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ABSTRACT OF THESIS 

GARBAGE ELIMINATION IN SA-C HOST CODE 

Single-assignment C (SA-C) is a functional programming language with a rich instruction set 

designed to create and manipulate arrays using array slices and window generators. It is well-suited 

for the fields of graphics, AI and image processing within reconfigurable computing environments. 

Garbage is defined as any SA-C array data which is unused or unreferenced in the host code program 

heap at any time. Garbage must not be created and it must be freed as soon as possible. In this paper 

it will be shown that the single-assignment properties of the language create garbage when single-

assignment occurs in loops. This behavior is studied and a static solution is presented called pointer 

reuse. The non-circular aliases resulting from strict single-assignment alias creation coupled with the 

side-effect free nature of statement blocks lead to a dynamic reference counting technique which can 

provide immediate elimination of garbage. Aliases and special loop-carried variable dependencies 

complicate matters further and are examined in this paper. 
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Chapter 1 

Introduction 

The Cameron research group (www.cs.colostate.edu/cameron) uses the SA-C language for ap-

plications that do computationally intensive work with large image matrices. SA-C is a single-

assignment functional programming language. Programs written in SA-C are partly compiled to 

host code and partly to equivalent programs in a hardware description language called VHDL. 

VHDL is used to represent control and data fl.ow for a piece of hardware called an FPGA (field 

programmable gate array), which is widely used in reconfigurable computing. There are two com-

pilation paths for a SA-C program. The input SA-C program is parsed into a data-dependence 

control-flow graph (DDCF graph), which can either be translated into host code plus a data-fl.ow 

graph (D FG) or into host code only. The D FG can be used to create a VHD L specification for the 

SA-C code, so it can be run on a reconfigurable computing system. A RCS is a board with an FPGA 

and local memories. Host code is defined as a C program, created by a back-end program called the 

code generator. The host code program can be compiled using any traditional C compiler into a 

von Neumann machine executable which produces output equivalent to that of the FPGA. The two 

paths are illustrated in Figure 1.1. This paper will focus on the second compilation path, in which 

SA-C code is compiled to equivalent host code. Throughout the paper there will be a distinction 

between the code generator (a back-end program which is part of the SA-C compiler) and its output 

(host code). 

1.1 Problem Statement 

Garbage can be defined as any unused or unreferenced memory which exists during a program's 
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Only 
CProgram 

Figure 1.1: SA-C Compilation Paths 

execution. The purpose of this thesis is to eliminate garbage from the host code. Garbage must 

not be created inside the host code and any data which becomes garbage must be freed as soon 

as possible. A heap leak is a special case of garbage in which a pointer p references some block 

of memory A, but is then re-assigned to reference a different block of memory B. If p is the last 

reference to the memory block A, and A has not been freed from the program heap, A is a heap 

leak. Heap leaks can be statically resolved, but any piece of data can be dynamically subjected to 

"live data analysis" through a process called reference counting. Reference counting entails keeping 

a counter showing how many variables reference a particular piece of data at any given time. When 

a piece of data is first created, the single copy of the pointer to it causes the reference count to be 

initialized to one. This count is incremented when copies of pointers to the structure are created, 

which keeps the data alive longer. The count is decremented when copies of pointers to the structure 

are destroyed. When the count reaches zero, this indicates that the data is garbage. This garbage 

is immediately freed and can no longer be accessed. 

1.2 Sources of Garbage 

For any particular piece of host code, the garbage this paper is interested in comes in the form of 

array data. Array data is allocated and stored in the host code program's heap. There are two ways 

array data can become garbage. The first is by singly-assigning to the data's pointer, overwriting 

the address to the first data block with the address to a different data block. The second way occurs 

when a reference to the data exists but will never be used again. A static solution (pointer reuse) 
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and a dynamic solution (reference counting) are presented herein to remedy both these situations. 

After these techniques are applied, garbage-free host code is expected to be produced for any given 

SA-C code. 

1.3 Approach 

The single-assignment properties of the language create garbage when array single-assignment occurs 

inside a loop and the resulting array definition is not an alias (as defined in section 1.4.1). This 

behavior is studied and a static solution called pointer reuse is presented. The non-circular aliases 

that result from strict single-assignment alias creation coupled with the external side-effect free 

nature of statement blocks enable a dynamic reference counting technique to work for the SA-C 

language. The benefits in terms of space performance that result from pointer reuse and reference 

counting are given in the performance evaluation section of the paper. The test suites used to ensure 

the correctness of garbage-free host code are also presented. The paper concludes with some remarks 

about garbage elimination in single-assignment languages and implementation details in general. 
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Chapter 2 

Background 

2.1 The SA-C Language 

The SA-C language is a single-assignment, expression-oriented language with a rich instruction set 

designed to create and manipulate arrays using array slices and window generators. It capitalizes on 

the parallelism inherent in many matrix operations. SA-Chas scalar base types, complex types, and 

arrays composed of scalars or complex numbers. The SA-C Language - Version 1.0 is an excellent 

introductory paper by (Hammes and Bohm, 99) featuring full example programs and commentary. 

SA-C has rectangular multidimensional arrays with components limited to scalars and complex 

numbers [3]. The language allows the programmer to easily generate array slices and sub-arrays 

through special loop constructs. Loops can also create arrays or reduce arrays down to scalar 

values. More details of SA-C arrays are presented in the next section. 

2.1.1 Statements 

SA-Chas only three statements: assignment, print and assert [3]. There are two flavors of assign-

ment, single-assignment (the default flavor) and nextified single assignment (available by using a 

special next keyword). The latter will be discussed when loops with loop-carried dependencies are 

introduced. The first type of assignment statements form the bulk of statement blocks and differ 

from C in three ways. First, all assignments declare and define a variable simultaneously, including 

arrays. Second, multiple values can be assigned concurrently [3). Third, the assignment is a state-

ment not an expression, so it does not return a value [3). Apart from producing a value a function 

(or other operator), must not change the state of the computation. To do so implies the function has 
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a side-effect. For example using read/write to change a file's state or updating a global variable 

are both examples of operations which have side-effects. An individual SA-C assignment statement 

has no external side-effects at the language definition level. At the implementation level, statements 

in loops may allocate new memory from the program heap, losing the reference to the memory from 

the last loop iteration. Thus some SA-C statements have the property of producing garbage. This 

is not exactly a side-effect, and is called the single-assignment property. 

2.1.2 Statement Blocks 

A block of statements can occur as an expression [3). SA-C blocks differ from C blocks in that 

they always produce return values via the keyword return, which is followed by a parenthesized, 

comma-separated list of expressions. This property, coupled with the single-assignment property of 

statements described above, changes the scoping rules for SA-C variables slightly. Similarly to C, 

a variable which is declared and defined on the left-hand side of an assignment statement comes 

into scope beginning with the semicolon that terminates that statement and ending with the closing 

parentheses that ends the statement block containing the statement [3). Unlike C, a newly declared 

variable may shadow a previously declared variable of the same name which is in the same lexical 

range. In other words, variable shadowing allows a programmer to recycle variable names without 

concern. Note that a statement block has absolutely no external side-effects. The values of variables 

after exiting a statement block are the same as when entering that block. This includes the bodies 

of functions and loops, though additional scoping issues arise in the context of for loops (described 

later) [3). Not only does every statement block return one or more values, conditional expressions, 

loops and functions also return one or more values. This means every if must have a matching else 

[3). The switch expression takes an ordinal switch key to determine which case branch to execute. 

Each branch can have an optional block of statements, and must return the same number and types 

of values. Every if expression can be represented by an equivalent switch expression. While it is 

true that statement blocks have no external side-effects, it will be shown in the next section that 

some statement blocks have some implementation effects, such as garbage creation (loops) or alias 

creation (conditional expressions). 
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2.1.3 While Loops 

There are two kinds of loops in SA-C, denoted by the keywords while and for (3]. The while loop 

is more general and should be used when the number of loop iterations is not known. Because of 

single-assignment, a loop control variable declared and defined inside a loop body cannot be properly 

updated without additional syntax. The following SA-C code does not increment the loop control 

variable n as expected, instead it loops forever: 

uint8 n = O; 
vhile (n < 10) 
{ 

uint8 n = n + 1; 
} return (n); 

II n = 1 alvays 

It should be rewritten to properly increment the loop control variable: 

uint8 n = O; 
vhile (n < 10) 
{ 

next n = n + 1; II The old n can be used to compute the nev n 
} return (final (n)); 

Here the new value for an iteration is assigned by using the keyword next in place of the type 

declaration that would otherwise occur (3]. SA-C allows a next assignment to each variable at 

most once within the body of a loop, in addition to an assignment that takes place prior to the loop 

(3]. In other words, nextified variable shadowing is not allowed. The keyword next is used by 

the SA-C language to denote that a loop-carried dependency exists for a particular variable. Any 

variable with a next assignment must have been defined before the loop is entered, so the use of the 

variable in iteration one will have a data type and value (3]. The variable on the left-hand side of the 

next assignment is termed a nextified variable. A loop can return a final value for any nextified 

variable, but because of the side-effect free nature of statement blocks, it will leave the outer value 

of the nextified variable unchanged (3]. 

2.1.4 For Loops 

The for loop is used when the number of loop iterations is known before the loop starts [3]. There 

are two flavors of for loop, those with loop carried dependencies, expressed using next assignments 
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and "forall" loops without loop carried dependencies [3). Both kinds have the same three parts: a 

generator, a body, and a return expression. 

SA-C for loops use generators both for loop predicates and to produce data values for each 

iteration. SA-C for loop generators can produce scalar values, array-components and windows 

within arrays. The array component generator can generate elements, vectors, planes or slices from 

an array, and send these into each iteration of the loop. The window generator can generate an 

arbitrary sub-array by shifting a window over the source array. These generators can be combined 

into compound generators using the dot and cross keywords. Each generator variable is given a 

value using the single-assignment principle. The scope rules for a variable created by a loop generator 

are similar to the rules for other variables [3]. There is a restriction that a loop generator target 

variable may not be referenced elsewhere in that loop's generator. Loops can return an expression 

or they can be used to reduce an array or structure an array. A loop can return the final value of 

a nextified variable [3]. 

2.1.5 User-Defined Functions 

A SA-C program consists of one or more function definitions. The function named "main" is consid-

ered the top-level function. All function names are in scope throughout the entire program. SA-C 

functions cannot be recursive, as a SA-C program is to be laid out on an FPGA [3). SA-C functions 

pass their arguments by value and nextified assignments cannot occur across function parameters. 

2.2 SA-C Arrays 

The strength of SA-C is the ease with which it allows a programmer to create, manipulate and 

reduce arrays. SA-C has multidimensional arrays with components limited to scalars and complex 

numbers, i.e. arrays of arrays are not allowed in SA-C [3). All arrays are rectangular and are not 

ragged [3]. They are homogeneous and the elements are stored at equal distances in memory, so that 

array element addresses can be calculated using simple linear expressions [3). The following terms, 

defined in the SA-C Language Version 1.0, are used to describe arrays. 

1. Rank: The number of dimensions in an array 
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2. Extents: There is one extent for each rank, it represents the length in that dimension 

3. Size: Multiplying all the extents together yields the number of elements or size 

4. Shape: An array's rank and extents taken together are its shape 

5. Component Type: The SA-C scalar data type of all array elements 

6. Type: Array type matching is done based on component type and rank, not extents or size. 

During program execution, an array carries its extents with it and these extents are accessed 

either explicitly through the extents operator or implicitly through a loop generator. Arrays of 

different sizes but equal rank and component type are considered the same type, so passing arrays 

via functions is simplified. SA-C arrays have a row-major storage sequence order which varies the 

right-most indices the fastest [3J. Note that this implies a data access order for loop generators. This 

will be explored in more detail in the next chapter. When a SA-C program declares and defines an 

array, it will provide a type specifier for the component type and a sequence of static or dynamic 

(:) extents. Arrays input to the main function typically have dynamically defined extents, and 

these are passed to any copies or slices taken during the program. A drawback of using dynamically 

defined array extents is that the compiler cannot statically know if an array is empty. An empty 

array is defined as a size 0 array, where by the definition just given at least one extent is 0. 

2.2.1 Array Operations 

Arrays can either be created with an explicit definition, through the return value of a loop or 

by using a structure-building array operation such as array _concat() or array _conperim() [3]. 

array _concat() will concatenate two arrays of equal type and of equal extents in all but the right-

most direction together [3]. array _conperim() will surround an existing array with a perimeter 

of a certain width and value [3]. Arrays can also be reduced to single scalars or small arrays of 

scalars using an array reduction operator. The reduction may be performed monolithically using 

an array_ operator or piece-by-piece by combining a loop reduction with a specific loop generator. 

The array reduction/loop reduction operators allow the SA-C programmer to perform the reduction 
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on user-defined regions of the array or to reduce using a boolean mask. User-defined regions are 

defined using a label array whose shape is identical to the shape of the array being reduced [3). The 

boolean mask is the same shape as the source array and determines which elements will be used in 

the reduction. Typical reductions including summing all the values into one value, returning the 

median value, multiplying all the values together, etc. 

2.2.2 Array-Component Generators 

An array component generator can generate column or row slices from an array. It can stride through 

an array (e.g. odd or even rows/columns). It can generate individual elements from an array. A ,_, 

is used in the access pattern to denote that individual elements from this rank must be taken and 

a ':' indicates that a whole slice in this rank must be taken. The default access pattern takes all 

individual elements from the array (i.e. for a in A). To access all rows in A use for a (- ,:) in A, 

which creates a loop in which a has the value of each row from A, one row per iteration. To access 

its individual elements for v in a can be used. 

2.2.3 Structure-building Operations 

There are three kinds of structure-building operators that can be used to create arrays for loop return 

values, and two kinds of structure-building operators for creating arrays monolithically. They are 

summarized in Table 2.1 [3). The first three operators must be paired with a loop generator to 

generate multiple instances of their component parameter a. 

Operator Description 
array( a) Build an array out of the specified components, which may themselves be 

arrays, creating a result array whose rank is the sum of the ranks of the 
generator and the component 

concat(a) Allows the component arrays to be concatenated to have different sizes in 
the last rank (similar to array _co neat()) 

tile(a) Tiles the component arrays together in each dimension of the loop. All 
component arrays must be the same shape 

array _concat ( A,B) Concatenates arrays A and B together in the last rank 
array _conperim(A,w ,v) Surrounds an existing array A with a perimeter of a certain width and value 

Table 2.1: Structure-Building Operations 
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2.3 DDCF Graphs 

Data-Dependence-Control-Flow (DDCF) graphs are used as an intermediate representation in the 

SA-C compiler [2]. The graphs are acyclic and hierarchical (i.e. some nodes contain subgraphs 

within them) [2]. The entire SA-C language can be represented by DDCF graphs [2]. There are two 

kinds of DDCF nodes, simple and compound nodes. Compound nodes contain subgraphs and simple 

nodes do not. Nodes have input and output ports that interface the node to the rest of the graph by 

means of edges [2]. The document 'The SA-C Compiler Data-Dependence-Control-Flow (DDCF)' 

by Hammes and Bohm (1999) is an excellent further reference [2]. All functions in a SA-C program 

have associated DDCF graphs. There are three top-level loop nodes, ND_FORALL, ND_FORNXT 

and ND_ WHILE. Loops use loop-generator graphs to send data through iterations and loop-return 

nodes to return data. Loops can either be structure-building loops, that is they build up an array 

from smaller pieces, or loop reductions where the input is reduced to a simpler, probably scalar 

form. Structure-building loops use the ND_CONSTRUCT_ARRAY, ND_CONSTRUCT_CONCAT 

and ND_CONSTRUCT _TILE nodes for loop-return and their top-level generator graphs will gen-

erally be window or slice generators (ND_WINDOW _GEN or ND_SLICE_GEN). Loop reductions 

also often use ND_WINDOW _GEN or ND_SLICE_GEN in their generator graphs. SA-C allows 

loops to exist with loop-carried dependencies, such loops are denoted by the ND_FORNXT and 

ND_WHILE nodes, and use two simple nodes to represent each "nextified" variable. ND_NEXT and 

ND_GJNPUT..NEXT. These loops will be examined in more detail later. 

2.3.1 Nodes that create arrays 

Table 2.2 shows the DDCF nodes that could potentially create an array as their output [2]. It should 

be noted that a node which does not consume its array input (according to the definition in the next 

sub-section) would therefore produce it as output. Since this does not entail creating a new array, no 

additional memory is required. Therefore this table is not a complete reference of all DDCF nodes 

which could produce an array as output, but rather all DDCF nodes that may require new memory 

space for that array output. 
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Node Name Description 
ND_ARRAYREF This node can extract either scalars or slices. Its input is 

a pattern of extraction, for example (_,:,:,_). 
ND_ARR_DEF This node creates a constant array from a collection of 

scalars. 
ND_ARR_CONPERIM This node creates an array with a constant-value perimeter 

of a certain width. 
ND_ARR_CONCAT This node concatenates two arrays. 

ND_CONSTRUCT _ARRAY This node accumulates pieces into an array return. 
ND_CONSTRUCT _CONCAT This node concatenates pieces into a concat return. 

ND _CONSTRUCT _TILE This node tiles pieces into a tile return. 
ND_WINDOW _GEN This node is an array window generator node used in a 

loop generator graph. The primary output is the array 
window that is generated from the first input which is the 
source array. 

ND _SLICE_G EN This node is an array component generator node used in 
a loop generator graph. The first input is the source array 
and the first output is the generated slice. 

ND_REDUCE_MODE This node is a loop reduction node which outputs a rank-
one integer array of the most frequently occuring values in 
the source array (the first input). 

ND_REDUCE_ VALS_AT _MINS This node is a loop reduction node which outputs a rank-
two array of the minimal array elements and their indices. 

ND..REDUCE_ VALS_AT _MAXS This node is a loop reduction node which outputs a rank-
two array of the maximal array elements and their indices. 

ND_REDUCEJIIST This node is a loop reduction node which outputs a rank-
one integer array which is the histogram of the source array 
(first input). 

ND_ACCUM_HIST This node is the same as a ND_REDUCKHIST node 
except it also accepts a label array and accum range as 
input. 

Table 2.2: Array-Creation Nodes 
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2.3.2 Nodes that consume arrays 

InputO Input 1 
I 

DDCF Graph Node 

' Output 0 Output 1 (Alias to Input 0) 

Figure 2.1: Example of DDCF Sink Node 

Consider an arbitrary DDCF graph node G, having x array inputs and y array outputs. Any 

input which is not aliased by an output is consumed by the node G. This is the strictest definition of 

consuming data, since the node G now acts as a sink node for any non-aliased inputs. See Figure 2.1 

for an example of a DDCF node which sinks input 1 but not input 0. For SA-C it is not feasible to 

treat every DDCF graph node as a potential sink node. Instead a subset of graph nodes has been 

selected such that all top-level program statement and control flow nodes will act as consumers. Not 

every statement block will act as a consumer, since the statement blocks associated with conditional 

expressions will not (e.g. ND_CASE). Conditional expressions as a whole will consume however (e.g. 

ND_SWITCH). Table 2.3 shows the DDCF nodes that have been selected to act as array consumers. 

It is a special case when a node's input is aliased by an output and will be examined in the section 

on Reference Counting. 

Node Group Description 
Array References ND_ARRAYREF 

Conditional Expressions ND_SWITCH 
Loop Nodes ND_WHILE, ND_FORNXT, ND_FORALL 

Function Calls ND..FCALL 
Array Component Generators ND_SLICE_GEN, ND_WINDOW_GEN, ND_ELE_GEN 

Array Reductions ND_REDUCE_ type nodes and label array reduction nodes 
Structure-Building Operations See Table 2.1 

Single-Assignment Array Creation ND_ARR_DEF 
Other SA-C Statements ND_PRINT, ND_ASSERT 

Miscellaneous ND_CAST, ND_OFFSETS, ND.LOOP .JNDICES, 
ND_FEED..NEXT, ND-EXTENTS 

Table 2.3: Array Consumer Nodes 
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2.4 Host Code Generation 

Host code is generated in a straightforward manner from the DDCF graph. Array payloads are 

allocated on the program heap and references to them are kept in host code array structures. An 

example structure is the ArrayUint8 struct, shown below. 

typedef struct { 
int rank; 
int size; 
int extents[8]; 
int mults[8]; 
Uint8 *base; 
Uint8 *mem; 
} ArrayUint8; 

~ 
~ 

Logical SA-C Array 

ArrayUint8 

rank 

size 

extents 

mults 

base 

Array Payload 

Physical SA-C Array 

Figure 2.2: Example of Logical and Physical SA-C array. 

In the example above, Uint8 indicates the data type of each payload element. Additional fields 

include rank, size, extents, multipliers, and two pointer fields, mem and base. mem points to the 

area in heap where the payload has been allocated and base contains the address of the first array 

element. All the extents and all the multipliers taken along with the base address comprise a dope 

vector (described in more detail below). A logical SA-C array is the array as viewed by the SA-C 

programmer and the physical SA-C array consists of one or more references (the host code array 

structure previously described) and the payload (the array data plus header). See Figure 2.2 for 

an example. The array payload includes an ArrayHeader structure. The ArrayHeader is allocated 

before the payload and can be accessed by subtracting the sizeof (ArrayHeader) from the mem 

pointer. It contains a reference count and an is_nextified flag. Since the header is associated with 

the payload and not the ArrayUint8 struct, the reference count counts how many ArrayUint8 structs 
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will be pointing their mem pointers to this payload (i.e. how many consumers there will be for this 

array data line). The closest equivalent to the array payload is the data flow line in a SA-C DDCF 

graph which corresponds to unique array data. 

2 .4.1 Aliases 

.... -------------------, 

Figure 2.3: Logical References forming an Alias Chain 

A reference is the host code array structure which references the array payload. An alias is 

a reference which references a payload which already exists. It occurs when a trivial assignment of 

the form source = dest is generated such that dest has been previously singly-assigned earlier in 

the SA-C program. Logical references are illustrated in Figure 2.3 and form an alias chain in 

which the first reference is termed the creator reference and all other references in the chain are 

aliases. In the figure, the reference 'D' is the creator reference and references A, B and C form an 

alias chain to D. The chapter on reference counting will show that these alias chains are non-circular 

due to strict single assignment. Logical references are useful for examining various properties of 

single assignment as they apply to the SA-C language. A physical reference is the host code array 

structure itself and results from the way in which the host code implements reference semantics using 

pointer semantics. Figure 2.4 illustrates a set of physical references. Note that one physical reference 

has more than one actual pointer. All the dependence figures presented in the next chapter can be 

equivalently redrawn using physical references. Physical references are implementation specific. 
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TO 

Amy Payload 

Figure 2.4: Host Code Aliases 

2.4.1.1 Conditional Expressions 

When graph outputs are generated after a conditional expression has terminated, it is done through 

aliases. Consider Figure 2.4, which illustrates the situation when the default case is taken for the 

following SA-C code. 

uint8 [:,:]main (uint8 A[:,:], uint8 n) 
{ 

uint8 Res [: , : ] = 
switch (n) { 

case 1: { uint8 R[:,:] =fore in A { 
uint8 E[2,2] = { {e, e}, {e, e} }; 

} return (tile (E)); 
} return (R) 

default: return (A) 
}; 

} return (Res); 

The array A is passed through unchanged, and so the code generator transfers A through the 

ND_SWITCH output as an alias. The following host code snippet shows this, where Tl is the switch 

key n, TO is the input array A and T7 is the output from the ND_SWITCH: 

{ /* switch block •/ 
switch (T1) { 
case 1 : 
{ /* case block •/ 
{{ 

/* Code to create R by tiling 2x2 elements from A omitted. 
T5 builds up each piece, T6 is equivalent to R and contains all 
the T5's tiled together. •/ 

}} 

T7 T6; /• T7 is an alias to T6 •/ 
} /* case block */ 
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break; 
default 
{ /• case block •/ 
T7 = TO; /• T7 is an alias to TO •/ 
} /• case block •/ 
break; 
} 

} /• switch block •/ 

2.4.1.2 Dope Vectors 

Traditionally a dope vector is a structure containing information about·· arrays that a program 

allocates dynamically during program execution. Dope vectors are required when the bounds of an 

array are not known at compile time, which is the case with SA-C. Additionally, it is easy to create 

substructures such as array slices and windows by taking one dope vector out of another. SA-C 

dope vectors are implicitly contained in the host code array struct. A SA-C dope vector constitutes 

a single base address and a multiplier and extent pair for each rank of the array. The following 

fields of the host code array struct correspond to a SA-C dope vector: 

int rank; 
int extents[8]; 
int mults[8]; 
Uint8 •base; 

The base addresses' data type of Uint8 can be any SA-C data type. The arrays extents[] and 

mults [] are parallel arrays and both use the same value (rank - 1) for their index upperbound. 

The following symbols are used to notate the components of a dope vector D: 

n = rank - 1; extents = eo .. en; multipliers = mo .. mn and base address = o:. 

2.4.1.3 Colon Notatation 

Dope vectors are used to efficiently implement colon notation. Array slices can be taken using 

colon notation, similar to that of Fortran 90 [3]. A lone colon in a given dimension signifies taking 

the entire index range of the dimension (O .. en - 1, where n = dimension) [3]. A subrange can be 

specified with integer expressions on either or both sides of the colon, and an optional step as a third 

parameter [3]. In this paper, subranges will be specified as lwb: upb: step where each is an integer 

expression in the dynamic range determined by the bounds checker. 
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The address of array element A[i0 , .•• , in] is given by Equation 2.1: 

n 

&A[io, ... , in] =a+ L(pmq * iq) (2.1) 
q=O 

where a= parent base address, n = rank-1 and pm= m 0 , ... , mn which comprise the parent's 

multipliers. 

The largest structure which is not a substructure of any other structure is equivalent to the 

creator reference for this array and has a parent's dope vector which is the same as its own. It will 

be called the first dope vector. Since arrays are stored in row-major order, which means varying 

the right-most indices the fastest, the multipliers for the first dope vector are taken by leaving 

the right-most multiplier as 1 and computing the remaining multipliers according to the recurrence 

relation described in Equation 2.2: 

0 

L mq = (mq+l * eq+i) (2.2) 
q=n-1 

Note that mn = 1 and n =rank - 1. 

Since SA-C does all bounds checking dynamically using the array's extents, this means i 0 must be 

in the range 0 .. e0 - 1 and in general each in must be in the range 0 .. en - 1. Since only substructures 

and structures can be taken using colon notation, n is no greater than the rank of the first dope 

vector, but may be lesser, resulting in a lower ranked slice being taken. 
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2.4.1.4 Array Reference Example 

A[0,0) 

i I = l 
A[:,:) 

Br0.01 = Ar0.01 + 23 

Figure 2.5: Dope Vector 

Assume A is a 10x11 rank 2 matrix of Uint8s. The following SA-C code returns Bas a substructure 

of A: 

uint8 [:,:]main (uint8 A[:,:]) { 
uint8 B[:,:] = A[2:6, 1:7]; 

} return (B); 

The dope vector D for matrix A is given as follows: 

D = { {rank = 2}, {extents = {10, 11}}, {mults = {11, 1}}, {base = Oxa} } 

The shaded part of Figure 2.5 illustrates the new dope vector D' taken from Das matrix B. 

D' = { {rank = 2}, {extents = {5, 7}}, {mults = {11, 1}}, {base = Oxa + 23} } 

First the new base address is computed using B[O, OJ = A[2, lJ: 

&B[O, OJ= &A[2, lJ = Oxa + 11*2 + 1*1=Oxa+23 

For each rank r there is a new extent er whose value is given by using the values specified in the 

subrange notation for this slice. Thus er= 1 + ((upbr) - (lwbr))/(stepr) or 0 whichever is greater. 

eo = 1 + ((6) - (2))/(1) = 5; ei = 1 + ((7) - (1))/(1) = 7 

The new multipliers are taken as the parent's multipliers in each rank: mr = pmr. The new size 

is the product of all the extents. To get the address of B[l, OJ, take the address of B[O, OJ+ 11 (as 

per Equation 2.1 above). Substructures can also be taken from D' or from D and new substructures 
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will never need more than a new dope vector. No heap memory is required for any dope vector 

except the first. For this reason, subsequent dope vectors are considered to form an alias chain as 

described previously. 

2.4.2 Host Code Arrays 

There will be the following kinds of arrays in the host code. 

1. main and function input arrays 

2. local arrays 

3. intermediate structures 

For each main input there will be one distinct payload. Inputs to non-main functions wih Lerer 

to previously allocated payloads. Local arrays consist of the following types of arrays: 

1. Arrays assigned via single assignment including function return values and loop generator 

target array variables (i.e. used to take windows or slices) 

2. Arrays assigned via nextified single assignment denoting a variable with loop-carried depen-

dencies 

There is one type of intermediate structure used by the host code. The "array-of-arrays" is 

used to accumulate sub-arrays, which are later arranged into a result array as the return value of 

a structure-building loop. Additionally, the "growable" property can be applied to any array data. 

The data starts in an array of a fixed capacity and grows by doubling its capacity when required. 

Growable arrays (g_arrays) are useful for storing truly variable amounts of information, like the 

mode of an array. 

2.4.2.1 Dynamic Array Properties 

SA-C host code arrays have dynamic characteristics which can be associated with either their array 

payload or with the reference to the payload (i.e. the host code array structure). If a characteristic is 

per payload, then multiple references share that characteristic. If the characteristic is per reference 
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then multiple references have distinct values for that characteristic. The following characteristics 

are determined dynamically. 

1. is..nextified - This characteristic is per payload 

2. reference count - This characteristic is per payload 

3. is_dopevector - This characteristic is per reference 

4. is_empty - This characteristic·is by necessity per reference 

5. is_param - This characteristic is per reference 

It is unfortunate from an implementation standpoint that emptiness is determined dynamically, 

because neither pointer reuse or reference counting should be applied to empty references. This 

complicates host code somewhat by requiring explicit size checks before dereferencing arbitrary 

array references. 
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Chapter 3 

Statically Determinable Garbage 

Single-assignment creates references at the host code level. These references can either be aliases 

(either resulting from conditional expressions or dope vectors) or creator references (§1.4.1). Loop 

generators produce data for each loop iteration. A creator reference allocates and points to heap 

data. The process of creating alias references inside a loop is called single-assignment aliasing 

and generates no heap data flow. The process of creating creator references inside a loop is called 

single-assignment creation and results in heap data flow. 

3.1 Overview 

Every intermediate structure-building operation uses the array-of-arrays technique described below 

to accumulate its respective components (whether aliases or data) into an array and then restructure 

the array according to the desired structure-building operation after the loop has terminated. Specifi-

cally, the ND_CONSTRUCT_ARRAY, ND_CONSTRUCLCONCAT and ND_CONSTRUCT_TILE 

DDCF nodes classify as structure-building. The loop generator graphs for these operations usu-

ally declare and define component pieces used to build up the structure. These pieces are usually 

alias references to the source array, since they are typically slices or windows. Specifically, the 

ND_WINDOW_GEN, ND_SLICE_GEN, and ND_ARRAYREF DDCF nodes typically generate alias 

references instead of creator references. 

Some structure-building operations use one of the proper array creation nodes listed in the 

previous chapter, like ND _ARRAY _DEF. These nodes generate a malloc() statement and thereby 

generate creator references. If a creator reference occurs inside a loop which iterates N times, the 
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single-assignment property results in N - 1 pieces of garbage being created. Pointer .reuse will be 

presented to eliminate this garbage. N extified single assignments inside loop statement blocks can 

also create garbage and have considerably more complicated inter-dependencies possible. 

3.2 Array of Arrays 

A[:,:] Res[:,:] 

12 

16 

15 16 

Array-of-Arrays 

Figure 3.1: Array-of-arrays 

Consider SA-C code which tears an N x N matrix into smaller windows of size w x w, and then tiles 

them back into the same N x N structure (Figure 3.1). This code will use an ND_CONSTRUCT_TILE 

node coupled with an ND_ WINDOW _GEN node to show two things. The first is how the intermedi-

ate array-of-arrays structure works. The second is a loop which creates aliases instead of heap data 

(single-assignment aliasing). 

uint8[:, :] main (uint8 A[:,:]) { 
uint8 Res[:,:] =for window W[2,2] in A step (2, 2) return (tile (W)); 

} return (Res); 

In each loop iteration the ND_WINDOW_GEN node generates a dope vector alias (a substruc-

ture) of the source array. It does this in a single-assignment fashion, such that the previous dope 

vector alias is lost and overwritten with the new one. This does not create garbage because the left-

hand side of the assignment will either never have existed or existed only through single-assignment. 

As each window is generated by each loop iteration, a copy of it is accumulated or collected into 
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an array-of-arrays. In general, any data which must be accumulated in order to create a larger 

piece of new data will have a copy of it placed in an array-of-arrays. Every element of the array-

of-arrays is heap data and will not be an alias to anything. When the structure building operation 

of tile(W) is performed, the payload block of the result array Res is allocated and the pieces in 

the array-of-arrays are copied into Res in the appropriate locations. Now there is no sharing and 

after Res is constructed, the array-of-arrays can be de-allocated (piece-by-piece, then the whole 

structure). This entire process requires 3*n space, where n is the total number of elements in the 

source array A. Knowing that this operation always works with copies of the respective pieces allows 

static de-allocation of the array-of-arrays structure immediately after it is consumed, which can lead 

to a linear increase in space performance or a polynomial increase if there is a loop around the tiling 

process. 

3.3 Basic Single Assignment 

Consider code which contains a structure-building loop that creates a new array for each iteration 

and uses it to tile together its result. This example will illustrate a loop which creates data and 

hence garbage (single-assignment creation). 

uint8[:,:] main (uint8 A[:,:]) { 
uint8 Res[:,:] =fore in A { 

uint8 E[2,2] = { {e, e}, {e, e} }; 
} return (tile (E)); 

} return (Res); 

Figure 3.2: Loop with Array Definition 
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The DDCF graph for this SA-C code contains an ND_ARRJ)EF node inside an ND_FORALL 

loop node using an ND_ELE_GEN to generate scalars (Figure 3.2). The following kind of host code 

is generated. 

II Create and initialize an empty array-of-arrays 
II Loop through all elements in A 
for ( all rovs in A ) 
for ( all cols in A ) { 

II Take e out of A as A[rov][col] 
II Malloc space for array E in pointer TO.base 
SC_malloc (TO.base) 
II Fill E vith e 
II Put a copy of E into the array-of-arrays 

} 
II Restructure the array-of-arrays into Res 
II Free each piece (E) in the array-of-arrays 
II Free the array-of-arrays 

TO is the array E[2,2]. The code generator has generated a malloc inside a loop for the creator 

reference TO. This means after the first iteration, the pointer TO.base will start leaking heap (See 

Figure 3.3). There is a "better" way to re-use the pointer TO.base than just overwriting its old 

address with a new one. This loop produces and wastes a new 2 x 2 array for every single element of 

the N x N source matrix, creating O(N2 ) garbage. Assuming the size of the garbage to be constant, 

such loops produce garbage on an order of magnitude directly proportional to their loop generator's 

order of magnitude. Referring to Figure 3.3 it is clear that the array data produced in iterations 0, 

1 and 2 is garbage after the loop statement block finishes. 

0 

Heap Data Flow 

Array Header 

.. ---------------

2 2 

2 2 

Amy Header 

3 

3 

Array Header 

4 4 

4 4 

Figure 3.3: Basic Single Assignment Data Flow 
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Pointer reuse entails freeing the pointer pat the statement before the malloc. In other words, 

the creator reference has the property that it eliminates what it created in the previous loop iteration. 

For this reason, pointer reuse only works for basic single assignment and must be disabled for nextified 

single assignment. By virtue of its implementation (associating it only with statements that malloc), 

pointer reuse only occurs for the last reference in an alias chain (it will be shown that alias chains 

are non-circular). 

3.4 Creator Reference Scheme 

Consider the situation when a new reference r is to be attached to an alias chain as a result of single-

assignment. The creator reference scheme states that any reference r attached to an arbitrary 

alias chain will eventually connect to a creator reference R which references actual data rather than 

another reference. Additionally, all aliases in the chain below r are logically older than r and all 

aliases above rare guaranteed to be both newer and non-creator references. The chain is such that 

as long as all members were attached using Basic Single Assignment, no reference except the creator 

reference has the chance of creating garbage. It will be shown in the chapter on reference counting 

that circular aliases are not allowed. 
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3.5 Nextified Single Assignment 

• • • • Figure 3.4: Nextified Variable Inside of Loop 

A SA-C variable can be composed of more than one reference and hence more than one value. 

This occurs when there is an implicit back-edge in the DDCF graph (i.e. loop-carried dependencies) 

and is produced when the SA-C programmer flags a variable as nextified. Figure 3.4 illustrates a 

logical nextified variable A during a loop and Figure 3.5 illustrates the same variable outside its loop. 

It has two references, a current reference and a next reference, both of which may be generated as 

either an alias reference or a creator reference. Pointer reuse only worked with creator references 

and was outside the scope of alias references, but with nextified assignments the type of reference 

generated becomes very important. To logically distinguish the references in A, they will be written 

as A.curr or A.next. They are created as two distinct host code array structures in the generated 

host code and have their own unique identifiers. Figure 3.5 shows that once outside its dependent 

loop, the variable again has one logical reference to data. 

A 

: Array Header 

Figure 3.5: Nextified Variable Outside of Loop 

Nextified assignments must adhere to these restrictions: 
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1. Nextified assignments always occur in loops (ND_WHILE, ND_FORNXT) 

2. Nextified assignments represent a back-edge in the DDCF graph 

3. Nextified assignments can occur at most once to a particular variable within the body of a 

loop. Shadowing of nextified variables is forbidden. 

4. There is always an initial assignment to the nextified variable prior to entering the loop 

Futhermore, SA-C language semantics dictate that: 

1. Statement blocks are side-effect free in nature, therefore a copy of a nextified variable's initial 

value is used during the loop and is generated through a ND_FEED_NEXT DDCF node 

2. Some of the data generated for each loop iteration is generated by a loop generator, which 

accesses a source array in row-major order. The curr reference follows behind the data flow 

of the next reference and these semantics imply curr and next will have a row-major order in 

relation to each other if they access any data generated by a row-major loop generator. 

A SA-C programmer is only able to indicate a preferred value for one half of a nextified variable, 

the next reference. The current reference follows the next and cannot be single assigned to. 

There are four kinds of nextified single assignment which result from the ability to assign only 

to the next reference of a nextified variable. They are summarized below and examined in detail in 

the sections that follow. 

1. Basic N extified Single Assignment 

2. Full N extified Alias 

3. Partial Nextified Alias 

4. Nextified Single-Assignment Aliasing 
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Figure 3.6: Basic Nextified Single Assignment 

3.6 Basic Nextified Single Assignment 

Usually "nextified variables" indicate that the variable requires its value from the last loop iteration 

in order to compute its "next" value ( e.g. next A = f(A); ). This simple dependence is illustrated 

in Figure 3.6 and results from basic nextified single assignment. A loop with a single loop-carried 

dependency described by nextified array A is generated as follows: 

1. Initialization section creates a copy of A and the A.curr and A.next references reference this 

copy 

2. Loop predicate either enters the loop body or skips the whole loop 

3. Loop body contains the single nextified assignment to A.next and many potential uses of 

A.curr and A.next 

4. Transfer occurs at the end of each iteration and moves A.curr to A.next 

5. Goto to Loop Predicate 

All transfer and initialization of A.curr and A.next occur through trivial assignment statements 

of the form source = dest. The last thing the loop does before jumping to the predicate is transfer 

the current reference portion of any nextified variable to its next reference (step 4 above). It does 

this in two steps, first it holds the next references in temporaries, then it moves the temps on top 
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of the current references. This technique avoids analysis of the possible dependencies between two 

nextified SA-C variables. For example, assume Tl is A.curr and T2 is A.next and A is a nextified 

array of Uint8s. 

{ 

ArrayUint8 Tmp1; 
Tmp1 = T2; II Hold A.next in Tmp1 
II A.curr is now garbage! 
T1 = Tmp1; II Leak A.curr and make A.curr reference A.next 
} 

When A.curr is transferred to A.next at the end of the loop's iteration, A.curr becomes garbage 

in the form of a heap leak. The host code should free A.curr immediately before assigning it to 

A.next: 

{ 
Tmp1; ArrayUint8 

Tmp1 = T2; 
SC_free (T1) 
T1 = Tmp1; 
} 

II Hold A.next in Tmp1 
II A.curr is now garbage, so eliminate it 
II Make A.curr reference A.next 

The chain of aliases the current reference will follow to reach a creator reference is exactly the 

same as the chain followed by the next regardless of how long that chain is. The garbage indicated 

in Figure 3.6 can be statically determined and eliminated. 
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3. 7 Full N extified Alias 

• • • 

Figure 3. 7: Full Nextified Alias 

A full nextified alias results when the SA-C programmer assigns one nextified variable B to 

another nextified variable A through trivial assignment. Consider the following SA-C code in which 

B is a full nextified alias to A. 

uint8[:,:] main (uint8 n, uint8 A[3,2], uint8 B[3,2]) { 
uint8 R[:, :] = 

for uint8 i in [n] { 
next A = 

for a in A dot b in B 
return (array ((a+b)/2)); 

next B = A; 
} return (final (A)); 

} return (R); 

Figure 3. 7 shows that garbage can still be statically determined and the only wrinkle is that 

nextified variable B shares the same garbage as A. This sharing can be statically determined and 

only A will attempt to clear up its garbage. 

3.8 Partial Nextified Alias 

The next keyword is position sensitive. If a nextified variable B is declared as an alias to nextified 

variable A, it will either be a full or partial nextified alias depending on whether the assignment of 

next B occurs after the assignment of next A (full nextified alias) or before the assignment of next 

A (partial nextified alias). Therefore a partial nextified alias results when the SA-C programmer 
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Figure 3.8: Partial Nextified Alias 

assigns one nextified variable B to the current value of another nextified alias A (A.curr). This 

causes variable B to lag one iteration behind A (which already lags one iteration behind). Both of 

the SA-C codes below result in B being defined as a partial nextified alias to A. 

uint8[:,:] main (uint8 n, uint8 A[3,2]~ uint8 B[3,2]) { 
uint8 R[:, :] = 

for uint8 i in [n] { 
uint8 BB[:,:] =A; 
next A = 

for a in A dot b in B 
return (array ((a+b)/2)); 

next B = BB; 
} return (final (A)); 

} return (R); 

uint8[:,:] main (uint8 n, uint8 A[3,2], uint8 B[3,2]) { 
uint8 R[:, :] = 

for uint8 i in [n] { 
next B = A; 
next A = 

for a in A dot b in B 
return (array ((a+b)/2)); 

} return (final (A)); 
} return (R); 

Figure 3.8 shows that garbage can still be statically determined. Note that nextified variable A 

produces no garbage because its garbage is consumed as B's next. 
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Figure 3.9: Nextified Single Assignment Aliasing 

3.9 Nextified Single Assignment Aliasing 

Nextified single assignment aliasing occurs when the SA-C program defines a nextified variable B 

as an alias to a source array (either by means of a dope vector or a conditional expression). A 

SA-C program can create a nextified variable which will take its next value from an alias each loop 

iteration. The alias could reference heap data or other aliases (eventually referencing heap data). 

Consider the following SA-C code in which the nextified variable A will select one way of producing 

its next value in iteration 0 and a different way of producing its next value in iteration 1. 

int32[:] main (int32 A[:], int32 sentinel) 
{ 

uint8 n =extents (A); 
assert (nY.2==0, "n should be even"); 

bits! odd_phase = Ob1; 

int32 res[:] = for _ in [n] { 
next A = ((odd_phase == Ob1) ? 

for window W[2] in A step (2) { 
int32 E[2] = {array_min (W),array_max (W)}; 

} return (tile (E)) : 
I• Even-phase •/ 
for window W[2] in array_conperim (A,1,sentinel) step(2) { 

int32 E[2] = {array_min(W),array_max(W)}; 
int32 m[1] = {array_max(W)}; 

} return (tile ( ((array_min(W)==sentinel) ? m E))) ); 
next odd_phase = odd_phase-Ob1; 
print (true, A); 

} return (final(A)); 
} return (res); 

A.next is assigned as the result of the conditional expression, which is an alias to the unnamed 

result of one of the two structure-building operations shown above. Assume the result of either 
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structure-building operation is referenced by P. Figure 3.9 illustrates the resulting dependency. 

The primary drawback to this scheme is that it contends with pointer reuse, because the nextified 

variable attaches to an alias chain which terminates in a creator reference. The creator reference, 

having no knowledge that a nextified variable just attached to its alias chain will attempt to reuse its 

reference, which interferes with the desire of the nextified variable to eliminate its garbage. Figure 3.9 

indicates this problem with a dashed line from the creator reference P to its garbage. A solution is 

to make trivial assignments resulting from conditional expressions smart enough to tell that there is 

a nextified variable on the left-hand side and thereby prevent pointer reuse through the right-hand 

side. 

3.10 Static Dependency Analysis 

The code generator can statically determine what is garbage for each of the four cases given above 

by examining the DDCF function graph. The id of the current ND_NEXT node's output node is 

determined by following the backedge of the current ND _NEXT node and using that (node, port) 

pair to determine the unique id of the output node. We call this unique id destJd thoughout. The 

src_id is determined by taking the current ND_NEXT node's In_nextJd field and using it to index a 

node in the node list, then taking that node's unique id on output port 0. 

dest_id = get_source_id (fg, it->val, 0); 
tgt_in_node = fg->nodes[it->val] .In_next_id; 
src_id = fg->nodes[tgt_in_node] .outputs[O].unique_id; 

The code generator will generate a sequence of trivial assignments between nextified arrays of 

the form src_id = desLid, each trivial assignment will leak through its src_id reference, so the desire 

is to free src_id if possible. To determine if an array is a full nextified alias of another nextified array, 

search through all other ND_NEXT nodes and see that their destJd is not the same as this ones. 

If two ND..NEXT nodes share the same dest_id, the code generator can't free the second src_id. To 

determine if an array is a partial nextified alias of another nextified array, search backwards in the 

graph, looking for other ND_NEXT nodes which have the same destJd as this particular array's 

src_id. The following algorithm has been incorporated into the code generator while transferring 

nextified variables: 
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/* Clean up garbage copies of nextified arrays. For each ND_NEXT node, free its src_id if 
a) Its src_id is not a previous ND_NEXT node's dest_id 
b) Its dest_id is not a previous ND_NEXT node's src_id 
c) Its dest_id is not another ND_NEXT node's dest_id 

*/ 
for (i=O, it=fg->nodes[id].My_nodes; it!=NULL; it=it->link) 
{ 

} 

if (fg->nodes[it->val].nodetype == ND_NEXT) && 
(fg->nodes[it->val].inputs[O].ty.kind ==Array) 

{ 

} 

i++; 

OK_to_free = 1; /* By default assume this ND_NEXT has a garbage array */ 
tgt_in_node = fg->nodes[it->val].In_next_id; 
src_id = fg->nodes[tgt_in_node] .outputs[O].unique_id; 
dest_id = get_source_id (fg, it->val, O); 
/* Look through all other ND_NEXT nodes and perform the tests above: O(n~2) */ 
for (j 0, jt=fg->nodes[id] .My_nodes; jt!=NULL; jt=jt->link) 
{ 

} 

if (fg->nodes[jt->val] .nodetype == ND_NEXT) && 

{ 

} 

j++; 

(fg->nodes[jt->val] .inputs[O] .ty.kind Array) 

int other_tgt_in_node, other_dest_id; 
other_tgt_in_node = fg->nodes[jt->val] .In_next_id; 
other_src_id = fg->nodes[other_tgt_in_node].outputs[O] .unique_id; 
other_dest_id = get_source_id (fg, jt->val, O); 
/* Case A */ 
if ( (other_dest_id == src_id) && (j < i) ) 
{ 

OK_to_free = 0; 
break; 

} 

/* Case B */ 
if ( (other_src_id dest_id) && (j < i) ) 
{ 

OK_to_free = O; 
break; 

} 

/* Case C */ 
if ( (other_dest_id dest_id) && (j != i) ) 
{ 

OK_to_free = O; 
break; 

} 

if (OK_to_free) fprintf (fp, " SC_free (T'l.d.mem)\n", src_id); 

3.10.1 Arrays Returned by Functions 

An array which is returned by a user-defined function in SA-C is assigned to a left-hand side variable 

using the same single-assignment property previously examined. Therefore, pointer reuse is also 

usefully applied to these returned arrays. 
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Chapter 4 

Reference Counting 

Figure 4.1: Example of Circular Aliasing 

Reference counting the SA-C language is possible because aliases can only be created via strict 

single assignment. The strict qualifier requires that a variable declaration be accompanied by a 

complete and immediate definition of its value. The variable cannot be partially defined now and 

partially defined later. Strict single-assignment entails the following: 

1. A variable gets a value once 

2. A variable gets a value immediately upon declaration 

These properties ensures that aliases are non-circular in nature, since at the time of assignment 

the creator reference of every alias chain is known. Figure 4.1 illustrates circular aliasing. Consider 

the following SA-C code in which a circular alias similar to the figure is attempted. 

uint8 [:] main (uint8 C [:]) 
{ 
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uint8 B[:] = C; 
uint8 A[:] = B; 
C = A; II This statement is illegal 

} return (Res); 

The arrow in Figure 4.1 indicates that A is a reference to Band thus points from A to B. The last 

SA-C statement is illegal because it is a re-assignment to variable C rather than a single-assignment. 

Here is the new corrected code. 

uint8 [:] main (uint8 C[:]) 
{ 

C; 
B; 

uint8 B[:] 
uint8 A[:] 
uint8 C[:] A; II This C shadows the input C with an alias 

} return (Res); 

For this new code, the last single-assignment statement implements variable shadowing by simply 

creating a new fourth variable (the variable consequently holds an alias to A). The input to main is 

T3, the array Bis T2, the array A is Tl and the last C is TO. The result is variable shadowing 

and is illustrated in Figure 4.2. With variable shadowing, the resulting reference is either a creator 

reference or an alias reference, but never a circular alias. 

DATA 

Figure 4.2: Example of Variable Shadowing 

Reference counting single-assignment code is fairly straightforward. The trivial assignments 

above will create a situation in which four host code structures reference the same array payload. 

The array payload should wind up with a reference count of 4. 

Figure 4.3 illustrates simple reference counting. If circular aliasing were possible, this reference 

counting technique would invariably fail. Whenever an existing alias is assigned to alias a variable 
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1-------.--------------------
i RefCount 4 

Figure 4.3: Host Code Example of Variable Shadowing 

which in turn is an alias to the first alias, circular aliasing occurs. The circular assignment would 

create a "phantom" increase in the reference count as illustrated in Figure 4.4. Fortunately SA-C 

does not allow circular assignment to occur by virtue of its strict single-assignment nature, and thus 

simple reference counting can be employed. 

! RefCount 4 

+i: 

Figure 4.4: Host Code Example of Circular Aliasing 

4.1 Overview 

DDCF nodes fall into one of five categories: 

1. Simple nodes, containing no subgraph 

2. Compound nodes containing a list of nodes contained in their subgraph, including input nodes, 

but not output nodes. 

3. Input node~ corresponding to input xxx of this graph node 
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4. Output nodes corresponding to output yyy of this graph node 

5. Nodes with a back-edge (ND_NEXT) 

A compound nodes subgraph takes the form of a set of input nodes, followed by a set of interior 

nodes, terminated by a set of output nodes. Edges connect the data between these nodes appropri-

ately. The interior nodes of a ND_FORALL or ND_FORNXT compound node are of the form: loop 

generator subgraph; body subgraph; and loop-return subgraph. All of the various loop-return nodes 

are simple and have direct associations with the language's return nodes [4]. The loop generator 

nodes take arrays as inputs and emit array components as outputs, whereas the construction return 

nodes take components and emit complete arrays as outputs [4]. 

FUNC 

Simple Node 
Loop Level 0 

Loop Level 0 

Loop Level I 

Loop Level 1 

Loop Level 0 

Figure 4.5: Example of Loop Levels 

4.2 Loop Levels 

In the DDCF graph for a specific SA-C code, it is possible to compute a static loop level. The 

loop level for a DDCF graph node G is defined as 0 if the graph node has no loop control flow 

associated with it. This is irrespective of any nodes contained in G's subgraph. A ND_FORALL 

graph node has a loop level of 1 if it is contained inside a ND_FUNC graph node. A ND_FORALL 

graph contained inside another ND_FORALL graph has a loop level of 2, and so on. As the code 

generator sequentially traverses the DDCF graph, it will increment the loop level when entering a 
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loop node and decrement the loop level once the final curly brace (}) of the loop node has been 

generated. Everything contained in a ND_FUNC node starts at loop level 0, whereas everything 

contained inside a loop node is guaranteed to start with a loop level greater than 0 (Figure 4.5). 

This is useful because the code generator knows if a statement will be generated inside a host code 

loop or not. 

4.3 Basic Approach 

This paper's basic approach to reference counting is given below. The sections which follow will 

examine each of the items listed below in more detail: 

1. Initialize all array reference counts to 1. 

2. Increment an array reference count for edge splits occurring at loop level 0. 

3. Increment an array reference count exactly once for aliases resulting from dope vectors and 

conditional expressions. 

4. Array consumers (as listed in Table 2.3) indicate a desire to decrement the reference counts 

for each of their array inputs by exactly one. This is achieved by adding the unique id for the 

graph node's input to a list called the consumed array list. Items are added to the list only if 

not already present, such that a unique id appears in the list only once. This occurs at any 

loop level. 

5. Array consumers at loop level 0 process the consumed array list and generate a decrement 

reference count instruction for each element of the list. The list is then emptied. 

Reference counting is not performed for inputs to non-main functions. Nextified variables are 

a special case for the reference counter and will not be added to the consumed array list. The 

copy generated by ND _FEED _NEXT and any references to the nextified variable contained in the 

dependent loop graph are not reference counted. Once the dependent loop graph has been generated, 

the final value emitted from the loop graph will again be subject to reference counting and if no 
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final value is emitted, the variable is considered unfinalized and its reference count is decremented 

by one, resulting in it being freed. The section on unfinalized nextified variables details this. 

4.4 Initializating the Reference Count 

Whenever an array payload is allocated by the host code it will be created such that its associated 

reference count is set to 1. Creating an array header in front of an array payload is incorporated 

into the act of allocating space for the array. Initializing the reference count to 1 is incorporated into 

the act of creating the array header. Whenever an array is passed as an argument to a non-main 

function, it will be flagged as a parameter. Parameters are dynamically not subjected to reference 

counting by checking the value of the is_param flag. This has two beneficial qualities. The first 

is that aliases to non-main input parameters can be freely created so long as they "inherit" the 

is_param flag value. The second allows mixed language routines to locally create arrays and pass 

them to SA-C functions without having to also create array headers for those arrays. For example, 

a C program could statically declare/define an array and pass it to a SA-C function as input. 

4.5 Incrementing the Reference Count 

There are two situations when the reference count for a host code array needs to be incremented. The 

first situation occurs only at loop level 0 and the other situation can occur anywhere. In both cases, 

incrementing the reference count for a particular host code array entails locking a global mutex, 

going to the arrayheader and incrementing the associated reference count and then unlocking the 

mutex once finished. The act of incrementing the reference count is therefore performed atomically 

and corresponds to a critical section. 

4.5.1 Edge Splits 

Using the DDCF graph representation of a SA-C code, data flows through DDCF nodes via edges 

which connect input and output nodes. It is possible for any compound DDCF node to split a given 

output data to multiple inputs. Each DDCF node which outputs data has an array of 1 .. n output 

ports. These outputs correspond to distinct data which can be produced by the DDCF node. For 
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each output data, there is a list of (node, port) pairs to which that data flows. This corresponds 

to an edge connecting this DDCF node's output to the designated input. Each of the unique values 

returned by a SA-C statement will have a seperate edge in the DDCF graph. If the value of a 

particular piece of data A is required to create the value for each of these edges, then an edge split 

will occur. The edge split entails sending the value of A into each of the subgraphs responsible for 

creating the output values. Consider the following SA-C code in which the function main returns 

multiple values, each of which requires the value of the input variable A: 

uint8, float main (uint8 A[:,:]) 
return (array_min (A), array_mean ((float[:,:])A)); 

A[:,:] 

ND_FORALL 
+I 

ND_DOT_pROD 

Figure 4.6: Example of DDCF Input Edge Split 

Figure 4.6 shows that A is sent into both ND_FORALL subgraphs in order to produce the two 

output scalars. 

After the code generator generates the code for a given DDCF node, it checks for edge splits by 

counting the number of targets ((node, port) pairs) for a given output port. If this value is more 

than 1 and the code generator is generating code at loop level 0, then the reference count for the data 

corresponding to this output port is incremented by the number of edge splits minus one (provided 

the source array is not a parameter). In Figure 4.6 the reference count for A would be incremented by 

one after the ND_G_J:NPUT node has been generated (i.e. before the two ND_FORALL subgraphs). 
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4.5.2 Aliases 

Any time an alias is created whether through a trivial assignment or a .dope vector alias, the source 

array's reference count should be incremented by one (provided the source array is not a parameter). 

Unfortunately, aliasing can occur inside various kinds of control flow, including loops, which would 

result in multiple increments to the reference count. The technique of single-increment must be 

employed to emulate the single-assignment behavior of statements which by virtue of being part of a 

loop body are actually multiple (destructive) assignments. Single-increment consists of incrementing 

the reference count only once instead of every loop iteration. This is achieved in host code using a 

special flag associated with the reference (the host code array structure). This flag is initially unset 

and will later be set exactly once the first time the reference is singly-assigned to. The assignment 

which yielded an alias will increment only if the flag was unset. 

4.6 Decrementing the Reference Count 

The act of decrementing the reference count for a particular host code array is also performed 

atomically using the same global mutex which is used to achieve an atomic increment. The decrement 

critical section also includes a check to see if the reference count was decremented to 0, and if so, a 

free () statement is issued to release the associated host code array's heap memory. The mem and 

base pointers are then set to NULL. Note that the increment reference count will get a lock on the 

global mutex before pointing to the host code array's array header, and if it finds a null pointer 

instead, it will silently not increment anything. 

After the code generator finishes generating the code typical for each of the array consumers 

listed in Table 2.3, it also adds all of that node's array inputs to a consumed array list. There is 

one input for each input port and the unique ids associated with them are added to the consumed 

array list according to the following conditions: 

1. The node is an array consumer node 

2. The input unique id is an array 
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3. The input unique id is not already in the consumed array list 

4. The input unique id is not a parameter 

5. The input unique id does not belong to a nextified variable 

6. The input unique id does not belong to a copy created by a ND_FEED..NEXT node 

Additionally, if after adding each input's unique id to the list, the code generator is also at loop 

level 0, then the consumed array list is processed as follows. Each unique id is removed from the 

list and a decrement reference count by one statement is generated for it. The consumed array list is 

then emptied. The sub-sections below detail the behavior of the algorithm for various DDCF graph 

nodes. 

4.6.1 Compound DDCF Nodes 

The overall effect of this algorithm is to descend into a compound node's hierarchical graph structure 

and collect distinct graph inputs at any depth into a list. It then decrements everything in the list 

when it returns to loop level 0. This typically happens when the code generator is between subgraphs 

in a ND _FUN C node. 

Some compound nodes form well-known subgraphs entirely composed of array consumers, such 

that it is pointless to collect distinct graph inputs from the well-known subgraph because they are 

the same as the inputs for the array consumer nodes. For example, loop generator subgraphs such 

as ND_DQT _PROD and ND_CROSS_pRQD contain only generator nodes such as ND_ELE_GEN 

and ND_ WINDOW _GEN, whose inputs are the same as the generator subgraph inputs. 

This makes it redundant to attempt to collect the inputs for the generator subgraph into the list. 

Therefore, ND_DQT_pRQD and ND_CROSS_PROD are not considered array consumers, because 

they are guaranteed to feed their inputs only to nodes from Table 2.3. Figure 4. 7 illustrates a loop 

generator subgraph for the SA-C loop for VA(-,:) in A cross VB(:,-) in B. 
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A 

ND_CROSS_pROD 

VA VB 

Figure 4.7: Example of DDCF Generator Node 

4.6.2 Simple DDCF Nodes 

When applied to DDCF graph nodes which are not compound nodes and which create dope vectors 

at loop level 0, the algorithm has the effect of incrementing the reference count to the array when 

the alias is created, and then immediately decrementing the reference count to the same array after 

the node is generated. It is possible but somewhat more complicated to statically decide that a 

given input for a given node should not be added to the consumed array list, because that input is 

aliased inside the node. The algorithm described in this paper does not go to that extent and at . 

loop level 0 it blindly decrements the reference count for everything in the consumed array list. 

4. 7 Unfinalized Nextified Variables 

Consider the following SA-C code, in which the final value of nextified variable B is not returned 

from the dependent loop: 

uint8[:,:] main (uint8 n, uint8 A[3,2], uint8 B[3,2]) { 
uint8 R[:,:] = 

for uint8 i in [n] { 
uint8 BB[:,:] =A; 
next A = 

for a in A dot b in B 
return (array ((a+b)/2)); 

next B = BB; 
} return (final (A)); 

} return (R); 

Within the dependent loop, Bis consumed by A's loop generator graph. The code generator will 

refrain from inserting B in the consumed array list because it is a nextified variable. To determine 

44 



R[:,:] 

Figure 4.8: Example of Unfinalized Nextified Variable 

that Bis unfinalized, the code generator looks for an edge that splits to a ND_NEXT node but never 

to a ND_G_OUTPUT node. Finalized nextified variables always output through a ND_G_OUTPUT 

node. Bis sent only to a ND_FORALL node and a ND_NEXT node but not a ND_G_OUTPUT 

node (Illustrated in Figure 4.8). Since this is statically determinable, the code generator will add the 

correct unique id for B to a list of unfinalized nextified variables and generate a decrement reference 

count for all elements in this list when it next processes the consumed array list. Note that the 

correct unique id for Bis taken by following the back-edge of B's ND_NEXT node. In this case, since 

B is a partial nextified alias, the back-edge references a different ND_G_INPUT _NEXT node than 

the one which created the edge split (see Figure 4.8). 
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Chapter 5 

Performance Evaluation 

This chapter presents space performance results for each of the garbage elimination techniques. 

All of the SA-C codes referred to in this chapter were taken from either the examples directory of 

the SA-C test suite or the sim_test directory. The examples directory consists of 154 SA-C codes 

and the sim_test directory has 169. More information regarding these codes is available from the 

Cameron research group. 

It is possible to produce a heaptrace for any SA-C host code program's execution, using the 

-heap command line switch. This heaptrace records all allocations and deallocations of memory 

blocks (specified as addresses) which occured while the host code was executing. The difference 

between the number of allocations and the number of matching deallocations is defined as the 

amount of garbage in the host code. All amounts of garbage are given in heap leak units rather than 

bytes. For example, if the amount of garbage is given as 4, there were 4 heap leaks, rather than 4 

heap leaks, each of 200 bytes for 800 bytes total. 

To determine the space performance benefit derived from each of the garbage elimination tech-

niques of pointer reuse and reference counting it is best to apply only one or the other at a time. 

The first two sections evaluate each of the techniques by itself. The last section presents several 

specific performance results, indicating garbage-free host code is consistently produced when both 

techniques are applied in unison. 
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5.1 Evaluation of Reference Counting 

The amount of garbage (in heap leak units) which reference counting can eliminate is defined as 

reference counting's space performance upperbound. Assume host code is generated which ref-

erence counts its array data fl.ow through its DDCF graph using input edges/aliases as producers 

and function level DDCF nodes as consumers (as described in the last chapter). Reference counting 

will only occur for each of the declared host code array structs. There will be at least one host code 

array struct for each array declared/ defined in the SA-C code, including loop generator variables, 

which are not explicitly defined. Intermediate structures and garbage resulting from statically de-

terminable heap leaks will not be considered. It is possible for each of these array structs to have its 

mem pointer pointing to a distinct memory block. The code generator will create unique ids for all 

variables in the DDCF graph. The code generator can determine the total number of array structs it 

will create locally for each function and the number of arrays which will be output from the main() 

function. The difference of the two values is reference counting's space performance upperbound. 

The following values are relevant: 

• Let a = the total number of host code array structs 
• Let f3 = the total number of arrays output from main 

• Let A = the total number of memory allocations during program execution 
• Let F = the total number of matching frees 

• reference counting upperbound =a - f3 

• amount of garbage= A - F 

This upperbound is statically computed and is only correct for SA-C codes which do not contain 

user-defined functions which declare arrays as local variables. The local arrays for any function 

(including main()) are eliminated using reference counting. The latest they could be eliminated is 

the ending curly brace of the function's statement block. The upperbound computed above adds 

the array structs for non-main locals exactly once. In reality, if a non-main function is invoked 

more than once, but no reference counting has been performed, then multiple leaked copies of each 

non-main function local array will exist as garbage, causing the amount of garbage to exceed the 

statically computed upperbound. Therefore this upperbound should be used only as a rule of thumb, 

rather than a hard and fast value. Here is an example using the SA-C code histograms. sc taken 
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from the SA-C examples test suite. This code does not include any user-defined functions. It is 

executed without reference counting but with all statically determinable garbage eliminated through 

pointer reuse. 

• a= 24, f3 = 4, A= 67, F = 55 
• reference counting upperbound = a - f3 = 20 

• amount of garbage= A - F = 12 

Since the amount of garbage remaining (12) is less than or equal to the reference counting 

upperbound (20), it follows that reference counting should eliminate the remaining 12 pieces of 

garbage. Executing histograms. sc again but this time with reference counting and pointer reuse 

enabled yields the following results: 

• a = 24, /3 = 4, A = 67, F = 67 
• reference counting upperbound = a - f3 = 20 

• amount of garbage= A - F = 0 

The reference counting technique eliminated the remaining garbage, producing garbage-free host 

code. 

5.2 Evaluation of Pointer Reuse 

To show the validity of pointer reuse, reference counting is disabled while pointer reuse is enabled. 

If for every SA-C code in the test suite that does not contain function calls, the difference (A - F) 

is less than its respective reference counting upperbound, then pointer reuse is functioning correctly 

and reference counting should eliminate the remaining heap leaks. 

5.3 Performance Results 

The following 10 SA-C codes comprise Test Suite A (Table 5.1). The codes were selected to illustrate 

certain situations as indicated in the list below: 

1. array _reductions.sc - various array reductions 

2. concat_test.sc - concat and tile 

3. histograms.sc - array histograms 
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4. mergesort.sc - function call to user-defined function with local array 

5. probel.sc - function call to user-defined function with local array that takes a dope vector of 

its input array 

6. slices.sc - substructures taken using array reference nodes 

7. tst121.sc - partial nextified aliasing and unfinalized nextified variable (from sim_test direc-

tory) 

8. tst4 70.sc - tile in a function call 

9. whilel.sc - loops with loop-carried dependencies 

10. zero_trips.sc - zero extent arrays 

SA-C Code Allocations Garbage (-nrc) Garbage (ptr reuse only) 
array _reductions.sc (26) 26 16 9 

concat_test.sc (7) 109 27 7 
histograms.sc (20) 67 67 12 
mergesort.sc (9) 58 39 19 

probel.sc (6) 173 173 4 
slices.sc (1) 11 11 1 
tst121.sc (6) 37 37 3 
tst470.sc (5) 122 57 12 
whilel.sc (2) 106 32 2 

zero_trips.sc (2) 4 3 2 

Table 5.1: Test Suite A 

The first column of Table 5.1 gives the name of the SA-C code as well as the statically computed 

reference counting upperbound in parentheses. Each SA-C code was executed using -heap. The 

second column lists the total number of allocations found in the resulting heaptrace file. The third 

column gives the amount of garbage produced when the respective SA-C code was executed using 

-nrc. The final column gives the amount of garbage produced for SA-C code in which reference 

counting was disabled, but pointer reuse was enabled. Since mergesort. sc and tst470. sc contain 

function calls to user-defined functions with local arrays the amount of garbage produced when only 

pointer reuse was employed does exceed the statically computed upperbound for reference counting. 
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The other SA-C codes are below the limit however, including probe!. sc, which only created sub-

structures (dope vectors) of its input array inside its user-defined function. 

When both reference counting and pointer reuse are employed, the total amount of garbage for 

all 10 test codes is 0, indicating garbage-free host code. The sum total amount of garbage for all 

154 test codes in the examples test suite plus the 169 test codes in the sim_test test suite is 0. 

5.4 Speed Performance 

SA-C Code Execution Time Execution Time (-nrc) I 
array _reductions.sc {26) 0.000u O.OOOu 

concaLtest.sc (7) 0.020u O.OlOu 
histograms.sc {20) 0.000u 0.000u 
mergesort.sc (9) 0.000u O.OOOu 

probel.sc {6) 0.000u 0.000u 
slices.sc (I) 0.020u O.OOOu 
tstl21.sc {6) 0.0lOu 0.0lOu 
tst470.sc (5) O.OOOu 0.000u 
whilel.sc {2) 0.0lOu 0.000u 

zero_trips.sc {2) O.OOOu 0.000u 

Table 5.2: Test Suite B 

Table 5.2 gives the name of the SA-C code as well as the execution time with and without 

reference counting (using the -nrc) switch. All times are given in microseconds. slices. sc shows 

that reference counting aliases (resulting from dope vectors or conditional expressions) results in 

a speed performance decrease because the reference count is incremented and then immediately 

decremented (fruitlessly used). Overall for this test suite, reference counting seems to have little 

impact on execution times. 

5.5 Complexity Analysis 

The following figures illustrate typical DDCF graph node arrangements found in most SA-C pro-

grams. For each of the arrangements, space requirements will be evaluated in addition to performance 

gains resulting from either pointer reuse or reference counting techniques. 

1. Figure 5.1: 0, ... , m Nested DDCF graphs, exhibiting fine-grained parallelism by moving 

around in a common source array (the array from the outermost loop) 
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2. Figure 5.2: 0, ... , m DDCF graphs exhibiting temporal parallelism by sharing a common source 

array 

3. Figure 5.3: 0, ... , m DDCF graphs prohibiting parallelism by imposing a sequential execution 

order on the graphs 

O(k"3) 
0(k"2) 

O(k"l) m 

Figure 5.1: Example of Nested DDCF Graphs 

Assume an array A has size n. The space complexity for Figure 5.1 is O(n) since all the inner 

loops work from the outermost source array A. The reference counting scheme employed in this 

paper will increment the reference count only at level 0 and decrement again only at level 0, so 

reference counting this type of graph provides no performance gain. Consider the scenario in which 

the innermost loop creates a new array B also of size n. If the innermost loop iterates k times, pointer 

reuse ensures that at any time, only 1 copy of B exists. Without it, the innermost loop generates 

O(k) versions of B and the innermost loop is executed a polynomial number of times by its outer 

loops. If each outer loop also iterates k times, then these graphs require O(km) space. Thus these 

graphs have polynomial space requirements if they create an array in their innermost loop. Pointer 

reuse yields a polynomial performance gain by keeping the space requirement to 0(1) at any give 

time. 

The space complexity for Figure 5.2 is also O(n) because all the graphs share the same source 

array A. Reference counting provides no direct performance gain, because you will never be able to 

free A any sooner than the last of the m graphs finishes using it. Reference counting allows these 

m graphs to be executed in any non-deterministic order without worrying about losing A. Pointer 

reuse also yields no performance gain on this type of graph. 
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Figure 5.2: Example of Wide DDCF Graphs 

ND_FUN 

Figure 5.3: Example of Long DDCF Graphs 

The space complexity for Figure 5.3 is O(m*n) assuming m to somehow be non-constant. These 

SA-C programs take an array A and produce the array A' which is then used to produce A2 and so 

on m times. Each array requires n elements. Reference counting yields a linear performance gain by 

freeing A after A' is created, keeping the space complexity to O(n) throughout. Pointer reuse does 

not yield any performance gain for this type of graph either. Since mis unlikely to be non-constant, 

reference counting really yields only a constant performance gain. 
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Chapter 6 

Con cl us ions 

At the language definition level, SA-C is a strict single-assignment language with side-effect free 

statement blocks. To implement these semantics in C host code, several design choices were made. 

The single-assigment semantics of SA-C were implemented using C pointer semantics, resulting in 

heap leaks. These occur when a pointer points at one thing and then it points at another thing or 

nothing at all, possibly losing the address to the first thing it pointed to. Dynamic array extents 

prevent the code generator from statically determining if an array reference is to an empty array 

or not. This requires a costly host code size check before any arbitrary access through a reference 

(dereference) can be made. 

Any DDCF graph node will contain a topologically sorted list of subgraph nodes. Using the 

DDCF graph, host code is sequentially generated and at this time, the topologically sorted order 

is used to generate all the single-assignment statements of the language. As previously shown, 

the next keyword is position sensitive when defining one nextified variable in terms of an earlier 

nextified variable. It will create either a full or a partial nextified alias depending only on the order 

of the nextified assignments. In a strict single-assignment language it should be possible to execute 

a group of statements in any order desired and always receive the same execution result. This is 

not possible in SA-C loops which contain loop-carried dependencies, because sequential ordering has 

been applied for nextified assignment. 

Since pointer reuse ensures that only one reference to each array payload comes out of a loop, 

reference counting can be performed outside of all loops, at the function level. The reference count is 

53 



taken as the length of the alias chain including the terminating creator reference. Reference counting 

at the function level is beneficial for two reasons. First it avoids incrementing and decrementing ref-

erence counts inside of loops. Second, determining when to eliminate garbage created from an inner 

loop is dependent on if it is referenced by the outermost loop, making it difficult to determine when 

to safely eliminate garbage. Reference counting at the function level has none of these difficulties 

because it simply happens between loop level 0 DDCF nodes. 

It has been shown that by combining some static dependency analysis (pointer reuse) with 

a simple reference counting scheme that all garbage can be eliminated from generated SA-C host 

code. Furthermore, the majority of the garbage is eliminated simply by applying the static technique 

of pointer reuse. Since reference counting is beneficial only for a certain type of SA-C program it 

is an area of future research to enable the SA-C compiler to statically determine whether it should 

turn on or off reference counting. 
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