
DISSERTATION

EMPIRICAL EVALUATION OF A DIMENSION-REDUCTION METHOD FOR

TIME-SERIES PREDICTION

Submitted by

Mahsa Ghorbani

Department of Systems Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2020

Doctoral Committee:

Advisor: Edwin K. P. Chong

Ali Pezeshki
Peter Young
Thomas Bradley



Copyright by Mahsa Ghorbani 2020

All Rights Reserved



ABSTRACT

EMPIRICAL EVALUATION OF A DIMENSION-REDUCTION METHOD FOR

TIME-SERIES PREDICTION

Stock price prediction is one of the most challenging problems in finance . The multivariate

conditional mean is a point estimator to minimize the mean square error of prediction giver past

data. However, the calculation of the condition mean and covariance involves the numerical in-

verse of a typically ill-conditioned matrix, leading to numerical issues. To overcome this problem,

we develop a method based on filtering the data using principle components. Principal component

analysis (PCA) identifies a small number of principle components that explain most of the varia-

tion in a data set. This method is often used for dimensionality reduction and analysis of the data.

Our method bears some similarities with subspace filtering methods. Projecting the noisy obser-

vation onto a principle subspace leads to significantly better numerical conditioning. Our method

accounts for time-varying covariance information.

We first introduce our method for predicting future price values over a short period of time using

just historical price values. The literature provides strong evidence that stock price values can be

predicted from past price data. Different economic variables have also been used in the literature

to estimate stock-price values with high accuracy. To accommodate using historical data for such

economic variables, we build on our method to include multiple predictors. We use multichannel

cross-correlation coefficient as a measure for selecting the most correlated set of variables for each

stock. Then we apply our filtering operation based on the local covariance of the data. Our method

is easily implemented and can be configured to include an arbitrary number of predictors, subject

to computational constraints.

Time-series prediction can be posed as a matrix completion problem. Matrix completion is an

important problem in many fields and has been receiving considerable attention in recent years.

ii



Different approaches and algorithms have been proposed to solve this problem. We investigate

the effectiveness of an iterative rank minimizing matrix completion algorithm for predicting fi-

nancial time series. As a key performance to compare different schemes, we use computational

complexity, which focuses on the computational burden of these schemes. We compare the pre-

diction results from the iterative matrix completion method to our method in terms of asymptotic

and empirical computational complexity. Both methods show similar performance for forecasting

future stock price values in terms of different performance metrics, but our proposed method has

lower computational complexity.
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Chapter 1

Stock Price Prediction Using Multiple Predictors12

1.1 Introduction

Predicting future stock price values is a very challenging task. There is a big body of literature

on different methods and different predictors to incorporate into those methods to predict the future

values as closely as possible. The literature provides strong evidence that past price/return data

can be used to predict future stock prices. Some studied have found significant auto-correlation

for returns over a short period of time. French and Roll find negative correlation for individual

securities for daily returns [2]. Some other studies show there is a positive correlation for returns

over the period of weeks or months [3]. Studies also demonstrate stock return correlation over the

period of multiple months or years. Fama and French report that the auto-correlation is stronger

for longer periods, three to five years, compared to daily or weekly periods [4]. Cutler et al. report

positive auto-correlation over the horizon of several months and negative auto-correlation over the

horizon of three to five years [5]. There are some other studies that also show correlation in stock

returns over a multiple year interval [6, 7] which all confirm that price/return values are predictable

from past price/return values.

Bogousslavsky shows that trading by investors with heterogeneous rebalancing horizons can

give rise to autocorrelation in the returns at different frequencies [8]. Chowdhury et al. investigate

the autocorrelation structure of seven Gulf Cooperation Council (GCC) stock markets. All the

markets except for Dubai and Kuwait show significant first-order autocorrelation of returns. They

also find that autocorrelation between weekdays is usually larger than that between the first and

last trading days of the week [9]. Li et al. study the nonlinear autoregressive dynamics of stock

index returns in seven major advanced economies (G7) and China using the quantile autoregres-

1This chapter is published in PLOS One Journal [1]

2The chapters are written in a way that they are self-contained
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sion model. For the stock markets in the seven developed economies, the autoregressive parameters

generally follow a decreasing pattern across the quantiles with significant portions outside the ordi-

nary least squares estimate intervals [10]. Another study investigates the autocorrelation structure

of stock and portfolio returns in the unique market setting of Saudi Arabia [11]. Their results show

that there is significantly positive autocorrelation in individual stock and market returns. Another

study applies the threshold quantile autoregressive model to study stock return autocorrelations

in the Chinese stock market [12]. They report negative autocorrelations in the lower regime and

positive autocorrelations in the higher regime.

Other fundamental or macroeconomic factors can also be used in predicting future stock price

values. Macroeconomic factors such as interest rates, expected inflation, and dividend can be used

in stock return predictions models [4, 13]. Also fundamental variables such as earnings yield, cash

flow yield, size and book to market equity [14, 15] have been found to have estimation power in

predicting future price/return values.

Silvennoinen and Teräsvirta report correlation between individual U.S. stocks and the aggregate

U.S. market [16]. Dennis et al. study the dynamic relation between daily stock returns and daily

volatility innovations, and they report negative correlations [17]. Another study investigates the

effect of common factors on the relationship among stocks and on the distribution of the investment

weights for stocks [18]. They report that market plays a dominant role in both structuring the

relationship among stocks and in constructing a well-diversified portfolio. Dimic et al. examine the

impact of global financial market uncertainty and domestic macroeconomic factors on stock–bond

correlation in emerging markets [19]. In another study, the focus is analyzing the impact of oil

price shocks on the interactions of oil-stock prices [20]. The results show that negative changes in

oil prices have a significant impact on the stock market.

In this chapter, we describe a general method for predicting future stock price values based on

historical price data, using time-varying covariance information. When the number of observations

is large compared to the number of predictors, the maximum-likelihood covariance estimate [21] or

even the empirical covariance is a good estimate of the covariance of the data, but that is not always
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the case. When the number of observations is smaller than the matrix dimension, the problem is

even worse because the matrix is not positive definite [22]. This problem, which happens quite

often in finance, gives rise to a new class of estimators such as shrinkage estimators. For example

Ledoit and Wolf, shrink the sample covariance towards a scaled identity matrix using a shrinkage

coefficient that minimizes the mean squared error of the prediction [23]. Some other studies in this

field include [24, 25, 26]. In our numerical evaluations in this work we have sufficient empirical

data to reliably track the covariance matrix over time.

Momentum-based forecasting relies on prices following a trend, either upwards or downwards.

Based on the assumption that trends like this exist and can be exploited, momentum is used as a

heuristic rule for forecasting and is probably the most popular technical indicator used by traders;

in particular, the method of Direction Movement Index (DMI), due to Wilder [27]. This kind of

heuristic is a special case of pattern-based forecasting, where, in the case of momentum, the pattern

is simply the upward or downward trend. Our method is a systematic method to capture arbitrary

patterns, not just upward or downward trends. Indeed, we compute prevalent patterns in the form

of eigenvectors (or “eigen-patterns”) of the local covariance matrix. As such, we are able to exploit

more general patterns that are prevalent (but not necessary known beforehand) in price time series.

The mean squared error (MSE) measures the distance between predicted and real values and

is a very common metric to evaluate the performance of predictive methods [28]. Multivariate

conditional mean minimizes the mean squared error [29] and is a good estimator for future price

values. However, numerical results using this method cannot always be trusted because of associ-

ated ill-conditioning issues. In this work we introduce a method with similar estimation efficiency

that does not suffer from this issue.

Principal component analysis (PCA), which is a method for dimensionality reduction of the

data, is used in different fields such as statistical variables analysis [30], pattern recognition, feature

extraction, data compression, and visualization of high dimensional data [31]. It also has various

application in exploring financial time series [32], dynamic trading strategies [33], financial risk

3



computations [34, 33], and statistical arbitrage [35]. In this work, we implement PCA in estimating

future stock price values.

Yu et al. introduce a machine-learning method to construct a stock-selection model, which can

perform nonlinear classification of stocks. They use PCA to extract the low-dimensional and effi-

cient information [36]. In another study, three mature dimensionality reduction techniques, PCA,

fuzzy robust principal component analysis, and kernel-based PCA, are applied to the whole data set

to simplify and rearrange the original data structure [37]. Wang et al. present a stochastic function

based on PCA developed for financial time-series prediction [38]. In another study, PCA is applied

to three subgroups of stocks of the Down Jones Industrial (DJI) index to optimize portfolios [39].

Narayan et al. apply PCA to test for predictability of excess stock returns for 18 emerging markets

using a range of macroeconomic and institutional factors [40].

Factor analysis is a technique to describe the variability of observed data through a few factors

and is in some sense similar to PCA. There is a long debate in the literature on which method is

superior [41, 42]. Factor analysis begins with the assumption that the data comes from a specific

model where underlying factors satisfy certain assumptions [43]. If the initial model formulation

is not done properly, then the method will not perform well. PCA on the other hand involves

no assumption on the form of the covariance matrix. In this work, we focus on developing an

algorithm that can ultimately be used in different fields without prior knowledge of the system,

and therefore PCA is the method of choice. In the case study presented in the following section,

although only price data is used, it would have been also possible to include multiple predictors to

estimate futures values of stock prices.

Our method bears some similarity with subspace filtering methods. Such methods assume a

low-rank model for the data [44]. The noisy data is decomposed onto a signal subspace and noise

based on a modified singular value decomposition (SVD) of data matrices [45]. The orthogonal

decomposition can be done by an SVD of the noisy observation matrix or equivalently by an

eigenvalue decomposition of the noisy signal covariance matrix [44].
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We compare the performance of our proposed methods in terms of MSE and directional change

statistic. Stock-price direction prediction is an important issue in the financial world. Even small

improvements in predictive performance can be very profitable [46]. Directional change statistic

calculates whether our method can predict the correct direction of change in price values [47]. It

is an important evaluation measure of the performance because predicting the direction of price

movement is very important in some market strategies.

Another important parameter that we are interested in is standard deviation, one of the key

fundamental risk measures in portfolio management [48]. The standard deviation is a statistical

measure of volatility, often used by investors to measure the risk of a stock or portfolio.

As mentioned above, in this work we focus on forecasting stock prices from daily historical

price data. In Section 3.2, we introduce our technical methodology, and in particular estimation

techniques using covariance information. In Section 1.3, we describe our method for processing

the data and estimating the time-varying covariance matrix from empirical data, including data

normalization. We also demonstrate the performance of our method.

1.2 Theoretical Methodology

1.2.1 Estimation Techniques

In this section we introduce a new computationally appealing method for estimating future

stock price values using covariance information. The empirical covariance can be used as an es-

timate of the covariance matrix if enough empirical data is available, or we can use techniques

similar to the ones introduced in the previous section, though the time-varying nature of the co-

variance must be addressed.

Suppose that we are given the stock price values for M days. Our goal is to predict company

stock prices for M + 1 to N trading days, using the observed values of the past consecutive M

days. The reason for introducing N will be clear below.
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Gauss-Bayes or Conditional Estimation of z given y

Suppose that x is a random vector of length N . Let M ≤ N and suppose that the first M data

points of vector x represent the end-of-day prices of a company stock over the past M consecutive

trading days. The multivariate random vector x and can be partitioned in the form

x =

[
y z

]
. (1.1)

Let random vector y represent the first M data points and z the price of the next N −M days

in the future. We wish to estimate z from y.

The covariance matrix for the random vector x can be written as

Σxx =



Σyy Σyz

Σzy Σzz


 , (1.2)

where Σyy is the covariance of y and Σzz is the covariance of z. Assuming that y and z are

jointly normally distributed, knowing the prior distribution of x = [y, z], the Bayesian posterior

distribution of z given y is given by

ẑz|y = ΣzyΣ
−1
yy y

Σ̂z|y = Σzz − ΣzyΣ
−1
yy Σyz. (1.3)

The Σ̂z|y matrix, representing the conditional covariance of z given y, is also called the Schur

complement of Σyy in Σxx. Note that the posterior covariance does not depend on the specific

realization of y.

The Gauss-Bayes point estimator for the price prediction, the conditional mean ẑz|y , minimizes

the mean squared error of the estimate in the Gaussian case [29]. Moreover,in the Guassian case,

for a specific observation y, the inverse of the conditional covariance is the Fisher Information
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matrix associated with estimating z from y, and therefore Σ̂z|y is the lower bound on the error

covariance matrix for any unbiased estimator of z [29].

The same set of equations arise in Kalman’s filtering. Kalman’s own view of this process is

as a completely deterministic operation [49], and does not rely on assuming normality. Although

the point estimator ẑz|y is optimal in term of mean squared error, in practice there are numerical

complications involved in this method: The matrix Σyy is typically not well conditioned, so the

numerical calculation of Σ−1
yy cannot always be trusted. To overcome this problem, we propose a

better conditioned estimator, which has a behavior close to Gauss-Bayes.

Principal Components and Estimation in Lower Dimension

Principal component analysis (PCA) is a well-established mathematical procedure for dimen-

sionality reduction of data and has wide applications across various fields. In this work, we con-

sider its application in forecasting stock prices.

Consider the singular value decomposition (SVD) of Σxx:

Σxx = V SV ′, (1.4)

where S is a diagonal matrix of the same dimension as x with non-negative diagonal elements

in decreasing order, and V is a unitary matrix (V V
′

= IN ). The diagonal elements of S are the

eigenvalues of Σxx.

In general, the first few eigenvalues account for the bulk of the sum of all the eigenvalues. The

“large” eigenvalues are called the principal eigenvalues. The corresponding eigenvectors are called

the principal components.

Let L < N be such that the first L eigenvalues in S account for the bulk part (say 85% or more)

of the sum of the eigenvalues. Let VL be the first L columns of unitary matrix V . Then the random

vector x is approximately equal to the linear combination of the first L columns of V :

7



x ≈ VLα, (1.5)

where α is a random vector of length L. Because L is a small number compared to N , equation

(1.5) suggests that a less “noisy" subspace with a lower dimension than N can represent most of

the information. Projecting onto this principle subspace can resolve the ill-conditioned problem of

Σyy. The idea is that instead of including all eigenvalues in representing Σxx, which vary greatly

in magnitude, we use a subset which only includes the “large” ones, and therefore the range of

eigenvalues is significantly reduced. The same concept is implemented in speed signal subspace

filtering methods, which are based on the orthogonal decomposition of noisy speech observation

space onto a signal subspace and a noise subspace [44]. Let VM,L be the first M rows and first L

columns of V . We have

y = VM,Lα + Noise. (1.6)

Mathematically resolving noisy observation vector y onto the principle subspace can be written as

a filtering operation in the form of

w = Gy, (1.7)

where G is given by

G = (V
′

M,LVM,L)
−1V

′

M,L. (1.8)

The vector w is actually the coordinates of the orthogonal projection of y onto the subspace equal to

the range of VM,L. We can also think of w as an estimate of α based on least squares. Substituting

y by w in (1.3) leads to a better conditioned set of equations:
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ẑz|w = ΣzwΣ
−1
www

Σ̂z|w = Σzz − ΣzwΣ
−1
wwΣwz, (1.9)

because the condition number of Σww is much lower than that of Σyy, as we will demonstrate later.

In (3.13) we have

Σzw = E
[
zw

′

]
= ΣzyG

′

, (1.10)

and

Σww = E
[
ww

′

]
= GΣyyG

′

. (1.11)

If the posterior distribution of z estimated based on (3.13) has a similar behavior to the distri-

bution estimated by (1.3), it can be considered a good substitute for the Gauss-Bayes method. Our

numerical results demonstrate that this is indeed the case, which we will show in Section 1.3.

Moving Average

Technical traders and investors often use technical trading rules, and one of the most popular

methods used by technical traders and researchers are the moving average (MA) rules [50, 51].

Satchell investigates the reason general MA trading rules are widely used by technical analysts

[52]. He shows that autocorrelation amplification is one of the reasons such trading rules are

popular. Using simulated results, we show that the MA rule may be popular because it can identify

the price momentum and is a simple way of assessing and exploiting the price autocorrelation

without necessarily knowing its precise structure. Moving average, which is the average of prices

over a period of time, is probably the simplest estimator for z:
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Figure 1.1: Predicting price for M + 1 to N days, Actual Price: Solid line, GB: −o−, RD: − ∗ − (two
lines, one for a small value of L, and one for a relatively large number).

ẑMA =
1

KMA

N∑

i=N−KMA+1

xi (1.12)

where the quantity KMA is the number of data points included to calculate the average, and ẑMA

is the average of the most recent KMA price values.

There are different possible values of KMA for calculating the average, from short to medium

to long term periods. Here we use periods of 10 and 50 days, which are typical short and midterm

values used in the literature. We will use the moving average estimator for comparison purposes,

as we will see in Section 1.3 below.

Fig 1.1 shows an example of our stock predictions. Assume that we are given the price values

for the past 20 days (M = 20), and we want to use those values to predict the future prices over the

next 10 business days, from day M + 1 to day N (N = 30). In our reduced-dimension technique,

we can get a relatively smooth plot of the predicted value for a relatively small L, to a plot almost

the same as Gauss-Bayes, for larger values of L, as we can can see in Fig 1.1.
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1.2.2 Performance Metrics

Mean Squared Error

To compare the performance of the methods described above, we evaluate the expected value of

the squared error between the actual and estimated values. The mean squared error of an estimate

ẑ is given by:

MSE = E

[
‖z − ẑ‖2

]
= E

[
‖z‖2

]
+ E

[
‖ẑ‖2

]
− 2E

[
‖z′ẑ‖

]
.

The MSE can be expressed in terms of the covariance matrices in (1.2), by substituting the appro-

priate form of ẑ. Alternatively, the mean squared error of an estimator ẑ can be written in terms of

the variance of the estimator plus its squared bias. The conditional MSE given x is written as

MSEẑ|z = E

[
‖z − ẑ‖2 | z

]
= trace(Σẑ|z) +

∥∥∥∥E
[
ẑ | z

]
− z

∥∥∥∥
2

.

The first term is called the variance, and the second term is the squared bias. The expected value

of MSE over all observations is the actual MSE, which can be calculated by taking expectations

on both sides:

MSE = E

[
E

[
‖z − ẑ‖2 | z

]]
= trace(E

∥∥Σẑ|z

∥∥) + E

[∥∥∥∥E
[
ẑ | z

]
− z

∥∥∥∥
2]

. (1.13)

It turns out that Gauss-Bayes estimator is unbiased, which means that the second term is 0,

while the proposed reduced-dimension methods is a biased estimator.

Directional Change Statistic
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bij =





1, if (zij − z0)(ẑij − z0) > 0

0, otherwise

. (1.14)

Then Dj , the directional change statistic for day j, averaged over K samples, is equal to

Dj =
1

K

K∑

i=1

bij, (1.15)

which is a number between 0 and 1 (the higher the better).

1.3 Empirical Methodology and Results

In this section we describe how we estimate the covariance matrix based on a normalized data

set, and we evaluate the performance of our method using empirical data.

1.3.1 General Setting

Suppose that we have K samples of vector data, each of length N , where N < K. Call these

row vectors x1, x2, ..., xK , where each xi ∈ R
N(i = 1, ..., K) is a row vector of length N :

xi =

[
xi1 xi2 · · · xiN

]
. (1.16)

We assume that the vectors x1, x2, . . . , xK are drawn from the same underlying distribution. We

can stack these vectors together as rows of a K ×N matrix:

X =




x11 x12 · · · x1N

x21 x22 · · · x2N

· · · · · · · · · · · ·

xK1 xK2 · · · xKN




.

Let M ≤ N and suppose that we are given a vector y ∈ R
M representing the first M data

points of a vector we believe is drawn from the same distribution as x1, x2, . . . , xK . Again, these

12



M data points represent the end-of-day prices of a company stock over the past M consecutive

trading days. Let z be the price of the next N −M days in the future. We wish to estimate z from

y.

Since the vector xi is a multivariate random vector that can be partitioned in the form

xi =

[
yi zi

]
, (1.17)

where yi has length M and zi has length N − M , accordingly the data matrix X can be divided

into two sub-matrices Y and Z as follow:

X =

[
Y Z

]
.

We can think of Y as a data matrix consisting of samples of historical data, and Z as a data matrix

consisting of the corresponding future values of prices.

1.3.2 Normalizing and Centering the Data

In the case of stock-price data, the vectors x1, x2, . . . , xK might come from prices spanning

several months or more. If so, the basic assumption that they are drawn from the same distribution

may not hold because the value of a US dollar has changed over time, as a result of inflation. To

overcome this issue, a scaling approach should be used to meaningfully normalize the prices (we

will deal with the time-varying nature of the covariance later). One such approach is presented

here. Suppose that ti = [ti1, ti2, . . . , tiN ] is a vector of “raw" (unprocessed) stock prices over

N consecutive trading days. Suppose that Q ≤ N is also given. Then we apply the following

normalization to obtain xi:

xi =
ti

ti(Q)
. (1.18)
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This normalization has the interpretation that the xi vector contains stock prices as a fraction of

the value on the Qth day, and is meaningful if we believe that the pattern of such fractions over the

days 1, . . . , N are drawn from the same distribution. Note that xi(Q) = 1.

We believe normalizing the data with this method captures the pattern in the price data better

than simply using return data. Although similar to return, the resulting time series still suffers from

being non-stationary over time. We propose to resolve this issue by using a weighting averaging

method as explained in the next section.

For the purpose of applying our method based on PCA, we assume that the vectors x1, x2, . . . , xK

are drawn from the same underlying distribution and that the mean, x̄, is equal to zero. However

because xi represents price values, in general the mean is not zero. The mean x̄ can be estimated

by averaging the vector xi ∈ R
N(i = 1, ..., K),

x̄ =
1

K

K∑

i=1

xi, (1.19)

and then this average vector is deducted from each xi to center the data.

Even though this normalization makes the data stationary in the mean, since stock prices are

very volatile, there is no guarantee that the covariance of the data would be stationary as well. In

order to address this issue, we assign exponential weights (γ0, γ1, · · · , γk) to observations, where

0 < γ < 1, to emphasize the most recent periods of data. Using an exponential weighting approach

to deal with volatility of financial data has been suggested in multiple studies such as [53]. For

each observation xi, the last K samples prior to that observation are transformed into a Hankel

matrix and normalized. Then (decreasing) exponential weights are assigned to the K samples

and numerical results are calculated. This process, creating the matrix of data, normalizing, and

assigning weights, is repeated for each observation.

To select the value of K we use
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K = min{k : γk < 10−3}. (1.20)

1.4 Experiments

The daily historical price data for 150 different companies from different market-capitalization

categories were downloaded from finance.yahoo.com. Market capitalization is a measure of the

company’s wealth and refers to the total value of all a company’s shares of stock. We randomly

select 50 stocks from each of the three market capitalization (cap for short) categories: Big market-

cap (125 B$ to 922 B$), Mid market-cap (2 B$ to 10 B$) and Small market-cap (300 M$ to 1.2

B$). The stocks from the Big market-cap category are normally the most stable ones relative to the

Small-cap stocks, which have the most volatility. Historical data for four market indexes, S&P500

(GSPC), Dow Jones Industrial Average (DJI), NASDAQ Composite (IXIC), and Russell 2000

(RUT), were also included in this study. The data was transformed into matrices with different

sizes as explained in next section. In each case, the daily price value for next 10 days are predicted

and the estimation methods are compare based on their out-of-sample performance.

1.4.1 Constructing Data Matrix

The daily stock price data is transformed into a matrix with K rows, samples of vector data,

each of length N . We get that by stacking K rows (K samples), each one time shifted from the

previous one, all in one big matrix, called the Hankel matrix.

More precisely, the Hankel matrix for this problem is constructed in the following format:




t1

t2

...

tK




=




P (1) P (2) · · · P (N)

P (2) P (3) · · · P (N + 1)

· · · · · · · · · · · ·

P (K) P (K + 1) · · · P (K +N − 1)




,

where P (i) represents the price for day i. This is our matrix of data, before normalization and

centering.
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We first normalize each row (observation) by Qth entry, as described earlier, and then subtract

the average vector x̄ from each row. The prediction is done using the processed data. After doing

the prediction, we add back the average vector x̄N−M (last N − M components of x̄) from days

M + 1 through N and also multiply the result by the value of Qth that was used for normalizing

to get back to actual stock prices. We tested different values for Q in terms of MSE and estimation

variance. For the purpose of this study, we chose Q = M because it shows the best results in this

setting. Recall that xi(M) = 1. This column is removed from the data matrix because it does not

provide any information. From now on matrix X represents normalized and centered price data.

To account for the nonstationarity of the covariance, we use an exponential averaging method

as mentioned before. For this purpose, γ = 0.98 was selected and the weights smaller than 10−3

were considered zero. Then the sample covariance matrix is calculated as

Σxx =

(
1− γ

1− γk+1

)
X

′

diag(γ0, γ1, · · · , γk)X, (1.21)

where diag(γ0, γ1, · · · , γk) is a diagonal matrix with (γ0, γ1, · · · , γk) as the diagonal elements.

We obtained end-of-day stock prices for General Electric and converted this time series into

Hankel matrices with different lengths as described above. 2000 samples were used to evaluate

the out-of-sample performance of the methods. The values corresponding with the performance

metrics presented in this section converge after a few hundred samples. We construct data matrices

with 9 different sizes, M from 50 to 530 with a 60 day interval, to investigate the effect of length

of observation vector on performance.

Fig 1.2 shows the histogram of normalized data as a representation of the distribution of nor-

malized data; the curve resembles a bell shape.

1.4.2 MSE Performance

Three different estimation methods are implemented for each of the data matrices constructed

above. The goal is to predict future price values for the next 10 days (days M + 1 to N ). when

it comes to reduced-dimension method, for each M we try different values of L, the number of
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Figure 1.2: Histogram graph for normalized data

principle components. The general goal, as mentioned above, is an estimation technique that has

a similar behavior as an ideal Gauss-Bayes estimator but does not have the associated calculation

difficulties resulting from ill-conditioning.

We use General Electric price data to calculate the values illustrated in this section. We cal-

culate the squared error (SE) for 2000 samples to evaluate the performance of the methods. We

implement our reduced-dimension technique for different Ms, and for different numbers of prin-

cipal eigenvalues, L.

Fig 1.3 shows the empirical Cumulative distribution function (CDF) of the SE for 2 different

values of M , together with two-standard-deviation confidence interval. Note that to make our

comparisons fair and meaningful, we normalized the results from the moving average predictors

so that their values are equally normalized with the values from our RD method. When it comes

to out-of-sample performance, the numerical complications compromise the estimation accuracy

of Gauss-Bayes, causing the SE values for this method to become even worse than the SE plot for

the moving average estimators. As we can see, in both plots, our reduced-dimension method is

superior to the other two methods. For M = 110 some lines are relatively close together. As M

gets larger, the plot for the reduced-dimension method improves and the plot for Gauss-Bayes gets

worse.
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Figure 1.3: Empirical CDF of SE corresponding to M = 110 and 290. MA20 and MA50: −o−, GB: −∗−,
RD: Solid lines. Dashed lines illustrate a two standard deviation confidence interval.
Plots toward the top and left represent better performance.

Another point worth mentioning is that although adding more data improves the performance

of our proposed method, that is not the case for the moving average estimator. As the arrow on the

plot on the bottom indicates, by adding more data, moving from zMA10
to zMA50

, the performance

of the moving average estimator deteriorates. This behavior is expected since the moving average

relies on the momentum, in contrast to the reduced-dimension method, which extracts the essence

of the information by projecting onto a smaller subspace.

Fig 1.4 shows the values of MSE over all days of estimation versus the value of L, for 9 different

M , lengths of observation vector, from 50 to 530. As we can see, the MSE value is insensitive to

the value of L for sufficiently large L. For small values of L, the MSE values fall quickly, but

then eventually increase. So if we have a particular constraint on the condition number, we do not

lose much in terms of MSE by choosing a reduced-dimension subspace, which leads to a better

conditioned problem. After a certain point, adding more data is actually adding noise and the MSE

values get worse.
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Figure 1.4: MSE versus L in the normalized domain for different Ms

The metric we are looking for is the sum of MSE values over all days of estimation.

For each length of M , the values for MSE are captured based on different constraints of the

condition number of Σww. The MSE values in the reduced-dimension method are significantly

smaller relative to the other two methods.

Fig 1.5 shows the relative percentage of improvement (RPI) in the reduced-dimension method

compared to the other two methods, calculated as

RPIGB/MA =
−100(MSERD −MSEGB/MA)

MSEGB/MA
. (1.22)

Note that since the denominator in the equation is MSEGB/MA, the improvement percentage does

not exceed 100% but the actual MSE values are further apart in absolute terms than illustrated here.

For example for M = 350, the MSE value for reduced-dimension is between 0.0052 to 0.018,

while the MSE in Gauss-Bayes is around 6.33×106. The three (overlapping and therefore appears

as only a single plot) lines on top (-*-) of Fig 1.5 compare the reduced-dimension to Gauss-Bayes

(RPIGB). The three lines on top (..o..) correspond to the comparison of the reduced-dimension

and moving average (RPIMA50
) and the three lines on the bottom (..o..) correspond to (RPIMA10

).

In each case the three lines are subject to different upper limits on the condition number (102, 103,

and 104). It is worth mentioning that the condition number of Σyy starts from 103 for M = 50 and

19



50 110 170 230 290 350 410

M

0

20

40

60

80

100

120

R
P

I

CN<102

CN<104

K
MA

=50

K
MA

=10

Figure 1.5: RPI values, subject to different upper limit on condition number of Σww, in each case 102

associated with the line on the bottom, to 104 associated with the line on top,
RPIMA: ..o.., RPIGB: − ∗ −.
Higher plots represent worse relative performance (relative to RD).

goes up to 1019 for M = 530. The upper limit on the condition number of Σww changes from 102,

associated with the lines on the bottom in each case, to 104, the lines on top, for all values of M .

In general, by increasing M , more information is available in each observation, resulting in

better performance of the prediction in terms of smallest MSE values. This can be observed easily

in the RPI plots in Fig 1.5 in comparison to the moving average cases since the MSE values in

the those cases are almost constant for different values of M . The percent of improvement of

MSE values corresponding to the reduced-dimension method increases as M increases. This is as

expected since more information is available in each observation, resulting in better performance.

However after a certain point the RPI flattens out suggesting adding more data at this point is

increasing the noise and does not improve the performance.

As we can see, in some cases there is a slight decrease in the improvement rate of the reduced-

dimension method compared to the moving average method. A possible explanation for this ob-

servation is that when we fix some constraint on condition number, we are actually limiting the

value of L, and by increasing M , after a certain point, we mostly increase the noise, and the

MSE value gets worse, which is consistent with Fig 1.4. Table 1.1 shows the average RPI values

20



Table 1.1: Average RPI values for stocks in different market-cap categories and average RPI values for
market indexes (M = 350)

MSE RPIGB RPIMA10
RPIMA50

Small-Cap 100% 51% 88%
Mid-Cap 100% 54% 88%
Big-Cap 100% 56% 89%

Market indexes 100% 55% 88%

Table 1.2: Statistical analysis for MSE values for stocks in different market cap categories (M = 350)

T-test against MSEGB MSEMA10
MSEMA50

Small-Cap p-value 0.0024 0.0075 0.00068
h 1 1 1

Mid-Cap p-value 0.0283 0.0066 0.000038
h 1 1 1

Big-Cap p-value 0.0021 0.00048 0.00001
h 1 1 1

for all stocks in different market-cap categories and average RPI values for market indexes. The

reduced-dimension method consistently shows better performance than the other two methods.

Matlab’s two-sample t-test function was used to determine the MSE values from our proposed

method for 50 stocks in each market-cap category is significantly smaller than the average of

the MSE values generated for the same sample using other methods at 5% significance level

(α = 0.05). When p < α and h = 1, the null hypothesis that the two samples have the same

mean is rejected, concluding that the difference between the averages of the two sets of samples

is statistically significant at α significance level. As shown in Table 1.2, the results indicate that

the average of the MSE values for predictions from our method is significantly smaller than the

average of MSE values from other competing methods at 0.05 significance level.

Recall that L represents the number of eigenvalues required from the diagonal matrix S to

represent the bulk part of the information carried in x. Fig 1.6 investigates the dimension of the

target subspace by plotting the value of L corresponding to best MSE for different Ms, subject to

different limits on condition number (the same case as in Fig 1.5).
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Figure 1.6: Best L corresponding to best MSE values subject to different limits on condition number, 102

associated with the line on the bottom, 103 associated with the line in the middle, and 104 associated with
the line on top.

As the upper limit on condition number increases, the value of MSE improves as M increases,

and we need a bigger subspace, bigger L, to extract the information. However, as the bottom three

plots in Fig 1.6 show, the value for best L flattens out after a certain point.

1.4.3 Directional Change Statistic Performance

The other evaluation metric that we are interested in is the directional statistic which measures

the matching of the actual and predicted values in terms of directional change. Figure 1.7 shows

the average directional statistic over 10 days of estimation using the same K = 2000 samples.

As the plot indicates, the reduced-dimension method is superior in terms of directional change

statistic. It is interesting to note that the directional statistic improves as M increases, and then

eventually flattens out, consistent with previous plots.

Table 1.3 shows the average value for directional statistic for stocks in different market cap

categories and indexes for M = 350 for Σww condition number limited to 104. The reduced-

dimension method is superior to the other two methods in terms of directional change estimation.

It is important to note that the values represented in Table 1.3 are associated with a specific M for

all companies. In practice, it is recommended to tailor the value of M for each company to get the

best results.
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Table 1.3: Average directional statistics for stocks in different market cap categories (M = 350)

Directional Statistic MA10 MA50 GB RD
Small-Cap 0.51 0.53 0.51 0.78
Mid-Cap 0.53 0.55 0.51 0.79
Big-Cap 0.54 0.57 0.51 0.80

Market Indexes 0.55 0.60 0.50 0.79
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Table 1.4: Statistical analysis for Directional Statistics values for stocks in different market-cap categories
(M = 350)

T-test against DGB DMA10
DMA50

Small-Cap p-value < 10−10 < 10−10 < 10−10

h 1 1 1
Mid-Cap p-value < 10−10 < 10−10 < 10−10

h 1 1 1
Big-Cap p-value < 10−10 < 10−10 < 10−10

h 1 1 1

Matlab’s two-sample t-test function was used to determine if the average of the directional

statistics from our method for 50 stocks is significantly larger than the average of directional statis-

tics from other methods. Table 1.4 lists the p-value and h-statistic for each test. The results also

indicate that the average of directional statistics from our method is significantly larger than the

average of the directional statistics from other competing methods at 5% significance level.

1.4.4 Volatility

Another important parameter that we estimate is the volatility of the prediction, measured in

terms of its standard deviation. The square root of the diagonal elements of the estimated covari-

ance, Σ̂zz, are the estimated standard deviations for individual days of estimation. The estimate of

the covariance in each method is

Σ̂GB = Σ̂z|y = Σzz − ΣzyΣ
−1
yy Σyz,

Σ̂RD = Σ̂z|w = Σzz − ΣzwΣ
−1
wwΣwz, (1.23)

However, note that because of the poor conditioning of Σyy, using the formula above for ΣGB

has numerical issues. Hence, we omit their values here. In general the standard deviation values

increase moving from day 1 to day 10 of prediction, since less uncertainty is involved in the es-

timation of stock prices of days closer to the current day. In Fig 1.8, the standard deviation for

individual days of estimation, days 1 to 10, are plotted versus M , the length of observation vec-
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Figure 1.8: Standard deviation of individual days of estimation, RD: Solid line.

tor, for the reduced-dimension method. In the reduced-dimension method, the standard deviation

values decrease as M increases because more information is provided in each observation. For

sufficiently large Ms, the standard deviation values for different days are very close.

1.5 Conclusion

In this chapter we introduced a new method for predicting future stock price values based on

covariance information. We develop this method based on a filtering operation using principle

components to overcome the numerical complications of conditional mean. We also introduced

a procedure for normalizing the data. The matrix of data was constructed in different sizes to

investigate the effect of length of observation vector on prediction performance. Our method has

showed consistently better out-of-sample performance than Gauss-Bayes (multivariate conditional

mean), a numerically challenged estimator, and moving average, an easy to use estimator, for 150

different companies in terms of mean squared error and directional change statistic.

The proposed method can be modified to include multiple predictors. The significance of the

proposed approach will be even more apparent when using multiple predictors because where

observation vectors are longer it becomes almost impossible to rely on conditional mean due to the

severe ill-conditioning of the covariance matrix.
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1.6 Data Availability Statement

The data that support the findings of this study are openly available in Yahoo Finance at

https://finance.yahoo.com/.

GE historical prices, General Electric Company, common stock, was retrieved 2016− 10− 06

from https://finance.yahoo.com/quote/GE/history/.
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Chapter 2

Stock Price Prediction Using Multiple Predictors34

2.1 Introduction

One of the most difficult tasks in finance and economics is predicting future stock prices. This

has been the focus of an extensive literature for decades. There is substantial evidence that stock

returns are predictable, either by past price data [4, 5, 7] or other economic variables.

Ang and Bekaert [54] focus on forecasting excess returns using dividend yields, and find that

stock returns are predictable in a short horizon. Campbell and Thompson [55] argue that given

some weak restrictions, some variables that reflect the market valuation ratios, interest rate, patterns

in corporate finance, consumption to wealth ratio, etc., have better performance than historical

average mean when it comes to forecasting future price values. A study by Rozeff [56] shows that

dividend yields are directly related to stock returns and compared to historical returns they provide

better performance in terms of bias, mean squared error, and mean absolute error. Hodrick [57]

shows that changes in dividend yields forecast significant persistent changes in expected stock

returns. Fama and French [58] show that the expected excess returns (returns net of the one-

month Treasury bill rate) on corporate bonds and stocks move together. Campbell [59] argues that

interest rates predict stock returns. Also he believes the risk premium on long-term treasury bonds

is highly correlated with those on stocks. Lettau and Ludvigson [60] show that fluctuations in the

consumption-wealth ratio is a good estimator of stock returns. They argue that this predictor is

even better than dividend yields and some other popular predictors over a short or intermediate

horizon. Lamont [61] argues that the dividend payout ratio forecasts excess return of stocks as

well as those of corporate bonds. In this study we focus on predicting future stock price values

from past price data in conjunction with different fundamental and macroeconomic variables. In

3This chapter is under review for publication

4The chapters are written in a way that they are self-contained
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this work we only use data that is easily accessible and can be downloaded for free. Richer data

sets exist and might well lead to better performance, but they are not accessible for free.

In order to choose the best predictors, by which we mean the variables used as a basis for

prediction, we compute their multichannel correlation coefficient, which is a method for selecting

reliable "channels" and was originally proposed for speaker localization problems [62]. Here we

use this technique for choosing the most correlated set of predictors to predict the future price val-

ues. After choosing the predictors, we feed the data to our proposed Reduced-Dimension method

based on principle component analysis and subspace filtering as explained in Section 2.2.4.

Although the potential predictors in this study were mostly chosen from the literature, our pro-

posed framework does not work based on classic economic interpretation. Our algorithm takes a

big data set, chooses the best predictors automatically, and eventually extracts the relevant infor-

mation in the data to predict the future values of prices.

The performance of the proposed framework is first evaluated based on mean squared error,

which is one of the most established metrics to measure the accuracy of prediction. It measures

the magnitude of the squared error without taking into account the direction. In order to take into

account the direction of the prediction as well, we use another metric called directional change

statistic. This metric is very important in terms of measuring the quality of the forecast (correctness

of gradient predictions) [47] .

In this work, we propose a method to predict price values based on multiple predictors. First

we introduce our method in Section 2.2. Then in Section 2.3, we describe our data processing

framework and we present the numerical results. We conclude the chapter in Section 2.4.

2.2 Theoretical Methodology

2.2.1 General Setting

We start by describing the general setting for the prediction techniques introduced in this work.

Much of what follows in this subsection and the next 2.2.2 come from the previous chapter where

a simpler version of this setting is described. To avoid excessive overlap, we have abbreviated the
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description here to a bare minimum, instead referring the reader to the previous chapter for further

details.

Suppose that we have K samples of vector data, each of length N , where N < K. Call these

row vectors x1, x2, ..., xK , where each xi ∈ R
N(i = 1, ..., K) is a row vector of length N :

xi =

[
xi1 xi2 · · · xiN

]
. (2.1)

The multivariate vector xi can be partitioned in the form

xi =

[
yi zi

]
,=

[
y1i y2i y3i · · · yJi zi

]
, (2.2)

where each y
j
i represents a vector with length Mj and vector zi has length N −

∑J

j=1 Mj where
∑J

j=1 Mj ≤ N (recall the definition of N earlier). Index j in the variable yji represents a predictor,

so the vector yji itself represents the ith data vector from predictor j. The goal is to use the infor-

mation from historical data in the yji s to predict corresponding future values of stock prices, zi. By

stacking K samples, we have a K ×N data matrix:

X =




y11 y21 · · · yJ1 z1

y12 y22 · · · yJ2 z2

· · · · · · · · · · · · · · ·

y1K y2K · · · yJK zK




.

2.2.2 Normalizing and Centering the Data

In the case of historical data, the vectors x1, x2, . . . , xK come from data spanning over time

so a scaling approach is needed to normalize the data over time. It is important to note that the

normalizing approach depends on the type of data. For example rates, like interest rate, are already

scaled, and therefore there is no need to normalize such data, while price values have a wider range

over time and need to be scaled.
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One normalizing approach is presented here. Suppose that tji = [tji (1), t
j
i (2), . . . , t

j
i (Mj)] is

a vector of “raw" (unprocessed) historical data associated with the jth predictor. Suppose that

Qj ≤ M j is also given. Then to normalize the data we have:

y
j
i =

t
j
i

t
j
i (Qj)

, (2.3)

where t
j
i (Qj) is the Qjth value in vector tji .

In this way of normalization, the y
j
i value is a fraction of the Qth value, and is meaningful if

we believe that the pattern of such fractions over the periods 1, . . . ,Mj are drawn from the same

distribution for each predictor. Note that yji (Qj) = 1. This normalization method is applied to

every predictor that requires scaling. Then these blocks of data are placed together to construct the

normalized matrix of data, X .

To apply our method we need to “center” the data so that it has has zero mean. The mean x̄ is

estimated by averaging vectors, and then the average vector is subtracted from each observation xi

to get a zero mean data set.

Even though this normalization makes the data stationary in the mean, since financial data

are very volatile (heteroscedastic), there is no guarantee that the covariance of the data would

be stationary as well. To address this issue, we assign exponential weights (γ1, γ2, · · · , γn) to

observations, where 0 < γ < 1, to emphasize the most recent periods of data. Using an exponential

weighting approach to deal with volatility of financial data has been suggested in multiple studies

such as [53]. Then the sample covariance matrix is calculated as

Σxx =

(
1− γ

1− γk+1

)
XTdiag(γ0, γ1, · · · , γk)X, (2.4)

where diag(γ0, γ1, · · · , γk) is a diagonal matrix with (γ0, γ1, · · · , γk) as the diagonal elements.
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2.2.3 Selecting Predictors

We compute the multichannel correlation coefficient (MCCC) as a measure for selecting the

predictors. The MCCC represents correlation among more than two channels (predictors) and is

a generalization of the more familiar and commonly used concept of correlation coefficient. The

MCCC metric calculates a number associated with a set of predictor values and future stock prices,

Z. So for each collection of data sets of predictors and Z, we can calculate the associated MCCC

to see how informative they are.

To describe how we calculate the MCCC values, assume we want to form a collection called C

including future price values Z and some selected predictors. Initially we consider one predictor at

a time and future price values Z and calculate the associated MCCC metric based on the following

equation:

ζ2c = 1−
det[ΣCC ]∏K

i=1 σ
2
i

, (2.5)

where ΣCC is the covariance matrix of data in C and the σ2
i s are the diagonal values in ΣCC .

The predictor associated with the highest value of the MCCC metric is identified and permanently

added to the collection. Collection C now includes two time series: the selected predictor and

Z. In the next step, we add the not-yet-selected predictors to the collection one at a time, and

each time calculate the MCCC metric. Again, the predictor with the highest metric value will be

permanently added to C. We continue this search procedure until we have sufficient number of

predictors identified. In this study we identify the top 10 predictors. The historical data of these

predictors constitute the matrix of data, which is then used to estimate the covariance matrix as

described in (3.5).

2.2.4 Prediction Techniques

Multivariate conditional mean is known to minimize the mean squared error of the prediction

assuming normal data. However in practice, in some cases numerical complications overpower its

predictive accuracy especially when it comes to big data sets. In order to overcome this problem
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we adopt our method from the previous chapter, which exploits the properties of the mutlivari-

ate conditional mean but has dramatically better numerical conditioning. This method involves

principle component analysis and subspace filtering, described next.

Principle component analysis (PCA) is a mathematical procedure that transforms a high-

dimensional data set into a lower-dimensional set while keeping the variation in the data. PCA is

used in various fields in finance. Ince and Trafalis use kernel PCA to identify the input predictors

for their heuristic model to predict future stock prices [32]. Hotelling use PCA in determining

hedge fund strategies [30]. Other applications include [34] in market risk analysis and [35] in

Arbitrage Pricing Theory.

Subspace filtering involves the orthogonal decomposition into signal and noise subspaces based

on the singular value decomposition of the noisy signal observation [44, 45]. In our previous

chapter, we proposed a filtering operation similar to subspace filtering, which uses the principle

components to extract the information out of a data set and reduces the dimension of the problem

using a single predictor. The multivariate version of this method for big data sets involving multiple

predictors is developed in this work and results are compared to the single predictor case as follows.

Suppose that we are given the historical data of J predictors, consisting of vectors of length

Mj (j = 1, . . . , J). Using these values, we want to predict the company stock prices z. Recall that

vector z has the length equal to Θ = N −
∑J

j=1 Mj , which represents the stock values over the

next Θ consecutive trading days.

Gauss-Bayes Method

Recall that the multivariate vector xi, with length N , can be partitioned in the form

xi =

[
yi zi

]
,=

[
y1i y2i y3i · · · yJi zi

]
, (2.6)

where each y
j
i represents a vector with length Mj and vector zi has length N −

∑J

j=1 Mj where
∑J

j=1 Mj ≤ N . Each y
j
i represents historical values of predictor j over the past consecutive

trading days, months, or quarters (depending on the specific predictor).
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The covariance matrix for the random vector x can be written as

Σxx =



Σyy Σyz

Σzy Σzz


 , (2.7)

where Σyy is the covariance of y and Σzz is the covariance of z. Knowing the prior distribution of

x = [y, z], assuming Gaussian, the Bayesian posterior distribution of z given y is given by

ẑz|y = ΣzyΣ
−1
yy y

Σ̂z|y = Σzz − ΣzyΣ
−1
yy Σyz. (2.8)

The conditional covariance of z given y, Σ̂z|y, is also called the Schur complement of Σyy in

Σxx. The conditional mean [29], ẑz|y is known to minimize the mean squared error of the estimate

compared to other unbiased estimators, but in practice the numerical complications, especially

the high condition number in this setting, deteriorates the predictive power of this method. Our

proposed method overcomes this problem.

Reduced-Dimension Method

Consider the singular value decomposition (SVD) of Σxx:

Σxx = V SV ′, (2.9)

where S is a diagonal matrix of the same dimension as x with non-negative diagonal elements in

decreasing order, and V is a unitary matrix.

The “large” eigenvalues (diagonal elements of S) are called the principal eigenvalues and in

general the first few eigenvalues account for the bulk of the sum of all the eigenvalues. The corre-

sponding eigenvectors are the called the principal components.

Let L < N be such that the first L eigenvalues in S account for the bulk part of the sum of the

eigenvalues. Let VL be the first L columns of unitary matrix V , and VM,L be the fist M rows of
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VL. Our filtering operation which is mathematically resolving the noisy observation vector y onto

the subspace spanned by the principle eigenvectors (henceforth called the target subspace) can be

written as

w = Gy, (2.10)

where G is

G = (V
′

M,LVM,L)
−1V

′

M,L. (2.11)

Substituting y by w in (3.8) leads to:

ẑz|w = ΣzwΣ
−1
www

Σ̂z|w = Σzz − ΣzwΣ
−1
wwΣwz. (2.12)

As we will demonstrate later, this set of equations has a similar behavior to (3.8). At the same

time, since Σww has a much lower condition number than Σyy, the prediction results are more

numerically trustworthy.

On top of these two methods, we also demonstrate the results from the Moving Average method,

which is a common method often used by technical traders and investors [51]. The Moving Average

prediction of z is:

ẑMA =
1

KMA

N∑

i=N−KMA+1

xi (2.13)

where ẑMA is the average of prices over a short period of time or in other words the most recent

KMA price values. We will demonstrate the results in Section 2.3.
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2.2.5 Performance Metrics

Two metrics are introduced here to measure the performance of the methods: mean squared

error and directional change statistic.

Mean Squared Error

The mean squared error (MSE) measures the average squared difference between the actual

and predicted values. The mean squared error of prediction ẑ is calculated using

MSE =
1

K

K∑

i=1

‖zi − ẑi‖
2, (2.14)

where k is the number of samples used in estimating the MSE, ẑi is the prediction of zi and ‖.‖ is

the Euclidean norm.

Directional Change Statistic

This evaluation metric measures the directional change between the actual and the predicted

values. For θ = 1, 2, ...,Θ we have:

biθ =





1, if (ziθ − ztoday)(ẑiθ − ztoday) > 0

0, otherwise

(2.15)

where ẑi = [ẑi(1), ẑi(2), · · · , ẑiθ] is the price prediction for the next Θ = N −
∑J

j=1 Mj days, ztoday

is today’s stock price, and ziθ is the true price value at day θ in the future. Then Dθ, the direction

statistic for day θ, is equal to

Dθ =
1

K

K∑

i=1

biθ, (2.16)

which is a number between 0 and 1.
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2.3 Empirical Methodology and Results

The data we use in this study was downloaded from finance.yahoo.com and Kenneth R. French

Data Library [63] and is available to all researchers for free. The shortest scope of data available to

us was daily such as stock price values. We also have monthly data such as Industrial Production

Index and Personal Consumption Expenditures, and finally quarterly data such as Total Assets of

various companies (see below) and Earnings Before Tax.

The prediction results for stock price prediction of five companies from different industries are

presented in this study: Exxon Mobil Corporation (XOM), Wal-Mart Stores, Inc. (WMT), Intel

Corporation (INTC), and Caterpillar Inc. (CAT). Price data for SPDR S&P500 ETF (SPY), which

is a fund following the S&P500 index, was also included. Each data set, including the price data,

is transformed into a Hankel matrix and then centered and normalized as described earlier (see

below). We first use this matrix of data to compute the MCCC and rank the predictors. Then we

construct the data matrix for doing the prediction by putting together the blocks of data of selected

predictors.

2.3.1 Constructing Data Matrix

End-of-day stock prices for Intel Corporation and values of other daily, weekly, and quarterly

predictors were downloaded and converted into Hankel matrices as described below. The historical

data for each predictor is transformed into a Hankel matrix with K samples (rows), each of length

Mj , as shown here:




t
j
1

t
j
2

...

t
j
K




=




t
j
1(1) t

j
1(2) · · · t

j
1(Mj)

t
j
2(2) t

j
2(3) · · · t

j
2(Mj + 1)

· · · · · · · · · · · ·

t
j
k(K) t

j
k(K + 1) · · · t

j
k(K +Mj − 1)




,

where t
j
i (1) represents the first data point in sample i for predictor j. This is one block of the data

matrix, before normalization and centering.
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For predictors that require normalizing, we first normalize each row (observation) by the Qth

entry as described earlier. Then we put all the blocks in one matrix and subtract the average

vector from each row. We set Qj = Mj for all blocks. Note that yji (Mj) = 0 for all rows

i = 1, 2, . . . , K. Therefore, we remove the entire Mjth column. Henceforth, the data matrix X

represents normalized and centered price data. To address the volatility of the data, the exponential

weighted average is implemented with γ = 0.985.

As discussed before, MCCC was used to rank the predictors. The top 10 predictors were added

to the matrix of data one by one, to investigate the effect of adding multiple predictors on the

performance metrics. We investigate the results associated with different values of Mj for the

historical price block which we will henceforth call Mprice to investigate the effect of the length

of the price observation vector on the results. For all other blocks, Mj = 20 was chosen for the

purpose of this experiment.

2.3.2 MSE Performance

We implement our proposed prediction method for each data set constructed above. The Gauss-

Bayes and Moving Average results are also reported for comparison. We implement our Reduced-

Dimension technique for various values of L, the number of principal eigenvalues. The plots

illustrating the performance of the method are based on Intel Corporation price data. The results

reported in this section are based on K = 1000 samples.

Fig. 2.1 shows the MSE values averaged over the next 10 days of prediction for the Reduced-

Dimension (RD) and Moving Average (MA) methods. The values associated with Reduced-

Dimension method are presented for both the single predictor (SP) case and the multiple predictors

(MP) case. Moving Average values are calculated over the most recent 10 days of observation.

The horizontal axis shows the length of Mprice. The plot on top, which is almost flat, belongs to the

Moving Average method. The next plot corresponds to our Reduced-Dimension method with only

historical prices as the predictor, and the next plots correspond to cases where three, five, seven,

and nine predictors are included in the matrix of data (including historical price data).
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Figure 2.1: MSE values for different methods of prediction for different numbers of predictors. MA: ...,
RD-SP: −., RD-MP: Solid lines.

As we can see in Fig. 2.1, in general by increasing Mprice the performance improves. Adding

other predictors also gradually improves the performance of the Reduced-Dimension method as

well up to a certain point.

The plots in Fig. 2.1 suggest that in this case the best number of predictors is approximately

seven. By adding more predictors, the performance starts deteriorating. At this point adding more

predictors is actually adding noise and the MSE values get worse. MSE values corresponding

to Gauss-Bayes are not included in Fig. 2.1 because those values are much bigger than to other

methods.

To better investigate the effect of adding predictors, Fig. 2.2 shows the relative percentage of

improvement (RPI) in MSE, based on (2.17) below for the case with only historical price values as

predictor (MSESP), compared to the case with multiple predictors (MSEMP):

RPIMP/SP =
−100(MSEMP − MSESP)

MSEMP
. (2.17)

So, the value of RPIMP/SP is the relative increase in the MSE when going from MP to SP (relative

to MP and expressed as a percentage).
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Figure 2.2: RPI for Reduced-Dimension method by adding predictors subject to two upper limits on con-
dition number of the covariance matrix. Top: Condition number < 104 and Bottom: Condition number
< 1011.

Recall that since Σww has a much lower condition number than Σyy, the prediction results of

Reduced-Dimension method are more numerically trustworthy than Gauss-Bayes. To demonstrate

the effect of the condition number of Σww on the performance of the method, the two individual

figures (sets of axes) depicted in Fig. 2.2 correspond to two different upper limits on condition

number of the covariance matrix Σww. The top figure, which corresponds to an upper limit of

104, shows that using five predictors is better than using three but adding more predictors does not

improve the performance. In this setting, the target subspace (with dimension L) is small and the

small subspace dimension limits the amount of information that can be exploited by adding more

predictors. After some point, adding more predictors does not add more exploitable information

but does add more noise. By increasing the upper limit on condition number, the target subspace

becomes bigger. As a result, incorporating more predictors provides more information and the

performance improves. This is well illustrated in the bottom figure in Fig. 2.2, which shows that

using seven predictors gives the best performance relative to all the graphs shown there.

Once we increase the upper limit on the condition number, the MSE values improve up to 85%,

which is for the case with seven predictors. Beyond this point, no additional information can be
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Table 2.1: Improvement in MSE values in Reduced-Dimension method compared to other methods for
different companies for condition number limited to 104, Mprice = 210.

MSE RIPMP/GB RIPMP/MA RIPSP/GB RIPSP/MA

INTC >100% 61% >100% 42%
XOM >100% 60% >100% 30%
CAT >100.% 64% >100% 33%

WMT >100.% 67% >100% 35%
SPY >100% 63% >100% 37%

Table 2.2: Best number of predictors based on RIP in Reduced-Dimension method for different companies
for condition number limited to 104, Mprice = 210.

Stock Best Number of Predictors
INTC 7
XOM 5
CAT 6

WMT 6
SPY 7

exploited from adding more data. Doing so effectively only adds noise, resulting in a decrease in

the predictive power.

Table 2.1 shows the percentage of improvement in MSE values for five different companies for

our Reduced-Dimension method compared to Moving Average (RPIMP/MA, RPISP/MA) and Gauss-

Bayes (RPIMP/GB, RPISP/GB) methods. As we can see, the Reduced-Dimension method with multi-

ple predictors consistently shows better performance. We investigated the effect of including one

to ten predictors in each case. Table 2.2 shows the best number of predictors for predicting the

prices of six companies. The values do not not differ by much, confined to be between 5 and 7.

2.3.3 Target Subspace Dimension

Recall that L represents the number of eigenvalues required from the diagonal matrix S to

represent the bulk of the information carried in X . It is also the dimension of the target subspace.

Fig. 2.3 plots the value of L corresponding to the best MSE for different numbers of predictors,

subject to two different upper limits on the condition number, 104 in the top diagram and 1011 in

the bottom diagram (the same as in Fig. 2.2). In other words, Fig. 2.3 investigates the dimension

of the target corresponding to the best MSE for different numbers of predictors.
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Figure 2.3: L corresponding to best MSE values subject to an upper limit on condition number of the
covariance matrix Top: Condition number < 104 and Bottom: Condition number < 1011. RD-SP: −.,
RD-MP: Solid lines.

As the upper limit on the condition number increases, the MSE improves as we add predictors,

and we need a bigger subspace, bigger L, to exploit the information. It is important to notice that

the value of L corresponding to the best performance is typically a small fraction of the size of the

original subspace, which is
∑J

j=1 Mj .

2.3.4 Directional Change Statistic Performance

Fig. 2.4 shows the directional change statistic values averaged over the next 10 days of predic-

tion. Unsurprisingly, the directional change statistic in the Reduced-Dimension method improves

as Mprice increases, and as we add predictors to a certain point. The best number of predictors,

similar to the MSE case, is seven in this plot. The Reduced-Dimension method is also superior to

the other two methods, Moving Average and Gauss-Bayes.

Table 2.3 shows the directional change statistic values for different companies. As we can see,

the results are consistent for all stocks: the Reduced-Dimension method shows the best perfor-

mance. It is important to note that the values in Table 2.3 uses the number of predictors associated

with best MSE values for the specific company, as represented in Table 2.2, and the same Mprice

for all different cases. In other words, the number of predictors was tuned to MSE and not to the
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Figure 2.4: Directional Statistic. MA: ..., GB: − ∗ −, RD-SP: −.−, RD-MP: Solid lines.

Table 2.3: Directional change statistic for different companies for condition number limited to 104, Mprice =

210.

Stock MP SP GB MA
INTC 0.83 0.72 0.53 0.50
XOM 0.84 0.69 0.50 0.54
CAT 0.87 0.68 0.51 0.55

WMT 0.82 0.73 0.50 0.51
SPY 0.81 0.71 0.51 0.53

directional change statistic. Of course, in practice the number of predictors should be tuned to

the specific performance metric of interest. For example, for SPY, six predictors will result in a

directional change statistic value that is 0.82 for our Reduced-Dimension method, which is better

than the value in the Table 2.3.

2.4 Conclusion

In this work we investigated the effect of using multiple predictors in predicting future price

values. The proposed method was illustrated based on predicting daily price data for different

companies. The historical data for multiple predictors were downloaded and normalized. The

multichannel correlation coefficient was used to select the top predictors for each company. To

address the volatility of financial data, an exponential weighting approach was used to track the

covariance matrix over time. To do the prediction, we used a filtering operation to extract the

information based on principal components. We evaluated our method based on mean squared error
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and directional change statistic, and the best number of predictors was identified for each company.

The proposed method shows superior performance compared to the conditional mean predictor and

the Moving Average method based on both metrics. We also showed the quantitative improvement,

for different companies, in the prediction performance when using multiple predictors compared

to using only a single predictor, price.

2.5 Data Availability Statement

The data that support the findings of this study are openly available in Yahoo Finance at

https://finance.yahoo.com/ and Kenneth R. French Data Library [63].
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Chapter 3

Matrix Completion and Stock Price Prediction56

3.1 Introduction

Matrix completion has application across various fields, such as climate change, image pro-

cessing, biology, etc. Negahban et al. [64] analyze the nuclear norm relaxation for a general class

of noisy observation models, and obtain non-asymptotic error bounds on the Frobenius norm that

hold under high-dimensional scaling, and are applicable to both exactly and approximately low-

rank matrices. They argue that their proposed method is suitable for different sets of data including

financial time series. Athey et al. [65] propose a new approach that estimates the original (incom-

plete) matrix with lower complexity according to a matrix norm, where they consider the family

of Schatten norms based on the singular values of the matrix. They demonstrate the performance

of their method using daily return data for different stocks over a 10 year period.

Matrix completion involves filling in the missing entries in a matrix of data. Most of the time,

the matrix we wish to recover has a low rank. One approach to solve a matrix completion problem

is to minimize the rank of the matrix.

Assume X is the matrix we are trying to recover with observed values indexed by the set Ω,

where Ω = {i, j : Xi,j is observed}, The rank minimization problem is formulated as

minimize rank(Z)

subject to Zij = Xij, ij ∈ Ω

(3.1)

where Z = [Zi,j] is an unknown matrix. The rank minimization problem is a NP- hard [66].

To solve the problem, some relaxation approaches have been proposed. One of the most popular

approaches is minimizing the nuclear norm

5This chapter is under review for publication

6The chapters are written in a way that they are self-contained
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minimize ‖Z‖∗

subject to Zij = Xij, ij ∈ Ω,

(3.2)

where ‖Z‖∗ is the nuclear norm of the matrix Z and is equal to the sum of its singular values. It

turns out that other than being convex, the nuclear norm is the tightest convex approximation of

rank [66].

In real applications, the observed entries may be noisy, and the equality constraint in (3.2)

will be too strict, resulting in over-fitting. Therefore, the following relaxed form of (3.2) is often

considered for matrix completion with noise:

minimize
1

2
‖PΩ(X)− PΩ(Z)‖

2
p + λ‖Z‖∗, (3.3)

where PΩ(X) is the operation of projecting matrix X to the space of all matrices with nonzero

elements restricted in Ω. Note that PΩ(X) = PΩ(Z) if and only if Xi,j = Zi,j , i, j ∈ Ω. The

parameter λ controls the rank of X , and the selection of λ should depend on the noise level [67].

There are different optimization algorithms to solve problem (3.3). Cai et al. [68] developed a

singular value thresholding operator followed by an iterative singular value thresholding algorithm

to solve the above problem. Different algorithms have been developed based on operator developed

in [68] for different problems. Two of the most popular techniques are the Proximal Gradient

method and the Augmented Lagrangian method. The Proximal Gradient method is very useful to

solve norm-regularized maximum-likelihood problems, while the Augmented Lagrangian method

provides a powerful framework to solve convex problems with equality constraints [67].

Since matrix completion recovers missing and/or noisy observations, it also provides a potential

prediction method, which has received recent interest. Agarwal et al. [69] propose a principled, ro-

bust algorithm with provable guarantees that produces predictions in the presence of missing/noisy

data. Their algorithm first “de-noises” the data via singular value thresholding and then learns a

relationship between the rows of the estimated low rank matrix through linear regression.
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Gillard and Usevich [70] consider the low-rank matrix completion problem, with a specific

application to prediction in time series analysis. They consider a matrix completion problem for

Hankel matrices and a convex relaxation based on the nuclear norm. Based on new theoretical

results and a number of numerical and real examples, they investigate the cases in which the pro-

posed approach can work.

A simple algorithm to solve (3.3) is obtained first by assuming X̂ = UDV
′

. Then Ẑ is up-

dated by USλ(D)V
′

, where Sλ is a soft-thresholding operator [71], which replaces each diagonal

elements of D with (Dii − λ). Mazumder et al. [72] then propose an iterative algorithm called

Soft-Impute based on this concept with decreasing values of λ. We use a slightly modified version

of this algorithm in our proposed setting.

Forecasting financial time series using Matrix Completion methods is a topic that has not re-

ceived a lot of attention in the literature to the best of our knowledge. In this work we show the

performance of the above mentioned algorithm to predict future stock price values. We compare

the results of the matrix completion algorithm to a reduced dimension method constructed based

on principal components. We compare the numerical results in terms of computational complexity,

root-mean-squared error (RMSE) and change statistics of prediction.

3.2 Theoretical Methodology

3.2.1 Proposed Framework

Suppose that we have K samples of vector data, each of length N . Call these row vectors

x1, x2, ..., xK , where each xi ∈ R
N(i = 1, ..., K) is a row vector of length N and is a sample of

end of day price values for N consecutive days:

xi =

[
xi1 xi2 · · · xiN

]
. (3.4)

We can stack these vectors together as rows of a K ×N matrix. Suppose that we are now given a

new row (row K + 1) for which we only have the first M data points, where M < N . We wish to
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use the information we have so far to estimate the future values for day M + 1 to N in row K + 1.

The matrix below is a representation of the data matrix together with the new sample in row K+1.

X =




x11 · · · x1(M+1) · · · x1N

x21 · · · x2(M+1) · · · x2N

· · · · · · · · · · · · · · ·

xK1 · · · xK(M+1) · · · xKN

x(K+1)1 · · · x(K+1)(M+1) · · · x(K+1)N




.

The first M data points in each row of X represent the values of end-of-day price data. In

terms of the matrix completion problem, the part we plan to predict, x(K+1)(M+1) to x(K+1)N , are

the missing values, and the rest of the above matrix are the observed data points, Ω.

To implement a matrix completion algorithm, first we need to normalize the data. We divide

each row by its Qth entry, and then subtract the row-average vector from each row to get zero mean

data.

In order to address the heteroscedasticity of financial data we also assign exponential weights

to observations. The matrix of data in the objective functions in equations (3.1), (3.2), and (3.3)

is replaced with diag(γ
n

2 , · · · , γ
1

2 , γ
0

2 )X , where diag(γ
n

2 , · · · , γ
1

2 , γ
0

2 ) is a diagonal matrix with

(γ
n

2 , · · · , γ
1

2 , γ
0

2 ) as diagonal elements with 0 < γ < 1.

Σxx =

(
1− γ

1− γk+1

)
XTdiag(γ0, γ1, · · · , γk)X, (3.5)

where diag(γ0, γ1, · · · , γk) is a diagonal matrix with (γ0, γ1, · · · , γk) as the diagonal elements.

3.2.2 Estimation Techniques

Based on the proposed framework we compare two methods of estimation for future price

values.

47



Iterative thresholding

As mentioned above, points x(K+1)(M+1) to x(K+1)N are missing in matrix X . For iteratively

solving the problem, we assume 0 as the initial value for the missing points, and then we implement

a modified version of Soft-Impute algorithm proposed by [72]. Remember Sλt
notation is the soft-

thresholding operator. Here is the algorithm we use in this study:

assume: Z0 = 0

then for λ1 ≻ λ2 ≻ ... ≻ λT

we have: Zt = Sλt
(Zt−1)

continue until the stopping criterion is met.

In other words, a series of λ values are used in decreasing order, and the outcome of each step

is used as the starting point for the next step. A smaller λ results in a lowering of the importance

of the rank term in the objective function, so in each iteration we are actually increasing the rank

of the resulting matrix.

Reduced-Dimension

The Reduced-Dimension method was introduced in the previous chapter as an alternative to

multivariate conditional mean to predict future stock price values. Principal component analysis is

a dimensionality reduction method which is used in various fields including finance [32, 30, 35].

Reduced dimension method is a filtering operation based on principal components that extracts the

information out of a data set and reduces the dimension of the problem.

Assume the vector xi is a multivariate random vector that can be partitioned in the form

xi =

[
yi zi

]
, (3.6)

where yi has length M and zi has length N −M . The covariance matrix for the random vector x

can be written as

Σxx =



Σyy Σyz

Σzy Σzz


 , (3.7)
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where Σyy is the covariance of y and Σzz is the covariance of z. Knowing the prior distribution of

x = [y, z], the Bayesian posterior distribution of z given y is

ẑz|y = ΣzyΣ
−1
yy y

Σ̂z|y = Σzz − ΣzyΣ
−1
yy Σyz. (3.8)

Consider the eigen-decomposition (or, alternatively, the singular-value decomposition (SVD))

of Σxx:

Σxx = V SV ′, (3.9)

where S is a diagonal matrix of the same dimension as x with non-negative diagonal elements in

decreasing order, and V is a unitary matrix. Let L < N be such that the first L eigenvalues in S

account for the bulk part of the sum of the eigenvalues. Let VL be the first L columns of unitary

matrix V , and VM,L be the first M rows of VL. Our filtering operation which is mathematically

resolving the noisy observation vector y onto the principle subspace can be written as

w = Gy, (3.10)

where G is

G = (V
′

M,LVM,L)
−1V

′

M,L. (3.11)

Substituting y by w in (3.8) leads to:

ẑz|w = ΣzwΣ
−1
www

Σ̂z|w = Σzz − ΣzwΣ
−1
wwΣwz. (3.12)

This set of equations have a similar behavior to (3.8) and since Σww has a much lower condition

number compared to Σyy, the prediction results are more trustworthy.
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Table 3.1: Computational complexity for different matrix operations

Operation Complexity Algorithm
A× B O(nnmp) Schoolbook matrix multiplication ([73])
C−1 O(n3) Gauss-Jordan elimination ([74])

SVD (A) O(nmn2

) Bidiagonalization and QR algorithm

We compare the numerical results from these two methods first based on computational com-

plexity of the estimation. Then we present plots for RMSE and change statistics.

3.2.3 Performance Metrics

Computational complexity

Computational complexity answers the simple question: how much computational resources

are required to do a series of computations? Since computing the exact answer to this question is

not always feasible, or justifiable, the asymptotic complexity is often discussed instead.

Asymptotic computational complexity We are often interested in functions rate of growth

rather than their exact behavior. The rate of growth is often indicated using O(n) notation [73].

Assume A, B, and C are matrices with sizes n×m, m× p, and n× n. Table 3.1 summarizes the

computational complexity for various matrix operations, which we will use to calculate the overall

complexity of the previous schemes.

We compute the asymptotic computational complexity of the previous two methods. In the

Reduced-Dimension we have:

ẑRD = ΣzwΣ
−1
www (3.13)

where w = Gy and, G = (V
′

M,LVM,L)
−1V

′

M,L, so we have:

ẑRD = ΣzwΣ
−1
ww(V

′

M,LVM,L)
−1V

′

M,Ly. (3.14)
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Using Table 3.1 as reference, the asymptotic complexity of the Reduced-Dimension (ACCRD)

method is summarized as:

ACCRD = O
[
KN2 +N3 + L2(3M) + L(M2 +M(N −M) +M + 2(N −M) + 2L3

]

(3.15)

which, assuming K ≫ N , ultimately simplifies to O(KN2).

For Soft-Impute, we have:

ẑSI = US∗V T . (3.16)

Assuming this operation is done Niter times, based on table 3.1 for the Soft-Impute we have:

ACCSI = O
[
KN2 +N +KL2 + L2N

]
×Niter, (3.17)

which similar to Reduced-Dimension is equivalent to O(KN2) × Niter. We estimate Niter to

be a linear function of N , meaning we can write the computational complexity of this method

as O(KN3). We can conclude that Soft-Impute has higher computational complexity than the

Reduced-Dimension.

Empirical computational complexity Another way to compare the computational complexity

of the two methods is by looking at empirical computational complexity, i.e., the amount of time

required for each algorithm to complete. First we need a stopping criterion for the Soft-Impute.

The stopping criterion used in this study is given by (3.18). Based on this criterion, the algorithm

continues to iterate until the normalized improvement in a new iteration is less than a pre-specified

threshold, relative to the improvement achieved in the first iteration. Once the threshold, ε, is

reached, we assume the algorithm has converged.

∥∥ẑSIt − ẑSIt−1

∥∥
‖ẑSI2 − ẑSI1‖

< ε (3.18)
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Figure 3.1: Number of iterations for Soft-Impute for different thresholds, 10−1 (at the bottom), 10−2, 10−3,
10−4, and 10−5 (on top).

where ẑSIt is the prediction from Soft-Impute at iteration t.

3.3 Numerical Results

To illustrate and evaluate the matrix completion approach and to compare it with the Reduced-

Dimension, the historical price data for General Electrics was downloaded from Yahoo Finance7.

The raw data was transformed into four Hankel matrices with different lengths. We use the values

60, 180, 300 and 420 for M . The data in each matrix was then normalized, centered, and expo-

nentially weighted (γ = 0.985). The results in this sections are based on averaging over 1000

observations.

Empirical computational complexity

Figure.3.1 shows the number of iterations in the SoftImpute algorithm for five different thresh-

olds: 10−1, 10−2, 10−3, 10−4, and 10−5.

As the plot shows, the smaller the threshold value, the higher the number of iterations. Also

the larger the value of M , the higher the number of iterations required before stopping. As we will

show later, the performance of the method improves with bigger M values.

7https://finance.yahoo.com/quote/GE/history/
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Figure 3.2: Solid line: Execution time for Soft-Impute for different thresholds,10−1 (at the bottom), 10−2,
10−3, 10−4, and 10−5 (on top). *: Execution time for Reduced-Dimension.

As we mentioned earlier, we measure the empirical computational complexity based on the

amount of time it takes to generate a prediction for each observation. Having determined how

many iterations it takes based on each threshold and value of M , we now investigate the amount of

time required to get to that point. Figure 3.2 shows the amount of time required for each algorithm

to run for a single prediction.

As the plot shows, for Soft-Impute, as the thresholds gets smaller we need more iterations

which results in more amount of time. That is also the case when M gets bigger which is consistent

with Fig 3.1. The execution time associated with Reduced-Dimension is presented in Figure.3.2

and as we can see is significantly smaller than the other method since fewer number of iterations

requires less amount of time. The difference between the two methods efficiency becomes more

obvious important when we consider performance metrics associated with different thresholds in

the Soft-Impute.

RMSE

To compare the performance of the methods described above, next we consider RMSE, which

is one of the most important metrics in prediction performance. Figure.3.3 shows the RMSE of the

two different methods. As we can see, the Soft-Impute has relatively low RMSE values. Recall as

the threshold gets smaller, more iterations are required. At the same time, more iterations result
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Figure 3.3: Solid line: RMSE for Soft-Impute for different thresholds, 10−1 (at the bottom), 10−2, 10−3,
10−4, and 10−5 (on top).*: RMSE for Reduced-Dimension.
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Figure 3.4: λ for Soft-Impute for different thresholds, 10−1 (on top), 10−2, 10−3, 10−4, and 10−5 (at the
bottom).

in smaller RMSE values. Although the RMSE values associated with Soft-Impute are fairly small,

the RMSE values from Reduced-Dimension is much smaller, which means Reduced-Dimension is

superior in terms of RMSE.

Dimension of the Subspace

Remember Soft-Impute algorithm uses a series of λ values in decreasing order and in each step

by choosing a smaller λ, the rank of the resulting matrix increases. The λ values associated with

Figure.3.5 are demonstrated in Figure.3.4. As M gets larger, more iterations are involved and the
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Figure 3.5: Solid line: Best L for Soft-Impute for different thresholds, 10−1 (at the bottom), 10−2, 10−3,
10−4, and 10−5 (on top).*: Best L for Reduced-Dimension.

value of λ increases.

Remember L represent the first L eigenvalues or diagonal elements of S, so we can look at the

L values associated with each λ. As λ increases, the rank of the resulting matrix increases, more

eigenvalues are included in the algorithm and the associated L increases as well. As M gets larger,

there is more information to extract, and a larger subspace is needed.

Change statistics

In applications involving stock-price data, other than predicting the actual future values, pre-

dicting the direction of the change in the price values is also very important [47]. We use the change

statistic as a metric to measure the ability of the Soft-Impute and Reduced-Dimension algorithms

in predicting correct directions of change in the price values.

This evaluation metric measures the direction of change between the actual and the estimated

values. For j = 1, 2, ..., N −M we define biθ as:

biθ =





1, if (zij − ztoday)(ẑij − ztoday) > 0

0, otherwise

(3.19)
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Figure 3.6: Change statistics for Soft-Impute for different thresholds, from 10−1 at the bottom to 10−5 on
top.

where ztoday is stock price for today, and zij is the true price. Then Dj , the change statistic for day

j, is equal to

Dj =
1

K

K∑

i=1

bij, (3.20)

which is a number between 0 and 1.

Figure.3.6 demonstrates the results for this metric. As we can see, as M gets larger, the per-

formance of both methods improve. For Soft-Impute, different thresholds do not make much of a

difference in terms of this metric, so if the direction of the market is the main focus of the predic-

tion using Soft-Impute, then a bigger threshold is recommended since it requires fewer iterations

and ultimately less time to execute. As the Figure.3.6 shows, although Soft-Impute shows good

performance especially for larger M values, the Reduced-Dimension shows significantly better

performance which ultimately makes this method a better candidate in estimating future price val-

ues.

3.4 Conclusion

In this work we investigated an iterative matrix completion method called Soft-Impute to es-

timate future price values. This method shows good performance in terms of different metrics.
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We compared the Soft-Impute to Reduced-Dimension, a method based on principal components.

The Reduced-Dimension shows superior behavior in terms of empirical computational complexity.

The performance of both methods is close when it comes to RMSE and change statistics, with a

slight advantage in favor of Reduced-Dimension.

Although matrix completion has received considerable attention in the past few years, inves-

tigating the power of this group of methods as estimators for prediction, weather in finance or in

other application domains, remains to be fully explored.
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