of atmospheric dispersion coupled with 

deposition models to investigate ammonia dispersion and deposition downwind of animal feedlots. 

In Chapter 1, I use OpenFOAM in RANS configuration, using the K-epsilon model to estimate the 

atmospheric wind field around an idealized CAFO. I then coupled OpenFOAM to MODDAS, a 

Lagrangian-Stochastic, multi-layer ammonia bidirectional exchange, plant canopy model. This 

coupled model framework is used to explore the impact of vegetated surfaces on ammonia 

bidirectional exchange in environments with massive ammonia sources. In Chapter 2, I use LES 

simulations to explore a novel technique for quantifying the ammonia deposition adjacent to 

CAFOs by quantifying the change in the concentration ratio of two tracers, one undergoing dry 

deposition, to represent ammonia and methane dispersion downwind of a CAFO. I also use 

synthetic observations of the LES model output to demonstrate a proof-of-concept measurement 

technique for quantifying ammonia deposition near a CAFO. Finally, in Chapter 3, I share results 

from an exploratory field study of atmospheric aerosols in Palapye, Botswana. Botswana is also a 

major beef-producing country, and has a similarly dry, grassland climate. However, it is sparsely 
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populated developing country, with many different types of aerosol sources, as well as different 

agricultural practices. 
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CHAPTER 2. LANDSCAPE ENGINEERING TO INCREASE LOCAL AMMONIA 
RECAPTURE DOWNWIND OF LARGE ANIMAL FEEDLOTS: A MODELLING 

ESTIMATE 
 
 
 

Ammonia emissions from large animal feedlots can have large effects on regional air 

quality and NR deposition into sensitive ecosystems. However, it is difficult to quantify the effect 

of these large sources, due to the complicated processes represented by ammonia atmosphere-

biosphere exchanges; other studies have shown that a large fraction of ammonia emitted by these 

sources may undergo dry deposition within a few km of the feedlot boundary. In this study, we 

use a modelling system that couples ammonia dispersion with its bidirectional flux with the surface 

to simulate deposition downwind of a large animal feedlot. We show that changes to the vegetation 

and other land surface properties next to feedlots have large potential to increase local dry 

deposition and decrease the net effect of ammonia on the surrounding atmosphere. For example, 

we find that a having surface of maize crop or forest within the first 1.5 km of the feedlot may 

remove 30% or 50% of the emitted ammonia, respectively, under our base conditions; in contrast, 

a surface of exposed soil with no vegetation only removes 2% under the same 

conditions.  However, due to uncertainty in the canopy compensation point, changes in ambient 

thermodynamic environment, and potential canopy saturation, measurements of canopy and soil 

nitrogen content are crucial for more-accurately representing this system in models. Finally, while 

some plant canopies can effectively remove ammonia over a relatively small length of trees (length 

of 200 m), we demonstrate that narrow tree shelterbelts (length of 10 m) are an ineffective way to 

increase ammonia deposition, due to their unfavorable effect on turbulent dispersion near CAFOs. 
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2.1 Introduction 

Anthropogenic changes to the global nitrogen cycle can lead to atmospheric and 

environmental contamination by NR, commonly in the forms of ammonia, ammonium, nitrate, 

nitric acid, and NOx. (Vitousek et al., 2013). NR, specifically ammonia and nitric acid, can react in 

the atmosphere to form aerosols, which are known to negatively impact human health (Dockery et 

al., 1993) and can impact regional and global climate change through a variety of mechanisms 

(Boucher et al., 2015). Furthermore, NR availability is a critical parameter in many ecosystems, 

and as synthetic NR from anthropogenic nitrogen-fixation processes (i.e. Haber-Bosch process) 

escape into the environment, increases in NR can have detrimental effects on soil pH, biodiversity, 

and broader ecosystem health (Asman et al., 1998; Clark et al., 2018). Additionally, NR species 

that deposit in soils can undergo biochemical processes and be re-emitted to the atmosphere as 

N2O (Laville et al., 2011; Mosier et al., 1998; Werner et al., 2007), which is a powerful greenhouse 

gas with a long atmospheric lifetime (Intergovernmental Panel on Climate Change, 2014). While 

NR can come from several different types of sources, controls on NOx emissions from combustion 

have decreased the importance of oxidized nitrogen species in many regions; however, reduced 

nitrogen species such as ammonia, which primarily originate from agricultural processes (NEI 

2014 https://www.epa.gov/air-emissions-inventories), are not subject to the same degree of 

regulation in the United States (Stephen and Aneja, 2008), and are difficult to monitor and control 

in regions where regulations do exist, such as Europe; consequently, reduced nitrogen emissions 

are becoming the dominant source of NR in many regions, especially regions with agricultural 

sources  (Li et al., 2017, 2016). 

The 20th and 21st centuries has seen the emergence of new agricultural practices involving 

massive commercial animal feedlot operations. The western US contains some of the largest 
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animal feeding operations on earth, with some beef feedlots having in excess of 100,000 head of 

cattle. More specifically, the total beef and dairy cattle population on the Colorado Front Range 

(CFR) exceeds 2 million head of cattle, and are valued at approximately $2.8 billion (“Colorado 

Cattlemen’s Association,” 2019). Despite regional and national decreases in oxidized NR 

deposition, vulnerable alpine ecosystems in the nearby Rocky Mountains have experienced steady 

increases in total NR deposition, suggesting that these ammonia hotspots are important sources. 

Beyond this specific example, other large AFOs with 20,000+ head of cattle are located in the 

Western US (Baum et al., 2008; Miller et al., 2015), as well as Australia (Shen et al., 2018, 2016) 

and Canada (Hacker et al., 2016; McGinn et al., 2016, 2007; Staebler et al., 2009); large point 

sources of ammonia are now visible from space (Damme et al., 2018). 

Despite their size, the importance of these major ammonia sources for regional NR 

deposition and air quality is poorly constrained. The impact of CAFOs on regional NR deposition 

and air quality is a function of four processes: emissions, dispersion and transport through the 

atmospheric boundary layer, atmospheric chemical processing, and surface interaction. Emissions 

from feedlots are dynamic and vary according to environmental conditions such as temperature 

(T), relative humidity (RH), atmospheric stability, and windspeed, and also depend on 

management practices such as cattle diet and facility maintenance practices; however, emissions 

have been well-studied from observational approaches as well as the development of process-

based and empirical models (Hristov et al., 2011; Shonkwiler and Ham, 2018; Sun et al., 2015, 

2014). Likewise, the gas-phase chemical processing of gas-phase ammonia (oxidation or aerosol 

partitioning) is well-understood (Seinfeld and Pandis, 2016). However, ammonia surface fluxes 

are not as well constrained (Walker et al., 2019). Ammonia atmosphere-surface fluxes are a 

bidirectional process governed by a series of physical and biological processes (Flechard et al., 
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2015). The surface compensation point is a function of ammonia thermodynamics in plant tissue 

and soil, and is regulated by biological activity, while the mass-transfer efficiency, or mass 

conductance, is a functions of  turbulent transport, quasi-laminar boundary layer thickness and 

diffusion rate within the plant canopy (Massad et al., 2010). While some of these processes are 

well-represented by dry-deposition parameterizations (Wu et al., 2018), many of the biological 

processes, such as ammonia uptake by plant stomata and soil or dry deposition in leaf cuticle, can 

dominate the uncertainty in the surface-atmosphere exchange of ammonia (Wu et al., 2012). These 

processes vary tremendously in magnitude and depends on fine-scale variability in surface land 

cover, which often produces large amounts of uncertainty, as well as variability in dry-deposition 

estimates in systems where the underlying bidirectional flux models are not well-constrained 

(Dennis et al., 2013). Because direct measurements of ammonia deposition downwind of large 

sources are difficult to perform, (Ellis et al., 2010; Pollack et al., 2019; Whitehead et al., 2008; 

Flesch et al., 2007), other approaches towards estimating the ammonia deposition requiring and 

bidirectional flux models are typically used (i.e. Shen et al., 2017; Shen et al., 2018; McGinn et 

al., 2011). Therefore, there is a need to better understand the breadth of ammonia deposition ranges 

close to these major sources, and an opportunity to leverage the variability to engineer agricultural 

systems that can favorable increase local ammonia recapture to protect more vulnerable 

ecosystems and airsheds downwind. 

The purpose of this study is to use a modelling system that couples ammonia dispersion 

with bidirectional surface fluxes to quantify the ammonia deposition downwind of a CAFO-like 

source under different surface conditions. In this study, we identify critical parameters within 

ammonia bidirectional flux models that can have the greatest effect on model-based estimates of 

ammonia deposition adjacent to CAFOs, and quantify the effect that these parameters have on 
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deposition. First, we use an open-source computational fluid dynamics (CFD) model to produce 

estimates of turbulent flow downwind of a feedlot for different land-use types. We use the output 

from the CFD model to generate trajectories for a lagrangian stochastic bidirectional exchange 

model to quantify the interaction of the ammonia plume with vegetation downwind of the feedlot. 

For our base case scenarios, we find that the modeled deposition on grass well-reproduces the 

observed deposition in what few measurements are available in the literature. However, we find 

that growing large crops such as maize downwind of feedlots has the potential to dramatically 

increase the deposition by an order of magnitude, though this is highly sensitive to the assumptions 

about parameters that govern the thermodynamics and in-canopy mass-transfer processes that 

determine the compensation point. Finally, we explore the use of windbreaks and shelterbelts as 

techniques for increasing local ammonia recapture but minimizing the land-use change required 

to implement them. In Section 2.3, we describe the modelling results; however, the discussion of 

the results is in Section 2.4. 

 

2.2 Methods 

2.2.1 K-Epsilon Modelling with OpenFOAM 

In this study, we use OpenFOAM to produce trajectories for the Lagrangian-Stochastic 

model. OpenFOAM is an open-source modelling system for computational fluid dynamics (CFD) 

applications. In this study, we use OpenFOAM in Reynolds-Averaged Navier-Stokes (RANS) 

configuration to numerically solve the k-epsilon equations; we use this model configuration to 

simulate atmospheric turbulence upwind of, above, and through a plant canopy. The canopy is 

represented as a porous medium, where porosity is inversely proportional to the leaf area density 

(LAD). The canopy behaves as a source for turbulent kinetic energy (K) and turbulent kinetic 
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energy dissipation (epsilon), and is parameterized using Dalpe-Masson source functions (Dalpe 

and Masson, 2007). The Dalpe-Masson functions are designed for flow effects at plant canopy 

boundaries. Additionally, the OpenFOAM implementation uses wall functions tuned for 

application to the atmospheric boundary layer to represent the effect of the surface on the flow 

(Hargreaves and Wright, 2007). The implementation of the k-epsilon model with the 

aforementioned source and wall functions has been evaluated against field measurements from a 

forest edge (Irvine et al., 1997), and show typical agreement for K-epsilon simulations through 

plant canopies (Segersson, D., 2017). More generally, various implementations of k-epsilon 

models have been used to simulate the atmospheric boundary layer (Hargreaves and Wright, 2007; 

Richards and Hoxey, 1993), especially in the context of simulating dispersion above and through 

plant canopies  (Hanjalic, 2005; Segalini et al., 2016; Svensson and Häggkvist, 1990). K-epsilon 

simulations are only able to simulate neutral atmospheric stability conditions, so most of the 

modelling results only pertain to the neutral atmospheric boundary layer;  we explore the 

sensitivity of our results to this assumption using Monin-Obukhov theory. 

2.2.2 Lagrangian-Stochastic Ammonia Dispersion and Bidirectional Flux Modelling with 

MODDAS  

  We coupled OpenFOAM to MODDAS, a Lagrangian-Stochastic/atmosphere-biosphere 

exchange model to calculate the ammonia dispersion and deposition. MODDAS uses the mean 

winds U and W to determine the particle advection scheme, as well as information about the 

turbulence to calculate the dispersion TKE (k) , as calculated from OpenFOAM, to estimate σu 

and σw according to Equation 2.1:  σ𝑢 = 𝐶𝑢√2𝑘 ;  σ𝑤 = 𝐶𝑤√2𝑘           (2.1) 
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where Cu and Cw are empirical constants with values of 0.726 and 0.368 respectively. We then 

calculate the Lagrangian timescale according to Equation 2.2: τ𝐿𝑢 = 2 σ𝑢23.12ϵ;  𝜏𝐿𝑤 = 2 𝜎𝑤23.12𝜖           (2.2) 

where epsilon is also read from OpenFOAM. MODDAS then uses U, W, 𝜏Lu, and 𝜏Lw to generate 

trajectories that originate in every model grid cell, are advected by U and W streamlines, and 

deviate from the mean wind streamline according to the size of 𝜏Lu, and 𝜏Lw in a grid cell multiplied 

by a stochastic operator. This process is repeated for enough particles to populate a dispersion 

matrix D which represents the dispersion function connecting two grid cells inside the model 

domain. The concentration at a given point is given by Equation 2.3: 𝐶 = ∫ 𝑆(𝑥𝑠, 𝑦𝑠, 𝑧𝑠)𝐷(𝑥, 𝑦, 𝑧|𝑥𝑠, 𝑦𝑠, 𝑧𝑠)𝑑𝑥𝑠𝑥𝑠,𝑦𝑠,𝑧𝑠 𝑑𝑦𝑠𝑑𝑧𝑠        (2.3) 

where S represents all types of sources: background ammonia concentration from the upwind 

model boundary, area source representing the CAFO, plant canopy emissions, and plant canopy 

deposition. Because of the superposition principle, we are able to split this equation by source 

types in order to separately model the different behavior. In this system, the upwind model 

boundary, which represents the ambient background concentrations, is constant with height, while 

the CAFO source is emitted from the model surface at constant uniform emission flux. The plant 

canopy source undergoes bidirectional flux processes, which are modelled by resistor networks 

analogous to electrical conductivity, and compensation point behavior. The model that is used is 

well-summarized in Loubet et al., (2006), with detailed information about model parameters in 

Massad et al., (2010). In the context of MODDAS, the bidirectional flux process can be split into 

two separate processes. Therefore, we can reorganize Equation 2.3 as shown in Equation 2.4: 𝐶 = 𝐶𝑏𝑘𝑔 + ∫ 𝑆𝐶𝐴𝐹𝑂𝑥𝐶𝐴𝐹𝑂 𝐷 𝑑𝑥𝐶𝐴𝐹𝑂 + ∫ 𝑆𝐶𝐴𝑁,𝑒𝑚𝑖𝑡(𝑥𝐶𝐴𝑁)𝐷 𝑑𝑥𝐶𝐴𝑁𝑥𝐶𝐴𝑁 +∫ 𝑆𝐶𝐴𝑁,𝑑𝑒𝑝(𝑥𝐶𝐴𝑁, 𝐶)𝐷 𝑑𝑥𝐶𝐴𝑁𝑥𝐶𝐴𝑁               (2.4) 
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Where Cbkg represents the ambient background, the integral over XCAFO represents the feedlot area 

source with SCAFO being a constant emission flux, and the remaining two terms represent the 

canopy emission and canopy deposition, respectively. While the first three terms can be solved 

prognostically, the canopy deposition term is a function of the atmospheric concentration, and 

therefore the dispersion matrix must be inverted to solve for deposition in this modelling 

framework. 

 MODDAS has been used to simulate dispersion and deposition of ammonia from 

agricultural sources such as fertilized crops (Loubet et al., 2003; Marceau et al., 2012), ammonia 

hotspots (Loubet et al., 2009), and pollen dispersion (Jarosz et al., 2004, 2003). Furthermore, 

MODDAS has been used to test agroforestry ammona sequestration strategies (Bealey et al., 2014). 

However, we are applying these modelling tools to much larger CAFOs, with concentrations of 

ammonia, and consequently surface fluxes, that are much more extreme than the scenarios 

simulated in Bealey et al., (2014), as well as on a model domain that is an order of magnitude 

larger in spatial extent. Furthermore, this study is the first instance we know of that has coupled 

MODDAS with an open-source CFD package and performed the simulations in a high-

performance computing environment. For more detail on the physics, flux parameterizations, and 

numerical implementation, refer to Loubet et al., (2006); many parameter values and guidelines 

for parameter estimation can be found in Massad et al., (2010). 

2.2.3 Simulation Configuration and Parameters 

In this study, all simulations were performed in a two-dimensional domain, where x is 

aligned with the mean wind direction and z is perpendicular to the surface. We perform simulations 

on three different domain configurations. Configuration 1 was our base domain setup, while 

Configuration 2 was used to conduct the atmospheric stability sensitivity test (discussed below), 
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and Configuration 3 was used to investigate the effect of shelterbelts. The canopy types and 

positions for the three different model configurations are illustrated in Figure 2.1. In Configuration 

1, the OpenFOAM simulation domain spans x = -320 m to 2540 m with 1500 grid cells, and z = 0 

to 500 m with 300 grid cells. The grid cells in the x direction are identical, while the z grid cells 

use simple grading with grid cells at the model top a factor of 20 larger than grid cells at the model 

surface; therefore, vertical grid cells at the model surface are 0.14 m thick, and 8 m thick at the 

model top. For the MODDAS simulations, the model resolution is coarsened to 800 horizontal 

grid cells spanning 2500 m; the same z grid aspect ratio and number of cells is used; however, 25 

grid cells are guaranteed to be inside the bottom 20 m of the model domain to represent the plant 

canopy, which produces slightly different spacing between the vertical model layers. MODDAS 

uses linear interpolation to regrid the OpenFOAM output to the appropriate MODDAS grid. Model 

Configuration 2 uses 450 x 250 grid cell spacing to span x = -320 m to 1640 m, z = 0 to 500 m for 

Figure 2.1: Simulation domain configurations for (a) the base-case simulations, (b) the 
stability test simulations, and (c) the shelterbelt positioning simulations. 
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the OpenFOAM control case; however, for the other stability cases, MODDAS used vertical 

profiles estimated from Monib-Obukhov theory which assume U and K profiles as a function of 

Monin-Obukhov length, wind speed at a reference height, and the model roughness length. For 

these cases, the vertical extent of the domain was limited to 300 m, and the grid cell dimensions 

were 300 x 75. Simulation Configuration 3 uses the same vertical configuration as Configuration 

1, but the horizontal domain spans x = -320 to 1540 m with 800 grid cells, with no reduction in 

grid cell number in the MODDAS simulations. For all simulations, the upwind boundary 

conditions are modelled as follows: horizontal windspeed (U) is initialized with a logarithmic wind 

profile of 6.17 m s-1 at 15 m above the surface, while vertical wind (W) was set to 0, and k and 

epsilon are initialized using inlet profiles specified in Hargreaves and Wright, (2007). We allow 

300 m of empty model domain with surface roughness parameter z0 = 0.06 m upwind of the first 

plant canopy feature. 

The plant canopies are represented as a porous media, where the porosity is inversely 

proportional to the Leaf Area Density (LAD). LAD profiles for grass and maize, as well as plant 

height (H) and Leaf Area Index (LAI) were previously used with MODDAS, and are adapted from 

Loubet et al., (2009); the LAD profiles, LAI, and H for the coniferous and deciduous canopies are 

taken from (Teske and Thistle, 2004). The parameter values used are reported in Table 2.1, and 

the normalized LAD profiles are included in Appendix A. In addition to the LAD, LAI, and H, the 

plant canopies also use parameters for the ammonia bidirectional flux model. These parameters 

are included in Table 2.1. The base-case environmental conditions, including T, RH, 

photosynthetically active radiation (PAR), time of day, simulation latitude, atmospheric stability, 

as well as the source length and emission flux, are summarized in Table 2.2. In OpenFOAM, the 

CAFO is represented as a porous media using the same set of parameters as a plant canopy; the 
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equivalent LAD profile apportions most of the near the surface below 1 meter, with minor 

obstructions further from the surface, the total height of the CAFO is modelled as 2 m, and the 

equivalent LAI (analogous to the total porosity of the CAFO) is 1.0. The analogous LAD profile 

for the CAFO is also included in Appendix A. 

Table 2.1: Parameters that are used to calculate canopy compensation point and resistance terms in the bidirectional 
flux model, sorted by surface type. 

Parameter Units Bare Soil Grass Maize Deciduous Coniferous 

H 
(canopy height) 

m -- 0.5 2.5 25.75 19.3 

LAI 
(leaf area index) 

-- -- 2.0 4.5 3.29 6.12 

𝛤S 
(stomatal emission potential) 

-- N/A 800 1186 600 1300 

𝛤g 
(ground emission potential) 

-- 360 360 13000 20 20 

Rw,min 
(minimum cuticular resistance) 

s m-1 
 

30 
   

Rw,𝛽 
(cuticular resistance exponent parameter) 

--  
 

2.7 
   

Rs,min 
(minimum stomata resistance)  

s m-1 
 

60 
   

Rs,𝛽 
(cuticular resistance exponent parameter) 

--  
 

7 
   

 

To test the sensitivity of the modelled results to atmospheric stability, we conducted 

simulations with model Configuration 2 (Figure 2.1b). For these simulations, we conducted a 

controlled case using the OpenFOAM k-epsilon, but also used wind and TKE profiles determined 

by Monin-Obukhov theory for stability classes A-F (Irwin, 1979). We test the sensitivity of the 

model results to the canopy compensation point using model Configuration 1 (Figure 2.1a), maize 

case, where we varied the emission potential  Γs from the base value 1186 up to 33208, as well as 

the atmospheric T from 8 to 26 °C, and RH from 75% to 30%. 
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Table 2.2: Global environmental parameters for base-case simulations. 
 

Environmental Variable Model Configuration 1 Model Configuration 2 Model Configuration 3 

T [degrees C] 8 - 26 8 8 

RH [%] 70 - 30 30 30 

U at 15 m 
[m s-1] 

6.8 6.8 6.8 

Atmospheric Stability Neutral A-F Neutral 

Time of day 
[Local Standard time] 

1300  1300 1300 

Degrees Latitude 45 45 45 

Photosynthetically Active Radiation 
[w m-2] 

600 600 600 

Source Length [m] 600 600 500 

Source Emission Flux 
[μg m-2 s-1] 

100 100 100 

 

 

2.3 Results 

2.3.1 OpenFOAM Simulations 

In Figure 2.2, we show the simulated interaction between the wind and various roughness 

features on the surface for model Configuration 1, with a maize collection region downwind of the 

CAFO. At an x coordinate 0, the plume encounters the CAFO, which is dense below 1 meter and 

porous from 1-2 meters. Frictional losses at the surface cause the wind speed to decrease and the 

turbulent kinetic energy to increase inside and directly above the CAFO, and this wake effect 

propagate upwards away from the surface, with noticeable slowing of the winds 18 m away from 

the surface. At x = 600, the flow encounters the maize field adjacent to the CAFO, which produces 
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more intense wake effects, as the maize is a rougher, less porous surface than the CAFO, and is 

also 0.5 meters taller. Wind speed and TKE decrease rapidly inside the maize canopy, and a 

stronger wake effect propagates upward. Finally, at x = 2100, the flow encounters a 10-m thick 

coniferous band of trees (i.e., a “shelterbelt”). The shelterbelt produces the most intense wake 

effects, with decreases in U and TKE located within and directly downwind of the trees (x = 2120) 

with decreases in U and increases in K propagating far away from the surface. 

In Figure 2.3, we show vertical profiles of each turbulent variable at important positions in 

the model Configuration 1 domain. From top to bottom, the rows show U, W, TKE, and C0ε 

(normalized ε). From left to right, the columns show the vertical profiles at x = 200 (over the 

CAFO), x = 585 (over the CAFO, but close to the interface with the downwind deposition region), 

x = 615 (over the downwind deposition region), x = 2080 (before the shelterbelt feature), x = 2120 

(downwind of the shelterbelt feature), and x = 2500 (at the model outlet). In each of the 

Configuration 1 simulations, there is no difference in any of the vertical profiles at x = 200 (Figure 

2.3, first column). However, slightly upwind of the deposition region, significant differences 

Figure 2.2: Wind and turbulent kinetic energy (colors and contours, respectively) from 
OpenFOAM simulation, configuration 1, maize canopy case. The top shows the entire model 
domain, the bottom panel is zoomed in on the downwind coniferous treebelt feature. 
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emerge between the simulations with trees downwind (e.g. “deciduous” and “coniferous”) vs the 

other simulations (“baresoil”, “grass”, and “maize”). In both of the tree cases, U decreases, while 

W and TKE increase upwind of the interface with the trees as the mean flow is directed over the  

densest part of the respective plant canopies. Over the downwind deposition region (x = 600 — 

2100), the wind and turbulent kinetic energy are quickly dampened where the plant canopy is 

Figure 2.3: Vertical profiles of U, W, k, and C0ϵ for the simulation Configuration 1 at upwind 
and downwind positions of major model domain features:, plotted at x = 200m (over the 
CAFO), x = 585 and 615m (before and after the CAFO boundary), x = 2080 and 2130m (before 
and after the 10m-thick coniferous tree band at x = 2100-2110m) and at the simulation outlet 
(x = 2500m). 
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thickest; this is most obvious in the tree simulations which have the tallest plant canopies, but also 

occurs inside the 2.5 m high maize and 0.5 m high grass canopies as well. The TKE profiles show 

that turbulence is produced above and below the densest regions of the canopy, which are different 

for the coniferous LAD profile and the deciduous LAD profile. Finally, C0ε is highest where TKE 

is highest inside the plant canopy. Further downwind (x = 2080), most of the in-canopy wind and 

TKE has been dampened, though there is TKE production on the top of both tree canopies. There 

are also more noticeable differences in the U, and TKE profiles between the maize simulations as 

compared to the grass and baresoil simulations. There is also an increase in W for the three 

simulations without trees as the mean flow is redirected over the shelterbelt feature (x = 2100 – 

21,010). Downwind of the shelterbelt, there are familiar wake effects: decreases in U, negative W 

forming a downdraft on the downwind side of the trees, TKE production above and below the 

densest LAD in the shelterbelt canopy, and decreases in TKE close to the surface due to dissipation. 

The tree simulations have the noticeably slower winds more than 50 m from the surface as 

compared to the treeless simulations, but also have noticeably higher TKE. Finally, at the model 

outlet, the simulations seem to have converged, or are close to converging, as they spin down over 

an identical grass surface, though the tree simulations still have lower surface winds and higher 

TKE values relative to the simulations with trees. 

2.3.2 MODDAS Landuse Simulations 

Next, we present the output from MODDAS simulations that use the OpenFOAM 

turbulence output to produce the dispersion matrix in Equation 2.5. In Figure 2.4, we show the 

surface concentrations for two example cases (maize vs baresoil), the 2-D atmospheric 

concentration of ammonia downwind from the CAFO for the maize case, and the 2-D difference 

between the maize and baresoil simulations (panels a, b, and c respectively). Both the maize and 
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baresoil simulations show atmospheric concentrations of 1500 μg m-3 at the surface at the 

downwind boundary of the CAFO. Both simulations exhibit similar behavior in that the ammonia 

concentration decreases with increasing distance downwind of the CAFO. This is due to two 

physical processes: dilution as the ammonia plume undergoes vertical dispersion and deposition. 

At the domain outlet, the baresoil and maize simulations have relatively similar decreases in the 

concentration of ammonia (203 and 104 μg m-3 , a 13 and 7 percent of the CAFO boundary 

concentration), and are different from each other by a factor of 2. In Figure 2.4c, we show the 

difference in concentration between these two cases. In the maize case, the surface concentrations 

are much lower than the baresoil simulation, due to increased deposition and increased vertical  

mixing. The higher concentrations far from the surface in the maize case are due to the 

comparatively rougher surface producing higher amounts of TKE and a stronger updraft on the 

upwind edge of the maize canopy, as compared to the baresoil case.  

In Figure 2.5, we show the deposition flux each x coordinate for the simulated surfaces in 

model Configuration 1 (panel a), as well as the integrated deposited ammonia normalized by the 

CAFO emissions (panel b). In Figure 2.5a, the deposition flux is as high as 160 μg m-2 s-1 for the 

Figure 2.4: (a) surface NH3 concentration for bare soil and maize,  (b) NH3 concentrations as 
a pcolor plot within 70 m of the surface for the maize simulation case; and (c) the 
concentration difference between maize and bare soil simulation cases. 
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coniferous forest, and 60 μg m-2 s-1 for maize; the deposition flux for grass is comparatively much 

smaller (10 μg m-2 s-1 at the CAFO fenceline). However, the depositional fluxes decrease rapidly 

within 500 meters of the CAFO boundary, and at the upwind boundary of the shelterbelt at x = 

2100 m, all of the simulations exhibit a depositional flux that is similar in magnitude. Passing 

through the shelterbelt, each simulation has a local increase in dry deposition that is entirely driven 

by the surface concentrations that pass through the shelterbelt. In Figure 2.5b, we show that around 

50% of the total CAFO emissions can be recaptured by a deciduous forest in these simulated 

conditions. Similarly, the coniferous simulation results in 40% ammonia recapture, despite a 

higher initial deposition flux.  The maize simulation results in 33% ammonia recapture, the grass 

simulation results in 10%, while the baresoil simulation results in 2%.  

2.3.3 Model Sensitivity Analysis 

Next, we present results from our analysis of the model sensitivity to the canopy 

compensation point, which is governed by three parameters: 𝛤, T, and RH. We conducted 

Figure 2.5: (a) the deposition flux and (b) the net fractional ammonia recapture (normalized 
by CAFO emissions) plotted as a function of x, where the CAFO boundary occurs at x = 600 
m. 
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simulations for 4 values of T and RH, across 8 values of 𝛤s; the complete results are summarized 

in Appendix A. In Figure 2.6, we show the ammonia deposition flux and recapture percentage (a 

and b, respectively) for 4 different values of Γ from two sets of conditions: cool and moist base-

case conditions, and under hot and dry conditions. For the base case environmental T and RH, the 

ammonia recapture fraction for Γ1 is 33% for this model configuration the same as we report above, 

while the value for Γ8 is 31%. Under hot and dry conditions, the net ammonia recapture for Γ1 is 

30.5%. However, for Γ8, the net recapture percentage is 4.5%. Furthermore, the deposition flux 

becomes negative at x = 1200 m, implying that within 600 m of the source boundary, the plant 

canopy has become a source of ammonia to the atmosphere.  

Figure 2.7a shows the ammonia recapture (represented by the colorbar) for the base-case 

value of 𝛤 (i.e., 𝛤1) as a function of T and RH along the x and y axes. Figure 2.7b shows analogous 

plots for 𝛤8, the largest emission potential used in this study. In Figure 2.7c, the difference between 

these two cases is shown. For low T and high RH, the value of 𝛤 does not impact the ammonia 

recapture fraction in this model configuration (difference <0.02%). However, for high T, the 

Figure 2.6: Ammonia deposition flux (a) and recapture fraction (b) for four different values 
of gamma. The base-case thermodynamic environment (T = 8 C, RH = 75%) is plotted in solid 
lines, while the hot-dry case (T = 26 C, RH = 30 C) is plotted in the dashed lines. 
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ammonia recapture is as much as 25% less, corresponding to a net recapture of less than 5% for 

the 𝛤8 simulations. The ammonia recapture fraction has low sensitivity to RH across all values of 𝛤 and T. 

In addition to the compensation point sensitivity analysis, we present results from assessing 

the sensitivity to assumptions about the atmospheric stability. The stability sensitivity simulations 

were conducted using model Configuration 2, and therefore cannot be easily compared to the 

results from previous simulation configurations. The total-domain fractional ammonia recapture 

for simulations under each of the Pasquill Stability classes, along with a neutral (class D) K-epsilon 

simulation to serve as a control, are shown in Table 2.3. 

Table 2.3: Impact of stability on ammonia recapture fraction. 
 

Stability Class  (Obukhov Length)  Fractional Ammonia Recapture 
       (relative to K-epsilon simulation) 

 _______________________________________________________________ 
 
 A: Strongly unstable (L = -2.5 m)   0.35% (5%) 
 B: Unstable  (L = -4.5 m)    0.36% (5%) 
 C: Moderately unstable (L = -13.5 m)   0.78% (12%) 
 D: Neutral  (L = -10000 m)   3.48% (-53%) 
 E: Moderately stable (L = 50 m)   6.15% (94%) 
 F: Stable  (L = 20 m)   7.64% (116%) 
 
 K-epsilon Simulation (D)     6.52% (--) 

_______________________________________________________________ 

Figure 2.7: Ammonia deposition flux (a) and recapture fraction (b) for four different values 
of gamma. The base-case thermodynamic environment (T = 8 °C, RH = 75%) is plotted in 
solid lines, while the hot-dry case (T = 26 °C, RH = 30%) is plotted in the dashed lines. 
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2.3.4 Effect of Shelterbelts 

In Figure 2.8, we present results from the shelterbelt simulations. These simulations use 

model Configuration 3 (Figure 2.1c); In Figure 2.8a, we show that the simulations with trees 

upwind of the source have higher concentrations further from the surface and lower concentrations 

of ammonia close to the surface relative to the control case with no trees. Figure 2.8b shows the 

Figure 2.8: C(a) Concentration difference between the control simulation with no 
trees, and the simulation with trees upwind of the source; (b) the surface concentrations 
from all four of the shelterbelt experiments; and (c) the fractional ammonia recapture 
by each of the model simulations. 
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surface concentrations for all four simulations. The concentration over the source is highest in the 

simulation cases with trees upwind of the source (“upwindtrees” and “alltrees”); however, the 

simulations with trees on the downwind barrier (“alltrees” and “downwindtrees”) have higher 

surface concentrations of ammonia than the other two simulations. Over the maize surface, 

however, the control simulation has the highest concentration of ammonia at the surface. In Figure 

2.8c, we see that the control case has the highest recapture fraction of all of the simulations, 

although the “downwind” case becomes almost equivalent at the shelterbelt located at the domain 

outlet. The control case achieves 23% recapture over the 1 km maize deposition zone, while the 

other three simulations all are between 23% and 19% total recapture.  

 

2.4 Discussion 

2.4.1 OpenFOAM Simulations 

 In Section 2.3.1, we demonstrate the effect that plant canopies have on the U and W wind 

components, as well as the turbulent kinetic energy. The interaction is driven by three main 

processes: conservation of momentum and interaction of the mean wind with the plant canopy, the 

production of turbulence by frictional effects and interaction with the plant canopy, and the 

dissipation of turbulence. While the entire model, including parameter values, is explained in detail 

in Dalpe and Masson (2007), we reproduce the three source functions for momentum, K, and 

epsilon respectively: 

     𝑆𝑢,𝑖 = −ρ𝐶𝑑α|𝑢|𝑢𝑖                (2.5) 

     𝑆𝑘 = ρ𝐶𝑑α[β𝑝|𝑢|3 − β𝑑𝑘|𝑢|]         (2.6) 

     𝑆ϵ = ρ𝐶𝑑α ϵ𝑘 [𝐶ϵ4β𝑝|𝑢|3 − 𝐶ϵ5β𝑑𝑘|𝑢|]        (2.7) 
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where ⍴ is the fluid density, ɑ is the LAD, and βi and Ci are empirical constants. As the unperturbed 

flow encounters the plant canopy (where ɑ > 0), the flow slows. This results in higher pressure on 

the upwind edge of the plant canopy, which produces an updraft, guiding flow over the canopy 

edge, while producing shear, which in turn produces turbulent kinetic energy on the upwind 

boundary of the plant canopy. The source term for epsilon is proportional to k, meaning that 

regions with when the plant canopy encounters highly turbulent flow,  the turbulence is less 

efficiently dampened (i.e., epsilon production is lower) than when the TKE dissipation rate is 

already high. Consequently, epsilon increase occurs further downwind after the flow encounters 

the plant canopy, as the .k ratio increases. 

 These effects can be seen in Figure 2.2, where the horizontal wind speed slows and TKE 

increases and propagates upward through the domain; in addition to the source functions, TKE and 

epsilon are advected by the mean flow, and are produced in the flow field by viscous processes, as 

shown by the k-epsilon model equations (Launder and Spalding, 1983); the viscous production 

and dissipation of TKE are slower than the production by interaction with the plant canopy. In 

Figure 2.3, we show vertical profiles of all variables at each of the important interfaces within the 

model domain; the decrease in U can be seen as the the flow encounters new obstacles. Specifically, 

we see the near-surface decrease in U as a result of surface roughness, the increases and decreases 

in W on the upwind and downwind edges of the shelterbelt (x = 2080 and 2130), the production 

of TKE when high U flow first encounters the canopy features, and the ultimate dampening of in-

canopy TKE by the continual production of 𝞮. 

 There are three main implications for the effect of the plant canopy on the turbulent flow 

processes for the downwind ammonia bidirectional fluxes in this context: (1) upwind and 

downwind canopy features such as shelterbelts can slow the horizontal wind speed near the surface, 
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increasing the residence time of the ammonia emissions over the surface, but (2) the canopy 

features also increase the turbulence near the surface and can increase the rate of dilution as the 

plume mixes further away from the surface, and (3) plant canopies produce an updraft on the 

upwind boundary which can redirect the ammonia plume over the plant canopy. This is consistent 

with the findings of many studies of turbulence on forest edges(Dalpe and Masson, 2007). A key 

finding from this study is that designing too dense of a plant canopy adjacent to the ammonia 

prevents the ammonia plume from penetrating deep into the vegetated volume. In our simulations, 

the in-canopy U and TKE for the densest plant canopies simulated (maize, deciduous, and 

coniferous trees) are efficiently dampened by the dense vegetation. While the vegetation inside the 

plant canopy is thermodynamically favorable for absorbing ammonia from the atmosphere, the 

low U and TKE may inhibit the mass transfer of the ammonia plume deep inside a dense canopy. 

Bealey et al., (2014), who have used similar methodology to analyze the ammonia recapture 

potential found that plant canopies that are too dense redirect most of the ammonia plume over the 

plant canopy. The optimal scenario from their study was a porous, low-LAI plant canopy adjacent 

to the feedlot, with a denser “backstop” to prevent the plume from passing through the plant canopy. 

However, the downwind plant canopies that we simulate are considerably longer (1500 m) than 

the Bealey et al., (2014) case (100 m), negating the need for a backstop. Taking only the mass 

transfer into account, the optimal canopy layout is one that reduces the surface wind speed 

downwind of the CAFO, minimizes the turbulence, and minimizes the updraft strength on the 

upwind boundary of the CAFO to allow the ammonia plume to penetrate the plant canopy. We 

will expand upon the ammonia depositional processes within the MODDAS model next. 
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2.4.2 MODDAS Simulations; Important Parameters and Model Sensitivity 

Next, we discuss the results from the MODDAS simulations. As we showed in Section 

2.3.2 (from Figure 2.3), we see that for all cases, the ammonia concentration at the surface 

decreases (Figure 2.4); this is due to dilution of the ammonia plume, as well as deposition, which 

we show in Figure 2.5. Many studies have made measurements of ammonia concentrations at 

various distances from feedlots ((Miller et al., 2015; Shonkwiler and Ham, 2018; Sun et al., 2015, 

2014); given the size of our CAFO, an atmospheric concentration of 1500 μg m-3 is typical for the 

concentrations at the fenceline, and a concentration between 20 (deciduous forest) and 200 (bare 

soil) μg m-3 are within the range of expected values for 1.5 km from a major feedlot boundary. 

However, comparatively few studies have characterized ammonia deposition at multiple distances 

downwind of a CAFO, due to the observational challenges associated with measuring ammonia 

deposition. One of the few studies was conducted in Alberta, Canada (McGinn et al., 2016). In this 

study, they used the flux gradient method to directly measure ammonia deposition at one location 

downwind of a feedlot with 8600 head of cattle, with additional indirect measurements that 

quantified the uptake in soil patches at varying distances downwind. The study found ambient 

concentrations of 220-250 μg m-3, and corresponding deposition fluxes between 6 and 12 μg m-2 

s-1 at the flux gradient tower approximately 100 m from the CAFO boundary, depending on wind 

direction and other environmental conditions. However, the flux gradient technique only performs 

well under relatively constant conditions, and the McGinn et al., (2016) study was only able to 

quantify deposition under a subset of wind directions. They compare the flux gradient approach 

with soil uptakes, and estimates of based on deposition velocity calculations that do not account 

for any processes besides the atmospheric resistance, and find a rapid decrease in the deposition 

fluxes from 17 μg m-2 s-1 (where the ammonia concentration was typically 500 - 1000 μg m-3) to 
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less than 1 μg m-2 s-1 over 500 m. The surface adjacent to the CAFO in this study consisted of 

oilseed rape crop as well as winter wheat, which are both larger crops with more leaf area than 

grass, but smaller than mature maize. Despite the lower concentrations of ammonia, it is not 

surprising to find that the deposition at the fenceline is higher our estimates for grass. They also 

find the same qualitative result that we show, that the deposition flux changes dramatically (e.g., 

by an order of magnitude) over a relatively small (i.e., 500 m) downwind distance from the CAFO 

boundary. 

Another study (Shen et al., 2016) measured atmospheric ammonia concentrations at 

various distances downwind from a large CAFO (~18,000 head of cattle) in Victoria, Australia, 

over an unmanaged grassland surface; in the first study, they used a bidirectional flux model 

(Massad et al., 2010) to estimate deposition. They found deposition rates of 2.4 μg N m-2 s-1, which 

is equivalent to 3 μg NH3 m-2 s-1 at the CAFO fenceline, and decreases by over a factor of 10 in a 

1000 m measurement area. Compared to the Canadian CAFO in McGinn et al. (2016), this 

Australian feedlot was larger, and ambient ammonia concentrations were measured to be 508 μg 

m-3 50 m from the CAFO boundary, which decreased to 53 μg m-3 over the same spatial interval, 

with deposition rates decreasing with increasing distance. As we show in Figure 2.5b, the type of 

land surface can dramatically impact the deposition flux next to the CAFO, even with the same 

emission rate and environmental conditions. Compare to the Shen et al., (2016) reported deposition 

fluxes, our modelled results report similar fluxes over grass (10 μg m-2 s-1 at the CAFO fenceline, 

7 μg m-2 s-1 at 50 m), suggesting that for grass, the model is given results similar to the Australian 

experimental studies. The difference in deposition rate between our model estimate (10 μg m-2 s-

1) and the measurement from Shen et al., (2016) (3 μg m-2 s-1) at the fenceline can be explained by 

the higher concentration (1500 vs. 500 μg m-3), as well as differences in the environmental 
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conditions (8 degrees C, 70% RH for our simulations vs. diurnally variable conditions averaged 

over a few months in Victoria, Australia) or wind profile and atmospheric stability.  

Expanding our analysis to the other surface types, maize, as well as deciduous and 

coniferous trees absorb 5-6 times as much ammonia as compared to grass. Relative to grasses, 

maize typically has a higher ammonia emission potential, and therefore we expect the canopy 

compensation point to be higher for a given set of environmental conditions. Despite the higher 

emission potential, the maize canopy has much higher fenceline ammonia deposition fluxes (60 vs 

10  μg m-2 s-1) as compared to grass, and the maize canopy recaptures substantially more ammonia 

than the grass (33% vs 10%). Therefore, within this modelling framework, the difference between 

maize and grass is due to the more favorable mass-transfer of a maize canopy as compared to grass, 

rather than a thermodynamic difference in ammonia solubility within the plant’ apoplast. The taller 

maize canopy produces more TKE near the surface, decreasing near-surface stratification and 

allowing more air with more concentrated ammonia to mix into the plant canopy; simultaneously, 

the larger total area of leaves intercept a larger fraction of the Lagrangian particle trajectories, 

leading to increased depletion of ammonia. For the forest simulations, the thermodynamics are 

increasingly favorable for ammonia deposition relative to the maize canopy, as the selected values 

for 𝛤s and 𝛤g are smaller for the tree species as compared to maize (Table 2); it is important to note 

that these parameters are highly uncertain for forests. While the total LAI of a forest canopy is 

similar to that of a maize canopy, the total height and LAD are also different. The combined effect 

of these differences is that idealized forest canopies can recapture 30-60% more ammonia relative 

to maize canopy. The idealized coniferous and deciduous LAD profiles are different, with 

coniferous canopies having more LAD near the surface while the coniferous canopy has an LAD 

profile that peaks further from the ground, based on parameterizations outlined in Teske and 
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Thistle, (2004). The ammonia plume originates at the surface, and so within the first 100 m, the 

plume intercepts more leaves in the coniferous canopy where leaves are near the surface; the 

coniferous deposition flux was 160 μg m-2 s-1 at the CAFO fenceline, which is 3 times higher than 

the maize deposition rate at this distance. However, the dense LAD near the surface and the 

increased surface roughness cause a stronger updraft and more near-surface turbulence (Figure 

2.2), and the ammonia concentration near the surface rapidly decreases,  and hence the deposition 

rate rapidly decreases; by 200 m from the CAFO boundary, the deposition flux for the coniferous 

simulation is smaller than the flux in the maize canopy. However, because the initial deposition 

flux is so large, the coniferous simulation still recaptures more total ammonia than the maize 

simulation. The deciduous LAD profile is shaped differently, with a larger fraction of the LAD 

near the top of the plant canopy. The ammonia plume from the surface does not immediately 

intercept the leaves, so the initial deposition rate is slower, relative to the coniferous case. However, 

the updraft on the upwind boundary of the forest is weaker near the surface, and the TKE 

production primarily occurs further from the surface relative to the coniferous case, so more of the 

ammonia penetrates into the plant canopy, and the deciduous simulation maintains a fast 

deposition rate for more distance. This is analogous to the more porous plant canopy outlined in 

the Bealey et al., (2014) study; however, the longer plant canopy in our study is much longer and 

the deposition rate plateaus after a few hundred meters, which negates the need for a backstop. By 

the downwind boundary of the deciduous forest, the ammonia deposition flux has decreased to 

approximately 3  μg m-2 s-1, the same value as the maize and coniferous canopies. Consequently, 

the net ammonia recapture by the deciduous forest is higher than the coniferous or maize 

simulations. In all vegetation cases, the deposition rate is initially high, and rapidly decreases. 
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From the results and discussion above, it follows that while replacing bare soil or grassland 

next to CAFOs with production of maize or reforestation, as much as 50% of the total ammonia 

emissions can be recaptured. However, because the gradient in the deposition flux is so large, a 

substantial fraction of the ammonia recapture can be accomplished with a fraction of the 1500 m 

length that we use in these simulations. For example, 80% of the total deposition for each land 

surface occurs in the first 500 m (Figure 2.5), with more occurring for the coniferous canopy, and 

50% occurs in the first 100 m. This is useful, as practical concerns may prevent the growth of a 

1500 m thick forest, particularly in drier climates where precipitation may not be adequate to 

support a forest. However, if using irrigation to maintain a much smaller patch of forest is possible, 

then this could be a viable tactic for locally recapturing more ammonia. In the western US, land 

next to CAFOs is often used to grow maize, sorghum, or other crops that can be used to provide 

feed for the CAFO, so many of these landscapes may already be optimized for local ammonia 

recapture; however, this may also be important for fertilization practices. However, there are other 

complications. In the subsequent study from Shen et al., (2017), they analyzed the soil and plant 

nitrogen content and measured a gradient in available soil-N content, soil ammonium content, soil 

nitrate content, soil pH, and soil inorganic nitrogen; in addition to impacting the soil emission 

potential, these changes can impact the soil’s ability to support plant life, or grow crops. Shen et 

al., (2017) also observed decreases in total plant cover, as well as increases in the relative coverage 

of herbaceous plants to grasses, closer to the CAFO fenceline, suggesting that the massive 

ammonia input (on the order of 220 kg N ha-1 yr-1) is impacting the soil chemistry and ecosystem 

health near the feedlot. Massad et al., (2010) derive several parameterizations for soil ammonia 

emission potential depending on the management practices and land-surface characteristics. If we 
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treat the land next to a CAFO as a managed surface of grass or crops, then the emission potential 

can be modeled as follows: Γ𝑠 = 66.4 + 0.853𝑁𝑖𝑛1.59         (2.8) 

where ΓS is the stomatal emission potential and Nin is the total nitrogen input in kg ha-1 yr-1. For 

an unmanaged environment, such as grassland or forest, the parameterization is as follows: Γ𝑠 = 246 + 0.0041𝑁𝑖𝑛3.56         (2.9) 

Shen et al., (2016) and McGinn et al., (2016) observed deposition rates as high as of 3 μg m-2 s-1 

and 12 μg m-2 s-1, respectively, which are equivalent to 950 and 3780 kg ha-1 yr-1, respectively. 

Shen et al., (2017) subsequently estimate that the average deposition is on the order of 220 kg ha-

1 yr-1, which is more consistent with ammonia deposition estimates from other large-scale animal 

feedlots (Fowler et al., 1998; Loubet et al., 2009; Walker et al., 2019). Based on these three 

estimates of the total N input, we calculate stomatal emission potentials of 46360, 416130, and 

4590 for the fluxes estimate in McGinn et al., (2016), Shen et al., (2016) and (2017) respectively, 

when modeling the landscape as a managed area. When modeling the land as an unmanaged 

ecosystem, we estimate emission potentials of 1.6 x 108, 2.2 x 1010, and 8.6 x 105 respectively. 

According to our simulations, the ammonia recapture potential, and therefore the deposition rate, 

are correspondingly higher for maize and forested surfaces. Based on the maximum deposition 

flux of 60  μg m-2 s-1 for maize, we estimate that ΓS is 5.3 x 106 or 6.8 x 1012 for managed or 

unmanaged ecosystems, respectively. 

These ΓS values have been calculated by extrapolating the deposition rate to an entire year. 

In reality, variation in winds, as well as changes in seasonal LAI will impact these deposition flux 

estimates. However, even if we divide these fluxes by 100, these estimates of ΓS are much higher 

than any measured emission potentials for maize (Massad et al., 2010). The Massad et al., (2010) 
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parameterizations are based on measurements in less extreme conditions, and are not calibrated 

with this magnitude of ammonia deposition in mind. As ΓS increases in response to ecosystem N-

inputs, this will decrease the depositional flux, which is a negative feedback on the capacity of a 

plant canopy to absorb ammonia emerges. Therefore, these are certainly overestimates of the actual 

ecosystem values for ΓS; furthermore, it is also likely that estimates of ammonia deposition near 

CAFOs that rely on these bidirectional flux models, with commonly used parameters for ΓS, 

strongly overestimate the deposition rate; therefore, there is a need to measure ΓS next to large 

point sources to understand how plant and soil nitrogen respond to these massive deposition fluxes. 

The compensation point, 𝜒C, is a function of T, RH, and the emission potential  ΓS. While 

T and RH measurements are commonly available, ΓS, which is defined as the ratio of ammonium 

ion to hydrogen ion inside the leaf apoplast, requires offline laboratory characterization; due to the 

time-consuming and expensive nature of these measurements, large datasets of ΓS are not 

commonly available in the literature. We tested the sensitivity of the modeling results to changes 

in ΓS in order to constrain the effect that surface saturation may have on ammonia deposition. We 

chose to conduct the sensitivity analysis over maize for several reasons: (1) maize is an important 

agro-industrial crop and there are datasets available for ΓS for maize to constrain the parameter, 

and (2) the maize canopy offers viable ammonia recapture potential in the base-case scenarios, and 

(3) maize and sorghum crops are quite commonly grown next to CAFOs already. 

In Figure 2.6, we show the ammonia deposition fluxes and net fractional recapture for 4 

different values of ΓS for maize under two sets of T and RH conditions: the “base-case” conditions 

used throughout the manuscript (T = 8 degrees C, RH = 75%), and “hot-dry” conditions (T = 26 

degrees C, RH = 30%). Under base-case scenarios, the two extreme values for ΓS do not produce 

a clear difference in the deposition flux; this implies that it would be difficult to decouple changes 
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in ΓS based on measurements of ammonia deposition alone. When integrated over 1500 m, there 

is a 3% difference in the total ammonia recapture, suggesting that the net ammonia recapture is 

not strongly sensitive to this parameter. However, simulations under the “hot-dry” environmental 

conditions show very different results. The total ammonia recapture changes by less than 5% for 

the simulation using Γ1 (control) under hot and dry atmospheric conditions; however, using Γ8 

(highest) substantially decreases the deposition flux a short distance from the feedlot boundary 

relative to the Γ1 simulation, and within 600 m of the CAFO boundary, the canopy compensation 

point exceeds the atmospheric concentration. This implies that the maize becomes a source of 

ammonia to the environment, rather than a sink. Integrated over the entire 1500 m maize canopy, 

the net ammonia recapture is less than 5%, which is ⅙ the recapture from assuming Γ1. While Γ8 

is substantially larger than Γ1 (33200 and 1300, respectively), it is substantially smaller than the 

results predicted by the parameterizations in Massad et al., (2010). Therefore, the actual 

effectiveness of maize, or any other plant canopy, for absorbing ammonia is likely lower than the 

estimates we provide based on these modelling results. The maximum deposition rate occurring at 

the domain boundary is not significantly smaller for the Γ8, suggesting that rapid deposition can 

occur with a high value for Γ, but only when the atmospheric loading is extremely high. McGinn 

et al., (2016) observed analogous behavior as well; at times when the flux gradient tower was 

upwind of the CAFO, the land became a source of ammonia to the atmosphere, suggesting that the 

land surface was indeed approaching saturation, and re-emitting ammonia back to the atmosphere 

when the surface compensation point exceeds the atmospheric concentration. Likely, during a 

typical diurnal cycle, the surface may change from being a sink of ammonia overnight, to a source 

during the day. However, we do not model other diurnal behavior inside the canopy. 
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Next, we generalize this result to a broader range of environmental conditions. We 

demonstrate in Figure 2.7 that generally under cold conditions, the effect of Γ on the canopy 

fractional ammonia recapture is small, and the effect of RH is negligible. Under hot conditions, Γ 

can dramatically impact the net ammonia recapture, as discussed above, but we predict that RH 

variability only has a small effect. RH affects the leaf area wetting, which enhances the cuticular 

leaf loss, which is not treated as a bidirectional flux in this model. However, the physical 

parameterization for this loss mechanism is poorly constrained, due to challenges isolating its 

effect from stomatal losses. Likewise, the physical parameters used are generic and advances to 

this specific loss mechanism are required to characterize the uncertainty or increase the precision 

of this modelling approach. Given the best-guess parameter values (Massad et al., 2010), this loss 

appears to be minor relative to the stomatal losses, due to the small effect that RH has on the net 

deposition. 

Based on the discussion above, deposition into plant canopies is more sensitive to the 

emission potential in hot and dry climates, as both impact the canopy compensation point. It 

follows that land surfaces adjacent to CAFOs, where Γ is likely elevated due to long-term input of 

reactive nitrogen, are more likely to saturate due to increases in Γ in hotter and drier climates. 

However, warmer climates may also experience more rapid plant growth and faster microbial 

activity in the soil, which could result in more-rapid nitrification, utilization of NR in biomass, or 

emission of  N2O and NOx. For a given region, plant canopies will absorb more ammonia during 

the cooler periods when  𝜒C is suppressed, and will likely experience supersaturation during hotter 

and dryer periods. These processes may occur on a seasonal or diurnal timescale. However, there 

are other important limitations to the model that may impact the applicability of this result to the 

real world. In MODDAS, the leaf temperature is fixed as 0.1 degree C cooler than the atmospheric 
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temperature. However, in a dense plant canopy that is not under drought stress, the temperature 

may be substantially cooler and the RH may be substantially higher than the environment due to 

latent cooling from evapotranspiration. Therefore, if the atmospheric conditions are 26 °C and 

30% RH, a well-irrigated field of maize will be cooler and more humid, and this will impact the 

compensation point behavior. Additionally, for the scenario of plants under drought stress, the 

stomatal resistance increases as plants close their stomata to limit evaporative loss to the 

environment. For scenarios where Γ is high, this will decrease the canopy compensation point and 

decouple it from temperature; conversely, for scenarios where Γ is low, the canopy compensation 

point increases under drought stress, as the stomata are no longer available to absorb ammonia 

from the atmosphere. The soil fluxes are also bidirectional and modeled using emission 

potential/compensation point behavior, but the underlying physics governing the resistances and 

solubility of ammonia in the soil pores is more complex. While we use a soil emission potential in 

this model, we do not vary it with changes in the stomatal emission potential in our sensitivity 

analysis. In reality, these two parameters are not likely to be completely independent. 

Until this point, we have analyzed output from simulations that assume a neutral 

atmospheric profile with a typical atmospheric U and TKE profile at the model inlet. However, 

the atmospheric state can have dramatic effects on dispersion throughout the atmospheric 

boundary layer. K-epsilon models are cannot simulate non-neutral conditions in the atmosphere, 

so it is difficult to apply this modelling framework to a stable or unstable atmospheric state. We 

instead use Monin-Obukhov Theory (MOT)-derived profiles to produce wind and turbulence 

estimates for above the canopy, which are affected by the roughness length of the land surface; 

inside the plant canopies, as well as at the interface between atmospheric sections at canopy 

boundaries, there is a momentum balance to produce physically reasonable behavior; while this 
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representation of the atmosphere in the model can be used to model dispersion under different 

stability conditions, it does not accurately simulate dispersion inside the plant canopy, or across 

the interface between model regions with different surface properties. Therefore, we only use it to 

provide order-of-magnitude estimates of the sensitivity to dispersion. Consequently, we used a 

simpler and smaller model domain (Configuration 2), so these results cannot be compared to the 

Configuration 1 simulation results discussed above. 

The sensitivity to stability is summarized in Table 3.3, which shows that under highly 

unstable conditions, 0.4% of the total ammonia is deposited to the maize surface and other base 

assumptions, which is 10% relative to the neutral Monin-Obukhov dispersion simulation, and 5% 

relative to the K-epsilon simulation (also neutral). Likewise, highly stable conditions increase 

deposition by 100% relative to the corresponding neutral case. The MOT simulations span roughly 

a factor of 20 between the most stable and most unstable case in terms of ammonia deposition, 

which the K-epsilon control simulation produced estimates that are more similar to stability class 

E (moderately stable) conditions, rather than the type D. This could be due to the K-epsilon theory 

having a more-realistic representation of dispersion in and immediately above the plant canopy, as 

well as more realistic behavior at the CAFO-maize model boundary, than the MOT cases. However, 

there may be other explanations for this difference. Regardless, the MOT simulations show that 

our predicted results are likely strongly a function of atmospheric stability, and that the 

approximate range in ammonia recapture fraction is a factor of 20. 

Atmospheric stability is an instantaneous property of the atmosphere that varies with the 

accompanying weather and time of day; however, it often follows longer-term climate and 

seasonal patterns which depend on the region in question. In the western US, summers are 

dominated by low fractions of cloud cover and a strong solar flux during the day, which often 
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produces an unstable atmospheric profile, as well as efficient radiative cooling overnight which 

can produce a stable boundary layer. Conversely, the UK has more-frequent cloud cover and hence 

is dominated by neutral or near-neutral atmospheric profiles, with little diurnal difference. Equally 

important are differences in the land surface with season; an agricultural land may have bare soil 

or grass during half of the year, with crops growing from small to large before being harvested. 

Likewise, unmanaged grassland follows the life cycle of grasses throughout the year, and 

deciduous forests lose their leaves during the winter. The land surface therefore varies seasonally 

in terms of its capacity to mitigate ammonia emissions from a neighboring CAFO. Quantifying 

how the differences by region and season could impact ammonia deposition are an important next 

step for this field of study, but it is beyond the scope of the work presented here. 

2.4.3 MODDAS Simulations; Use of Shelterbelts to Increase Ammonia Recapture 

We have established that reforestation or growing crops such as maize adjacent to CAFOs 

can increase local ammonia recapture. However, converting 1500 m of grassland to managed forest 

is not always feasible if the land is currently used for other purposes. In fact, land next to CAFOs 

is often already used to grow feed for the residents of the feedlot, so changing land-use to a forest 

may not be economical for the feedlot operators. Therefore, we also investigated techniques to 

recapture more ammonia using minimal changes to the surrounding land surface by use of of 

shelterbelts, or 10 m thick bands of trees, in different spatial arrangements. In Figure 2.8, we show 

the difference in atmospheric ammonia concentrations between the “upwindtrees” simulation and 

no trees in the model domain (Figure 2.8a), the surface concentrations for all of the shelterbelt 

scenarios considered (Figure 2.8b), as well as the fractional ammonia recapture (Figure 2.8c). The 

effect of trees placed upwind of the CAFO on the turbulence is to slow the surface windspeed, but 

increase turbulent kinetic energy. While slower winds can increase the residence time of the plume 
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in the downwind plant canopy, which may increase deposition, increased turbulence will enhance 

vertical mixing. Therefore, upwind trees cause a larger fraction of the plume to flow over the top 

of the crop field avoiding deposition. This is seen in Figure 2.8a, where the presence of trees 

upwind of the source create a difference in ammonia dispersion. The ammonia surface 

concentration is lower in the case with upwind trees as compared to the control simulation with no 

trees (Figure 2.8b), and the fractional ammonia recapture is approximately 25% lower than the 

control case (Figure 2.8c). 

The downwind tree case has a similar effect on the turbulence over the maize, but the winds 

and turbulence over the CAFO are affected differently; there is a buildup of ammonia 

concentrations on the downwind half of the CAFO, upwind of the first shelterbelt. The surface 

concentration decreases rapidly, due to increases in boundary layer turbulence, but also rapid 

deposition inside the coniferous shelterbelt. The “downwindtrees” case has the fastest initial 

ammonia deposition (Figure 2.8c). However, the rate of deposition slows as the surface 

concentration rapidly decreases, and by the end of the maize field, the increase in surface 

turbulence offsets the initial fast deposition, and this simulation offers no improvement over the 

control case. Finally, the “alltrees” case combines both properties, increased turbulence and 

decreased windspeeds over the CAFO as well as fast initial deposition as the plume passes through 

the first downwind coniferous band. The “alltrees” case is only able to recapture 80% of the total 

ammonia, relative to the case with no trees. 

In all of the shelterbelt cases, the 10 m thick coniferous bands of trees are not large enough 

to absorb an appreciable fraction of the ammonia emissions; the tree bands are porous and most of 

the ammonia passes through them. However, these narrow bands of trees can have a relatively 

large impact on the turbulence near the surface, and this effect appears to dominate for tree bands 
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of this size. The increase in surface turbulent kinetic energy promotes faster mixing of the ammonia 

away from the surface, which ultimately decreases the net ammonia recapture. When positioned 

upwind, the shelterbelts are not able to absorb any ammonia from the atmosphere, so there is no 

mechanism to increase the ammonia recapture. When positioned downwind, the shelterbelts do 

rapidly absorb ammonia from the atmosphere, but 10 m is not enough to absorb an appreciable 

fraction of the total emissions from a large CAFO. While Bealey et al., (2014) found that relatively 

smaller plant canopies (length 30-50 m) can still absorb as much as 20% of the total ammonia 

emitted from some animal feedlot systems, the authors found that the optimal configuration was 

to use a tree with a deciduous-type LAD profile for the majority of the plant canopy to allow the 

ammonia plume to penetrate the plant canopy, but then to use a dense coniferous “backstop” 

section at the end of the plant canopy to prevent ammonia from pass through the plant canopy. 

However, the systems that were investigated in this study involved much smaller sources, so the 

absolute size of the deposition flux was much smaller. As they were primarily interested in 

emissions from poultry operations, the most-effective canopy configurations that they explored 

allowed the animals were allowed to range inside of a plant canopy. Due to the correspondingly 

larger size of the CAFOs in our study, and difficulty of maintaining a cattle pasture under a dense 

tree canopy, we did not test these specific strategies. For a larger CAFO, a greater fraction of the 

emissions will mix above the downwind plant canopy, and the importance of this vertical mixing. 

However, based on the fast initial deposition flux in various tree types for the from the first land-

use experiment (Figure 2.5), there is likely a shelterbelt design that is closer to 100 m in length 

that removes an appreciable fraction of the total ammonia emissions. However, we have not 

developed an optimized design of this shelterbelt in this work. 



56 
 

As mentioned in the previous settings, there are many different variables that we do not 

explicitly account for in this work. For example, in the context of an extremely narrow (i.e., 10 m 

thick) shelterbelt, the issue of sink-saturation becomes more important, as there is a 

correspondingly smaller amount of plant mass available to absorb ammonia. Additionally, the 

capacity of the shelterbelt to absorb ammonia from the atmosphere would vary depending on the 

leaves present on the shelterbelt vegetation, and the sink would be less effective if the trees shed 

their leaves during the winter, or under drought stress. Furthermore, for this application, there are 

other concerns about the wind direction. For narrow shelterbelts, small changes in wind direction 

will result in very different turbulent behavior upwind and downwind of the source; our results 

show that the ammonia recapture fraction is very sensitive to the impact the shelterbelts have on 

turbulent dispersion near the surface. In this study, we showed that shelterbelt systems perform 

better with trees downwind of the source. However, changing wind direction would make it 

impossible to design a shelterbelt that is always downwind of the source. Likewise, for conditions 

where the mean flow produces a yaw angle, the turbulent response could be more complicated, 

and is not accounted for in this study. Truly optimizing shelterbelts for ammonia recapture likely 

requires three-dimensional simulations, and a robust seasonal analysis, both of which are beyond 

the current capabilities of the modelling system we use in this study. 

 

5. Conclusions 

In this work, we used OpenFOAM-MODDAS to perform coupled dispersion and 

bidirectional flux modelling for ammonia emitted from large CAFOs. First, we tested the ammonia 

deposition over 5 broad land-use types: bare soil, grass, maize crop, coniferous forest, and 

deciduous forest. Over bare soil, the deposition rate is slow, due to the unfavorable compensation 
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point as well as the lack of near-surface turbulence to allow mixing. Over grass, we find a 

maximum depositional flux of 10 μg m-2 s-1, which agrees with reported measurements for 

ammonia deposition at CAFO fence lines over grass, though there are few measurement studies to 

compare with. For this configuration, the grass simulations re-absorb approximately 8% of the 

total CAFO emissions. However, rougher surfaces with higher LAI such as maize, coniferous trees, 

and deciduous trees produce more favorable near-surface turbulence and have more capacity to 

absorb ammonia from the atmosphere. Our simulations of a maize crop suggest that 30% of the 

total CAFO emissions could be recaptured in this scenario, while simulations of coniferous and 

deciduous forest led to 40% and 50% of total ammonia recapture respectively, though we know of 

no measurement studies to test these modelling results. Because the canopy compensation point is 

a function of environmental variables (T and RH) and the ammonia emission potential, which is 

often poorly constrained, there is considerable uncertainty in these estimates, though the 

uncertainty depends on the environment. Under cold and humid conditions, the total ammonia 

recapture is not sensitive to the emission potential, but under hot and dry conditions, the total 

ammonia recapture is highly sensitive to the emission potential in the plant canopy. The emission 

potential is in turn, a function of the total nitrogen input to the ecosystem, suggesting that 

measurements of this parameter near CAFOs are essential in order to better-constrain the 

bidirectional flux processes in this extreme environment. Finally, we investigate the use of smaller-

scale shelterbelts to engineer favorable conditions for ammonia recapture with minimal land-use 

changes. However, the results of our analysis suggest that the turbulent environment produced by 

shelterbelts are often unfavorable for increasing ammonia recapture, due to the increases in near-

surface turbulent kinetic energy. 
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CHAPTER 3. METHODS OF ESTIMATING DEPOSITION USING ATMOSPHERIC 
CONCENTRATION MEASUREMENTS: A CASE STUDY OF AMMONIA DOWNWIND OF 

A FEEDLOT 
 
 
 

Atmospheric ammonia is an important compound in the atmosphere because of its role in 

aerosol formation and its importance to the global nitrogen cycle. However, because ammonia is 

challenging to measure with sufficient time resolution for eddy-covariance-type deposition flux 

approaches, other strategies are needed to measure its dry deposition in a cost-effective way. 

Livestock feeding operations are a major source of ammonia emissions to the atmosphere, and 

ammonia concentrations near these large feedlots can be many orders of magnitude higher than 

background. The impact that these feedlots can have on regional ecology and air quality can be 

difficult to quantify, in large part due to the challenges of measuring and modelling ammonia dry 

deposition adjacent to these major sources. Feedlots housing ruminant livestock such as cattle are 

also sources of methane. Because methane does not undergo appreciable dry deposition and is 

chemically inert on relevant spatial scales, we can use it as a tracer to constrain the downwind 

dilution of feedlot ammonia emissions.  

The ratio of atmospheric ammonia to methane has been shown to decrease with increasing 

distance downwind of a feedlot due to deposition and aerosol partitioning of gas-phase ammonia. 

In atmospheric conditions where inorganic aerosol formation is slow, methane can serve as a 

conservative tracer, allowing the estimation of the fraction of ammonia that undergoes deposition 

downwind of the feedlot. Using atmospheric modelling of turbulent dispersion in the atmospheric 

boundary layer, we produce synthetic measurements to demonstrate a novel approach for 

estimating the deposition. We use Large Eddy Simulation (LES) to simulate the dispersion of 

tracer species from an area source to represent ammonia and methane emissions from a feedlot. 
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We then use the background-corrected ammonia:methane concentration ratio to construct a mass 

balance, and calculate the dry deposition flux. We then sample the LES output to produce synthetic 

observations in order to test this approach for use in the field with two candidate measurement 

platforms:  sensors deployed on a small unmanned aerial vehicle and on a surface-based mobile 

observation platform such as  an automobile. We find that for the automobile (ground based) 

deployment, our method produces overestimates of ammonia deposition on the order of a factor 

of 1.5 due to  sampling  near the surface where ammonia concentrations are depleted. However, 

use of the aerial platform allows more accurate estimation of the deposition fraction (relative error 

< 0.09). 

This work is currently under review in Agriculture and Forest Meteorology. 

 

3.1 Introduction 

 Nitrogen is an essential chemical element in life on earth. However, because N2 gas is 

mostly inert, it must be fixed into Biologically Available Nitrogen (BAN) species, either oxidized 

or reduced nitrogen species (e.g., nitrate and ammonia, respectively), for it to be incorporated into 

biomass. Human activity has surpassed soil and ocean bacteria as the dominant source of nitrogen 

fixation on Earth, in large part due to the synthesis of ammonia via the Haber-Bosch process; 

hundreds of Tg of BAN are produced every year for use in plant fertilizers (Vitousek et al., 2013). 

Excess application of fertilizer to crops can enter rivers and streams through surface runoff, leach 

into groundwater, or volatilize to impact the surrounding ecosystems and atmosphere. Additionally, 

the inclusion of crude protein in animal feed can increase the concentration of ammonia in animal 

waste as a byproduct of metabolism, and ammonia can similarly impact the air and groundwater 

from animal livestock (Asem-Hiablie et al., 2019; Hristov et al., 2011; Rotz et al., 2019). Once in 
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the atmosphere, ammonia is the most common alkali species and often combines with atmospheric 

acids to form aerosols, which can impact the earth’s radiative balance (Boucher et al., 2013), is 

hazardous to human health (Dockery et al., 1993), and contributes to visibility degradation (Gu et 

al., 2014). Fugitive BAN in the atmosphere can also undergo wet and dry deposition into sensitive 

ecosystems, where it can cause soil acidification (via soil microbe nitrification), eutrophication, 

and changes to biodiversity and soil microbiomes (McLaughlin and Mineau, 1995). 

Under non-precipitating conditions, atmospheric ammonia can stick to surfaces and is 

taken up by plants and soils for incorporation into biomolecules as part of the terrestrial nitrogen 

cycle. Therefore, the ammonia in the atmosphere is often treated as a dry depositing species in 

atmospheric chemical transport models (Farquhar et al., 1980). However, plants and soils can also 

emit ammonia to the atmosphere as a byproduct of biochemical processes that depend on the 

temperature, soil/leaf moisture, relative humidity, plant species, and nitrogen status. Taken 

together, these variables determine the surface “compensation point”, which is analogous to the 

concentration of ammonia represented by the surface. When the compensation point is larger than 

the atmospheric concentration, the surface is a source of ammonia, whereas when the 

compensation point is smaller than the ambient concentration, then the surface is a sink. When the 

surface compensation point and atmospheric concentration are similar, the direction of the net flux 

can change on short timescales due to changes in environmental conditions impacting the surface 

compensation point. Furthermore, the mass-transfer between the surface and atmosphere is a 

function of wind speed, atmospheric stability, and surface roughness, which can vary on 

micrometeorological scales. In most cases, the compensation point and atmospheric concentrations 

are of similar magnitude, so the ammonia-surface interactions are best represented as a 

“bidirectional flux process” (Sutton et al., 1995). However, close to major sources of ammonia, 
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the atmospheric concentrations in the plume are much larger than the surface compensation point 

(Shen et al., 2016), and the net flux can be approximated as a unidirectional dry deposition process 

(McGinn et al., 2007); we refer to this as “nearfield dry deposition”. The approximate size of this 

“nearfield” area (where the flux is universally from the atmosphere to the surface) and the 

magnitude of the deposition fluxes in this zone is highly uncertain. This process is further 

complicated by ammonia solubility in rain and snow, where it can undergo wet deposition; 

however, dry deposition is typically the dominant ammonia sink in the nearfield, so we focus only 

on the fair-weather dry-deposition processes in this study. 

Concentrated Animal Feeding Operations (CAFOs), which can house tens of thousands of 

livestock, are major sources of ammonia and other air pollutants (e.g., methane) to the surrounding 

environment (Eilerman et al., 2016; Shonkwiler and Ham, 2018; Yang et al., 2016). For example, 

CAFOs in the Colorado Front Range impact nearby vulnerable alpine ecosystems farther to the 

west such as Rocky Mountain National Park (RMNP). In RMNP, increases in ammonia and 

ammonium deposition are observed (Beem et al., 2010; Benedict et al., 2013) during periods of 

transport from Northeast Colorado, a region with extensive CAFO development that is visible from 

space (Damme et al., 2018). However, direct numerical simulation and source-apportionment type 

analyses are challenging due to difficulties representing the complicated transport in this region in 

chemical transport models (Thompson et al., 2015). More broadly, while increased regulation of 

U.S. NOx emissions has helped to significantly reduce nitrate deposition nationally, much of the 

U.S. has seen increases in ammonium deposition (Li et al., 2016), and the reactive nitrogen 

deposition budget now appears to be dominated by wet and dry inputs of ammonia/ammonium in 

most regions.  Nationally, 60% of all US ammonia emissions are estimated to come from animal 

feeding operations (US EPA, 2016). CAFOs also are a major source of ammonia in regions in 
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Australia (Hacker et al., 2016; Shen et al., 2018, 2016) and Canada (McGinn et al., 2016, 2007; 

Staebler et al., 2009). In order to determine the precise role CAFO emissions play in ecosystem 

changes from nitrogen deposition and in air quality, we need to be able to accurately represent the 

nearfield ammonia deposition in order to avoid systematic biases and reduce uncertainties in our 

emissions estimates in chemical transport models. 

One reason deposition of ammonia is uncertain is the difficulty of directly measuring 

ammonia fluxes.  Ammonia is a “sticky” gas that can bind to instrument inlets and surfaces, which 

can compromise measurement time response and in some cases introduce memory and hysteresis 

effects. It is difficult to measure ammonia accurately enough at a high temporal resolution for 

conventional flux measurement techniques, such as eddy covariance (Roscioli et al., 2016; Sun et 

al., 2015). Other methods, such as the aerodynamic gradient method (Flechard and Fowler, 1998; 

Loubet et al., 2012), cannot be performed in the vicinity of major sources, as the assumption of 

stationarity and constant flux over a measurement time-period is often not valid with rapidly 

changing wind directions (Loubet et al., 2009). Finally, the rapid changes to wind direction under 

turbulent conditions and the large concentration gradients present near a major source with variable 

emission fluxes (Sun et al., 2015) such as a CAFO can cause rapid changes to the atmospheric 

concentration, and therefore the deposition rate, on short timescales, which further complicates 

this measurement. Therefore, ammonia surface fluxes must generally be quantified using less 

direct approaches. Because CAFO emissions of ammonia are large and dry deposition can occur 

rapidly, large in-plume spatial gradients in ammonia concentrations often arise. Many studies have 

used these gradients alongside other measurements to estimate the deposition rate. One study 

(McGinn et al., 2016) used soil traps alongside passive gas-phase ammonia samplers configured 

to employ the Flux Gradient method downwind of a CAFO in Alberta, Canada to measure the 
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deposition of ammonia. Another study (Shen et al., 2016) used downwind passive measurements 

of atmospheric ammonia with a bidirectional flux model to calculate the deposition rate, and in a 

follow-up study (Shen et al., 2018), they use soil and leaf nitrogen analysis to corroborate their 

estimates of deposition. Both studies show that on average, ammonia deposition occurs rapidly 

near a CAFO, with 90% of all measured ammonia dry deposition (within the study domain) 

occurring within 3 km of the CAFO, but these studies required challenging laboratory 

characterization of soil ammonia and many passive atmospheric ammonia measurements, which 

limits this approach to assessment of time-averaged nearfield dry deposition. This time averaging 

is a limitation as ammonia dry deposition varies under specific meteorological conditions and 

specific times of day, so there is a need to be able to quantify deposition under shorter time (sub-

daily) periods. 

Time-resolved ammonia-concentration measurements by multiple stationary monitors at 

different distances from the CAFO have the potential to fill this need for sub-daily deposition 

estimates. However, deployment of many sensors in a single study may be impractical.  

Furthermore, it can be beneficial to use a single analyser to prevent systematic measurement biases 

between separate analyzers from introducing artifacts in this approach. Consequently, we know of 

no studies that have tried to use this approach to quantify deposition.  Alternatively, a single mobile 

measurement platform could be used to make measurements at multiple locations in a relative 

short time period (minutes to hours). Surface vehicle (e.g., car or truck-based) mobile 

measurements (Miller et al., 2015; Shadman, 2018; Sun et al., 2014; Tao et al., 2015), and aircraft-

based measurements (Hacker et al., 2016; Staebler et al., 2009) have been used to measure 

emissions of ammonia and other species (e.g., methane) from CAFOs, but few studies have 

attempted to quantify the ammonia deposition. Another study (Hacker et al., 2016) that also used 
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aircraft-based measurements of ammonia demonstrated the use of methane co-emission from a 

CAFO to trace the dispersion of these two species downwind, and to estimate the emission flux 

for both species. They measured elevated ammonia concentrations above background 7 km 

downwind of the CAFO and elevated methane 25 km downwind; however, they did not use this 

difference to estimate the deposition rate of ammonia. One notable study (Staebler et al., 2009) 

used a small, manned aircraft to measure ammonia emissions from the same CAFO as McGinn et 

al (2016). They used a dispersion model and simultaneous measurements of aerosol composition 

to show that the chemical transformation of gas-phase ammonia to particulate NH4
+ is negligible 

on these temporal and spatial scales; they showed less dry deposition than McGinn, finding that 

only 10% of the total ammonia underwent deposition near the CAFO. While manned aircraft can 

be very effective at studying emissions and fluxes from area sources, this approach may be 

prohibitively expensive. Therefore, it is difficult to conduct measurements under diverse enough 

meteorological conditions and with enough replicates to confidently characterize the deposition. 

We are not aware of any studies that have used a mobile laboratory or surface vehicle to 

specifically study ammonia deposition adjacent to feedlot-type sources, or any studies using a 

small Unmanned Aerial System (sUAS) a.k.a. drone to make any ammonia measurements near a 

CAFO. 

Miller et al., (2015) demonstrated that the ratio of ammonia to methane in the atmosphere 

decreases rapidly downwind of beef feedlots, and attribute this decrease to a combination of 

deposition and aerosol partitioning. Their study location, the San Joaquin Valley, has a number of 

sources of nitrate, and ammonium nitrate formation is an important sink for ammonia in this region. 

Furthermore, their study period (winter) corresponds to lower temperatures and higher relative 

humidity, further favouring rapid aerosol partitioning. Other studies (e.g., Staebler et al., 2009) 
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have demonstrated that in warm conditions with low atmospheric sulfate and nitrate, ammonia 

partitioning into the aerosol phase is negligible within a few km of a CAFO. Here, we propose a 

new approach for using the change in ammonia:methane ratio to quantify the fraction of ammonia 

that undergoes dry deposition near a CAFO.. In Section 3.3.2, we explain the methods used to 

implement this approach using dispersion modelling. In Section 3.3.1, we briefly discuss the 

dispersion modelling results. In Section 3.3.2, we show that we are able to estimate the deposited 

ammonia within a given distance from the CAFO by controlling for the dispersion and dilution 

downwind of the source by conservation of methane mass. This approach requires very reasonable 

assumptions that ammonia loss due to uptake into particles or oxidation are small in this high 

ammonia concentration environment. In Section 3.3.3, we investigate the feasibility of 

implementing this approach in a real measurement situation by sampling the LES simulated 

turbulent methane and ammonia concentration fields as they would be measured from mobile 

platforms (i.e., automobile or sUAS),  and applying our analysis technique to the pseudo-data to 

estimate the deposited fraction of ammonia. Finally, we subject the analysis to a sensitivity test to 

provide guidance for optimizing the sampling procedure in a more realistic measurement scenario. 

 

3.2 Methods 

3.2.1 LES SAM Simulations 

We use a Large Eddy Simulation (LES) to simulate dispersion and deposition in a turbulent 

boundary layer. LES is a solution to low-pass filtered Navier-Stokes Equations, and it explicitly 

resolves turbulence down to the level of the model resolution while relying on parameterizations 

for sub-grid-scale turbulence. The LES model used in this study is the System for Atmospheric 

Modelling (SAM) v6.10.10 (Khairoutdinov and Randall, 2002). SAM is a community convection-
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resolving LES model that uses a K-theory (1st order closure) scheme for sub-grid-scale turbulent 

advection. SAM has been used for a range of applications including studies of convective 

processes (Khairoutdinov and Randall, 2003), coupling between surface and the atmospheric 

boundary layer (Gentine et al., 2016, 2014), and atmospheric dispersion (Berner et al., 2015; 

Stevens et al., 2012). Specifically, studies have used SAM to model aerosol microphysics and 

dilution from power plant smokestacks (Gong et al., 2013; Stevens et al., 2012), as well as the 

biomass burning plumes (Lonsdale et al., 2019; Sakamoto et al., 2016), where the dispersion and 

in-plume processing have been evaluated against measurements. SAM includes support for tracers 

with user-defined physics; the simulations in this study were performed with two tracers: one was 

entirely passive and meant to represent methane, while the other tracer representing ammonia 

underwent a 1st-order removal at the model surface, approximating unidirectional dry deposition 

close to a CAFO. We assume no other loss mechanisms (e.g., particle formation) for ammonia in 

the plume. The deposition flux, F (kg m-2 s-1), is given by: 𝐹 = −𝑣𝑑𝐶(𝑥, 𝑦, 𝑧 = 0))     (3.1) 

where vd (m s-1) is the surface deposition velocity (providing a rate constant for removal by 

deposition in grid cells located adjacent to the model surface boundary), and C is atmospheric 

concentration of the depositing species (e.g., kg m-3). We employ a Cartesian spatial grid where z 

is elevation (z=0 at ground level), x is aligned with the wind direction, and y is the transverse 

direction. We conducted SAM simulations on a 128 x 96 x 106 (x, y, and z, respectively) grid with 

100x100 m horizontal (x,y) resolution with variable vertical (z) resolution ranging from 5 m near 

the surface and increasing gradually to 60 m outside at z=1000 m. The SAM simulation domain 

therefore spans 12.8 km in the downwind dimension, 9.6 km in the cross-wind dimension, and 

5.26 km above the surface. The model boundary conditions (wind speed, relative humidity, and 
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surface sensible and latent heat flux) were prescribed using NCEP North American Regional 

Reanalysis (NARR) interpolated to our simulation location in Fort Collins, Colorado (NCEP 

Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web 

site at https://www.esrl.noaa.gov/psd/). We chose June 25th-27th of 2014 to represent typical 

summer conditions for this region. The daytime temperature and relative humidity were between 

290 and 300K (17 and 27 degrees C) and 15-40%, respectively. Surface winds were between 4 

and 8 m s-1. At night, the atmosphere is more stable and large eddies tend to be absent, and all 

tracer transport is sub-grid-scale. For this reason, we only consider transport during the daytime in 

this study.  Typical wind-speed values are in the range of 4-8 m/s near the surface during this 

period. We include results of a sensitivity study where we repeat this analysis for a different 

atmospheric state Appendix B2. 

To represent the CAFO in SAM, we use a single area source of 600 x 600 meters located 

over the interval X = 500-1100 m and y=4500-5100) meters (and z=0). This is approximately 

equivalent to a small-to-medium-sized CAFO that has a capacity of 18,000 head of cattle. By 

considering only a single source, we are assuming that the feedlot is far from any other sources of 

either methane or ammonia. In real world CAFOs, the methane and ammonia emissions are a result 

from different biologic processes on the CAFO site (enteric fermentation vs volatization from urea 

decomposition in animal manure and urine); therefore the actual emission sources are not exactly 

co-located, vary differently with time, and have different degrees of homo/heterogeneity on the 

CAFO facility. While we recognize that these processes have been studied at great detail (provide 

references), we do not attempt to capture this complexity in this study. The synthetic measurements 

we produce (described in Section 3.2.2) use concentration measurements over a range of 0 to 3500 

m downwind of the source. In our model simulations, the sources for methane and ammonia are 
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co-located and homogeneously distributed throughout the area source, and emission fluxes were 

assumed to be 45 and 90 μg m-2 of methane and ammonia, respectively (uniform over the source), 

based on measurements made at a small CAFO in northern Colorado (Shonkwiler and Ham, 2018; 

Sun et al., 2015). For all simulations discussed here, the ammonia deposition velocity model 

parameter was set to 1.0 cm s-1 (0.01 m s-1) which is an order-of-magnitude approximation of this 

parameter, based on literature estimates of the ammonia dry depositional fluxes from field studies 

(Schrader and Brümmer, 2014). In the SAM simulations, the background value for both tracers is 

zero; hence, all concentrations presented in this paper are implicitly background corrected, and 

should be considered excess concentrations above a real-world background concentration. While 

the real atmosphere does contain substantial background concentrations of methane, we are 

assuming that said background can be accurately and precisely determined to differentiate from 

in-plume measurements, and background-correct the observations. Consequently, we can not 

consider the impact of variable background concentrations or contaminating sources in this study. 

Throughout the rest of the manuscript, we refer to all concentration  as excess (i.e., “excess 

ammonia concentration”) . 

To determine the simulated “reference” ammonia deposition in our model (i.e. the “true” 

ammonia dry deposition calculated from the 3-D model output), we use the model output surface 

tracer concentration fields and the deposition velocity parameter to calculate the surface flux using 

Equation 1. Knowing the local deposition flux at any x-y location on the ground  (averaged over 

the entire time period) allows determination of the overall deposition rate for any x-y region by 

integrating over that region – we are particularly interested in examining regions extending to 

different downwind distances X beyond the edge of the feedlot. By normalizing the deposition rate 



78 
 

for the region by the overall source emission rate of ammonia, we determine the simulated fraction 

of emitted ammonia that is deposited in the region. 

In a real-life field experiment, e.g., with the automobile or sUAS, it will never be possible 

to have full x-y-z data over the entire domain.  Therefore, the primary objective of this study is to 

develop a technique to determine the fraction of ammonia emissions from a CAFO that undergoes 

dry deposition nearby, by inverting synthetic measurements of ammonia and methane atmospheric 

concentrations, but without relying on direct flux measurement techniques. To do this, we compare 

the ratio of ammonia to methane in the atmosphere at the CAFO boundary (i.e., X = 1000) to a 

different distances (i.e., 1-3.5km, or X  = 2000 to 3500) downwind from the source. The 

concentrations of both species decrease further from the source due to dilution. Additionally, if we 

integrate the total mass in each Y-Z plane through our model domain, we expect the total planar 

mass loading to decrease for both species; as the plume mixes vertically, it is more rapidly diluted 

by stronger winds at higher altitudes. However, we expect the total mass conductance through each 

downwind Y-Z plane to be conserved if emissions and winds are constant. We next introduce the 

domain-integrated mass conductance, J, given by: 𝐽 =  ∬ 𝑈(𝑥, 𝑦, 𝑧)𝐶(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧    (3.2) 

where U is the x component of the wind and C is the concentration. In the absence of net 

convergence or divergence, the domain-integrated mass-conductance is a conserved quantity for 

non-depositing species. Therefore, because ammonia undergoes dry deposition, the ratio of 𝐽𝑁𝐻3/𝐽𝐶𝐻4 decreases with distance from the source. Therefore, the relative change in this ratio will 

tell us the fraction of ammonia that has been removed from the domain. 
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3.2.2 Sampling Strategies 

 We next investigate the accuracy of using field measurements of atmospheric methane and 

ammonia concentrations to estimate ammonia deposition by sampling our 4-dimensional SAM 

output to produce synthetic data. We consider two different sampling strategies: a single mobile 

surface measurement (i.e., sensors mounted on an automobile or truck), and a single mobile 

airborne platform (i.e., sensors mounted on a sUAS). The vehicle and sUAS base-case trajectories 

are plotted in Figure 3.1a and 3.1b, respectively. For our base-case surface-vehicle scenario, we 

sampled the SAM output on the downwind side of the source area, down the plume centerline 

Y=4800 m) from the CAFO boundary X= 1100 m) driving away from the CAFO at 12 m s-1, 

continuing to a maximum distance of 3 km from the CAFO (i.e., X=4100 m), then turning around 

and retracing this trajectory back to the CAFO. The base-case measurement scenario sampled 2 

hours of SAM output, so 12 total transects are completed. Concentrations are measured 5 m off 

the ground (simulating the instrument inlets on a mast). We built the base-case sUAS trajectory 

based on a number of real-world considerations. In this study we assume a fixed-wing sUAS 

because they can often carry higher mass payloads than rotor type sUASs (as needed for ppb 

sensitivity methane and ammonia sensors) and avoid some of the flowfield complexity associated 

Figure 3.1: (a) Surface vehicle measurement platform base trajectory outlined over an example 
plume and (b) sUAS base trajectory, subject to FAA constraints, flight payload considerations, and 
fuel conservation strategies. Both trajectories were perturbed to examine the sensitivity of the 
results to deviations from these “best-case scenario” trajectories as described in the text. 
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with the strong down wash of rotor sUAS.  We also assume the sUAS cannot safely fly under 10 

m from the surface and cannot exceed 400ft (~120m) given current regulations of the United States 

Federal Aviation Administration (FAA).  The flight trajectory is selected to minimize ascents, 

descents, and strong turns and has a 45 minute flight time. Furthermore, to mimic our surface-

based sampling approaches, we designed our flight trajectory to travel upwind and downwind from 

the CAFO in a series of 12 ovals extending 3500 m downwind of the CAFO. For both measurement 

platforms, these base-case scenarios closely mimic the domain-integrated calculation and produce 

the most accurate estimates of deposition within the framework of this study. However, we 

acknowledge that other better-performing trajectories may exist. 

 For the methane and ammonia sensing we assume a temporal response of 5 s as can be 

achieved with laser based instruments.  All pseudo-measurements with (background-corrected) 

concentrations less than 15 ppb are masked (remove from the simulated data) to simulate a lower 

limit of detection due to both instrumental (sensor) limitations as well as due to the variations in 

the ambient backgrounds over the relatively large spatial and temporal scales of the simulated 

measurement experiments (i.e., if either tracer species was observed to have a lower concentration 

than 15 ppb, we threw out both observations). This assumption is equivalent to assuming that the 

background concentrations can be determined as a function of time to sufficient precision such 

that the in-plume concentrations can be differentiated from out-of-plume background 

concentrations at a precision of 15 ppb such that we are able to background-correct the observed 

concentrations.  Background ammonia concentrations are typically smaller than 15 ppb whereas 

concentrations adjacent to CAFOS greatly exceed this value, so this masked value is a reasonable 

value for ammonia (Benedict et al., 2018). Methane background concentrations are several orders 

of magnitude higher than this, and in regions with nearby sources of methane the background 
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variability can be in this range ((Aref’ev et al., 2016). However, the background variability on 

daily and hourly timescales is generally less than 15 ppb and can be accurately characterized with 

upwind measurements. Furthermore, for large sources such as CAFOs, the difference between in-

plume and out-of-plume methane concentrations is usually larger than 15 ppb. Finally, the results 

presented here are not very sensitive to this assumed lower limit of detection (15 ppb) (e.g., if we 

change the mask to 5 or 50 ppb, our deposition estimate decreases by 1% and increases 10%, 

respectively) However, we do not explicitly account for background variability in this study, and 

we acknowledge that this may be a source of error for implementing this method in regions with 

other large sources of methane and ammonia nearby. We therefore acknowledge the complexities 

of this assumption, but believe that it is adequately justified. 

To perform the deposition analysis, we bin the simulated observations from each platform 

by downwind distance from the source; we then calculate each bin’s average concentration for 

both ammonia and methane, and calculate the ratio between the two bin-average concentrations. 

We then normalize the concentration ratios by the furthest upwind ratio that was observed (i.e., 

the ratio in the observation bin closest to the CAFO), and assert that these normalized ratios at 

given X positions represent the fraction of ammonia that has been deposited over the given spatial 

interval (i.e., unity minus the fraction then corresponds to the amount still to be transported yet 

further downwind). The results presented below will show the posited linkage between these 

spatially varying ammonia:methane ratios and the ammonia deposition fraction.  Following that, 

to characterize the robustness of the sampling approaches, we examine other sampling trajectories 

by perturbing the mobile sampling strategies (surface vehicle and sUAS) from the base-case by 

changing the following: sampling duration, sampling time-of-day within our simulated atmosphere, 

angle offset from the plume centerline, translation in x, y, and (where applicable) z direction. We 
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use the results of these trajectory perturbations to test the robustness of the results against realistic 

deviations from a single sampling trajectory that may arise from practical limitations in a real 

measurement scenario, such as the placement of roads or private property. We acknowledge that 

we are not estimating uncertainties across the full range of atmospheric and emission conditions 

(which would require more LES simulations), and our uncertainties represent those for the specific 

conditions during the times and location of our LES simulation. 

 

3.3 Results and Discussion 

3.3.1 LES SAM Simulation Results 

First, we show results from our SAM LES simulations. Figure 3.2 shows, from left to right, 

instantaneous (background-corrected) methane concentration fields for an arbitrary point in time, 

2-hour averaged methane concentrations, and the ammonia-to-methane ratio for the 2-hour 

average concentrations. The two-hour time period was from 10 to 12 local standard time. The top 

row shows the x-z plane at the y centerline, and the bottom row shows x-y plane at the model 

surface layer. The individual timesteps shown in Figures 3.2a and 3.2d are representative of the 

turbulent structure of the dispersion system represented by this model. Averaging enough model 

output together produces smooth plume structures (Figures 3.2b and 3.2c). Also, the ratio plots 

(Figures 3.2c and 3.2f) show that the ammonia is depleted from the model domain near the surface 

with less depletion occurring far from the surface. 

In the instantaneous output (Figures 3.2a and d), we see that the concentrations of methane 

vary spatially in a chaotic manner. This is a property of turbulent flow. We show this figure to 

emphasize that any measurements of tracer concentrations in a plume will vary considerably as a 

function of time. However, with suitable temporal averaging, a smoother and better-defined plume 
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structure emerges, as shown in Figures 3.2b,e. This smoother concentration profile is what 

ultimately governs the depositional fluxes over the sampling period of interest. A measurement 

study that attempts to quantify deposition will measure the atmosphere as it appears in Figures 

3.2a,d, but to infer the behaviour demonstrated in Figures 3.2d,e. Finally, we show that the ratio 

of ammonia to methane changes very little outside of the layer immediately above the surface 

(Figure 3.2c). Near the surface, there is a substantial decrease in this ratio downwind. In order to 

quantify the fraction of CAFO emissions that deposit nearby, it is important to quantify the change 

in ratio throughout a representative fraction of the emissions plume extent in the vertical direction. 

Figure 3.2: The instantaneous and steady-state plume behavior from SAM simulation output. 
The top row shows domain centerline concentrations (x vs z) with (a) showing excess methane 
concentration model output from a single timestep, (b) showing a 2-hour average from 10-12, 
and (c) shows the ammonia/ methane excess concentration ratios. The bottom row (d, e, and f, 
respectively) shows the same model output, but in the surface layer of the model domain  (z = 
2.5 m in the center of the box). Excess concentrations smaller than 1 ppb are masked. 
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In order to determine whether these SAM dispersion results are consistent with 

representative atmospheric conditions, we compare the SAM simulation output to measurements. 

We compare the wind characteristics to measurements from a CoAgMet site in northern Colorado 

near the simulation location, and we compare the ammonia concentrations at the simulated CAFO 

boundary to some in situ measurements of ammonia at a CAFO fence line in eastern CO. We have 

included the model-measurement comparison and discussion in Appendix B1. 

3.3.2 Estimation of the Fraction of Ammonia Removed Using All SAM Output 

Figure 3.3a shows the total Y-Z-integrated ammonia and methane loadings (i.e., the total 

mass of methane and ammonia in a Y-Z slice through the domain) as a function of X. Figure 3.3b 

shows the Y-Z-integrated flux (i.e., the mass conductances) as a function of x for ammonia and 

methane as well as the total-domain-width x-integrated deposited ammonia (calculated via the 

reference method) and the deposition-corrected ammonia conductance (what our calculations 

expect the ammonia conductance to be in the absence of deposition). Figure 3.3c shows the 

estimated fraction of ammonia remaining in the column as a function of downwind distance using 

two methods: the change in methane and ammonia conductances, and the reference deposition. All 

results shown in Figure 3.3 are averaged from 10-12Local Standard Time. We also looked at 

results from 12-14, 14-16, and 16-18, well as an average over the entire 8-hour period, and while 

the atmospheric state changed during each of these time periods, the overall qualitative results 

were not sensitive to the time of day. 

In Figure 3.3a, the y-z-integrated atmospheric mass-loading of methane and ammonia are 

not constant; as the tracer species mix vertically, they are advected by systematically faster winds, 

causing a net increase in the rate that mass is exported from the domain and decreasing mass 

loadings further downwind from the source. However, in the absence of transport out of the top or 
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lateral domain boundaries, or any mass sources or sinks  inside the model domain (i.e., deposition), 

we expect the mass conductance to be a conserved quantity, equal to the emission rate. In Figure 

3.3b, the methane conductance eventually converges to a steady-state value, but immediately 

Figure 3.3: (a) the total Y-Z integrated ammonia and methane mass loading plotted as a 
function of x, (b) the atmospheric Y-Z mass conductance for ammonia and methane (solid 
lines), as well as integrated reference deposition flux (orange dashed line) and the deposition-
corrected ammonia mass conductance (orange dot-dashed), and (c) the fraction of ammonia 
remaining calculated from the deposited mass (black) and from the ammonia/methane 
conductance ratios (red). 
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adjacent to the source area (gray shaded region), the conductance still slowly increases. We believe 

that this is an artifact from the LES simulation, due to the sub-grid-scale turbulence 

parameterization. Close to the source, large concentration gradients are present and most of the 

methane and ammonia mass is close to the surface where the wind speed is low, so sub-grid-scale 

transport dominates; further from the source, this effect becomes less important. 

When considering the mass conductance integrated across the entire model domain, we 

construct a mass balance for ammonia through each y-z plane where ammonia is either advected 

through the plane or undergoes dry deposition. The advection flux of methane, which does not 

undergo deposition, is constant, and therefore the ratio of ammonia to methane must be directly 

proportional to the mass-loss of ammonia from the domain. In Figure 3.3c, we see that for these 

dispersion conditions, approximately 20% of the total ammonia undergoes dry deposition within 

the first 5km of the CAFO boundary, with fractionally very little ammonia deposition occurring in 

the next 6km. We also see that using the ratio of conductances agrees with the reference deposition 

fraction (calculated offline) to within 1%. 

We have demonstrated that by integrating ammonia flux over the entire three-dimensional 

spatial domain, we can use the mass conductance ratio of ammonia to methane to determine the 

deposition rate of ammonia downwind of the CAFO. We now test how well we can determine 

ammonia deposition with more limited information, in particular with ammonia and methane  

concentrations along only the X-Z plane of the domain  – for different X-Z planes extending to 

different heights Z. Here, we use the same basic approach as for the full domain, but we consider 

only values down the X-Z central plane of the domain (i.e., Y = 4800), and we truncate the Z-

integral at various heights lower than the top of the model domain. This approach tests the 

calculation under scenarios where we cannot sample the entire atmosphere, but are limited in the 



87 
 

vertical and lateral extent of our measurements. The percent bias of the limited-domain estimate 

of the ammonia removal relative to the actual removal (from the reference deposition calculation, 

shown in the black curve in Figure 3.3c) is plotted in Figure 3.4. We show the expected bias for 

the following cases: using only the surface concentrations (solid blue line), all model output below 

120 meters (solid purple line, the maximum allowed flying height assumed for the sUAS), and the 

result of using all model output to the domain top (gray line) with intermediate heights included 

in dashed lines. 

Figure 3.4: Percent bias of the fractional ammonia removal, comparing the centerline mass 
loading ratio (the novel method) and the offline actual deposited mass method (our reference 
method) plotted vs. the x coordinate in the model simulations, where X = 1000m corresponds 
to the CAFO boundary. Each line corresponds to the inclusion of a different vertical depth in 
the model domain in the centreline ratio method with the solid blue line using only the surface 
concentrations, the purple line using 120m and below (i.e., the maximum allowed altitude for 
a small Unmanned Aerial System without FAA certification), and the gray line represents the 
entire model domain. Intermediate altitudes are represented as dashed lines. A bias of 0 
denotes perfect agreement between the methods. 
 



88 
 

From Figure 3.4, we see that by using only mass concentration ratios down the plume 

centerline instead of conductances from the total domain (gray curve), we introduce a small 

positive bias which is a result of the conductance artifact in Figure 3.3; this artifact is on the order 

of 5% at 9 km downwind of the source. However, by reducing the vertical extent of the vertical 

integral included in our ratio calculation, we introduce additional positive bias. In an extreme 

scenario, using only the surface concentrations produces a 100% bias in the expected deposition 4 

km from the CAFO boundary because we are only sampling the surface where ammonia is more 

efficiently removed by deposition, rather than sampling the entire plume. However, surface-based 

measurements are the most common and easiest approach for atmospheric composition 

measurements next to sources such as CAFOs. This finding shows that by only considering the 

change in ammonia:methane ratio at the surface, estimates of ammonia deposition are inherently 

biased high. Conversely, a sUAS can be operated to a height of 120 m above the surface. Under 

this scenario, a sUAS-based measurement introduces ~40% positive bias for our simulated 

conditions, with vanishingly small biases as we approach the source, and sample the plume before 

it can vertically mix much higher than this upper limit. From Figure 3.4, we also show that the 

value added of flying higher than 120 m decreases rapidly, especially close to the source. We also 

see that for a given number of vertical levels, the bias for our deposition calculation under these 

dispersion conditions increases as a function of x for the first ~7 km past the CAFO as the tracer 

species continue to mix vertically, and our restricted sampling domain becomes less representative 

of the total column loading of the tracer species. At x = 8000 m, or 7 km downwind from the 

source boundary, the bias approaches a constant value. In the next section, we test the feasibility 

of using concentration ratios to estimate ammonia deposition using realistic measurements. 
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3.3.3 Using Vehicular and Aerial Platforms to Estimate the Fraction of Ammonia Removed 

 Next, we extend this general approach for quantifying ammonia deposition to simulated 

observations from the two potential measurement platforms: using either an automobile or a sUAS 

to measure atmospheric methane and ammonia concentrations. Figure 3.5 show the two time series 

of (implicitly background-corrected) synthetic observations of methane and ammonia atmospheric 

mixing ratios, from the simulated automobile and sUAS measurement platforms (Figure 3.5a and 

b, respectively). For both time series, values below 15 ppb were masked in order to simulate a 

limit-of-detection and to clearly differentiate in-plume from implicitly-corrected background 

variability. On both platforms, the ammonia and methane concentrations are highly correlated (R 

= 0.99) which is expected, given that they have identical source areas and are both constantly 

emitted. Both time series show large variability in the observed concentrations which is driven by 

the measurement position relative to the source. The sUAS-based observations are more likely to 

experience masked observations (i.e., concentrations less than 15 ppb) because the sUAS covers a 

greater spatial area including elevated heights above the plume. 

 Figure 3.6a and 3.6b show observed ammonia/methane concentration ratios as a function 

of downwind position X for the two measurement platforms. In Figure 3.6a, each point represents 

Figure 3.5: Observed ammonia and methane concentration timeseries in Local Standard 
Time (LST) (blue and orange, respectively) from the surface-vehicle-based platform (a) 
and the sUAS platform (b). 
. 
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a single observation from the vehicle. We binned all observations by 300 m X intervals and 

calculate the mean ammonia and methane concentrations in each bin, then take the ratio of the two. 

Compared to the conductance ratios shown in Figure 3.3c, there is considerable scatter for the 

individual vehicle-based pseudo-observations, as these are real-time samples in a turbulent 

atmosphere. However, the bin-mean concentration ratio in Figure 3.6a follows a similar decaying 

pattern to Figure 3.3c with increasing X due to the surface deposition of ammonia. According to 

the change in the surface ratio, from the CAFO boundary (X=1100 m) to the end of the vehicle 

trajectory (X = 4200 m), ~40% of the total ammonia has been removed from the atmosphere, which 

Figure 3.6: (a) Observed ammonia/methane ratios for the surface-vehicle-based and (b) 
sUAS-based observations with binned-by-X values overlaid. The surface vehicle base-case 
trajectory used a 2-hour sampling period, the sUAS trajectory used a 45 minute sampling 
period. The bottom two panels present histograms of the percent bias for the fraction of 
ammonia removed that can be inverted from a given sampling trajectory, compared to the 
actual deposited fraction computed with the  direct offline calculation over the corresponding 
spatial interval. Panel (c) shows the vehicle results and (d) shows the sUAS results. 
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is almost twice what was calculated using the entire domain conductance (Figure 3.3); this high 

bias, when sampled at the surface, was expected from the results shown in Figure 3.4.   

Figure 3.6b shows the results for the sUAS-based observations, where the symbol color 

denotes the altitude (z-coordinate) of the observation. Co-located ammonia and methane 

observations are divided to calculate the individual ratio values plotted with the ‘+’ symbols; if 

either species is less than our mask, we throw out both observations. There is more scatter 

compared to the vehicle observations (Figure 3.6a) because the sUAS moves faster and samples a 

larger spatial area than the vehicle, including positions off the plume centerline. To aggregate the 

observations into a single decaying function, we bin the individual sUAS ammonia and methane 

observations by X and by Z and calculate the mean concentration of each species in each bin; the 

z-bins are 30 m, and the X-bins are 600 m. We chose larger x bins compared to the surface vehicle 

because increased rates of masking and further subdivision by Z could cause smaller sample sizes 

for smaller bins. We then calculate the ratio of each bin-mean concentration, which are shown in 

Figure 3.6b as hexagonal markers colored by Z-bin center. Finally, for each x-bin, we calculate 

the median of the corresponding z-bins, which are plotted in the black hexagons. From the sUAS-

observations, there is less of a decrease in the ammonia:methane ratio with distance compared to 

the surface observations as expected from Figure 3.4. Based on the median concentration ratios, 

approximately 27% of the total ammonia is removed from the CAFO boundary (x=1100 m) to the 

end of the sUAS trajectory (X=4600 m). The sUAS estimate (27% removal) is closer than the 

vehicle estimate (40%) to the result shown in Figure 3.3c (20%), which is an expected result, given 

the discussion of Figure 3.4. 

The results presented so far have been calculated based on the base-case trajectories, which 

require specific placement of the measurement platforms relative to the CAFO, mean wind 
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direction, and atmospheric stability, which determines the rate of vertical mixing. In real field 

deployments, due to changing wind directions, the position of roads, various private property 

concerns, or the presence of a potentially interfering source, it may not be possible to measure 

directly downwind of a CAFO as we have studied here with our simulated sampling routes. To 

test the robustness of this measurement approach against deviations from the base-case trajectories 

(Figure 3.1), we used the same SAM output and conducted a series of sensitivity pseudo-

measurements where we varied the following: sampling path length, X offset from the CAFO 

boundary, y offset from the plume centerline, z offset (i.e., putting the instrument inlet on a mast 

or flying the sUAS higher or lower), angular offset from the mean wind direction, as well as the 

time-of-day of sampling, and the sampling duration. We conducted 1300 sensitivity trajectories 

for each measurement platform. The results of the sensitivity sampling trajectories are shown in 

histograms in Figure 3.6c and 3.6d (automobile and sUAS, respectively), where the trajectories 

are binned by the percent bias in predicted ammonia removal compared to the actual ammonia 

removed over the corresponding x-interval. Both sampling platforms have a skewed distribution. 

While the difference in the modal center for both distributions is minor (0% bias for the sUAS, 

50% for the vehicle), the sUAS distribution is narrower than the surface vehicle. This implies that 

while both measurement platforms can be accurate, the sUAS method is more robust against real-

world limitations on sensor placement. 

In addition to the accuracy (i.e., associated bias) and precision (i.e., associated scatter and 

robustness against deviations from the ”ideal” sampling trajectory) of a given measurement 

platform, it is also useful to understand which variables contribute most to bias and error. In Figure 

3.7, we plotted the bias and scatter of the observations as a function of the spatial perturbations (x, 

y, and z) for both the sUAS and surface vehicle platforms. In this analysis, we shifted the whole 
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standard sampling trajectories for sUAS and the surface vehicle (Figure 3.1) in space. At each 

perturbed location, we rotated the trajectories from 0 to 30 degrees off the central axis sampled at 

4 different start times offset by up to 2 hour to generate a distribution of expected biases. The 

perturbations in the X (downwind) direction have the largest effect for both platforms, with the 

Figure 3.7: (a) Observed ammonia/methane ratios for the surface-vehicle-based and (b) 
sUAS-based observations with binned-by-X values overlaid. The surface vehicle base-case 
trajectory used a 2-hour sampling period, the sUAS trajectory used a 45 minute sampling 
period. The bottom two panels present histograms of the percent bias for the fraction of 
ammonia removed that can be inverted from a given sampling trajectory, compared to the 
actual deposited fraction computed with the  direct offline calculation over the corresponding 
spatial interval. Panel (c) shows the vehicle results and (d) shows the sUAS results. 
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median bias for the surface vehicle approach increasing by a factor of two with only an 800m 

offset from the source. Furthermore, there is an increase associated with the error, or spread in 

deposition bias, associated with increasing distance from the source. For an X perturbation of 

1500m, the results for a surface vehicle have an average bias of 400%, but the range of results for 

this method span -100% to +1000% mean bias. It is important to note that a 1500m X  offset from 

the source is a reasonable experimental constraint, given private property and land-use constraints. 

The sUAS is also sensitive to an offset in the downwind distance, as almost all of the high-bias 

sUAS trajectories are associated with a large x-offset. The effect is small until the offset exceed 

500 m. This is because the vertical mixing of the plume away from the surface has not placed a 

substantial fraction of the plume above the sUAS’s maximum-allowed flight altitude of 120 m 

until further from the source under our simulated conditions. However, beyond 500 m, the bias 

associated with the sUAS measurement platform increases rapidly and the error associated with 

this measurement technique also increases. 

 In general, both measurement platforms are less sensitive to perturbations in the y 

(crosswind) and z directions. Perturbations in the y direction do not impact the total bias associated 

with a given approach. Likewise, there is not an obvious effect on the modal width (i.e., precision) 

associated with either measurement platform. The perturbations in the z direction have a small 

effect on the surface vehicle, where increasing the height of the measurement reduce the bias; this 

is expected, as the vehicle is able to sample a more-representative height within the plume where 

the deposition signal will be damped by transport from the surface. However, real-world 

implementation of this measurement would require mounting a long mast on a moving vehicle 

which would be a challenging experimental technique for masts longer than 10 m, and the 

improvement to the measurement is small. The effect of z-displacement on the sUAS results is 
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negligible. We explored the impact of perturbations in other parameters (trajectory angle relative 

to mean wind, time of day, duration of sampling period), but none had a noticeable effect on the 

bias. These results are presented in Appendix B3. It is also important to note that these 

perturbations shown here and in the appendix (other than the time-of-day) do not alter the 

underlying atmospheric state or dispersion. Under more stable conditions, we expect the sensitivity 

of the measurement approach to be less sensitive to the downwind distance, as vertical mixing will 

be less rapid; conversely, under extremely unstable conditions, it may not be possible to sample 

the plume adequately while complying with the FAA-stipulated 120m operational flight ceiling. 

From the results shown here, it follows that by using observations of ammonia and methane 

concentrations, we can quantify the near-field deposition of ammonia by analyzing the change in 

the ammonia/methane concentration ratios. While using observed concentrations at the surface is 

likely to overestimate the ammonia removal rate by a factor of approximately 2, this can still 

provide an estimated upper bound for the total ammonia removal (the likelihood of underprediction 

from surface observations is small). Furthermore, by measuring on a sUAS up to 120 m, which is 

allowed without FAA certification, we show that the ammonia removal can be determined much 

more accurately than by surface observations alone, and that this is robust across deviations from 

an ideal flight path. However, under the atmospheric conditions that were simulated, it is important 

to minimize the distance from the feedlot boundary in order to avoid potential sources of high bias 

to the deposition result. 

3.3.4 Approximations, Limitations, and Implications for Real Measurements 

 It is important to note that our study makes several assumptions and simplifications: (1) 

We assume that emissions and transport are close to constant for the duration of the sampling 

period. Therefore, this measurement approach would be most successfully implemented during 
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periods when the transport and temperature conditions are not changing. (2) We made our 

ammonia and methane sources perfectly co-located. If the sources of the two species are offset, 

we expect errors from using the species ratios to be larger than what we estimate here.  (3) We 

neglect the presence of contaminating sources and background variability. Because this method is 

a mass balance, other sources of either ammonia or methane would cause errors in estimating the 

deposition rate. Therefore, the presence of other sources of ammonia (e.g., fertilized crops, waste 

water treatment facilities) or methane (e.g., oil and gas development sites, landfills) or both (e.g., 

other CAFOs) could pose problems to real-world implementation of this measurement strategy. 

Additional sources that are suitably upwind should not pose a problem, provided the plume is well-

mixed by the time it encounters the source of interest, and that variability in these upwind sources 

is small enough that the background concentrations of either ammonia or methane do not undergo 

significant variability. 

We note that while the emission rates of both species are known for these simulations, they 

do not need to be known to produce an estimate of the deposited fraction, as we only look at the 

change in ammonia concentrations relative to the change in methane. Other than differentiating 

the in-plume concentrations from background variability, this method does not depend on the 

absolute concentrations provided they are larger than the surface compensation point, and our 

measurement system can resolve spatial differences in the plume concentration.  Furthermore, this 

approach does not require a priori information about the magnitude of the deposition velocity; in 

fact, quantifying the fractional deposition of ammonia may help constrain the value of the average 

deposition velocity over the spatial interval, though this is beyond the scope of the present study. 

It is also important to acknowledge that mounting  sensitive ammonia and methane instruments on 

a sUAS is challenging, but given the recent developments of sensitive lightweight sensors and 
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sUAS sensor deployment, it is reasonable to expect this capability to be more readily available in 

the near future  (McHale et al., 2016; Shadman et al., 2016). While we know of no commercially 

available instruments with the proper measurement specifications in terms of weight and power 

requirement, prototype open-path ammonia (Shadman, 2018) and methane (McHale, 2018) 

sensors with this application in mind have been designed and are presently undergoing testing  on 

a sUAS platform. Furthermore, the development of sensors with sUAS capabilities is a high 

priority for the community (e.g., Khan et al., 2012; Whitehead et al., 2014; Yang et al., 2018). 

Therefore, such measurements may be routinely available within a few years. In this study, we 

have demonstrated an application where sUAS sensors can greatly simplify the determination of a 

difficult-to-measure quantity.  

When using surface-based measurements to constrain dispersion and deposition, many 

studies employ inverse modelling tools to properly account for vertical dispersion effects (e.g., 

(McGinn et al., 2016), which is the source of high bias in our surface-based methods. Inverse 

modelling is a powerful collection of techniques that can be used to deduce information about 

plume dispersion between the point of emission and the point of measurement. However, even 

state-of-the-art inverse modelling tools either fail to represent the real-time plume structure 

adequately under turbulent conditions (e.g., Gaussian or advection-dispersion models) or do not 

account for deposition or bidirectional surface interactions (e.g., backward Lagrangian stochastic 

methods such as WINDTRAX). While it is in principle possible to use a model to correct for the 

surface-bias in our measurement approach, the implementation for a dry-depositing species is 

challenging. The development of inverse modelling techniques to estimate ammonia during 

dispersion is an active area of research and beyond the scope of this study. 
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In this study, we have focused on simulated atmospheric state from northern CO in June, 

2013. While this represents a small fraction of all meteorological conditions that occur adjacent to 

CAFOs, it is not possible to explore all possible atmospheric states downwind of a representative 

number of CAFO locations. In northern CO, ammonia emissions and their impact on CFR air 

quality and NR deposition in the nearby rocky mountain ecosystems is a topic of concern for the 

National Park Service(“High elevations under threat from nitrogen deposition,” 2016). The NR 

deposition is driven primarily by diurnal mountain-valley circulation in the summer and synoptic-

scale systems in the spring. Therefore, we have repeated this study for April 1st, 2013 to verify that 

the approach performs well under another set of atmospheric conditions. The results suggest that 

the total fraction of ammonia recapture is smaller, due to different turbulent structure in the 

atmosphere, and that while the sUAS out-performs the surface vehicle, the difference between the 

two platforms is smaller. The detailed results can be found in Appendix B2. Likewise, we do not 

test the viability of this approach during the night. During stable stratified night time conditions, 

LES models often require extremely high resolution in order to reproduce the low-turbulence 

conditions, making these types of simulations difficult to perform (Zhou and Chow, 2011). 

Likewise, many field measurement techniques for quantifying surface fluxes (e.g., eddy-

covariance and flux-gradient methods) are ineffective at night due to lack of turbulence (Goulden 

et al., 1996; Högström et al., 1989; Wu et al., 2015). The method we propose in this study could 

in principal work at night, as it is based on conservation of mass, rather than assumptions about 

turbulent transport near the surface. However, other practical limitations, such as safely operating 

a fixed-wing sUAS at night, could pose a challenge. Adapting this methodology for night time, 

and testing its accuracy and precision, is an important next step in the development of this 

measurement strategy. 
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3.4 Conclusions 

In this study, we have demonstrated and tested a novel approach for quantifying nearfield 

ammonia deposition adjacent to a CAFO using LES of turbulent dispersion from an area source. 

This method uses the ratio of background-corrected ammonia/methane to simultaneously constrain 

the dispersion, allowing us to construct a mass balance on ammonia as it mixes downwind of the 

source. Neglecting chemical loss of ammonia or uptake by aerosols (Staebler et al., 2009), the 

residual from the mass balance is the deposited quantity of ammonia. In our test simulations, the 

model parameters we selected produced a system where approximately 25% of the total ammonia 

is removed within the first 3 km downwind of the source. Outside of the first 3 km, a relatively 

small fraction of the total deposition occurs as the atmospheric layers near the surface are depleted 

of ammonia; however, given the magnitude of the total ammonia emissions, the subsequent far-

field dry deposition can still constitute a large BAN input to sensitive ecosystems. Furthermore, if 

the emissions enter a precipitating cloud, much of the remaining ammonia can be efficiently 

removed from the atmosphere via wet deposition. While these results from the simulation do not 

correspond to any particular CAFO, a qualitatively similar result has been found in observational 

studies of ammonia deposition adjacent to CAFOs; most of the dry deposition of ammonia occurs 

within a small distance on the order of 2-5 km, and beyond this boundary, the fractional deposited 

mass is much smaller (McGinn et al., 2016; Shen et al., 2018, 2016).  

We tested two mobile measurement strategies, one based on a surface vehicle and one on 

a sUAS, and sampled our model output to produce synthetic observations of ammonia and methane 

downwind of the source; we found that subject to reasonable constraints, we were able to reproduce 

the ammonia deposition results found with the full model output. The surface vehicle result was 

biased high by approximately 40%, as suggested in our use of full SAM output. The sUAS result 
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reproduced the deposited fraction without a systematic bias, which was also suggested by the full-

model results. Because deposition depletes the ammonia from the surface layer in the atmosphere, 

the estimated fraction of ammonia removed is much larger when only considering concentrations 

near the surface; however, our method is based on conservation of mass, so the deposition rate 

must be calculated with respect to the total column loading of ammonia, with methane to control 

for horizontal dispersion. Therefore, the high bias in the deposition rate derived from surface-only 

observations is not surprising. While it is in principle possible to correct for the high bias using 

inverse modelling approaches, such modelling approaches are not straightforward for species that 

undergo dry deposition. In contrast, the sUAS samples enough of the vertical extent of the plume 

that we are able to obtain an estimate for the deposition rate with little or no bias, without using a 

model to correct the results. Next, we performed sensitivity analysis of the measurement platform 

trajectories where we perturbed the measurement positions spatially and temporally. This was 

intended to test the robustness of the method against real-world constraints on vehicle or sUAS 

positions and changing wind directions. While this introduced some variability in the resulting 

deposition calculation, the distributions are centered around the base-case trajectory values, and 

the sUAS trajectory perturbations appeared to have a smaller effect on the results. We believe that 

this measurement principle could be successfully implemented to accurately estimate the nearfield 

ammonia deposition adjacent to a CAFO if simultaneous ammonia and methane measurements on 

a sUAS platform are possible, or that an upper bound could be more easily measured from surface 

vehicles. 

Logistically, we anticipate a few additional challenges to implementing this method in the 

field that our analysis does not explicitly account for: (1) the CAFO emissions need to be 

sufficiently large that variability in the background and the presence of other small sources of 
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ammonia and methane in the region can safely be neglected; (2) the CAFO emissions cannot 

change significantly during the 2-hour measurement time period; (3) the land downwind of the 

CAFO needs to be accessible for observations by either vehicles or sUAS, and operating a sUAS 

on public property or private property without explicit consent from the land owners can be legally 

challenging; this is complicated by changes to the mean wind direction constantly requiring 

relocation of the measurement trajectories; designing methane and ammonia measurements that 

can operate safely on a sUAS platform is a challenging engineering problem. However, we do not 

believe any of these challenges are insurmountable. Large CAFOs that dominate the local 

ammonia and methane emissions exist in many places in the western US and while CAFO 

emissions are a function of atmospheric state as well as management practices and activities, we 

do not expect the emission fluxes to change dramatically over a short sampling time period. 

Furthermore, obtaining permission to make measurements on the adjacent land is a common 

procedure in Earth and environmental science disciplines. Finally, given the advances in optical 

measurements and sUAS technology, we believe that while challenging, such a measurement 

system is possible with today’s technology (McHale et al., 2016; Shadman et al., 2016) and may 

be easy to implement in near future. There are numerous advantages to our recommended approach 

as well: (1) it does not require observations at as fast as required for eddy covariance techniques 

(e.g., 20hz); (2) because we are using real-time measurements, and due to the small number of 

instruments required, a single measurement period can be as short as 45 minutes, allowing for 

rapid deployment and sampling under certain meteorological conditions or certain activities at the 

CAFO; (3) because these measurements are real-time optical measurements of atmospheric mixing 

ratios, there is no need to perform soil or leaf nitrogen measurements in a lab after the fact. 

Therefore, we believe that this measurement approach could be a useful addition to the different 
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ways we measure ammonia deposition. Finally, while we have centered our analysis around 

ammonia deposition near a CAFO, this basic measurement approach can be used to quantify any 

surface flux (deposition or emissions) over a homogeneous source/sink when the depositing 

species is co-emitted with an inert, non-depositing species. 
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CHAPTER 4. USING LOW-COST MEASUREMENT SYSTEMS TO INVESTIGATE AIR 
QUALITY: A CASE STUDY IN PALAPYE, BOTSWANA 

 
 
 

Exposure to particulate air pollution is a major cause of mortality and morbidity worldwide. 

In developing countries, the combustion of solid fuels is widely used as a source of energy, and 

this process can produce exposure to harmful levels of PM2.5. However, as countries develop, solid 

fuel may be replaced by centralized coal combustion, and vehicles burning diesel and gasoline 

may become common, changing the concentration and composition of PM2.5, which ultimately 

changes the health effects. Therefore, there is a continuous need for in-situ monitoring of air 

pollution in developing nations, both to estimate of human exposure and to monitor for changes. 

In this study, we present measurements from a 5 week field experiment in Palapye, 

Botswana. We used a low-cost, highly portable instrument package to measure surface-based 

aerosol optical depth, real-time PM2.5 concentrations using a third-party optical sensor, and time-

integrated PM2.5 concentration and composition by using a cyclone to collect PM2.5 onto Teflon 

filters. Furthermore, we used other low-cost measurements of real-time black carbon and time-

integrated ammonia to help interpret the PM2.5 composition and concentration information we 

obtained. We found that, while the average PM2.5 concentration (9.5 𝜇g m-3) are below the WHO 

annual limit and closely agree with GBD estimates for this region, the accumulation of sulfate and 

carbonaceous aerosol (33% and 27% or total PM2.5 mass respectively) produced moderately 

unhealthy concentrations (14.5 𝜇g m-3) for the first half of our measurement period.  
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4.1 Introduction 

Exposure to particulate air pollution with aerodynamic diameters smaller than 2.5 μm 

(PM2.5) is linked with premature mortality (Dockery et al., 1993) and morbidity (Pope, 2000), and 

is currently one of the most important causes of premature mortality in developing and rapidly 

industrializing nations (Forouzanfar et al., 2015). State-of-the-art methods for quantifying the 

global health burden of air pollution use remote sensing tools and atmospheric chemical transport 

models (CTMs) fused with in situ measurements to produce estimates of pollutant concentrations 

in regions where surface measurements are sparse (e.g. Brauer et al., 2012; van Donkelaar et al., 

2011). There is uncertainty associated with each step in this process that propagate through health-

impact assessments (Ford and Heald, 2016; Kodros et al., 2018). Therefore, despite advancements 

in CTM and remote sensing capabilities, there is a need for in situ measurements to develop 

process-based understanding of the sources and chemical processes that drive local and regional 

scale population exposure to PM2.5. Specifically, estimates of mortality due to air pollution 

exposure in sub-Saharan Africa are large (Kodros et al., 2018), and in situ measurements of air 

pollution are rare. 

Over 40% of the population in sub-saharan African nations uses domestic biomass burning 

for heating and cooking (Bonjour et al., 2013; Forouzanfar et al., 2015). However, estimates of 

emissions from domestic biomass burning vary (Bond et al., 2004; Coffey et al., 2017), leading to 

uncertainty in the representation of these sources in regional and global CTMs, which propagates 

to estimates of disease burden (Kodros et al., 2018). Moreover, as sub-saharan African nations 

undergo economic development, the important regional sources of aerosols will change, as coal 

combustion for electricity production replace domestic solid fuel use, and fossil fuel vehicles 

become more common (Marais et al., 2019). Therefore, many different measurement studies of 
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various air pollutants and precursors will become increasingly important to capture these changes 

in emissions and to reduce uncertainties of population-level exposure. Furthermore, “sub-saharan 

Africa” refers to a large collection of countries with different climate regions and cultures, 

spanning an area three times the size of the United States. While there have been some 

measurements of combustion emissions in some locations in southern Africa, combustion 

emissions vary considerably from one country to the next, and the number and duration of studies 

currently in the literature is inadequate to accurately represent the entire region. 

Botswana is a medium-sized African nation. While sparsely populated, it is experiencing 

population growth and rapid economic development and industrialization (“Statistics Botswana,” 

2017). Consequently, the sources, and therefore the magnitude, composition, exposure, and impact 

of human exposure to PM2.5 is rapidly changing. According to recent global estimates, air pollution 

in Botswana is not currently a major public health concern (Forouzanfar et al., 2015) but may 

become one as economic development progresses (Marais et al., 2019). Additionally, biomass 

burning is widely used in Botswana for cooking and heating, and the use of household solid fuels 

has been directly linked to poor health outcomes in the capital city of Gaborone (Kelly et al., 2015). 

However, Botswana also produces electricity using coal power plants; according to official 

estimates, domestic electrical generating capacity has increased by over 50% in the last three years 

(Statistics Botswana). Coal power plants emit precursors for sulfate and sulfuric acid, and there 

are multiple examples of coal power plant emissions impacting ambient PM2.5 concentrations, 

which in turn affect human health (Dockery et al., 1993).  Furthermore, increases in the size of the 

Botswana automobile fleet, which has more than doubled in size since 2002 (“Transport and 

Infrastructure Report” 2017), can also contribute to PM2.5 exposure. Because of these rapid 

changes, the role PM2.5 plays in public health in Botswana is also likely changing. 
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In situ air quality monitoring traditionally has required expensive instrumentation and 

technical expertise to operate the instruments continuously. The cost of conducting these 

measurements can be prohibitive for many developing nations, and thus datasets to evaluate 

satellite/model estimates of air pollution exposure, such as from the GBD, are often unavailable. 

Therefore, there is a need to develop lower-cost approaches for assessing air pollution. The 

development of low-cost sensors to measure atmospheric pollutants such as PM2.5, ozone, NOx 

(etc… include citations) is an active area of research. Many of these sensors sacrifice accuracy and 

precision in order to reduce manufacturing and operational costs; therefore, they may not be 

suitable for some research questions or in situ monitoring applications (Clements et al., 2017). 

However, lower cost per sensor may allow for the deployment of more sensors, and integration 

with IoT technology may allow for distributed sensor networks, which can open the door for new 

research methodologies (Rai et al., 2017). It is important to understand the technical limitations of 

these instrument platforms, and how the tradeoff in accuracy and precision can impact the types 

of research and monitoring applications that are feasible. Furthermore, there are other practical 

limitations of the use of new sensor platforms in real-world scenarios that are difficult to anticipate 

without pilot-scale studies. Therefore, in addition to sensor validation studies where low-cost 

measurement techniques are compared to established methods or data sources, field measurements 

under many different scenarios, such as deployment in challenging conditions, or with limited 

access to different types of infrastructure, are required to understand the practical limitations, in 

addition to the technical limitations, of this new generation of sensors. 

In June 2018, a collaboration between North Carolina A&T University (NCAT) and 

Botswana International University of Science and Technology (BIUST) was started to establish a 

long-term record of surface-based sunphotometer measurements of aerosol optical depth. During 
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a 5-week visit to establish the measurement protocol, we also deployed a suite of low-cost 

instruments in order to better understand the aerosol concentration and composition in this region 

during the five week measurement period. The primary instrument that we deployed during the 5 

weeks was the Aerosol Mass and Optical Depth (AMOD) device, developed for a Citizen Science 

project (CEAMS) (Ford et al., 2019; Wendt et al., 2019); the AMOD collects PM2.5 mass on a 

teflon filter, while simultaneously conducting a surface-based aerosol optical depth measurement 

and measuring real-time PM1, PM2.5, and PM10 from a third party optical sensor (Plantower PMS 

5003). In addition to the AMOD, we collected time-integrated samples of gas-phase ammonia, as 

well as real-time black carbon concentrations using two low-cost commercial measurements. To 

our knowledge, these are the first measurements of aerosol concentrations and composition in this 

region in Botswana that have been published. In this study, we present the results of the 

measurements and post-measurement analysis. Here we will compare the total measured PM2.5 

concentrations to Global Burden of Disease estimates, as well as present speciated-PM results, put 

the PM measurements in context of AOD measured by the AMOD and satellites, and briefly 

discuss the important sources for PM2.5 in this region. 

 

4.2 Methods. 

4.2.1 Site Description and Important Sources 

The measurements were made on the campus of the Botswana International University of 

Science and Technology (BIUST) located in Palapye, Botswana. Palapye is a village located at 

22.59 °S, 27.12 °E, more than 150 km from the nearest major metropolitan area (Figure 4.1). 

Palapye is located in a semi-arid climate zone characterized by hot and dry weather, with less than 

300 mm of precipitation annually. Our measurements were made between June 19th and July 20th 
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2018, which is in the southern hemisphere winter. Daytime temperatures generally range between 

25 and 30°C, with nighttime lows between 0 and 6°C with little or no cloud cover during our 

measurement period. However, from July 5th - July 10th, the weather was overcast and cool with 

some light precipitation, associated with a synoptic-scale system (“Cold front expected to hit parts 

of SA,” SABC News, 2018; “Giraffe in the snow”, The Guardian 2018). The area surrounding 

Palapye consists of arid shrubland with sandy soils. Blowing and suspended dust from arid soils 

is an important source of coarse-mode particulate matter in this region (Wiston, 2017), though 

traditionally dust is not a major source of PM2.5. Grazing of livestock is a major part of Botswana’s 

economy (Wiston, 2017), and this land is frequently used for cattle grazing as well. Cattle and 

other livestock can be a source of ammonia, which is a precursor for PM2.5 (Eilerman et al., 2016; 

Shonkwiler and Ham, 2018; Yang et al., 2016).  

In addition to these regional sources of aerosol, there are important anthropogenic sources 

as well. Traditionally, developing countries rely on domestic solid-fuel combustion for energy, 

which is an important source of carbonaceous aerosol and is a major health concern (Forouzanfar 

et al., 2015). In Botswana, studies have shown that domestic biomass burning can impact ambient 

air quality in the capital city Gaborone (Jayaratne and Verma, 2001) and has a detectable effect on 

pediatric pneumonia health outcomes (Kelly et al., 2015). While the rest of Botswana also uses 

solid-fuel combustion for energy (Marais and Wiedinmyer, 2016), no measurement studies have 

been performed outside of Gaborone. In addition to domestic biomass burning, Botswana has some 

industrial sources, such as metal processing and coal combustion (Wiston, 2017). A notable 

example near Palapye is the Morupule Power Station, a coal power plant with an adjacent coal 

mine to provide fuel for the power station. The Morupule Power Station has been operational since 

1990 but has undergone a recent expansion to a nominal capacity of 600MW, although it was not 
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operating at 100% capacity during our sampling period. Although it is a functioning power plant, 

it is not listed as operational in emission inventories used in the most-recent modelling study of 

PM2.5 for this region (Marais et al., 2019), so modelling studies will not capture its contributions 

to ambient air quality. Coal power plants are known sources of SO2, which reacts in the atmosphere 

to form sulfate and sulfuric acid, and NOx, which can affect ozone formation and form nitrate and 

nitric acid, but certain emission control technologies may be effective at reducing the emissions 

(Lonsdale et al., 2012). As the capacity of this power station increases and/or control technologies 

are changed, the impact on regional air quality will continue to evolve. 

Figure 4.1: (a) map of BIUST campus relative to the village of Khurumela, the village of Palapye, 
the A1 Highway, and the Morupule power station (mean winds are east-north-easterly). (b) 
photograph of the experimental setup with the CEAMS AMOD on the black tripod, the Radiello 
Passive Ammonia sampler under the bucket and the AethLabs MicroAethalometerTM mounted to 
the wooden electrical pole. 
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In addition to the power plant, Palapye experiences a variety of other potential sources of 

PM2.5. The most recent census estimates indicate that the population of Palapye was 36,000 in 

2011; however, the village is undergoing rapid population growth, and the 2018 population is 

thought to be closer to 80,000. In addition to the establishment of BIUST (target size 6000 students, 

plus employees), Palapye is the site of rapid construction and development, including construction 

of a new commercial district to support the growing population. Additionally, the growing 

automobile fleet, both locally and nationally, are increasing the potential impact of traffic 

emissions on our measurement site. The A1, which is the busiest road in Botswana, travels directly 

through the town center and within 5 km of our measurement site. Vehicles in Botswana 

exclusively use diesel fuel, which can emit more black carbon and organic aerosol precursors than 

other gasoline vehicles (Nelson et al., 2008). Finally, as Palapye grows, heavy construction and 

off-road diesel equipment may be an important source as well. 

Figure 4.1a denotes the location of our sampling site relative to the BIUST campus, the 

villages of Khurumela and Palapye, the Morupule Power Station, and the A1. Outside of the region 

shown on the map, the surrounding area is sparsely populated desert shrubland with light animal 

grazing. In Figure 4.1b, we show our experimental setup with the CEAMS AMOD instrument 

mounted on a tripod (Section 4.2.2), and  the MicroAethelomter (Section 4.2.3) and ammonia 

measurement (Section 4.2.4) secured to the wooden utility pole approximately 1.3m off the ground. 

The measurements are approximately 50m from the nearest structure, as shown in Figure 1B. 

4.2.2 Field Measurements 

To perform many of our measurements, we used the Aerosol Mass and Optical Depth 

(AMOD) measurement system (Wendt et al., 2019), developed with Access Sensor Technologies. 

The AMOD AOD measurement uses 4 photodiodes at 440, 520, 680, and 870nm to measure 
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optical extinction along these wavelengths. The AMOD also uses the same cyclone-filter system 

to collect PM2.5 on teflon filters from the more-widely used UPAS sensor (Volckens et al., 2017) 

to collect samples of PM2.5 for laboratory characterization described below. Finally, the AMOD 

devices include a third-party Plantower PMS5003 sensor, which estimates PM10, PM2.5, and PM1 

concentrations; however, these size bin values are based on a theoretical model rather than 

measurements (Kelly et al., 2017). The Plantower PMS5003 has a resolution of 1 ug/m3, and the 

instrument specifications suggest that it can effectively measure particles with a diameter greater 

than 0.5 um (98% efficiency, only 50% efficiency for 0.3 um), with concentrations in the range of 

0-500ug/m3 (Yong, 2016). However, evaluation studies have suggested that it underpredicts 

particles in the small size bins and overpredicts in the large size bins (e.g., Kelly et al., 2017). Thus, 

we only show PM2.5 measurements here, which previous studies have shown to have good 

correlation with reference monitor methods (e.g., Bulot et al., 2019; Kelly et al., 2017; Sayahi et 

al., 2019; Wendt et al., 2019). Validation of the AMOD system can be found in Wendt et al., 

(2019), and an example of its application for local air quality studies can be found in Ford et al., 

(2019). 

In this study, we used two AMOD devices to perform the measurements, deploying the 

sensors alternately while allowing the other sensor to recharge. Each sensor was deployed for 48 

hours, with the exception of the final two measurements which were 24-hour deployments. Each 

filter collected PM2.5 for the duration of the measurement period, using a 2 litre-per-minute flow 

rate of ambient air. We collected 14 total samples, with an additional 6 filters that were transported 

to the measurement site for use as blanks. The teflon filters were sealed inside plastic containers 

before and after deployment. Filters were weighed pre and post deployment, and were further 

characterized by SootscanTM Black Carbon technique and X-ray fluorescence (XRF) to detect 
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inorganic elements that were present on the filter surface. Additionally, we extracted the filters in 

DI water and used ion chromatography to characterize the concentration of ions, and we used a 

Sievers TOC analyzer to measure the water-soluble organic carbon (WSOC) concentration in the 

filter extract. We used the average concentration of WSOC species and ionic species from the 

blank filters to blank-correct our measurements. 

In addition to the AMOD, we used a microAeth(R) AE51 aethalometer to measure real-time 

black carbon concentrations. We used a 150ml/min flowrate, and a sampling timebase of 5 minutes. 

The AE51 battery life was approximately 18 hours, then it would need 12 hours to recharge before 

being redeployed. The instrument was deployed at variable times during the day, and retrieved the 

following morning, where it was allowed to charge to full battery before redeployment. Therefore, 

the exact time of day of instrument deployment varied.  

To measure the ambient gas-phase NH3, we used RadielloTM passive NH3 adsorption 

cartridges inside diffusive bodies. The cartridges were deployed for 3-4 days, depending on the 

cartridge, and stored in an air-tight glass vial for transport to/from Botswana. The cartridges were 

extracted in DI water, and the NH4
+ ionic concentration was determined using ion chromatography. 

4.2.3 Ancillary and remote observations, and back-trajectory modelling 

In addition to the measurements that we conducted, we made use of other available data. 

BIUST maintains a meteorological instrument station that provides measurements of windspeed, 

wind direction, temperature, relative humidity, and solar flux at hourly resolution. For satellite 

observations, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

aboard the Terra and Aqua polar‐orbiting satellites. The MODIS instrument consists of a 36 

radiometer wavelengths; the AOD product is available twice daily, in mid-morning and early 
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afternoon (~10:30am and 1:30pm local time). In this analysis, we use the Level 2 Dark Target 

retrieval 10km product. 

Finally, we use NOAA HYSPLIT back-trajectory modelling to trace air parcels backwards 

to determine what sources may have impacted these air masses. For the HYSPLIT trajectories, we 

used the Frequency Back trajectory method. We initiated trajectories every 6 hours, starting at 

500m above the surface, for the duration of the field measurement period. We aggregated the 

trajectory frequencies for the first and second halves of the measurement period (June 15-30, and 

July 1-15, respectively). 

 

4.3 Results and Discussion 

4.3.1 PM2.5 concentrations at BIUST 

First, we present the PM2.5 time series from the AMOD devices in Figure 2: the real-time 

Plantower observations are denoted by the points, distinguishing between the two AMOD 

instruments; the filter observations are denoting by the horizontal black lines with the width 

representing the duration of the measurement period (all measurements were for 48 hours except 

Figure 4.2: Time series plot of real-time PM2.5 and filter PM2.5 from the two AMOD instruments, 
with the estimates from the Global Burden of Disease Report (Brauer et al., 2015) and the World 
Health Organization annual standard overlaid. 
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for the last two, which were 24 hour duration). As shown in the timeseries, the Plantower sensor 

on AMOD 2 was offline after the third deployment of that sensor. Additionally, the sensors were 

not deployed during the overcast/raining period from July 5th-July 10th. 

In Figure 2, the filter and Plantower measurements both show that the PM2.5 concentrations 

before (June 18th-July 4th) are generally greater than the concentrations after the overcast period 

(July 10th-20th). The average concentration during the first half of the measurement campaign 

was 14.0 𝜇g m-3, as compared to 6.5 𝜇g m-3 during the second half of the measurement period, 

according to the filter-based measurements. In Figure 2, we have overlaid the World Health 

Organization (WHO) standard for annual average PM2.5 concentrations (10𝜇g m-3) and the Brauer 

et al. (2015) estimates used for the 10 km by 10 km box around our measurement site in the 2015 

GBD report (9.1𝜇g m-3). The actual average concentration during this time period was 9.4𝜇g m-3, 

which is very close to the GBD estimate and below the WHO annual limit. However, given the 

limited duration of our measurements and high variability in the concentrations we observed, it is 

difficult to conclusively determine the actual mean concentration, or whether the “high-

concentration period” or “low-concentration period” is more common in Palapye, or how these 

may vary seasonally. Therefore, we will attempt to use other information to identify the 

mechanism for this variability, in order to extract some more generalizable information about air 

quality in Palapye. In addition to our measurements of mean PM2.5 concentration, we also have 

the characterization of the filters that we collected to provide some information on the PM2.5 

composition. Additionally, we can use the Plantower and MicroAeth observations to learn about 

the daily variability in PM2.5 and black carbon, an important tracer for combustion. We will discuss 

the composition information in Section 4.3.2 and the temporal variability in Section 4.3.3. 
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4.3.2 Filter PM2.5 composition characterization 

In Figure 4.3, we show the breakdown of the filter PM2.5 samples by different 

compositional types: inorganic ionic species, water-soluble organic carbon species (WSOC), and 

black carbon (BC); we plot the residual PM2.5 mass in blue and refer to it as “unspeciated” PM2.5. 

Each filter is blank corrected and plotted where the bar width is reflective of the sample duration 

(as in Figure 4.2). From Figure 4.3, we see that: (i) the most important speciated fraction of the 

PM2.5 mass is inorganic in nature, (ii) the black carbon mass is typical for PM2.5 with some 

combustion influence, but (iii) there is little WSOC (often less than BC) on these filter samples 

and (iv) there remains a significant unspeciated fraction. The two most important aerosol types 

that could constitute the unspeciated fraction are insoluble organic aerosol species or dust. 

However, we do not expect dust to be an important fraction of this unspeciated aerosol mass based 

Figure 4.3: Results of analytical characterization of filters, showing the mass of black carbon 
(black, water-soluble organic aerosol mass (green), inorganic aerosol mass (red), and the 
residual unspeciated aerosol mass (blue). The width of each bar is the duration of the filter 
sample. 
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on the X-ray diffraction results that will be discussed shortly. The presence of BC suggests that 

combustion from either domestic solid fuel use or diesel vehicles is impacting the PM2.5 in this 

region. Given that Palapye is too remote to be significantly influenced by long-range transport of 

urban emissions in general, it is likely that the combustion is generally local. As organic aerosol 

ages, oxidative processes in the atmosphere increase the aerosol O/C ratio (Jimenez et al., 2009); 

this typically increases the solubility of the organic aerosol species in water. Because the 

combustion emissions impacting our measurement site may be local, the chemical compounds may 

have undergone less oxidation and are therefore less soluble in water. 

The most important single constituent of the aerosol by mass is the inorganic ionic fraction 

of the aerosol. The mass concentrations for the common ionic aerosol species from the ion 

chromatography characterization are shown in Figure 4.4. By mass, sulfate is the most abundant 

ionic species in the particle phase, followed by ammonium. Sulfate and sulfuric acid is most 

commonly formed from the oxidation of SO2 by two oxidation pathways: gas-phase oxidation by 

OH radical, and aqueous-phase oxidation inside cloud droplets. These two processes have very 

different timescales associated with them; the gas-phase mechanism has a lifetime of 

approximately 1 week, while the aqueous-phase mechanism is much faster. Given the lack of 

clouds in the region during the first two weeks, the gas-phase mechanism is likely dominant for 

this measurement site during this time period. While the Moropule Power plant is located within 

10 km of the measurement site, and is likely a large regional source of SO2, it is unlikely that the 

oxidation of SO2 is occurring quickly enough to produce lots of sulfate at the measurement site. 

To produce the observed mass of sulfate so close to the source of SO2, either the air in the region 

must have stagnated to prevent ventilation of SO2 emissions, allowing the production of sulfate 

over a period of a few days0. While there is evidence that some stagnation occurred during the 
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first half of the measurement period, the prevailing winds never directed emissions from the 

powerplant to the measurement site. However, another possibility is that the measured sulfate is 

regional background. South Africa generates much more electricity annually than Botswana, 

including electricity that is exported to Botswana and other surrounding nations. Due to South 

Africa’s possession of rich coal deposits, coal-fire power plants are ubiquitous in the north east of 

the country. Therefore, a substantial fraction of the regional sulfate could be advected from the 

east and south. 

The second-most important species in the aerosol phase is NH4
+, followed by sodium, 

chloride, potassium, and other salts that are usually associated with sea salt aerosol or dust. The 

masses of NH4
+ and SO4

2- on each day in Figure 4.4 generally correspond a molar ratio of 2:1, 

meaning SO4
2- is completely or nearly completely neutralized by NH4

+. In addition to the AMOD 

filter analysis, we conducted time-integrated measurements of gas-phase NH3 at 3.5 day resolution. 

However, none of the measurements that we conducted indicated any gas-phase NH3 above the 

limit of detection of 3.6 ppb. It seems unlikely that there was enough total ammonia to nearly 

Figure 4.4: Results of ion chromatography characterization of filter samples. 
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completely neutralize SO4
2- each day, yet gas phase NH3 was never above the 3.6 ppb detection 

limit. We have identified two potential artifacts of the filter analysis that may be a reason for SO4
2- 

but NH3 below its detection limit. (1) The  AMOD filter system has no secondary filter or denuder 

system to account for evaporation of semivolatile species such as ammonium nitrate or semi-

volatile organic aerosol, that may have previously deposited on the filter in the particle 

phase(Hering and Cass, 1999); we see no evidence of nitrate in our filters, but this may be due to 

off-gassing of ammonium nitrate during or after the measurement period. Given that sulfate was 

fully neutralized, it is possible that ammonium nitrate formed if enough nitric acid was present. If 

ammonium nitrate was present and was ammonia limited (e.g. excess nitric acid relative to 

ammonia), ammonia equilibrium vapor pressures could have been orders of magnitude lower than 

the 3.6 ppb ammonia detection limit as verified by E-AIM 

(http://www.aim.env.uea.ac.uk/aim/aim.php; Wexler and Clegg, 2002). The presence of ammonia-

limited ammonium nitrate could explain the neutralized sulfate but ammonia below the detection 

limit throughout the measurement period; however, we do not have nitric acid measurements in 

the region to verify. (2) Ammonium may actually have been too low to neutralize sulfate, which 

would cause ammonia concentrations to be below detection limits, but the filter was exposed to 

ammonia at some point between the measurement period and analysis (potentially due to 

offgassing of ammonia from the 3D-printed AMOD chassis). It is possible that total ammonia 

concentrations in the region are in fact low; while livestock is an important part of the Botswana 

economy (Rennie et al., 1977), and livestock production is a known source of NH3 to the 

environment, the free-range manner in which Botswana cattle are raised are not conducive to the 

massive ammonia emissions observed near more industrialized cattle operations in the United 

State (Shonkwiler and Ham, 2018), Australia (Shen et al., 2016), Canada (Hristov et al., 2011; 
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McGinn et al., 2016) and Europe (Sutton et al., 1998; Webb et al., 2005). In short, due to the low-

cost nature of the measurement system, there are many potential sources of error in the 

measurement of various inorganic semi-volatile aerosol constituents. However, we expect the 

quantification of sulfate and other non-volatile species (e.g. sodium, chloride, potassium) to be 

more robust. 

In addition to the IC analysis, we conducted x-ray diffraction (XRD) analysis of the filters 

to identify the metallic species present on the aerosol; the results of the XRD analysis are shown 

in Figure 4.5. Many of the atomic species detectable by the XRF analysis are also present in ions 

detected by IC. If the IC ions dominate the form of the XRF atom (e.g., low amounts of organic 

sulfur), the XRD and IC analysis may agree. For example, the mass of sulfur atoms obtained via 

XRD agrees well with the mass of ionic sulfate, as determined via the IC. Likewise, there is 

agreement for Cl and Na species from the two methods. However, the XRD also allows us to see 

the quantity of silicon and iron in the aerosol, which are tracers for dust in this region. Based on 

Figure 4.5: X-Ray Fluoresence analysis results from filter samples; colors for important 
chemical elements are colored corresponding to the IC results in Figure 4.4. 
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the results in Figure 4.5, the dust in this region is not important for PM2.5 particles.. However, this 

does not preclude that suspended dust is present in coarse particles, and dust is known to be 

important in this region for visibility (Wiston, 2017). 

4.3.3 Temporal Variability 

In addition to the filter samples, we use the Plantower real-time PM2.5 measurement, along 

with the MicroAeth black carbon measurements to investigate the diurnal variability in aerosol at 

the BIUST measurement site. We plot the Plantower data for the entire time period in Figure 4.6a 

with the black carbon concentrations using a different scale on the second Y axis. In Figure 4.6a, 

we see that the concentrations for total PM2.5 were much higher during the first half of the time 

period, and comparatively lower during the second half, which is corroborated by the filter-based 

measurements as described above. There appears to be a difference in black carbon concentrations, 

but it is much less pronounced than the difference in total PM2.5. We will revisit this difference 

between the first and second halves of the measurement period shortly. 

In Figure 4.6b, we show only the first half of the measurement period, when concentrations 

were elevated. The total PM2.5 concentrations are consistently the highest on the late evening or 

early morning, peaking between 20 and 40 ug m-3 depending on the day. Concentrations are lowest 

during the middle afternoon, typically around 6 ug m-3. Such diurnal cycles in aerosol pollution 

are not uncommon and can be driven by several different mechanisms: (1) diurnal variability in 

the sources of aerosols (e.g. human activity or photo-oxidation), (2) variability in transport (i.e. 

prevailing wind patterns produce effective transport from a point source during certain times of 

day) or (3) changes in boundary layer height impacting dilution of relatively constant local 
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emissions. All three mechanisms are important during the more-polluted first half of our 

measurement period. 

First, human activity has a known diurnal cycle that has been observed to impact air quality 

(McDonald et al., 2018). An important source of PM2.5 in this region is domestic SFU for cooking 

and heating. Most SFU occurs overnight to provide heat during the relatively cold nighttime during 

winter, as well as for cooking, and this was observed during the measurement period. Black carbon, 

which is a tracer for combustion, exhibits the same diurnal variability as the total PM2.5, suggesting 

Figure 4.6: Time series of plantower PM2.5 and black carbon (a) for the entire time period and (b) 
zoomed in on the first half of the time period, where a regular diurnal cycle is present. 
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that domestic SFU is the dominant source of combustion-PM2.5 in this region. The other major 

source of black carbon is from diesel vehicles on the A1 highway. However, if this was the 

dominant source, emissions would peak during times of heavy traffic (the diurnal pattern of traffic 

in Botswana is not trivial to estimate but likely is lowest overnight). This would not necessarily 

lead to highest concentrations in the middle of the day, due to differences in boundary layer height 

and transport; however, the peak in concentrations we observed was well after the vehicle traffic 

slows down for the night, supporting the hypothesis that SFU is the dominant combustion-aerosol 

source for this site. 

Due to the spatial arrangement of anthropogenic sources of PM2.5 relative to our 

measurement position, wind direction is likely important for PM2.5 concentration. In Figure 4.7, 

we plot hourly wind measurements from the BIUST campus weather station  with temporal subsets 

as follows: (a) contains the windrose for the entire time period, (b) contains the daytime (7am-

7pm) observations during the first half of the measurement campaign, (c) contains the nighttime 

measurements (7pm-7am) from the first half of the campaign, and (d) and (e) contain the daytime 

and nighttime measurements from the second half of the measurement period respectively. 

Throughout the measurement period, the dominant wind direction is from the northeast, and east 

northeast. Wind speeds are typically higher during the day, and in Figure 4.7c (first half, nighttime), 

there are a larger number of hours with southwesterly winds, though most of these measurements 

are associated with low wind speeds (i.e. stagnant conditions). The wind direction does not appear 

to follow a diurnal cycle. The closest potentially important point source near the measurement site 

is the coal power station located to the west-northwest as a source of sulfate for the region. The 

wind data show that during this observation period, the wind would have rarely transported power 

plant emissions to our measurement site. Given the relatively slow rate by which SO2 is converted 
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to sulfate in the atmosphere (in the absence of clouds), sulfate is typically a regional-scale pollutant, 

and does not typically exhibit diurnal variability. Differences in wind behavior do impact sulfate 

concentrations in this study on longer timescales. 

Finally, the diurnal cycle in boundary layer height is likely a key driver in PM2.5 and black 

carbon concentrations at the surface. Due to the warm days with high insolation, the high sensible 

heat flux from the surface can produce a high boundary layer; likewise, rapid radiative cooling due 

to the lack of water vapor in the atmosphere can produce cold temperatures and a much shallower 

boundary layer overnight. The change in boundary layer height impacts the effective volume of 

air that emissions are diluted into, and for an unchanging emission rate, concentrations increase 

Figure 4.7: Windroses: (a) total time period; (b) first half, day; (c) first half, night; (d) second half 
day; (e) second half, night. 
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for a shallow boundary layer. The boundary layer height typically maximizes mid-afternoon when 

the sensible heat flux is highest, and minimizes at sunrise when the surface radiative cooling is 

fastest. The maximum and minimum PM2.5 concentrations occur early relative to the expected 

maxima and minima of the boundary layer height, suggesting that there are other factors (such as 

timing of human behavior and the associated emissions) modulating the effect of boundary layer 

height. With measurements of boundary layer height, we could constrain the emission flux and 

timing, which would help to better account for the role local combustion sources are impacting the 

PM2.5 concentration as opposed to advection of regional-scale emissions or upwind point sources. 

Because boundary layer height depends on surface fluxes as well as larger-scale meteorological 

conditions, it can be challenging to accurately estimate. 

In addition to the diurnal cycle in PM2.5 concentrations, there is a big difference in 

concentrations between the first and second half of the time period. Concentrations are much larger 

during the first half of the time period (two-week average concentration of 14.0 𝜇g m-3) as 

compared to the second (two-week average concentration 6.5 𝜇g m-3). From Figure 4.3, we see 

that there is no obvious change in aerosol composition during the two time periods. In Figure 4.6a, 

we see that despite the lower concentrations, there is still a diurnal profile associated with black 

carbon, but the daytime concentrations are close to zero and the overnight concentrations are much 

lower than during the first half of the measurement period. There was no decrease in overnight 

temperatures, during the second half of the time period, and consequently there is no reason to 

believe that there was a systematic change in residential SFU use during this time period. 

Furthermore, there were no obvious changes in vehicle traffic or on-campus construction activity 

near the measurement site between the two time periods, though there is no information to 

thoroughly test this hypothesis. This suggests that the primary driver behind the concentration 
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differences are related to transport patterns and ventilation of emissions away from our 

measurement location associated with the synoptic or local-scale meteorological conditions. In 

Figure 4.7d-e, we show that the second half of the time period was associated with faster wind 

speeds with more of an easterly contribution; this difference is especially pronounced during night. 

The differences in wind speed and direction may account for some of the differences between the 

two time periods; faster winds overnight prevented nighttime concentrations from building up in 

the second half of the time period, causing a decrease in the 48-hour average PM2.5 concentration. 

During the first half of the time period, nighttime winds were occasionally weak and from the 

southwest; this diurnal wind behavior could help explain the nighttime increases in PM2.5 seen 

during the first half of the time period. Conversely, the second half time period has winds almost 

uniformly from the east, even at night. East of the measurement site is sparsely populated desert 

vegetation with no obvious local sources of PM2.5. 

During the period between July 3rd and July 8th during the second half, much of southern 

Africa experienced cold temperatures and anomalous precipitation due to synoptic weather activity 

(“Cold front expected to hit parts of SA,” 2018; staff, 2018); it is possible that during the first half 

of the measurement period. regional stagnation allowed local pollution to build up in Palapye. The 

Figure 4.8: HYSPLIT back-trajectories for (a) the first half of the measurement period and (b) the 
second half of the measurement period (note that (b) spans a much larger area) 
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cold front passage removed pollution by precipitation and allowed cleaner air to mix into this 

region. In Figure 4.8, we plot 24-hour HYSPLIT back-trajectories for the two time-periods (8a 

shows the first half of the measurement period, 8b shows the second half, note the different spatial 

scales of the two figures). In Figure 4.8a, we see that most of the trajectories originate in a very 

comparatively small spatial area, while in Figure 4.8b, many of the trajectories originate as far 

away as South Africa. While the trajectories tend to originate to the east of the measurement site 

in both cases, the trajectories travel over twice as far in 24 hours during the second half. This faster 

moving air more effectively dilutes emissions. 

Finally, we will discuss the AOD measurement results. In Figure 4.9, we show the AMOD 

AOD observations during our measurement period plotted alongside MODIS observations 

interpolated to our measurement site, as well as an average of both overpasses over all pixels within 

100 km of the measurement site (labelled as “smoothed” in the figure legend), composited 

according to the methodology in Lassman et al., (2017). First, the AOD observations from all 

platforms are low relative to a more polluted parts of the world, with the highest AODs in this 

period being less than 0.3. The AMOD AOD generally higher than MODIS during the entire 

measurement period. There are two likely explanations for this: first, AMOD measurements were 

not performed exactly at the Terra or Aqua overpass times, so the difference may be due to 

temporal offset between the measurement times; second, the MODIS AOD product has not been 

thoroughly evaluated for this part of the world. The MODIS AOD retrieval can produce inaccurate 

results over certain surface types, such as highly reflective desert surfaces. The MODIS AOD 

product uses surface-based AOD measurements, such as the AERONET network to calibrate the 

AOD retrieval in different locations with varying surface properties, and for different atmospheric 

conditions. However, there are few AERONET observations in southern Africa; only two sites 
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have data available with a data record longer than two years, and both of these sites are over 600 

km away on different land surface types. Therefore, MODIS retrievals for this region may be 

biased low relative to the true atmospheric loading of aerosols. While the AMOD has been shown 

to accurately compare to MODIS and AERONET data, there are several reasons the AMOD may 

be biased high, including calibration errors. Longer term measurements and intercomparisons to 

other sun photometers will help to explain the discrepency between the AMOD and MODIS AOD 

retrievals. The primary purpose of this field experiment was to establish a long-term data record 

of surface-based AOD using a different low-cost sun photometer design, data from which will be 

included in a subsequent study; these data will present a good opportunity to evaluate the AMOD 

AOD measurements against another low-cost surface-based technique. 

Despite the difference in absolute magnitude for the AOD measurements, the AMOD AOD 

and MODIS AOD both show the same qualitative result; the AOD is elevated during the first half 

of the measurement period relative to the second half, which is consistent with the elevated surface 

concentrations of PM2.5 during this period. However, the single-point MODIS observations exhibit 

a fair amount of day-to-day variability which is unsurprising, given the signal-to-noise ratio 

inherent to values for AOD around 0.1 over land. In addition to the single-location MODIS AOD, 

we overlay the average MODIS AOD over a larger spatial area, including all observations in a 50 

km radius. In addition to being smoother, the spatial averaging shows a more pronounced increase 

in AOD during the first half of the measurement period. The spatial averaging helps to reduce the 

noise in the AOD retrieval, but if the increase in PM2.5 were local to Palapye, then it would also 

wash out the local increases in PM2.5. This is not what is observed, as the spatially smoothed 

MODIS AOD retrieval shows a elevated AOD during the period of elevated surface concentrations. 

Taken together with the results from the HYSPLIT back-trajectories shown in Figure 4.8, this 
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suggests that the increase in PM2.5 is larger in scale than a local change in emissions near our 

measurement site in Palapye. Our hypothesis is that this difference between the first and second 

halves was due to a regional-scale stagnation event during the first half, which was ultimately 

abated by the passage of a cold front during the first week of July. 

 

 

4.4 Conclusions 

In this study, we share results from a serendipitous measurement campaign coinciding with 

an NSF-IRES field research study at BIUST in Palapye, Botswana. We used low-cost AMOD 

measurement systems that are capable of collecting PM2.5 samples on teflon filters, along with 

surface-based AOD, and real-time PM2.5 concentrations, all in a portable, low-cost system. In 

addition, we used Radiello passive NH3 gas-phase measurements with time-integrated 

Figure 4.9: MODIS AOD retrieval from Terra (blue) and Aqua (orange) overpasses for Palapye 
(points) as well as the surrounding 100km average (black), with AMOD AOD overlaid (green 
crosses). The shaded gray area refers to the duration of the measurement campaign. 
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observations over 3.5 days, and a MicroAeth Aethelometer to measure real-time black carbon 

concentrations. Using these three low-cost instruments for a measurement period of 5 weeks, we 

were able to make some observations about the concentration and composition of PM2.5 on the 

BIUST campus. According to the more robust filter-based observations, the average PM2.5 

concentrations during our measurement period were 9.4𝜇g m-3, which is less than the WHO-

recommended annual limit of 10𝜇g m-3 and very close to estimate derived from satellite and model 

data used by the GBD of 9.1𝜇g m-3 (Brauer et al., 2015). From chemical analysis of the filters, we 

found that the most important constituent of the particle phase is the inorganic aerosol, which is 

composed mostly of ammonium sulfate (35% by mass, on average). Potential artifacts in the filters 

limit our knowledge of ammonium and nitrate. The importance of sulfate is not a surprise, given 

the number of large coal power plants upwind of the site. The proximity to a coal power plant, and 

the fact that coal power plants can be important sources of sulfate aerosol to the atmosphere. In 

addition to inorganic sulfate, a sizeable fraction of the aerosol is composed of carbonaceous species, 

such as water-soluble organic carbon (12% by mass on average) or black carbon (18% by mass on 

average); this is also unsurprising, given the prevalence of solid fuel combustion in this region and 

a nearby major highway. We also determined that dust was not a major component of the PM2.5 

mixture. Finally, an ~35% of the aerosol mass on average was not speciated by any of our 

analytical techniques. By elimination, we believe that an important fraction of this is likely 

insoluble organic aerosol; solid-fuel combustion is a source of carbonaceous aerosol, but usually 

requires time in the atmosphere to age and become soluble in water. Because our extraction of the 

AMOD filters used water as a solvent, we are unable to test for the presence of insoluble 

carbonaceous compounds; this is a major shortcoming of our experimental approach. 
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In addition to the time-integrated filters, we also were able to obtain real-time 

measurements of PM2.5 from the AMOD Planttower sensors and black carbon from the Aethlabs 

MicroAeth. Both of these measurement principles require assumptions about the optical properties, 

morphology, and size of the respective particles/substances that are being measured, and so these 

may not produce unbiased measurements of concentration, for either BC or PM2.5. However, when 

properly interpreted, such measurements provide us with qualitative information about the diurnal 

variability in BC and PM2.5. From these measurements, we see that the BC and PM2.5 are correlated 

on the diurnal timescale, and that both species exhibit similar diurnal cycles with concentrations 

maximizing overnight. Based on our observations, our analysis of wind speed and direction 

measurements from the BIUST campus, and the types of sources that are present, we attribute the 

diurnal cycle in BC and PM2.5 to residential SFU for cooking and heating and changes in boundary 

layer height likely play a role as well. 

Next, we compared the AMOD AOD measurements with MODIS AOD retrievals. The 

primary purpose of the study was to establish a longer-term data record of surface-based AOD 

measurements using a different low-cost design. Those measurements will be shared in the future 

and are beyond the scope of this 5-week case study. However, they reflect the need for surface-

based AOD measurements to help calibrate the MODIS and other satellite-based AOD retrievals 

while accounting for local differences in surface reflectance. Finally, it is important to accept the 

limitations of our measurements. The measurements were performed using low-cost instruments, 

and the data record is short. However, given the lack of available data for this region, we 

demonstrated how such low-cost measurement campaigns can be used to advance our knowledge 

of the type, and severity, of aerosol pollution and sources in a region where no other measurement 

data are available 
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CHAPTER 5. CONCLUSIONS 
 
 
 

5.1 Summary of Chapter 2 

 

In Chapter 1, I coupled OpenFOAM, an open source CFD model in a RANS configuration, 

to MODDAS, a Lagrangian Stochastic canopy model that includes a multi-level ammonia 

bidirectional exchange parameterization. In addition to porting MODDAS to a UNIX environment, 

I updated the model to facilitate running it in a high-performance computing environment. I then 

used the coupled model framework to simulate ammonia dispersion from a CAFO under neutral 

atmospheric conditions, and I calculated the ammonia dry deposition near the CAFO using the 

bidirectional flux model. 

I found that the ammonia dry deposition varies depending on the land surface type. While 

bare soil absorbs very little ammonia, deciduous and coniferous forests removed 50% and 40% of 

the total CAFO ammonia emissions over 1500 m downwind, respectively. A maize crop, which is 

frequently grown near CAFOs to provide locally grown feed for the animals, can recapture 

approximately 30%, while unmanaged grassland recaptures approximately 10%. However, there 

are few studies to compare these results to. Two studies (Shen et al., 2016; 2018) conducted 

measurements downwind of a CAFO in Australia and found similar concentrations and deposition 

rates of ammonia as were estimated by OpenFOAM-MODDAS over a grassland surface. However, 

they also observed changes in grass and herbaceous cover near the CAFO boundary (ammonia 

deposition is known to affect soil pH, NR concentration, and other biological processes in soil and 

plant canopies). To understand the importance of this on ammonia deposition, I performed 

simulations while varying the ammonia emission potential parameter over maize to quantify the 

effect of this parameter on ammonia recapture. Under cold and humid conditions, the emission 
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potential has little or no effect on ammonia deposition. However, under hot dry conditions, the 

emission potential has a big impact on the ammonia recapture percentage. In real plant canopies, 

the emission potential increases as a result of NR input; therefore, there is likely a saturation effect 

on plant canopies near CAFOs and their ability to absorb ammonia from the atmosphere.  

 

5.2 Summary of Chapter 3 

 

Next, I used SAM, a LES model, to simulate dispersion downwind of a CAFO of two tracer 

species (ammonia and methane) to investigate a novel method for measuring ammonia deposition. 

Unlike OpenFOAM in RANS configuration used in Chapter 1, SAM is turbulence-resolving 4-D 

atmospheric model driven by reanalysis boundary conditions and latent and sensible heat flux. One 

of the tracers was implemented with a first-order loss process at the model surface, representing 

ammonia undergoing dry deposition; the other tracer is chemically inert, representing methane. 

While I demonstrated in Chapter 1 that the dry deposition of ammonia is a complicated 

bidirectional process that depends on many environmental conditions, we do not need to model 

this bidirectional complexity in order to produce “realistic” conditions of turbulent dispersion 

downwind of an idealized CAFO; therefore, I made the simplifying assumption of a constant 

deposition velocity. 

By analyzing the change in ammonia:methane concentration ratio in the atmosphere, I 

demonstrate that we can use conservation of mass to calculate the relative fraction of ammonia 

that undergoes dry deposition. However, by only including the ratio change at the surface, the 

method is inherently biased high, and overestimates ammonia deposition. It is necessary to account 

for the vertical gradient in the ammonia: methane concentration ratio. Finally I produced synthetic 

measurements by sampling the SAM output from simulated instruments mounted from a vehicle 
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and sUAS. Even complying with FAA regulations for recreational sUAS operation, which limits 

flight altitude, we are able to quantify the ammonia deposition with a relatively small amount of 

bias. While ammonia and methane instruments that can fly on sUAS are still in early development, 

this promises to be a relatively inexpensive approach for quantifying ammonia deposition near 

CAFOs. 

 

5.3 Summary of Chapter 4 

 

In Chapter 3, I showed results from a measurement study in Palapye, Botswana. Like the 

Colorado Front Range, Botswana is an arid grassland climate where beef production is an 

important economic activity outside of the major urban areas. However, Botswana is a developing 

nation with a much sparser population, and therefore the air quality is likely governed by different 

types of sources, and different agricultural and livestock practices.. In Chapter 3, I showed that 

based on 5 weeks of measurements, PM2.5 does not exceed the WHO guidelines and is well 

represented by the Global Burden of Disease study (GBD) estimates of PM2.5 in the region. The 

PM2.5 is mostly composed of WSOC, ammonium sulfate, and unspeciated material that is likely to 

be insoluble organic carbon. This suggests that combustion, such as domestic solid fuel use or 

diesel combustion are important sources in Palapye, while regional sulfate is another important 

contributor to total PM2.5 mass. The concentrations were comparatively higher during the first half 

of the measurement period, likely due to a regional stagnation event. The real-time PM2.5 and black 

carbon concentrations were highly correlated with a strong diurnal cycle, suggesting that boundary 

layer depth and diurnal cycles in human activity (i.e., burning solid fuel for heating during the cool 

night) are the main drivers in day-to-day variability in PM2.5 concentrations. However, longer-term 

studies with more-sophisticated instrument packages, such as a denuder system that can fully 
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account for ammonium nitrate volatilization from filters, are required to comprehensively assess 

the longer-term PM2.5 trends and behavior, as well as the corresponding public health burden from 

exposure to air pollution. 

 

5.4 Synthesis and Future Work 

 
One of the major conclusions from Chapter 1 was that the ammonia emission potential (𝛤) 

is a crucial model parameter, to which the ammonia recapture fraction is potentially very sensitive. 

The degree to which this parameter saturates is a key constraint on the capacity of a plant canopy 

to recapture CAFO ammonia emissions. One study (Shen et al., 2018) measured changes in total 

plant nitrogen closer to the CAFO boundary and also observed changes in the total plant cover as 

well as the relative abundance of herbaceous vs grass land cover. The findings of Shen et al. (2018) 

are evidence that the plant canopy does respond to excessive inputs of ammonia, and the increases 

in plant nitrogen suggest that the emission potential does increase. However, beyond constraining 

bidirectional flux model parameters for this specific scenario, such measurements would help to 

provide insights on how massive fluxes of ammonia can impact the soil pH and microbial 

processes, and whether this may affect N2O emissions as well. This process can be explored 

mechanistically by coupling OpenFOAM-MODDAS to a plant/soil model to understand how the 

dynamics of this entire system respond to ammonia input. Alternatively, this could be explored 

with the existing analytical tools introduced in Chapter 1 as well; by subdividing the deposition 

domain into segments and separately modelling 𝛤 in response to the calculated ammonia input. By 

iterating over this procedure and tuning the 𝛤 values in each segment of the model domain, these 

methods could be used to calculate a refined estimate of the ammonia atmospheric concentration 

and deposition flux at various distances downwind of the CAFO while taking into account canopy 
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saturation due to 𝛤 increases. However, such a model would still require additional measurements 

to validate its performance. 

While I cited several studies that quantify ammonia concentration changes (e.g., Hacker et 

al., 2016; Miller et al., 2015; Staebler et al., 2009 as a non-exhaustive list), comparatively fewer 

studies attempted to quantify deposition at various distances downwind; such studies (McGinn et 

al., 2016; Shen et al., 2018, 2016) have all relied on labor-intensive chemical analysis of soil and 

plant material, labor-intensive denuder extractions, and dry-deposition models with uncertain 

parameters. While these approaches are important for estimating deposition, their real strength is 

the ability to simultaneously tease apart the bidirectional flux model by measuring individual 

parameters. However, these studies are too labor-intensive to monitor deposition across multiple 

seasons, meteorological conditions, or time-varying activities on an individual CAFO site, or 

across multiple CAFO sites with differing surrounding ecosystems. The methodology that I 

describe in Chapter 2 offers a good alternative. While the initial capital investment of the 

measurement system is high (ammonia and methane analyzers, mobile laboratory and/or sUAS) 

and may require a high degree of technical proficiency to operate, the method can be rapidly 

deployed and only requires a few hours of sampling to conduct the experiment, and pre-developed 

software to interpret the data. It is true that the technology to build ammonia and methane analyzers 

that can fly on a sUAS is experimental at this time, but I expect this approach to become 

significantly easier and less expensive to implement than chemical characterization of soil and 

plant samples in the future. Therefore, it is important that the community adopt this approach. One 

related approach is using larger aircraft to perform the sampling. There are challenges associated 

with using a larger aircraft for this measurement approach including the following: (1) higher 

minimum flight height, (2) more restrictions on where the pilot can safely position the plane, (3) 
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faster speeds complicating the precision of the sampling. However, there are numerous advantages 

as well: (1) a more sophisticated instrument payload can quantify other processes, such as 

NH3/NH4
+ partitioning; tracers for contaminating sources, such as ethane can be measured; (2) 

detection of N2O emission from soils can be estimated; (3) the greater range and flight time allows 

for longer measurement flights or sampling a larger number of CAFOs in a single experiment. 

Campaigns using large aircraft are more resource-intensive, so this approach would not be a good 

fit for routine ambient monitoring, but could be very useful for targeted studies of certain sources, 

or as a proof-of-concept to refine the techniques described in Chapter 2. Additionally, large-aircraft 

studies allow the study of the NH3/CH4 ratio on larger spatial scales than individual CAFOs. 

In parallel to refined measurements of ammonia deposition near these sources, advances in 

modelling capabilities are essential in order to apply the approaches outlined in this dissertation to 

more realistic scenarios. In Chapter 1, with the exception of one sensitivity analysis, the results 

hold only for neutral conditions. Generalizing these techniques to other stability profiles would 

allow the simulation of a broader class of conditions. In principle, simulating all atmospheric 

stabilities is a logical next step; OpenFOAM can be run in a LES configuration, and there are 

examples in the literature of representing maize and other plant canopies in LES models. 

OpenFOAM is an open-source platform that is undergoing continued development, and it also 

features external modules that simplify the addition of new physics to the model. While LES 

simulations are more computationally expensive than K-epsilon, and the canopy representations 

are more complex in LES, simulating LES flow in and around different plant canopies is a very 

achievable goal with the current state of physical understanding, model development, and available 

computing resources. By investigating the ammonia recapture fraction under a wider range of 

stability conditions, we can more rigorously assess the effectiveness of different land surface types, 



160 
 

as well as shelter belt features, given the strong effect stability can have on boundary layer 

dispersion. 

Beyond gaining a physical understanding of ammonia deposition and recapture, a more 

complete modelling tool could eventually be used to design CAFO layouts and test ammonia 

sequestration strategies that are tuned to individual CAFO sites. This type of modelling framework 

would require 3-D simulations with historical climate data for wind speed, wind direction, stability, 

temperature, and RH. All of these environmental variables are generally available from 

meteorological monitoring sites (e.g., CoAgMet for Colorado) or reanalysis. Furthermore, the 

seasonal behavior of plant canopies would need to be represented in both the CFD model as well 

as in the MODDAS, though this is in principle possible. However, for this application, the coupled 

CFD-dispersion-bidirectional flux models would need to be run in three spatial dimensions over a 

wide range of environmental conditions. With respect to the OpenFOAM simulations, it is feasible 

to extend to three spatial dimensions. The largest barrier would be computing resources available 

to run the model for this wide range of conditions. There are also some broader concerns about the 

performance of LES simulations in the nocturnal atmospheric boundary layer, given the stable 

conditions that usually arise. Extending MODDAS to three spatial dimensions would be more 

complex; while the Lagrangian Stochastic model could in theory be performed in three dimensions, 

it would require an order of magnitude more trajectories to generate the proper statistics for the 

dispersion. While this could be accomplished by parallelizing MODDAS to allow for distribution 

of trajectories across a larger number of processors, this parallelization would require some 

modification of the model, including file I/O; however, I argue that these modifications are likely 

a good next step for developing this model to perform well in a broader range of ammodial-

deposition circumstances in a high-performance computing environment. The more challenging 
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step is the inversion of the dispersion matrix, which is a necessary step for the bidirectional flux 

calculation. In three spatial dimensions, the dispersion matrix will become extremely large. Even 

in the 2-D implementation of MODDAS, the dispersion matrix was on the order of 12gb for the 

largest domains, and in three dimensions, this may increase the size by 4 orders of magnitude. 

While there are computational techniques, including pre-built libraries for solving sparse matrix 

inversion problems in a parallel high-performance computing environment, or porting the code to 

a GPU environment, the sheer size of this matrix inversion problem could make these simulations 

impractical to perform in a research or design context. This has the potential to be a challenging 

numerical problem to overcome. 

Another key finding from both Chapters 1 and 2 is that while concentrations may be 

elevated over long distance from the CAFO, the deposition flux quickly decreases to close to 

background value at distances longer than 5-10 km from the source. While this work has focused 

on constraining the local ammonia deposition, an important next step is using these results to more-

narrowly constrain the impact of CAFOs at broader spatial scales, such as 20-50 km from the 

source, or even on regional air quality. The role ammonia plays in air pollution, and the lifetime 

of ammonia in the atmosphere, are both strongly impacted by the presence of atmospheric acids 

for the ammonia to neutralize, or the cloud water for ammonia to dissolve in, which are processes 

that are represented in chemical transport models, but I have neglected in this dissertation. 

However, there are additional processes, such as in-canopy or soil chemical processing of 

ammonia, that need to be pursued as areas of fundamental research in order to develop a fully 

processed-based understanding of ammonia’s role in the nitrogen cycle. While CAFO methane 

emissions are already actively studied because of their role in climate change, understanding N2O 

production from soils next to CAFOs may further link these types of agricultural practices to 
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climate change, and advance the conversation of whether these types of agricultural practices are 

indeed sustainable in the changing climate. 

Finally, there are interesting comparisons to be made between the Colorado Front Range, 

and similar regions with highly industrialized agricultural systems, with developing countries like 

Botswana. Botswana does have a large cattle population in a hot and dry climate, but ammonia 

does not seem to be an important pollutant in the region where I made measurements. In the US, 

we have prioritized cleaning up emissions from coal power plants and combustion sources, which 

has led to decreases in ambient PM2.5 concentrations; consequently, the United States is moving 

more towards fully-neutralized aerosol. Botswana has a large contribution of sulfuric acid to its 

regional aerosol; as it, and its neighboring countries experiencing rapid economic growth, 

combustion and sulfate emissions are likely to increase, which is well-correlated with fossil fuel 

combustions (Galeotti, 2003). However, as these economies manage emissions from these other 

sources, Botswana will likely experience similar changes to its source characteristics as we have 

observed in the US. One key unknown is the future of agriculture in Botswana; will developing 

countries adopt a industrial-agriculture approach similar to the CAFOs in the US, or will they 

develop more sustainable practices for beef production? This is a complicated interdisciplinary 

question linking economics and development, atmospheric science and chemistry, climate change, 

and human behavior, and is beyond the scope of this dissertation. 
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APPENDIX A. OTHER OPENFOAM-MODDAS MODEL INPUTS 
 
 
 

This section contains some additional values used as inputs to run MODDAS, as well as to 

test the sensitvity to parameters. Figure A.1 shows the leaf area density profiles used to model the 

drag as well as to determine the resistances in the bidirectional flux model. The CAFO LAD profile 

was only used only to represent turbulence in the OpenFOAM simulations, and does not undergo 

bidirectional flux in MODDAS. 

Figure A.1: Leaf area density profiles for the different plant canopies (plus the 
representation of the CAFO surface)  
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In Table A.1, I list the different values used for ammonia emission potential in the maize 

canopy for the sensitivity simulations, along with the ammonia recapture percentage for the base-

case and hot-dry simulation scenarios. Γs has little-to-no effect on the recapture fraction in cold 

humid conditions, but can have a big effect under hot dry conditions. The complete results can be 

found in Chapter 2.3.3 and the analysis and discussion can be found in Chapter 2.4.2. 

 

Table A.1: Different values for Γs used in the sensitivty simulations, and the associated ammonia 
recapture fractions for base-case conditions (T = 8 degrees C, RH = 75%) and for the hot-dry case 
(T = 26 degrees C, RH = 30%). 
 

Γs Value Recapture (base case) Recapture (hot and dry) 

Γ1 1186 33.9% 30.8% 

Γ2 4744 33.8% 28.0% 

Γ3 9488 33.3% 24.2% 

Γ4 14232 33.3% 20.5% 

Γ5 18976 32.6% 16.9% 

Γ6 23720 32.2% 12.8% 

Γ7 28464 31.9% 9.1% 

Γ8 33208 31.4% 5.6% 
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APPENDIX B. SUPPLEMENTAL MATERIAL FROM CHAPTER 3 
 

 
 
 This appendix contains supplemental material from Chapter 3, which is currently 

undergoing peer review. Appendix B.1 contains a comparison between SAM simulations and some 

surface observations of meteorological data and ammonia measurements next to a CAFO. 

 

B.1 Comparison of SAM Simulations to Observations 

 
Below, we present our comparison between SAM simulations and surface observations. 

Figure B.1 compares a few meteorological variables to observations taken from the CoAgMet 

Figure B.1: Comparison of SAM meteorological variables (blue) with CoAgMet measurements 
for the dates simulated. CoAgMet site FTC01 met variables are compared to SAM domain average 
variables over 28 hour simulation from top to bottom: windspeed, wind direction standard 
deviation, T, and RH.  
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network, site FTC01, which is located near our simulation location on the same days. The 

CoAgMet data is plotted at hourly intervals, and the SAM output is averaged over the model 

domain and plotted at hourly intervals. The model reproduces the wind speed, T, and RH during 

the time period reasonably well; the wind speed follows more of a diurnal cycle, but the magnitude 

and general trends of wind speed throughout the day. When running SAM, the model domain is 

rotated so that the mean wind always blows in the positive x direction, so there are no mean 

changes in wind direction, which may complicated the wind direction comparison. However, we 

think that this comparison reflects well on SAM to produce realistic turbulent conditions. 

In Figure B.2, we compare the fenceline ammonia concentrations to an observational 

dataset. The data shown here are from the field study Shonkwiler et al., (2017), which measured 

fenceline ammonia concentrations from a medium-sized CAFO in northern CO. While we use the 

emission fluxes that are reported in that study, and the CAFO is approximately the same size, there 

are a number of factors that differ between the real ammonia concentrations and our simulations: 

(1) the measurements were taken in a different location with different meteorology, surface 

roughness, sensible/latent heat flux, and boundary condition wind profiles; (2) the real-life CAFO 

likely is not perfectly square-shaped; (3) the CAFO buildings and fences and cattle are not present 

in the SAM simulation and wake effects could redirect the flow; (4) the emissions at the real CAFO 

are dynamic functions of environmental conditions such as wind and T. Based on these differences, 

we do not expect SAM to exactly reproduce the measurements. Rather, we have selected 4 days 

(of approximately 4 months of measurements) where the measured concentrations appear to be 

well-represented by the simulations. On many days not plotted here, the measurements showed 

very low NH3 concentrations, due to the monitoring site being positioned upwind of the CAFO. 

Furthermore, the ammonia obs are only available at 15 minute temporal resolution. However, on 



169 
 

days with winds blowing in directions represented by our simulations, and given similar emissions 

fluxes and source sizes, the concentrations qualitatively appear to be reasonable, given the 

numerous simplification/approximations required to run an LES model such as SAM. 

Both for the comparison of meteorological variables and for the ammonia comparison, we 

had to rely on measurements and data that are published and available or that we could obtain 

through collaborators, as we did not have the budget or time to conduct a measurement experiment. 

Both comparisons indicate that based on the available information, SAM simulations are 

producing turbulence that is realistic, and the idealized CAFO representation is producing 

atmospheric loading that reflects real life behavior. 

 

 

 

 

Figure B.2: Comparison of SAM NH3 concentrations with Picarro measurements from a CAFO 
fenceline in northern Colorado. 
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B.2 SAM Simulations from April 

 
In this section, we share figures analogous to Figure 2-4 in the main manuscript, but for 

simulations performed during the springtime (April 1-3, 2013). These figures are included to 

demonstrate that the methodology can work in other times of year with different environmental 

conditions. The days we selected were sunny with no precipitation, or frontal passage occurring. 

The discussion of these figures is analogous to that for the June simulations, which is contained in 

Chapter 3, sections .3.1-3.3.2. The main difference with April atmospheric conditions is that there 

appears to be more vertical mixing, and slightly less deposition (18%) as compared to June (20%). 

Figure B.3: The instantaneous and steady-state plume behavior from SAM simulation output. 
Analogous to main-text Figure 3.2, the instantaneous and steady-state plume behavior from 
SAM simulation output for April simulations. The top row shows domain centerline 
concentrations (x vs z) with (a) showing excess methane concentration model output from a 
single timestep, (b) showing a 2-hour average from 10-12, and (c) shows the ammonia/ 
methane excess concentration ratios. The bottom row (d, e, and f, respectively) shows the 
same 
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The bias associated with considering only surface ratio is less severe than the June atmospheric 

conditions, though the difference is most pronounced outside of 4 km from CAFO boundary (x > 

5000). 

 

 

Figure B.4: Analogous to Figure 3.3 but for April; (a) the total Y-Z integrated ammonia and 
methane mass loading plotted as a function of x, (b) the atmospheric Y-Z mass conductance 
for ammonia and methane (solid lines), as well as integrated reference deposition flux (orange 
dashed line) and the deposition-corrected ammonia mass conductance (orange dot-dashed), 
and (c) the fraction of ammonia remaining calculated from the deposited mass (black) and 
from the ammonia/methane conductance ratios (red). 
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Figure B.5: Analogous to Figure 3.4, but for April; percent bias of the fractional 
ammonia removal, comparing the centerline mass loading ratio (the novel method) and 
the offline actual deposited mass method (our reference method) plotted vs. the x 
coordinate in the model simulations, where X = 1000m corresponds to the CAFO 
boundary. Each line corresponds to the inclusion of a different vertical depth in the 
model domain in the centreline ratio method with the solid blue line using only the 
surface concentrations, the purple line using 120m and below (i.e., the maximum 
allowed altitude for a small Unmanned Aerial System without FAA certification), and 
the gray line represents the entire model domain. Intermediate altitudes are represented 
as dashed lines. A bias of 0 denotes perfect agreement between the methods. 
 

Figure B.6: Analogous to Figure 3.5, but for April; observed ammonia and methane 
concentration timeseries in Local Standard Time (LST) (blue and orange, respectively) 
from the surface-vehicle-based platform (a) and the sUAS platform (b). 
. 
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Figure B.7: Analogous to Figure 3.6 but for April; (a) Observed ammonia/methane ratios for 
the surface-vehicle-based and (b) sUAS-based observations with binned-by-X values 
overlaid. The surface vehicle base-case trajectory used a 2-hour sampling period, the sUAS 
trajectory used a 45 minute sampling period. The bottom two panels present histograms of 
the percent bias for the fraction of ammonia removed that can be inverted from a given 
sampling trajectory, compared to the actual deposited fraction computed with the  direct 
offline calculation over the corresponding spatial interval. Panel (c) shows the vehicle results 
and (d) shows the sUAS results. 
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B.3 Sensitivity Analysis across a broader range of spatial perturbations 

 

Figure B.8: The complete sensitivity analysis described in Chapter 3.3.3, showing the 
sensitivity of the surface vehicle and sUAS sampling trajectories to all perturbation 
types. None of the other variables show any interesting behaviour beyond what is 
described in the main text of the manuscript. 
 


