
 

 

THESIS 

 

FIELD-BASED APPROACHES TO CHARACTERIZING LONG-TERM 

INDOOR ENVIRONMENTAL QUALITY IN HOMES 

 

Submitted by 

Andrew Purgiel 

Department of Civil & Environmental Engineering 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Spring 2022 

 

Master’s Committee: 

 Advisor: Ellison Carter 

 Jens Blotevogel 
Tami Bond



 

 

 

 

 

 

 

 

 

 

Copyright by Andrew Purgiel 2022 

All Rights Reserved



 

ii 

ABSTRACT 
 

 

FIELD-BASED APPROACHES TO CHARACTERIZING LONG-TERM 

INDOOR ENVIRONMENTAL QUALITY IN HOMES 

 

 

The overall goal of this research was to evaluate the performance of energy and indoor environmental 

quality (IEQ) metrics for future use in impact evaluations of residential energy efficiency upgrades. 

Analysis focused on the temporal representativeness, spatial representativeness, and spatial specificity 

of indicators, with an aim to answer the questions: 

1. To what extent do shorter-duration measurements of indoor environmental quality (IEQ) 

indicators characterize long-term trends observed in daily IEQ conditions within a sampling 

location? 

2. To what extent do single-zone measurements of IEQ indicators in a home characterize multi-

zone IEQ conditions within the home? 

3. What specific information is gained by measuring IEQ in more than one room within a home? 

The spatial and temporal patterning of indoor environmental quality (IEQ) metrics were observed using 

commercial-grade IEQ sensors in the living room, bedroom, kitchen, garage, and outdoors for 15 owner- 

and renter-occupied single-family homes in the City of Fort Collins, Colorado. Indicators of IEQ, 

including: fine particulate matter (PM2.5), a measure of total volatile organic compounds (TVOC), carbon 

dioxide (CO2), temperature (T), relative humidity (RH), light, noise, and energy use were monitored 

continuously in each home for six to ten months.  
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The number of hours for which valid IEQ sensor data were recorded from indoor locations (bedroom, 

kitchen, and living rooms) ranged from 3,248 hours (136 days) to 7,507 hours (315 days), with a median 

of 6,589 hours (275 days) across all homes. Time weighted hourly average values of indoor 

concentrations, pooled across all homes, were calculated over the entire study period for PM2.5 (mean: 

8.2 μg/m3, standard deviation: 27.0 μg/m3, coefficient of variation: 3.27), TVOC (mean: 340 ppb, 

standard deviation: 377 ppb, coefficient of variation: 1.11), and CO2 (mean: 749 ppm, standard 

deviation: 364 ppm, coefficient of variation: 0.49).  

Seasons were defined by daily participant heating and cooling behaviors. These behaviors were 

measured using one-minute resolution energy use data from heating (e.g., furnace) and cooling (e.g., air 

conditioning) devices within each home. Overall, median PM2.5, TVOC, and CO2 concentrations were 

lower in the heating season than in the cooling and shoulder seasons. Ranges of indoor PM2.5, TVOC, and 

CO2 concentrations were comparable between seasons. 

Hour-of-day average trends of PM2.5 suggested cooking activities in the kitchen were significant sources 

of PM2.5 in most homes. Average PM2.5 concentrations increased at similar hours of the day between 

living rooms, kitchens, and bedrooms. Bedroom and living room evening peaks (around 6pm) yielded 

lower PM2.5 concentrations, on average, compared to kitchen evening peaks. Hour-of-day average TVOC 

trends in kitchens and living rooms displayed evening peaks that were likely attributed to garage sources 

or increased indoor participant activity (i.e., cooking and cleaning). Correlations between PM2.5 hourly 

concentrations recorded in the garage and those recorded in indoor rooms were observed to vary with a 

predictable pattern throughout the day. If future studies investigated drivers and determinants of this 

garage-to-indoor relationship, we may expect to discover more on the mechanisms of infiltration of 

PM2.5 and other pollutants from garages and outdoor areas into living spaces. 
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The extent to which in-home hourly PM2.5, TVOC, and CO2 samples (sampling periods ranging from one 

day to fourteen days in all three seasons) represented IEQ conditions over a long-term (six- to ten- 

month) period was evaluated. This evaluation was performed using a measure defined as time-

structured temporal representativeness. This measure quantifies how well the average hour-of-day 

structure for a long-term monitoring period is characterized by data from a shorter sampling period (i.e., 

how representative the shorter sampling period is). A threshold value was defined to identify when a 

sample is considered representative. Temporal representativeness of samples increased with sample 

length. Depending on the season, 80 to 91% of three-day PM2.5 samples and three-day TVOC samples 

were considered representative. Representativeness of PM2.5 and CO2 samples varied by season. 

Analysis suggested practitioners sampling IEQ indicators can be confident in the time of day at which 

PM2.5 or TVOC peaks occur on a “typical” day, based on three-day samples; CO2 samples may require 

longer lengths. Even if resources are only available to sample for one day, our analysis suggested the 

time structure of a PM2.5 sample (i.e., the hour(s) when concentration peaks during the day) has a high 

likelihood of being representative of a “typical” day; however, this likelihood may vary depending on 

sampling season. 

The measure of spatial representativeness of IEQ samples was defined in the current study to evaluate 

how well data gathered from a sampling location (a room) captures trends and magnitudes that 

characterize average conditions within the larger location of interest (the home). The complementary 

measure of spatial specificity was used to evaluate how well data recorded in a room captures trends 

and magnitudes that are not captured by samples recorded in other sampling locations within the home 

(i.e., how specific or unique the room’s data are). In most homes, PM2.5, TVOC, and CO2 data recorded in 

bedrooms were the most specific of all three indoor rooms (bedroom, living room, and kitchen), but the 

least representative. These results suggest that if practitioners are aiming to observe the full range of 

IEQ variability between living spaces, and they are only able to install IEQ sensors in two rooms within a 
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home, the bedroom should be one of the rooms sampled. However, the data gathered from the 

bedroom may only be applicable if conditions within the bedroom are of interest. Relationships 

between room, spatial representativeness, spatial specificity, and other variables, such as distance 

between rooms and HVAC structure, could be explored to discover why between-room variability is 

higher in certain homes compared to others. Understanding these relationships would help practitioners 

estimate how many sensors are needed within a home to characterize IEQ conditions within living areas, 

given building characteristics and the focus of the sampling campaign. 

This study was conducted in partnership with the Epic Homes program, the purpose of which is to 

improve the energy efficiency of Fort Collins homes (while also improving the health and well-being of 

residents) by offering technical and financial assistance for home energy efficiency upgrades. Findings 

have implications for those aiming to develop best practices when taking short samples of IEQ indicators 

in homes, whether they be energy efficiency practitioners determining the impacts of residential 

upgrades or researchers considering IEQ impacts on occupant health. 
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1. Introduction 
 

 

Exposure to pollutants in outdoor and indoor air, including gases and aerosols, contribute to national 

burden of disease (Szigeti et al., 2017). Lack of thermal comfort, generally measured by appropriate 

indoor temperature and relative humidity, has also emerged as a concern for residential physical and 

mental health (E4 the Future, 2016; Hayes et al., 2020; International Energy Agency, 2014; Vermont 

Energy Investment Corporation, 2019; Wilson et al., 2016; World Health Organization, 2018). Indicators 

of indoor air quality (IAQ) and thermal comfort together comprise indicators of indoor environmental 

quality (IEQ). IEQ-related variables and their associated health effects are important to study, as people 

spend a significant amount of time indoors. Gathering data from 1992 to 1994 from U.S. respondents 

(n= 9,386), the National Human Activity Pattern Survey found on average, 87% of people’s time was 

spent in enclosed buildings; most of this (69% of overall time) was spent in residences (Klepeis et al., 

2001). Similarly, in more recent data collected in 2010-2011 from 5,011 Canadian respondents (infants 

and children were over-sampled because they are a common focus in risk assessment), the Canadian 

Human Activity Pattern Survey 2 found an average of 89% of respondents’ time was spent indoors, with 

70% of total time spent at home (Matz et al., 2014). 

Opportunities to make changes to homes, once built, are limited. Retrofits and upgrades that focus on 

improving energy efficiency are one potential inroad to homes. Homes in the U.S. account for 

approximately 20% of national energy consumption, which motivates programming to increase 

residential energy efficiency. At the same time, lowering energy costs for low-income households has 

been a long-standing goal at federal, state, and local levels through programs such as the 

Weatherization Assistance Program (WAP) (U.S. Department of Energy, 2022). Reducing greenhouse 

emissions generated from the heating and cooling of homes is one of the drivers for these programs. 
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Another driver is reducing energy burden (the amount of money going toward energy bills) for low-

income residents (Tonn et al., 2018). High energy burden is an issue that is prevalent nationwide, 

including in Colorado. Fisher Sheehan & Colton (2020) provided analysis on energy burden for U.S. 

residents. Their analysis was based on American Community Survey data from the U.S. Census Bureau 

and a county-by-county model that accounts for energy use, housing/residential characteristics, and 

climate. Fisher Sheehan & Colton (2020) estimated that Colorado residents living at or below the 

poverty line spend 12 to 22% of their monthly income on home energy bills. 

Indoor environmental quality (IEQ) and home energy use impact the social, physical, and financial well-

being of residents. Increasingly, relationships and interactions between IEQ and home energy use are 

documented – e.g., inadequate IEQ, high energy use, and poor resident health – are becoming more of a 

concern (Becchio et al., 2018; Hayes et al., 2020). There is a growing demand to characterize and 

quantify a broader set of impacts that may arise from energy efficiency upgrades (Broderick et al., 

2017). Original metrics used to evaluate WAP-funded programs through the 1990 National Evaluation of 

the Weatherization Assistance Program focused on energy savings for occupants and cost effectiveness 

for organizations administering the funding (Oak Ridge National Laboratory, 1990). There have been 

many follow-up retrospective evaluation studies sponsored by the Department of Energy since then; 

however, indoor environmental quality, exposure, and health-related impacts of weatherization 

programs are notably absent from these extensive evaluation efforts (U.S. Department of Energy & Oak 

Ridge National Laboratory, 2010). One barrier to monitoring and evaluating a more diverse set of non-

energy impacts is the limited guidance on how to measure indoor environmental quality and energy use 

in homes to evaluate the “health” of these homes (Wei et al., 2020). Studies also often overlook, or are 

not able to adequately track, the behaviors of those living within the home. These resident behaviors 

can impact a home’s IEQ and energy use.  
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The development of a rating system or framework for evaluation and relative comparison that 

incorporates IEQ and energy use metrics (related to both home characteristics and resident behavior) 

would be beneficial for practitioners who are looking to evaluate and improve homes for the sake of 

resident health. Establishing such a framework requires identification and definition of metrics to be 

used within the framework. These metrics must be resource-efficient and must effectively capture 

meaningful variability in IEQ and energy use data for the purpose of placing a home on an index or 

within a scoring framework. To this end, we conducted a year-long study in single-family homes in Fort 

Collins, Colorado to evaluate the performance of energy and IEQ metrics for future use in impact 

evaluations of residential energy efficiency upgrades.  
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2. Literature Review 
 

 

2.1. Evaluation of Home Energy-Efficiency Upgrades 

A framework for rating non-energy impacts associated with energy efficiency upgrades could help 

standardize evaluation of a broad spectrum of upgrades that are commonly installed in homes across 

the United States and other countries. Examples of such upgrades are listed in Table 1.  

Such a framework could be comprehensive by including non-energy impacts, or benefits (often called 

co-benefits in air quality literature) of energy efficiency upgrades. However, both the scientific research 

enterprise and the practice of residential energy efficiency upgrades lack frameworks that include 

indoor environmental quality (IEQ) indicators together with measures of energy efficiency performance.  

Scientific studies that evaluate energy efficiency upgrades using energy use or impacts on cost savings 

are prevalent in literature. In their review on the subject, Fregonara & Pattono (2018) found over 100 

studies that evaluated building projects with life cycle-based approaches, most including energy, 

environmental, and economic effects of renovation projects. Pombo et al. (2016) reviewed 42 studies 

that considered sustainability indicators of building renovations. Within the 42 studies, the authors of 

the review noted a focus on multi-criteria assessments that had the goal of improving energy efficiency 

by balancing cost and quality. Pombo et al. (2016) suggested a life-cycle approach be taken for effective 

Table 1: List of energy efficiency upgrades that 
can be evaluated with frameworks using the 
metrics measured in this study (Wilson et al., 
2016)1 
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assessment of upgrades. It was also noted that none of the reviewed studies had included social impacts 

of upgrades – i.e., consequences of upgrades on “social endpoints,” such as the wellbeing of residents, 

had not been considered. 

Evaluating the health impacts of energy efficiency upgrades by considering upstream risk factors for 

health, such as indicators of IEQ, is a newer area of research than evaluating the energy use or cost 

impacts. Patino et al. (2018) reviewed the literature and found 49 studies that focused on changes in IEQ 

indicators associated with energy efficiency upgrades in public housing. These authors noted no 

attempts to create a framework for evaluation. The U.S. Department of Energy (Wilson et al., 2016), 

sponsored a review of the scientific literature on positive impacts on resident health that can occur from 

energy efficiency upgrades. The systematic review focused on health-care utilization data to monetize 

impacts of upgrades. The authors also provided an overview of IEQ metrics commonly used in studies 

that look at the health impacts of healthy home interventions. Commonly used IEQ metrics included 

physical and chemical contaminants (e.g., particulate matter, volatile organic compounds, nitrogen 

dioxide, carbon monoxide, radon, and carbon dioxide), thermal comfort parameters (e.g., temperature 

and relative humidity), and non-airborne contaminants (e.g., indoor allergens, mold, musty smells, 

dampness, and evidence of pests). The authors concluded their review with a call for more research on 

the impacts of upgrades on specific health outcomes to: (a) gain more buy-in from health care 

professionals for energy efficiency programs and (b) accelerate greater integration between energy and 

health-motivated initiatives, policies, and programs. For example, the Energy-Plus-Health Playbook 

(Vermont Energy Investment Corporation, 2019) is a report created by a coalition of energy-efficiency 

and health-related practitioners. This coalition called for programs that would build partnerships 

between professionals responsible for installation of energy efficiency upgrades and healthcare 

providers. The Energy-Plus-Health Playbook suggested many metrics for the evaluations of homes with a 

focus on resident health, including the cost and timelines of energy efficiency programs, pre- and post- 
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intervention measurements of IEQ indicators, and surveys of health, well-being, and customer 

satisfaction. An anticipated benefit of energy and health partnerships, as described in the 2019 report, 

would be linkage between health data, home energy efficiency upgrades, and (potentially) avoided 

medical costs. Partnerships such as these could, ultimately, provide the evidence base needed to 

quantify and monetize hypothesized health and well-being benefits of home energy efficiency upgrades. 

This report called these health impacts Non-Energy Impacts (NEIs) and asserted that upgrades in the 

future could be evaluated by summing household annual value and societal value. A research report 

produced by ACEEE (Hayes et al., 2020) aimed to monetize the health impacts of home energy efficiency 

upgrades on residents. The report considered possible health benefits of energy efficiency upgrades 

related to four major health threats: asthma, cold-related thermal stress, heat-related thermal stress, 

and trip-an-fall injuries. A general formula was developed to monetize health impacts of upgrades based 

on the possible adverse healthcare costs avoided. This paper suggested the resulting monetized values 

could be used to provide information that decision makers in both energy and health sectors could use 

to evaluate these upgrades. The authors also stated that the monetized values could attract additional 

funding for residential energy efficiency upgrade programs. 

Increasingly, researchers and practitioners are directing effort toward the development of frameworks 

that incorporate energy and non-energy impacts into decision-making tools for building energy 

efficiency upgrades. In this field, researchers have attempted to create algorithms that will help energy-

efficiency practitioners and homeowners decide upon optimal upgrades for a home depending on 

multiple factors. Both Turner et al. (2013) and Das et al. (2013) determined the optimal level of 

ventilation within modeled homes by weighting energy savings and resident health/IAQ impacts. The 

aim of their studies were to create algorithms that could be used to evaluate ventilation-related energy 

efficiency upgrade options for a home before installment. Studies by Touceda et al. (2018), Ortiz et al. 

(2019), Ezratty et al. (2018), and Underhill et al. (2020) all modeled the impacts of upgrades on specific 
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housing types, combining energy/economic impacts with health impacts. Health impacts were 

estimated for modeled changes in IEQ indicators and were summed with economic impacts after being 

monetized. An additional study by Underhill et al. (2018) added a key component to their model that 

others had lacked: the behavior of residents (e.g., smoking, cooking methods, and window opening). 

Only considering building structure in models is likely ignoring key factors; building characteristics alone 

have been shown to be ineffective at predicting dependent IEQ indicators (Clements et al., 2019). 

Therefore, inclusion of empirical monitoring of IEQ indicators would likely add value in a building energy 

efficiency evaluation framework. Residential behavior has been shown to impact IEQ indicators 

(Hollnagel, 2014). However, distributions of, and heterogeneity in, resident behaviors are often absent 

in decision making tools used to select among home energy efficiency upgrade choices (Underhill et al., 

2020). This absence is because resident behaviors are challenging to measure and/or model. 

Overlooking residential behaviors likely contributes to implementation and performance gaps between 

anticipated and realized benefits of home energy efficiency upgrades.  

Studies that have attempted to create a framework to evaluate energy efficiency upgrades using pre- 

and post- measurements of energy and IEQ indicators are few. In a 2013 study, Xu et al. developed a 

framework for energy efficiency retrofits of hotel buildings in China to evaluate programs in which 

contractors assess buildings and offer retrofit projects at discounted rates. The authors of this study 

developed the framework by modifying a framework typically used to evaluate organizations – the 

“EFQM Excellence Model.” This strategy of framework development resulted in a heavy focus on the 

management of the project, and less of the pre- and post- retrofit performance of the building with 

respect to IEQ indicators. Two of the eleven proposed performance indicators included in Xu et al.’s 

study are “Health and Safety” and “Environmental Loading,” though these are not considered in detail. 

This study seemed to be a promising start to a framework or rating system that could be used to 

evaluate residential upgrades; social, environmental, and economic sustainability of projects were 
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considered, and the framework stressed the importance of including building operations as well as 

building characteristics. 

In another study, Wei et al. (2020) aimed to develop “a measurement protocol and a systematic method 

for rating IEQ that could also be used to estimate any non-energy benefits associated with improved IEQ 

that can add financial value.” The authors focused on offices and hotels in their survey of literature and 

building certification programs. The study evaluated and compared 55 current “certification schemes” 

used in the industry of building evaluation that had at least a partial focus on IEQ parameters. Wei et al. 

selected fourteen of these schemes for a detailed review, as these fourteen schemes defined criteria for 

a non-residential building. These fourteen schemes included well-known building certifications – e.g., 

Leadership in Energy and Environmental Design (LEED) (U.S. Green Building Council, 2021) and Building 

Research Establishment Environmental Assessment Methodology (BREEAM) (Building Research 

Establishment Ltd, 2022) – that consider various building aspects such as energy, water, and materials, 

in addition to IEQ indicators. Wei et al. noted that three of the building certifications considered in the 

paper, OsmoZ (Certivéa, 2022), BES – i.e., Bienestar en Espacios Sostenibles – (Institue Valencià de 

l’Edificació, 2022), and WELL (International WELL Building Institute, 2022), focused primarily on the 

health and well-being of those using the building, or the quality of life allowed within the building. The 

definitions of health, well-being, and quality of life are often broadly defined. Wei et al discuss in their 

supplemental material how the definition of health can be broad; however, the definitions Wei et al. 

select from three sources (World Health Organization, Merriam Webster Dictionary, and an unidentified 

medical source) converge well. While Wei et al. do not define well-being and quality of life, all three 

topics (health, well-being, and quality of life) are included in the authors’ definitions of IEQ. These 

multiple IEQ definitions converged on the conclusion that IEQ indicators can have an impact on 

occupant health, well-being, and quality of life. This convergence suggests that scientist and 

practitioners in the field of building evaluation are coming to an agreement on the importance of IEQ on 
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occupant health and the importance of including IEQ in building evaluation frameworks. Wei et al. 

themselves did not elaborate further on the WELL, OsmoZ, and BES schemes. The WELL scheme seems 

heavily centered around IEQ indicators. English translations of the OsmoZ and BES schemes were not 

available for further detail in our study. 

In the aforementioned study (Wei et al., 2020), the authors sorted all the IEQ indicators used across the 

55 considered schemes into four categories: (i) thermal environment (including temperature set points 

inside the building); (ii) IAQ parameters (including pollutants such as PM2.5 and VOCs); (iii) acoustic 

environment (mainly ambient noise); and (iv) and visual environment (including illuminance level and 

measures of daylight). The number of “credits” assigned to each category by all schemes combined was 

used to estimate the relative importance given to each IEQ category. 

The authors then used a second method to estimate the relative importance of the four considered IEQ 

categories. This method considered the rating systems or frameworks developed in nine peer reviewed 

studies. Each of these nine frameworks included IEQ indicators that belonged to the four considered IEQ 

categories. Each framework also assigned a weight to each IEQ category and aggregated the weights to 

assign a single score to a building. The studies that had tested their developed rating system or 

framework on existing buildings had done so on non-residential buildings. 

Wei et al. (2020) compared the IEQ category relative importance proportions developed between their 

two methods: (i) review of the 55 certification schemes and (ii) review of the nine peer reviewed 

studies. Wei et al. concluded that IAQ and thermal environment indicators were assigned slightly higher 

importance on average than acoustic and visual environment indicators, considering both the 

certification schemes and the rating systems developed in peer reviewed studies. However, the relative 

importance among the four categories of indicators was still nearly equal (most near 25%) using either 

method. Wei et al. stated this equal weighting of IEQ indicator categories occurred because there is a 
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lack of scientific justification for assigning one IEQ indicator category higher importance than another. 

The authors therefore called for more research on the relative importance of the four considered IEQ 

indicator categories. 

Possibly the most comprehensive attempt found in literature at creating a standardized framework to 

evaluate energy efficiency upgrades in residential buildings was performed by Basu et al.  (2019). They 

conducted a comprehensive review and derived 34 “Energy Performance Indicators,” (EnPIs) to help 

plan energy efficiency retrofit projects in multifamily homes in India. These indicators were split into six 

categories of factors influencing energy performance: (i) climate (based on geographic location); (ii) 

building envelope (characteristics of building surface areas); (iii) building services and energy systems; 

(iv) building operation and maintenance; (v) occupant-centric (occupants’ activities and behavior); (vi) 

and indoor environmental quality. Self-administered ranking questionnaires were developed and 

distributed globally to individuals who were identified as either academic or industry practitioner 

experts in the built environment. Most of the expertise held by the consulted practitioners was in 

architecture and design. Experts in energy analysis, multiple fields of engineering, and energy 

efficiency/climate change policy work were also included. The questionnaires asked these experts to 

assign weights to the Energy Performance Indicators, prioritizing the indicators and indicator categories 

that are most important. Notably, consensus was not achieved, a finding reached independently by Wei 

et al. (2020) in their review and evaluation of a large number of related studies. However, Basu et al. 

(2019) did find that occupant-centric indicators were deemed most important by many of the experts 

with whom they engaged. This finding suggests how critical resident behaviors are likely to be when 

creating a framework for impact evaluation of building energy efficiency programs and projects. Taken 

collectively, our assessment of the recent literature informed our emphasis on empirical measurements 

of indoor conditions and in-home behaviors. This is in contrast to typical practice of modeling IEQ and 

occupant behavior based solely on building structural characteristics and static features of energy 
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management systems. The current study contributes specifically to the selection of IEQ indicators, in-

home energy use, and occupant energy-related behaviors in future frameworks for impact evaluation of 

building energy efficiency programs and projects. This study also contributes to guidelines for 

application of empirical measurements of IEQ, in-home energy use, and occupant energy-related 

behaviors in these frameworks. 

 

2.2. Quality Criteria for Evaluating Metrics 

Criteria have been developed and employed across a wide range of applications in diverse scientific 

fields to standardize evaluation of data quality and utility. Quality criteria may be applied to both 

qualitative and quantitative data. Three criteria that we considered relevant for our application (i.e., the 

assessment of metrics/indicators to be included in impact evaluations of home energy efficiency 

upgrade programs and projects) were selected or modified from criteria defined in health-focused and 

impact evaluation literature: (1) responsiveness, (2) representativeness, and (3) construct validity. The 

current study proposed definitions of these three criteria as they would be applied to metrics in energy 

efficiency upgrade frameworks (Table 2). 

In epidemiological studies, responsiveness has been primarily treated as a method to evaluate measures 

used in questionnaire instruments. Responsiveness was described in Terwee et al. (2007) as “a measure 

of longitudinal validity,” and Windle et al. (2011) defined it as the ability (of a questionnaire) to detect 

changes over time. In the current study, responsiveness was adapted to mean how well an indicator 

captures changes in a home that are hypothesized to be linked to an initial change in energy efficiency in 

the home. The definition of representativeness used in this study derives from two concepts: (i) content 

validity – a criterion common in many studies evaluating environmental exposure metrics, among others 

(Dellinger & Leech, 2007; Hayashi et al., 2019; Seifert, 1995; Windle et al., 2011) – and (ii) 
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reproducibility, as used by Windle et al. (2011) and Terwee et. al (2007). Representativeness, as defined 

in the current study, may be used to quantify how well an indicator comprehensively represents the 

domain that is being considered. In the application of assessing IEQ impacts of energy efficiency 

upgrades, representativeness can be applied to the spatial and temporal domains – i.e., how well does a 

short duration sample within a home represent a long-term period of interest (the IEQ conditions in the 

home on an average day), and how well does a sample from one location (one room) represent the 

larger region of interest (the entire home)? Representativeness, and how it is applied to the spatial and 

temporal domains, is explained in further detail later in this paper. The third proposed quality criterion, 

construct validity, has been commonly used in the context of epidemiology questionnaire instruments to 

assess how well an instrument “measure[s] the construct [it is] designed to measure,” (Dellinger & 

Leech, 2007). Applying the concept of construct validity in the context of IEQ and home energy 

efficiency, this criterion may be treated as a means to describe how closely a given metric relates to 

human health. For example, if a study focused on occupant health measures indoor noise levels 

accurately and precisely, the noise data themselves may still have low construct validity if noise levels in 

homes do not have adverse effects on occupant health. 
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Table 2: Quality criteria for evaluation of IEQ and energy use metrics 

Quality Criterion Definition 

Responsiveness 
Extent to which a significant overall response is observed 

between metric before and after upgrade 

Representativeness and Specificity 

Extent to which data recorded for a metric during a short 

period, or from a sampling location encompassed within a 

region of interest, wholly characterize long-term conditions 

in the region of interest 

Construct Validity 
Extent to which metric corresponds to health impacts of 

upgrade on occupants 

 

The current study did not evaluate responsiveness of metrics with respect to energy efficiency upgrades 

because most of the enrolled homes did not install upgrades during the study period. A comprehensive 

review of the construct validity (as defined in Table 2) of metrics that may be (and have been) used in 

energy efficiency frameworks is outside of the scope of this study. However, construct validity has been 

explored in the epidemiologic literature for airborne pollutants. High construct validity has justified 

measurement of the pollutants we selected for measurement in the present study. Wilson et al. (2016) 

performed a comprehensive overview of associations observed between IAQ indicators (including the 

ones we selected for this study) and occupant health. Wei et al. (2020) covered the frequency with 

which many other IEQ indicators (such as noise, light, and temperature) are used in studies to evaluate 

the effect of comfort-related parameters on human health, although they mention the need for more 

robust evidence regarding links between these IEQ indicators and health. 
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In this study, we focused on representativeness and specificity. These concepts, when applied to IEQ-

related metrics, can provide insight on the following questions: (1) how representative are short 

duration IEQ measurements of long-term IEQ daily trends? (2) how representative are single-zone IEQ 

measurements of multi-zone IEQ? (3) what information is gained, if any, from longer-term or more 

spatially-resolved IEQ sampling? Practically, this work sought to shed light on questions like “When 

considering resource constraints on sampling period lengths, how long is long enough to adequately 

represent the general conditions within a home?” and “When considering resource constraints on 

availability of equipment and instruments, how well does measurement in a single location characterize 

the IEQ conditions within a household relative to multiple locations?” 
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3. Objectives and Hypotheses 
 

 

Our study was guided by the following three objectives: (1) characterize temporal and spatial patterning 

of energy and IEQ metrics within and between homes, (2) assess correspondence between energy and 

IEQ metrics by temporal scale and spatial scale, and (3) use defined quality criteria to identify “fit-for-

purpose” metrics for evaluating upgrades. Out of the three quality criteria defined in this study – i.e., 

responsiveness, representativeness, and construct validity – we focused on the evaluation of 

representativeness of metrics. 

Analysis of indoor environmental quality indicators (IEQ) was stratified by season in this study. For each 

home, days were defined as cooling days (i.e., days when air conditioning was used), shoulder days (i.e., 

days when no air conditioning was used and minimal space heating was used), and heating days (i.e., 

days when moderate to high space heating was used). The methodology for defining seasons is 

explained further in Section 4.3.6. We hypothesized that: (i) occupants may be more likely to open 

windows on shoulder days; (ii) occupants would be more likely to keep their windows closed on heating 

and cooling days; (iii) occupants may engage in more indoor activities during heating days due to low 

outdoor temperatures in Colorado, and (iv) occupants may engage in less indoor cooking on cooling 

days to avoid the addition of heat to their home. As occupant behaviors can impact indoor 

environmental quality indicators, we hypothesized that certain seasons may require larger sample sizes 

to achieve representative samples of indoor environmental quality indicators. 
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4. Methods 
 

 

4.1. Study Design 

4.1.1. Study Area 

The current study took place in Fort Collins, Colorado, a mid-sized city of approximately 160,000 people 

covering approximately 120 km2. Fort Collins is situated directly east of the Colorado “Front Range,” 

which is a mountain range within the greater Southern Rocky Mountains of North American that runs 

south to north in central Colorado. In 2020, the median reported household income was $70,474. In 

2019, there were approximately 71,000 housing units, 55% of which were owner-occupied, and 45% of 

which were renter-occupied (United States Census Bureau, 2019). The area has a semi-arid climate 

characterized by mild winters and dry, hot summers that receive low amounts of rain, although 

afternoon thunderstorms can be common in late summer. 

 

4.1.2. Epic Homes Program 

The City of Fort Collins’ Epic Homes program for residential energy efficiency is a suite of services built 

on the foundation of the Efficiency Works Homes program. Efficiency Works, formed in 2014, is a 

collaborative program serving utility customers of Platte River Power Authority’s four co-owner cities in 

the northern Colorado Front Range area. Efficiency Works aims to increase energy savings by making 

energy efficiency offerings and rebates available to residential and commercial utility customers. Each 

utility designates funding to go toward the collaborative program, although funding is not transferred 

between communities; the funding provided by one utility is only used in the community that is served 

by that utility. Efficiency Works Homes is a branch of Efficiency Works that focuses on increasing the 

energy efficiency of homes; this includes single-family attached and detached, renter-occupied, and 
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owner-occupied homes. The Epic Homes program is Fort Collins Utilities’ specific residential energy 

efficiency program that offers additional services to Fort Collins Utilities customers on top of the 

standard assessment and rebate offerings of the Efficiency Works Homes program. 

The purpose of the Epic Homes Program is to improve the energy efficiency of Fort Collins homes (while 

also improving the health and well-being of residents) by offering technical and financial assistance for 

home energy efficiency upgrades. Technical assistance is offered in the form of energy assessments. 

During an assessment a city-affiliated energy advisor evaluates several aspects of the home and suggests 

improvements that could be made to the home to allow for energy savings. These advisors then refer 

residents to possible rebates and low-interest on-bill loans that can increase the up-front affordability of 

upgrades. A “streamlined assessment” option is also available, through which advisors additionally 

connect customers with pre-approved in-network contractors who offer a pre-negotiated package price 

for efficiency upgrades. This connection with in-network contractors removes the need for the customer 

to acquire multiple contractor bids.  A goal of the emergent Epic Homes program is to expand the served 

population from middle- to upper- income households (that tend to be owner-occupied) to additionally 

include low- to moderate- income households (that tend to be renter-occupied). Between June 2019 

and August 2021, 1,348 homes were upgraded through the program, including 71 rentals (City of Fort 

Collins, 2021). 

 

4.1.3. Recruitment and Study Duration 

Owner-occupier and renter-occupier participants were recruited mainly via email. Participants and their 

respective homes were accepted into the study on a rolling basis once it was determined that the home 

met eligibility criteria. Eligible homes had access to wireless internet (allowing data uploading from IEQ 

and energy use monitors), were heated by natural gas, were served by Fort Collins Utilities, and had 
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received energy assessments through the Epic Homes Program before or soon after entering the study. 

Houses heated by natural gas were chosen, as they were expected to be representative of a majority of 

the Fort Collins housing stock; an estimated 75% of homes in Colorado used natural gas for space 

heating in 2009, and 63% of homes in the Mountain North region of the United States (which includes 

Colorado) used natural gas for space heating in 2015 (U.S. Energy Information Administration, 2021). 

The current study aimed to gather environmental quality and energy use data within each recruited 

home for six to twelve continuous months. The protocols used in this study were approved by the 

Colorado State University Institutional Review Board (Protocol 19-9338H). 

 

4.2. Data Collection 

4.2.1. Indoor Environmental Quality Metrics 

Indoor Environmental Quality (IEQ) metrics (with abbreviations and units shown in parentheses) 

included the following: fine particulate matter (PM2.5; g/m3), a measure of total volatile organic 

compounds (TVOC; parts per billion (ppb)), and carbon dioxide (CO2; parts per million (ppm)) 

concentrations, along with temperature (degrees Celsius), relative humidity (%), light intensity (lumens 

per square meter (lx)), and noise levels (decibels (dB)). These IEQ metrics were gathered continuously at 

five-minute resolution with commercial-grade indoor air quality (IAQ) sensing and monitoring devices 

(Omni, Awair, USA). The device determines PM2.5 concentrations via a laser-based light scattering sensor 

(range: 0-1000 μg/m3, accuracy: ±15% or ±15 μg/m3), TVOC concentrations via a multi-pixel metal oxide 

gas sensor (range: 0-60,000 ppb, accuracy: ±10%), and CO2 concentrations via a Non-Dispersive Infrared 

(NDIR) sensor (range: 400-5,000 ppm, accuracy: ±75 ppm or 10% of reading). Within each recruited 

home, three IAQ sensors were placed on walls in indoor living spaces: one in the kitchen, one in the 

living room, and one in a bedroom. Also, one IAQ sensor was placed on a wall in the garage, and one 
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was placed outside (example in Figure 1). The outside sensor was typically placed within six feet of the 

home on a small post, with preference given to the backyard. All IAQ sensors were installed to be within 

typical breathing zones (three to six feet from the ground).  

Continuous PM2.5 measurements from the IAQ sensors were calibrated with concurrent, filter-based 

gravimetric measurements. Small ultrasonic personal aerosol samplers (UPAS) (Volckens et al., 2017) 

housed filters, which collected air samples over a three- to seven- day period upon each home 

calibration deployment. At each deployment, one UPAS was placed next to the living room IAQ sensor, 

one UPAS was placed next to the garage IAQ sensor, and one UPAS was placed below the outdoor IAQ 

sensor. The living room UPAS devices were placed within a 3-D printed, foam insulated case to mitigate 

any noise created during device sample collection. In addition to calibration prior to deployment, two in-

Figure 1: Example layout of home locations of 
commercial-grade indoor air quality sensors (green 
diamonds) and energy monitor (yellow star) indicated. 
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field calibrations were conducted for all homes. The first in-field calibration occurred approximately 

seven to eight months after recruitment, and the second occurred nine to ten months after recruitment. 

 

4.2.2. Energy Use 

A residential energy monitor (Home Energy Monitor, Sense, USA) was used to monitor the electrical 

energy use of each home in real-time during the study period. Briefly, the home energy monitor is 

installed in the electrical panel of a home, allowing it to monitor electrical usage from all devices in a 

home at a one-minute resolution. The home energy monitor uses machine learning algorithms updated 

from the overall fleet of home energy monitors sold by the company and in use in U.S.-based homes 

(likely n > millions) to classify electrical devices in a home. The energy monitor subsequently assigns how 

much of the total energy consumption at any point in time is attributable to each classified electrical 

device. Once the home energy monitor identifies the power signature of an electrical device (typically, 

several days to weeks), it records the timestamps when the device is on, the power consumption at 

those times, and the overall energy consumption of the device. Natural gas usage data were also 

obtained from select, consenting homes to compare against energy monitor data used to measure 

heating and cooling behavior. 

 

4.2.3. Energy Assessments and Questionnaires 

Information on homes gathered by contractors during energy assessments included general home 

characteristics such as age/size of home, number of occupants in home, and limited information on 

appliances. Blower door tests were also conducted in each home, allowing for the calculation of CFM50, 

or the airflow in cubic feet per minute (CFM) through a home when pressurized to 50 psi, and the 

calculation of ACH50, the amount of air changes per hour (ACH) a home experiences when pressurized to 
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50 psi. CFM50 and ACH50 are standard measures of air tightness within a home. Questionnaires were 

administered to participants by researchers in the study to acquire additional information on home 

characteristics, such as when certain portions of the home were last upgraded. Acquired information 

from these questionnaires also included self-reported behaviors, such as window opening frequency and 

methods of heating and cooling. Questionnaires were also administered to determine whether any 

significant upgrades had occurred within homes, or if participants had vacated a home for extended 

periods of time. 

 

4.3. Statistical Analysis 

4.3.1. Data Management 

The computer software, R (R Core Team, 2021), was used to handle all data gathered for this study and 

to create any of the included plots. All data were filtered to ensure no data outside of the range of 

deployment dates for each home (from periods of sensor testing) were included in the dataset used for 

analysis. IAQ sensors installed outdoors occasionally malfunctioned during periods of low temperatures. 

These malfunctions caused isolated temperature readings to exceed 10,000,000 oC during these cold 

time periods. Temperatures that exceeded 10,000,000 oC were thus omitted from the analyzed dataset. 

 

4.3.2. Calibration of Real-Time PM2.5 Measurements 

Filter-based gravimetric measurements from all UPAS devices deployed within the study period were 

used to calculate a single gravimetric correction factor for the real-time PM2.5 measurements recorded 

by the IAQ sensor. The use of pairwise correction factors (using a correction factor specific to each 

participant) was contrasted against the use of a single correction factor for all participants by Tryner et. 

al (2019). Tryner et al. concluded that a constant correction factor calculated from a random subset of 
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participants performed better than using multiple pairwise correction factor values. As there were a 

small number of participants in our study, values from all participants were considered in the calculation 

of this correction factor. Two calibration deployments occurred for each home, but filter samples for 

which the UPAS collected less than 24 hours of data were not used for the calculation of correction 

factor values. 

Two methods were tested to calculate a correction factor. The first calculated a pairwise correction 

factor for each sensor with the following equation: 

Equation 1 Correction Factor = TWAC  

Where TWA is the time-weighted average of all PM2.5 measurements recorded by an IAQ sensor over 

the sampling period for which a filter sample was collected, and Cfilter is the average concentration of 

PM2.5 determined using gravimetric analysis of the filter with which the IAQ sensor was paired. The filter 

sample gathered in the living room was paired with the time-weighted average PM2.5 concentration for 

each of the three indoor sensors in each home. We adopted this approach to sensor calibration because 

this study focused on relative trends and variability over time (and space) more than the absolute values 

of the IEQ metrics. Correction factor values calculated from replicate filter measurements (two 

calibration visits with valid data in some homes) were pooled with the other pairwise correction factor 

values for this and the following method. 

The second method for calculation of a correction factor was running a simple model with TWA as the 

dependent variable and Cfilter as the independent variable (both TWA and Cfilter defined previously). The 

intercept of the simple model was set at zero. The resulting slope of the model would be used as the 

correction factor for all real-time measurements. The two methods of correction factor calculation were 
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compared for performance before one method was chosen and used to calibrate IAQ sensor 

measurements prior to analysis. 

 

4.3.3. Autocorrelation 

Time series data are subject to autocorrelation, which means measured values are influenced by values 

that occurred at previous points in time. Significant autocorrelation is common with real-time air quality 

datasets because air pollutants that are released within a region or indoor space at a given sampling 

time may not have dissipated before the subsequent sampling time. When this occurs, subsequent data 

points cannot be considered independent. Autocorrelation is an issue with model creation, as 

autocorrelated data can result in misleadingly high sample sizes. Autocorrelation can be mitigated in a 

dataset by accounting for a calculated autocorrelation coefficient within model algorithms. It can also be 

mitigated by averaging data over a sufficiently long time period to result in independent, averaged data 

points before using them to develop a model. The required averaging period can be determined by 

measuring autocorrelation using an autocorrelation factor (ACF), at multiple time “lags.” This is done by 

“lagging” a dataset by one time increment (translating every data point to have a timestamp of t+1), 

then calculating the Pearson correlation of the lagged dataset with the original dataset. The resulting 

calculated correlation value is the autocorrelation factor at a time lag of 1. This process is repeated for 

multiple lags (lagging by two time increments, then three, then four, etc.). 

Autocorrelation factors can range from -1 to 1; -1 implies a strong negative autocorrelation (increasing 

time series values are associated with decreasing subsequent time series values); +1 implies a strong 

positive autocorrelation (increasing time series values are associated with increasing subsequent time 

series values), and 0 implies no autocorrelation (time series values have no directional association with 

subsequent time series values). Autocorrelation can be visualized with correlogram plots, in which 
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autocorrelation factors are plotted on the y-axis vs time lag values on the x-axis (examples from the 

current study in Figure 2). A two-sided confidence interval for the autocorrelation factor is created 

based on the amount of tested data points for the correlation calculation at each time lag. 

Autocorrelation within a dataset is considered insignificant once the autocorrelation factor is contained 

within the bounds of the confidence intervals (Brockwell & Davis, 2016; Gerbing, 2016; SAGE, 2017). The 

difference between high and low confidence bounds in a correlogram becomes greater at higher time 

lag values. This increasing difference occurs because the number of pairs used to calculate the 

correlation between an original dataset and its lagged counterpart decreases by one as the number of 

time lags between the original dataset and its lagged counterpart increases by one. This in turn causes 

an increase in the magnitude of the standard error value used to calculate confidence. The detailed 

methodology used in this study for confidence interval calculation can be observed in a lecture 

published at the University of North Carolina (Weiss, 2012). 

No models were created in the current study. However, to create boxplots of independent data points 

for IEQ indicator values, the averaging period length that resulted in independent data points needed to 

Figure 2: Example correlograms for TVOC data recorded in Home 4 (left) 
and Home 7 (right) in the current study. Black line segments imply more 
than 20 pairs of daily data pairs were available to calculate the 
autocorrelation factor (ACF) value at a given lag, while red values imply 
less than 20 data pairs. Dashed blue lines represent 95% confidence 
intervals.  ACF values that are greater than the high confidence interval 
or less than the low confidence interval for the given lag number are 
considered significant. 
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be determined beforehand. This averaging period was expected to be different between IEQ metrics. 

Autocorrelation analysis was thus performed for each IEQ indicator at time lags ranging from one day to 

thirty days. This was performed separately for datasets collected over each season from each sensor 

within each home. The number of time lags required for the autocorrelation factor to reach 

insignificance was considered in the definition of the required averaging period for each IEQ indicator. 

Calculated autocorrelation values were also compared between air pollutants to understand the 

difference in the pollutant behaviors post-emission. A pollutant experiencing higher autocorrelation 

factor values (closer to +1) for many time lags implies the pollutant takes longer to dissipate once 

emitted than a pollutant for which the autocorrelation factor value quickly drops from +1 to 0 over a 

small number of time lags (Luoma & Batterman, 2000). Significant negative autocorrelation values were 

not expected on a daily time-lag scale, as increasing concentrations of the air pollutants measured in this 

study on one day would not be expected to be associated with decreasing concentrations on 

subsequent days. 

A dataset (from one sensor in one season) was omitted from autocorrelation analysis in the current 

study if it the time period for the dataset was not at least twenty-five days in length, as correlations 

should only be calculated between datasets that contain at least twenty data points (StatSoft, 2011). 

Ideally, autocorrelation is only calculated from samples that are not missing values; however, datasets 

without any missingness were uncommon in the current study (as is the case with most long-term air 

quality studies). A dataset was omitted from autocorrelation analysis in the current study if it was 

missing more than 11.11% (1/9) of the days within its corresponding time period, per the omission 

criteria used by Zhao et al. (2018) in their development of a model reliant on calculated autocorrelation 

values. Lastly, stationary data (data without long-term directional trends) is required to allow for proper 

autocorrelation analysis (SAGE, 2017). The number of time lags before autocorrelation factor values 

reach insignificance can be impacted if the analyzed data is non-stationary. If, for instance, an IEQ 
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indicator value experiences a constant increase or constant decrease over the season during which 

autocorrelation analysis is performed, autocorrelation factor values will likely stay high over the tested 

number of lag days. High autocorrelation factor values occurring in the case of non-stationary data are 

due to long term changes in the environment (such as ambient air pollutant levels slowly decreasing due 

to a change in season), not the failure of an emitted pollutant to disperse due to strong physical 

persistence or low air change rates. Most modeling efforts aim to accurately and precisely characterize 

pollutant emission and dispersion patterns. Modeling studies will sometimes “de-trend” data by 

subtracting a smoothing function from all days before determining autocorrelation factor values. 

Alternatively, some modeling studies de-trend data by calculating autocorrelation factor values of the 

difference between values recorded on subsequent days, instead of finding autocorrelation factor 

values of the raw values. In the current study, autocorrelation analysis was used to determine the 

averaging periods required for independent samples, not to predict future values. Therefore, 

autocorrelation analysis of transformed (de-trended) IEQ indicator values were not as pertinent as 

autocorrelation analysis of raw IEQ indicator values. Instead, datasets for which autocorrelation 

remained significant after thirty sampling days were excluded from consideration for determining 

averaging periods. Overall, considering the three autocorrelation omission criteria discussed above, 

24.6% of PM2.5 datasets, 26.2% of TVOC datasets, and 32.3% of CO2 datasets were excluded from 

consideration for determining averaging periods. Omissions of a dataset from autocorrelation analysis 

did not imply omission of the dataset from other analyses performed in this study. 

 

4.3.4. Summary Statistics 

Time-weighted averages (TWAs) of IEQ indicator values were calculated from real-time data collected 

over the entire monitoring period for each indoor sensor in each home. These TWAs were used for 
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comparison to other studies. Coefficient of variation (COV) values were also calculated for each IEQ 

indicator to compare the variation between indicators. COV (calculation shown in Equation 2) can be 

used to compare variation in metrics around their respective means when the metrics have different 

units, ranges, and mean values. 

Equation 2 

COV =   

A higher COV implies more dispersion around the mean, proportional to the magnitude of the mean. 

We compared IEQ indicators seasonally between room, first time-averaging each data series using the 

averaging periods determined with autocorrelation analysis. 

 

4.3.5. Time Series and Diel Analysis 

We visualized data using diel plots showing hour-of-day averages. Diel analysis was performed because 

IEQ metrics have been shown to exhibit patterns that repeat daily (Maciejewska & Szczurek, 2015). The 

95% confidence intervals were used to represent variation in the data. We used Spearman correlations 

to evaluate if correlations existed and/or varied by time of day between the same IEQ metric measured 

in more than one room. We evaluated the Spearman correlations between 1-h, time-averaged values 

matched in time across room-pairs (e.g., living room and kitchen), resulting in 24, between-room 

correlations for each home. Spearman correlations are a measure of the strength of the ordinal 

relationship between two variables. A Spearman correlation value near positive unity (+1) implies that 

as one variable increases, the other does as well (and as one variable decreases, so will the other). A 

Spearman correlation value near negative unity (-1) implies that as one variable increases, the other 

decreases, and vice versa. This methodology was also used to explore diel correlations between IEQ 

metrics recorded within each room. Autocorrelation was present in the data. Spearman correlations 
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were performed for the relationship between rooms and separate metrics, not consecutive data points 

within a given location. Therefore, no adjustments for autocorrelation were deemed necessary to 

consider the resulting Spearman correlation values (Afshar-Mohajer et al., 2020).  

 

4.3.6. Defining Seasons 

IEQ indicators within homes can be significantly impacted by human behaviors. We integrated measures 

of occupant heating and cooling behavior, as determined by the home energy monitor, to classify days 

based on space conditioning behaviors. Past studies that developed air quality models have accounted 

for space heating and cooling behaviors through the proxy measures of heating degree days and cooling 

degree days (Fazli & Stephens, 2018). These measures consider the daily difference between indoor and 

outdoor temperature, assuming that the amount of energy used to heat or cool the home will be 

linearly related to the magnitude of this temperature difference. Our study proposed a more direct 

measure of space heating, using high-resolution energy consumption data recorded by the home energy 

monitors for heating and cooling devices. Days were classified into three categories: heating, cooling, 

and shoulder. This approach of classifying days based on space heating behavior is similar to the 

approach used by Deng et al. (2021).  In their study of indoor environmental quality in 85 schools across 

the United States, Deng et al. classified days as heating days or non-heating days based on the daily 

operation of the HVAC system. In our study, days were classified based on the daily fraction-on time of 

the home’s primary heating and cooling devices. For instance, if on a given day, a heating device was 

detected in-use for 6 hours, the daily heating fraction-on time was 0.25. The home energy monitor data 

were used to identify heating devices (e.g., furnace) and cooling devices (e.g., air conditioning, or AC). 

Heating devices were present in all homes, while cooling devices where present in only some homes. For 

homes in which the home energy monitor identified an air conditioner, the participant confirmed they 
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owned either central AC or a window AC unit. All homes in this study were heated by natural gas. We 

assumed that the home energy monitor detects a heating device because there are electrical elements 

that activate when a heating device powered by natural gas is operating. It was also assumed that the 

energy output of a heating device in operation is relatively consistent. This consistency assumption 

implies that if a device is operated for one hour on a given day and two hours on a subsequent day, 

twice the amount of heating energy is supplied to the home on the subsequent day. Therefore, the daily 

fraction-on time of heating devices identified by the home energy monitor was used as a proxy for 

indoor space heating. 

It was assumed that the amount of heating-related natural gas consumed in each month would be 

proportional to the amount of time the primary heating device operated within the home in that month. 

Therefore, heating-related natural gas consumption was used to determine a threshold of daily heating 

device fraction-on time. We would classify each day with fraction-on time above this threshold as a 

heating day. To establish this daily heating threshold, we evaluated average monthly natural gas 

consumption for space heating by Colorado residents (Figure 3), using data from the U.S. Energy 

Information Administration (EIA) (2021). Monthly residential natural gas consumption data from the EIA 

were gathered for the state of Colorado from January 2016 to December 2020. From this analysis, 

residential natural gas consumption for heating was greatest in December. Natural gas consumption 

during traditional summer months (June, July and August) was <15% of the average December 

consumption value. Thus, 15% was chosen as a threshold for defining the fraction-on of heating devices 

for a heating day. 
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Figure 3: Estimated monthly natural gas consumption by Colorado residents for heating, from 5 years (January 2016 to 
December 2020) of U.S. Energy Information Administration (2021) data. Dashed line shows chosen threshold of 15% of average 
consumption for month of greatest 5-year average consumption (December). MMcf = Million cubic feet. 

 

For each home in the current study, the average daily fraction-on time was calculated for each month. 

The month with the maximum average daily fraction-on time was identified, and 15% of this fraction-on 

value was defined as the home-specific threshold for a heating day. For example, in a given home, if the 

average daily fraction-on time for the identified heating device was greatest in the month of December, 

equal to 0.5, the heating device was on for 12 hours on an average December day. Days for which the 

heating device’s fraction-on time was greater than 0.075 (i.e., 15% of 0.5) were defined as heating days 

for that home. Days when the heating device fraction-on time was below the 15% threshold, and when 

air conditioning device usage was not detected (i.e., air conditioning device fraction-on time = 0) were 

defined as shoulder days. Days when the heating device fraction-on time was less than the 15% 

threshold, and when use of an air conditioning device was detected (i.e., air conditioning device 
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fraction-on time > 0) were defined as cooling days. The purpose of using this threshold value was to 

avoid the constraint of categorizing days by month of year, instead categorizing days by resident 

behavior. Resident behavior may affect IEQ variables more significantly than weather or other outdoor 

variables commonly used in IEQ models. The heating device 15% threshold was chosen to approximate, 

on average, what amount of daily heating may be used on days when behaviors are likely to be different 

– e.g., when windows are open more commonly throughout the day. The air conditioning device 

threshold was set at a fraction-on time of zero. This was because, for each home, the daily fraction-on 

time of the primary air conditioning device was observed to vary less throughout the year than the 

primary heating device fraction-on time. We hypothesized that: (i) occupants may be more likely to 

open windows on shoulder days; (ii) occupants would be more likely to keep their windows closed on 

heating and cooling days; (iii) occupants may engage in more indoor activities during heating days due to 

low outdoor temperatures in Colorado, and (iv) occupants may engage in less indoor cooking on cooling 

days to avoid the addition of heat to their home. For all homes, each individual day was classified as 

either heating, cooling, or shoulder when energy data was available.  

For many homes, more than one device of each type (heating and air conditioning) was detected. This 

was likely due to the identification of secondary devices – e.g., small space heaters – or due to 

misidentification. When more than one heating or air conditioning device was detected within a home, 

the heating or air conditioning device that experienced the highest daily fraction-on was identified as 

the primary heating or cooling device. A few exceptions occurred when two devices had similar fraction-

on values. In these cases, we made what we deemed to be the more rational choice. For instance, if one 

heating device had higher fraction-on time in December and January while the other heating device had 

higher fraction-on time in July and August, the device with higher fraction-on time in December and 

January was classified as the primary heating device. The usage of these primary heating and cooling 
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devices was then referenced when determining the season identification (cooling, shoulder, or heating) 

for each day. 

Table 3: Methodology for defining the season to which each day belongs for each home using heating and cooling behaviors 
with expected behaviors that may affect IEQ variables. 

Season Definition Expected Behaviors 

Heating Heating device fraction-on time > 15% of average daily 

fraction-on value in month with maximum average daily 

fraction-on value 

 Windows frequently closed 

 Possibly elevated indoor 

resident activity 

Shoulder Heating device fraction-on < 15% of average daily 

fraction-on value in month with maximum average daily 

fraction-on value and no air conditioning detected 

 Windows frequently open 

Cooling Heating device fraction-on < 15% of average daily 

fraction-on value in month with maximum average daily 

fraction-on value and air conditioning detected 

 Windows closed 

 Possibly reduced cooking 

activity (fewer hot meals) 

 

Homes appeared to follow three patterns of heating and cooling behavior based on our analysis; the 

homes were therefore categorized into three groups (Figure 4). Group 1 homes were defined by 

frequent changes between season, switching constantly between cooling, shoulder, and heating days 

over the course of the monitoring period. These Group 1 homes lacked any definable continuous season 

periods. Group 2 homes lacked continuous cooling periods. Instead, Group 2 homes were typically 

characterized by continuous shoulder seasons during the initial and final days of their monitoring 

periods, and continuous heating periods during the middle potion of their monitoring periods. Most of 

the days within Group 2 monitoring periods were classified as heating days (Table 4). Finally, Group 3 

homes were charactered by continuous cooling periods in the beginning portion of their monitoring 



 

33 
 

period, followed by a less consistent shoulder period (interspersed with cooling and heating days), 

followed in turn by an extended continuous heating period. As with Group 2 homes, most of the days 

within Group 2 home monitoring periods were classified as heating days (Table 4). 

 
Figure 4: Categorization of days into heating and cooling behavioral-based seasons over entire monitoring period for each 
home. Colors display the category of day. White space symbolizes dates without data. Black lines define start and end dates of 
continuous periods used for representativeness analysis. Home “grouping” distinguishes homes with definable continuous 
cooling periods (Group 3), without definable cooling periods (Group 2), and without any definable periods (Group 1). Homes 3 
and 16 were not included due to lack of home energy monitor data. Months span from August 2020 (Aug) to June 2021 (Jun).  

Home energy monitor data for Homes 3 and 16 were not retrievable and were therefore not used for 

data analysis that was disaggregated by season. Days for which IEQ data was recorded, but no energy 

monitor data was available, were also not used for data analysis that was disaggregated by season. In 

the questionnaires, all homes except one (Home 4) reported, that they had, and used, air conditioning. 

Therefore, homes in Group 2 reported having air conditioning, but did not seem to use it during the 

monitoring period. In Homes 13 and 15, this may have been because their enrollment date occurred 

after traditional cooling periods. These two homes enrolled in October, when many Colorado residents 

are less likely to use air conditioning than in the summer months of June, July, and August. However, the 
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lack of continuous cooling periods in Homes 10 and 11 suggests real differences in seasonal air 

conditioning behaviors between these two homes in Group 2 and homes in the other groups (i.e., Group 

1 and Group 3). 

Group 1 homes exhibited heating and cooling energy use patterns that were challenging to interpret. 

For example, Home 14 had minimal heating use and continuous AC use throughout the monitoring 

period, even during winter months. Homes 6 and 8 exhibited consistent cycling between heating and 

shoulder days throughout the study period. This is unlikely to be representative of their actual heating 

behavior even if the participants desire to keep their home at a constant high temperature, as the 

amount of heating would be expected to increase in colder months if a constant temperature was 

desired. Also, the shoulder days defined for these homes were at unlikely periods for which residents 

would be opening windows (e.g., Homes 6 and 14 experienced multiple shoulder periods within the 

typically cold Colorado winter months of January and February). The method used in this study for 

determining energy use for heating and cooling appeared to be inadequate for these homes and would 

warrant further investigation in future work. Therefore, we excluded Group 1 homes from further 

analyses that involved disaggregating results by season. 

When continuous seasons were defined for analysis, most Group 3 homes had shoulder seasons that 

were similar in length (ranged from 31 to 55 days in length for four of the five homes). Heating dates 

encapsulated the traditional winter period for Colorado (December 21st through March 21st), but for 

many homes, heating days occurred earlier (e.g., early October) and extended later (e.g., April). For 

homes in which the end of the heating season was observed, the start dates of the continuous heating 

Cooling Shoulder Heating
1 7% 54% 39%
2 0% 31% 69%
3 13% 17% 70%

SeasonHome Group

Table 4: Percentages of days that were categorized 
into each season for each home group. 
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season (median: October 22; range: October 5 to December 3) varied more between homes compared 

to the end dates (median: April 26; range: April 4 to April 27). This difference in variation suggests that 

seasonal transitions in resident space conditioning behavior may be more difficult to predict in the 

shoulder-to-heating transition than the heating-to-shoulder transition. 

When time series data were disaggregated by season, heating days were grouped with other heating 

days, shoulder days were grouped with other shoulder days, etc. Data was also disaggregated by season 

for autocorrelation and representativeness analyses. However, autocorrelation and representativeness 

analyses required continuous data; subsequent data points used in analysis had to be collected from 

days that were collected subsequently to each other during sampling periods. Start and end dates were 

therefore identified for each season within each home for autocorrelation and representativeness 

analysis. If a home identified the use of an air conditioner in the beginning of the monitoring period, the 

initial days were identified as cooling days. The start of a shoulder season was identified for each home 

when the first eight consecutive shoulder days occurred. If a home did not have air conditioning, the 

beginning of its monitoring period was identified as a shoulder season. The start of a heating season was 

identified for each home when the first eight consecutive heating days occurred. The end of the heating 

season for a home (if the end of the heating season occurred within the monitoring period) was marked 

at the end of the final span of eight consecutive heating days. If the heating season did end prior to the 

final date of a monitoring period within a home, days following the end of the heating season were not 

used in representativeness or autocorrelation analyses; time periods that followed heating seasons 

were often too short to analyze. 
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4.3.7. Testing Normality 

Assumptions of normality were required for evaluation of spatial representativeness and specificity in 

this study. As such, QQ plots were generated and visually inspected to evaluate how well a given 

distribution of data fit the assumption of normality prior to performing calculations. Data distributions 

were evaluated against log-normal, gamma, and Weibull distributions to determine the best fit for 

transformation. 

 

4.3.8. Representativeness and Specificity 

4.3.8.1. Literature Review on Representativeness 

We define spatial representativeness of IEQ metrics as the extent to which measurements from a single 

sampling location capture trends and magnitudes that characterize average conditions within the 

greater spatial extent of interest. As defined here, spatial representativeness is not well explored in IEQ 

literature. Between-home or between-building variability is often considered in IEQ studies, but 

between-room variability within homes is less studied, often due to a lack of measurements in multiple 

rooms. When between-room variability is explored, it is often done at low temporal resolution; only the 

average values of an IEQ metric gathered over an entire monitoring period are compared between 

rooms. If high temporal resolution (e.g., hourly) data is gathered, it is only gathered for a short period of 

time, given resource and time constraints. Comparison of data at high temporal resolution is important 

to evaluate if trends in data – not just the overall means – from different locations are fully 

characterizing the region of interest. Diel trends for IEQ data in homes, for instance, may help identify 

potential sources of poor IEQ within a home, especially if combined with energy monitoring data that 

indirectly reflects indoor activities and behaviors of residents (e.g., cleaning or cooking). 
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There has been recent growth in studies that gather high resolution data from multiple locations within 

buildings and consider the variability between datasets. In a study on the variability of office building 

IEQ, Szigeti et al. (2017) looked at the between-office spatial variability of high-resolution particulate 

data in multiple buildings across Europe using Intra-Class Correlation Coefficients. Szigeti at al. 

compared spatial variability to temporal variability as well. Beko et al. (2016) measured interzonal air 

exchange rates within one home in real-time to evaluate how pollutants would be expected to travel 

between rooms under different scenarios. This study (Beko et al., 2016) specifically looked at impacts of 

different “source rooms” on other locations within the home under multiple conditions (e.g., source 

room door open/closed or home unoccupied). Wan et al. (2011) measured real-time living room and 

kitchen particulate matter levels in 12 homes during gas-stove-powered heating events. The authors 

measured three size fractions of particulate matter: ultrafine particles (14.6 to 100 nm in diameter), 

accumulation mode particles (100 to 661.2 nm in diameter), and PM2.5. Wan et al. measured the 

concentrations of these three particulate matter size fractions in both rooms during, and directly 

following, gas-stove-powered heating events. In another study on cooking-related PM2.5, Xiang et al. 

(2021) measured real-time PM2.5 in the bedroom, living room, and kitchen in an apartment in Seattle, 

Washington. Real-time PM2.5 measurements were recorded during cooking events under several 

different controlled ventilation scenarios. A recent study in Italy measured temperature, relative 

humidity, PM2.5, and VOCs at high resolution in the kitchens and bedrooms of two homes. Data was 

recorded over one, two-week period in each of three seasons (winter, spring, summer) during the 

COVID-19 lockdown period (Pietrogrande et al., 2021). The exact resolution of measurements in 

Pietrogrande et al.’s study was not reported, but results showed that the authors had collected data of 

at least hourly resolution. Most of the studies we found that included between-room comparisons of 

measured IEQ indicators involved only means and standard deviations. Pietrogrande et al.’s (2021) study 

was the only study we found that evaluated correspondence between rooms on a high (hourly) 
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resolution basis. Their study compared hourly concentrations of the kitchen and living room for one 

sampling day. 

Even in studies where data have been gathered at high resolution (i.e., hourly for temporal resolution; 

multiple rooms for spatial resolution) in homes, these data have not been used to evaluate or 

demonstrate potential applications and value that higher resolution data may offer. For instance, would 

a practitioner be able to identify poor IEQ conditions within a home if only sampling from one room? 

Which room would be best to sample from, if only one sensor were available per home? What 

information is gained if only one room can be sampled for only a few days? 

Studies have been performed to determine the optimal locations of monitoring stations within an 

outdoor air quality monitoring network (Caselton & Zidek, 1984; Perez-Abreu & Rodriguez, 1996; Silva & 

Quiroz, 2003). These studies used a measure of information called relative entropy (explained in detail 

in the following sections) to evaluate what they called the “effectiveness” of a network. The goal of 

these studies was to determine the arrangement of monitoring stations that would result in the most 

information gathered using the least stations. Osses et al. (2013) expanded on this concept, renaming 

the “effectiveness” index to a “specificity” index and using the index as a measure of how difficult it 

would be to gather data from a network without including a given sensor. This measure essentially 

determines how irreplaceable a given sensor is for the network. The authors then defined a 

“representativity” index, which they asserted was a required complement to the specificity index. The 

representativity index measured how well a sensor characterized general conditions within the region of 

interest by considering the change in uncertainty of a network when adding the given sensor to the 

network. These measures of specificity and representativity, referred to as “spatial specificity” and 

“spatial representativeness” respectively in our study, were slightly modified and used to evaluate the 

spatial resolution of the data gathered within enrolled homes. 
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We define temporal representativeness of IEQ metrics as the extent to which a sampling period 

captures trends and magnitudes that characterize average conditions in the long-term period of 

interest. As defined here, temporal representativeness has also not been well explored in IEQ literature. 

However, some measures have been introduced to evaluate the representativeness of samples. In their 

study of personal exposures to nitrogen dioxide and sulfur dioxide, K. Lee et al. (2004) perform paired t-

tests, comparing the mean and 95th percentile of short term (one- to fourteen- day) periods to the 

respective long-term (fourteen-day) periods from which they were extracted. The authors used the 

results to determine if there was a significant difference between the summary statistics of the sample 

and the long-term period. This approach is uncommon in the literature, likely because paired t-tests 

require two independent samples for comparison, an assumption that may have been compromised in 

the aforementioned example. 

Luoma & Batterman (2000) included representativeness as one of the five indicators of data quality, and 

write about how variability negatively impacts representativeness of sample measurements. The 

authors modeled how ventilation of a room can impact autocorrelation of IEQ indicators, and thus the 

variability of the indicators. Luoma & Batterman established relative standard deviation, or RSD (the 

standard deviation of the mean divided by the standard deviation of sample measurements) as a 

measure of variability. The authors applied this RSD measure to real-time seven-hour samples of 

particulates, bio-aerosols, and CO2 recorded during each day of a one-week period. E.G. Lee et al. (2008) 

expanded off of Luoma & Batterman’s study and used RSD (using the name of standard deviation ratio, 

or SDR) to estimate the amount of time required to achieve a representative sample of a tracer gas. E.G. 

Lee et al. use a targeted precision value as a threshold to define a representative sample. However, 

using the measure of SDR/RSD for analysis requires stationary data and samples that are assumed to 

have the same mean as the monitoring period during which the samples were recorded. As such, the 

SDR/RSD measure was only applied to short-term monitoring periods (a few hours at most) in the 
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aforementioned studies. Also, neither this SDR/RSD method, nor the paired t-test method, can contrast 

the diel structure (hour-of-day averages) of sample data to the time-structure of the long-term period 

the sample is attempting to characterize. The SDR/RSD method and paired t-tests can only contrast 

means. 

Relative entropy is the measure of information used to derive the metrics of spatial representativeness 

and specificity in the studies mentioned previously. Few studies have used relative entropy to measure 

temporal representativeness. Outside of the field of IEQ, Stanley et al. (2018) used relative entropy to 

determine how long GPS data should be gathered from the mobile phone of participants before the data 

is considered representative of typical mobility patterns. The threshold for representativeness was 

defined when information was no longer gained from the addition of another day of data. A follow-up 

study (Yoo, 2019) was then performed including participants from a broader span of socioeconomic and 

demographic backgrounds. Yoo aimed to determine if representativeness of different sample lengths 

varied by individual. Only one study, performed by Maciejewska & Szczurek (2015), was found applying 

relative entropy as a measure of temporal representativeness for IEQ samples. The authors recorded 

real-time measurements of temperature, relative humidity, and carbon dioxide in a lecture theatre and 

computer laboratory over several months. Maciejewska & Szczurek then calculated the 

representativeness (as derived from relative entropy) of a short sample to the month-long period from 

which it was extracted. The authors reported how representativeness varied as the length of the sample 

was increased from one day to the entire month. Maciejewska & Szczurek also defined a threshold for 

representativeness and determined how long a sampling period for each of these metrics needed to last 

to be considered representative of long-term periods ranging from one to nine months. Based on their 

defined threshold, the authors concluded that carbon dioxide measurements were required to be 

approximately 20% of the length of a long-term period of interest to be representative. Maciejewska & 

Szczurek reported that temperature and relative humidity measurements required longer sampling 
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periods – roughly 30-50% of the length of the long-term period of interest – to be considered 

representative. Our study modified the methods used by Maciejewska & Szczurek (2015) to calculate 

the representativeness of short IEQ samples to the long-term period from which they were extracted 

within homes. The methods for this calculation are explained in more detail in the following sections. 

 

4.3.8.2. Relative Entropy 

Entropy is a measure of the uncertainty within a data distribution. The Kullback-Liebler Divergence, also 

called relative entropy, is a measure of the similarity between two probability distributions. This 

measure is often used in machine learning applications to determine the quality of models (Bousquet, 

2008; Kowalski et al., 2014; Kullback, 1959). The below definition of relative entropy was considered for 

the measures used in this paper: 

Equation 3 Relative Entropy, D(p ||q) = p (x) ln p (x)q(x) dx 

Or in the discrete form: 

Equation 4 Relative Entropy, D(p ||q) = p (x) ln p (x)q(x)∈  

Where ps(x) is the probability distribution of values from the considered sample, q(x) is the probability 

distribution of values from the corresponding long-term dataset, and A (in the discrete case) is the 

domain of possible values for X. Relative entropy is always positive; the larger the value of relative 

entropy, the more different the two probability distributions. Relative entropy is only zero if the two 

considered distributions are identical. In this study, measures derived from relative entropy were used 

to evaluate both spatial and temporal representativeness. 
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4.3.8.3. Temporal Representativeness  

Temporal representativeness was measured using relative entropy in a similar fashion to Maciejewska & 

Szczurek (2015) by creating a probability distribution from sample data. The sample data’s probability 

distribution was then compared to the probability distribution of the long-term monitoring period 

dataset from which the sample was extracted. The following equation was used to create an intuitive 

representativeness index that varied from 0 to 1: 

Equation 5 Temporal Representativeness, R = 1 − DD  

Where, for a given IEQ metric (e.g., PM2.5, TVOC), Ds is the relative entropy of a sample s, and Dmax is the 

largest relative entropy value (least representative) of all samples considering all sampling lengths, 

homes, rooms, and seasons. 

For each sensor within a given home and room, the long-term monitoring period, against which the 

representativeness of a sample was measured, was defined as the entire monitoring period (generally 

six to ten months) of the given sensor. The health impacts associated with exposures to the indoor air 

pollutants measured in this study are typically outcomes of chronic and non-communicable diseases 

(e.g., cancer; cardiopulmonary illnesses); thus, the exposures applied in exposure-response models that 

include these pollutants are treated as chronic exposures. Even if the actual measure of exposure is 

much shorter (e.g., one to several days, multiple weeks, or even a year-long measure), the exposure is 

treated as a measure of chronic exposure (i.e., occurring at the measured level over the lifespan or over 

long periods of time) (International Energy Agency, 2017). Therefore, an ideal analysis might use an 

entire calendar year to encompass most conditions and behaviors that a home experiences. As such, we 
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took our longest continuous period available in the dataset (six to ten months, depending on the home) 

to be the basis for evaluation. 

Representativeness was calculated and disaggregated by season. It has been noted in literature how the 

changing of season can affect behaviors (Du et al., 2020), and corresponding changes in ventilation, 

cooking, and heating habits, can cause significant changes in emissions/infiltration of pollutants, and 

other measured metrics. Thus, we hypothesized that certain seasons may require larger sample sizes to 

achieve representative samples. For each home, the long-term monitoring period of six to ten months 

was disaggregated into the three considered seasons of heating, shoulder, and cooling (only heating and 

shoulder if air conditioning was not used in the home). Samples of lengths ranging from one day to 28 

days were then extracted from each considered season within the long-term monitoring period. A 

sample length of one day was chosen as the minimum sample length, as this sample length would allow 

for the capture of diel trends. A sample length of 28 days was chosen as the maximum sample length. 

For typical in-home environmental quality evaluations, it was assumed infeasible for a practitioner to 

acquire hourly resolution air quality samples lasting longer than 28 days within a home. 

For each sample length considered within the range of one to 28 days, samples were extracted via a 

moving window technique without overlap (exemplified in Figure 5). Partial samples that extended past 

the end of the season were ignored. For example, assume a given sensor had a heating season that was 

65 days in length. When calculating how representative a ten-day sample recorded during the heating 

season is of the data collected over the sensor’s long-term monitoring period of ten months, six samples 

would be considered (65/10 = 6.5, rounded down to 6). A separate relative entropy value would be 

calculated for each of the six samples. A significant amount of data at the end of a given season is not 

considered for larger sample sizes when using this sampling window technique, as the ending partial 

sample windows are not included. In the aforementioned example, the final five days in the 65-day 

heating season would not be considered in any samples. To mitigate this problem, an overlapping 
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moving window sampling technique was considered, where the start of each sampling window is shifted 

only one day later than the start of the previous sample. Using the overlapping sampling technique with 

the previously assumed heating season would have resulted in 55 samples (65-10 = 55) that spanned the 

entire season.  However, concerns arose over the lack of independence between overlapping samples 

when considering this overlapping moving window technique. Therefore, the non-overlapping window 

sampling technique was used in the temporal representativeness analysis. 

Two methods of preparing the probability distribution functions of a sampling period and its respective 

long-monitoring period for comparison were described in Kowalski (2014). These two methods, as used 

in the current study, are visually exemplified in Figure 6. Using the histogram method – i.e., categorizing 

time series values into bins based on their magnitudes (not their time value) – would result in what we 

call a “magnitude-based” comparison of two distributions. Magnitude-based comparison would not 

consider the original temporal ordering of the data. Meanwhile, by splitting the time series into bins 

defined by the time value and averaging the magnitude of the time series value within each bin, one is 

Season End Season Start 

Figure 5: Example of sample extraction process for PM2.5 data gathered from one sensor in a season. Numbered orange 
boxes represent extracted sample periods. Blue dashed lines represent the start and end of the season. The date range is 
the entire (long-term) monitoring period. This example shows six, 10-day samples extracted from a 65-day season within a 
six-month long-term period. Note that data period at the end of the season after the sixth sample is not used, as it is less 
than ten days in length. 
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able to compare the “time-structure” of two distributions (Bandt & Pompe, 2002; Kowalski et al., 2014). 

When conducting a time-structured comparison of two distributions, the absolute average magnitudes 

that are recorded within each time-defined bin are not directly compared, as the values within each 

distribution are normalized to achieve a probability distribution. However, relative values (such as the 

maximum average value divided by the minimum average value) for each distribution would remain 

unchanged when converting the distribution to a probability distribution. These relative values would 

therefore be considered when comparing the two distributions via a relative entropy calculation. 
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When evaluating temporal representativeness of samples in this paper, only time-structured 

representativeness was analyzed. The hour-of-day average values for a given IEQ metric over a sampling 

period were used as the sample distribution. The hour-of-day average values for the same IEQ metric 

over the long-term monitoring period from which the sample was extracted were used as the long-term 

distribution. Essentially, the discrete method of relative entropy calculation (Equation 4) was used 

across the 24, one-hour bins in each distribution. This method of time-structured representativeness 

Figure 6: Demonstrations of preparing a PM2.5 sample dataset extracted from a season within a long-term monitoring 
dataset (top) for the calculation of magnitude-based representativeness (bottom left) and time-structured 
representativeness (bottom right). 

Entire Monitoring Period 

Sample 

Time-Structured 

Comparison 

Magnitude-Based 

Comparison 

Season End Season Start 
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measures how well the diel structure of a sample characterizes that of the monitoring period from 

which the sample was extracted. 

Magnitude-based representativeness was explored but not included in this study. After difficulties arose 

with empty distribution bins when using the discrete form of the relative entropy calculation (Equation 

4), the discrete method was discarded as an option for magnitude-based calculations. Relative entropy 

cannot be calculated if the population distribution (the distribution of the entire monitoring period’s 

dataset, in this case) has a value of zero for any of its bins. Zero values were common in distributions for 

datasets that had wide ranges of values (e.g., from 0 μg/m3 to 300 μg/m3 for PM2.5 datasets). There were 

also concerns of the effect that arbitrarily chosen bin size can have on the resulting relative entropy 

values. We chose a bin width of one hour for the distributions used to calculate time-structured 

representativeness, as hourly intervals are an intuitive averaging period for diel analysis. There was less 

of a basis for choosing bin width for magnitude-based representativeness. For instance, a PM2.5 dataset 

that contains values between 0 μg/m3 and 400 can be broken into 400 bins that are each 1 μg/m3 in 

width. The same sample can be broken into 4000 bins that are each 0.1 μg/m3 in width. Bin width was 

observed to impact the relative entropy values calculated for samples during analysis. Magnitude-based 

representativeness could have been calculated using the continuous form of relative entropy (Equation 

3) to overcome difficulties associated with aggregating data into bins. However, evaluating the 

continuous form of relative entropy to calculate the representativeness of a sample requires assuming 

the sample and its respective long-term monitoring period each fit an integrable distribution. A log-

normal distribution is an integrable distribution to which IEQ data can most often be fitted; however, 

this assumption of log-normality would be difficult to test for all samples of lengths ranging from one to 

28 days. This assumption also would likely not hold true for many short (e.g., one-day) samples. 

IEQ samples that are representative of their respective long-term monitoring period (with respect to diel 

structure) could be helpful in identifying potential sources of poor IEQ. This is especially true if 



 

48 
 

representative IEQ samples are paired with diel energy data or prior knowledge of residential energy use 

habits and behaviors. In turn, insight about IEQ and possible sources of poor IEQ could inform what 

recommendations are made related to improving home energy efficiency. Conversely, if IEQ samples are 

not representative of long-term conditions, inaccurate conclusions (if any) may be reached, and the 

ability of energy efficiency programs to leverage home performance upgrades for residential health co-

benefits may suffer as a result. 

 

4.3.8.4. Spatial Representativeness and Specificity 

Spatial representativeness was also evaluated for the metrics gathered in each room within each home. 

We used the method similar to the that which was introduced by Osses et al. (2013). They looked at the 

case of relative entropy between two normally distributed distributions, 𝑎~𝑁(𝜇 , 𝛴 ) and 𝑏~𝑁(𝜇 , 𝛴 ), 

with means µa and µb and invertible covariance matrices Σa and Σb. In this normal case, the following 

relationship holds true: 

Equation 6 D(a||b) =  12 (tr Σ Σ − nm − ln |Σ ||Σ | + Σ (μ − μ )  

 

Where tr( matrix ), | matrix |, and ( matrix )-1 denote the trace, determinant, and inverse of a matrix, 

respectively; n is the number of stations (in our case, three rooms); m is the number of species (in our 

case, one species, as we explore the univariate case). Spatial representativeness was then explored by 

calculating the “information gain” for each room. Information gain is a measure of decrease in entropy. 

When used by Osses et al. (2013) and the current study, information gain measures the decrease in 

entropy (essentially the decrease in uncertainty) that occurs when a new dataset is added to an existing 
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dataset. Assuming the normal case described in Equation 6, information gain can be calculated with the 

following equation: 

Equation 7 Information Gain, I = D(p ||q _ ) ≈ − 12 ln |Σ ||Σ _ | ∗ σ _  

Where, within the considered home and season, Ii
G is the information gain for room I; pall is the joint 

probability distribution of values created with data from all three rooms (bedroom, living room, and 

kitchen); qi_missing is the probability distribution created via model if measurements from room i are not 

included. The dataset that represented pall, and which was used to calculate Σall, was a t x 3 matrix. The 

three columns in pall were the time-ordered data from each respective room, with t hours of data in 

each column. In our case, the modeled values of the probability distribution, qi_missing, would be directly 

dependent on the values of the two “other” (non-i) rooms in the considered home, as no other variables 

were included in these datasets. Therefore, the dataset that represented qi_missing, and which was used to 

calculate Σi_missing, was a time-ordered t x 2 matrix; the two columns were the data from the non-i rooms, 

with t hours of data in each column. Hours when one of the rooms was missing a reading were not 

considered in the correlation calculation. 𝜎 _  is the summed variance of the datasets from the 

two other rooms. As the two non-i datasets were likely dependent, the covariance of the two datasets 

was included when calculating this value. 

For this method of measuring information gain, the relative entropy of these two distributions was 

represented by the third term in Equation 6; this third term is the classical definition of “entropy 

decrease,” (Osses et al., 2013). In this sense, Ii
G essentially measures the reduction in uncertainty that 

occurs when data from room i is included in the overall dataset. The below equation was then used to 

calculate a spatial representativeness index value for room i within a given home: 
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Equation 8 

Spatial Representativeness, R = I − II − I  

Where 𝐼  and 𝐼  are the minimum and maximum values of information gain across all three rooms 

and all seasons within a given home. This method of scaling (subtracting the minimum from both the 

numerator and denominator) allowed spatial representativeness to be evaluated on a scale of 0 to 1, 

with larger values implying rooms that are more representative of their respective home. Other scaling 

methods are possible, but we were more concerned with the resulting order of Ri
S values than their 

absolute magnitude (i.e., how rooms compared to one another with respect to their representativeness 

in the home), as there is not an established threshold value for a significant difference in 

representativeness.  

A related value, which we define as “spatial specificity,” is the extent to which data gathered from a 

single sampling location captures trends and measurement magnitudes that are not captured by 

samples gathered from other sampling locations within the larger location of interest. We evaluated 

spatial specificity via the entropy-related measure of mutual information (Equation 9): 

Equation 9 Mutual Information, I = D(p | p p _ = − 12 ln |Σ ||Σ _ | ∗ σ  

Where pi is the marginal probability distribution created from the dataset of room I; pi_missing is the 

marginal probability distribution created from the dataset of the two non-i rooms; σi
2 is the variance of 

the room i dataset. Osses et. al (2013) defined this as specificity, while others (Perez-Abreu & Rodriguez, 

1996; Silva & Quiroz, 2003) defined this as “effectiveness.” Regardless, mutual information, when used 

in this sense, is essentially a measure of how difficult it is to produce data observed within a considered 
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room if data from that room is not available. Equation 10 was then used to calculate a spatial specificity 

index value for room i within a given home: 

Equation 10 

Spatial Specificity, S = 1 − II  

Where 𝐼  is the maximum value of mutual information across all rooms and seasons within a given 

home. This scaling method allows spatial specificity to be evaluated on a scale of 0 to 1, with larger 

values implying rooms that are more specific. Similar to representativeness, a different scaling method 

could have been chosen, but we are more interested in the order of the resulting specificity values 

between rooms within a home than we are of the magnitude of these values. 

These spatial measures of representativeness and specificity essentially consider the entire time-

structure and magnitudes of time series data values. This is because both measures consider the 

variance of each dataset and the correlation between time-ordered values within datasets in each home 

and. This correlation is possible with spatial representativeness and specificity calculations because the 

datasets of rooms within the same home can be paired. The sample and long-term datasets used for 

temporal representativeness calculations could not be paired due to their different sizes/time periods. 

The measures of spatial representativeness and spatial specificity were each calculated separately for 

each season within each home to test whether these measures varied between seasons. Only homes 

with data from all three rooms within a given season were used in spatial analysis for the given season. 

The assumption of normality was required for the use of Equation 7 and Equation 9. The datasets of 

each IEQ indicator collected from each home-room-season condition therefore had to be checked for 

normality before spatial specificity and spatial representativeness of the datasets were calculated. If a 

dataset did not to satisfy the assumption of normality, the dataset had to be transformed to fit a normal 

distribution prior to representativeness or specificity calculation. 
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Table 5: Methods of evaluating representativeness and specificity of metrics. 

Quality Criterion Definition Method of Evaluation 

Temporal 
Representativeness 

Time-Structured 

Extent to which sampling 
period captures diel trends that 
characterize average conditions 
in long-term period 

Relative Entropy D = p(x) ln p(x)q(x)∈  

Magnitude-Based 

Extent to which sampling 
period captures magnitudes 
that characterize average 
conditions in long-term period 

Representativeness R = 1 − DD  

Spatial Specificity 

Extent to which data recorded 
in a sampling location captures 
trends and magnitudes that are 
not captured by samples 
recorded in other sampling 
locations within the larger 
location of interest 

Mutual Information 𝐼 = − 12 ln |Σ ||Σ _ | ∗ σ  

 
Specificity S = 1 − II  

Spatial Representativeness 

Extent to which data recorded 
from a sampling location 
captures trends and 
magnitudes that characterize 
average conditions within the 
larger location of interest 

Information Gain 𝐼 ≈ − 12 ln |Σ ||Σ _ | ∗ σ _  

 
Representativeness R = I − II − I  
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5. Results 
 

 

5.1. Study Population 

Sixteen homes were enrolled into the study.  Home 5 was omitted from all analysis, as less than two 

weeks of data were collected from this home. This resulted in an analyzed study population of fifteen 

homes. Table 6 displays a summary of characteristics of homes included in analysis. Two thirds of the 

recruited homes were owner-occupied, and the rest were renter-occupied. All owner-occupied homes 

were detached single-family homes (i.e., they did not share a common wall with any other dwellings). 

Four of the renter-occupied homes were duplex units. Each duplex unit was a single-family attached 

home (i.e., shared a common wall with another duplex unit). All duplex units were considered individual 

homes for the purposes of this study. The remaining renter-occupied unit was a detached single-family 

home. No socio-demographic or income data were available for individual homes, as these data were 

not gathered in the energy assessment or participant surveys. Most of the recruited homes were in 

census tracts for which the median household income was between $50,000 and $89,999. Fort Collins is 

situated within Larimer County, Colorado. The median household income for Larimer County in 2019 

was estimated at $75,186 (United States Census Bureau, 2019). Broad ranges of conditioned area (total 

amount of floor space in which thermal conditions are controlled), number of occupants, and age were 

observed in the recruited homes. Most of the recruited homes contained two stories and had attached 

garages. 

Six to ten months of five-minute resolution IEQ data were collected in each enrolled home between July 

20, 2020 and May 31, 2021. Start dates were rolling, and ranged from July 20, 2020 to November 23, 

2020. The number of hours for which valid IEQ sensor data were recorded indoors ranged from 3,248 

hours (136 days) to 7,507 hours (315 days), with a median of 6,589 hours (275 days) across all homes. A 

room-hour is defined as one hour of data in one room. Up to three IEQ sensors were placed indoors in 
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each home, excluding outdoor and garage sensors. Between 9,744 and 21,690 valid room-hours, with a 

median of 18,926 room-hours were recorded by indoor sensors across all homes. IEQ sensors 

occasionally malfunctioned due to battery loss or Wi-Fi disconnection. All fifteen homes recorded valid 

IEQ data over at least 91% of their corresponding enrollment period; for most homes, this percentage 

was above 98%. Two rounds of filter-based PM2.5 calibration visits were conducted for most homes 

within the study period. Malfunctioning of filter-based PM2.5 sampling devices resulted in loss of filter 

data (28% of filter samples). Due to home energy monitor data import issues, two homes completely 

lacked energy use data and four homes lacked data after mid-May of 2021. One home lacked data after 

late March 2021 due to Wi-Fi connection issues.  

Table 6: Summary of homes enrolled in study and included in analysis. Information gathered from questionnaire and energy 
assessment data. *Data not available from survey or assessment. **Includes two sets of duplex units and one single-family 
detached home. ***Median annual household income for census tract in which home was located. ****Air changes per hour for 
home pressurized at 50 psi, reported in home energy assessment. 

Variable Number of 
Homes 

Percent of 
Homes 

Year Built     
1900-1920 1 7% 
1960-1979 8 53% 
1980-1999 3 20% 
2000-2020 3 20% 

Conditioned Area, sq. ft.     
<1499 5 33% 

1500-2499 3 20% 
2500-3499 6 40% 

>3500 1 7% 
Garage Type     

Attached 12 80% 
Detached 3 20% 

Floors     
1 2 13% 
2 12 80% 
3 1 7% 
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Table 6 cont.: Summary of homes enrolled in study and included in analysis. Information gathered from questionnaire and 
energy assessment data. *Data not available from survey or assessment. **Includes two sets of duplex units and one single-
family detached home. ***Median annual household income for census tract in which home was located. ****Air changes per 
hour for home pressurized at 50 psi, reported in home energy assessment. 

Variable Number of 
Homes 

Percent of 
Homes 

Stove Type     
Electric 8 53% 

Natural Gas 4 27% 
Unknown* 3 20% 

Property Type     
Owner-Occupied 10 67% 
Renter-Occupied 5** 33% 

Occupants     
1 1 7% 
2 7 47% 
3 1 7% 
4 3 20% 
5 2 13% 

Unknown* 1 7% 
Census Tract Median Annual Household 

Income***     
$20,000 - $49,999 1 7% 
$50,000 - $89,999 9 60% 

$90,000 - $119,999 4 27% 
$120,000 - $149,999 1 7% 

ACH50****     
≤ 3.0 1 7% 

3.1 to 6.0 4 27% 
6.1 to 9.0 5 33% 

> 9.0 2 13% 
Unknown* 3 20% 
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5.2. Calibration of Real-Time PM2.5 Measurements 

Ninety-six (96) pairs of filter-based and sensor-based PM2.5 measurements were collected over the study 

period. Three of these pairs were omitted from analysis because the filter-based measurement resulted 

in a negative average concentration. Negative average concentrations could have occurred due to the 

presence of residue on the filter during pre-deployment weighing, and the loss of this residue during 

deployment. If less mass was collected on the filter over the sample collection period than the mass of 

the initial residue, negative concentrations could have been calculated post-deployment. We evaluated 

the relationship between the filter- and sensor-based measures of PM2.5 in two ways ( Figure 7). 

Pairwise ratios between the gravimetric PM2.5 mass concentration and the time-weighted PM2.5 

concentration averaged over the same sampling period as the filter deployment ranged from 0.09 to 

5.21, with a median of 0.88. Alternatively, a simple linear regression of sensor-based, time-weighted 

average PM2.5 concentrations versus gravimetric PM2.5 mass concentrations yielded a slope of 0.29, 

when no data were excluded (Table 7). Excluding one pairwise sample (1.1% of the total) that was not 

within 2.5 standard deviations from the mean, the regression coefficient was 0.28. For the purpose of 

this study, we used the pairwise correction factor – i.e., the ratio of the gravimetric PM2.5 mass 

concentration and the time-weighted PM2.5 concentration – to adjust the time-weighted PM2.5 

concentrations for the corresponding sensor. 

 

 

Table 7: Results of simple model (TWA = Estimate*Cfilter + 0) 
with no data omitted. Excluding one pairwise sample (1.1% 
of the total) that was not within 2.5 standard deviations 
from the mean, the regression estimate = 0.28         

Term Estimate p-value 
95% 

Confidence 
Interval 

Cfilter 0.29 0.00 0.20 - 0.37 
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 Figure 7: Left: Distribution of gravimetric correction factors calculated from paired IAQ sensor PM2.5 TWA values and filter-
based average (Gravimetric) PM2.5 values. Center: IAQ sensor TWA PM2.5 values vs filter-based average (Gravimetric) PM2.5 
values (Cfilter). Dotted line shows theoretical 1 to 1 line; solid line shows simple model results plotted. Inset plot included for view 
of smaller values. 

   

5.3. Comparison of Home Energy Monitor Measurements with Natural Gas Heating Data 

Natural gas usage data were collected in a subset of homes and compared with our measures of heating 

device usage derived from the home energy monitor usage (methodology described in Section 4.3.6). 

The amount of natural gas consumed by each home was available by monthly billing period. Monthly 

natural gas consumption for each home was normalized to the month with the highest gas 

consumption. The amount of time on for the identified primary heating device was calculated for the 

same monthly billing periods within each home. These monthly time on values were also normalized 

and paired by billing month to the normalized gas usage data (Figure 8). No detailed analysis between 

energy monitor data and natural gas consumption data was performed; however, the general trend of 

the monthly natural gas data agreed with the general trend of the monthly primary heating device usage 

reported by the home energy monitor. Generally, as monthly natural gas usage increased, so did the 

amount of time on for the primary heating device. Certain homes displayed uncertainty in the method 
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used to identify a primary heating device with the home energy monitor. For example, some billing 

months (October and November) in Homes 9, 10, and 11 displayed little usage for the primary heating 

device, while natural gas usage was substantial in these months (Figure 8). The home energy monitor 

may not have identified the primary heating device during these months even though the heating device 

was running. This discrepancy between gas consumption and heating device usage suggests the primary 

heating device usage methodology was not an effective proxy for home heating intensity for all homes.  

However, the generally acceptable agreement observed between the heating device and natural gas 

usage for most of the homes in this subset suggests the use of the primary heating device proxy is 

justified for defining seasons. 

 
Figure 8: Amount of time-on of heating device, as measured by energy monitor device, and amount of gas used for heating, as 
measured by home natural gas supplier, during billing month (noted on x-axis) for select homes (home number above each 
respective plot). Billing months span from September 2020 (S) to May 2021 (M). Both time-on and gas usage numbers were 
normalized so that the month with greatest magnitude within each home was assigned a value of 1. 
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5.4. Autocorrelation of IEQ Metrics 

Autocorrelation analysis was performed using the methodology described previously (Section 4.3.3). The 

number of days required before autocorrelation became insignificant (when data was no longer 

considered autocorrelated) was determined for PM2.5, TVOC, CO2, and temperature datasets from each 

indoor sensor in each season (Figure 9). The median of, and variation in, the length of time (i.e., number 

of days) until autocorrelation became statistically insignificant was comparable between indoor samples 

of TVOC, CO2, and temperature. Autocorrelation was generally present in indoor samples of these three 

IEQ indicators longer than autocorrelation was present in indoor samples of PM2.5. 

 
Figure 9: Number of days (in lagged correlations) before insignificant autocorrelation is reached for each IEQ indicator, homes 
pooled, stratified by room and colored by season. Room-season samples consisting of less than 25 days of data, missing more 
than 11.1% (1/9) of monitored days, or that did not reach insignificance prior to 30 days were omitted from analysis. 

 

Autocorrelation results determined the averaging period required to achieve independent samples for 

each IEQ indicator. Data recorded during the heating season appeared to remain autocorrelated longer, 

on average, than the other two seasons (Figure 9), although no analysis was performed to test for a 

significant difference in autocorrelation between the seasons. We assumed averaging period length for 

all seasons for each IEQ indicator. For each IEQ indicator, the median number of days before data was 

no longer autocorrelated (pooling datasets from all seasons) was used as the averaging period required 
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for an independent sample (Table 8). The resulting averaging period for indoor PM2.5 samples (two days) 

was the shortest of the four IEQ indicators. Averaging periods of indoor CO2, TVOC, and temperature 

samples were longer, at four, five and six days respectively. 

 

 

5.5. Summary Statistics of IEQ Indicators 

5.5.1. Overall and Seasonal Averages 

Time-weighted hourly average values were calculated from the five-minute measurements recorded 

from each indoor sensor. These values were then pooled across all rooms (kitchen, living room, and 

bedroom) within each home to summarize the data collected over the entire study period (Table 9 

). The US Environmental Protection (EPA) does not provide guidelines for levels of air quality pollutants 

indoors, but it has set standards for criteria pollutants in ambient (outdoor) air for both short-term and 

long-term exposure (US Environmental Protection Agency, 2021). The long-term EPA primary standard 

(“long-term” is defined as the annual average over three years; “primary” pertains to the protection of 

Table 8: Averaging period for independent samples 
for each IEQ metric, determined using the median 
time (in days) at which the autocorrelation factor in 
autocorrelation analysis (pooled homes, seasons, and 
indoor rooms) reached insignificance. *Rounded up to 
nearest integer day value. 

IEQ Indicator Averaging Period (days) 

PM2.5 2 

TVOC 5* 

CO2 4 

Temperature 6 
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sensitive populations) is 12 μg/m3. The World Health Organization (WHO) has set air quality guideline 

(AQG) levels for short-term and long-term exposure to PM2.5, which the organization stated were 

relevant to both indoor and outdoor exposures (2021). The WHO recently updated their guidance for 

annual PM2.5 levels, such that the air quality guidance (AQG) level is now 5 μg/m3. The time-weighted 

average across all 15 homes in the study (8.2 μg/m3) was below the EPA standard but exceeded the 

WHO ACG. Some homes also exceeded the EPA standard (Table 9). 

The EPA has not established guidelines or standards for airborne volatile organic compounds (US 

Environmental Protection Agency, n.d.), and the WHO has only suggested guidelines for specific organic 

compounds (e.g., benzene, naphthalene, and formaldehyde), not aggregate compound levels which are 

measured with the TVOC metric (World Health Organization, 2010). LEED, a green building certification 

program that is prevalent worldwide, has set a maximum TVOC concentration guideline of 500 μg/m3 as 

a threshold for a building to achieve a credit among enhanced air quality and enhanced indoor 

environmental quality criteria (U.S. Green Building Council, 2018). The time-averaging period for this 

guideline is unspecified, but LEED guides refer to samples taking place in a single day during building 

occupied hours. As such, 500 μg/m3 TVOC concentrations have been used as a level for comparison in 

scientific IEQ literature (Jia et al., 2019; U.S. Green Building Council, 2018). The response of a TVOC 

sensor does not provide any information on the mixture of VOCs to which the sensor may be 

responding. Therefore, converting a mass concentration to a part per billion by volume concentration 

(i.e., ppb) requires making an assumption about the molar mass of a hypothetical mixture of VOCs. We 

assumed the TVOC sensor in our study was responding to a mixture of 22 VOCs with ratios defined by 

Sensirion (2019) and Mølhave et al. (1997). This assumption implies a concentration of 1 ppb 

corresponds to 4.5 μg/m3, meaning the LEED TVOC guideline converts to approximately 110 ppb. The 

average indoor TVOC concentration in each home over the study period exceeded this 110 ppb 

guideline, and the pooled average of all homes was more than triple this guideline. 
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Table 9: Time-weighted hourly average values calculated from the five-minute measurements recorded from all indoor sensors (kitchen, living room, and bedroom), all rooms 
pooled within each home. The time-weighted hourly average values for all homes at the bottom of the table were calculated pooling data from all indoor rooms from all homes. 
Data is from entire study period for each home. 

 

 

Median Median Median

1 11,544 0.0 - 183.4 3.6 ± 6.9 1.7 21 - 3,896 255 ± 175 234 400 - 2,973 763 ± 340 682
2 15,005 0.0 - 443.0 5.1 ± 11.7 2.5 23 - 5,943 335 ± 334 251 400 - 4,014 736 ± 449 587
3 21,690 0.0 - 806.5 13.8 ± 30.9 4.9 20 - 10,018 509 ± 507 366 400 - 5,000 1,004 ± 656 804
4 19,525 0.0 - 865.8 10.5 ± 26.5 2.1 20 - 6,991 217 ± 247 165 400 - 1,997 639 ± 183 605
6 20,213 0.0 - 405.0 4.2 ± 9.7 1.9 20 - 9,690 300 ± 239 261 400 - 1,802 620 ± 167 581
7 19,191 0.0 - 421.6 6.5 ± 14.3 2.3 20 - 6,542 323 ± 300 255 400 - 1,581 637 ± 166 601
8 20,086 0.0 - 451.7 9.7 ± 18.0 4.8 20 - 14,068 488 ± 512 338 400 - 2,034 666 ± 219 613
9 19,396 0.0 - 771.2 7.9 ± 17.3 3.8 9 - 9,414 565 ± 525 382 400 - 2,883 952 ± 377 898

10 19,120 0.0 - 515.4 7.7 ± 18.6 3.4 20 - 14,337 176 ± 262 107 399 - 2,449 753 ± 309 674
11 14,967 0.0 - 1,131.6 14.0 ± 36.2 5.6 20 - 6,746 412 ± 425 302 400 - 2,206 854 ± 282 812
12 18,926 0.0 - 1,066.7 4.0 ± 12.6 1.5 21 - 3,887 218 ± 127 200 400 - 1,929 622 ± 218 558
13 16,347 0.0 - 1,121.6 11.7 ± 41.1 3.8 20 - 7,311 318 ± 282 261 400 - 3,275 715 ± 342 623
14 14,912 0.0 - 90.8 2.4 ± 3.0 1.6 20 - 3,535 255 ± 170 229 400 - 3,641 704 ± 294 637
15 11,445 0.0 - 1,131.6 16.3 ± 74.4 2.9 0 - 27,984 406 ± 563 305 333 - 3,586 823 ± 476 691
16 9,744 0.0 - 756.6 5.3 ± 20.9 2.5 20 - 2,961 216 ± 158 197 400 - 2,022 770 ± 277 721

All  homes 252,111 0.0 - 1,131.6 8.2 ± 27.0 2.8 0.0 - 27,984 340 ± 377 252 333 - 5,000 749 ± 364 645

Range Mean ± SD
Home N

(room-hours)
PM2.5 (ug/m3)

Range Mean ± SD

CO2 (ppm)

Range Mean ± SD

TVOC (ppb)
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Table 9 cont.: Time-weighted hourly average values calculated from the five-minute measurements recorded from all indoor 
sensors (kitchen, living room, and bedroom), all rooms pooled within each home. The time-weighted hourly average values for 
all homes at the bottom of the table were calculated pooling data from all indoor rooms from all homes. Data is from entire 
study period for each home. 

 

  

Median Median

1 11,544 12.5 - 28.1 21.0 ± 2.3 21.0 12.9 - 55.3 34.7 ± 5.7 34.7
2 15,005 13.5 - 26.3 20.9 ± 1.7 20.9 8.0 - 64.1 31.1 ± 11.4 28.4
3 21,690 13.3 - 29.2 20.5 ± 2.1 20.2 11.7 - 87.0 43.5 ± 7.8 42.8
4 19,525 14.5 - 29.5 18.8 ± 2.5 18.3 11.0 - 69.7 37.1 ± 6.9 36.6
6 20,213 18.3 - 29.9 20.9 ± 1.3 20.5 16.1 - 62.4 43.9 ± 5.7 44.9
7 19,191 13.3 - 28.6 20.7 ± 2.0 20.7 9.7 - 68.6 35.8 ± 6.9 35.7
8 20,086 -3.2 - 36.9 19.4 ± 4.2 20.8 9.5 - 67.1 35.2 ± 7.4 33.7
9 19,396 11.4 - 31.3 19.5 ± 2.5 19.4 10.4 - 70.1 42.1 ± 6.4 42.0

10 19,120 9.9 - 28.7 19.9 ± 2.2 19.8 7.9 - 67.9 33.0 ± 9.1 31.9
11 14,967 15.1 - 34.3 20.2 ± 2.1 19.8 12.1 - 72.2 42.7 ± 4.9 42.8
12 18,926 10.7 - 25.8 20.2 ± 2.0 20.6 14.0 - 57.2 34.9 ± 5.6 34.0
13 16,347 10.2 - 26.9 19.5 ± 2.4 19.2 9.1 - 62.5 34.0 ± 7.8 33.3
14 14,912 15.8 - 26.7 21.0 ± 1.3 21.0 11.1 - 55.6 26.5 ± 6.9 25.0
15 11,445 8.0 - 27.3 18.5 ± 2.6 18.6 15.3 - 64.4 38.0 ± 6.5 37.4
16 9,744 9.3 - 30.3 18.0 ± 2.7 17.8 11.2 - 56.2 31.4 ± 6.3 30.8

All  homes 252,111 -3.2 - 36.9 20.0 ± 2.5 20.2 7.9 - 87.0 36.7 ± 8.7 37.0

Range Mean ± SD
N

(room-hours)
Home

Temperature (oC) Relative Humidity (%)

Range Mean ± SD
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To evaluate median indoor values for concentrations of PM2.5, TVOC, and CO2 in this study, hourly 

concentrations were averaged to the sample length corresponding to the minimum length determined 

to support independence of samples from the autocorrelation analysis. These averages were calculated 

for each indoor room in all homes, disaggregated by season, then pooled within each season for analysis 

(Figure 10 and Figure 11). Overall, median PM2.5, TVOC, and CO2 concentrations were lower in the 

heating season than in the cooling and shoulder seasons. Ranges of indoor PM2.5, TVOC, and CO2 

concentrations were comparable between seasons. Median indoor temperature was 1 to 2 degrees 

(Celcius) lower in shoulder season days compared to those of cooling season days, and the same was 

true for heating season days with respect to shoulder season days. The same analysis was performed 

disaggragated by room type, with less noticable differences displayed between rooms (Figure 30 and 

Figure 31 in Appendix).   

Figure 10: Distributions of time-averaged hourly IEQ parameter values from indoor rooms in Group 2 Homes (homes with no 
definable cooling period), shown separately by season. Values from all rooms in all Group 2 homes pooled. Units: PM2.5 (μg/m3), 
TVOC (ppb), CO2 (ppm), Temperature (oC). Red value shows number of independent samples included in each distribution  

  

537 1,264 

305 601 

267 503 

347 686 
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Figure 11: Distributions of time-averaged hourly IEQ parameter values from indoor rooms in Group 3 Homes (homes with 
definable cooling periods), shown separately by season. Values from all rooms in all Group 3 homes pooled. Units: PM2.5 
(μg/m3), TVOC (ppb), CO2 (ppm), Temperature (oC). Red value shows number of independent samples included in each 
distribution 

 

5.5.2. Coefficient of Variation 

Coefficients of variation were calculated for each IEQ indicator over the entire study period for each 

home (Table 10). Time-weighted hourly average values were first calculated from the five-minute 

measurements recorded from each indoor sensor. Coefficients of variation were calculated from these 

values, pooling across all rooms (kitchen, living room, and bedroom) within each home. PM2.5 varied 

most with respect to its average within homes, followed by TVOC and CO2. Coefficients of variation were 

plotted and stratified by indoor room and season separately for Group 2 homes (Figure 12) and Group 3 

homes (Figure 13). No clear difference between coefficient of variation was observed between rooms or 

between seasons, although the median value of coefficient of variation for indoor rooms in the heating 

season was larger than those for the cooling and shoulder seasons in Group 3 homes. 

  

188 382 1,231 
107 214 666 

121 259 666 

85 193 474 
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Table 10: Coefficient of variation calculated for each metric over the entire study period for each home. Time-weighted hourly 
average values were first calculated from the five-minute measurements recorded from each indoor sensor (kitchen, living room, 
and bedroom). Coefficients of variation were calculated from these values, pooling across all rooms within each home. Values 
for all homes at the bottom of the table were calculated pooling data from all indoor rooms from all homes 

 

 
Figure 12: Coefficient of variation for hourly data of IEQ metrics in Group 2 Homes (homes without definable cooling periods), 
separated by season and colored by sampling room. “n” is the count of home-rooms plotted for each season. 

 

PM2.5 

(ug/m3)
TVOC (ppb) CO2 (ppm)

Temperature 
(oC)

Relative 
Humidity (%)

COV COV COV COV COV
1 11,544 1.94 0.69 0.45 0.11 0.16
2 15,005 2.30 1.00 0.61 0.08 0.37
3 21,690 2.24 1.00 0.65 0.10 0.18
4 19,525 2.53 1.14 0.29 0.13 0.19
6 20,213 2.28 0.80 0.27 0.06 0.13
7 19,191 2.19 0.93 0.26 0.10 0.19
8 20,086 1.86 1.05 0.33 0.22 0.21
9 19,396 2.18 0.93 0.40 0.13 0.15

10 19,120 2.41 1.49 0.41 0.11 0.28
11 14,967 2.58 1.03 0.33 0.10 0.12
12 18,926 3.14 0.58 0.35 0.10 0.16
13 16,347 3.52 0.89 0.48 0.12 0.23
14 14,912 1.26 0.67 0.42 0.06 0.26
15 11,445 4.58 1.38 0.58 0.14 0.17
16 9,744 3.91 0.73 0.36 0.15 0.20

All  homes 252,111 3.27 1.11 0.49 0.13 0.24

Home N
(room-hours)
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Figure 13: Coefficient of variation for hourly data of IEQ metrics in Group 3 Homes (homes with definable cooling periods), 
separated by season and colored by sampling room. “n” is the count of home-rooms plotted for each season. 

 

5.6. Diel Trends 

5.6.1. Trends by Location 

Diel average concentrations of PM2.5, TVOC, and CO2 were calculated with time-weighted hourly average 

data from all homes pooled together, disaggregated by monitor location (Figure 14). The 24-hour 

standard for PM2.5 (98th percentile of daily concentrations averaged over three years) is 35 μg/m3. The 

WHO has set interim targets for air quality guidance (AQG), but the ultimate AQG goal for 24-hour (99th 

percentile of daily concentrations averaged over one year) PM2.5 exposure is 15 μg/m3. None of the 

monitored locations reached the EPA’s guideline of 35 μg/m3 for any hour-of-day on average. Levels 

measured in indoor rooms (kitchen, living room, and bedroom) approached or exceeded the WHO AQG 

of 15 μg/m3 during evening hours, but average daily values were lower. Some individual homes 

exceeded the WHO AQG more consistently throughout the day on average (Figure 32 and Figure 33 in 

Appendix). In indoor rooms, average PM2.5 tended to increase from 6 am until 9 am, plateau until the 

afternoon, and peak around 6 pm. While outdoor sensors on average did have morning and afternoon 

peaks for PM2.5, the peak concentrations were not as high compared to indoor peaks. Garage PM2.5 

levels were consistently low, on average, throughout the day. 

TVOC concentrations in kitchens and living rooms, on average, showed similar within-day temporal 

trends as PM2.5. TVOC concentrations increased between 6 am and 9 am, plateaued throughout the day, 
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and peaked around 7pm. This evening peak also occurred in garage TVOC concentrations with a 

consistently higher average magnitude. TVOC concentrations in garages generally decreased through 

the night until about mid-day. The garage experienced more variability in TVOC concentrations 

compared to indoor rooms, seen in the wider confidence intervals. This variability appears to arise from 

between-home differences when the data is disaggregated by home (Figure 32 and Figure 33 in 

Appendix). As solvents, cleaning products, and fuels are common sources of VOCs, the high between-

home variability in TVOC concentration may be attributable to the between-home variability in types 

and amounts of such products participants store in their garages. The amount of time the garage door is 

open during a typical day may also have high variability between homes, which is dependent on 

occupant behavior. Opening and closing of the garage door would likely impact the air exchange rate 

within the garage, and thus the garage TVOC concentration. Bedrooms, on average, exhibited TVOC 

concentrations similar in magnitude to kitchens and living rooms, although peaks occurred overnight 

instead of in the evening. Participant use of personal care products before sleeping could have been the 

cause for elevated TVOC concentrations near the bedroom. Also, human skin is itself a source of VOCs 

(Gallagher et al., 2008), which could cause higher TVOC concentrations in the bedroom when 

participants are preparing to sleep. Again, it should be noted that TVOC is an aggregate measure of 

volatile organic compounds, and the organic compounds observed may not be the same between 

locations or between different times of day. 

Average diel CO2 concentrations also had time-of-day peaking trends similar to PM2.5 and TVOC in 

kitchens and living rooms. Peak average bedroom CO2 concentrations were significantly higher than the 

other two rooms and occurred overnight. Average outdoor and garage CO2 concentrations stayed 

approximately constant at typical background concentrations (400 ppm) throughout the day. 
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Figure 14: Average hour of day concentrations of PM2.5 in μg/m3 (top row), TVOC in ppb (second row), and CO2 in ppm (third 
row), and temperature in oC (bottom row) calculated from average hourly values over entire monitoring period for all homes 
pooled together, disaggregated by monitor location. Line plot represents hour of day arithmetic mean values, and transparent 
ribbon represents limits of the 95% confidence interval around the mean. 

 

5.6.2. Trends by Season 

Diel average concentrations of PM2.5, TVOC, and CO2 were disaggregated by season-days and plotted. 

The classifications of heating, shoulder, and cooling day that had been assigned to each individual day 

(methodology described in Section 4.3.6) were used to group days together. Data from all living room, 

bedroom, and kitchen sensors in homes were pooled together for ten out of sixteen homes. Five homes 

were excluded from this evaluation because data were missing (i.e., homes 3 and 16) or because of 

ambiguity noted previously (Section 4.3.6) about what the home energy monitor data represented (i.e., 

homes 6, 8, and 14). Homes that had no cooling days were plotted separately from homes with cooling 

days. 
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Average hour-of-day pollutant levels in homes with three seasons were lower for heating days than for 

the other two seasons. All homes, on average, had more pronounced morning PM2.5 peaks during 

shoulder season days than on heating days. Homes with cooling days exhibited a morning PM2.5 peak 

that, on average on cooling days, was higher than the evening peak. Peak CO2 levels were also observed 

to be higher on average in mornings during cooling days compared to the other two seasons. 

   

 

  

Figure 15: Average hour of day values of PM2.5 in μg/m3, TVOC in ppb, CO2 in ppm, and temperature in oC calculated from 
average hourly values for days in each season from kitchen, living room, and bedroom sensors in Group 2 Homes (homes with no 
definable cooling periods) pooled together (top) and Group 3 Homes (homes with definable cooling periods) pooled together 
(bottom). Line plot represents hour of day arithmetic mean values, and transparent ribbon represents limits of the 95% 
confidence interval around the mean. Size of point is proportional to the amount of hourly average values used to calculate an 
average value for each hour of day. 
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5.6.3. Correlations Between Rooms 

Long-term high-resolution data allowed us to explore if, for a given IEQ metric, the strength of 

correspondence between hourly data in two locations within a home was affected by the hour of the 

day. Pearson correlations were calculated by hour-of-day for PM2.5 concentrations over the entire 

monitoring period, separately for each home (Figure 16). 

Living room PM2.5 concentrations (which may be the room, or one of the rooms, where families spent 

the highest proportion of their waking hours when at home) tended to be highly correlated with PM2.5 

concentrations in the kitchen, garage, and outdoors. Living room concentrations were highly correlated 

with kitchen concentrations at all hours of the day for most homes. In most homes, living room PM2.5 

concentrations were also strongly correlated with both garage and outdoor concentrations in the 

morning. Correlation coefficients became lower throughout day before rising again in the evening and 

overnight. This trend was also observed with TVOC concentrations in some homes (Figure 17), although 

not in as many homes as the PM2.5 correlation trend.



 

72 
 

 

Figure 16: Pearson correlation coefficients between PM2.5 concentrations in living room and other locations for all homes, calculated separately for each hour of day over the 
entire monitoring period (six to ten months). Point implies significant correlation (p<0.05); “x” implies insignificant correlation (p>0.05). No correlations were calculated if a home 
had no available data for a location in the considered location pair. Y-axis was restricted to positive values, as any negative correlations between rooms were assumed to be 
insignificant with no feasible drivers. 
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Figure 17: Pearson correlation coefficients between TVOC concentrations in living room and other locations for all homes, calculated separately for each hour of day over the 
entire monitoring period (six to ten months). Point implies significant correlation (p<0.05); “x” implies insignificant correlation (p>0.05). No correlations were calculated if a home 
had no available data for a location in the considered location pair. Y-axis was restricted to positive values, as any negative correlations between rooms were assumed to be 
insignificant with no feasible drivers.
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As the garage, outdoors, and kitchen could be sources of indoor pollutants, the hour-of-day correlations 

between the garage, outdoor, and kitchen sensors for each home were explored for PM2.5 

concentrations (Figure 18) and TVOC concentrations (Figure 19). Correlations between the bedroom and 

garage were also included to observe possible differences with respect to the garage-kitchen results. 

Correlations between garage and outdoor PM2.5 concentrations were strong in most homes throughout 

most hours of the day (Figure 18). Correlations between PM2.5 values in the kitchen and the garage for 

many homes had diel trends similar to those observed between the living room and garage (Figure 16), 

where values decreased throughout the day and increased overnight. Correlations between outdoor 

concentrations and garage concentrations of TVOC (Figure 19) were lower than those for PM2.5 (Figure 

18). Similar to correlations between TVOC concentrations in the garage and the indoor rooms (Figure 

17) a trend occurs between the garage and the bedroom TVOC concentrations in some homes, but the 

trend is not as significant as the trend seen with PM2.5 between garage and indoor rooms in most 

homes. Correlations between the bedroom and the garage behaved similarly to correlations between 

the kitchen and the garage for both PM2.5 and TVOC.
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Figure 18: Pearson correlation coefficients between PM2.5 concentrations in garage and other locations for all homes, calculated separately for each hour of day over the entire 
monitoring period (six to ten months). Point implies significant correlation (p<0.05); “x” implies insignificant correlation (p>0.05). No correlations were calculated if a home had 
no available data for a location in the considered location pair. Y-axis was restricted to positive values, as any negative correlations between rooms were assumed to be 
insignificant with no feasible drivers. 
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Figure 19: Pearson correlation coefficients between TVOC concentrations in garage and other locations for all homes, calculated separately for each hour of day over the entire 
monitoring period (six to ten months). Point implies significant correlation (p<0.05); “x” implies insignificant correlation (p>0.05). No correlations were calculated if a home had 
no available data for a location in the considered location pair. Y-axis was restricted to positive values, as any negative correlations between rooms were assumed to be 
insignificant with no feasible drivers.
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5.6.4. Correlations Between IEQ Metrics  

Indoor concentrations of CO2 may sometimes be used as a proxy for occupant presence and has been 

used to govern ventilation in buildings (Wei et al., 2020). Pearson correlation coefficients were 

calculated between CO2 concentrations and other IEQ variables that may have potential as proxies for 

resident presence, including TVOC, noise (measured in decibels), and light (measured in lumens) (Figure 

20). TVOC concentrations tended to be moderately correlated with CO2 concentrations for most hours 

of the day in most homes. Noise levels ranged from being not correlated (more often overnight) to being 

weakly correlated (more often during the day) with CO2 concentrations for most homes. Noise-to-CO2 

correlations may have been present during the day because occupants likely make noise (through 

general activities) and generate CO2 (through exhalation) when they are home during the day. If 

occupants are home at night, they would generate CO2, but they would be less likely to make noise 

(especially during typical sleeping hours). Light-to-CO2 correlations were also lower than TVOC-to-CO2 

correlations. Light-to-CO2 correlations increased in some homes in the late evenings, and in less homes, 

in the mornings. Light-to-CO2 correlations may have increased in the evening because there is typically 

more natural lighting present within a home during the day than overnight. Indoor light intensity during 

the day may be more correlated with natural outdoor light intensity than it is correlated within human 

activity (represented by CO2 concentrations). Light intensity would only be expected to increase at night 

within a home when an occupant turns on the lights indoors, therefore causing elevated correlations of 

hourly CO2 and light levels at night.
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Figure 20: Pearson correlations between CO2 concentrations and other possible metrics that could be used as resident activity proxies (TVOC and light) in the living room for each 
home, calculated separately for each hour of day over the entire monitoring period (six to ten months). Point implies significant correlation (p<0.05); “x” implies insignificant 
correlation (p>0.05).

Correlations between IEQ Indicators of Occupancy 
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5.6.5. Monthly Trends 

Monthly average values for multiple IEQ metrics for all homes pooled together were aggregated by 

monitoring location to explore general monthly trends (Figure 21). Monthly average values were also 

shown by home (Figure 37 in Appendix). Elevated PM2.5 levels were observed from August 2020 to 

October 2020 for both indoor and outdoor sensors. This was likely due to the Cameron Peak forest fire. 

This fire covered more than 200,000 acres at its peak, reached within 10 miles of the western border of 

Fort Collins, and had its most significant impact on air quality from late August to late October. Forest 

fires occurring in other Western states, including California, also had significant impacts on air quality in 

the area during these months in 2020. A second peak in PM2.5 was observed from outdoor sensors in 

most homes in February and March of 2021 that was lower in magnitude compared to the fire season 

peaks.  

TVOC indoor concentrations peaked in September and October of 2020 in many homes and then tended 

to decrease until January before gradually increasing through to the end of the monitoring period (May, 

for most homes). Garage TVOC levels were elevated relative to other monitoring locations and were 

more variable between homes. Outdoor TVOC concentrations were low for all homes over all months.  

CO2 concentrations in indoor rooms peaked around October 2020 and April/May 2021, and had higher 

averages in the bedroom than living rooms or kitchens for some homes. Lastly, even though most 

homes in the study reported having and using air conditioning in the summer months, average indoor 

temperatures were higher in July, August, and September than in other months. Low temperatures in 

one bedroom and one living room may be indicative of periods of vacancy for those homes or uneven 

heating of rooms (either by choice or necessity) (Figure 37 in Appendix).  
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Figure 21: Monthly average values for metrics recorded over the entire monitoring period ranging from July 2020 (J) to May 
2021 (M), for all monitoring locations, with data from homes pooled together. Lines represent the arithmetic monthly mean. 
Transparent ribbon represents the 95% confidence interval around the mean calculated from average hourly values. Top: PM2.5 
(μg/m3). 2nd from top: TVOC (ppb). 2nd from bottom: CO2 (ppm). Bottom: temperature (oC). 

 

5.6.6. Deviation from Pooled Mean Between Rooms 

Differences were explored for mean hour-of-day IEQ indicator values between rooms at the home level. 

We calculated the hour-of-day mean values for each room separately. We then examined the difference 

between each room mean and the pooled (between all rooms) mean for each hour of day (Figure 22, 

Figure 23, Figure 24 for PM2.5, CO2, and temperature, respectively; TVOC shown in Figure 38 in 

Appendix). 

In many homes, PM2.5 kitchen mean concentrations increased above pooled mean around 6 pm (Figure 

22). Living room values in most of these homes tended to increase above the pooled mean after or 

around the same time; however, in some homes, the bedroom increased above the pooled mean 

instead of the living room around 6pm. This evening deviation in PM2.5 concentration from the pooled 



 

81 
 

mean of indoor rooms was often between 3 and 10 μg/m3 (and greater in some homes). This deviation 

was notable, considering the time weighted average PM2.5 values for the rooms in most homes were less 

than 13 μg/m3. PM2.5 deviations between rooms also occurred in some homes around 9 am, although 

these deviations were not always as large in magnitude as the evening deviations. Most homes tended 

had small differences between room-specific means and pooled means of indoor rooms for CO2 

throughout most daylight hours (Figure 23). At night in most homes, mean bedroom CO2 levels rose 

dramatically compared to the other two rooms. In some homes, room-specific means of temperature 

were, on average, nearly equal to pooled means of indoor rooms throughout all hours of the day (Figure 

24). In other homes, however, the difference between room-specific means and pooled means of indoor 

rooms approached or exceeded ±2 oC (±3.6 oF) for many hours of the day. In many (but not all) of these 

homes, the bedroom temperature was higher than the pooled mean temperature over all hours of the 

day.
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Figure 22: Pooled (between kitchen, living room, and bedroom) hour of day PM2.5 arithmetic mean subtracted from the hour of day PM2.5 arithmetic mean for each room at each 
hour of day over the entire monitoring period (six to ten months), plotted separately for all homes. Units in μg/m3. Confidence intervals were omitted to increase clarity.
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Figure 23: Pooled (between kitchen, living room, and bedroom) hour of day CO2 arithmetic mean subtracted from the hour of day CO2 arithmetic mean for each room at each 
hour of day over the entire monitoring period (six to ten months), plotted separately for all homes. Units in ppm. Confidence intervals were omitted to increase clarity. 
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Figure 24: Pooled (between kitchen, living room, and bedroom) hour of day temperature arithmetic mean subtracted from the hour of day temperature arithmetic mean for each 
room at each hour of day over the entire monitoring period (six to ten months), plotted separately for all homes. Units in oC. Confidence intervals were omitted to increase clarity.
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5.7. Temporal Representativeness 

Diel plots demonstrated how IEQ metrics behaved, on average, over the entire – i.e., long-term – 

monitoring period. Time-structured temporal representativeness was evaluated to explore how well 

samples taken from short-term periods (one to 28 days) represented this average diel behavior. 

Temporal representativeness was determined for PM2.5, TVOC, and CO2 samples of lengths spanning 

from one to 28 days, with reference to the entire monitoring period. Samples were disaggregated by 

sample length, season, home, and monitor location, and the relative entropy value was determined for 

each sample with reference to its entire monitoring period. Within each sample length (one to 28 days) 

for each IEQ indicator, outlier samples were identified if they had a relative entropy value outside the 

range of the median relative entropy value ± 3×IQR of the relative entropy values. Outlier samples were 

omitted from further temporal representativeness analysis. This criterion resulted in the omission of 

2.5% of PM2.5 data samples, 5.7% of TVOC samples, and 6.0% of CO2 samples. For each IEQ indicator, the 

maximum relative entropy value from the remaining samples (Dmax in Equation 5, in Section 4.3.8.3) was 

used to scale values. Each season defined for each home in representative analysis had a start and end 

date to allow for the definition of continuous time periods (unlike the season days in the diel analysis 

that were defined on a day-by-day basis) (methodology described in Section 4.3.6). 

To illustrate how a measure of temporal representativeness as we apply here can provide insight, we 

considered sample lengths of three days (i.e., 3-day), one week (i.e., 7-day), and two weeks (i.e., 14-day) 

for PM2.5 (Figure 25a), TVOC (Figure 25b), and CO2 (Figure 25c) in the living room of a single home (Home 

9) for a single season (heating). The same illustration was also provided including one day (i.e., 1-day) 

sample lengths (Figure 39 in Appendix). We compared the temporal structure of these samples of 

varying lengths to the temporal structure of the entire monitoring period for each of the IEQ indicators. 

For PM2.5 concentrations, the structure of all samples (3-day, 7-day, and 14-day) and the long-term 
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period each yielded peaks two peaks: one at midday (between 10 am and 1 pm) and one in the evening 

(between 6 pm and 8 pm). The 3-day PM2.5 sample midday peak occurred one hour earlier than that of 

the long-term period (12 pm instead of 1 pm), and the evening peak of the 3-day sample occurred two 

hours earlier than that of the long-term period (6 pm instead of 8 pm). Both peaks in the 3-day sample 

structure yielded higher concentrations than the peaks in the long-term period structure. The 7-day 

PM2.5 sample was more representative than the 3-day sample, even though the evening peak of the 7-

day sample was lower in magnitude and still offset from that of the long-term sample (7 pm instead of 8 

pm). The 7-day sample structure had a peak at 1 pm that was more similar in magnitude to the 1 pm 

peak of the long-term period when compared to the 3-day sample structure 12 pm peak. The temporal 

structure of the 14-day PM2.5 sample was the most representative of all three considered samples. The 

timing and magnitudes of the 14-day sample midday (10 am) and evening (7 pm) peaks were not always 

more similar to those of the long-term period when compared to the peaks of the 3-day and 7-day 

samples. However, the 14-day sample was the only sample out of the three sample lengths for which 

the value of the evening PM2.5 peak was higher than the midday peak. The evening PM2.5 peak of the 

entire monitoring period was also higher than its midday peak, which is likely why the 14-day sample 

structure was most representative. Similar conclusions were drawn from the TVOC and CO2 samples 

when their temporal structures were compared to that of the entire monitoring period. All the TVOC 

sample lengths and the long-term period yielded similar timing for late evening peaks (between 8 pm 

and 9 pm), with the 3-day, 7-day, and 14-day TVOC samples increasing in representativeness from 3-day 

to 7-day to 14-day. All the CO2 sample lengths and the long-term period yielded similar timing for 

midday peaks (between 12 pm and 2 pm) and late evening peaks (between 8 pm and 9pm), with the 3-

day, 7-day, and 14-day CO2 samples increasing in representativeness from 3-day to 7-day to 14-day.  
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Figure 25: Hour-of-day arithmetic mean values calculated from samples of multiple lengths compared to those calculated 
from the entire monitoring period from the same condition for PM2.5 (a, top), TVOCs (b, middle), and CO2 (c, bottom). The 
considered condition was Home 9 living room in the heating season. Time-structured temporal representativeness (Rep) 
values for each sample are noted in the legend. Confidence intervals around mean values were omitted for clarity. 
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We analyzed how time structured representativeness of all indoor samples varies with sample length for 

each IEQ indicator (Figure 26). Only data from homes for which cooling seasons were identified (Homes 

1, 2, 7, 9, and 12) were included in this analysis. Indoor samples of lengths ranging from one day to 28 

days were extracted from each sensor’s long-term (six- to ten- month) monitoring period. We extracted 

these samples from each season using the method described previously (Section 4.3.8.3). Only samples 

with lengths of one day (i.e., 1-day), three days (i.e., 3-day), one week (i.e., 7-day), and two weeks (i.e., 

14-day) were included in this analysis. The representativeness for each individual sample, with respect 

to the long-term period from which it was extracted, was calculated with the method described 

previously (Section 4.3.8.3). Representativeness values of samples from all rooms in all homes were 

pooled, then disaggregated by season. The distribution of representativeness values for each sample 

length was plotted separately within each season. We selected two representativeness values (0.8 and 

0.9) as possible thresholds to define when a sample was considered representative. Maciejewska & 

Szczurek (2015) used 0.9 as a temporal representativeness threshold in their analysis of 

representativeness. We selected 0.8 as another threshold option upon visual inspection of the 

relationship between hour-of-day averages and representativeness in the heating season (Figure 25 

above, and Figure 39 in Appendix). Select samples had a representativeness value lower than 0.8: 3-day 

CO2, 3-day TVOC samples, and 1-day samples of each IEQ indicator (1-day samples shown in Figure 39 of 

Appendix). Samples with values below 0.8 yielded average hour-of-day peaks that were notably less 

similar in proportion to the average peaks of the long-term period, compared to samples with 

representativeness greater than 0.8. For each season and sample length, the percentages of samples 

that exceeded each representativeness threshold was calculated (Figure 26). 
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Figure 26: Density plots of temporal representativeness of PM2.5 samples (left column), TVOC samples (center column), and CO2 samples (right column) disaggregated by 
season. For each season, samples from homes and rooms were pooled then disaggregated by sample length. Only Group 3 homes included to allow between comparison of 
data from all three behavior-defined seasons. 
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The distributions of time-structured representativeness skewed closer to 1 as sample length increased, 

meaning longer sampling periods generally had higher proportions of representative samples than 

shorter sampling periods. Based on a representativeness threshold of 0.8, the proportion of 1-day PM2.5 

samples considered to be representative ranged from 59% to 78%, varying by season. This range of 

proportion in representative samples was higher for each increase in sample length: 80% to 91% of 3-

day samples, 93% to 100% of 7-day samples, and 97% to 100% of 14-day samples. The proportion of 

samples that were considered representative increased with higher sample length for TVOC and CO2 as 

well. 

In the cooling season, based on a representativeness threshold of 0.8, the proportion of 1-day PM2.5 

samples considered representative (78%) was greater than that of 1-day TVOC samples (58%), which 

was greater than that of CO2 samples (39%). This pattern (PM2.5 > TVOC > CO2) was true when matching 

by any sample length in the cooling season, save for 7-day and 14-day samples (for which, proportions 

of representative PM2.5 and TVOC samples were both 100%). The proportion of representative samples 

pattern (PM2.5 > TVOC > CO2) was also present in the shoulder season when samples were matched by 

sample length (considering a representativeness threshold of 0.8). The proportion of representative 

PM2.5 samples in the heating season (ranging from 59% to 97% between sample length) was lower 

compared to samples in other seasons, when matched by sample length. In contrast, the proportion of 

representative TVOC samples stayed relatively consistent across seasons when matched by sample 

length. The proportion of representative CO2 samples was lower in the cooling season compared to 

samples from other seasons when matched by sample length.  

Using a representativeness threshold value of 0.9 for samples to be considered representative, the same 

patterns described above were generally observed: representativeness increased with sample length, 

representativeness of samples for PM2.5 > TVOC > CO2 in heating and cooling season, less representative 

PM2.5 samples in the heating season were less representative compared to other seasons, and CO2 
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samples in the cooling season were less representative compared to other seasons. The proportion of 

samples considered representative for each IEQ indicator across all seasons and sample lengths 

decreased, as was expected when using a stricter criterion. Considering a 0.9 representativeness 

threshold, less than 50% of all 1-day samples were considered representative (for all IEQ indicators from 

any season), and less than 100% of 14-day samples were considered representative for each IEQ 

indicator in each season, save for PM2.5 samples in the cooling season. 

Upon visual inspection of example samples (Figure 25 above, and Figure 39 in Appendix), the IEQ 

samples with representativeness values below 0.8 yielded average hour-of-day peaks that were notably 

different in timing and magnitude with respect to long-term monitoring period average hour-of-day 

peaks. As representativeness of samples increased above 0.8, average hour-of-day structures varied less 

in similarity to that of the long-term monitoring period. This threshold of 0.8 was chosen as the 

preferred temporal representativeness threshold based on the results of this study. However, the 

implications of temporal representativeness values assigned to each sample using the methods from the 

current study should be further explored before a more certain threshold is established. 

 

5.8. Spatial Representativeness and Specificity 

The method used to measure spatial representativeness and specificity required each considered 

dataset to meet the assumption of normality. QQ plots were created for each home-room-season 

condition for each IEQ indicator considered (Figure 40, Figure 41, and Figure 42 in Appendix). Most IEQ 

parameter samples were log-normally distributed, and transforming the distributions with the natural 

log yielded approximately normal distributions. The raw data for each IEQ parameter were fitted to log-

normal, gamma, and Weibull distributions to test if other distributions fit better than log-normal. Log-

normal distributions yielded the best fit under most conditions for most of the IEQ indicators considered 



 

92 
 

according to the Akaike information criterion (AIC) (Table 12 in Appendix). Note, in the rest of this study, 

any references to the spatial representativeness or specificity of an IEQ indicator were calculated from 

the natural log of the indicator’s values. 

Using methods described previously (Section 4.3.8.4), measures of spatial representativeness and 

specificity were calculated for PM2.5, TVOC, and CO2 concentrations recorded by each indoor sensor over 

each season in each home. Spatial representativeness and specificity values were compared between 

rooms, disaggregated by season (Figure 27). Bedroom measurements had the lowest median 

representativeness of all three rooms for all three IEQ indicators. Median living room TVOC 

measurements were more representative than median TVOC measurements in kitchens, while the 

spatial representativeness of living rooms and kitchens did not differ for PM2.5 and CO2 measurements. 

The median spatial specificity for bedroom was higher than for the kitchen or living room for PM2.5, 

TVOC, and CO2 measurements; living room and kitchen specificity values had similar low magnitudes. No 

discernible difference between season for representativeness nor specificity values was observed. 
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Figure 27: For IEQ indicators of PM2.5, TVOC, and CO2: spatial representativeness (top) and spatial specificity (bottom) values 
calculated for all indoor room sensors over each entire behavior-defined season within each home, disaggregated by room and 
colored by season, homes pooled. For each season, only sensors from homes that had data from all three rooms were included. 
n in legend shows number of homes included for each season for each distribution. 

Absolute values of spatial representativeness and specificity (Figure 27) do not have interpretative 

value. However, ranking the three indoor IEQ monitoring locations from least to most 

representative/specific within each home (Figure 28 and Figure 29) provides insight into the 

representativeness and specificity of each monitoring location relative to one another within the same 

home. For PM2.5 and TVOC concentrations in most homes, bedroom sensor provided data that was least 

representative of the entire home’s data but the most specific. PM2.5 concentrations measured in the 

kitchen in most homes were more specific than PM2.5 concentrations measured in corresponding living 

rooms. No notable seasonal differences were observed for specificity or representativeness rank of any 

IEQ indicator.  

n=2 
n=8 
n=9 

n=2 
n=8 
n=9 
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Figure 28: Within-home ranks of spatial representativeness for each room calculated for all indoor sensors over each entire 
behavior-defined season within each home, disaggregated by season for PM2.5 (top), TVOC (middle), and CO2 (bottom). For 
each home, the top room had the highest representativeness value of all three rooms, and the bottom room had the lowest 
representativeness value of all three rooms. For each season, axes are ordered by homes with lowest time-weighted average on 
the left, to homes with highest time-weighted average on the right for the considered pollutant, and only sensors from homes 
that had data from all three rooms were included. 
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Figure 29: Within-home ranks of spatial specificity for each room calculated for all indoor sensors over each entire behavior-
defined season within each home, disaggregated by season for PM2.5 (top), TVOC (middle), and CO2 (bottom). For each home, 
the top room had the highest specificity value of all three rooms, and the bottom room had the lowest specificity value of all 
three rooms. For each season, axes are ordered by homes with lowest time-weighted average on the left, to homes with highest 
time-weighted average on the right for the considered pollutant, and only sensors from homes that had data from all three 
rooms were included. 
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6. Discussion 
 

 

6.1. Temporal Trends 

6.1.1. Season Classifications 

Occupant behavior has been shown in IEQ literature to impact IEQ indicators in homes. Heating device 

analysis performed in the present study (Figure 4) suggested using traditional season start and end 

dates (e.g., June 21st or March 21st) to define seasons for all occupants in Colorado-based residential IEQ 

studies may not properly account for variables related to occupant behaviors. Some homes were shown 

to lack continuous periods of heating and cooling (i.e., heating days were not always preceded and 

followed by additional heating days). We also observed between-home variability in occupant space-

heating patterns. Cooling seasons, (i.e., continuous periods when residents typically use air condition) 

were only identified in five of the 13 analyzed homes over the study. When continuous heating or 

shoulder seasons were observed, the start date varied between homes. In their study developing a 

statistical model of heating prediction in Dutch dwellings, Macjen et al. (2020) noted occupant 

perception of temperature and occupant perception of air humidity affected heating. The present study 

noted the date of the shoulder-to-heating season transition varied more between home than that of the 

heating-to-shoulder transition. This variability may be related to changes in behaviors noted by Huchuk 

et al. (2018) and other studies: past exposures and experiences, which differ between participants, may 

impact perceived thermal comfort (Brager & de Dear, 1998; Richard J. de Dear & Gail Schiller Brager, 

1998). Residents may consider themselves warmer in the winter than in the summer, even at the same 

indoor temperature (Oseland, 1994). 
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6.1.2. Diel Trends 

On average, PM2.5, TVOC, and CO2 time series exhibited similar diel trends between homes and seasons 

in kitchens and living rooms (Figure 15). Concentrations tended to increase around typical waking hours 

(between 6 am and 9 am), stabilize throughout the day, and peak in the evening when more human 

activity may be expected (cooking, people arriving home from work or outdoor activities, etc.). Bedroom 

concentrations of TVOC and CO2 exhibited average diel trends that were notably different than the 

other two indoor rooms for these two indicators. Concentrations of TVOC and CO2 in the bedroom 

tended to increase during late evening hours, when occupants were likely sleeping. Notably, data was 

collected for this study when many participants were likely working from home due to COVID-19 

restrictions. Therefore, researchers may benefit from comparing these data with other high-resolution 

datasets collected in other similar locations during more “typical” periods (e.g., when most residents 

have not been encouraged to work from home). 

In their study on airborne particulate matter and bacteria, Clements et al. (2018) recorded 115, 24-hour 

PM2.5 samples within fifteen Colorado homes. This resulted in a mean ± standard deviation of 8.1 μg/m3 

± 8.1 μg/m3 across all 24-hour samples. The results of the current study over the entire monitoring 

period were comparable (Table 9). Time-weighted six- to ten- month average PM2.5 concentrations 

calculated for each home in the current study yielded a median value of 7.7 μg/m3, ranging from 2.4 

μg/m3 to 16.3 μg/m3 between homes. In a study in the Denver, Colorado area, Militello-Hourigan & 

Miller (2018) determined three- to five-day background (non-cooking event) average PM2.5 

concentrations for living spaces in ten homes one public library (nine of the homes were “tightly 

constructed” – i.e., had low air exchange rates). These authors recorded a median time weighted three- 

to five-day average value of 12.5 μg/m3, with a range of 2.3 to 32.6 μg/m3 between homes. Militello-

Hourigan & Miller’s results were comparable to the results presented in the current study, though our 

concentrations were generally lower.  
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When pooling all homes (Figure 14), we observed elevated hourly average PM2.5 concentrations in 

mornings (around 9 am) and evenings (around 6 pm) in all indoor rooms, suggesting cooking-related 

sources of PM2.5 may have been be dominant. It is well-studied that cooking is a source of particulate 

matter. The cooking of meat was determined as a source of 6.2% of outdoor PM2.5 carbon on average in 

an area of Denver, Colorado (Watson et al., 1998). Studies conducted in Colorado (Clements et al., 2018; 

Escobedo et al., 2014; Militello-Hourigan & Miller, 2018) and globally (Abdullahi et al., 2013; Lai et al., 

2010; Massey et al., 2012; Tan et al., 2013; Wan et al., 2011) have identified cooking as one of the most 

significant contributors to indoor PM generation. Many studies have also determined outdoor traffic to 

be a contributor to indoor particulate matter (Urso et al., 2015). The timing of average hour-of-day PM2.5 

peaks in the current study were consistent with expected commuting times; however, neither the 

outdoor sensors nor the garage sensors observed hour-of-day PM2.5 peaks at times similar to those of 

the indoor sensors. This difference in elevated outdoor and indoor peak timing suggests elevated indoor 

hour-of-day PM2.5 concentrations were due to indoor sources. The correlation in hourly PM2.5 

measurements recorded between pairs of indoor rooms (stronger than between outdoor and indoor 

pairs) also suggests that indoor sources of PM2.5 had a more significant impact than outdoor sources. 

This would be consistent the results observed in a study of living areas in ten Colorado homes and one 

library with low air exchange rates (Militello-Hourigan & Miller, 2018). Excluding concentrations 

recorded during cooking periods, Militello-Hourigan & Miller observed low concentrations of indoor 

PM2.5 for all homes, relative to outdoor concentrations. The authors attributed this to lack of 

penetration of outdoor PM2.5 into the homes. 

Studies conducted on IEQ parameters in the residential setting have included attached or built-in garage 

as a variable in indoor PM2.5 regression analyses (Héroux et al., 2010; Urso et al., 2015). However, the 

extent to which PM2.5 is transported between the garage and the indoors is a focus that is lacking in 

literature. For most homes in the current study, hourly correlation values between garage and living 
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room PM2.5 concentrations tended to decrease throughout the day and increase overnight (Figure 16). 

One interpretation of this result is transport of PM2.5 between the garage and the home became more 

significant as nighttime progressed. The early morning decrease in garage-to-indoor correlations may 

have been due to depressurization of the garage as the door is opened. However, this trend in hourly 

PM2.5 garage-to-indoor correlations was observed in homes with both attached and detached garages. 

An alternative interpretation for this trend in hourly correlations may be the daytime generation of 

particles indoors did not impact changes in outdoor or garage PM2.5 concentrations. For example, indoor 

PM2.5 concentrations were impacted by cooking and other occupant-related activities when participants 

were awake. Once participants went to sleep, the indoor hourly concentrations approached equilibrium 

with garage and outdoor concentrations. This could have caused elevated indoor-to-garage and indoor-

to-outdoor nighttime correlations compared to daytime correlations. The IEQ data from the current 

study, or IEQ data with similar temporal resolution, could be further analyzed to explore the 

mechanisms through which airborne particles are (or are not) transported between living spaces and 

garages/outdoors. Energy use or behavioral data paired with such IEQ data would help to explore these 

mechanisms. 

In their study of living areas in ten Colorado homes and one library with low air exchange rates, 

Militello-Hourigan & Miller’s (2018) results yielded three- to five- day time-weighted average TVOC 

values concentrations ranging from 139 ppb to 426 ppb. The median household three- to five-day time-

weighted average TVOC concentration was 289 ppb, although this was excluding the one conventionally 

built home. Time-weighted six- to ten- month average TVOC concentrations calculated for each home in 

the current study yielded comparable (but higher) concentrations (median value of 318 ppb, ranging 

from 176 ppb to 565 ppb between homes) (Table 9).  When pooling all homes, we observed elevated 

hourly average TVOC concentrations in evenings (peaking around 7 pm) in kitchens and living rooms and 

later at night (peaking around 12 am) in bedrooms (Figure 14). The evening peak in kitchen and living 
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room TVOC concentrations may have been influenced by TVOC concentrations in garages that peaked in 

evenings due to increasing garage temperatures throughout the day. As temperature increases, so do 

the volatilities of VOCs, thus increasing airborne VOC concentrations (Clarisse et al., 2003; Vardoulakis et 

al., 2020). Low- to moderate- correlations observed between hourly garage concentrations and living 

room concentrations of TVOC (Figure 16) suggested interaction between TVOC concentrations in the 

two locations. Insignificant- to low- correlations between hourly TVOC concentrations in the living room 

and outdoors were observed (Figure 16), as were low average outdoor TVOC concentrations (Figure 14). 

These two observations suggest indoor-to-outdoor TVOC interactions were not as significant as garage-

to-indoor interactions. Past studies have found significant infiltration of air from attached garages into 

homes, resulting in rising concentrations of VOCs that originate from fuels and other solvents stored in 

the garage (Batterman et al., 2007; Dodson et al., 2008; Fugler et al., 2002; Mallach et al., 2017). This 

infiltration of VOCs from the garage can be due to a negative pressure differential between the garage 

and home. Home-to-garage pressure differentials can be impacted by the operation of home ventilation 

systems or temperature differences between the home and garage (Graham et al., 1999; Mallach et al., 

2017). 

High average hour-of-day TVOC concentrations in evenings for indoor rooms (Figure 14) may have also 

been due to human activities. Residential studies have noted that human activities (e.g., using cleaning 

products and clothes washing) are sources of select VOCs (Batterman et al., 2007; Rösch et al., 2014). 

CO2 is a widely accepted proxy for building occupancy and ventilation (Bekö et al., 2016; Militello-

Hourigan & Miller, 2018). As such, the association of TVOC concentrations with human activities was 

exemplified in this study by the moderate- to strong- hourly correlations between TVOC and CO2 

concentrations in all homes (Figure 20). Cooking has also been cited as a significant source of some VOCs 

(Clarisse et al., 2003). This is consistent with elevated PM2.5 and TVOC concentrations that we observed 

concurrently during typical evening cooking hours (Figure 14). In a study of IAQ indicators within two 
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Italian homes during COVID-19 lockdown, hour-of-day TVOC concentrations in kitchens and bedrooms 

were attributed to human activities such as cooking and waking up/going to sleep (Pietrogrande et al., 

2021). The timing of the hour-of-day peaks reported in their study (between 7 am and 10 am and 

between 6 pm and 7 pm for kitchens and bedrooms) partially agreed with the timing of average hour-of-

day TVOC concentration peaks in the current study (7 pm in kitchens and 12 am in bedrooms). 

Time-weighted six- to ten- month average CO2 concentrations calculated for each home in the current 

study yielded a median value of 736 ppm, ranging from 620 ppm and 1,004 ppm between homes (Table 

9). These CO2 concentrations were lower than those reported in another study of 100 Colorado homes 

of Mexican immigrants (Miller et al., 2009). Miller et al. recorded a 24-hour weighted average CO2 

concentration within each home, resulting in a mean of 1170 ppm and a standard deviation of 573 ppm.  

Bedrooms in the current study recorded average hour-of-day CO2 values that were elevated above 1000 

ppm at night (Figure 14). This result is comparable to the study of Colorado homes conducted by 

Militello-Hourigan et al. (2018), in which over half the sampled homes experienced CO2 levels above 

1000 ppm overnight. 

 

6.1.3. Long-Term Variability 

Elevated average levels of outdoor PM2.5 reported from August 2020 to October 2020 (Figure 21) were 

likely due to the Cameron Peak fire of 2020 and other fires occurring in the Western United States 

during this period. Outdoor PM2.5 concentrations in the Central Rocky Mountain Region of the United 

States have been shown to correlate significantly with wild fire frequency in surrounding states (Jaffe et 

al., 2008). Elevated outdoor PM2.5 from fires in August through October may have caused elevated 

indoor concentrations over the same period in the current study. Outdoor PM2.5 peaks in February and 

March have been reported in past years in Fort Collins and other Colorado Front Range communities 
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(Colorado Department of Public Health & Environment, 2019). A past study in Boulder, Colorado, also 

located in the Front Range, reported highest concentrations of outdoor PM2.5 in summer months 

(Clements et al., 2018). These authors also reported elevated outdoor concentrations in the winter 

months compared to spring and fall concentrations. For indoor locations, Clements et al. (2018) 

reported the lowest PM2.5 concentrations in winter months. Our study reported consistent findings: the 

average hour-of-day indoor PM2.5 concentrations of heating days were lower than those of cooling days 

(Figure 15). Clements et al. (2018) attributed higher concentrations in the summer to outdoor PM2.5 to 

increased natural ventilation. Our study hypothesized less natural ventilation would occur during cooling 

and heating days, as residents may keep doors and windows closed during these days to retain cool or 

warm air. With our hypothesis, elevated cooling day PM2.5 concentrations would have been due to 

infiltration of fire-produced PM2.5 through openings in building envelopes instead of through open 

windows. This interpretation of elevated cooling day indoor PM2.5 concentrations is supported by the 

higher average indoor PM2.5 peaks recorded in mornings compared to evenings in the cooling season 

(Figure 15). For most homes in which air conditioning was detected, most cooling days occurred during 

the period in which the Cameron Peak fire likely impacted outdoor air quality the most (between August 

13, 2020 – i.e., when the fire began – and the end of October 2020 –i.e., when monthly average outdoor 

sensor PM2.5 concentrations decreased substantially) (Figure 4 and Figure 21). Outdoor sensors reported 

a large average hour-of-day peak PM2.5 concentration at 9 am over the August 13, 2020 through October 

2020. This 9 am peak was not present in outdoor PM2.5 average hour-of-day concentrations when 

excluding concentrations recorded (Figure 34 in Appendix). This morning outdoor average PM2.5 peak 

during fire-impacted days could have led to elevated cooling day indoor PM2.5 concentrations via 

infiltration. We did not ask participants how they responded to fire conditions (i.e., whether or not they 

opened windows more often to increase ventilation, or kept windows closed to avoid smoke from 

entering). Therefore, we cannot conclude the cause for elevated cooling day PM2.5 concentrations. 
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The elevated monthly indoor averages for TVOC concentrations reported around October (Figure 21) 

may have been due to participants keeping windows and doors closed to avoid outdoor air from 

entering during the wildfire season. VOCs may originate from participant activities, or from off-gassing 

of in-home paints, varnished, furnishings, and other construction/renovation-related materials (Bari et 

al., 2015; Batterman et al., 2007; Rösch et al., 2014; Vardoulakis et al., 2020). Subsurface soil 

contamination is also known to impact indoor air VOC concentrations, and the magnitude of this impact 

has been shown to very between seasons (Holton et al., 2013). Closed windows during wildfire season 

could have led compounds of indoor origin to accumulate indoors if mechanical ventilation was 

insufficient. The current study only measured TVOC and not individual VOCs; therefore, we have no 

insight on specific gas-phase air pollutant composition. Also, we did not inquire about participant 

response to fires, so we cannot attribute elevated TVOC concentrations to closed windows. During 

weatherization-related and energy assessment programs, such as the Epic Homes program, energy 

efficiency practitioners often recommend energy efficiency upgrades (e.g., new ventilation systems or 

measures or air sealing between the home and garage) to homeowners. Sources and behaviors that trap 

VOCs indoors are important for practitioners to consider when making recommendations. Practitioners 

can also inform residents on behaviors that may increase TVOC concentrations, especially when indoor 

air exchange rate may be low (e.g., cooling seasons or fire seasons).  

The variability in hour-of-day structures for IEQ indicator samples raises important questions relating to 

IEQ sampling periods. Will a two-day sample of PM2.5 have the same average hour-of-day structure as 

the entire year, or will between-day variability cause the timing of hour-of-day peaks to differ between 

the sample and annual data? Do the effects of this between-day variability vary by sampling season? The 

measure of temporal representativeness explored in this paper aimed to answer these questions. 
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6.2. Spatial Variability 

Average hour-of-day PM2.5 concentrations in the living room for many homes rose concurrently with 

kitchen concentrations above the overall pooled mean of all rooms. Some homes recorded increased 

bedroom PM2.5 concentrations following kitchen peaks, with respect to pooled indoor means (Figure 

22). In their study of PM2.5 and particles of other size fractions emitted during cooking events of gas-

powered stoves in 12 Chinese homes, Wan et al. (2011) observed that living room PM2.5 mass 

concentrations increased by an average of 50% during cooking events and remained above background 

levels an hour after completion of cooking. As noted in Urso et al. (2015), the impact of cooking 

activities on living rooms (and likely other rooms in the home) depends on many factors, including 

ventilation systems and methods and positioning of the kitchen. These structure-related factors could 

explain the variability between homes. 

CO2 concentrations were highest in bedrooms at nighttime (Figure 14). Similarly, Militello-Hourigan & 

Miller (2018) reported elevated bedroom CO2 concentrations within homes in the Denver, Colorado 

area. This observation could inform sleep studies. Elevated bedroom CO2 concentrations underscore the 

potential value of data collected in multiple locations in residential environments, depending on the aim 

of the study. Results showed, as is expected, that a single sensor would only capture this elevated CO2 

data if placed in the bedroom (not the living room or kitchen) (Figure 7 and Figure 21). Similarly, the 

differences in diel room-specific means and diel pooled room means of temperature (Figure 24) 

suggested uneven heating/cooling of rooms within some homes. It is unknown whether this uneven 

heating/cooling was by choice (e.g., participants preferred a warmer bedroom), necessity (e.g., 

participants could not afford to heat all rooms), or home structure (e.g., hot air rose to upstairs 

bedrooms or rooms are not heated evenly by heating system). Future work, once more homes are 

recruited, could include variables related both to home structure (e.g., distance between rooms, 

presence of stove ventilation fan) and resident behaviors (e.g., use of stove fan, air conditioning, or 
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heating devices) in regression analyses. These analyses may help identify factors that impact the spread 

of pollutants within homes and the variability of thermal comfort-related indicators between rooms.  

A mean value of an IEQ indicator calculated over the entire monitoring period (or season) is not the only 

value worth comparing between rooms. The range of IEQ indicator values, and the hour-of-day at which 

an indicator peaks, can vary between rooms. Variability of IEQ indicators between rooms, considering 

both diel time structure and magnitude, support the need for spatial representativeness and specificity 

measures. These spatial measures may help determine which rooms, or how many rooms, within a 

home should be monitored to properly characterize home conditions. Also, between-home differences 

in spatial variability may be important for energy efficiency practitioners. When paired with home 

characteristic and behavioral data, phenomena such as uneven heating or higher pollutant 

concentrations in certain rooms at different hours of the day may be better understood. Informed with 

data of proper temporal and spatial resolution, practitioners would be more equipped to recommend 

upgrades and behavioral changes to homeowners that would be beneficial to occupant health. 

 

6.3. Temporal Representativeness 

According to the analysis presented in this study, in the cooling and shoulder seasons, TVOC samples 

generally required more days than PM2.5 to be considered representative. CO2 samples required the 

most days out of the three considered IEQ indicators (PM2.5, TVOC, and CO2) to be considered 

representative in the cooling and shoulder seasons (Figure 26). To our knowledge, no studies have 

compared representativeness of measurements between these three IEQ indicators. Luoma & 

Batterman (2000) discussed representativeness while measuring the variability of IAQ indicators (i.e., 

particulate matter of multiple size ranges between 0.3 and 25 μm, airborne fungi/bacteria, and CO2). 

The authors posited that spaces with lower air exchange rates (thus higher autocorrelation factor values 
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between subsequent measurements) would result in greater between-sample variability. The authors 

infer that when an IAQ pollutant source is introduced to a room with a low air exchange rate, pollutant 

sample concentrations will increase substantially from the sample mean and remain above the mean for 

subsequent measurements. The authors state that when the same pollutant source is introduced to a 

room with a high air exchange rate, sample concentrations will fluctuate more rapidly, but sample 

concentrations will not change substantially from the sample mean. Luoma & Batterman (2000) 

suggested higher between-sample variability from spaces with low air exchange (associated with higher 

autocorrelation factor values) would lead to less representative samples. Our study did not include air 

exchange measurements in our analysis, but autocorrelation was analyzed for each IEQ indicator. Daily 

autocorrelation factor values were lower, on average, for PM2.5 samples compared to TVOC and CO2 

samples (Figure 9). Coefficient of variation for hourly PM2.5 samples pooled across all homes (3.27) was 

higher when compared to that of TVOC samples (1.11) and CO2 samples (0.49) (Table 10). This order of 

coefficients of variation (PM2.5 > TVOC > CO2) was consistent for all three seasons (not shown in results). 

Lower autocorrelation and higher variability of PM2.5 samples should result in less representative 

samples compared to TVOC and CO2 samples, using Luoma & Batterman’s inference. However, PM2.5 

samples typically required shorter sampling periods to be considered representative in two of the three 

seasons evaluated in our study, compared to TVOC and CO2 samples (Figure 26). Therefore, the reason 

for the variability in representativeness between IEQ indicators needs further analysis before 

conclusions are made. 

In the heating season, higher proportions of TVOC and CO2 samples were representative compared to 

samples of PM2.5 for each analyzed sampling length (1-day, 3-day, 7-day, and 14-day) (Figure 26). The 

proportion of representative TVOC samples varied less between season than the proportions of 

representative PM2.5 and CO2 samples. One possible interpretation of this result is that behaviors 

contributing to indoor VOC generation (e.g., cleaning, clothes washing, and use of personal care 
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products) were less variable between seasons than behaviors generating PM2.5 (e.g., cooking). A 

participant may clean at consistent intervals regardless of the season, while a participant may alter 

cooking behaviors depending on the season (e.g., using the oven less in the cooling season to avoid 

heating the home). A lower proportion of PM2.5 samples were representative in the heating season 

compared to other seasons, while the opposite was observed for CO2 samples. One possible 

interpretation of this result is that occupant schedules were more consistent in the heating season than 

other seasons. Occupants may have been indoors more frequently when outdoor temperatures were 

lower, leaving the home only at times that are typical for the specific occupant. As CO2 concentration is 

often used as a proxy for occupant presence in buildings (Wei et al., 2020) consistency in occupant 

behavior would likely have caused low between-day variability in diel structures of CO2 concentrations. 

A final interpretation of between-season variability in representativeness considers impacts that 

wildfires may have had on the study. PM2.5 concentrations recorded during the fire season were 

generally higher than other months (Figure 21). Outdoor PM2.5 concentrations during the fire season 

may have substantially increased the average indoor hour-of-day concentrations for the six- to ten- 

month monitoring period. Wildfires were most active in shoulder and cooling seasons in the current 

study, meaning high PM2.5 concentrations in the cooling and shoulder seasons (Figure 15) may have had 

greater weight in calculating the long-term average compared to concentrations in the heating season. 

This unequal weighting between seasons may have caused the long-term period to yield PM2.5 diel peaks 

that were more similar in timing and proportion to those yielded from cooling and shoulder season 

samples (compared to heating season samples). 

Examples comparing sample diel structures with their corresponding values of time-structured 

representativeness (Figure 25) suggested time-structured representativeness may be used to assess the 

representativeness of peak timing and proportion. For example, a sample that yields average diel peaks 

at times that contrast to the diel peaks yielded from the long-term monitoring period (e.g., the 3-day 
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sample in Figure 25), will likely have a lower representativeness value than a sample with diel peaks 

similar in timing to those yielded in the long-term period (e.g., the 14-day sample in Figure 25). 

However, the inclusion of magnitude-based representativeness would be helpful to evaluate if the peaks 

are much higher or lower than the long-term. In the previous example, the 3-day sample yielded peaks 

that were more similar in magnitude to those of the long-term period than the 7-day sample peaks, but 

the 7-day sample was still considered more representative. Time-structured analysis alone may still be 

helpful to determine how long one must monitor to understand the times of day IEQ indicators yield 

extreme values (regardless of the exact magnitude). Energy efficiency practitioners could use 

information regarding hour-of-day peak timing to gain insight on possible indoor behaviors and activities 

that may influence daily concentration peaks, especially if other complementary high-resolution 

behavioral or energy use data is available. 

The values of temporal representativeness in this study were not expected to be similar to those in 

Maciejewska et al.’s study (2015). Maciejewska et al. established 0.9 as a threshold value (i.e., the value 

of representativeness above which a sample was considered representative), while the we interpreted 

the results of the current study based on a threshold value of 0.8. We also expected a difference 

between study results because the primary long-term monitoring period of interest in Maciejewska et 

al.’s study was one month in length; the long-term period was six- to ten- months in the current study. 

When Maciejewska et al. calculated representativeness of IEQ samples with respect to long-term 

periods of varying length, they concluded the sample length needed to be approximately 20 to 50% the 

length of the long-term period of interest to be representative. However, the values of 

representativeness calculated in their study were not compared to the actual diel structure of the IEQ 

data. In our study, we visually inspected average diel structures of IEQ samples that varied in length, and 

we paired each structure with its corresponding representativeness value (Figure 25). Even with a short 

IEQ sample length of 3 days (representativeness calculated at 0.84, 0.79, and 0.72 for PM2.5, TVOC and 
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CO2 respectively), average hour-of-day peak values yielded from a sample were similar in timing to those 

yielded from the long-term period. Therefore, with the current dataset, we determined 0.8 may be a 

more valid representativeness threshold than 0.9. 

High percentages of 3-day PM2.5 and TVOC samples were considered representative according to the 0.8 

representativeness threshold (80 to 91% of samples, depending on the season for both IEQ indicators) 

(Figure 26). This result suggests energy efficiency practitioners can be confident in the time of day at 

which PM2.5 or TVOC peaks occur on a “typical” day based on 3-day samples; CO2 samples may require 

longer lengths (4- to 7- days). Even if resources are only available to sample for one day, our analysis 

suggests the time structure of a PM2.5 sample has a high likelihood of being representative. Over 75% of 

1-day PM2.5 cooling and shoulder season samples were considered representative. One-day samples of 

TVOC were less likely to be representative than PM2.5 samples, but over 50% still exceeded the threshold 

in all seasons. Representativeness of PM2.5 and CO2 samples in the current study varied by season. We 

could not determine whether to attribute this phenomenon to IEQ indicator characteristics, occupant 

behavior, seasonal wildfire conditions, or a combination of these factors. Regardless, the sampling 

season may impact the confidence a practitioner has in the representativeness of their IEQ sample.  

 

6.4. Spatial Representativeness and Specificity 

Past studies have evaluated air quality monitoring networks via mutual information, the derived form of 

relative entropy that was the basis for our spatial specificity index (Osses et al., 2013; Perez-Abreu & 

Rodriguez, 1996; Silva & Quiroz, 2003). These studies aimed to determine the ideal combination of 

outdoor monitoring stations by identifying the network configuration that would lose the most 

information if one of the included sensors was removed. Essentially, the authors wanted to determine 

which sensor was the most indispensable to the network. In the current study, bedroom sensors were 
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ranked highest in specificity and lowest in representativeness in most homes considering three indoor 

rooms (i.e., bedroom, living room, and kitchen) (Figure 28 and Figure 29). This result was likely observed 

because most of the data recorded within each home were gathered from two rooms that behaved 

similarly: the kitchen and the living room. As noted in a study by Wan et al. (2011), living room values of 

PM2.5 values can be closely tied to kitchen values, increasing significantly during a cooking event and 

remaining elevated approximately 60 minutes following the event. Average hour-of-day PM2.5 

concentrations in kitchens and living rooms were above the room-pooled mean during typical cooking 

hours in many of the homes in our study (Figure 22). This phenomenon was likely due to short distances 

and lack of walls between living room and kitchen sensors in most homes, although these building 

characteristics were not recorded. In contrast, average hour-of-day PM2.5 concentrations in bedrooms 

were below the room-pooled mean during typical cooking hours in many of the homes. Past studies 

have observed between-room variability in IEQ indicators. Suppressed levels of PM2.5 in bedrooms 

relative to kitchen values were recorded in multiple studies (Pietrogrande et al., 2021; Xiang et al., 2021; 

Yassin et al., 2012). Pietrogrande et al. (2021) recorded overnight TVOC concentrations in bedrooms that 

were higher than kitchen concentrations. They also reported TVOC concentrations in kitchens that were 

higher than bedroom concentrations during cooking periods, although this was just on one example day. 

Results reported by Pietrogrande et al. (2021), Xiang et al. (2021) Yassin et al. (2012) and the current 

study therefore suggest energy efficiency practitioners could lose the most amount of information 

related to IEQ indicators by not installing a sensor in the bedroom. This lost information may not be 

relevant if practitioners are not concerned with bedroom conditions. In a sampling campaign, the 

benefits of adding highly specific information would have weighed against sampling resources that are 

often limited. 
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7. Conclusion 
 

 

In this study, the spatial and temporal patterning of IEQ metrics were observed using commercial-grade 

real-time IEQ sensors within 15 homes in the City of Fort Collins. Cooling, shoulder, and heating seasons 

were defined by daily participant heating and cooling behaviors, which were measured using real-time 

energy use data from heating and cooling devices within the home. Homes were grouped by 

heating/cooling behaviors observed over the entire study period, with significant between-home 

variability observed in the date of cooling-to-heating season transitions. 

Overall, median PM2.5, TVOC, and CO2 concentrations were lower in the heating season than in the 

cooling and shoulder seasons. Ranges of indoor PM2.5, TVOC, and CO2 concentrations were comparable 

between seasons. Indoor PM2.5, TVOC, and CO2 concentrations all exhibited higher hour-of-day average 

values in cooling days compared to heating days. This may have been due to participants maintaining 

closed windows and doors to conserve cool air-conditioned air or to prevent wildfire some from 

entering the home during fire season; however, ventilation and behavioral data was not gathered to 

discern such conclusions. Higher cooling day values may also have been due to increased infiltration of 

wildfire-generated PM2.5, as levels of PM2.5 increased both indoors and outdoors during the 2020 

wildfire season. 

Diel average trends of PM2.5 suggested cooking activities in the kitchen were significant drivers of PM2.5 

in most homes. Average PM2.5 concentrations increased at similar hours of the day between living 

rooms, kitchens, and bedrooms. Bedroom and living room evening peaks (around 6 pm) yielded lower 

PM2.5 concentrations, on average, compared to kitchen evening peaks. Diel average TVOC 

concentrations in kitchens and living rooms displayed evening peaks that are likely either attributed to 

garage sources or increased indoor participant activity (e.g., cooking and cleaning). Bedroom average 
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TVOC and CO2 concentrations tended to increase overnight, likely due to occupant presence. 

Correlations between PM2.5 hourly concentrations recorded in the garage and those recorded in indoor 

rooms were observed to vary with a predictable pattern throughout the day. In many homes, 

correlations between garage PM2.5 concentrations and living room PM2.5 concentrations were higher 

from midnight to 6 am compared to correlations during daytime hours. If future studies investigated 

drivers and determinants of this relationship, we may expect to discover more on the mechanisms of 

infiltration of PM2.5 and other pollutants from garages and outdoor areas into living spaces. Such 

discoveries could underscore the importance of home energy efficiency upgrades (e.g., sealing leaks in 

the home envelope) to improve occupant health. 

The extent to which in-home IEQ samples (sampling periods ranging from one to fourteen days) 

represented IEQ conditions over a long-term (six- to ten- month) period was evaluated using a measure 

of temporal representativeness. A sample was considered representative if it exceeded a temporal 

representativeness value of 0.8. Temporal representativeness increased with sample length. Over 75% 

of 1-day PM2.5 cooling and shoulder season samples were considered representative. Samples of TVOC 

that were 1-day in length were less likely to be representative, but over 50% of 1-day TVOC samples still 

exceeded the 0.8 threshold in all seasons. Depending on the season, 80 to 91% of 3-day samples were 

considered representative for PM2.5 and TVOC samples. In cooling and shoulder seasons, higher 

proportions of PM2.5 samples were representative compared to those of TVOC, and higher proportions 

of TVOC samples were representative compared to those of CO2. Representativeness of PM2.5 and CO2 

samples varied by season. These results suggest energy efficiency practitioners can be confident in the 

time of day at which PM2.5 or TVOC peaks occur on a “typical” day, based on 3-day samples; CO2 samples 

may require longer lengths. Even if resources are only available to sample for one day, our analysis 

suggests the time structure of a PM2.5 sample (i.e., the hour(s) when concentration peaks during the 
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day) has a high likelihood of being representative of a “typical” day, although this may vary depending 

on the season of the sample. 

Spatial representativeness and the complimentary measure of spatial specificity were evaluated for in-

home IEQ samples. In most homes, PM2.5, TVOC, and CO2 data gathered from bedrooms were the most 

specific (i.e., yielded the highest specificity values) out of all three considered rooms (bedroom, living 

room, and kitchen). Essentially, the dataset collected in the bedroom for these three IEQ metrics was 

the most unique out of the datasets collected from the three considered rooms. This suggests that if 

energy efficiency practitioners are aiming to observe the full range of IEQ variability between living 

spaces, and they are only able to install IEQ sensors in two rooms within a home, the bedroom should 

be one of the rooms sampled. However, the data gathered from the bedroom may only be applicable if 

conditions within the bedroom are of interest; bedroom IEQ conditions may not be applicable to other 

living areas within the home. The living room and kitchen were likely to report similar trends and 

magnitudes in PM2.5, TVOC, and CO2 data. Relationships between room, spatial 

representativeness/specificity, and other variables, such as distance between rooms and HVAC 

structure, should be explored to discover why between-room variability is higher in certain homes. 

This study proposed quality criteria that may be used to evaluate fit-for-purpose among IEQ indicators in 

frameworks developed to assess residential energy efficiency upgrade impacts. In particular, we focused 

on the measures of temporal representativeness, spatial representativeness, and spatial specificity. 

These three measures may suggest the temporal and spatial resolution at which IEQ indicators should 

be measured to adequately characterize the typical long-term conditions within a home. Findings have 

implications for those aiming to develop best practices when taking short samples of IEQ indicators in 

homes, whether they be energy efficiency practitioners determining the impacts of residential upgrades 

or researchers considering IEQ impacts on occupant health.  
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8. Limitations 
 

 

While presenting a unique possibility for data collection, the COVID-19 pandemic and wildfires that 

occurred during the study period may have caused the behaviors and measured IEQ indicators to be less 

representative of “typical” conditions within Fort Collins homes. Stay-at-home orders established at the 

start of the study period in the summer and fall months of 2020 caused more occupants to work from 

home. These orders likely increased general in-home activity above levels that were typical before the 

pandemic. Wildfires caused an increase in PM2.5 levels and may have caused participants to keep 

windows shut more than usual between August 2020 and October 2020. Both these anomalies may 

suggest results are less generalizable and less comparable to those reported in other IEQ studies. 

Seasons defined in this study did not occur during the same time periods between homes. Therefore, 

some variables that were present in the shoulder seasons of some homes (e.g., wildfires) may not have 

been present in the shoulder seasons of others. Between-home comparison disaggregated by season 

was not common, so this was assumed to be an insignificant issue in analysis. Seasons also varied in 

length. This may have impacted the representativeness of samples gathered in one season more than 

the representativeness of samples gathered in another. Although the majority of data gathered in most 

homes was gathered in the heating season, PM2.5 samples from this season were, on average, less 

representative compared to samples from other seasons. It was expected that heating days would be 

most representative of the long-term (six- to ten- month) monitoring period, if most of the long-term 

period consisted of heating days. A longer season resulting in less representative samples suggests the 

number of samples within each season was sufficiently high for the difference in sample number to have 

little effect. However, no extensive analysis was performed to reach this conclusion.  
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TVOC, one of the IEQ indicators considered most in this study, is an aggregate response to many 

compounds that come from various sources and have varying impacts on human health. While this IEQ 

indicator may give an idea of general trends in occupant or resident activities, conclusions could not be 

made on what caused values to increase/decrease or what the trends implied for residents. 

The home energy monitor has not, to our knowledge, been used in many past studies. We therefore 

considered the monitor experimental. Generally, as monthly natural gas usage increased, so did the 

amount of time on for the primary heating device identified by the energy monitor in the homes for 

which natural gas data was available. However, natural gas data for some homes showed substantial 

natural gas consumption in October and November when the primary heating device was not detected.  

This discrepancy suggests that primary heating device usage identified by the energy monitor may not 

have been a reliable proxy in all months for all homes. Lack of primary heating device identification may 

have caused days to be classified as cooling or shoulder days even though occupants were using high 

levels of space heating. This in turn, could have caused some days to be grouped incorrectly in our 

analysis. 

It was not desirable to make assumptions about which devices were identified incorrectly by the home 

energy monitor. Some participants may use air conditioning in months that do not seem “typical.” 

Therefore, appliances defined by the home energy monitor were, for the most part assumed to be 

correctly classified. Examples of home energy monitor identification that were uncertain were the 

primary heating devices identified for Homes 1 and 11. December 3rd, 2020 was the first day on which 

the primary heating device was detected for both of these homes, despite both homes’ enrollment date 

occurring months prior. This simultaneous date of device identification may have been due to the home 

energy monitor experiencing an update that allowed it to detect additional devices. Similarly, the 

primary heating device identified for Home 10 recorded a period of apparent inactivity from October 

19th, 2020 to December 3rd, 2020. This could have been due to a period of home vacancy (e.g., the 
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residents shut primary heat off while traveling), but the date the device was identified once more 

(December 3rd – i.e., the same as Homes 1 and 11) is possible cause for concern. If the categorization of 

these days were artifacts of home energy monitor misidentification, this could have caused data from 

days that should have been defined as heating days to be pooled in shoulder day data instead. 

We depended on participants to inform us when they received upgrades or major changes occurred to 

their homes. We administered questionnaires partway through the study asking about upgrades, and 

few participants had acquired any significant upgrades to their homes. However, some participants may 

have switched out appliances without our knowledge. This may have led to changes in the home energy 

monitor data partway through the study that were not based on behavioral changes, but technological 

modifications. 

The statistical measure of relative entropy was used to define a numerical value of temporal 

representativeness in this study. Home IEQ samples in this study (ranging from one to 28 days in length) 

were assigned numerical representativeness values (ranging from 0 to 1) that quantified how well the 

samples represented home IEQ conditions over the long-term monitoring period (six to ten months). A 

representativeness threshold value of 0.8 was defined, meaning any sample with a representativeness 

above 0.8 was considered representative. Recommendations of the minimum lengths required for 

representative sampling periods (e.g., one day vs one week) were made upon the basis of this threshold. 

However, conclusions on how well sampling periods of different lengths characterize long-term periods 

cannot be made with certainty without further exploration of relative entropy as a measure of 

representativeness.  

Our measures of spatial representativeness and spatial specificity were adapted from a study of outdoor 

air quality monitoring stations performed by Osses et al. (2013). In their study, Osses et al. calculated 

representativity (from which spatial representativeness in our study was adapted) and specificity of each 

monitoring station in a monitoring network. The monitoring network considered in their study consisted 
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of seven monitoring stations spread across the city of Santiago, Chile. In our study, we calculated spatial 

representativeness and spatial specificity for indoor environmental quality (IEQ) indicator data recorded 

in three indoor living areas (i.e., the living room, the kitchen, and the bedroom) in each home. The 

methods used to calculate representativity of a station in Osses et al.’s study and spatial 

representativeness of a room in our study relied upon the creation of a modeled dataset, which would 

predict air quality or IEQ indicator values if data from the monitor (or room) of interest were not 

available. A high representativity (spatial representativeness in our study) value is calculated for a sensor 

if adding the sensor to the network greatly decreases the uncertainty in the model. Osses et al. used a 

priori data (air quality data for the City of Santiago collected prior to their study period) to model the air 

quality of Santiago without including data from the monitor of interest. No a priori data was available in 

our study from within the recruited homes. Our study instead simply combined the data from the two 

“other” rooms (i.e., not the room of interest) to create a data distribution that would act as the 

“modeled” data distribution in the calculation of spatial representativeness. Our method limits the 

applicability of the measure of spatial representativeness used in this study, as our method guaranteed 

that the room with data that differed the most from the other two rooms in a home would be assigned 

a lower value of spatial representativeness. This essentially caused spatial representativeness to 

decrease whenever spatial specificity increased, making one of the two measures redundant. Future 

studies aiming to calculate spatial representativeness of IEQ sensors compared between multiple rooms 

could use characteristics collected from each home (e.g., distance between rooms/sensors, occupant 

activity patterns, air exchange rate, outdoor data) to create modeled datasets. Spatial 

representativeness could therefore be calculated using a dataset that is not directly dependent on the 

other two rooms. This would allow spatial representativeness to quantify how well data from the 

considered room characterizes modeled results of overall home IEQ, instead of quantifying how well 
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data from the considered room characterizes IEQ within the other two rooms (which is what this study’s 

measure of spatial representativeness essentially measured).  
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Future Research 
 

 

These data and those of similar spatial and temporal resolution may be leveraged in a multitude of 

different directions. Sleep studies could use the CO2 data in bedrooms to observe building structure and 

resident behavioral impacts on CO2 levels and corresponding health effects. Source apportionment 

could be conducted in enrolled homes to give more certain conclusions on the between-room and 

between-garage/indoor correspondences observed in this study. Periods of vacancy could be identified 

post-hoc, and data could be aggregated by vacant and occupied periods to explore how residents impact 

the indoor environment through paired analysis. 

Future work with the data collected in this study (or studies of similarly high temporal resolution) could 

further assess the correspondence between energy use metrics and IEQ indicators on a temporal scale. 

An example would be to observe how diel patterns in stove energy use correlated with PM2.5 and TVOC 

levels. Also, as the Epic Homes program is ongoing, the addition of more homes to the dataset would 

provide opportunities to evaluate relationships between IEQ indicators and energy use metrics. 

Regression models that include IEQ indicators, energy use metrics, home characteristics, and resident 

behaviors could be developed. This would also allow the responsiveness of IEQ metrics (one of the 

quality criteria proposed in our study) to be evaluated through changes in IEQ and energy use variables 

pre- and post-upgrade. These types of analyses could give practitioners and researchers a better 

understanding of the causes of inadequate home IEQ. 

Representativeness of other IEQ indicators and energy use metrics could be further explored to 

determine how the required sampling spatial and temporal resolutions vary by indicator. Also, as 

mentioned in the discussion on limitations, defining thresholds of representativeness may improve 

standardization of best practices for IEQ monitoring in both residential and non-residential settings. Best 
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practices could mature to include recommended sampling durations and locations within homes (which 

may vary depending on the aim of those gathering data). Once data from more homes are collected, or 

as other studies gather data with similar resolution in larger samples of homes, the impact of home 

structure (e.g., air exchange rate) and resident characteristics and activities (e.g., housing tenure; 

socioeconomic position) on representativeness could be explored. 

Lastly, as previously noted, a significant portion of the data collection for this study occurred when many 

participants were working from home due to COVID-19 lockdowns. While this may be a limitation to the 

study’s generalizability, researchers may benefit from comparing this dataset with other high-resolution 

datasets collected during “typical” periods when most residents were less likely to work from home. 
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Appendix 
 

 

 
Figure 30: Distributions of time-averaged hourly IEQ parameter values from indoor rooms in Group 2 homes (homes with no 
definable cooling period), shown separately by season and sampling location. Values from all rooms in all Group 2 homes 
pooled. Units: PM2.5 (μg/m3), TVOC (ppb), CO2 (ppm), Temperature (oC). 
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Figure 31: Distributions of time-averaged hourly IEQ parameter values from indoor rooms in Group 3 Homes (homes with 
definable cooling period), shown separately by season and sampling location. Values from all rooms in all Group 2 homes 
pooled. Units: PM2.5 (μg/m3), TVOC (ppb), CO2 (ppm), Temperature (oC). 
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Figure 32: Average hour-of-day concentrations of PM2.5 in μg/m3 (top row), TVOC in ppb (second row), and CO2 in ppm (third 
row), and temperature in oC (bottom row) calculated from average hourly values over entire monitoring period (six to ten 
months) by home, disaggregated by monitor location. Line plot represents hour of day arithmetic mean values, and transparent 
ribbon represents limits of the 95% confidence interval around the mean. 

 

 

 
Figure 33: Average hour-of-day concentrations of PM2.5 in μg/m3 (top row), TVOC in ppb (second row), and CO2 in ppm (third 
row), and temperature in oC (bottom row) calculated from average hourly values over entire monitoring period (six to ten 
months) by home, disaggregated by monitor location. Line plot represents hour of day arithmetic mean values, and transparent 
ribbon represents limits of the 95% confidence interval around the mean. Sensors from Homes 2, 3, 8, and 15 omitted to give 
closer look at variation for most homes.  



 

138 
 

 

 
Figure 34: Average hour of day values of PM2.5 in μg/m3, TVOC in ppb, CO2 in ppm, and temperature in oC calculated from 
average hourly values from kitchen, living room, and bedroom sensors in all homes pooled together, separated by time period 
during which data was collected. “Cameron Peak Fire Effects” time period (August 13th, 2020 to October 31st, 2020) is when the 
Cameron Peak wildfire was believed to have impacts on outdoor air quality; “Negligible Cameron Peak Fire Effects” time period 
(all other dates during the study period) is when impacts on air quality form the Cameron Peak wildfire were assumed negligible. 
Line plot represents hour of day arithmetic mean values, and transparent ribbon represents limits of the 95% confidence interval 
around the mean. Size of point is proportional to the amount of hourly average values used to calculate an average value for 
each hour of day. 

 

 

 
Figure 35: Average weekday concentrations of PM2.5 in μg/m3 (top row), TVOC in ppb (second row), and CO2 in ppm (third row), 
and temperature in oC (bottom row) calculated from average hourly values over entire monitoring period for all homes pooled 
together, disaggregated by monitor location. Line plot represents hour of day arithmetic mean values, and transparent ribbon 
represents limits of the 95% confidence interval around the mean. 
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Figure 36: Average weekday concentrations of PM2.5 in μg/m3 (top row), TVOC in ppb (second row), and CO2 in ppm (third row), 
and temperature in oC (bottom row) calculated from average hourly values over entire monitoring period (six to ten months) by 
home, disaggregated by monitor location. Line plot represents hour of day arithmetic mean values, and transparent ribbon 
represents limits of the 95% confidence interval around the mean. 
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Figure 37: Average monthly concentrations of PM2.5 in μg/m3 (top row), TVOC in ppb (second row), and CO2 in ppm (third row), 
and temperature in oC (bottom row) calculated from average hourly values over entire monitoring period by home, 
disaggregated by monitor location. Line plot represents hour of day arithmetic mean values, and transparent ribbon represents 
limits of the 95% confidence interval around the mean. 
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Figure 38: Pooled (between kitchen, living room, and bedroom) hour of day TVOC arithmetic mean subtracted from the hour of 
day TVOC arithmetic mean for each room at each hour of day over the entire monitoring period, plotted separately for all 
homes. Units in ppb. Confidence intervals were omitted to increase clarity. 
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Figure 39: Hour-of-day arithmetic mean values calculated from samples of multiple lengths compared to those calculated from 
the entire monitoring period from the same condition for PM2.5 (a, top), TVOCs (b, middle), and CO2 (c, bottom). The considered 
condition was Home 9 living room in the heating season. Time-structured temporal representativeness (Rep) values for each 
sample are noted in the legend. Confidence intervals around mean values were omitted for clarity. 
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Figure 40: QQ Plots for PM2.5 measurements for each home-room-season condition. 
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Figure 40 cont.: QQ Plots for PM2.5 measurements for each home-room-season condition. 
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Figure 40 cont.: QQ Plots for PM2.5 measurements for each home-room-season condition. 
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Figure 41: QQ Plots for TVOC measurements for each home-room-season condition. 



 

147 
 

 

 

 
Figure 41 cont.: QQ Plots for TVOC measurements for each home-room-season condition. 
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Figure 41 cont.: QQ Plots for TVOC measurements for each home-room-season condition. 
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Figure 42: QQ Plots for CO2 measurements for each home-room-season condition. 
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Figure 42 cont.: QQ Plots for CO2 measurements for each home-room-season condition. 
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Figure 42 cont.: QQ Plots for CO2 measurements for each home-room-season condition. 
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Table 12: Results from Akaike information criterion (AIC) calculations for three distribution types (log-normal, Weibull, and 
gamma) for three IAQ metrics (PM2.5, TVOC, and CO2) for all home-season-room conditions. Minimum AIC value implies the best 
fitting distribution type out of the three considered. “N Minimum Value” is the number of home-season-room conditions for 
which the given distribution type had the lowest AIC value for the given IAQ metric. “% Minimum Value” is the percentage of 
home-season-room conditions for which the given distribution type had the lowest AIC value for the given AIQ metric. 

Metric Distribution 
Type 

N Minimum 
Value 

% Minimum 
Value 

PM2.5 
Log-Normal 66 76% 
Weibull 21 24% 
Gamma 0 0% 

TVOC 
Log-Normal 66 76% 
Weibull 0 0% 
Gamma 21 24% 

CO2 
Log-Normal 84 97% 
Weibull 3 3% 
Gamma 0 0% 
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Figure 43: Correlograms of PM2.5 data for all homes (number of home on top of individual plot) grouped by room and season 
(noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate the 
autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 95% 
confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval for 
the given lag number are considered significant. 



 

154 
 

 

 

 
Figure 43 cont.: Correlograms of PM2.5 kitchen data for all homes (number of home on top of plot) in cooling (top) shoulder 
(middle) and heating (bottom) seasons. Black line segments imply more than 20 pairs of daily data pairs were available to 
calculate the autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines 
represent 95% confidence intervals.  ACF values that are greater than the high confidence interval or less than the low 
confidence interval for the given lag number are considered significant. 
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Figure 43 cont.: Correlograms of PM2.5 kitchen data for all homes (number of home on top of plot) in cooling (top) shoulder 
(middle) and heating (bottom) seasons. Black line segments imply more than 20 pairs of daily data pairs were available to 
calculate the autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines 
represent 95% confidence intervals.  ACF values that are greater than the high confidence interval or less than the low 
confidence interval for the given lag number are considered significant. 
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Figure 44: Correlograms of TVOC data for all homes (number of home on top of individual plot) grouped by room and season 
(noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate the 
autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 95% 
confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval for 
the given lag number are considered significant. 
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Figure 44 cont.: Correlograms of TVOC data for all homes (number of home on top of individual plot) grouped by room and 
season (noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate 
the autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 
95% confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval 
for the given lag number are considered significant. 
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Figure 44 cont.: Correlograms of TVOC data for all homes (number of home on top of individual plot) grouped by room and 
season (noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate 
the autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 
95% confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval 
for the given lag number are considered significant. 
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Figure 45: Correlograms of CO2 data for all homes (number of home on top of individual plot) grouped by room and season 
(noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate the 
autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 95% 
confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval for 
the given lag number are considered significant. 
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Figure 45 cont.: Correlograms of CO2 data for all homes (number of home on top of individual plot) grouped by room and season 
(noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate the 
autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 95% 
confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval for 
the given lag number are considered significant. 
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Figure 45 cont.: Correlograms of CO2 data for all homes (number of home on top of individual plot) grouped by room and season 
(noted above plot groups). Black line segments imply more than 20 pairs of daily data pairs were available to calculate the 
autocorrelation factor (ACF) value at a given lag, while red values imply less than 20 data pairs. Dashed blue lines represent 95% 
confidence intervals.  ACF values that are greater than the high confidence interval or less than the low confidence interval for 
the given lag number are considered significant. 
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Figure 46: Number of days (in lagged correlations) before insignificant autocorrelation is reached for each IEQ indicator, homes 
pooled, stratified by season and colored by room. Room-season samples consisting of less than 25 days of data, missing more 
than 11.1% (1/9) of monitored days, or that did not reach insignificance prior to 30 days were omitted from analysis. 

 


