
THESIS

VULNERABILITY DISCOVERY IN MUTIPLE VERSION SOFTWARE SYSTEMS:

OPEN SOURCE AND COMMERCIAL SOFTWARE SYSTEMS

Submitted by

JIN YOO KIM

Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2007

 ii

COLORADO STATE UNIVERSITY

June 20, 2007

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR

SUPERVISION BY JIN YOO KIM ENTITLED VULNERABILITY DISCOVERY IN

MULTIPLE VERSION SOFTWARE: OPEN SOURCE AND COMMERCIAL

SOFTWARE SYSTEMS BE ACCEPTED AS FULFILLING IN PART THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

ABSTRACT OF THESIS

VULNERABILITY DISCOVERY IN MUTIPLE VERSION SOFTWARE SYSTEMS:

OPEN SOURCE AND COMMERCIAL SOFTWARE SYSTEMS

The vulnerability discovery process for a program describes the rate at which the vulnera-

bilities are discovered. A model of the discovery process can be used to estimate the number

of vulnerabilities likely to be discovered in the near future. Past studies have considered

vulnerability discovery only for individual software versions, without considering the impact

of shared code among successive versions and the evolution of source code. These affecting

factors in vulnerability discovery process need to be taken into account estimate the future

software vulnerability discovery trend more accurately.

This thsis examines possible approaches for taking these factors into account in the

previous works. We implemented these factors on vulnerability discovery process. We

examine a new approach for quantitatively vulnerability discovery process, based on shared

source code measurements among multiple version software system. The applicability of the

approach is examined using Apache HTTP Web server and Mysql DataBase Management

System (DBMS). The result of this approach shows better goodness of fit than fitting result

in the previous researches. Using this revised software vulnerability discovery process, the

superposition effect which is an unexpected vulnerability discovery in the previous researches

could be determined by software discovery model.

iii

The multiple software vulnerability discovery model (MVDM) shows that vulnerability

discovery rate is different with single vulnerability discovery model’s (SVDM) discovery rate

because of newly considered factors. From these result, we create and applied new SVDM

foropen source and commercial software. This single vulnerability process is examined, and

the model testing result shows that SVDM can be an alternative modeling. The modified

vulnerability discovery model will be presented for supporting previous researches’ weakness,

and the theoretical modeling will be discuss for more accurate explanation.

JIN YOO KIM
Computer Science

Colorado State University
Fort Collins, Colorado 80523

Summer 2007

iv

TABLE OF CONTENTS

1 Introduction 1

1.1 Software Development and Vulnerability . 1

1.2 Related Work . 3

1.3 Contributions . 4

1.4 Organization of the Thesis . 5

2 Vulnerability Discovery Factors 6

2.1 Software Code . 7

2.1.1 Source Code Size . 7

2.1.2 Shared Source Code . 7

2.2 Software Age and Usage . 8

2.2.1 Software Life Time and Share of Installed Base 8

2.2.2 Maintenance Effect to Software Share and Usage 11

2.3 Software Testing . 11

2.3.1 WhiteBox and BlackBox Testing . 11

2.3.2 Open Source and Closed Source Program Comparison 12

2.3.3 Beta Testing Version Software . 12

3 Software Evolution and Vulnerability Discovery 13

v

3.1 Software Evolution . 13

3.1.1 Software Evolution Trend . 13

3.1.2 Software Code Decay . 16

3.2 Code Evolution and Code Share Between Software Subversions 19

3.3 Software Evolution and Vulnerability Discovery 20

4 Vulnerability Discovery Models 23

4.1 Basic Software Vulnerability Discovery Models (VDM) 23

4.1.1 Musa-Okumoto Logarithmic VDM . 23

4.1.2 Rescorla’s Quadratic and Exponential VDM 24

4.1.2.1 Rescorla’s Quadratic VDM 24

4.1.2.2 Rescorla’s Exponential VDM 26

4.1.3 Anderson’s Thermodynamic VDM . 27

4.1.4 Alhazmi-Malaiya Logistic VDM . 28

4.2 Modeling Vulnerability Discovery in Multiple Version Software 31

4.2.1 Need for a Multiple Version Software VDM 31

4.2.2 Proposed Multiple Version Software VDM 33

4.3 An Alternative Software Vulnerability Discovery Model 42

4.3.1 Asymmetric VDM . 42

4.3.1.1 Weibull VDM . 43

4.3.1.2 Folded VDM . 45

5 Vulnerability Discovery in Open Source Software 47

5.1 Multiple Version Software Vulnerability Discovery Modeling for Open Source

Programs . 47

5.1.1 Methodology for Multiple Version Software Vulnerability Discovery . . 48

5.1.1.1 Software Source Code Analysis 48

vi

5.1.1.2 Data Source for Software Vulnerabilities 49

5.1.1.3 Testing Goodness of Fit . 49

5.1.2 Modeling Multiple Version Software Vulnerability Discovery 50

5.1.2.1 Vulnerability Discovery Modeling Approach 50

5.1.2.2 Modeling Apache HTTP Web server Vulnerability Discovery 50

5.1.2.3 Modeling Mysql DBMS Vulnerability Discovery 52

5.2 Using Weibull and Logistic Software VDMs for Open Source Software 54

5.2.1 Modeling Software Vulnerability Discovery for Apache HTTP Web

server . 55

5.2.2 Modeling Software Vulnerability Discovery for Mysql DBMS 57

6 Vulnerability Discovery in Closed Source Software 60

6.1 Modeling Multiple Version Software Vulnerability Discovery 60

6.1.1 Modeling Windows OS Vulnerability Discovery 61

6.2 Using Weibull and Logistic VDMs for Closed Source Software 62

6.2.1 Modeling Windows OS Vulnerability Discovery 62

6.2.2 Modeling Internet Explorer Vulnerability Discovery 66

7 Discussion 75

8 Conclusion 78

REFERENCES 80

vii

LIST OF TABLES

2.1 Microsoft Windows OS maintenance policy 11

3.1 Apache and Mysql Source Code Pattern . 14

4.1 Rescorla Quadratic VDM Fitting Result . 26

5.1 Source Code Distribution for Major Software System 48

5.2 Inherited Percentage of Code From the Earlier Version 49

5.3 Apache Multiple Version VDM Fitting Results 52

5.4 Mysql Multiple Version VDM Fitting Results 54

5.5 Apache 1.3 VDM Fitting Results . 56

5.6 Mysql 4 VDM Fitting Results . 58

6.1 Windows Multiple Version VDM Fitting Results 62

6.2 Windows 98 VDM Fitting Results . 63

6.3 Windows 2000 VDM Fitting Results . 65

6.4 Internet Explorer 4 VDM Fitting Results . 67

6.5 Internet Explorer 5 VDM Fitting Results . 70

6.6 Internet Explorer 6 VDM Fitting Results . 72

viii

LIST OF FIGURES

2.1 Windows OS Install-Based Usage . 9

2.2 Windows 98 Vulnerability . 9

2.3 Windows 98 Vulnerability Discovery Trend . 10

3.1 Apache HTTP Web Server Evolution Trend 15

3.2 Mysql DBMS Evolution Trend . 15

3.3 Apache HTTP Web Server Initial Code Decay 17

3.4 Mysql DBMS Initial Code Decay . 17

3.5 Remained Shared Source Code Trend in Apache 18

3.6 Remained Shared Source Code Trend in Mysql 18

3.7 SubVersion Shared Source Code Trend in Mysql 19

3.8 Apache Added Code and Vulnerability Discovery Trend 21

3.9 Mysql Added Code and Vulnerability Discovery Trend 21

4.1 Musa-Okumoto Logarithmic VDM . 24

4.2 Rescorla Quadratic VDM . 25

4.3 Quadratic VDM on Linux . 26

4.4 Rescorla Exponential VDM . 27

4.5 Anderson’s Thermodynamic VDM . 28

4.6 AML Vulnerability Discovery Model . 29

ix

4.7 Internet Explorer 3 AML VDM Superposition Effect 30

4.8 Windows 98 Vulnerability Discovery Rate using Moving Average 32

4.9 Basic MVDM Discovery Rate . 34

4.10 Separated Vulnerability Discovery Trend in Basic MVDM 35

4.11 Basic MVDM . 35

4.12 One-Hump MVDM Discovery Rate . 36

4.13 Separated Vulnerability Discovery Trend in One-Hump MVDM 37

4.14 One-Hump MVDM Trend . 37

4.15 Two-Hump MVDM Discovery Rate . 38

4.16 Separated Vulnerability Discovery Trend in Two-Hump MVDM 39

4.17 Two-Hump MVDM Trend . 39

4.18 Entire Version MVDM Discovery Rate . 41

4.19 Entire Version MVDM Trend . 41

4.20 Vulnerability Discovery Rate according to Weibull VDM 43

4.21 Weibull VDM Trend . 44

4.22 Folded VDM Discovery Rate . 46

4.23 Folded VDM Trend . 46

5.1 Apache Multiple Version VDM Fitting . 51

5.2 Mysql Multiple Version VDM Fitting . 53

5.3 Apache 1.3 VDM Fitting . 55

5.4 Apache 1.3 Weibull VDM Discovery Rate . 56

5.5 Apache 1.3 Logistic VDM Discovery Rate . 57

5.6 Mysql 4 Weibull VDM Fitting . 57

5.7 Mysql Weibull VDM Discovery Rate . 58

5.8 Mysql Logistic VDM Discovery Rate . 59

x

6.1 Windows XP Multiple Version VDM Fitting 61

6.2 Windows 98 VDM Fitting . 63

6.3 Windows 98 Weibull VDM Discovery Rate . 64

6.4 Windows 2000 VDM Fitting . 65

6.5 Windows 2000 Weibull VDM Discovery Rate 66

6.6 Internet Explorer 4 VDM Fitting . 67

6.7 Internet Explorer 4 Weibull VDM Discovery Rate 68

6.8 Internet Explorer 4 Logistic VDM Discovery Rate 68

6.9 Internet Explorer 5 VDM Fitting . 69

6.10 Internet Explorer 5 Weibull VDM Discovery Rate 70

6.11 Internet Explorer 5 Logistic VDM Discovery Rate 71

6.12 Internet Explorer 6 VDM Fitting . 72

6.13 Internet Explorer 6 Weibull VDM Discovery Rate 73

6.14 Internet Explorer 6 Logistic VDM Discovery Rate 74

xi

Chapter 1

Introduction

1.1 Software Development and Vulnerability

Software system development is a complex process. Additional or modified software relia-

bility and functionality requirements force developers to add or change source code and its

design [15, 25, 12]. As software evolves, developers are using software reliability engineering

methodolgy to create reliable software during the development process [35]. However, soft-

ware defects, which are produced during the development process, may not be found and

removed from software during coding and testing, and the remaining software defects are

discovered after release.

A software vulnerability is a special type of software defect that has the potential to

violate software security. Although the number of vulnerabilities are few compared with

overall defects [2], the vulnerabilities are the main cause of information security incidents.

The number of incidents using software vulnerability has been increasing rapidly [32, 45,

10]. Software vulnerabilities cause security problems such as information leaks and system

maintainence issues, as well as possibility of financial loss [54]. The cost of software vulner-

abilities is hard to quantify, since vulnerabilities can be exploited through various methods,

which may result in a decreased market share for the affected software product. Because of

the need to find and mitigate the effects of software vulnerabilities, government, organiza-

1

tion and security consulting companies have created software vulnerability databases such

as the National Vulnerability Database [41], CERT [14], Secunia [49], Symantec Internet

Security Report [55], and securityfocus [48]. Vulnerability descriptions, and the severity of

software vulnerabilities are recorded in the vulnerability database [47]. A severity standard

for software vulnerability has been in discussion for a long time. MITRE [30] provides a

quantitative severity standard called CVSS (Common Vulnerability Scoring System), which

is widely used for software vulnerability severity evaluation and for proper prevention of the

vulnerabilities.

As the importance of software vulnerability prevention increases, vulnerability prediction

has stated to get attention [37, 2, 3, 46, 56]. Quantitative vulnerability discovery model-

ing can be used for estimaing vulnerability trends in the near future. Previous studies on

vulnerability discovery have focused on a single software version. However, most software

projects involove multiple versions to continue to improve software reliability and function-

ality. Therefore, we need advanced vulnerability discovery modeling methods to estimate

the number of software vulnerabilities.

Software evolution is an important consideration for quantitative analysis of software

vulnerability. Previous quantitative analysis for the vulnerabilities had considered a few

factors for the estimation of software vulnerabilities. These factors are calendar time, es-

timated software age, and others. The vulnerability discovery models using these limited

factors cannot describe the total software vulnerability discovery process because of the

different characteristics of each successive release. Therefore, additional factors need to be

reconsidered for accurate estimation of the number of software vulnerabilities. In the next

chapter, we will examine software vulnerability discovery modeling approaches to determine

which are fit better.

2

1.2 Related Work

Software reliability modeling has been investigated using several approaches. Structural

approaches, function tree based formal modeling [19] and reliability modeling using soft-

ware environment effect [27, 16] have been examined for estimating software defect density.

Structural analysis helps identify specific vulnerability components, however, this method

requires a lot of software testing and time. The alternative to a structural approach is quan-

titative vulnerability modeling, which has seen increased interest recently as it provides a

simple way to evaluate software security.

A few quantitative software vulnerability models have recently been proposed by a few

researchers. Musa introduced software reliability engineering [36, 37, 35, 28, 34], and also

proposed some of the software reliability growth models [37, 33]. For software quality mea-

surement, he proposed a logarithmic poisson software reliability growth model [37]. Using

the concept of SRGMs (Software Reliability Grwoth Models), software vulnerability discov-

ery models (VDMs) have been developed by other researchers. Eric Rescorla [46] showed a

software reliability growth model with quantitative analysis of the ICAT (now NVD) data

[41], and suggested quadratic and exponential software vulnerability models. Anderson [8]

proposed a thermodynamic vulnerability discovery model. Omar and Malaiya [3] proposed

Logistic vulnerability discovery model (AML - model) that has flexible symmetric software

vulnerability discovery, and the authors compared well-known software vulnerability dis-

covery models using several software vulnerability datasets and showed goodness of fit for

almost all software systems. Omar and Malaiya [2, 4] show goodness-of-fitness for their

vulnerability discovery models. Woo [57] presented a software discovery trend fitting with

AML modeling and showed that AML modeling is the most accurate modeling for a software

system vulnerability prediction model across various software system.

Using a basic VDM can only go so far to explain software vulnerability trends. One

3

element not examined previously is the effect of software evolution on vulnerability, and

the connection between software evolution and its requirement. This relationship between

software evolution and software requirements is well represented as a case study of Linux

in [20]. Mockus et al.[17] have examined software source code decay introduced by its

evolution. Clemente [23] has presented a linear shape evolution trend of source code in

FreeBSD. Ozment [42] applied a software reliability growth model, and in [9], he focused on

foundational source code share and foundational vulnerabilities in the OpenBSD operating

system. Also he measured software age based on the software reliability growth model with

discovered vulnerabilities. With a statistical approach, Paul [26] showed time-based and

metrics-based defect forcasting with OpenBSD. These quantitative vulnerability modeling

approaches, and the software evolution process will be considered in this work.

1.3 Contributions

This thesis presents several novel software vulnerability discovery models that have not been

examined by other researchers.

Chaper 4 explores existing software vulnerability discovery models that focus on one

version, or the entire vulnerabilities of specific software which does not separate several

versions of the software. The limitation of previous software vulnerability discovery modeling

is that the models do not consider software life time, or other factors that may cause an

inaccurate modeling. This thesis aims to provide a software vulnerability discovery model for

multiple version software systems which has not been explored in the past. A multiple version

software vulnerability model will be presented to explain the superpostion effect, which

comes from shared vulnerabilities among different versions of software. This multiple version

software vulnerability discovery modeling work will include software evolution. This thesis

also proposes an asymmetric vulnerability discovery model for predicting future vulnerability

discovery which is caused by later version software release. The other vulnerability discovery

4

model is suggested to test version software release effect. This new model also supports the

reason of the superposition effect. Through examination of the fitting results, Weibull VDM

(modified from a multiple VDM) will be introduced as a method for modeling single software.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces the factors which can affect the

vulnerability discovery trends. Chapter 3 discusses the software evolution effect on vulnera-

bilities. Chapter 4 presents the software vulnerability discovery models for both individual

and multiple version software. Chapter 5 presents multiple version software vulnerability

discovery model fitting results for open source software systems using Apache HyperText

Transfer Protocol (HTTP) web server and Mysql Database Management System (DBMS).

Chapter 6 examines the software vulnerability discovery modeling for closed source software

using Windows operating systems (OS) and Internet Explorer. Chapter 7 analyzes each

vulnerability discovery model using actual data, and in Chapter 8 concluding comments

are presented on approaches for software vulnerability discovery modeling. In addition to

these we compare alternative software vulnerability discovery modeling approaches for each

factor.

5

Chapter 2

Vulnerability Discovery Factors

Software vulnerabilities represent a fraction of the residual defects originally produced during

the development process. Software defects are influenced by several factors such as program

complexity, work standards, development team capabilities, testing time, and other factors

during software development. These factors have been used for predicting the total number

of software defects, or estimating software reliability [18, 34, 50]. Using a similar approach,

we can define a metric vulnerability density. Using data from several case studies, using

estimates for defect densities and the percentage of defects that are vulnerabilities [2], the

total number of vulnerabilities can be estimated. The vulnerability discovery rates are

influenced by various internal or external factors such as software usage and its life time,

among others. Therefore, prediction of the software vulnerability discovery rate is not

straight forward. Since the existing static approaches do not model the discovery rate of

vulnerabilities, we cannot estimate the expected discovery rate.

In this chapter we will examine the significant factors which can affect software vulner-

ability discovery process, such as the size and amount of shared software code, software life

time, software usage, and beta testing.

6

2.1 Software Code

Several studies have estimated prediction of software defects using software source code.

These factors indicate source code size and modularity. However, for predicting vulnerability

discovery in multiple version software we need to look at factors such as shared source code,

shared modularity and common functionality among different versions.

2.1.1 Source Code Size

Akiyama [1] claims that software source code size is strongly related with software defects.

On the other hand, Ozment expresses the view that [9], since vunerability rates coming from

additional software code is lower than in the original code, the number of vulnerabilities is

not directly related with the source code size. In other words, software defect density

is related to software structure and development plan. These two views are comparable,

however, since they both effectively explain software reliability growth modeling, we will

follow both of them.

2.1.2 Shared Source Code

Software size is one potential prediction of the number of vulnerabilities. For just one

version of software, source code defects are directly related with software source code size.

However, software vulnerability in multiple version software comes from shared code. In

[9], the vulnerability density of additional software source code is lower than legacy code,

but its code size is larger than legacy code. Therefore, in the software evolution model

concept, shared source code is one major contributer to software vulnerability. Modeling for

vulnerability discovery process need to be considered the shared code effect with the code

size.

7

2.2 Software Age and Usage

The aging of software is the result of software source code modification or decay as time

passes. However, in this thesis, we will examine the software age factor as software discovery

factors which are not used in software evolution. Software vulnerability can be revealed

during testing or under usage. Thus, software aging and usage can affect the software

vulnerability discovery rate. These factors are related to market share and maintenance

policy. To show how software vulnerability discovery is affected by these, we will review

Windows OS share and the maintenance policy of Microsoft as a case study.

2.2.1 Software Life Time and Share of Installed Base

Since a specific installed version software is typically used until the release of a new version,

its life time depends on the plans of the software development team who desire for the

customer to upgrade to the newer version. To determine typical software life time, we use

software market share [13, 22] to find out the end of software life time. In Figure 2.1, the X

axis is calendar time and the Y axis indicates the fractional installed base for each Windows

OS version. In Figure 2.1, Windows 98 share decreased after Windows XP was released.

Currently Windows 98 has not met the end of use, and vulnerabilities continue to be found in

it. Therefore, the impact of vulnerability discovery rate from software life time is primarily

dictated by the software development policy.

Software vulnerabilities are affected by installed base software share and usage. These

factors have not been considered before. We may consider that install-based software share

is one indicator of software usage. However, these are not synonymous. Software usage is

based on time in use of the software, and is not affected by software install-based share. The

relation between software install-based share and vulnerability discovery rate shows that the

software usage effect is larger than install-based software share. The install-based software

share of Windows OS is presented in Figure 2.1 [21, 22].

8

Figure 2.1: Windows OS Install-Based Usage

As shown in Figure 2.1, the Windows 98 share was reduced after the release of the next

version of software. The vulnerability discovery trend of Windows 98 is presented in Figure

2.2.

Figure 2.2: Windows 98 Vulnerability

9

In Figure 2.2, the X axis is calendar time, and the Y axis is the cumulative number

of vulnerabilities. It shows that the vulnerability discovery trend is still increasing. From

the Figure 2.1 and 2.2, there is no significant relation between software install-based share

and vulnerability trend. Therefore, the install-based software sharing does not affect the

software vulnerability discovery trend in any significant way. Although the install-based

share is decreasing, the software vulnerability discovery trend is still increasing.

Using Weibull distribution, which fits the vulnerability discovery trend of Windows 98,

examined in detail in Chapter 6, we can represent Windows98 vulnerability discovery trend

as shown in Figure 2.3.

Figure 2.3: Windows 98 Vulnerability Discovery Trend

In Figure 2.3, the vulnerability discovery rate of Windows 98 shows slightly decreases.

From the Figure 2.1 and 2.2, we find that the relationship between software share, and

the software vulnerability discovery rate coming from its cumulative vulnerability discovery

trend does not match up. Therefore, software usage factors are more important than market

share on vulnerability discovery rate.

10

2.2.2 Maintenance Effect to Software Share and Usage

In the previous section, we examined how software vulnerability discovery trends and rates

are affected by software usage. In this section, we will review the impact on software usage

from the software maintenance policy of the project team. One example is presented in

Table 2.1 [29].

Product Name Release Date General Support Extention Support

Windows 98 06-30-1998 06-30-2002 07-11-2006

Windows 2000 03-31-2000 06-30-2005 07-13-2010

Windows XP 12-31-2001 04-14-2009 04-08-2014

Windows 2003 05-28-2003 2 years after next version release 5 years after

Table 2.1: Microsoft Windows OS maintenance policy

Software install-based share is related to software release dates, and this is represented

in Figure 2.1. However, the software age problem is tied more to the software maintenance

policy. If the maintenance is not supported, the vulnerabilities discovered through software

usage decreases drastically because the software will not be used by users as before. This is

one important factor impacting the software vulnerability discovery rate.

2.3 Software Testing

Source code accessibility for testing, and the level of software testing can determine software

vulnerability discovery [47]. This section deals with the testing factor. Testing approaches

can be categorized into several types, however, in this paper we will just examine testing

methods in open and non-open source software.

2.3.1 WhiteBox and BlackBox Testing

Software testing can be categorized as whitebox or blackbox testing. Whitebox testing has

an advantage in that it can perform structual software testing with source code and modules

included operation testing. Blackbox testing only deals with binary code and operational

11

testing. The discrepancy creates a difference in software reliability quality, and the software

vulnerability discovery rate after software release. We assume that the software systems

being handled in this paper have similar testing techniques implemented by the development

teams, but not necessarily the users.

2.3.2 Open Source and Closed Source Program Comparison

Depending on the development process, a software system is categorized as either open or

closed source software. There are many differences between open and closed source software

development. For example, the development process of an open source program is based on

volunteers who are interested in the project [20, 43]. Another difference between open and

closed source software is testing accessibility. An open source program can be tested both

by official testers and users using whitebox testing methodology, however, closed system

testing methodoloy is only available in blackbox testing to users. Since closed systems do

not provide their source code, its structual test may not be performed by users, and this

creates a vulnerability discovery difference between open and closed source software systems.

In chapter 6, we will examine different software vulnerability discovery modeling and show

the best fitting model for closed source software system.

2.3.3 Beta Testing Version Software

One of the factor that makes vulnerability discovery between open and closed source software

is the effect of beta test version software. A typical beta version uses the source code of

previous successive version software and it also includes new structure and codes. Since this

reused code, and the new code or structure includes vulnerabilities and the testing cases are

focused more on the current vulnerabilities than inherited ones, the vulnerability discovery

rate displays abnormalities. These factors should be considered for modeling in software

vulnerability discovery modeling, since it can affect unexpected vulnerability discovery.

12

Chapter 3

Software Evolution and Vulnerability

Discovery

3.1 Software Evolution

Software evolution is the entire process that deals with gradually changing software. These

changes can be for maintenance or modifications to incorporate functional enhancements.

Ideally, software evolution should improve reliability and functionality. Realistically, that

does not always happen. New vulnerabilities may get introduced along with new code in

the process of evolution. The goal of this thesis is to understand the relationship between

evolution and vulnerability discovery.

3.1.1 Software Evolution Trend

Software evolution trend refers to the change in software code size with time. As expected,

this trend depends on the project team and whether the project is open-source or commercial.

Mockus et al. [31] have identified the environmental factors leading to software evolution

and its development. Godfrey and Tu [20] suggest that software evolution trend depends

on software development participants and the project requirements. In this section, we will

examine stable development projects that have gone through a number of versions, to see

how software vulnerability discovery is impacted. Apache HTTP Web server and Mysql

13

DBMS both have a several year history and are thus good examples for relating software

evolution and vulnerability discovery.

Version 1.3 Version 1.3.37 Version 4.0.0 Version 5.0.0

Release Date 6-5-1998 7-26-2006 10-12-2001 12-23-2003

Ansi C 92.87 92.09 62.86 42.78

Sh 5.66 6.19 4.27 2.89

Perl 1.42 1.39 6.04 2.61

Cpp 0.11 0.07 20.41 42.78

Table 3.1: Apache and Mysql Source Code Pattern

Since they are both open-source projects, the source codes for successive versions are

available. We analyzed the source code patterns of Apache HTTP Web server and DBMS

using SLOCcount [51]. The results are shown in Table 3.1. The first two columns are for

versions of HTTP Web server and the last two columns are for Mysql. The major fractions

of the source code of Apache HTTP Web server and Mysql DBMS are .c and .sh files.

We ignored the source code that was made for CGI scripts. We used a comment-stripping

program to extract the original source code. This procedure was performed on all versions

of Apache HTTP Web Server and Mysql DBMS. To get the shared code of Apache HTTP

Web server and Mysql DBMS, we used Diff and Line counter tools that are installed in

Unix and Linux. Comparisons were performed for 26 versions of Apache HTTP Web server

(1.3.x) and 27 versions of Mysql DBMS (4.0.x).

In Figure 3.1, the software growth in Apache HTTP Web server shows saturation. To

determine the similarity between different software systems, we examined Mysql DBMS

source code, and the result is presented in Figure 3.2.

14

Figure 3.1: Apache HTTP Web Server Evolution Trend

Figure 3.2: Mysql DBMS Evolution Trend

Apache HTTP Web server has larger software source code modification (43%) than Mysql

DBMS (31%). The reason for this evolution may be a growing of software requirements. The

15

major initial versions of systems were released in 1998(Apache) and 2001(Mysql), however,

the DBMS was well-defined software, and its development has been more stable than a

HTTP Web server.

We can see that the evolution of the software is intuitively logarithmic shape based on

time. In Figure 3.1 and 3.2, the evolution of subversion software is determined by reliability

than functional requirements because there were minor changes in their functionality but

several patches for security was in their software system.

3.1.2 Software Code Decay

With software evolution, shared code is a major factor that impact vulnerability discovery.

To measure the shared code of Apache HTTP server and Mysql DBMS in terms of lines of

code, we used Diff and Line counter tools [44, 52]. These tools are basically installed in Unix

and Linux. For more accurate counting, we consider only programming source code such as

.c, .sh. .cpp and others. Through this methodolgies we could determine which legacy code

was included in later version software. This result is shown in Figure 3.3 and 3.4.

Figure 3.3 shows the fraction of the code in later version of Apache that was inherited

from the initiated version. Shared software code decay also shows saturation phase at the

end of software life cycle.

16

Figure 3.3: Apache HTTP Web Server Initial Code Decay

Figure 3.4: Mysql DBMS Initial Code Decay

Figure 3.4 shows a similar shape with Figure 3.3. We can determine the reuse ratio of

initial code in Apache HTTP Web server. The first phase of the graph shows fast decline,

however, the changed amount of initial code in later versions is lower than the initial phase.

17

To figure out the advanced proportion of the software, we compiled the legacy code ratio in

later version. This work required a recursive file comparing process. Results of this work

are presented in Figure 3.5 and 3.6.

Figure 3.5: Remained Shared Source Code Trend in Apache

Figure 3.6: Remained Shared Source Code Trend in Mysql

In Figure 3.5 and 3.6, shows the evolution of the Apache HTTP Web server and Mysql

DBMS source codes. In 1.3.x version of Apache, the legacy code from the software changed

18

about 20%, the amount rose to 48% in the most recent version. If this source code change

came from additional requirements, we could get a meaningful result that would illustrate

the relationship between legacy code and security. With same method, in Figure 3.6, we get

major Mysql DBMS shared source code lines. In the 4.0.x version of Mysql, we can gauge

the evolution of software. The 16% initial code of Mysql converted to 31% new code in

the latest version software. These results of Apache and Mysql show similar shapes to each

other.

3.2 Code Evolution and Code Share Between Software Sub-
versions

We have examined software evolution in Figure 3.1, 3.2, 3.3 and 3.4. However, these plots

do not show the impact of service packs release time to time. In Figure 3.7, we examine

Mysql 4.1.x source code share in 5.0, 4.1 and 4.0 versions for all the subversions. The shared

code ratios for later version software in Mysql is also presented in Figure 3.7.

Figure 3.7: SubVersion Shared Source Code Trend in Mysql

19

Figure 3.7 shows code evolution of versions 4.0x, 4.1x and 5.0x of Mysql, including the

code shared between successive versions. Each point corresponds to a specific subversion,

indicated by specific values of x. Note that, the Mysql code evolution shows saturation for

the three versions. It also shows that code shared between 4.0x and 4.1x as well as between

4.1x and 5.0x have been quite stable. There is no strong relation between software evolution

and its version number For obtaining the relationship between code sharing and vulnerability

discovery, we need to compare successive versions of software instead of comparing between

major versions. This is because evolution takes place with respect to the previous version.

The code sharing between successive versions in Mysql also show saturation.. In the next

section, we describe the relationship between code sharing and vulnerability discovery.

3.3 Software Evolution and Vulnerability Discovery

Since newer version software has more secured function and procedure in itself, vulnerability

in previous version software can be found from changed source code. Usually, these vulnera-

bilities are anounced by vendors and representive case is CISCO software patch anouncement

[53]. Using comparison two version of software can call old version software vulnerability.

This procedure is one main cause of superposition effect of vulnerability discovery and in-

crease of security accidents. However, upgrade security function and source code can be

utilized by malicious users after latest version of software.

The software vulnerability discovery trend is related to software evolution. Sometimes

vulnerability can be found right after the next version of software is released. To figure

out the relation we will examine the software evolution and vulnerability discovery trend in

Figure 3.8 and 3.9.

Apache HTTP web sever software evolution, and its vulnerability trends, are presented

in Figure 3.9. The evolution and vulnerability discovery trend shows a saturation phase.

However, the plots for software vulnerability are growing slower than the software evolution

20

model. For more testing, Mysql vulnerability discovery trends and its software evolution

trends are presented in Figure 3.9.

Figure 3.8: Apache Added Code and Vulnerability Discovery Trend

Figure 3.9: Mysql Added Code and Vulnerability Discovery Trend

In Figures 3.8 and 3.9, both vulnerability discovery and software evolution show satura-

tion. However, there is a time gap between the onset of software evolution saturation and

21

that of the vulnerability discovery. From these results, we see that the additional code in

the later versions does not exhibit an immediate relationship with vulnerability discovery.

However software evolution explains, why software vulnerabilities continue to be discovered.

Many vulnerabilities linger for several versions until they are discovered. For a specific ver-

sion, the vulnerabilities discovered include those introduced in that version plus some of the

inherited vulnerabilites in the shared code. This makes modeling the vulnerability discovery

in multi-version software more complex. In the next section we present a model to address

this.

22

Chapter 4

Vulnerability Discovery Models

Software vulnerability discovery models are used to estimate software vulnerabilities in the

testing phase of software reliability engineering [11, 36]. The software vulnerability discovery

models have been proposed by a few researchers recently. All software VDMs focuses on

single version software vulnerability discovery trends, or deal with the overall version soft-

ware vulnerability discovery process, using a time based model. We review the models in

the two chapter and we will suggests needed additions to the model to explain abnormalities

observed in the trends.

4.1 Basic Software Vulnerability Discovery Models (VDM)

4.1.1 Musa-Okumoto Logarithmic VDM

The Musa-Okumoto reliability growth model [37] is a widely used software reliability growth

model in software reliability engineering. It has also been applied to vulnerability discovery

process. This model is represented in Equation 1.

Ω(t) = β0 ln(1 + β1t) (1)

In Equation 1, the parameter β0 is the scale parameter of this model, which can decide

software vulnerability number, the parameter β1 is the shape parameter, which determines

the vulnerability discovery model shape. This vulnerability discovery model is presented

23

figure 4.1, the X axis indicates the time parameter and the Y axis is a cumulative number

of software vulnerabilities.

Figure 4.1: Musa-Okumoto Logarithmic VDM

In Figure 4.1, the X axis is calendar time and the Y axis indicates the cumulative number

of discovered vulnerability. A characteristic of Musa’s logarithmic software reliability growth

model, presented in Figure 4.1, is that software defects are not found immediately after

release of software, and its vulnerability discovery rate has a saturation phase as time passes.

4.1.2 Rescorla’s Quadratic and Exponential VDM

Rescorla has suggested two software vulnerability discovery models [46]. These model have

an opposing vulnerability discovery hypothesis. This subsection discusses his two software

vulnerability discovery models.

4.1.2.1 Rescorla’s Quadratic VDM

This vulnerability discovery model assumes that the software vulnerability discovery rate is

constant. As a result, its cumulative vulnerability discovery model has an quadratic growth

24

shape. The steps for the final model is represented in Equation 2.

ω(t) = Bt + k

Ω(t) =
∫
(Bt + K)dt= Bt2

2 + Kt (2)

In Equation 2, the first step is an assumption of vulnerability discovery rate, and is a

linear model. The cumulative vulnerability discovery in the second step shows time quadratic

increasing rates. The characteristic of this model is that Ω grows, as given by the squared

term in Equation 2. With the mathmatical stepping, we can get the modeling plot in Figure

4.2.

Figure 4.2: Rescorla Quadratic VDM

This vulnerability discovery modeling does not consider the end of the software life-cycle,

however, it is valuable while the vulnerability discovery rate is linearly increasing. However,

this is a good explanation for some open source software development processes which allow

participation from any software project team or individuals. Caused by unplanned software

25

evolution, the vulnerability discovery in Linux displays a fast growth rate. The limita-

tion of this vulnerability discovery modeling is that it can only be applied to the running

phase, which shows rapid increase in discovery rate. The example for the linux vulnerability

discovery trend is represented in Figure 4.3.

Figure 4.3: Quadratic VDM on Linux

In Figure 4.3, the vulnerability discovery trend seems that it is intuitively fit to model.

However, these model fitting shows insignificant fit. Therefore, we can use this one to

intuitive analysis.

B K P-value χ2 χ2critical Result

Quadratic VDM 0.00014 0.0453 7.56E-06 149.601 105.267 Insignificant

Table 4.1: Rescorla Quadratic VDM Fitting Result

4.1.2.2 Rescorla’s Exponential VDM

This model assumes that the discovery rate is initially grows after release, it eventually

reaches a saturation phase. The modeling is presented in Equation 3.

26

Ω(t) =
∫
Nλe−λtdt = N − Ne−λt = N(1 − e−λt) (3)

In the equation, the exponential model assumes that the vulnerability discovery rate is

exponentially decreasing, the parameter λ is the shape parameter, and the N is the scale

parameter in the equations. In the second step, the vulnerability discovery rate shows a

exponential cumultative vulnerability number. This vulnerability discovery model is repre-

sented in Figure 4.4.

Figure 4.4: Rescorla Exponential VDM

The similarity between linear and exponential modeling is that the software vulnerability

discovery rate is increasing, however, the models have different vulnerability discovery rates

that depend on time.

4.1.3 Anderson’s Thermodynamic VDM

Anderson’s Thermodynamic Vulnerability Discovery Model [7] is given by Equation 4.

ω(t) = k
γt

27

Ω(t) =
∫
(k

γt)dt = k
γ ln(t) + k

γ ln(C) (4)

In Equation 4, the k
γ

ln(C) represents the integration constant. This modeling equation

has a shape similar to Musa’s model. The difference, compared with Musa’s model, is that

the vulnerability discovery rate shows a rapid growth rate in the initial phase. Characteristic

of this model is that discovered vulnerabilities do not come out right after release, and the

software vulnerability discovery rate is highest post release. However, as time passes its

vulnerability rate decreases. This discovery model is represented in Figure 4.5.

Figure 4.5: Anderson’s Thermodynamic VDM

4.1.4 Alhazmi-Malaiya Logistic VDM

The basic shape of the Alhazmi-Malaiya Logistic (AML) model is illustrated in Figure 4.6.

At the release of software, the vulnerability discovery rate increases gradually. During this

phase, called the learning phase, the software is gaining market share and installed bases is

small. In the next phase the trend is linear. The slope here gives the maximum vulnerability

discovery rate. The final phase is the saturation phase, where the vulnerability discovery

28

rate slows down, and the cumulative number of vulnerabilities asymptotically approaches

its highest value. This three phase logistic behavior is represented by the expression for the

cumulative number of vulnerabilities Ω(t) in Equation 5.

Figure 4.6: AML Vulnerability Discovery Model

where B represents the estimated total number of vulnerabilities and the parameters A

and C determine the shape of the curve [3]. The model is based on the assumption that

the vulnerability discovery process is controlled by the market share of the software and the

number of vulnerabilities remaining undiscovered [5]. This model has been found to yield a

significant goodness-of-fit for many widely used software systems [3, 2, 5, 6]. However the

plots of actual data sometimes show a departure from the model following the release of a

new version [2].

Ω(t) = B
BCe−ABt+1

(5)

29

This model has been formed to fit almost every type of real data [3, 4, 6, 57]. However, it

has a limitation. The data often shows a superposition effect due to an unexpected software

vulnerability discovery rate in previous single vulnerability discovery modeling, and it is

derived from several factors such as source code modification, user increase, environment

changes, new software release and others. In figure 4.7, the irregular vulnerability discovery

rate and its modeling is illustrated in one famous software system, Internet Explorer version

3.

Figure 4.7: Internet Explorer 3 AML VDM Superposition Effect

To explain the superposition effect caused by shared source code and other functionality,

we will propose a new multiple version software vulnerability discovery model in the next

section. The theory behind the multiple version software vulnerability discovery model is

that shared source code between two versions of software has a direct impact on the softwre

vulnerability discovery rate.

30

4.2 Modeling Vulnerability Discovery in Multiple Version

Software

The AML model assumes that the software represents an independent and stable imple-

mentation. While the model shows a good goodness-of-fit for many systems, it does not

explain a frequently observed sudden increase in vulnerability discovery rate system when

the next software version is released. This anomaly led us to investigate a multiple version

software vulnerability discovery model (MVDM), which takes into account the impact of

a new version. Nowadays practically all common programs have several upgraded versions

because of growing user and vendor requirements. As a result, multiple versions of some

software are under use simultaneously.

The later versions of software are expected to have better software reliability and func-

tionality than the previous ones. This gives rise to a vulnerability discovery trend different

from single version VDM such as the AML model, since the software design is changed or

new code is added from time to time. A new version typically inherits a significant fraction

of the code or implementation from the previous version. Even when the installed base for

a specific version may have shrunk significantly, a section of its code may be embedded in

the newer and more popular version. A vulnerability found in the shared code of a new

version, will also be applicable to the older versions containing the shared code. Here we

propose an advanced software vulnerability discovery model which incorporates the impact

of vulnerabilities discovered in the code inherited by the later versions.

4.2.1 Need for a Multiple Version Software VDM

The discovery models mentioned in the previous section simply focus on independent or a

single-version software. Some of these models show a responsible goodness-of-fit for almost

all software systems [3, 4, 2]. However, the models do not explain an abnormal increases into

vulnerability discovery rate in an initial version software system because of a new software

31

version release. This anamoly led us to investigate a multiple version software vulnerability

discovery model (MVDM). Nowadays almost all programs have several upgraded versions

because of growing user and vendor requirements. As a result, multiple version software

is being modified and used simultaneously. The later versions of software are expected

to software reliability and functionality better than previous versions of software systems.

This gives rise to a vulnerability discovery trend different from single version VDM, since

the software design is changed or new code is added. We assume that shared functionality

and shared code from previous versions of software may be tested during usage, though

the previous version is not in heavy use anymore. Also, during later version software tests,

undiscovered shared vulnerability in previous software is tested again. With this hypothesis,

we made another advanced software vulnerability discovery model between two versions of

software’s vulnerability discovery rates. This assumption can explain the superposition

effect, which is an atypical vulnerability discovery increasing rate between two versions of

software vulnerability discovery rates.

Figure 4.8: Windows 98 Vulnerability Discovery Rate using Moving Average

32

Figure 4.8 presents the real vulnerability discovery rate of Windows 98 using 12 months’

moving average. In the result, we can find the vulnerability discovery rate is changed after

next version software releases, and previous single vulnerability discovery models need to

be considered. For advanced modeling, we change the AML model for multiple version

software. This multiple version software vulnerability discovery modeling idea is presented

in the next section.

4.2.2 Proposed Multiple Version Software VDM

The multiple software vulnerability discovery model in this section is based on the AML

single software vulnerability discovery modeling, since it shows goodness-of-fit for almost

all software systems. For multiple version software vulnerability discovery modeling, for

estimating initial version vulnerability discovery trend accurately number, we will use the

shared vulnerability in later version software. In addition, we assume that shared vulnera-

bilities arise because of shared source code and functions. This idea can be shown in several

ways depending on the scenario, therefore, the next paragraph illustrates several scenarios

of software development, release date and vulnerability discovery.

We assume that shared functionality and shared code inherited from a previous version

of software is tested for vulnerabilities during usage, even if the previous version is not in

use any more. This is illustrated in Figures 4.9, 4.10 and 4.11.

33

Figure 4.9: Basic MVDM Discovery Rate

In Figure 4.9, the X axis indicates calendar time and the Y axis is the vulnerability

discovery rate. The first peak in Figure 4.9 represents the peak vulnerability discovery

rate of the initial version of software. The second peak indicates the peak vulnerability

discovery rate in the second version. The small peak within the second peak represents the

vulnerability discovery in the shared code in the second version. Figure 4.9 assumes that

when the second version is released, its vulnerability discovery rate starts rising while the

installed base and hence the vulnerability discovery rate in the first version declines.

For determining the previous vulnerability discovery rate, the vulnerability discovery

rate should be summated. The cumulative vulnerability discovery trend in previous version

and later version software is also illustrated in Figure 4.10 and 4.11. In Figure 4.10, the

first version software vulnerability discovery model shows a saturation phase, however, due

to the shared vulnerabilities discovered in the second version of software, the vulnerability

discovery rate is able to be shown as a distorted Logistic graph.

34

Figure 4.10: Separated Vulnerability Discovery Trend in Basic MVDM

Figure 4.11: Basic MVDM

This result is illustrated in Figure 4.11, and the cumulative software vulnerability dis-

covery model described shows how Logistic model still fits for multiple versions of software.

35

Using real data of vulnerability discovery, this shape might not be fitted significantly.

However, the contribution of this modeling is that abnormal software vulnerability discovery

rate can be explained. This modeling is one example, and the other example will be simulated

in the following section.

Figure 4.12: One-Hump MVDM Discovery Rate

Figure 4.12 presents the second scenario of the multiple version software vulnerability

discovery model, where the release date on each version of software is very close, and its

shared vulnerability discovery rate is large. We simulated a model which has 80% vulner-

ability sharing in later version software, and the time gap is not enough for the previous

version’s software vulnerability discovery rate to decrease significantly. Thus the following

software version’s vulnerability discovery rate is not far from the peak of the previous ver-

sion.In figure 4.12, the largest curve indicates summated vulnerability discovery rate, and

the two smaller curves represent two versions of software’s vulnerability discovery rate, and

the smallest line is the shared vulnerabilities in the second software system.

36

Figure 4.13: Separated Vulnerability Discovery Trend in One-Hump MVDM

The vulnerability discovery trend derived from Figure 4.12 is represented in Figure 4.13.

These trend shows how the software which is released within samll time gap. The total

vulnerability discovery rate causes a hump as shown in Figure 4.14. Usually, this trend

comes from dependent versions which have service packs like those for windows and IE.

These vulnerability discovery rates show gradual increasing and decreasing, and can be

substituted with weibull vulnerability discovery modeling.

Figure 4.14: One-Hump MVDM Trend

37

The strong point of this modeling is that the software vulnerability discovery rate can

be substituted with single software vulnerabiiltiy discovery modeling. However, expectation

or prediction of a middle point can not be determined by multiple versions of software.

Therefore, the other abnormal vulnerability discovery rate in one software system can be

explained with this multiple modeling.

Figure 4.15: Two-Hump MVDM Discovery Rate

The last scenario of the multiple version software vulnerability discovery model, is pre-

sented in Figure 4.15. The hypothesis of Figure 4.15 is that the release date on each version

of software is not close, but its shared vulnerability discovery rate in later version software

is large. In Figure 4.15, the summated vulnerability discovery rate shows different discovery

modeling.

This third scenario has two significant vulnerability discovery rate models. We call

this modeling the Two-humped vulnerability discovery model, since it has two significant

vulnerability discovery rates. The separated and combined vulnerability discovery trend is

presented in Figure 4.16 and 4.17.

38

Figure 4.16: Separated Vulnerability Discovery Trend in Two-Hump MVDM

Figure 4.17: Two-Hump MVDM Trend

The third scenario of multiple version software vulnerability discovery modeling fits to a

special case software system, which has a small number of users and usage time for the first

release, and the system has an increased number of users and testing time with software

source growing at the next release, such as the Mysql 3.2 version and 4.0 version vulnerability

39

discovery trend. This is a very rare case, because the user environment cannot be changed

drastically, and software developers tend not to change their software a lot. In the case

of Mysql, porting the software, from Linux to Windows, creates a large change and can

potentially absorb many new users. In this hypothesis, we have another problem. Since

we did not consider a vulnerability growth model which has a decreasing vulnerability rate

in one software, this vulnerability discovery rate should be reconsidered. However, this

vulnerability discovery is one good explanation for the single version software vulnerability

discovery trend. These model is presented in Equation 6.

The first version software vulnerability discovery model shows onset of a saturation phase,

however due to the shared vulnerabilities discovered in the second version of software, the

vulnerability discovery rate rises again resulting in a distorted logistic graph. The cumulative

number of vulnerabilities Ω(t) for some given software with multiple versions is given by an

addition of two terms.

Ω(t) = B
BCe−ABt+1

+ α B′

B′C′e−A′B′(t−ǫ)+1
(6)

In Equation 6, the first formula indicated first version VDM and second formula is vul-

nerability discovery from the second version. The parameter α indicates shared components

such as shared code and shared functionality, and the parameter ǫ is the time lag between

the release dates of the two versions. Equation 6 is referred to as the multiple version vulner-

ability discovery model (MVDM). The two version modeling concept can be generalized to

multi-version software modeling as given in Figure 4.18 and Equation 7. These algorithms

are very complex to represent each version of software. The hypothesis of Figure 4.18 is that

the release date on each version of software is irregular and the vulnerability discovery rate

is also different. However, each version reused initial version source code.

40

Figure 4.18: Entire Version MVDM Discovery Rate

Ω(t) =
∑

αi Bi
BiCie−AiBi(t−ǫi)+1

(7)

Figure 4.19: Entire Version MVDM Trend

41

When successive releases are close to each other, the summation will result in a plot

that will show delayed onset of saturation, in effect prolonging the linear phase of the

logistic curve. In the next section we estimate α by actually measuring the amount of code

shared to validate the approach. Further research is needed to develop more convenient

empirical methods for estimating α. The cumulative software vulnerability discovery rate is

represented in Figure 4.19.

Similar to Two-humped vulnerability discovery rate, the cumulative vulnerability dis-

covery trend in multiple version software systems has a saturation phase, and it shows why

Logistic modeling is fitting to total version vulnerability discovery modeling. However, a

considerable question is the relation between the source code evolution and software reli-

ability growth. In this paper, we will not discuss that topic. Therefore, the cumulative

vulnerability discovery trend can be plotted in the figure.

The weakness of this modeling is that we consider shared code, not function and mod-

ularity. This consideration causes gaps in software reliability growth modeling. Software

reliability growth modeling for stable software systems may not fit to this modeling scheme.

This model assumes that requirement changes, and subsequently changes to the code, will

cause the model to rise for a short period time before reaching another saturation phase.

4.3 An Alternative Software Vulnerability Discovery Model

In this section, we will propose an alternative software vulnerability discovery models.

4.3.1 Asymmetric VDM

The AML software vulnerability discovery model assumes a symmetrical vulnerability dis-

covery trend. It is based on the assumption that the rise and fall in software usage is

symmetric. However, software usage may often not be symmetric because many users con-

tinue to use the system for a long time even when a new version has been released.

42

4.3.1.1 Weibull VDM

The use of a Weibull distribution is very common reliability and quality control work [39].

The distribution is well suited to situations where the conditions of ’strict randomness’ of

the exponential distribution are not satisfied. Some software vulnerability discovery trends

can be illustrated as Weibull distributions, and it is easy to apply a Weibull distribution

to some software systems. The assumption when using a Weibull distribution is that the

software system discovery rate is not a symetric model, and its discovery rate remains high

for a long period of time following a high peak software vulnerability discovery model. In

Figure 4.20, this assumption is illustrated.

Figure 4.20: Vulnerability Discovery Rate according to Weibull VDM

These assumption is presented in Equation 8.

ω(t) = γ{α
β (t

β)β−1 exp−(t
β
)β} (8)

In Equation 8, the α is the shape parameter which can determine the shape of the

software vulnerability discovery rate. The parameter β is the scale parameter, which can

43

stretch the time duration of software vulnerability discovery modeling. The γ value is number

of estimated software vulnerabilities. Finally, the t value is real calendar time. These

vulnerability discovery rate parameters are used to determine the vulnerability discovery

trend.

The Weibull vulnerability discovery model assumes that software vulnerability discover-

ies increase, and it reaches its highest rate relatively rapidly and after that the vulnerability

discovery rate goes down gradually. The vulnerability discovery model shows a similar graph

with Logistic model, but the weight of this concept is useful to explain software usage and

its vulnerability discovery rate. An additional advantage of this modeling is that we can get

any flexible asymetrical software vulnerability discovery model by changing the alpha value.

Weibull’s cumulative discovery model is presented in Figure 4.21.

Figure 4.21: Weibull VDM Trend

Ω(t) = γ{1 − exp−(t
β
)α} (9)

Vulnerability discovery modeling using Weibull distribution shows a similar pattern

graph to Logistic modeling. The most important idea of Weibull distributions is that the

44

vulnerability discovery rate of software is not necessarily symetric, and can be modified.

This idea might derive from Folded distribution, and it is illustrated in next subsection.

4.3.1.2 Folded VDM

An example of asymetric vulnerability discovery modeling is represented in the previous

subsection. This section discusses the cause of the asymetrical vulnerability discovery rate.

Software vulnerability discovery models sometimes shows an abnormal fitting caused by test-

ing. Although software vulnerability discovery modeling assumes logistic modeling, because

of untested part before release, it show an asymetrical fitting result. We cannot separate

the vendor tested vulnerability and user tested vulnerability, so this theory is presented in

this section. The theoretical vulnerability discovery model is presented in Equation 10 and

Figure 4.22.

ω(t) = 1√
2πσ

[exp−(t−ε)2/2σ2

+ exp−(t+ε)2/2σ2

], t ≥ 0 (10)

This vulnerability discovery modeling can be plotted as in Figure 4.22. The core of this

modeling is the testing results before release. Typical software testing is completed before re-

lease, however, some of them are not completed so the remaining software testing is achieved

after release. This vulnerability discovery model is theretical background of asymmetrical

vulnerability discovery trend in symmetrical discovery modeling. This folded vulnerability

discovery modeling show how remaining vulnerability discovery rate can be changed by re-

maining software vulnerability discovery model. However, since the vulnerability discovery

rate coming from the testing case differs from the normal vulnerability discovery rate, the

initial phase can differ from a normal symmetrical logistic modeling shape.

The cumulative folded vulnerability discovery rate is illustrated in Figure 4.23. This

vulnerability discovery modeling has short term learning phase and the missing learning

phase make the normal distribution asymmetric.

45

Figure 4.22: Folded VDM Discovery Rate

Figure 4.23: Folded VDM Trend

This asymmetrical model is similar to the Weibull vulnerability discovery model. The

applicability of these models need to be demonstrated using real data, therefore, in the

following chapter, we will examine the asymmetrical model using the Weibull vulnerability

discovery model.

46

Chapter 5

Vulnerability Discovery in Open

Source Software

5.1 Multiple Version Software Vulnerability Discovery Mod-
eling for Open Source Programs

To identify the best software vulnerability discovery modeling approach for open source

software, we use the multiple version software vulnerability discovery model (MVDM), and

alternative models, as described in Chapter 4. For evaluating applicability of MVDM, we

use vulnerability data for major versions of Apache HTTP Web server and Mysql DBMS.

This decision was made because Apache HTTP Web server (58% Web Server market share

in the World [40]) and Mysql DBMS (29% DBMS market share in the World [38]) are

among the top web servers and DBMSs, respectively, currently in use by vendors and users.

Additionally, they are being maintained by a dedicated project team. High market share

and a consistent project team means that the requirements of most users are reflected in the

software. As a result, the programs are being evaluated and modified by users constantly and

continually. Therefore, these software systems are a good example of open source systems

with multiple versions.

47

5.1.1 Methodology for Multiple Version Software Vulnerability Discovery

5.1.1.1 Software Source Code Analysis

For evaluating MVDM, we need to identify the fraction of the code share between two

successive versions of software. Before checking the shared software source code, we need to

identify the software source code distribution to determine which source code is used for core

coding. We used SLOCcounter to determine the distribution [51]. The observed software

source code pattern is presented in Table 5.1.

Version 1.3 Version 1.3.37 Version 4.0.0 Version 5.0.0

Release Date 6-5-1998 7-26-2006 10-12-2001 12-23-2003

Ansi C 92.87 92.09 62.86 42.78

Sh 5.66 6.19 4.27 2.89

Perl 1.42 1.39 6.04 2.61

Cpp 0.11 0.07 20.41 42.78

Table 5.1: Source Code Distribution for Major Software System

In Table 5.1, we can see which kinds of source code are needed for examination. Perl

is a scripting language for CGI. Therefore, its source code will be ignored in this research.

For determining source code sharing we stripped the comments from the source code and,

using the Diff command in a Linux or Unix machine, examined the shared source code. The

research method, for calculating the amount of shared source code, is to compare the most

recently released version with the first release of the software.

The shared source code percentage between Apache 1.3 and 2.0 is displayed in Table

5.2. The first row indicates the percentage of lines of code remaining from the initial code,

compared with the second iteration of software. The second row indicates how many lines

of code are shared code out of all the code in the second version of software. We assume

that the second column is the value of the alpha of the two version software vulnerability

discovery modeling from Equation 6 in Chapter 3. In addition to Apache source code share,

Mysql DBMS code share is also given in Table 5.2.

48

Apache 1.3.24 Mysql 4.1.0

Apache 2.0.35 20.16% Mysql 5.0.0 83.52%

Table 5.2: Inherited Percentage of Code From the Earlier Version

From Table 5.2, we can derive the shared parameter in Equation 6. First, using single

Logistic modeling on pure vulnerability of first version software, determine the first A, B

and C parameters. Second, using single Logistic modeling, determine the second A’, B’

and C’ parameters. Then, using the shared source code percentage in Table 5.2, determine

the shared software vulnerability model. Finally, using the pure vulnerability model and

shared vulnerability model, which are already derived, get the final multiple version software

vulnerability discovery model by summation.

5.1.1.2 Data Source for Software Vulnerabilities

In this thesis we use NVD as our vulnerability resource. The NVD data source is more varied

than other software vulnerability database sources because its data is gathered by several

vendors or individuals, and it is tested by the vulnerability management team of NVD.

The data has been evaluated using the consistent vulnerability standard of the MITRE

organization. Using this vulnerability data, we will examine our modeling.

5.1.1.3 Testing Goodness of Fit

For model verification with real data, we use P-value and Chi-square tests used for deter-

mining model fitting. The P-value test shows how the model fits to real data, and the result

can be presented as a percentage. If the result from P-value tests is over 0.05, the model fit-

ting is acceptable within 5% error possibility. The Chi-square test is a statistical hypothesis

test, and it shows how well the hypothetical model fits to real data. The Chi-square test

analysis is based on two kinds of data, one is the difference between the pair of observed and

expected frequencies in each data. From the Chi-square test result, we should compare that

49

result with the degrees of freedom (df) to get significant dataset. The degree of freedom

(df) in this thesis is 0.05 probability, and this shows significant fitness for model testing.

5.1.2 Modeling Multiple Version Software Vulnerability Discovery

5.1.2.1 Vulnerability Discovery Modeling Approach

The process of Multiple version software vulnerability discovery modeling is similar to using

AML modeling for pure vulnerability discovery trend of the first version of software, then

examining the next software version using AML modeling. The examination period for

the pure vulnerability discovery model is right after the learning time of the next version

software vulnerability discovery trend. After deriving the A’, B’ and C’ from the second

version software using the sharing constant value, we examined the shared vulnerability

discovery trend. Then we plotted the result for the multiple version software vulnerability

discovery model through summation of the first version vulnerability discovery model and

shared version vulnerability discovery modeling. The vulnerability discovery modeling test

result is shown below.

5.1.2.2 Modeling Apache HTTP Web server Vulnerability Discovery

The testing result of the Apache HTTP Web server multiple version software modeling is

presented in Figure 5.1. The X axis is the calendar time, and the Y axis indicates total

number of vulnerabilities. Each mark on the graph indicates the cumulative number of

vulnerabilities and the line illustrates the fitted AML modeling line. The representation of

each point is explained in the Figure.

50

Figure 5.1: Apache Multiple Version VDM Fitting

In Figure 5.1, pure vulnerability of the first version of software shows a saturation phase

in the software vulnerability life-cycle. However, when the shared vulnerability from the

second version of Apache HTTP Server is added to the first version’s vulnerability graph, the

result is a continued increase in the vulnerability discovery rate overall. This is an example

of the superpostion effect from [6], and this effect throws off predictions or estimates of the

software vulnerability trend. However, in open source software, we can derive a structural

analysis from its source code, the estimation of vulnerability discovery rate is more clear

than in closed source software. Therefore, we will review this effect in the next Chapter.

The tested parameters and fitting results are presented in Table 5.3.

51

A B C P-value χ2 χ2critical Result

Single AML Result 0.0012 54.939 0.701 1 27.79 125.46 Significant

MVDM 1st step 0.0024 36 1

MVDM 2nd step 0.0015 54.207 0.214

MVDM overall result 1 9.294 125.46 Significant

Table 5.3: Apache Multiple Version VDM Fitting Results

Since in open source software, we can analyze the structure to evaluate the shared code,

we can estimate one of the major parameters of the MVDM, and thus do a more detailed

modeling. The fitted parameter values and the goodness-of-fit results for the Apache HTTP

web server are presented in Table 5.3.

In Table 5.3, the top row gives the results for an application of the simple AML VDM.

The next two rows show the fitted parameters for the two steps for the MVDM. The last

row gives the goodness-of-fit for the overall MVDM. Both models show significant goodness-

of-fit through chi-square test results. The Chi-square values suggest that the MVDM gives

a better fit than the existing AML VDM. It should be noted that the shared code can be

evaluated at the very release of the later version, and thus α can be estimated before a

significant number of shared vulnerabilities have been found.

5.1.2.3 Modeling Mysql DBMS Vulnerability Discovery

To verify the general applicability of the multiple software vulnerability discovery model-

ing presented in the previous subsection, we applied it to the Mysql data using the same

methodology. We used Mysql version 4.1.x and 5.0.x, because the previous version of Mysql

is 3.2x, and its original source was coded only for Linux. From versions 3.22 onwards, it

was available for Windows version software also. Since OS conversion affects the number of

users, the comparison between 3.2x version and 4.x version would not be meaningful. The

results of the application of the MVDM for 4.x version and 5.x version are presented in

Figure 10. The computation method and the plots obtained are similar as the two Apache

52

versions.

Figure 5.2: Mysql Multiple Version VDM Fitting

The results for Mysql show the same pattern as for Apache versions that we considered.

The pure vulnerabilities of Mysql version 4 show saturation from mid 2005, however the

vulnerabilities shared with the later version have continued to be discovered, again showing

how the vulnerability discovery in the initial version software is influenced by the later

version. The fitting results are shown in Table 4. It shows that the MVDM results in a

lower χ2 value and thus it provides a better fit compared with using the single AML VDM.

The proposed MVDM explicitly models the shared code and thus permits more accurate

modeling. This can potentially be used to develop methods with high predictive capability

with further investigations. The limitation of this approach is that it uses more parameters

compared with a single vulnerability discovery model. However, the parameters arise because

of the use of shared code, and thus this modeling approach is meaningful for generalized

software vulnerability discovery modeling.

53

A B C P-value χ2 χ2critical Result

Single AML Result 0.0012 60 0.8 0.99 37.12 80.232 Significant

MVDM 1st step 0.0036 26.207 1.27

MVDM 2nd step 0.0088 20.818 10.19

MVDM overall result 1 35.35 80.232 Significant

Table 5.4: Mysql Multiple Version VDM Fitting Results

For the Mysql test, we can derive the parameter α from Table 5.4 because the second row

value is the sharing percentage. In Table 5.4, the multiple version software vulnerability dis-

covery modeling shows better goodness-of-fitness than single version software vulnerability

discovery modeling through Chi-Square statistical test result. Additionally, we could deter-

mine the limitations of single version software vulnerability discovery modeling, which does

not apply perfectly to multiversion software modeling. However, single Logistic vulnerability

discovery modeling shows goodness of fit through the P-value test result.

This result shows that the multiple version software vulnerability discovery modeling has

superior model fitting compared to single model fitting. The limitation of this idea is that

more parameters are used for single vulnerability discovery modeling, and a model which

has many parameters assures better model fitting than a model which has fewer parameters.

However, these factors come from software shared code, and these approaches are related

with software reliability growth, thus this modeling is meaningful for generalized software

vulnerability discovery modeling.

5.2 Using Weibull and Logistic Software VDMs for Open

Source Software

The Weibull software vulnerability discovery model has a short vulnerability growth phase

compared with the entire lifecycle of the software as presented in the previous Chapter. That

growth phase can be illustrated as the learning and running phase of Logistic vulnerability

discovery modeling. In this section we will examine the software vulnerability discovery

54

trend of Apache HTTP Web sever using AML and Weibull vulnerability discovery modeling

for comparing the models.

5.2.1 Modeling Software Vulnerability Discovery for Apache HTTP Web

server

The Apache Weibull software vulnerability discovery modeling result is presented in Figure

5.3. The X axis is the calendar time, and the Y axis indicates total number of vulnerabilities.

The marked points of the graph indicates the cumulative vulnerability number using real

data from Apache 1.3.x, and each line is the examined AML and Weibull modeling line.

Figure 5.3: Apache 1.3 VDM Fitting

To determin the software vulnerability discovery rate, we calculate the vulnerability

discovery trend. This vulnerability discovery modeling fitting result is represented in Table

5.5. This model fitting result shows how well these models are matching with real data, as

we tend to expect. The modeling is an explanation for the future decreasing vulnerability

discovery modeling, and this result from the Weibull vulnerability discovery model fits that

trend.

55

A(α) B(β) C(Υ) P-value χ2 χ2critical Result

Logistic Model 0.0017 46.0001 0.9996 1 7.526 76.7778 significant

Weibull 77.8864 50.0231 77.8864 0.999 55.198 76.7778 significant

(), Weibull function value

Table 5.5: Apache 1.3 VDM Fitting Results

The software vulnerability discovery rate is presented in Figure 5.4 and Figure 5.5.

The vulnerability discovery trends from the Weibull and Logistic model are presented in

Figure 5.4 and Figure 5.5. From the results in Figure 5.4 and 5.5, we can derive Apache’s

vulnerability discovery rate. This result shows that the software life-cycle hypothesis in single

and multiple version software can affect vulnerability discovery rate during the estimation

process of software vulnerability discovery.

Figure 5.4: Apache 1.3 Weibull VDM Discovery Rate

56

Figure 5.5: Apache 1.3 Logistic VDM Discovery Rate

5.2.2 Modeling Software Vulnerability Discovery for Mysql DBMS

For Weibull vulnerability discovery model testing, we use Mysql DBMS. The Vulnerability

discovery modeling test results are in Figure 5.6.

Figure 5.6: Mysql 4 Weibull VDM Fitting

57

In Figure 5.6, the vulnerability discovery modeling shows a similar shape to the learning

and running phase in AML modeling. The testing result is presented in Table 5.6. The

single Logistic model result is comes from the previous section’s result date

A(α) B(β) C(γ) P-value χ2 χ2critical Result

Logistic Model 0.0019 45.357 1.193 0.999 90.557 80.232 working

Weibull 1.8938 17.427 183.635 0.999 31.532 80.232 significant

(), Weibull function value

Table 5.6: Mysql 4 VDM Fitting Results

In Table 5.6, both vulnerability discovery models fit to Mysql vulnerability discovery

well, as indicated by the P value that signifies model fitting. However, the modeling result

shows that the Weibull discovery show better fitness than the Logistic model by comparing

Chi-square testing result. In this case, the Weibull distribution shows better goodness of

fitness than Logistic vulnerability discovery, however, the vulnerability discovery rate shows

an half bell shape, or exponential increasing rate from the 5.7. For verification of the software

vulnerability discovery rate, we derived the software vulnerability discovery rate from model

fitting. This result is presented in Figure 5.7.

Figure 5.7: Mysql Weibull VDM Discovery Rate

58

Figure 5.8: Mysql Logistic VDM Discovery Rate

The vulnerability discovery rate shows that the vulnerability discovery rate is not reduced

after its release. This result shows that the vulnerability discovery rate from these models can

be utilized for multiple version software as we assume. For checking the logistic vulnerability

discovery model’s hypothesis, though its model fitting is not significant, we derived the

logistic vulnerability discovery rate from the model test result. The result is presented in

Figure 5.8.

In Figure 5.7 and 5.8, the vulnerability discovery rate plotting shows different hypothesis

in it. From these data, we can determine software age. In Logistic modeling, the remained

age is three years, but in Weibull modeling, as we made hypothesis, the cumulative vulner-

ability derived from multiple version software, we can not determine age. Therefore, using

just one modeling may have critical error to predict or estimate specific version vulnerability

discovery trend.

59

Chapter 6

Vulnerability Discovery in Closed

Source Software

The vulnerability discovery process in non-open source programs tends to exhibit a differ-

ent discovery rate trend compared to open source software systems. In this chapter, we

will examine several software systems to determine the difference in their vulnerability dis-

covery trend. The organization of this chapter is based around multiple version software

vulnerability discovery model testing, and we will see an alternative vulnerability discovery

trend.

6.1 Modeling Multiple Version Software Vulnerability Discov-

ery

Applying the MVDM to closed source software systems, we encounter a difficulty due to

the inability to access the software structure or source code. Because of this limitation,

finding software shared code in multiple software is not possible. Therefore, multiple version

software vulnerability discovery modeling can be used as a theoretical component to explain

the software vulnerability superposition effect. However, from the software vulnerability

trend in open source software testing results, we can estimate the amount of shared software

source code.

60

6.1.1 Modeling Windows OS Vulnerability Discovery

Multiple vulnerability discovery modeling tests, for closed source software, should be dif-

ferent than those used in open source software testing. Since there is no readily available

software source code, it is hard to determine the software share constant parameter from

source code. Here, we will examine the shared constant parameter, from multiple software

vulnerability discovery modeling testing results. The examined software systems are Win-

dows OS. These results can not be matched exactly to open source modeling test results,

but we can estimate the shared ratio through an open source software experiment.

Figure 6.1: Windows XP Multiple Version VDM Fitting

In Figure 6.1, the X axis is calendar time and the Y axis indicates a cumulative vul-

nerability number of each version of software. Each points is the cumulative vulnerability

number of each version of software based on time, lines represent the examined modeling

line. In Figure 6.1 the vulnerability discovery model for pure vulnerability of Windows XP

shows goodness of fit, and the model for Windows 2003 is not saturated. Using model fit-

61

ting from shared vulnerability assumption, we can determine the amount of shared source

code, which is reused in Windows 2003 from Windows XP. The sharing parameter is 0.75

in Windows 2003. Using the same hypothesis from the previous chapter, we could estimate

the sharing ratio between two versions of software, and the estimated sharing ratio here is

75%.

A B C P-value χ2 χ2critical Result

Single AML Result 0.003 216.7 0.154 0.68 56.12 82.5287 Significant

MVDM 1st step 0.0034 45.49 0.346

MVDM 2nd step 0.001 153.9 0.288

MVDM overall result 0.99 19.27 82.5287 Significant

Table 6.1: Windows Multiple Version VDM Fitting Results
with α assumed to be 0.75

In Table 6.1, the result of single and multiple version software vulnerability discovery

models are shown. This result indicates that single version vulnerability discovery model still

works, however, the multiple software vulnerability discovery model shows better goodness

of fit than single modeling.

6.2 Using Weibull and Logistic VDMs for Closed Source Soft-
ware

The Weibull vulnerability discovery model still fits for some software - which has been in

use for a long period of time and is less affected by testing versions, such as Windows OS.

In this section, we examine the vulnerability discovery trend of windows OS and Internet

Explorer using Logistic and Weibull distribution.

6.2.1 Modeling Windows OS Vulnerability Discovery

Windows OS has been adopted by many users, and the market share is significantly large.

In this system, the superposition effect appears from time to time. The purpose of this

subsection is to determine which single vulnerability discovery model fits best in closed source

62

software. Because the superposition effect creates an asymmetric vulnerability discovery

model, we are able to test the single model. We compare the two models using the Windows

98 vulnerability discovery trend as presented in Figure 6.2.

Figure 6.2: Windows 98 VDM Fitting

In Figure 6.2, the Logistic and Weibull vulnerability discovery trend shows a similar

shape. Because of our assumption, about software discovery rate hypothesis, we expected

opposing results from the two models. However, the result shows similarity between the

models. The testing results are presented in Table 6.2.

A(α) B(β) C(γ) P-value χ2 χ2critical Result

Logistic Model 0.00047 95.0414 0.0974 0.206 106.019 119.87 significant

Weibull 1.05145 18.92987 165.3399 0.999 42.575 119.87 significant

(), Weibull function value

Table 6.2: Windows 98 VDM Fitting Results

We determined the goodness of fit of the Weibull distribution vulnerability discovery

model. Similar to software vulnerability discovery modeling in the previous section, the

63

single vulnerability discovery model still applies, however, the Chi-square test result shows

better fitness of the asymmetrical hypothesis of the Weibull distribution. To examine our

hypothesis, we derived the software vulnerability discovery rate using Weibull distribution.

The vulnerability discovery rate is presented in Figure 6.3, the X axis is the calendar time and

the Y axis indicates the vulnerability discovery rate distribution of entire software testing

time. The vulnerability discovery rate shows only how many vulnerabilities of Windows 98

are still being discovered.

Figure 6.3: Windows 98 Weibull VDM Discovery Rate

Using the results of Table 6.3 and Figure 6.3, we find that the vulnerability discovery

rate is not symmetric. This usage rate means that although the software market share is

low, the vulnerability discovery rate does not decrease significantly compared to its initial

discovery rate. For further testing, we examined Windows 2000 and the examined modeling

is presented in 6.4.

64

Figure 6.4: Windows 2000 VDM Fitting

The shape of the two models looks similar, however, the testing result shows opposing

fitness between the two types. The result of the Windows 2000 modeling test is represented

in Table 6.3.

A(α) B(β) C(γ) P-value χ2 χ2critical Result

Logistic Model 0.00014 350 0.0453 7.56E-06 149.601 105.267 Insignificant

Weibull 1.1755 92.286 2677.631 0.9992 47.138 105.267 significant

(), Weibull function value

Table 6.3: Windows 2000 VDM Fitting Results

In Table 6.3, we determine which software vulnerability modeling is better. The single

Logistic model shows insignificant fitting, while Weibull vulnerability discovery modeling

shows goodness of fit. In market share graph 2.1, the Windows 2000 market share shows

significant decline, however, the vulnerability discovery rate shows an insignificant decreasing

rate in Figure 6.4. Using the Weibull function, we derived the vulnerability discovery rate

of Windows 2000 in Figure 6.5.

65

Figure 6.5: Windows 2000 Weibull VDM Discovery Rate

From this result, we can come to the conclusion that, over a long period of usage, the

vulnerability discovery model may be distorted (superposition) with the release of newer

software. This concept was presented in the previous chapter. For more testing to sup-

port this hypothesis, we will examine the Internet Explorer web browser in the following

subsection.

6.2.2 Modeling Internet Explorer Vulnerability Discovery

We examined Internet Explorer using the single Logistic and Weibull software vulnerability

discovery model to compare goodness of fit. The initial version of IE testing results are

shown in 6.6. IE version 4 is one of the top market share versions of IE, and the IE line

of browsers overall has always held considerable market share. This means that the usage

and market share overall has been consistent, and satisfies our testing requirements. As an

example, IE version 3 is shown in the previous Section.

66

Figure 6.6: Internet Explorer 4 VDM Fitting

In vulnerability modeling using Internet Explorer version 4, a superposition effect ap-

pears in the model. However, we will ignore its effect since the effect in the single model

is not considered. In Figure 6.6, the X axis is the calendar time and the Y axis indicates

the cumulative vulnerability number, and each line indicates the examined modeling line.

The points are the time based software version vulnerability number. These modeling re-

sults show how the vulnerability discovery modeling fits well toward the end of usage, since

its software usage is almost zero in 2006. This Internet Explorer version 4 vulnerability

discovery model testing result is presented in 6.4.

A(α) B(β) C(γ) P-value χ2 χ2critical Result

Logistic Model 0.002 65 1 1 30.111 137.701 Significant

Weibull 2.1609 35.001 64.004 1 46.901 137.701 Significant

(), Weibull function value

Table 6.4: Internet Explorer 4 VDM Fitting Results

In Table 6.4 vulnerability discovery modeling test, we find AML software vulnerabil-

ity discovery modeling is fitting better than asymetrical vulnerability discovery modeling.

67

However, determining a superior vulnerability discovery model from this result is not clear,

because both models show a significant fitness. The software vulnerability discovery rate

coming from Logistic and Weibull distribuitons is presented in Figure 6.7.

Figure 6.7: Internet Explorer 4 Weibull VDM Discovery Rate

Figure 6.8: Internet Explorer 4 Logistic VDM Discovery Rate

68

Using Figure 6.7 and Table 6.4, we can determine that the vulnerability discovery rate

is almost symmetric though use of the Weibull distribution model. However, the case study

result may not fit to the software vulnerability trend, since its usage converted very quickly

due to the release of the next version. Therefore, we tested if the vulnerability discovery

rates are symmetric using the Logistic model in other cases.

For more testing, we chose the next version of IE, since the 5th version of IE held a

significantly high market share among all the IE versions, and was in use for a long period

of time. The testing result using two vulnerability discovery models is presented in Figure

6.9.

Figure 6.9: Internet Explorer 5 VDM Fitting

In Figure 6.9, a superposition effect can be seen at the end of the plot. However, because

this superposition effect is not huge for single vulnerability model testing, we are able to

test vulnerability discovery model fitting. In Table 6.5, the result of the modeling test is

presented.

In Table 6.5, both models show goodness of fit, and we cannot determine which vulnera-

69

A(α) B(β) C(γ) P-value χ2 χ2critical Result

Logistic Model 0.0003 205.083 0.054 0.075 83.555 117.632 Significant

Weibull 1.1907 51.047 297.206 1 16.777 117.632 Significant

(), Weibull function value

Table 6.5: Internet Explorer 5 VDM Fitting Results

bility discovery modeling is better. This result shows that the long time usage vulnerability

discovery modeling should be modified from a symmetric model to an asymmetric model,

because the Weibull vulnerability discovery modeling shows a slightly greater significant fit-

ness. Therefore, we derived the vulnerability discovery rate from the Weibull vulnerability

discovery model.

Figure 6.10: Internet Explorer 5 Weibull VDM Discovery Rate

70

Figure 6.11: Internet Explorer 5 Logistic VDM Discovery Rate

In Figure 6.10, the Weibull vulnerability model shows goodness of fitness, and the vulner-

ability discover rate in Internet Explorer 5 displays an asymmetric rate. This asymmetric

idea fits for almost all software systems in use for a long period of time, by many users.

However, the end of this vulnerability model fitting shows a small superpostion effect. This

is because the model also shows the software near its end of use. We can estimate that the

superposition at this point will not be greater than that for the next version of software.

During modeling, the superposition effect can be ignored if it appears in the model toward

the end of software use or vulnerability saturation, as the effect of these superpositions can

be estimated. However, in special cases, the superposition effect can not be estimated if

the effect has not yet appeared, or is too large to estimate. Thus, we will examine this

superposition effect and modeling in the next version of IE’s vulnerability discovery model

tesing.

71

Figure 6.12: Internet Explorer 6 VDM Fitting

In Figure 6.12, as we expect, the superposition effect is larger than the previous ver-

sion’s superposition effect. In the Figure, Internet Explorer version 6 vulnerability discovery

modeling test result shows an almost identical shape, however, the vulnerability discovery

modeling result does not shows significant fitness as shown in Table 6.6.

A(α) B(β) C(γ) P-value χ2 χ2critical Result

Logistic Model 0.003 262 0.0844 0.0015 102.9 89.391 insignificant

Weibull 1.529 57 299 8.37215E-07 133.483 89.391 insignificant

(), Weibull function value

Table 6.6: Internet Explorer 6 VDM Fitting Results

In this fitting result, there may be hidden factors which are not considered. These re-

sults come from several changes of the internet environment. We focused on the cause of

the superposition effect as being the next version software release. In this case, the release

date of the 7th version of IE is Nov 2006. Therefore, we cannot fit modeling using the

release date. However, we can consider the effect of the testing version of software. Some

software vendors open their testing version software earlier than its planned release date

72

for public testing. In the case of IE version 7, the finalized candidate version is released

on August 2006. The date matches the month of the software superposition appearing.

These factors are considered in Chapter 3 as Folded normal distribution. The difference

between Folded distribution and superposition is that folded distribution handles later ver-

sion software vulnerability discovery rate, while the superposition effect simply focuses on

the previous vulnerability discovery rate. From Table 6.6, we conclude that both software

vulnerability discovery models can not estimate the superposition efffect on the discovery

rate. To estimate vulnerability superposition effect, we derived vulnerability discovery rate

using Weibull distribution.

Figure 6.13: Internet Explorer 6 Weibull VDM Discovery Rate

The Internet Explorer version 6 vulnerability discovery rate shows a distorted bell shape

from Weibull model though it is one of latest versions of Internet Explorer. This means that

the vulnerability discovery rate , affected by superposition, cannot be estimated by using a

Weibull model. However, from these results, we can see that the software system vulnera-

bility discovery trend can be changed because of previous work in [24]. The vulnerability

73

discovery rate is logistic analysis for IE 6 version is presented in Figure 6.14.

Figure 6.14: Internet Explorer 6 Logistic VDM Discovery Rate

In Figure 6.14, as we derived in previous chapter, discovery rate can be changed de-

pends on the assumption for modeling whether it is multiple version software vulnerability

discovery modeling. This shows how to choose among two model depends on factors of

software.

74

Chapter 7

Discussion

Alternative approaches for vulnerability discovery modeling have been examined in Chapter

5 and 6. The impact of code sharing between successive version and code evolution and

decay and subversions has been examined in Chapter 3.

For open source software systems, the single version AML VDM, which is presented in

Chapter 4, assumes that the vulnerability discovery rate is symmetric for vulnerabilities

which results are logistic modeling in Figure 4.6. However, code shared between two version

causes a superposition effec due to shared vulnerabilities. The entire vulnerability discovery

trend of a specific software shows an asymmetric trend which is shown in Figure 4.9. The

overall trend which combines pure and shared vulnerabilities can be explained using multiple

version modeling using the proposed MVDM. Applicability of the model was demonstated

in Figure 5.1 and 5.2 in chapter 5. The results in Table 5.3 and 5.4 show that the multiple

version vulnerability discovery model can be converted to a single version software vulnera-

bility discovery model for open source software systems. The multiple version vulnerability

discovery model shows a better fit than a single model, but the single model also works in

open source software systems if we apply the single VDM depends on software life time.

Since multiple version software vulnerability discovery creates an asymmetric trend, to get

the comprehensive software vulnerability discovery rate, we used the Weibull distribution.

75

Although the The Weibull distribution fits to several software systems in Table 6.2 and

6.3, but not perfectly fit to some programs in Table 6.6 since the model assumes that the

discovery rate has a constant increasing or decreasing rate. In open source software, the

multiple version software vulnerability discovery model fits well, but the single model still

fits acceptably.

For closed source software systems, the multiple version software vulnerability discov-

ery model shows good goodness-of-fit in Table 6.1. However, because the source code is

not available for examination, the shared source code ratio needed for modeling cannot be

measured directly. Due to a significant superposition effect, typical vulnerability discovery

trend changes a lot as time passes and cannot be assumed to be symmetric. Therefore, we

have examined the Weibull distribution to find out its vulnerability discovery rate. The

vulnerability discovery rate support our hypothesis in which the discovery rate decline is

slower than the growth rate in the software life time. For Windows operating systems in

particular, the Weibull distribution fits very well in Table 6.2 and 6.3. However, Internet

Explorer shows only a weak fit as shown in Table 6.5 and 6.6.

The fit of each vulnerability discovery model depends on characteristics of the software

system. Especially, software vulnerability rate is related to software life cycle, and modi-

fications of software caused by requirement changes. In this study, we found that MVDM

generally fits better than other models, but the single VDM still works for open source soft-

ware which is shown in Table 5.3 and 5.4. The weakness of this multiple version software

vulnerability discovery model is that there are additional factors that need to be considered.

However, this creates a more detailed and complex model. In closed systems, the single

logistic and Weibull models work well depending on the software system, even when the

superposition effect is not explicitly considered. For reducing the error of the single logistic

model, we can use Weibull distribution. For near future predictions with significant fit, both

models are useful. However, for software used over a long period of time, an asymmetric

76

vulnerability modeling is likely to the data better.

77

Chapter 8

Conclusion

Discovery and explicitation of vulnerabilities is one of the primary issues in software reli-

ability and security. Since the effect of vulnerabilities on computer security is increasing,

preventing them and repairing their impact is the main focus in software vulnerability stud-

ies. Estimating the number of software vulnerabilities is difficult during development, and

many vulnerabilities are discovered after release. To address these issues, we can use a

quantitative software vulnerability discovery models to estimate them. Software vulnerabil-

ity discovery modeling should be considered with specific factors that can affect the discovery

rate. We examined how several software vulnerability discovery models depend on product

and process characteristics. The key factors in our work are source code availability usage,

and the impact of multiple major and minor releases on software vulnerability discovery

trend.

First, for open source software, we propose a new multiple version software vulnerability

discovery modeling over previous which attempts to improve models. Two major open source

programs are used as examples. In both cases, the fit of the model to the data is significant.

We compared both single AML VDM and the MVDM for each case. The results show

that MVDM works better for the Mysql DBMS case. However, using single AML VDM in

Apache Web server testing result shows better goodness of fit than MVDM. However, the

78

MVDM goes into greater depth in explaining supperposition effect. We can estimate the

shared code ratio for two successive releases for an open source software. This approache

can be used to estimate future vulnerability.

Second, we have proposed the use of the Weibull distribution for software vulnerability

discovery modeling. These result shows significant fit. However, this new approach shows

how the software, even when a new release is available, affects the software vulnerability

discovery rate. The Weibull vulnerability discovery modeling test results also fit several

software systems. However, this approach does not explain the software superposition ef-

fect. For this we showed how the Weibull distribution can be applied to explain multiple

vulnerability trends in a general form. The multiple vulnerability model can be used to show

how superposition can result in the Weibull distribution. Using folded normal distribution,

we also show how the Logistic vulnerability discovery trend can give rise to the Weibull

distribution for the discovery rate. The limitation of our work is the need to measure the

shared source code. For future validation of the proposed methods, we need to examine

data from other major programs. Because of varying project characteristics, MVDM may

not fit the data in some software. An example of this would be the Linux kernel. Due to its

unique development, which all contributions from many independent sources, the vulnera-

bility distribution does not follow a well-defined trend, and thus current models cannot be

applied to it. Therefore, these multiple version softwares come from user participation make

it difficult to estimate software vulnerability. However, assessing software vulnerability can

be determined by several factors presented in chapter 2. Using the methods discussed we

can accurately estimate software vulnerability.

For future work, the modularity and functionalities should be taken into account for

developing a more accurate software vulnerability discovery. The annual seasonal trend of

software vulnerability discovery can be an approach for accurate estimation of expected

number of vulnerability to be found in next few month.

79

REFERENCES

[1] Fumio Akiyama. An example of software system debugging. In IFIP Congress (1),
pages 353–359, 1971.

[2] Omar Alhazmi, Yashwant K. Malaiya, and Indrajit Ray. Security vulnerabilities in
software systems: A quantitative perspective. In DBSec, pages 281–294, 2005.

[3] Omar H. Alhazmi and Yashwant K. Malaiya. Modeling the vulnerability discovery
process. In ISSRE, pages 129–138, 2005.

[4] Omar H. Alhazmi and Yashwant K. Malaiya. Measuring and enhancing prediction
capabilities of vulnerability discovery models for apache and iis http servers. In
ISSRE, pages 343–352, 2006.

[5] Omar H. Alhazmi and Yashwant K. Malaiya. Application of vulnerability discovery
models to major operating system. In IEEE Trans, 2007.

[6] Omar H. Alhazmi, Sung-Whan Woo, and Yashwant K. Malaiya. Security vulnerability
categories in major software systems. In Communication, Network, and Information
Security, pages 138–143, 2006.

[7] Ross Anderson. Security in open versus closed systems - the dance of boltzmann, coase
and moore. Conf. on Open Source Software: Economics, Law and Policy, pages
1–15, 2002.

[8] Ross J. Anderson. Why information security is hard-an economic perspective. In
ACSAC, pages 358–365, 2001.

[9] Stuart E. Schechter Andy Ozment. Software security growth modeling: Examining
vulnerabilities with reliability growth models. The First Workshop on Quality of
Protection, 2005.

[10] Ashish Arora and Rahul Telang. Economics of software vulnerability disclosure. IEEE
Security & Privacy, 3(1):20–25, 2005.

[11] Ch. Ali Asad, Muhammad Irfan Ullah, and Muhammad Jaffar-Ur Rehman. An ap-
proach for software reliability model selection. In COMPSAC, pages 534–539, 2004.

80

[12] Evelyn J. Barry, Sandra Slaughter, and Chris F. Kemerer. An empirical analysis of
software evolution profiles and outcomes. In ICIS, pages 453–458, 1999.

[13] Google Press Center. www.google.com/press/zeitgeist. 2004.

[14] CERT. Cert coordination center. http://www.cert.org, 2006.

[15] Samuel D. Conte, Hubert E. Dunsmore, and Vincent Yun Shen. Software effort esti-
mation and productivity. Advances in Computers, 24:1–60, 1985.

[16] Wenliang Du and Aditya P. Mathur. Testing for software vulnerability using environ-
ment perturbation. In DSN, pages 603–612, 2000.

[17] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does code decay? assessing the evidence from change management data. IEEE
Trans. Software Eng., 27(1):1–12, 2001.

[18] Norman E. Fenton, Martin Neil, William Marsh, Peter Hearty, David Marquez, Paul
Krause, and Rajat Mishra. Predicting software defects in varying development
lifecycles using bayesian nets. Information & Software Technology, 49(1):32–43,
2007.

[19] William L. Fithen, Shawn V. Hernan, Paul F. O’Rourke, and David A. Shinberg. For-
mal modeling of vulnerability. Bell Labs Technical Journal, 8(4):173–186, 2004.

[20] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case study.
In ICSM, pages 131–142, 2000.

[21] Internet Growth. Internet growth statistics. http://www.internetworldstats.com, 2006.

[22] Hitslink. Market share by net applications. http://marketshare.hitslink.com, 2006.

[23] Clemente Izurieta and James M. Bieman. The evolution of freebsd and linux. In ISESE,
pages 204–211, 2006.

[24] Yashwant Malaiya Jinyoo Kim, Omar Alhazmi. Vulnerability in browsers: Trend in
internet explorer and firefox. In ISSRE, Fast Abstract, pages 1–2, 2006.

[25] M. M. Lehman, Dewayne E. Perry, and Juan F. Ramil. Implications of evolution metrics
on software maintenance. In ICSM, pages 208–, 1998.

[26] Paul Luo Li, James D. Herbsleb, and Mary Shaw. Forecasting field defect rates using
a combined time-based and metrics-based approach: A case study of openbsd. In
ISSRE, pages 193–202, 2005.

[27] Michael R. Lyu, Allen P. Nikora, and William H. Farr. A systematic and comprehensive
tool for software reliability modeling and measurement. In FTCS, pages 648–653,
1993.

[28] Yashwant K. Malaiya and Pradip K. Srimani. An introduction to software reliability
models. In Int. CMG Conference, pages 1237–1239, 1991.

[29] microsoft. microsoft product life cycle. http://support.microsoft.com/lifecycle/search,
2006.

81

[30] MITRE. Common vulnerabilities and exposures. http://www.cve.mitre.org, 2006.

[31] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. A case study of open source
software development: the apache server. In ICSE, pages 263–272, 2000.

[32] David Moore, Colleen Shannon, and Kimberly C. Claffy. Code-red: a case study on
the spread and victims of an internet worm. In Internet Measurement Workshop,
pages 273–284, 2002.

[33] J. D. Musa. Software Reliability Engineering. McGraw-Hill, 1999.

[34] John D. Musa. Software reliability measurement. Journal of Systems and Software,
1:223–241, 1980.

[35] John D. Musa. Software-reliability-engineered testing practice (tutorial). In ICSE,
pages 628–629, 1997.

[36] John D. Musa and Kazuhira Okumoto. A logarithmic poisson execution time model
for software reliability measurement. In ICSE, pages 230–238, 1984.

[37] John D. Musa and Kazuhira Okumoto. Application of basic and logarithmic poisson
execution time models in software reliability measurement. In Software Reliability
Modelling and Identification, pages 68–100, 1987.

[38] Mysql. The mysql product achieve. http://www.download.mysql.com/achives.php,
2006.

[39] N.Balakrishnan. Handbook of the logistic Distribution. Marcel Dekker.inc, 1992.

[40] Netcraft. April 2007 web server survey. http://news.netcraft.com, 2006.

[41] NVD. National vulnerability database. http://nvd.nist.gov, 2006.

[42] Andy Ozment. Milk or wine: Does software security improve with age? The Fifteenth
Usenix Security Symposium, 2005.

[43] James W. Paulson, Giancarlo Succi, and Armin Eberlein. An empirical study of open-
source and closed-source software products. IEEE Trans. Software Eng., 30(4):246–
256, 2004.

[44] The Code Project. http://www.codeproject.com/tools/difftool.asp. 2007.

[45] Eric Rescorla. Security holes... who cares? 12th USENIX Security Symposium, 3(1):75–
90, 2003.

[46] Eric Rescorla. Is finding security holes a good idea? IEEE Security & Privacy, 3(1):14–
19, 2005.

[47] Juha Roning. Communication in the Software Vulnerability Reporting Process. Oulu
University Secure Programming Group, 2003.

[48] Scurityfocus. http://www.securityfocus.com. 2006.

[49] Secunia. Vulnerability and virus information. http://secunia.com, 2006.

82

[50] Mark Sherriff. Utilizing verification and validation certificates to estimate software
defect density. In ESEC/SIGSOFT FSE, pages 381–384, 2005.

[51] SLOCCount. Source line count. http://www.dwheeler.com/sloccount, 2006.

[52] SourceForge.net. http://sourceforge.net/projects/lcounter. 2007.

[53] Sufnet-Cert. Cisco security advisory, http://cert.surfnet.nl/s/2004/s-04-012.htm. 2004.

[54] Michael Sutton and Frank Nagle. Emerging economic models for vulnerability research.
The Fifth Workshop on the Economics of Information Security, 2006.

[55] Symantec. Symantec internet security threat report: Trends for july 05–december 05.
Technical report, Symantec, 2006.

[56] Xiaolin Teng and Hoang Pham. A software growth model for n-version programming
systems. volume 51, 2002.

[57] Sung-Whan Woo, Omar H. Alhazmi, and Yashwant K. Malaiya. Assessing vulnerabil-
ities in apache and iis http servers. In DASC, pages 103–110, 2006.

83

