UNITED STATES
 DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY
 Water Resources Divisiori

SUMMARY OF ALLUVIAL-CHANNEL DATA FROM RIO GRANDE CONVEYANCE CHANNEL, NEW MEXICO, 1965-69

by J.K. Culbertson, C.H. Scott, and J.P. Bennett

Open-file Report
Fort Collins, Colorado August 1971

TABLE OF CONTENTS

Page
Abstract 7
Introduction- 9
Description of study reaches 12
Rio Grande conveyance channel near Bernardo- 12
Rio Grande conveyance channel near San Marcial, N. Mex. 18
Rio Grande conveyance channel near Nogal Canyon, N. Mex. 18
Data collection methods and equipment 19
Water discharge 19
Water temperature 19
Bed configuration- 20
Cross-sectional areas 23
Water-surface slope 24
Vertical-velocity profiles 25
Suspended-sediment samples 30
Point-integrated sediment samples 30
Depth-integrated samples 33
Bed material 35
Section data 38
Reach data 43
References 48
Appendix 1. Descriptions of observation conditions 51
Appendix 2. Basic data 92

ILLUSTRATIONS

Page
Figure 1. Location map, Rio Grande conveyance channel near Bernardo, N. Mex 13
2. Photographs showing typical views of Rio Grande conveyance channel near Bernardo 15
3. Photographs showing control weir, Rio Grande conveyance channel near Bernardo 17
4. Photograph showing boat with sounder equipment 21
5. Photograph showing meter stack and digital- counter box used for obtaining vertical profiles of point velocities 26
6. Typical velocity profiles over dunes, Rio Grande conveyance channe1 near Bernardo, February 4 and May 12, 1965 29
7. Photograph showing U. S. DH-48 sampler modified for point-integrated sampling 31
8. Photographs showing bed material sampling equipment 37
9. Hydrographs of water discharge and sediment concen-tration at the weir (section 194), Rio Grandeconveyance channel near Bernardo--------------------41
10. Sketch showing plan view of Rio Grande conveyance channel near Bernardo 44
Page
Figure 11. Graph showing water-surface elevations for
Rio Grande conveyance channel near Bernardo,
 54
12. Longitudinal profile, Rio Grande conveyance channel near Bernardo,
May 12, 1965 57
13. Longitudinal profile, Rio Grande conveyance channel near Bernardo, June 2, 1965 61
14. Longitudinal profile, Rio Grande conveyance channel near Bernardo, June 3, 1965 61
15. Typical cross section for flat bed, Rio Grande conveyance channel near Bernardo,
16. Longitudinal profile, Rio Grande conveyance channel near Bernardo,
May 4, 1966 66
17. Cross sections, Rio Grande conveyance channel near Bernardo,
May 4, 1966 68
18. Cross sections showing lines of equal velocity, Rio
Grande conveyance channel near Bernardo,

Figure 19. Cross sections, Rio Grande conveyance channel near Bernardo, February 14-15, 1967-----------------------7 76

Figure 20. Cross sections, Rio Grande conveyance channel

Figure 21. Cross sections, Rio Grande conveyance channel

Figure 22. Cross sections, Rio Grande conveyance channel near Bernardo, June 11, 1969 87

TABLES

Page
Table 1. Summary of available data- 93
2. Measured velocity, V, in feet per second, at
indicated heights above riverbed, y, in feet 98
3. Summary of size analyses and related data for point-
integrated sediment samples 120
4. Summary of size analyses and related data for depth-integrated sediment samples----------------------------129
5. Summary of size analyses of bed material 138
6. Cross-section data for Rio Grande conveyance channel
near Bernardo, N. Mex. 1437. Summary of average values for streamflow and sedimentdata, Rio Grande conveyance channel near Bernardo,
N. Mex. 166
8. Summary of measured suspended-sediment analyses,May 27-28, 1965, Rio Grande conveyance channel nearBernardo, N. Mex.168

SUMMARY OF ALLUVIAL CHANNEL DATA FROM RIO GRANDE CONVEYANCE CHANNEL, NEW MEXICO, 1965-69

By J. K. Culbertson, C. H. Scott, and J. P. Bennett

Abstract

The Rio Grande conveyance channel near Bernardo, New Mexico was the site for a field study of mechanics of flow and sediment transport. During the period of study, the channel bed consisted of sands with median diameters ranging from 0.15 to 0.35 mm and the bedform varied from dunes to flat. A small amount of data was obtained at two other locations in the Rio Grande conveyance channel system.

This report summarizes the basic hydraulic and sediment data obtained during the study. Brief descriptions of equipment and general procedures of sampling are followed by descriptions of two sets of data; the first set encompasses a series of measurements taken at individual cross-sections and intended to be descriptive of conditions at respective points along the reach. The second set encompasses a series of measurements intended to characterize the entire length of the Bernardo reach of the conveyance channel system.

The data described herein which includes water discharge, crosssectional area, channel width, slope, point velocity, point-integrated sediment concentration, depth-integrated sediment concentration, and bed material, are summarized in eight tables.

Data were obtained for water discharges ranging from 560 to 1,860 cfs and slopes ranging from 0.00041 to 0.0011 . Also observed were crosssectional area variations from 143 to $425 \mathrm{ft}^{2}$, and suspended-sediment concentration of materials in all sizes ranging from 1240 to $7700 \mathrm{mg} / \mathrm{l}$.

As part of the research program of the Water Resources Division of the U. S. Geological Survey, a field study of the mechanics of water and sediment movement in alluvial channels was started in July, 1964. The site selected for the study was the Rio Grande conveyance channel near Bernardo, N. Mex. This site was selected because (1) the channel had a sand bed, (2) bed forms ranging from dunes to flat bed and standing wave, had been observed in the channe1, (3) a concrete weir across the channel acted as a control for accurate measurement of water-discharge and as a sampling point for the total sediment concentration, and (4) waterdischarge could be controlled by means of a gated headworks structure. A few sets of data obtained at two other sites, the Rio Grande conveyance channel near San Marcial, N. Mex., and the conveyance channel near Nogal Canyon, N. Mex., are included in this report.

The primary objective of this study was to collect field data that would describe the interrelations among hydraulic and sediment transport variables over the range of bed forms found in sand channels. The secondary objective was to obtain data on the resistance to flow resulting from different bed-forms in sand-bed channels. This report is a compilation of the hydraulic and sediment data collected in the pursuit of these objectives from the Rio Grande conveyance channel system at Bernardo, San Marcial, and Nogal Canyon during the period 1965 to 1969. The data may be divided into two groups; those collected to describe the conditions at individual cross-sections, and those characterizing the entire length of a particular reach.

The report contains, first, a brief general description of the reaches of the Rio Grande conveyance system in which the measurements were made. This is followed by a description of data collection methods and equipment, and by a discussion of the two sets of data. Appendix 1 is a general description of the conditions prevailing in the study reach at the time each set of data was collected and Appendix 2 consists of the tables of data collected.

Portions of the data presented in this report have been mentioned in earlier interpretative reports. These reports include discussions by Scott and Culbertson (1967) and Scott and others (1969) on flow measurement techniques which use florescent tracers. Scott (1968) and Scott and Culbertson (GSR 700D) reported on resistance to flow in flat-bed alluvial channels, while Culbertson and Scott (1970) discussed sand bar development and movement in alluvial channels. Other data from this report were used by Fischer (1967) in a discussion of transverse mixing in alluvial channels.

The project was started under the general supervision of Luna B. Leopold, Chief Hydrologist, Water Resources Division, and later Ernest L. Hendricks, Chief Hydrologist, Water Resources Division. Technical guidance was given by P. C. Benedict, R. W. Carter, Tom Maddock, Jr., D. B. Simons, and others from the Geological Survey.

The principal investigators were J. K. Culbertson and C. H. Scott, with assistance from C. F. Nordin, Jr., E. V. Richardson, W. F. Curtis, V. W. Norman, J. D. Dewey, and others.

DESCRIPTION OF STUDY REACHES

Rio Grande Conveyance Channel near Bernardo

The part of the Rio Grande conveyance channel system located near Bernardo, N. Mex. is approximately 6.8 miles long from the gated headworks structure to the point at which it returns to the Rio Grande floodway channel (fig. 1). The channel was originally a riverside drain. In 1948,

Figure 1 (caption on next page) belongs near here
the river broke through into the drain at the location of the present headworks. The Bureau of Reclamation installed a heading and did some channel straightening to turn the channel into the first segment of the present conveyance channel system. The capacity of the headworks is nominally $2,000 \mathrm{cfs}$ (cubic feet per second), however, the discharge in the channel usually is limited to less than $1,600 \mathrm{cfs}$.

Figure 1.--Location map, Rio Grande conveyance channel near Bernardo, N. Mex. Stationing is in 100 -foot increments.

The channel banks are composed of a sandy clay, and are fairly well stabilized by range grass and salt cedar, as can be seen in figure 2 a and b. Where bank erosion has occurred, the banks have been stabilized with

Figure 2 (caption on next page) belongs near here
rock and gravel reaches. A few hundred feet of Kelner jetties also have been placed along some short reaches for bank stabilization. The channel bed consists of sands with median diameters varying from 0.15 to 0.35 mm (millimeters). Figure $2 c$ and d show the channel operating at typical discharges.

(a) Sandy clay banks with salt cedar.

(b) Sandy clay banks with range grass.

Figure 2.--Typical views of the Rio Grande conveyance channel near Bernardo, N. Mex.

(c) Typical low discharge situation.

(d) Typical high discharge situation.

15a (16 fols)

In 1964, prior to the initiation of this study, a concrete control structure was constructed 19,800 feet downstream from the headworks. This structure, referred to as a weir in this report, acts as a control for the gaging station installed at the site. Baffles placed on the upstream apron of the weir force all sediment into suspension, and suspended sediment samples obtained at a sill located on the downstream apron of the weir represent total sediment in transport. The sill is designed so that the nozzle of a US DH-48 suspended-sediment sampler (The US DH-48 will be discussed later in this report) can traverse the entire depth of flow at the weir section. That is, at the bottom of the sampler's traverse, its nozzle rests directly on the sill of the weir, which means that a sample has been collected that represents all of the suspended material, and therefore, all the sediment moving through the section. Gonzalez and others (1969) described the construction of the weir and evaluated its effectiveness as a control structure. Figure 3a shows the sampling sill and the orifice of a bubbler gage installed at the weir. Figure 3 b shows

Figure 3 (caption on next page) belongs near here
the entire weir, baffles, sampling sill, and footbridge, and Figure 3c shows a US DH-48 sampler being lowered to the sampling sill along specially prepared guides which are positioned from the footbridge.

(a) Sampling sill and bubbler gage orifice.

(b) Weir baffles, sil1, and footbridge.

Figure 3.--Control weir, Rio Grande conveyance channel near Bernardo, N. Mex.

$$
17 \text { (17a fols) }
$$

(c) U.S. DH-48 smapler in use from footbridge.

17a (18 fols)

Rio Grande Conveyance Channel Near San Marcial, N. Mex.

The San Marcial reach is in that part of the conveyance channel that conveys flow from the San Acacia diversion dam to Elephant Butte Reservoir. Data given in this report were collected at a location near San Marcial which is about 41.7 miles downstream of the headworks at San Acacia and about 59.8 miles downstream of the headworks at Bernardo.

The conveyance channel near San Marcial is a dug channel with a capacity of about 2,000 cfs. The channel bed in this reach consists of sand having a median diameter of about 0.18 mm . The channel banks are sand and gravel.

Rio Grande Conveyance Channel Near Nogal Canyon, N. Mex.

The Nogal Canyon reach is about 18.8 miles downstream from the San Marcial reach. This reach has a sand bed consisting of material having a median diameter of about 0.18 mm . The channel banks in this reach are unstabilized sand and clay. At the time the data of this study were collected, the banks were deteriorating under high-flow conditions.

DATA COLLECTION METHODS AND EQUIPMENT

Water Discharge

Water discharge was obtained either from the record of stage and the stage-discharge relation for the gaging station at the weir structure at station 194 or from water-discharge measurements. Gonzalez and others (1969) discuss the stage-discharge relation for the gaging station at the weir. The water-discharge measurements were made at the cableway of U. S. Geological Survey gage $08-3319.9$, which is located at station 180 , 100 feet upstream of the US 60 highway bridge. The measurements were made by current meter using standard U. S. Geological Survey methods as described by Buchanan and Somers (1969).

The discharges reported in the tables of basic data are the means for the periods unless the discharge varied considerably, and then the discharge at the time of observation is reported.

Water Temperature

Water temperatures were determined several times during each observa tion period. Temperatures are reported to the nearest degree Celsius in the tables of basic data. The range in temperature usually was not more than two or three degrees Celsius during any period of observation.

Bed Configuration

Profiles of the stream bed were obtained with an ultrasonic sounder (Richardson, and others, 1961). The sounder was mounted in a boat with the transducer in a well near the center of the boat (fig. 4). The bed form classification used herein conforms to that presented by the Task Force on Bed Forms in Alluvial Channels (1966). Longitudinal profiles

Figure 4 (caption on next page) belongs near here
of the bed form were obtained for those data-collection periods when the bed form was transition or dunes. The profiles generally were obtained at approximately the quarter points of the channel width. Because the speed of the boat varied somewhat through the length of the reach, marks at 50 -foot intervals of boat movement, as indicated by stationing on the bank, were placed on the chart of the sounder profile. Variations in length of chart per unit distance traversed by the boat usually were not large, and an average scale value was computed and applied to each separate longitudinal profile.

Figure 4.--Boat with sounder equipment.

The average length of dunes was computed by dividing a distance by the number of dunes occurring in that distance, and the average height of dunes was computed as the sum of heights, measured from crest to downstream trough, divided by the number of heights measured on the profile. This method of determining average length and height of dune is subjective because different persons may not agree as to what should be called a dune on the profile, particularly for conditions where smaller dunes appear to be superimposed on larger dunes. The classification of the bed form as dune, transition, or flat is based on the observer's best judgment and is also, therefore, somewhat subjective.

Cross-sectional Areas

Cross-sectional areas were determined either from cross section profiles obtained with the ultrasonic sounder or from depths obtained with a sounding rod.

When profiles were obtained with the sonic sounder, the transducer was placed a known distance below the water surface in the well in the boat. A cable was stretched tightly across the section and the boat was hooked to the cable by means of a crossarm. The boat was pulled across the channel at a constant rate of about one-half foot per second by means of a second cable and a constant-speed-drive motor. Reference marks at two-foot intervals of distance traversed in the cross section were marked automatically on the sounder chart of the profile. The depths at verticals near the banks were determined with a wading rod. Cross-sectional profiles usually were determined with the ultrasonic sounder when there were dunes because of the softness of the bed and the relatively large changes in bed elevation from point-to-point in the cross section. The cross-sectional area was determined by planimetering the cross-section profile, taking into account the distance of the transducer face below the water surface.

Cross sections usually were obtained with a sounding rod when the bed was flat. The bed for these conditions was hard with relatively constant elevation, and it was possible to determine depth to the nearest 0.1 foot with the sounding rod. It was assumed that the depth at a given vertical applied to half the distance between adjacent verticals, and the area of the cross section was computed as the sum of subareas.

Water-surface Slope

Water-surface slopes were determined from observations of watersurface elevation near the banks, either with a level and rod or from staff-gage readings.

Water-surface elevations generally were obtained twice a day at 100foot intervals over reaches 1,000 to 1,200 feet in length. The watersurface elevations were plotted and a mean slope was determined graphically.

Because the readings were obtained near the banks, local conditions could affect water-surface elevation. Also, with a dune bed the location of a dune near the bank could affect the water-surface elevation. However, water-surface slopes determined by this method generally were consistent for any given day.

Vertical-velocity Profiles

Vertical-velocity profiles were obtained with standard Price current meters equipped with magnetic heads which produced two impulses per revolution of the current-meter bucket wheel. Five current meters were mounted on a sounding rod, and the impulses from the meters were recorded by digital counters (fig. 5) which were started and stopped simultaneously

Figure 5 (caption on next page) belongs near here
with a single switch. Velocity at a point was computed from counts produced by the current meter for a one-minute period. A common meter rating that was an average of the five individual meter ratings was used for converting meter counts per unit time to stream velocity. The maximum difference in velocity for a given meter count per unit time between the average rating and any of the individual ratings was about one percent. The results of extensive tests of meters indicate that an average rating for meters can be used (Smoot and Carter, 1968). The ratings with the meters all mounted on one rod were checked in a towing tank, and no appreciable departure from the individual ratings was found for meter spacing as close as 0.5 foot (R. W. Carter, written commun.).

Figure 5.--Meter stack and digital-counter box used for obtaining vertical profiles of point velocities.

Because the velocity at as many as five points in the vertical could be obtained at one time, it was possible to obtain 10 to 12 verticalvelocity profiles at a cross section in 20 to 30 minutes. Usually the bottom four meters were set at fixed depths, and only the position of the top meter was changed when a large change in depth of flow occurred from one vertical to another. The depth of flow at the vertical was measured on the rod on which the meters were mounted, and it was assumed that the meters were the same distance above the bed as they were above the base plate of the rod. At some verticals the rod would settle because of the weight of the rod and meters and the softness of the bed. When this happened, the indicated depth of the rod was noted, and the actual depth was measured with another sounding rod and the indicated distances above the bed at which the velocities were obtained were adjusted accordingly.

For the flat-bed condition, velocity profiles, when plotted in the form of $\log _{10}(y)$ versus velocity, where y is the vertical elevation above the stream bed, generally were consistent except at verticals near the banks. Near the banks, the slopes (the difference in velocity at y and $10 y$ distances above the bed) and intercepts (the velocity 1.0 foot above the bed) of the profiles tended to be variable because of the roughness of the banks.

Velocity profiles for dune-bed conditions generally were less consistent than for plane bed. The slopes and intercepts of the velocity profiles varied from vertical-to-vertical across the width of the channel. The value of the slope and of the intercept of the profile depended on the location of the vertical with respect to a dune. Figure 6 shows typical velocity profiles obtained in a downstream direction from points

Figure 6 (caption on next page) belongs near here
near the middle of the channel on February 4 and May 12, 1965. Near the crests of the dunes the velocities were high and nearly equal at all points in the vertical. This results because of acceleration of the flow caused by the decrease in depth as the crest of the dune is approached. In the trough of the dune the velocity one foot from the bed was relatively low, and the velocity increased considerably from near the bed to near the surface in the vertical. This results because of the deceleration of the flow as the depth increases rapidly from the crest to the trough of the dune. Immediately downstream of the crest of the dune, flow near the bed may have been in an upstream direction. No attempt was made to determine the direction of flow in the troughs of dunes, and some velocities obtained near the bed in troughs may actually have been negative, even though they were recorded as positive. Velocity profiles were especially difficult to obtain in dune troughs due to sand stopping the lower meters before sufficient counting time had elapsed.

Figure 6.--Typical velocity profiles over dunes,
Rio Grande conveyance channel near Bernardo, N. Mex., February 4 and May 12, 1965.

Suspended-Sediment Samples

Point-integrated sediment scmples.--Point-integrated samples of suspended sediment were obtained at five points in each of three to five verticals in a cross section. The samples at each point were analyzed for concentration and for size distribution of sediment coarser than 0.062 mm . The analysis was performed using a visual-accumulation-tube according to the methods described by Guy (1969), and by the U. S. Inter-Agency Committee on Water Resources (1957). None of the point samples were analyzed for size distribution of sediment finer than 0.062 mm. The samples were taken with a U. S. DH 48 sampler modified for point sampling (fig. 7). The modified sampler was equipped with a pressure

Figure 7 (caption on next page) belongs near here

Abstract

equalization chamber that was connected to the sample chamber and vented to the outside. Watertight covers sealed the water-inlet nozzle and the air-outlet port. The covers could be opened and closed simultaneously by means of a pull cable.

Figure 7.--U.S. DH-48 sampler modified for point-integrated sampling.

The length of sampling time varied inversely with stream velocity. The sampling time varied from 5 to 6 seconds for high-velocity flows, to 12 to 15 seconds for low-velocity flows. Because the local flow conditions could change with time at a given vertical, particularly with the dune bed, it was desirable to obtain samples at all points in the vertical as quickly as possible. Therefore, only one to three samples were obtained at a given depth in each vertical and, because of the short sampling time involved, some variability in the concentration sampled at a given depth probably was introduced because short-term fluctuations of concentration were not adequately averaged.

Depth-integrated samples.--Depth-integrated samples of suspended sediment at a cross-section were obtained with a U. S. DH-48 sampler. In the sampling method used (the Equal-Transit Rate or ETR method), the sampler is moved at the same transit rate for each one of a set of equally-spaced verticals in the cross-section. The sediment concentration of the composite of all samples collected from the cross-section is the average concentration of the suspended material moving in the sampled zone (Guy and Norman, 1970 or Task Committee on Preparation of Sedimentation Manual, 1969). Samples were collected at equally spaced verticals 5 feet apart, and the composited samples for each cross section were analyzed for concentration and for size distribution of the fraction of sediment coarser than 0.062 mm . The size distribution of sediment coarser than 0.062 mm was determined by the visual-accumulation-tube method (U. S. Inter-Agency Committee on Water Resources, 1957, or Guy, 1969). In addition, the size distribution of sediment finer than 0.062 mm was determined for a few samples by the pipette method (U. S. Inter-Agency Committee on Water Resources, 1941, or Guy, 1969).

Depth-integrated samples of suspended sediment were obtained by the ETR method with a U. S. DH-48 sampler at verticals spaced at 5 -foot intervals across the weir structure (section 194). A sampling lip with a guide slot allowed the nozzle of the DH-48 sampler, which was mounted on a guide frame, to traverse the full depth of flow. Therefore, samples which represented essentially the total material passing the weir structure were obtained. Each set of samples was composited and analyzed for concentration and for size distribution of sediment coarser than 0.062 mm . Size distribution of sediment finer than 0.062 mm . also was determined for a few samples.

In this report, samples obtained by the ETR method at the sampling section on the weir structure (section 194) will be referred to as totalsediment samples, and samples obtained by the ETR method at any other sampling section will be referred to as measured suspended-sediment samples.

Samples of bed material were obtained usually at 10 -foot intervals across cross sections in the study reach. Analyses of samples from the individual points in cross sections for two flow conditions indicated no great variation in size distribution of bed material from point-to-point in the cross sections, and therefore, all other bed-material samples were composited into a single sample for a cross section. The samples were analyzed for size distribution by the visual-accumulation-tube method in the laboratory. The values of d_{16}, d_{50}, and d_{84} were scaled from the original curve on the visual-accumulation-tube chart. The value of the gradation coefficient, σ, was computed from the equation

$$
\begin{equation*}
\sigma=\frac{1}{2}\left(\frac{d_{50}}{d_{16}}+\frac{d_{84}}{d_{50}}\right) . \tag{1}
\end{equation*}
$$

Samples of bed material usually were obtained with a hand-held clamshell type sampler (fig. 8a) for flow depths greater than three feet. The

Figure 8 (caption on next page) belongs near here
sampler was equipped with a seal to prevent loss of fine material from the bucket as the sampler was raised to the surface. The bucket sampled to a depth of about 0.1 foot. For flow depths less than three feet, samples were obtained either with the clam-shell sampler or with U. S. BMH-53 piston-type (fig. 8b) sampler (Inter-Agency Committee on Water Resources, 1959). The core barrel of the piston sampler is eight inches long, but only the top 0.1 foot of the core was retained for analysis.

(a) Hand-held clam-shell type sampler.

(b) U.S. BMH-53 piston type sampler. Rule is 6 inches long.

Figure 8.--Bed material sampling equipment.

The data collected for the description of flow conditions at individual cross-sections in the Bernardo, San Marcial, and Nogal Canyon reaches of the Rio Grande convey system are summarized in tables 1 through 5 of appendix 2. Given in appendix 1 are detailed descriptions of the flow and channel characteristics prevailing in the reaches prior to and during the data collection periods. The authors feel that before one can intelligently utilize the data in appendix 2 , he must be thoroughly familiar with the general conditions prevailing in the channel at the time the measurements were made. Hence, it is strongly recommended that before utilizing any of the data in appendix 2 , one study the sections of appendix 1 pertinent to the particular data to be used.

Table 1 is a summary of available section data. The data are listed in chronological order for the Bernardo, San Marcial, and Nogal Canyon sites. The term section, as used in this report, refers to the crosssection location. The number assigned to a section for the Bernardo observations is the distance downstream, in hundreds of feet, from the first cross section downstream from the headworks. The first cross section, section 0 , is 400 feet downstream from the headworks. For example, section 20 is 2,000 feet downstream from the first cross section and 2,400 feet downstream from the headworks. The number assigned to a section for the San Marcial and Nogal Canyon observations is the distance, in hundreds of feet, upstream of Elephant Butte dam. For example, section $2261+00$ in the San Marcial reach is 226,100 feet upstream of Elephant Butte dam.

In table 1, water discharge, cross-sectional area, water surface width and slope, and bed form were determined as discussed earlier in this report, and any special conditions prevailing are discussed in appendix 2. In this table, the notation "Reach" indicates that the conditions listed are averaged over the number and bed-form-type of cross-section listed in the remarks column; further detail will be found in appendix 2.

Figure 9 shows daily-mean water discharge and daily-mean sediment concentrations for 10-day periods prior to the day on which data were collected for each of the observation periods. This information should be considered in interpreting any given set of data shown in the tables of basic data.

Figure 9 (caption on next page) belongs near here

Table 2 gives measured velocities at five points in the vertical in some of the cross-sections listed in Table l. As mentioned previously, the velocities were measured using a rack of five Price current meters and a counting period of 60 seconds. Typical velocity profiles over a dune bed are plotted in Figure 6.

Table 3 describes the size analyses and related data for the pointintegrated sediment samples. As mentioned in an earlier section, the samples were collected using a modified US DH-48 sampler, and were analyzed using the visual-accumulation-tube method. At sampled verticals in the cross-section, size analyses are given for each point in each vertical. The analyses are both as percent finer than a given reference size, and as the concentration in mg / ℓ (milligrams per liter) in a given size-class. Related parameters reported are water discharge, water temperature, and total depth of flow at the point in the cross-section where the samples were collected.

Figure 9.--Hydrographs of water discharge and sediment concentration at the weir (section 194), Rio Grande conveyance channel near Bernardo, N. Mex.

Table 4 describes the size analyses and related data for the depthintegrated sediment samples. The sediment samples were collected using a U. S. DH-48 sampler and the ETR collection procedure and were analyzed using the visual-accumulation-tube method for the material coarser than 0.0625 mm , and the pipette method for material finer than 0.0625 mm . The weir at section 194 is designed so that all sediment moving in a vertical can be sampled using a U. S. DH-48 sampler. Therefore, the sediment sampled at the weir is the total-sediment load at that section. The analyses for a composite of the samples collected in the cross section at a particular time, are listed both in terms of percent finer than a given reference size, and as concentration in mg / ℓ in a given size range. Related parameters listed are water discharge, water temperature, median particle diameter, and gradation coefficient. The water discharge listed is that at the time the sediment samples were collected.

A summary of size analyses of bed material is listed in table 5. The material was obtained from the upper 0.1 ft . of the bed, and was collected using either a clam-shell type sampler or a U. S. BMH-53. The samples analyzed were actually composites of samples from several points (usually at 10 -foot intervals) in the cross section. Listed in addition to percent finer than a given reference size are median diameter, gradation coefficient, water discharge and temperature, and bed form.

Hydraulic data collected at each section for the Bernardo reach observations are shown in table 6, appendix 2. Generally, data were collected at sections 2,000 -feet apart for all reach observations, however, for some observations 4,000-feet intervals were used.

The data from table 6 were used to compile the average values shown in table 7. The channel was divided into two reaches separated by the weir. Channel widths upstream of the weir were greater, and more variable than the relatively uniform channel widths downstream of the weir, (fig. 10). Some of the observations were completed in one day,

Figure 10 (caption on next page) belongs near here
others over a two-day period.
Table 7 was developed from table 6 as follows: Water discharge is the mean discharge at the weir for the period of observation. Reach length is the length, in feet, between the two end sections. Mean watersurface width is the average width of all sections within the reach length. Mean depth of flow is the average of the areas of each section within the reach length divided by the average width. Mean velocity is the mean discharge during the period divided by the average area within the reach length. Water-surface slope is the mean slope of a graph of observed water-surface elevations versus distance. Water temperature is the average during the period of observation. Median diameter of bed material is the average of the d_{50} at each section within the reach length. Fall velocity and gradation are for the d_{50} shown.

Figure 10.--Plan view of Rio Grande conveyance channel near Bernardo, N. Mex.

The dominant bed form listed in table 7 is based on the qualitative field observations. If the majority of the sections were classified as dune, the reach length was classified as dune. For some observations, bed form varied from section to section, and no specific bed form was considered to be dominant, therefore, the reach was classified as transition. No practical method for the classification of discrete bed forms in an alluvial channel has been determined, therefore, the classification of bed form remains qualitative, based entirely on the authors' observations and judgements. In cases where the longitudinal variation of bed form was considered to be excessive, not all sections listed in table 6 were used in determining the reach data of table 7.

In table 7, the values of suspended-sediment concentration for all observations prior to September 30, 1965 are daily mean concentrations. They were determined from suspended-sediment samples collected usually at section 180. Beginning October 1, 1965, the suspended-sediment concentrations shown are total-sediment concentrations determined from samples collected at the weir, section 194 .

In table 7, Mannings n was computed for each reach observation from the relation

$$
\begin{equation*}
\mathrm{n}=\frac{1.49 \mathrm{D}^{2 / 3} \mathrm{~S}^{\frac{1}{2}}}{\mathrm{~V}} \tag{2}
\end{equation*}
$$

where D is mean depth of flow, in feet, S is average water-surface slope, and V is mean velocity, in feet per second. The range in values of Mannings n for the reach data was approximately two-fold. Flat-bed n values generally were 0.015 to 0.017 , dune-bed n values were 0.023 to 0.033 , and transition n values generally were between 0.019 and 0.024. The flow conductance coefficient, C / \sqrt{g}, was computed from the relation

$$
\begin{equation*}
C / \sqrt{g}=\frac{V}{(g D S)^{1 / 2}} \tag{3}
\end{equation*}
$$

where D is mean depth of flow, in feet, S is average water-surface slope, V is mean velocity, in feet per second, and 8 is the gravitational constant, 32.2 feet per second.

The range in values of C / \sqrt{g} for these data was from about 21 for the flat-bed condition to 11 for the dune-bed condition. Flat-bed values of C / \sqrt{g} generally ranged between 18 and 21 , and dune-bed values ranged between 10 and 13 . Transition reach values of $C / \sqrt{8}$ generally were between 13 and 18 .

For the May 27 and 28, 1965 observations, measured suspended-sediment samples were collected at all sections in the reach. These observations (table 6) illustrate the unsteady sediment transport from section to section through the length of the conveyance channel. Table 8 gives the particle-size distributions and concentrations in class of these samples. The format of table 8 is essentially the same as that of table 4.

REFERENCES

Buchanan, J., and Somers, P., 1969, Discharge measurement at gaging stations: U. S. Geol. Survey Tech. Water Resources Inv., Book 3, Chap. A8, 65 p.

Culbertson, J. K., and Scott, C. H., 1970, Sand-bar development and movement in an alluvial channel: U. S. Geol. Survey Prof. Paper 700-B, p. B237-B241.

Fischer, H. B., 1967, Transverse mixing in a sand-bed channel: U. S. Geol. Survey Prof. Paper 575-D, p. D267-D272.

Gonzalez, D. D., Scott, C. H., and Culbertson, J. K., 1969, Stagedischarge characteristics of a weir in a sand-channel stream: U. S. Geol. Survey Water-Supply Paper 1898-A, 29 p.

Guy, P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geol. Survey Tech. Water Resources Inv., Book 5, Chap. Cl, 58 p. Guy, P., and Norman, W., 1970, Field methods for measurement of fluvial sediment: U. S. Geol. Survey Tech. Water Resources Inv., Book 3, Chap. C2, 59 p.

Richardson, E. V., Simons, D. B., and Posakony, G. J., 1961, Sonic depth sounder for laboratory and field use: U. S. Geol. Survey Circ. 450, 7 p.

Scott, C. H., 1968, Flow resistance in plane-bed alluvial channel: Master of Science thesis, Colorado State Univ., Fort Collins.

Scott, C. H., and Culbertson, J. K., 1967, Discussion of "Flow measurements with fluorescent tracers": Am. Soc. Civil Engineers Proc., v. 93, no. HY3, p. 211-216.
-1971, Resistance to flow in flat-bed alluvial channels: U. S. Geol. Survey Prof. Paper 750 (in press).

Scott, C. H., Norman, V. W., and Fields, F. K., 1969, Reduction fluorescence of two tracer dyes by contact with a fine sediment: U. S. Geol. Survey Prof. Paper 650-B, p. B164-B168.

Smoot, G. F., and Carter, R. W., 1968, Are individual current-meter ratings necessary?: Am. Soc. Civil Engineers Proc., v. 94, no. HY2, p. 391-397.

Task Force on Bed Forms in Alluvial Channels, 1966, Nomenclature for bed forms in alluvial channels: Am. Soc. Civil Engineers Proc., v. 92, no. HY3, p. 51-65.

Task Committee on Preparation of Sedimentation Manual, 1969, Sediment measurement techniques: A. fluvial sediment: Am. Soc. Civil Engineers Proc., v. 95, no. HY5, p. 1477-1515.
U. S. Inter-Agency Committee on Water Resources, 1941, Methods of analyzing sediment samples, in A study of methods used in measurement and analysis of sediment loads in streams: Rept. No. 4, Washington, U. S. Govt. Printing Office, 203 p.

1957, The development and calibration of the visual-accumulation tube, in A study of methods used in measurement and analysis of sediment loads in streams: Rept. No. 11, Washington, U. S. Govt. Printing Office, 109 p.
U. S. Inter-Agency Committee on Water Resources, 1959, Federal InterAgency sedimentation instruments and reports, in A study of methods used in measurement and analysis of sediment loads in streams: Rept. AA, Washington, U. S. Govt. Printing Office, 38 p.

APPENDIX 1.

Descriptions of Observation Conditions

Water discharge in the channel was relatively constant for 10 days prior to January 24. From January 24 to January 30, the discharge decreased from about 600 to 500 cfs . The discharge then began to increase slowly (fig. 9A). Four water-discharge measurements obtained on February 3 averaged 560 cfs , and on February 4 five measurements averaged 575 cfs. The daily mean sediment concentration varied between 1,000 and $2,000 \mathrm{mg} / 1$ (milligrams per liter) during the period January 24 to February 1 (fig. 9 A). Water temperature varied from a low of $6^{\circ} \mathrm{C}$ at 0800 hours to a high of $11^{\circ} \mathrm{C}$ at 1600 hours on both days.

Bed forms in the channel were observed periodically by means of a sonic sounder beginning on January 14. On January 14 the bed form throughout the channel was flat. By January 20, however, an 850-foot reach of dunes had developed, beginning at a point 850 feet upstream of section 220. Downstream of section 220 the bed remained flat. By January 29, the dune reach had lengthened to 1,650 feet, beginning 700 feet further downstream than on January 20. On January 31, the dune reach was 1,850 feet long; the beginning point had moved downstream another 300 feet and the downstream point of the dune reach was at section 240. On February 3, the downstream end of the dune reach was located at section 246.5 , and on February 4 it had reached section 247 . The dune bed form was three dimensional throughout the dune reach. Length from crest-to-crest of the dunes was 20 to 25 feet, and dune heights were from 1.5 to 2.5 feet.

Profiles of the channel cross-section were obtained with the sonic sounder on February 3 at sections 236,238 , and 240 in the dune-bed reach and at sections 250 and 255 in the flat-bed reach. The profile at section 252 in the flat-bed reach was obtained with a sounding rod. The average cross-section areas and widths for the three sections in the dune-bed reach and for the three sections in the flat-bed reach are shown in table 1.

Water-surface elevations were determined once for the reach from section 223 to 257 , once for the reach from section 234 to 246 on February 4. Elevations of water surface were determined along the left bank at 100-foot intervals, except that 25 -foot intervals were used through the reach where bed form changed from dune to flat. Figure 11 shows the

Figure 11 (caption on next page) near here
water-surface elevations through the 3,200 -foot reach, section 223 to section 255 , including the dune-bed reach and the flat-bed reach for one of the observations on February 3.

Vertical-velocity profiles in the cross section were obtained on February 3 at section 252 (flat bed), and at section 240 (dune bed) on February 4. Profiles were obtained at five-foot intervals.

Total sediment samples were collected at the weir (section 194) on February 3 and 4; measured suspended-sediment samples were collected at sections 236 and 255 on February 3 and section 255 on February 4.

Figure 11.--Water surface elevations for Rio Grande conveyance channel near Bernardo, N. Mex., February 3, 1965.

Samples of bed-material were collected on February 4 in the dune reach at section 238 and in the flat-bed reach at section 255 . The analyses shown in the tables of basic data are for composite samples at each cross section. Individual samples were taken at nine points in the cross section at section 238 (five-foot intervals) and at six points in the cross section at section 255 (five-foot intervals). The median diameter of bed material for the samples at section 238 (dune) varied from 0.22 to 0.27 mm , and the average value was 0.24 mm . The median diameter at section 255 (flat) varied from 0.17 to 0.22 mm and the average value was 0.19 mm .

May 12-13, 1965

Water discharge fluctuated between about 700 and 1,000 cfs during the 10-day period prior to these observations. Daily mean sediment concentrations varied between 2,800 and $4,300 \mathrm{mg} / 1$. Both water discharge and sediment concentration remained relatively constant during both days (fig. 9-B). Water temperature varied from $14^{\circ} \mathrm{C}$ to $17^{\circ} \mathrm{C}$ on May 12 and from $15^{\circ} \mathrm{C}$ to $16^{\circ} \mathrm{C}$ on May 13.

Bed form was three-dimensional dunes prior to and during these observations. Figure 12 shows the longitudinal profile for the reach

Figure 12 (caption on next page) belongs near here
between section 245 to 255 , at the approximate centerline of the channel. Sketches of three cross sections, 245,250 , and 255 , also are shown to illustrate the three-dimensional bed form. The average height and length of dunes, as determined from the longitudinal profile along the centerline of the channel from section 240 to section 260 , were 2.6 feet and 47 feet respectively.

Cross-section profiles were obtained with the ultrasonic sounder at 14 sections on May 12 and 13 . The profiles were obtained at 100 -foot intervals from section 243 to section 255. A profile also was obtained at section 260 . The areas of the cross sections ranged from 238 to $350 \mathrm{ft} .{ }^{2}$ and averaged $300 \mathrm{ft} .^{2}$ on May 12 , and ranged from 264 to 368 and averaged $300 \mathrm{ft} .^{2}$ on May 13.

Water-surface elevations were determined four times each day over the 1,200 -foot reach, section 243 to section 255 . Elevations of the water surface were determined at 100-foot intervals along both banks. The individual determinations of slope of the water surface ranged from 0.00060 to 0.00069 on May 12 and ranged from 0.00063 to 0.00067 on May 13. The average slope for each day, as shown in table 1 , was 0.00065 .

Vertical-velocity profiles were obtained at five-foot intervals at sections 249 and 250 on May 12 and at section 250 on May 13.

Figure 12.--Longitudinal profile, Rio Grande conveyance channel near Bernardo, N. Mex., May 12, 1965.

The average concentrations of total sands (coarser than 0.062 mm) determined from samples collected at the weir were $920 \mathrm{mg} / 1$ on May 12 and $910 \mathrm{mg} / 1$ on May 13. Concentrations of fine material (finer than 0.062 mm) averaged $2,430 \mathrm{mg} / 1$ on May 12 and $2,150 \mathrm{mg} / 1$ on May 13 . Samples obtained at the weir and at section 240 were collected at 1 to 2-hour intervals each day. Samples of bed-material were collected at 15 cross sections on May 12 and at three cross sections on May 13.

June 2-3, 1965

Daily mean water discharge averaged about 900 cfs following the observations made on May 12 and 13 until May 24 . The large dune bed configurations present on May 12 and 13 remained during this period. Beginning May 24 , the discharge in the channel was increased by about 100 cfs per day by opening the headgates. This was done to observe changes in bed form resulting from the increase in discharge. Large transverse bars were formed as a result. Culbertson and Scott (1970) described the development and movement of these transverse bars during the period May 24 to May 29. The discharge was reduced from the high of about $1,450 \mathrm{cfs}$ on May 29 to about $1,200 \mathrm{cfs}$ on June 2, (Fig. 9c), at which time the observations presented in this report were made. Daily mean sediment concentrations decreased from about $5,300 \mathrm{mg} / 1$ on May 25 to an average of about $3,200 \mathrm{mg} / 1$ for the period May 27 to June 4 (Fig. 9c). The values given for water discharge in table 4 were determined from the stage-discharge relation for the stages at the weir for the times shown.

On June 2, data were obtained at section 250 in a dune reach. Figure 13 shows the bngitudinal profile of the reach between sections 245 and 255. Cross-section profiles of sections 245,250 , and 255 also are shown with mean depths and mean velocities indicated. The June 3

Figure 13 (caption on next page) belongs near here
observations were at section 322 over one of the large transverse bars that had formed during the period May 24-30. Figure 14 shows the longitudinal profile of the reach between sections 317 and 326 . The bed was

Figure 14 (caption on next page) belongs near here
virtually flat for about 650 feet with little variation in depth across the channel.

Cross-section profiles were obtained with the ultrasonic sounder at 15 sections on June 2. The upstream profile was at section 240 and the next was at section 243 . The remainder of the profiles were obtained at 100 -foot intervals to section 255 , and at section 260 . The average width and average area for the 15 cross sections are given in table 1. The widths ranged from 66 to 77 feet, and areas ranged from 209 to $365 \mathrm{ft}^{2}$ for the 15 cross sections.

Slopes were determined from water-surface elevations obtained at 100-foot intervals twice on June 2 from section 243 to 255 and twice on June 3 from section 320 to 325 . Average slope through the dune reach (1,200 feet) was 0.00073 , and through the flat-bed reach (500 feet) was 0.00052 .

Figure 13.--Longitudinal profile, Rio Grande conveyance channel near Bernardo, N. Mex., June 2, 1965.

Figure 14.--Longitudinal profile, Rio Grande conveyance channel near Bernardo, N. Mex., June 3, 1965.

Vertical-velocity profile data collected at sections 250 and 322 at 5-foot intervals are given in table 2.

The average sand concentrations at the weir were 1,400 and 1,440 mg/ 1 respectively for June 2 and 3 . Fine-material concentration increased from an average of $1,430 \mathrm{mg} / 1$ on June 2 to $2,010 \mathrm{mg} / 1$ on June 3 .

Samples of bed material were collected twice at section 250 on June 2, five hours apart. The first set of samples was obtained at 1100 hours, apparently on or rear the crest of the large dune form seen on the sounder chart (fig. 13), and the d_{50} of the composite sample was 0.20 mm . The second set of samples was obtained four hours later, at 1500 hours. The crest of the dune had moved downstream 30 to 50 feet, so that the d_{50} of 0.24 mm was representative of the material closer to the trough upstream of the dune. The composite of samples collected at section 322 on the back of the large transverse bar had a d_{50} of 0.18 mm .

November 29-30, 1965

Water discharge decreased from about 1,400 cfs on November 19 to 1,000 cfs on November 28 (Fig. 9d). The headgates were cleaned and opened further on the morning of the 29 th and the discharge increased to about $1,250 \mathrm{cfs}$. It then remained fairly steady during the period of these observations. Daily mean sediment concentration increased during the period November 19 to November 29 from about $3,500 \mathrm{mg} / 1$ to about $5,500 \mathrm{mg} / 1$ (Fig. 9d).

Water temperature varied from about $3^{\circ} \mathrm{C}$ to $6^{\circ} \mathrm{C}$ during the day for each observation.

Bed form prior to and during these observations was flat. Median diameter of bed material was consistent throughout the period of 0.18 mm . Figure 15 shows a typical cross section for the observation reach.

Figure 15 (caption on next page) belongs near here

Cross-section profiles were obtained with the ultrasonic sounder at 15 sections on November 29 . The first profile was at section 240 , the second at section 243 , the remainder of the profiles were obtained at 100 -foot intervals to section 255 , and the last at section 260 . Water surface widths ranged from 64 to 74 feet, and the areas from 234 to 269 ft^{2}. The average width and area for the reach are shown in table 1.

Water-surface elevations were obtained at 100 -foot intervals from section 243 to 255 twice each day. The average slope from two determinations was 0.00066 on November 29 and 0.00059 on November 30.

Vertical-velocity profiles data were obtained on November 30 at section 252 at 5 -foot intervals and are given in table 2.

Point-integrated sediment samples were obtained by means of the modified $\mathrm{DH}-48$ sampler with a $1 / 4^{\prime \prime}$ nozzle at section 255 on both days. Particle-size analyses and concentrations in each size class are given in table 3. Total-sand concentrations of samples collected at the weir averaged $2,700 \mathrm{mg} / 1$ on November 29 and $2,870 \mathrm{mg} / 1$ on November 30. Finesediment concentrations averaged $1,790 \mathrm{mg} / 1$ on November 29 and 1,530 mg/1 on November 30.

Figure 15.--Typical cross section for flat bed, Rio Grande conveyance channel near Bernardo, N. Mex. (section 245), November 30, 1965.

Bed-material samples were obtained at 5 -foot intervals at section 245 on November 29 and 30. The sample from each vertical was analyzed separately in the laboratory; the median particle size ranged from 0.16 to 0.21 mm on November 29 and from 0.17 to 0.19 mm on November 30. The averages of the 10 analyses across the section for each day are given in table 5.

May 4, 1966

Water discharge was relatively steady from April 28 through the period of observations on May 4. Daily mean sediment concentrations varied from 2,500 to about $1,200 \mathrm{mg} / 1$ during this period (fig. 9-E). Water temperature varied from $16^{\circ} \mathrm{C}$ to $21^{\circ} \mathrm{C}$ during the day of observations, May 4.

The $1,000-$ foot reach, section 245 to 255 , chosen for this set of observations was classified as transition upstream of section 250 because the bed form was irregular dunes between sections 240 and 250 , and was classified as flat downstream of section 250 . Figure 16 shows the bed

Figure 16 (caption on next page) belongs near here
profile between sections 240 and 260.

Figure 16.--Longitudinal profile, Rio Grande conveyance channel near Bernardo, N. Mex., May 4, 1966.

Cross-section profiles were obtained by means of a sounding rod at seven sections on May 4. Profiles were obtained once at sections 245 and 255 , and were obtained twice at sections $246,248,250,252$, and 254. The average areas and widths of sections in the transition bed reach (245 to 250), and of the flat-bed reach (252 to 255) are given in table 1. Sketches of cross-section profiles obtained from 1,300 to 1,440 hours are shown on figure 17.

Figure 17 (caption on next page) belongs near here

Water-surface slope was determined from observations obtained at 100-foot intervals between sections 243 and 255, twice on May 4 and once on May 5, and was consistent at 0.0011 . This was the greatest slope observed for any of the observations presented in this report. However, inspection of the bed profile obtained with the ultrasonic sounder (fig. 16) indicated that the mean depth was decreasing from about section 242 to section 252. The water-surface elevations were obtained in the reach where bed form was changing from rough to smooth. The water-surface slope would tend to be greater through this reach than in reaches upstream or downstream. The relatively steep slope that can exist in a reach where bed roughness is changing from rough to smooth is well illustrated on figure 11. The flow would be accelerating through the reach shown in figure 16 and, therefore, would be considered as unsteady.

Vertical-velocity profiles and point-integrated sediment samples were collected at section 245 in the transition bed reach and at section 255 in the flat-bed reach.

Figure 17.--Cross sections, Rio Grande conveyance channel near Bernardo, N. Mex., May 4, 1966.

Depth-integrated samples were collected at 30 -minute intervals throughout the day at the weir (section 194). Total-sand concentration averaged $2,300 \mathrm{mg} / 1$, varying between 1,820 and $2,870 \mathrm{mg} / 1$. Fine-material concentration averaged $905 \mathrm{mg} / 1$ during the period of observations. Measured suspended-sediment samples also were collected at section 240 in the transition-bed reach and at section 260 in the flat-bed reach. Average measured sand concentrations were $840 \mathrm{mg} / 1$ at section 240 and $1,010 \mathrm{mg} / 1$ at section 260 . Fine-material concentrations were $902 \mathrm{mg} / 1$ at both sections.

Bed-material samples were collected at verticals at 10 -foot intervals at each of five sections and the samples from each section were composited for analysis in the laboratory. Median diameters of these samples are indicated on figure 16 for the sections sampled to illustrate the decrease in size of material as the bed form changes from transition to flat.

Water discharge varied widely prior to and during these observations. Daily-mean sediment concentrations remained relatively steady, however, through the period November 13-25 (fig. 9-F). Water discharges, measured at five sections spaced at 500 -foot intervals from section 240 to 260 , are given in the tables of data. Water temperature was $8^{\circ} \mathrm{C}$ during the period of observations.

Bed form was flat for the period prior to and during these observations. Longitudinal profiles showed the bed was flat near the center of the channel, but that long, low-amplitude waves were present near both banks.

Cross-section profiles were obtained by means of a sounding rod at five sections on November 23. Depth soundings were made at 5 -foot intervals at each section. The profiles were obtained at the same sections and at the same times as the point velocities.

Water-surface slope was determined from water-surface observations obtained at 100 -foot intervals through the 1,200 foot reach, section 243 to 255. Slopes during these observations were 0.00062 .

Vertical-velocity profile data, measured suspended-sediment samples, and bed-material samples were collected at five sections. Figure 18 shows sketches of the five cross sections, lines of equal velocity, and hydraulic data, and serves to illustrate the typical flow conditions for flat bed in the Rio Grande conveyance channel near Bernardo.

Figure 18 (Caption on next page) belongs near here

The average measured suspended-sand concentration during the observations was $1,880 \mathrm{mg} / 1$, and the average fine-sediment concentration was $2,520 \mathrm{mg} / 1$. The concentration of fine material increased during the observation period from $2,070 \mathrm{mg} / 1$ to $2,980 \mathrm{mg} / 1$, whereas the concentration of sand remained constant. Median diameter of bed material was virtually the same at all sections.

Figure 18.--Cross sections with isovels, Rio Grand conveyance channel near Bernardo,
N. Mex., November 23, 1966.

February 2, 1967

Water discharge and daily-mean sediment concentration were relatively steady for the period January 23 to February 4 (fig. 9-G). Water temperature varied from $6{ }^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ during the day of the observations.

Bed form was flat prior to and during the period of observations. Cross-sections profiles were determined by means of a sounding rod at five sections spaced at 500 -foot intervals from section 240 to section 260. Soundings were obtained at 5-foot intervals except near the banks, where a smaller interval was used. The profiles were typical of those found with flat-bed form. Depths were uniform across the channel with greater depths near the banks.

Water-surface elevations were obtained at 100 -foot intervals through the 1,200 -foot reach from section 243 to 255 once on February 2. The water-surface slope determined from water-surface elevations was 0.00052 .

Vertical-velocity profiles suspended-sediment samples, and bedmaterial samples were collected at five sections in the 2,000 -foot reach, section 240 to 260 . Samples at each cross section were composited in the laboratory. Bed-material samples were obtained at 10 -foot intervals and the samples for each section were composited in the field. No totalsediment samples were collected at the weir during these observations. The average measured suspended sand concentration for the five cross sections was $1,100 \mathrm{mg} / 1$, and the average fine-material concentration was $833 \mathrm{mg} / 1$. Median diameter of the bed-material samples was virtually identical at all five sections, $\mathrm{d}_{50}=0.19 \mathrm{~mm}$.

These observations were obtained in conjunction with a special study on lateral dispersion. A 6,000 foot reach (sections 220 to 280) was used, which was much longer than the reaches used for any of the other observations.

Water discharge prior to and during these observations was relatively steady. Daily mean sediment concentration decreased from about 4,000 $\mathrm{mg} / 1$ on February 4 to about $2,800 \mathrm{mg} / 1$ on February 14 (fig. 9-H). Water temperature varied between $6^{\circ} \mathrm{C}$ and $9^{\circ} \mathrm{C}$ during the two days.

Bed form had alternated between transition and flat prior to this set of observations. During the observation period, the bed remained flat over the center portion of the channel with long, low-amplitude sand waves near either bank. The bed form was classified as flat for these observations.

Cross-section profiles were obtained with a sounding rod at nine cross sections on February 14 and at 10 cross sections on February 15. Depth soundings were taken at 5 -foot intervals at each section. The cross-section profiles were typical of those found for flat-bed condition except that the depths near the banks at some sections were relatively large (fig. 19).

Figure 19 (caption on next page) belongs near here

Figure 19.--Cross sections, Rio Grande conveyance channel near Bernardo, N. Mex.,
February 14-15, 1967.

Water-surface elevations were obtained at 1,000 -foot intervals from section 220 to 240 and from section 260 to 280 , and a 500 -foot interval was used from section 240 to 260 on both days. The maximum deviation of any individual elevation from the mean line used to determine slope was 0.08 foot. Vertical-velocity profile data were collected at nine sections on February 14 and at 10 sections on February 15. The vertical-velocity profiles were obtained at verticals spaced at 5 -foot intervals.

No total-sediment samples were collected at the weir during these observations. Suspended-sediment samples were obtained at two sections on February 14 and at four sections on February 15. Suspended-sand concentration averaged $880 \mathrm{mg} / 1$ on both days. Fine-material concentrations were $760 \mathrm{mg} / 1$ on February 14 and 840 on February 15.

Bed-material samples were collected at seven sections on February 14 and at four sections on February 15. The samples at each section were taken at 10 -foot intervals and composited in the field.

February 1, 1968

Water discharge increased rather uniformly during the period January 22 to February 1, from about 620 cfs to an average of 750 cfs during the observations on February 1. Daily mean sediment concentration increased from 2400 to $3800 \mathrm{mg} / \ell$ during this period (fig. 9-J). Water temperature varied from $5^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ during the period of observations.

Five sections upstream from the weir were used for these observations. The bed form was flat at all sections. Sections 99, 100, and 101 were in a relatively narrow reach, and sections 159 and 160 were in a wide reach.

Cross-section profiles were obtained with a wading rod at the five cross sections. Depths were sounded at 5 -foot intervals except near the banks where a smaller interval was used.

Water-surface elevations were obtained at 50 -foot intervals from section 97 to 103 and from section 157 to 163 . The water-surface slopes in these 600 -foot reaches were 0.00041 and 0.00045 respectively. These were the least slopes for any of the observations listed in this report.

Vertical-velocity profile data, measured suspended-sediment samples, and bed-material samples were collected at all sections. The suspended sand concentration averaged about $1,000 \mathrm{mg} / 1$ for all sections. Finematerial concentration averaged $1,250 \mathrm{mg} / 1$ for all sections. No totalsediment samples were collected at the weir during these observations. Samples of bed material were obtained at 10 -foot intervals in each cross section. The samples at each cross section were composited in the field. Median diameter of composite bed-material samples averaged about 0.20 mm at all sections.

Water discharge fluctuated rather widely prior to these observations. The discharge dropped from a high of $1,910 \mathrm{cfs}$ on May 12 to about 900 cfs on May 17, where it remained relatively steady through the period of observations on May 21. Daily mean sediment concentration also fluctuated during the period prior to the observations (fig. 9-K). The water discharge shown in the tables of basic data is the average of seven measurements made between 1235 and 1520 hours on May 21. Water temperature ranged between $18^{\circ} \mathrm{C}$ and $21^{\circ} \mathrm{C}$ during the period of observations on May 21.

Bed form was dune prior to and during the period of observation. Profiles were obtained with the sonic sounder from section 220 to 235. The average height and length of dunes, as determined from measurements of 45 dunes on the profile at the center line of the channel were 2.7 and 30 feet respectively.

Cross-section profiles were obtained with a sounding rod at five cross sections spaced at 200 -foot intervals from section 225 to 233. Depths were sounded at 2.5 -foot intervals in each cross section. The cross section profiles are shown on figure 20.

Figure 20 (caption on next page) belongs near here

Figure 20.--Cross sections, Rio Grande conveyance channel near Bernardo, N. Mex., May 21, 1968.

Water-surface elevations were obtained at 500 -foot intervals from section 240 to 260 . The water-surface slope through the 2,000 -foot reach was 0.00063 . Relatively few water-surface elevations were obtained for this set of observations. However, all the elevations were within plus or minus 0.1 foot of the mean line and, therefore, the water-surface slope is probably within an acceptable error limit.

Vertical-velocity profiles were obtained at 5 -foot intervals at each of the cross sections. Velocities at five points are shown in table 2 for most of the verticals; however, the meter nearest the bed failed to function properly at a few verticals located just downstream of the crest of a dune, and at those verticals only four-point velocities are shown.

Suspended-sediment samples were obtained at each of the five cross sections and total-sediment samples were collected at the weir (section 194).

Bed-material samples were obtained at 10 -foot intervals at each of the five cross sections in the study reach. The samples at each cross section were composited in the field. The median diameter of the composite samples for the individual cross sections varied from 0.22 to 0.32 mm , and averaged 0.27 mm for the reach.

Water discharge prior to these observations ranged between 760 and 1,190 cfs, however, discharge was steady during the period of observation on May 29. Daily mean sediment concentration varied from a low of 2,800 $\mathrm{mg} / 1$ to a high of about $4,900 \mathrm{mg} / 1$. Concentrations during the period of observation were relatively steady (fig. 9-L). The water discharge shown in the tables of data is the average of five measurements made during the observation period. The measurements for this set of observations were taken at the same cross sections that were used for the measurements obtained on May 21 , 1968. Water temperature was $21^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$ during the day, May 29.

Bed form was dune prior to and during the period of observations. Longitudinal profiles were obtained with the sonic sounder from section 220 to 235 . The average height and length of the dunes, as determined from measurements of about 30 dunes on the sounder profile, were 4.2 and 44 feet respectively.

Cross-section profiles were obtained with a sounding rod at five cross sections spaced at 200 -foot intervals. Depths were sounded at 2.5-foot intervals. The cross-section profiles are shown in figure 21.

Figure 21 (caption on next page) belongs near here

Figure 21.--Cross sections, Rio Grande conveyance channel near Bernardo, N. Mex., May 29, 1968.

Water-surface elevations were obtained at $\mathbf{3 0}$-foot intervals from section 225 to section 235 . The mean water-surface slope through the 1,000 -foot reach was 0.00056 .

Vertical-velocity profile data, measured suspended-sediment samples, and bed-material samples were collected at all five sections. No totalsediment samples were collected at the weir during these observations.

The median diameter of the composite samples of bed material varied from 0.23 to 0.26 mm for the individual cross sections and the average for the reach was 0.24 mm .

Water discharge generally increased for several days prior to these observations (fig. $9-\mathrm{M}$). On June 10 , the discharge peaked at $1,720 \mathrm{cfs}$, and on June 11, another peak at $1,600 \mathrm{cfs}$ occurred at 0800 hours. The discharge was decreasing as the measurements on this date were obtained. A single discharge measurement was made on June 11, and the discharges reported in the tables of basic data are based on the stage-discharge relationship and the stages at the weir at the times shown.

Temperatures ranged from 18° to $19^{\circ} \mathrm{C}$ during the period of observations.

Bed form was dune prior to and during these observations. No estimates of heights and lengths of dunes are available for these observations.

Cross-section profiles were obtained with a sounding rod with depths sounded at 2.5 foot intervals at each section. Profiles of each cross section are shown on figure 22.

Figure 22 (caption on next page) belongs near here

Water-surface elevations were obtained at 100 -foot intervals from section 243 to 257 . The water-surface slope for the 1,400 -foot reach was 0.00069 .

Figure 22.--Cross sections, Rio Grande conveyance channel near Bernardo, N. Mex., June 11, 1969.

Vertical-velocity profiles were obtained at 5 -foot intervals at 3 cross sections spaced at 500 -foot intervals. At some verticals, the bottom meter failed to operate because of the location of the vertical immediately downstream of the crest of a dune.

Suspended-sediment samples were obtained at three cross sections, and total-sediment samples at the weir were obtained twice during the observation period.

Bed-material samples were obtained at three cross sections at verticals spaced 10 feet apart. The samples at each cross section were composited in the field for analysis in the laboratory.

The water discharge at the San Marcial gaging station remained relatively constant at near $1,900 \mathrm{cfs}$ from December 11 to 15 . The discharge increased to $1,950 \mathrm{cfs}$ on December 18 and then decreased to 1,860 cfs on December 21 when the data in the San Marcial reach were obtained. The discharge was about $1,750 \mathrm{cfs}$ on December 22 when the data in the Nogal Canyon reach were obtained. The discharges for the San Marcial and Nogal Canyon reaches reported in the tables of basic data are the daily mean discharges at San Marcial.

The bed form was flat in both reaches during the observations. Standing waves were present near the center of the channel in both reaches but were most pronounced in the Nogal Canyon reach. The standing waves tended to build up with some regularity and dissipate before reaching the anti-dune stage in both reaches.

Cross-section areas were computed on the basis of depth soundings obtained in conjunction with point velocities. The depths were uniform across the channel at all sections.

Water-surface elevations were obtained at approximately 500-feet intervals one time only in each of the reaches. At San Marcial, the elevations were obtained in the 2,900 -foot reach from section $2261+00$ to $2232+00$, and at Nogal Canyon, in the 2,800 -foot reach from section $1323+00$ to $1295+00$.

Point velocities in the vertical were obtained at verticals spaced at 10 -foot intervals except at section $1300+00$ in the Nogal Canyon reach, where a 20 -foot spacing of verticals was used. The presence of large standing waves at section $1300+00$ created somewhat difficult and hazardous working conditions.

Point-integrated samples were obtained with a modified DH-48 sampler at five points in three verticals at each section. In the San Marcial reach, the verticals were spaced at 10 -foot intervals. No pointintegrated samples were obtained at section $1300+00$ because of the presence of standing waves.

Suspended-sediment samples were obtained by the ETR method at verticals spaced at 10 -foot intervals with a $\mathrm{DH}-48$ sampler at sections in both reaches. Because of standing waves at section $1300+00$ in the Nogal Canyon reach, the suspended-sediment samples were obtained at section 1306+00.

Bed-material samples were obtained at verticals spaced at 10 -foot intervals. The samples at each cross section were composited in the field for analysis in the laboratory.

In addition to the data obtained in the reaches at San Marcial and Nogal Canyon, bed-material samples were obtained at approximately 5,000foot intervals from section $4400+00$, just below San Acacia diversion dam, to section $1200+00$, just above Elephant Butte Reservoir, a distance of more than 60 miles. The size distributions of these samples are not given in the tables of basic data; however, the median diameters ranged from 0.17 to 0.20 mm at 33 of the 64 sections. At two sections, the median diameter was 0.16 mm , and at the remainder of the sections, the median diameters were fairly evenly distributed in the range of 0.21 to 0.29 mm . There was no indication that the bed material became finer in the downstream direction.

APPENDIX II
Basic Data

Date	Sampling Section	Water Discharge (ft ${ }^{\text {Q }}$ per second)	$\begin{gathered} \text { Cross } \\ \text { Section } \\ \text { Area } \\ A \\ \left(f t^{2}\right) \end{gathered}$	```Water Surface Width B (ft)```	$\begin{aligned} & \text { Water } \\ & \text { Surface } \\ & \text { Slope } \\ & \text { S } \\ & \left(\times 10^{4}\right) \end{aligned}$	$\begin{aligned} & \text { Bed } \\ & \text { Form } \end{aligned}$	Data Available				Remarks
							Point velocities	Point Sediment Analyses	$\|$Suspended Sediment Analyses	Bed Material Analyses	
1967											
Feb. $21 /$	240	650	157	66	5.2	Flat.	X		x	x	
	245	650	172	72	5.2	Do.	x		X	x	
	250	650	152	67	5.2	Do.	x		x	X	
	255	650	155	66	5.2	Do.	x		x	x	
	260	650	160	66	5.2	Do.	\mathbf{X}		X	X	
Feb. $14^{2 /}$	/ 220	630	151	64	5.4	Flat.	X			X	
	225	630	159	64	5.4	Do.	x				
	230	630	155	67	5.4	Do.	X			X	
	235	630	151	68	5.4	Do.	X				
	240	630	156	66	5.4	Do.	x			x	
	250	630	157	67	5.4	Do.	X			x	
	260	630	159	67	5.4	Do.	x		x	X	
	270	630	150	63	5.4	Do.	x			x	
	280	630	161	67	5.4	Do.	x		x	X	
Feb. $15^{2 /}$	/ 220	630	156	64	5.6	Flat.	X		X	X	
	225	630	161	64	5.6	Do.	X				
	230	630	167	66	5.6	Do.	X			X	
	235	630	169	68	5.6	Do.	x				
	240	630	155	66	5.6	Do.	\mathbf{x}		x		
	245	630	168	74	5.6	Do.	X				
	250	630	157	67	5.6	Do.	x				
	260	630	155	67	5.6	Do.	X		x	x	
	270	630	160	63	5.6	Do.	X				
	280	630	164	67	5.6	Do.	X		\mathbf{x}	x	

Date	Sampling Section	$\begin{aligned} & \text { Hater } \\ & \text { Discharge } \\ & \text { (ft } \\ & \text { (fecond) } \end{aligned}$	CrossSectionArea$A$$\left(\mathfrak{f t}^{2}\right)$	Water Surface Width B (ft)	$\begin{array}{\|c} \text { Water } \\ \text { Surface } \\ \text { Slope } \\ \text { S } \\ \left(x 10^{4}\right) \end{array}$	$\begin{aligned} & \text { Bed } \\ & \text { Form } \end{aligned}$	Data Avallable				Remarks
							Point velocities	Point Sediment Analyses	Suspended Sediment Analyses $\|$	Bed Material Analyses	
1968											
	100	750	163	57	4.1	Do.	x		x	x	
	101	750	174	66	4.1	Do.	x		x	x	
	159	750	197	87	4.5	Do.	x		x	x	
	160	750	186	85	4.5	Do.	x		x	x	
May 21 2/	1194	860	-	-	--	--			x		
	225	860	281	65	6.3	Dune.	x		x	x	
	227	860	289	67	6.3	Do.	x		x	x	
	229	860	277	64	6.3	Do.	x		x	x	
	231	860	285	66	6.3	Do.	x		x	x	
	233	860	299	73	6.3	Do.	x		x	x	
May 29	225	1,010	336	67	5.6	Dune.	x		\mathbf{x}	x	
	227	1,010	349	71	5.6	Do.	x		x	x	
	229	1,010	280	66	5.6	Do.	x		x	x	
	231	1,010	303	71	5.6	Do.	x		\mathbf{x}	x	
	233	1,010	328	75	5.6	Do.	x			x	
$\begin{aligned} & 1969 \\ & \text { Jume II } \end{aligned}$	245	1,480	425	79	6.9		x		\mathbf{x}	x	
	250	1,430	373	77	6.9	Do.	x		x	x	
	255	1,370	371	73	6.9	Do.	x		x	x	
1965 Rio Grande conveyance channel near Sen Marcial, N. Mex.											
$\begin{aligned} & 1965 \\ & \text { Dec. } 21 \end{aligned}$	2249+93	1,860	305	70	5.9	Flat.	x	x	x	x	
Dec. 21	$2243+62$	1,860	308	67	5.9	Do.	x	X	x	x	

Table 1.--Continued.

Rio Grande conveyance channel near Nogal Canyon, N. Mex.

Dec. 22	$1318+00$	1,750	352	80	5.5	Flat.	X	X	X	X
	$1300+00$	1,750	337	110	5.5	Do.	X		X	X

$1 /$ The suspended sediment measured at the weir (station 194) represents total sediment moving through that cross-section.
2/ Water discharge neasured at the cableway, station 184.

Table 2,--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet
Rio Grande conveance chamel near yernardo, Y. Mex.
February 3, 1965, Section 252 , Right bank station 4 , Left bank station 68

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=2.7 \mathrm{ft.} \end{aligned}$		Sta. 15		Sta. 20						Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 57	
		$\mathrm{D}=2.5 \mathrm{ft}$.		D=2	ft .	$\mathrm{D}=2$	Sta. 25	$\begin{aligned} & \text { Sta. } 30 \\ & D=2.5 \mathrm{ft} . \end{aligned}$		$\mathrm{d}=2.4 \mathrm{ft}$		$\mathrm{D}=2.3 \mathrm{ft}$.		$\mathrm{D}=2.4 \mathrm{ft}$.		$\mathrm{d}=2.4 \mathrm{ft}$.		$\mathrm{D}=3.1 \mathrm{ft}$.	
y	v	y	V	y	v	y	v	y	v	y	v	\%	v	y	v	y	v	y	V
2.2	3.10	2.2	4.24	2.2	4.91	2.2	4.99	2.2	5.15	2.2	4.94	2.2	4.78	2.2	4.78	2.2	4.37	2.2	2.99
1.7	3.20	1.7	4.14	1.7	4.76	1.7	4.81	1.7	4.96	1.7	4.81	1.7	4.72	1.7	4.77	1.7	4.30	1.7	2.77
1.2	3.01	1.2	3.94	1.2	4.62	1.2	4.60	1.2	4.80	1.2	4.59	1.2	4.57	1.2	4.62	1.2	4.12	1.2	2.42
. 7	2.77	. 7	3.82	. 7	4.40	. 7	4.37	. 7	4.54	. 7	4.34	. 7	4.37	. 7	4.44	. 7	3.92	. 7	2.16
. 2	1.84	. 2	3.18	. 2	3.39	. 2	3.36	. 2	3.36	. 2	3.32	. 2	3.45	. 2	3.50	. 2	3.19	. 2	1.58

February 4, 1965, Section 240, Right bank station 4, Left bank station 72

$\begin{aligned} & \text { Sta. } 10 \\ & D=3.2 \mathrm{ft.} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=3.6 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=3.2 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=3.3 \mathrm{ft} . \end{aligned}$		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
$\begin{gathered} \mathrm{D}=3 .: \\ \mathrm{y} \end{gathered}$	ft. V		$\mathbf{f t}_{\mathbf{v}}$		$\stackrel{f t}{v}$		$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{v} \end{aligned}$	$\begin{gathered} \mathrm{D}=3 . \\ \mathrm{y} \end{gathered}$	$\mathbf{f t .}_{\mathrm{v}}$														$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{v} \end{aligned}$
2.9	2.58	3.2	3.25	2.9	3.25	2.9	3.45	2.8	2.65	3.2	2.67	2.9	3.19	2.4	3.30	2.4	2.85	3.4	3.07	4.0	2.80	2.6	2.60
2.3	2.64	2.5	3.16	2.3	3.31	2.3	3.33	2.3	2.64	2.5	2.64	2.3	3.17	2.0	3.42	2.0	2.79	2.5	2.86	2.9	2.73	2.0	2.33
1.7	2.70	1.7	3.07	1.7	3.18	1.7	3.29	1.7	2.56	1.7	2.65	1.7	3.20	1.5	3.49	1.5	2.64	1.7	2.82	1.7	2.71	1.5	2.18
1.0	2.68	1.0	2.91	1.0	2.86	1.0	3.19	1.0	2.46	1.0	2.64	1.0	3.22	1.0	3.62	1.0	2.64	1.0	2.84	1.0	2.62	1.0	2.02
5	2.40	. 5	2.36	5	2.76	5	3.10	. 5	2.30	5	2.43	5	1.70	5	3.45	. 5	2.54	. 5	2.56	5	1.41	5	2.08

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
May 12, 1965, Section 249, Right bank station 8, Left bank station 82

$\begin{aligned} & \text { Sta. } 14 \\ & \text { De4. } 1 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 17 \\ & \text { D=3.9 ft. } \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=3.8 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \text { D=3.7 } \end{aligned}$		$\begin{aligned} & \text { Stir. } \mathrm{Hf} \\ & \mathrm{D}=3.9 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 35 \\ & \mathrm{D}=4.4 \mathrm{ft} . \end{aligned}$		Sta. 40		Sta.						St		ta. 65	
ded.	V_{V}	de y	V		$\mathbf{s} \mathbf{f t}$		ft	$D=3$	$9 \mathrm{ft}$				ft_{v}		$\mathbf{f t}_{\mathbf{v}}$		ft. \mathbf{v}		$\mathbf{f t}_{\mathbf{t}}$		ft. \mathbf{v}	$D=4$	ft_{l}
3.3	2.65	3.3	3.37	3.3	3.73	3.3	3.80	3.3	3.80	3.3	3.62	3.3	3.91	3.	4.20	3.	3.84	3.3	3.6	3.	3.55	3.6	3.62
2.4	2.92	2.4	3.46	2.4	3.70	2.4	3.79	2.4	3.84	2.4	3.59	2.4	3.97	2.4	4.22	2.4	3.77	2.4	3.68	2.4	3.52	2.4	3.52
1.5	2.94	1.5	3.19	1.5	3.66	1.5	3.28	1.5	3.53	1.5	3.35	1.5	3.46	1.5	4.42	1.5	3.59	1.5	3.62	1.5	3.25	1.5	2.98
. 8	2.74	. 8	3.17	. 8	3.41	. 8	3.50	. 8	3.52	. 8	3.39	. 8	3.75	. 8	4.13	. 8	3.17	. 8	3.43	. 8	3.23	. 8	2.58
.3	2.21	. 3	2.94	. 3	3.30	. 3	3.28	. 3	2.94	. 3	3.12	. 3	3.53	3	3.62	3	2.12	3	3.10	. 3	2.87	3	2.53

$\begin{array}{lll}\text { Sta. } 70 & \text { Sta. } 73 & \text { Sta. } 76 \\ D=3.7 & f t & D=3.7\end{array}$

3.4	3.08	3.4	2.69	3.4	-
2.4	3.39	2.4	3.08	2.4	1.89
1.5	3.44	1.5	2.98	1.5	1.62
.8	2.94	.8	2.69	.8	1.16
.3	1.90	.3	2.30	.3	.90

May 12, 1965, Section 250, Right bank station 6, Left bank station 77

		$\begin{aligned} & \text { Sta. } 24 \\ & \text { D=5.6 ft. } \end{aligned}$		Sta. 30		Sta. 36		Sta. 42		Sta. 47		Sta. 49		Sta. 54		Sta. 60		Sta. 66	
$\begin{gathered} \mathrm{Dm} 3.1 \\ \mathrm{y} \end{gathered}$	$\underset{v}{f t}$			$\begin{gathered} \mathrm{D}=6 \\ \mathrm{y} \end{gathered}$	$5 \mathrm{ft} .$	$\begin{gathered} D=6 \\ y \end{gathered}$	$5 \mathrm{ft}_{\mathrm{V}}$		$1 \mathrm{ft}$		$\mathrm{ft} .$ \mathbf{v}			D=6	$\mathrm{ft} .$		$4 \mathrm{ft} .$	$\mathrm{D}=5$.	$\mathbf{f t} .$
4.0	-	4.0	3.79	4.0	3.50	4.0	3.30	4.0	3.52	4.0	3.55	4.0	3.30	4.0	3.44	4.0	3.48	3.6	3.59
2.4	3.84	2.4	3.62	2.4	2.19	2.4	1.98	2.4	3.28	2.4	2.54	2.4	1.87	2.4	3.41	2.4	3.57	2.4	3.62
1.5	3.77	1.5	3.34	1.5	1.21	1.5	1.23	1.5	2.10	1.5	1.64	1.5	1.48	1.5	3.28	1.5	3.61	1.5	3.19
. 8	3.59	. 8	2.56	. 8	. 98	. 8	. 88	. 8	1.25	. 8	1.90	. 8	2.34	. 8	3.10	. 8	3.46	. 8	2.74
. 3	3.35	. 3	2.28	. 3	. 79	. 3	. 77	. 3	1.05	. 3	1.46	. 3	2.10	.3	2.39	. 3	2.72	. 3	1.99

May 13, 1965. Section 20, Ripht bank station 7, Left bank station 80

June 2, 1965, Section 250 , Right bank station 14 , Left bank station 88

Sta. 20$\mathrm{D}=4.2 \mathrm{ft}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=4.3 \mathrm{ft} . \end{aligned}$		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65		Sta. 70		Sta. 75	
$\begin{gathered} \mathrm{D}=4.2 \\ \mathrm{y} \end{gathered}$	$2 \mathrm{ft} .$	$\begin{gathered} D=4 . \\ y \end{gathered}$	$3 \mathrm{ft}_{\mathrm{V}}$	$\begin{gathered} \mathrm{D}=6 . \\ \mathrm{y} \end{gathered}$	ft_{v}	$\begin{gathered} \mathrm{D}=6 \\ \mathrm{y} \end{gathered}$	ft_{v}		$\mathbf{f t}_{\mathbf{v}}$		ft										ft_{v}		$\underset{v}{f t}$
3.7	3.43	3.7	3.77	3.7	3.70	3.7	4.47	3.7	4.58	3.7	4.67	3.7	4.67	3.7	4.90	3.7	4.99	3.7	4.92	3.7	3.97	3.7	3.84
2.5	3.48	2.5	3.73	2.5	3.41	2.5	4.24	2.5	3.77	2.5	4.15	2.5	4.69	2.5	4.92	2.5		2.5		2.5		2.5	-
1.5	3.39	1.5	3.68	1.5	1.65	1.5	2.85	1.5	2.47	1.5	2.74	1.5	4.69	1.5	5.01	1.5	5.13	1.5	4.99	1.5	4.42	1.5	3.17
. 7	2.74	. 7	3.28	. 7	. 73	. 7	1.50	. 7	1.43	. 7	1.32	. 7	3.46	. 7	4.52	. 7	4.47	. 7	4.27	. 7	3.79	. 7	2.14
. 3	2.37	. 3	3.03	. 3	-	. 3	1.25	.3	-	. 3	-	. 3	2.08	. 3	3.26	. 3	3.39	. 3	3.39	. 3	3.43	. 3	1.68

June 3, 1965, Section 322, Right bank station 20 , Left bank station 110

$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=3.3 \mathrm{ft} . \end{aligned}$		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65		Sta. 70		Sta. 75		Sta. 80	
		$\mathrm{D}=3$. y	$\mathrm{ft}_{\mathrm{t}} .$	D=3.	$\underset{\mathbf{v}}{\mathbf{f t} .}$	$\begin{gathered} \mathrm{D}=3 . \\ \mathrm{y} \end{gathered}$	ft_{v}	$\begin{gathered} \mathrm{D}=3 \\ \mathrm{y} \end{gathered}$	$\mathbf{f t .}$	$\mathrm{D}=3$ \mathbf{y}	$\mathrm{ft}_{\mathrm{t}} .$	$\mathrm{D}=3$	$\mathrm{ft}_{\mathrm{ft}}$	$\mathrm{D}=3$ y		$\mathrm{D}=3$ y				$\mathrm{D}=3$ y			$\mathrm{ft} .$
2.5	2.60	2.5	4.47	2.5	5.80	2.5	6.39	2.5	5.83	2.5	5.92	2.5	5.82	2.2	5.83	2.2	5.45	2.2	5.88	2.2	5.74	2.2	6.28
1.7	2.07	1.7	-	1.7	5.67	1.7	6.00	1.7	5.63	1.7	5.72	1.7	5.68	1.7	5.61	1.7	5.24	1.7	5.68	1.7	5.58	1.7	6.01
1.2	2.19	1.2	4.29	1.2	5.38	1.2	5.63	1.2	5.20	1.2	5.38	1.2	-	1.2	5.25	1.2	4.81	1.2	5.34	1.2	5.24	1.2	5.80
. 6	2.51	. 6	3.62	. 6	4.60	. 6	4.79	. 6	4.47	. 6	4.56	. 6	4.56	. 6	4.42	. 6	2.74	. 6	4.31	. 6	4.54	. 6	4.94
. 2	2.45	. 2	3.34	. 2	4.09	2	4.11	. 2	3.79	. 2	3.80	.2	3.59	2	3.37	. 2	-	. 2	-	. 2	3.77	. 2	4.09

$\begin{aligned} & \text { Sta. } 85 \\ & \mathrm{D}=2.6 \mathrm{ft} . \end{aligned}$		Sta. 90		Sta. 95		Sta. 100		Sta. 105	
		Dme	ft.	D=2	ft.	D=2.	ft .		2 ft
y	v	y	v	F	v	y	V	\%	V
2.2	5.34	2.2	5.74	2.2	5.49	2.5	4.88	2.5	3.01
1.7	5.42	1.7	5.58	1.7	5.47	1.9	4.94	1.9	3.32
1.2	5.31	1.2	5.27	1.2	5.16	1.2	4.38	1.2	3.26
. 6	4.65	. 6	4.45	. 6	4.43	. 6	3.73	. 6	2.74
. 2	3.95	. 2	3.91	. 2	3.77	. 2	3.23	2	2.12

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
November 30, 1965, Station 252, Right bank station 4, Left bank station 69

Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55	
		D=4.	ft.	D=4.			$\mathrm{ft} .$						$\mathrm{ft}_{\mathrm{V}} .$	$\mathrm{D}=4$ y	
y	v	y	V	y	V										
3.5	5.85	3.5	6.80	3.5	7.25	3.5	7.50	3.5	7.00	3.5	6.46	3.5	5.52	3.5	4.65
2.7	5.72	2.7	6.50	2.7	7.07	2.7	7.20	2.7	6.78	2.7	6.28	2.7	5.33	2.7	4.42
1.9	4.85	1.9	6.03	1.9	6.55	1.9	6.64	1.9	6.26	1.9	5.87	1.9	4.97	1.9	3.88
1.0	4.83	1.0	5.24	1.0	5.61	1.0	5.60	1.0	5.31	1.0	4.88	1.0	4.56	1.0	3.61
. 5	4.54	. 5	4.78	. 5	5.24	. 5	5.07	. 5	4.60	. 5	4.33	. 5	4.33	5	3.43

May 4, 1966, Section 245, Right bank station 3, Left bank station 78

$\begin{aligned} & \text { Sta. } 12 \\ & \mathrm{D}=4.1 \mathrm{ft} . \\ & \mathrm{y} \\ & \mathrm{~V} \end{aligned}$		Sta. 15		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=4.1 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=3.9 \mathrm{ft.} \end{aligned}$		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65			
		D=4.				$D=4 .$					$\begin{aligned} & \mathrm{ft} \\ & \mathrm{v} \end{aligned}$								f	Y					
		y	V	y	V			y	V		V														
3.5	4.72	3.5	4.94	0	4.54	3.7	4.43	3.2	4.78	3.1	4.13	3.8	5.11	3.7	4.13	3.7	3.35	3.5	4.58	3.9	4.52	3.9	4.42		
2.7	4.79	2.7	4.96	2.2	4.54	2.9	4.45	2.4	4.83	2.3	3.98	2.5	5.16	2.4	4.07	2.4	3.41	2.2	4.43	2.6	4.34	2.6	4.34		
1.8	4.52	1.8	4.79	1.3	4.29	2.0	4.45	1.5	4.70	1.4	3.89	1.6	5.11	1.5	4.24	1.5	3.44	1.3	4.15	1.7	4.18	1.7	4.09		
1.1	4.27	1.1	4.56	. 6	3.95	1.3	4.38	. 8	4.52	. 7	3.61	. 9	4.87	. 8	4.24	. 8	3.25	. 6	3.88	1.0	02	. 0	3.75		
							4.34	. 3	3.86	. 2	3.48	4	4.72	. 3	4.11	. 3	3.12	. 1	3.44	.	3.		64		

Sta. 70
$\mathrm{D}=4.2 \mathrm{ft}$.
$\begin{array}{rr}3.7 & 3.82 \\ 2.7 & 3.80 \\ 1.8 & 3.35 \\ 1.1 & 3.07 \\ .6 & 2.85\end{array}$

May 4, 1966, Section 255, Right bank station 3, Left bank station 72

$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=3.7 \mathrm{ft} . \end{aligned}$		Sta.$\mathrm{D}=3.7 \mathrm{ft}$		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60			
		Dm 3	7 ft .	D=3		D=3	8 ft .	D=3	8 ft .	$\mathrm{D}=3$.	ft .	D=3	ft .	D=3	ft	D=4	ft				
y	V			y	V	y	V	y	V	y	v	y	v	y	V	y	V	y	v	y	V
3.2	4.51	3.0	6.59	3.0	7.07	3.1	7.05	3.1	7.32	3.1	7.29	3.0	7.07	3.1	6.68	3.1	6.01	3.0	5.6		
2.3	5.22	2.1	6.41	2.1	6.62	2.2	6.73	2.2	7.05	2.2	7.00	2.1	6.75	2.2	6.48	2.2	5.74	2.1	5.33		
1.5	5.13	1.3	5.92	1.3	6.17	1.4	6.24	1.4	6.59	1.4	6.62	1.3	6.26	1.4	6.12	1.4	5.42	1.3	4.8		
. 7	4.29	.5	4.97	. 5	5.27	. 6	5.25	. 6	5.56	. 6	5.43	. 5	5.36	. 6	5.36	. 6	4.61	. 5	3.9		
3	3.91	. 1	4.47	1	4.74	. 2	4.67	. 2	4.87	. 2	4.99	. 1	4.76	. 2	4.83	. 2	3.75	1	2.5		

November 23, 190.f. Suction 240. Risht bank station 0, Left bank station 67

		Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		$\text { Sta. } 55$		$\text { Sta. } 60$	
$\begin{gathered} \mathrm{D}=3.7 \\ \mathrm{y} \end{gathered}$	$\stackrel{f t}{v}$	$\mathrm{D}=3 .$	$7 \mathrm{ft} .$	$\begin{gathered} \mathrm{D}=3 . \\ \mathrm{y} \end{gathered}$	ft. V	$\begin{gathered} \mathrm{D}=3 . \\ \mathrm{y} \end{gathered}$	ft. V	$\mathrm{D}=3 \text {. }$	$\stackrel{f t}{v} .$	$\begin{gathered} D=3 . \\ y \end{gathered}$	$\stackrel{f i}{v} .$	$\begin{gathered} \mathrm{D}=3 . \\ \mathrm{y} \end{gathered}$	ft_{v}	$\mathrm{D}=3 .$	$\mathrm{ft} .$ \mathbf{v}		$\underset{\mathrm{v}}{\mathrm{ft}} .$	D=4	$\underset{v}{\mathrm{ft}}$				ft. V
3.2	3.52	3.2	4.65	3.2	6.15	3.2	7.34	3.2	7.50	3.2	7.59	3.2	7.47	3.2	7.07	3.2	6.55	3.2	5.94	3.2	4.96	3.2	3.73
2.0	3.86	2.0	4.92	2.0	6.17	2.0	7.18	2.0	7.13	2.0	7.20	2.0	7.05	2.0	6.71	2.0	6.19	2.0	5.58	2.0	4.74	2.0	3.39
1.4	3.68	1.4	4.63	1.4	5.87	1.4	6.82	1.4	6.78	1.4	6.77	1.4	6.66	1.4	6.28	1.4	5.79	1.4	5.27	1.4	4.49	1.4	3.12
. 8	3.26	. 8	4.16	. 8	5.24	. 8	6.15	. 8	6.01	. 8	5.99	. 8	5.96	. 8	5.40	. 8	5.25	. 8	4.76	. 8	4.13	. 8	2.35
. 3	2.60	. 3	3.79	. 3	4.38	. 3	5.22	. 3	4.99	. 3	5.18	. 3	5.16	. 3	4.81	. 3	4.56	. 3	4.15	.3	3.77	. 3	1.23

November 23, 1966, Section 245, Right bank station 4 , Left bank station 78

3.0	4.60	3.0	6.39	3.0	7.05	3.0	-	3.0	7.45	3.0	7.09	3.0	6.96	3.0	6.24	3.0	5.83	3.2	4.36	3.2	3.71	3.2	2.81
2.0	4.69	2.0	6.41	2.0	6.44	2.0	7.16	2.0	6.93	2.0	6.55	2.0	6.57	2.0	6.05	2.0	5.79	2.0	4.94	2.0	4.33	2.0	3.12
1.4	4.36	1.4	5.94	1.4	6.01	1.4	6.66	1.4	6.48	1.4	6.08	1.4	6.21	1.4	5.72	1.4	5.51	1.4	4.74	1.4	4.15	1.4	2.89
. 8	3.98	. 8	5.36	. 8	5.36	. 8	5.79	. 8	5.54	. 8	5.25	. 8	5.36	. 8	5.05	. 8	4.87	. 8	4.33	. 8	3.68	. 8	2.51
. 3	3.50	. 3	4.72	. 3	4.45	. 3	3.70	. 3	-	. 3	-	. 3	2.43	. 3	4.07	. 3	4.07	. 3	3.80	. 3	3.26	. 3	2.25

November 23, 1966, Section 250, Right bank station 1, Left bank station 73

$\begin{aligned} & \text { Sta. } 6 \\ & \mathrm{D}=3.5 \mathrm{ft} . \end{aligned}$		Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
			$2 \underset{\mathrm{~V}}{\mathrm{ft} .}$	$\begin{gathered} D=4 \\ y \end{gathered}$	$\mathrm{ft.}_{\mathrm{v}}$	$\begin{gathered} \mathrm{D}=4 . \\ \mathrm{y} \end{gathered}$	ft_{v}	$\begin{gathered} \mathrm{D}=4 \\ \mathrm{y} \end{gathered}$	$\mathbf{f t .}_{\mathrm{v}}$		$2 \mathrm{ft} .$				$\underset{\mathbf{v}}{\mathrm{ft} .}$		ft_{v}				$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{v} \end{aligned}$	D=4.	$\underset{v}{f t .}$
3.2	2.60	3.2	4.24	3.2	5.90	3.2	6.84	3.2	7.82	3.2	7.96	3.2	8.07	3.2	7.93	3.2	7.36	3.2	6.80	3.2	5.76	3.2	4.99
2.0	3.12	2.0	4.29	2.0	6.03	2.0	6.51	2.0	7.16	2.0	7.34	2.0	7.16	2.0	7.20	2.0	6.66	2.0	6.26	2.0	5.72	2.0	4.49
1.4	2.98	1.4	3.91	1.4	5.72	1.4	6.15	1.4	6.66	1.4	6.98	1.4	6.69	1.4	6.69	1.4	6.48	1.4	5.74	1.4	5.42	1.4	4.15
. 8	2.63	. 8	3.28	. 8	5.22	. 8	5.61	. 8	5.79	. 8	6.15	. 8	5.69	. 8	5.65	. 8	5.69	. 8	4.87	. 8	4.85	. 8	3.62
. 3	2.19	. 3	2.74	. 3	2.83	. 3	4.96	. 3	3.59	. 3	4.65	. 3	-	. 3	3.59	. 3	4.76	. 3	2.43	. 3	4.27	. 3	3.21

November 23, 1966. Section 255, Right bank station 4, Left bank station 73

$\begin{aligned} & \text { Sta. } 10 \\ & D=3.5 \mathrm{ft} . \end{aligned}$		Sta. 15		Sta. 20		Sta. I^{5}		Sta. ${ }^{\prime \prime}$		Sta. 15		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65			
		$\mathrm{D}=4$.	[t.	D=.'.	il.	$11=4$	16.	$\mathrm{p}=4$	tt.	$\mathrm{u}=4$	ft.	D=4	it.	$\mathrm{J}=4$	ft.	D=4.	ft .		ft .	D=4.	ft.				
y	v			y	v	y	v	y	v	y	v	y	v	y	v	y	v	y	v	y	v	y	V	y	v
3.2	2.12	3.2	5.49	3.2	6.57	3.2	7.56	3.2	7.93	3.2	8.14	3.2	8.04	3.2	7.25	3.2	7.05	3.2	6.06	3.2	5.18	3.2	4.27		
2.0	2.96	2.0	5.47	2.0	6.21	2.0	7.20	2.0	7.32	2.1	7.49	2.0	7.32	2.0	6.55	2.0	6.59	2.0	5.65	2.0	4.74	2.0	3.82		
1.4	2.28	1.4	5.16	1.4	5.87	1.4	6.80	1.4	6. 84	1.4	6.98	1.4	6.87	1.4	6.15	1.4	6.17	1.4	5.36	1.4	4.45	1.4	3.59		
. 8	2.51	. 8	4.54	. 8	5.15	. 8	6.12	. 8	5.72	. 8	6.05	. 8	6.06	. 8	5.18	. 8	5.47	. 8	4.92	. 8	4.06	. 8	3.05		
. 3	2.19	. 3	4.31	. 3	4.61	. 3	6.08	. 3	4.42	. 3	4.74	. 3	5.07	. 3	4.32	.3	4.02	. 3	4.58	. 3	3.77	3	2.65		

November 23, 1966, Section 260 , Right bank station 0 , Left bank station 68

$\begin{aligned} & \text { Sta. } \\ & \mathrm{D}=3.9 \end{aligned}$		$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=4.5 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=4.4 \mathrm{ft.} . \end{aligned}$		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
y	V	y	V	y	V	y	v	y	v	y	V	y	v	y	V	y	v	y	V	y	v	Y	V
3.2	3.32	3.2	5.51	3.2	6.41	3.2	7.75	3.2	8.25	3.2	8.11	3.2	7.75	3.2	7.63	3.2	6.89	3.2	5.96	3.2	5.16	3.2	4.07
2.0	3.28	2.0	4.99	2.0	6.23	2.0	7.27	2.0	7.75	2.0	7.20	2.0	7.05	2.0	6.98	2.0	6.50	2.0	5.58	2.0	4.81	2.0	3.64
1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	-	1.4	3.17
. 8	1.83	. 8	3.93	. 8	5.34	. 8	6.30	. 8	6.48	. 8	5.87	. 8	5.65	. 8	5.65	. 8	5.47	. 8	4.81	. 8	4.15	. 8	2.54
. 3	-	. 3	3.86	. 3	4.81	. 3	5.43	. 3	5.61	. 3	4.45	. 3	-	. 3	3.48	. 3	5.72	. 3	4.60	. 3	3.89	. 3	2.34

Table 2.--Neasured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
February 2, 1967. Section 240, Right bank station 1, Left bank station 67

Sta.		Sta.		Ste				Sta															60
$\begin{gathered} \mathrm{D}=2.8 \\ \mathrm{y} \end{gathered}$	$f t$		$\mathrm{ft} .$	$\begin{gathered} D=2 \\ y \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} D=2 \\ y \end{gathered}$	ft^{\prime}	$\begin{gathered} D=2 \\ y \end{gathered}$	$\mathrm{ft} .$		$\mathrm{ft} .$	$\mathrm{D}=2$ y		$\mathrm{D}=2$ y	$\mathrm{ft} .$	$\mathrm{D}=2$ y	ft	D=3	$\mathrm{ft} .$	D=3	$\mathrm{ft} .$
2.6	2.63	1.9	4.43	1.9	5.34	2.0	5.69	1.9	5.94	1.9	5.78	2.0	5.69	2.0	5.34	2.0	4.56	2.0	3.97	2.6	3.17	2.6	2.99
2.0	3.34	1.3	4.18	1.3	5.09	1.4	5.51	1.3	5.70	1.3	5.52	1.4	5.49	1.4	5.13	1.4	4.49	1.4	3.91	2.0	2.99	2.0	2.90
1.4	3.34	. 7	3.70	. 7	4.61	. 8	4.90	. 7	5.11	. 7	4.97	. 8	4.90	. 8	4.56	. 8	4.04	. 8	3.52	1.4	2.80	1.4	2.80
. 8	2.87	. 2	3.19	. 2	3.97	. 3	4.20	. 2	4.36	. 2	4.29	. 3	4.24	. 3	3.95	.3	3.55	. 3	3.10	. 8	2.23	. 8	2.35
3	2.35	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.3	1.52	. 3	1.81

Fetruary 2, 1967, Section 245, Right bank station 0, Left bank station 72

Sta. D=3		Sta.$\mathrm{D}=2.6 \mathrm{ft}$		Sta. ${ }^{\text {d }}$ (15 ft		$\underset{\mathrm{Sta}=2.5}{ } \mathbf{~} \mathrm{ft}^{\text {f }}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		Sta. 30		$\begin{aligned} & \text { Sta. } 35 \\ & \mathrm{D}=2.3 \mathrm{ft} . \end{aligned}$		Sta. 40		$\begin{aligned} & \text { Sta. } 45 \\ & \mathrm{D}=2.2 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 50 \\ & \mathrm{D}=2.2 \mathrm{ft} \end{aligned}$		$\begin{aligned} & \text { Sta. } 55 \\ & \mathrm{D}=2.0 \mathrm{ft} . \end{aligned}$		Sta. 60	
y	V	y	v	y	v	y	V	y	V		V	y		y		y	v		v			y	
2.5	2.72	2.5	3.80	1.9	4.81	1.9	5.38	1.8	5.67	1.9	5.76	1.9	5.63	1.9	5.29	2.0	4.94	2.0	3.91	2.0	3.16	2.6	2.74
1.9	2.60	1.9	4.04	1.4	4.70	1.4	5.18	1.3	5.51	1.4	5.56	1.4	5.51	1.4	5.15	1.4	4.90	1.4	3.98	1.4	3.62	2.0	2.62
1.4	2.28	1.4	3.97	. 8	4.33	. 8	4.72	. 7	4.99	. 8	5.07	. 8	4.99	. 8	4.69	. 8	4.45	. 8	3.64	. 8	3.48	1.4	2.43
. 8	1.48	. 8	3.66	. 3	3.80	3	4.04	. 2	4.25	. 3	4.38	.3	4.33	. 3	4.07	. 3	3.86	. 3	3.25	. 3	3.16	. 8	1.72
. 3	1.05	. 3	3.26	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 3	1.07

February 2, 1967, Section 250, Right bank station 0, Left bank station 67

$\begin{aligned} & \text { Sta. } \\ & \mathrm{D}=2 . \end{aligned}$		Sta. 10		Sta. 15$\mathrm{D}=2.3 \mathrm{ft}$		Sta. 20$\mathrm{D}=2.3 \mathrm{ft}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=2.3 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 30 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta, } 35 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 40 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 45 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 50 \\ & \mathrm{Dm} 2.5 \mathrm{ft} \end{aligned}$		$\begin{aligned} & \text { Sta. } 55 \\ & \mathrm{D}=2.8 \mathrm{ft} . \end{aligned}$		$\text { Sta. } 60$	
y	V	y	f.	¢		7	V	y	V	\boldsymbol{y}	v	y	v	y		y		y	\mathbf{v}	y		y	
1.8	3.64	1.9	4.52	1.8	5.25	1.8	5.65	1.8	5.65	1.8	5.72	1.8	5.56	1.8	5.38	1.8	4.79	2.4	3.98	2.4	3.88	2.5	3.01
1.3	3.55	1.4	4.42	1.3	5.13	1.3	5.47	1.3	5.51	1.3	5.58	1.3	5.42	1.3	5.24	1.3	4.70	1.8	3.97	1.8	3.84	1.9	2.94
. 7	3.16	. 8	4.06	. 7	4.67	. 7	4.96	. 7	4.99	. 7	5.03	. 7	4.94	. 7	4.78	. 7	4.27	1.3	3.79	1.3	3.93	1.4	3.03
. 2	2.62	. 3	3.61	. 2	4.07	. 2	4.24	. 2	4.27	. 2	4.27	. 2	4.22	. 2	4.07	. 2	3.66	. 7	3.44	. 7	3.80	. 8	2.89
		-	-		-		-		-		-	-	-		-	-	-	. 2	3.25	1	3.10	. 3	2.01

Table 2.--Meacured velocity, V, in feet par aecond, al indicated heighta above riverbed, y. in faet - concinued
February 2, 1967, Section 25\%, Right bank station 0, Left bank station 66

		Sta. 10		Sta. 15		Sta. 20		Sta. 25		Stat 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
$\begin{gathered} \mathrm{D}=2.6 \\ \mathrm{y} \end{gathered}$	$\mathbf{f t} .$		$f t$ \mathbf{v}	$\begin{gathered} \mathrm{D}=2 . \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$ \mathbf{v}	$\begin{gathered} D=2 \\ y \end{gathered}$	$\underset{V}{\mathrm{ft}} .$		ft . V	$\mathrm{D}=2$		Dm 2 y	$\mathrm{ft} .$		$\mathrm{ft}_{\mathrm{v}} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$		$\mathrm{D}=2$ y	$6 \underset{\mathrm{~V}}{\mathrm{ft}} .$	$\mathrm{D}=2$ y	$\mathrm{sft}_{\mathrm{V}}$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathbf{8} \underset{\mathbf{V}}{ } .$
1.9	3.01	1.8	4.04	1.8	-	1.8	5.49	1.8	5.76	1.8	5.83	1.8	5.70	1.8	5.40	1.9	4.85	2.5	4.52	2.7	3.50	2.4	3.35
1.4	2.99	1.3	3.93	1.3	4.79	1.3	5.36	1.3	5.61	1.3	5.67	1.3	5.52	1.3	5.22	1.4	4.72	1.9	4.42	2.1	3.68	1.8	3.12
. 8	2.62	. 7	3.59	. 7	4.34	. 7	4.92	. 7	5.09	. 7	5.15	. 7	4.96	. 7	4.70	. 8	4.25	1.4	4.34	1.6	3.62	1.3	2.94
. 3	1.68	. 2	3.16	. 2	3.79	. 2	4.27	. 2	4.33	. 2	4.36	. 2	4.18	. 2	4.06	. 3	3.66	. 8	3.98	1.0	3.32	. 7	2.51
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 3	3.50	. 5	2.81	. 2	2.12

February 2, 1967, Section 260, Right bank station 4, Left bank station 70
Sta. 10 Sta. 15 Sta. $20 \quad$ Sta. $25 \quad$ Sta. $30 \quad$ Sta. $35 \quad$ Sta. $40 \quad$ Sta. $45 \quad$ Sta. $50 \quad$ Sta. 55 Sta. $60 \quad$ Sta. 65

| 2.4 | 3.35 | 1.9 | 4.24 | 1.9 | 5.16 | 1.8 | 5.49 | 1.8 | 5.81 | 1.9 | 5.78 | 1.9 | 5.63 | 1.9 | 5.34 | 1.9 | 4.79 | 1.9 | 3.88 | 1.9 | 3.57 | 2.5 | 2.96 | |
| ---: |
| 1.8 | 3.26 | 1.4 | 4.20 | 1.4 | 5.01 | 1.3 | 5.40 | 1.3 | 5.61 | 1.4 | 5.63 | 1.4 | 5.49 | 1.4 | 5.25 | 1.4 | 4.61 | 1.4 | 3.93 | 1.4 | 3.71 | 1.9 | 2.87 | |
| 1.3 | 3.12 | .8 | 3.88 | .8 | 4.61 | .7 | 4.79 | .7 | 5.03 | .8 | 5.13 | .8 | 4.96 | .8 | 4.76 | .8 | 4.27 | .8 | 3.70 | .8 | 3.52 | 1.4 | 2.71 | |
| .7 | 2.53 | .3 | 3.34 | .3 | 3.97 | .2 | 4.04 | .2 | 4.18 | .3 | 4.31 | .3 | 4.18 | .3 | 4.07 | .3 | 3.71 | .3 | 3.26 | .3 | 3.05 | .8 | 2.25 | |
| .2 | 1.92 | - | .3 | 1.90 |

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
Fohruary 14, 1067, section 20. Kight bank atation 4, Left bank atation 68

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
$\begin{gathered} \mathrm{D}=2.4 \\ \mathrm{y} \end{gathered}$	$\stackrel{f t .}{V}$	$\mathrm{D}=2$	$5 \mathrm{ft} .$	$D=2 \text {. }$	$\mathrm{ft} .$	$\begin{gathered} D=2 \\ y \end{gathered}$	$\mathrm{ft}_{\mathrm{v}} .$	$D=2 \text {. }$	$\mathrm{ft} .$		$\mathrm{ft} .$	$\mathrm{D}=2$ y	$\underset{v}{\mathrm{ft}} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{v} \end{gathered}$	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{v} \end{aligned}$		$\underset{\mathrm{V}}{\mathrm{ft}}$	$\mathrm{D}=2$ y	$f t .$	$\mathrm{D}=2$. y	$6 \mathrm{ft} .$
1.3	3.23	1.3	4.90	1.3	5.07	1.3	5.24	1.3	5.27	1.3	5.27	1.3	5.09	1.3	4.43	1.3	3.68	1.3	3.77	1.2	3.30
. 8	2.72	. 8	4.60	. 8	4.56	. 8	4.78	. 8	4.78	. 8	4.83	. 8	4.70	. 8	4.11	. 8	3.50	. 8	3.57	. 7	3.08
. 3	1.55	. 3	3.88	. 3	3.79	. 3	3.95	. 3	4.00	. 3	4.04	. 3	3.89	. 3	3.50	. 3	3.14	. 3	3.17	. 2	2.45

February 14, 1967, Section 225, Right bank station 2, Left bank station 66

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=2.3 \mathrm{ft} . \end{aligned}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55	
		D=2.	ft .	D=2.	ft.	$\mathrm{D}=2$.	ft .	$\mathrm{D}=2$.	ft.	D=2	ft .	$\mathrm{D}=2$	ft .	D=2	ft .	$\mathrm{D}=3$	ft .	D=3	ft .
y	V	y	V	y	\checkmark	y	V	y	v	y	v	y	V	y	v	\%	V	y	V
1.3	3.43	1.3	4.61	1.3	5.38	1.3	5.52	1.3	5.45	1.3	5.24	1.3	4.79	1.3	4.29	1.3	3.37	1.9	2.41
. 8	3.10	. 8	4.27	. 8	4.94	. 8	5.09	. 8	5.03	. 8	4.81	. 8	4.40	. 8	4.00	. 8	2.80	1.3	3.07
. 3	2.69	. 3	3.62	. 3	4.11	. 3	4.27	. 3	4.20	. 3	4.07	. 3	3.77	. 3	3.53	. 3	1.85	. 8	2.60
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 3	2.49

February 14, 1967, Section 230, Right bank station 3, Left bank station 70

$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=2.5 \mathrm{ft} . \end{aligned}$		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
		D=2.	ft .	$\mathrm{D}=2$ y		$\mathrm{D}=2$. y	ft. V	$\mathrm{D}=2$ y		D=2		$\mathrm{D}=2$ y		$\mathrm{D}=2$. y	ft. v
1.9	5.67	1.8	5.56	1.9	5.49	1.8	5.31	1.9	4.63	1.7	3.66	1.9	3.12	1.9	2.61
1.3	5.34	1.2	5.27	1.3	5.16	1.2	4.99	1.3	4.54	1.1	3.86	1.3	2.94	1.3	2.35
. 8	4.90	. 7	4.78	. 8	4.81	. 7	4.60	. 8	4.29	. 6	3.68	. 8	2.71	. 8	2.14
. 3	4.15	. 2	4.09	. 3	4.15	. 2	3.88	. 3	3.71	. 1	3.23	. 3	2.19	. 3	1.81

February 14, 1967, Section 235, Right bank station 1, Left bank station 69

$\begin{aligned} & \text { Sta. } 5 \\ & D=2.0^{5} \mathrm{ft} . \end{aligned}$	Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
	$\begin{gathered} \mathrm{D}=2 . \\ \mathrm{y} \end{gathered}$	$\underset{\mathrm{v}}{\mathrm{ft}} .$	$\begin{gathered} D=2 \\ y \end{gathered}$	$2 \underset{\mathrm{~V}}{\mathrm{ft}} .$	$\begin{gathered} D=2 \\ y \end{gathered}$	$3 \mathrm{ft} .$		$\mathrm{ft} .$		$\mathrm{ft} .$ v		$\mathrm{ft.} .$		$\mathrm{ft} .$		ft. v	$\mathrm{D}=2$ y	$\mathrm{ft} .$	$\mathrm{D}=2$ y	$\mathrm{ft} .$	$\mathrm{D}=3$	$4 \mathrm{ft}_{\mathrm{V}} .$
1.9	1.9	4.00	1.9	4.67	1.9	5.22	1.9	5.38	1.9	5.43	1.9	5.51	1.9	5.29	1.9	4.74	1.9	4.09	2.4	2.28	2.4	2.60
1.32 .74	1.3	4.00	1.3	4.49	1.3	4.97	1.3	5.15	1.3	5.15	1.3	5.15	1.3	5.01	1.3	4.58	1.3	4.04	1.8	3.61	1.8	2.72
. 82.76	. 8	3.77	. 8	4.24	. 8	4.63	. 8	4.78	. 8	4.74	. 8	4.79	. 8	4.65	. 8	4.27	. 8	3.80	1.2	3.41	1.2	2.54
. 32.17	. 3	3.25	. 3	3.59	. 3	3.93	. 3	4.06	. 3	3.95	. 3	4.04	. 3	4.07	. 3	3.73	. 3	3.34	. 7	3.14	. 7	2.37
- -	-					-		-	-	-		-	-	-		-	-	-	. 2	2.35	2	2.01

Table 2,-Meaeure velocity, V, in feet per second, at indicated heighte above riverbed, y, in feet - Continued
February 14,1969 , Section 240 , Right bank station 2 , Left bank station 68

Sta. 10$\mathrm{D}=2.6 \mathrm{ft}$.		Sta. 15		Sta. 20		Sta. 25		Sta. 3t		Sta. 15		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
$\begin{gathered} D=2 \cdot t \\ y \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$ \mathbf{v}	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	ft \mathbf{v}	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\underset{\mathbf{V}}{\mathbf{f}} .$	$\begin{gathered} D=2 \\ y \end{gathered}$	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{v} \end{aligned}$		$\mathrm{ft} .$ \mathbf{v}		ft. V	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\underset{V}{\mathrm{ft}} .$	$\mathrm{D}=2$	$\mathrm{ft} .$	$\mathrm{D}=2$	$\mathbf{f t .}_{\mathrm{v}}$	$\begin{gathered} \mathrm{D}=2 . \\ \mathrm{y} \end{gathered}$	$\underset{\mathbf{v}}{\mathrm{ft}}$
1.9	4.40	1.9	5.24	1.9	5.47	1.9	5.60	1.9	5.61	1.9	5.51	1.8	5.11	1.9	4.81	2.3	3.68	2.3	3.08	2.5	2.71
1.3	4.18	1.3	4.97	1.3	5.20	1.3	5.34	1.3	5.33	1.3	5.29	1.2	4.87	1.3	4.61	1.7	3.89	1.7	3.12	1.9	2.92
. 8	3.82	. 8	4.63	. 8	4.81	. 8	4.92	. 8	4.94	. 8	4.92	. 7	4.18	. 8	4.29	1.1	3.61	1.1	2.92	1.3	2.78
. 3	3.26	. 3	4.00	. 3	4.18	. 3	4.20	. 3	4.24	. 3	4.18	. 2	3.84	.3	3.66	. 6	3.30	. 6	2.74	. 8	2.34
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 1	2.39	. 1	1.44	. 3	-

February 14, 1969, Section 250, Right bank station 4, Left bank station 71

Sta. ${ }^{\text {d }} \mathbf{2 . 4} \mathrm{ft}$.		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
$\begin{gathered} \mathrm{D}=2 . \\ \mathrm{y} \end{gathered}$	$\underset{v}{\mathrm{ft}} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	ft. \mathbf{v}	$\begin{gathered} \mathrm{D}=2, \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathrm{ft}_{\mathrm{V}} .$		ft. \mathbf{v}		$\mathrm{ft} .$		$1 \mathrm{ft} .$		$\mathrm{ft}_{\mathrm{v}} .$	$\begin{gathered} \mathrm{D}=3 \\ \mathrm{y} \end{gathered}$	
1.9	5.65	1.9	5.72	1.9	5.65	1.9	5.51	1.9	5.25	1.9	4.78	1.9	3.70	2.4	3.48	2.5	2.72
1.3	5.43	1.3	5.47	1.3	5.36	1.3	5.22	1.3	4.99	1.3	4.63	1.3	3.95	1.8	3.55	1.9	2.85
. 8	5.11	. 8	5.11	. 8	4.92	. 8	4.88	. 8	4.63	. 8	4.34	. 8	3.66	1.2	3.48	1.3	2.63
. 3	4.34	. 3	4.34	. 3	4.24	. 3	4.20	. 3	3.98	. 3	3.84	. 3	3.37	. 7	3.05	. 8	2.28
-	-						-						-	. 2	2.21	3	1.64

February 14, 1967, Section 260, Right bank station 4, Left bank station 71

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=2.7 \mathrm{ft} . \end{aligned}$		Sta.$\mathrm{D}=2.3 \mathrm{ft}$		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65			
			$f t .$	$D=2$	$f t$ \mathbf{v}	$\mathrm{D}=2$	$f t .$		$\mathrm{ft} .$		$\mathrm{ft} .$		ft. v	$\mathrm{D}=2$.			$\mathrm{ft} .$				$f t$				
1.9	3.28			1.9	4.52	1.9	4.96	1.9	5.49	1.8	5.67	1.9	5.60	1.9	5.51	1.8	5.25	1.9	4.40	1.9	3.57	1.8	3.61	1.9	2.60
1.3	2.99	1.3	4.31	1.3	4.69	1.3	5.24	1.2	5.40	1.3	5.29	1.3	5.22	1.2	4.97	1.3	4.27	1.3	3.26	1.2	3.50	1.3	2.62		
. 8	2.65	. 8	3.97	. 8	4.38	. 8	4.81	7	4.94	. 8	4.88	. 8	4.81	. 7	4.54	. 8	3.97	. 8	3.08	. 7	3.34	. 8	2.45		
. 3	2.16	3	3.46	3	3.80	3	4.04	2	4.18	. 3	4.09	3	4.02	. 2	3.86	. 3	3.43	. 3	2.90	. 2		. 3	2.05		

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
February 14, 1967, Ssction 270, Right bank station 2, Left bank station 65

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=2.3^{\mathrm{ft} .} \end{aligned}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40				Sta. 50			
		$\mathrm{D}=2.5 \mathrm{ft}$.		$\mathrm{D}=2$	ft.	D=2.6 ft.		D=2.	ft .	$\mathrm{D}=2.5 \mathrm{ft}$.		$\mathrm{D}=2.4 \mathrm{ft}$.		$\begin{aligned} & \text { Sta. } 45 \\ & \mathrm{D}=2.4 \mathrm{ft} . \end{aligned}$		$\mathrm{D}=2.2 \mathrm{ft}$.		$D=3.1 \mathrm{ft} \text {. }$	
y	V	y	v	y	v	y	v												
1.9	4.24	1.9	5.25	1.9	5.54	1.9	5.70	1.9	5.70	1.9	5.61	1.9	5.45	1.9	4.92	1.8	4.52	2.4	3.53
1.3	4.27	1.3	5.16	1.3	5.22	1.3	5.33	1.3	5.38	1.3	5.25	1.3	5.13	1.3	4.69	1.2	4.24	1.8	3.37
. 8	4.06	. 8	4.83	. 8	4.85	. 8	4.92	. 8	4.96	. 8	4.85	. 8	4.76	. 8	4.29	. 7	3.98	1.2	3.10
. 3	3.41	. 3	4.15	. 3	4.07	. 3	4.09	. 3	4.22	. 3	4.07	. 3	4.09	. 3	3.75	. 2	3.53	. 7	2.63
-	-	-	-	-	-	-	-	-	-		-				-			2	1.48

February 14, 1967, Section 280, Right bank station 3, Left bank station 70 $\begin{array}{llllllllllll}\text { Sta. } & 5 & \text { Sta. } 10 & \text { Sta. } 15 & \text { Sta. } 20 & \text { Sta. } 25 & \text { Sta. } 30 & \text { Sta. } 35 & \text { Sta. } 40 & \text { Sta. } 45 & \text { Sta. } 50 \\ \mathrm{D}=2.6 \mathrm{ft.} & \mathrm{D}=2.5 \mathrm{ft.} & \mathrm{D}=2.5 \mathrm{ft.} & \mathrm{D}=2.5 \mathrm{ft}, & \mathrm{D}=2.4 \mathrm{ft} . & \mathrm{D}=2.4 \mathrm{ft.} & \mathrm{D}=2.4 \mathrm{ft.} & \mathrm{D}=2.5 \mathrm{ft.} & \mathrm{D}=2.5 \mathrm{ft.} & \mathrm{D}=2.5 \mathrm{ft}\end{array}$

y	\checkmark	y	V	y	\checkmark	y	\checkmark	y	\checkmark	y	V	y	\checkmark	y	V								
$1 . \varepsilon$	2.23	1.9	3.44	1.9	4.60	1.9	5.25	1.8	5.61	1.8	5.74	1.8	5.67	1.9	5.45	1.8	5.15	1.9	4.42	1.9	3.53	1.9	2.92
1.2	1.99	1.3	3.61	1.3	4.63	1.3	4.97	1.2	5.33	1.2	5.40	1.2	5.38	1.3	5.24	1.2	4.90	1.3	4.36	1.3	3.84	1.3	2.98
. 7	1.48	. 8	3.32	. 8	4.34	. 8	4.60	. 7	4.88	. 7	5.03	. 7	4.92	. 8	4.88	. 7	4.58	. 8	4.25	. 8	3.66	. 8	2.78

February 15, 1967, Section 220, Right bank station 0 , Left bank station 64

	5	Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55	
$\begin{aligned} & \text { Sta. } \\ & D=2.6 \end{aligned}$	ft.	$\mathrm{D}=2$.	ft .	$\mathrm{D}=2$.	5 ft .	Dm2.	ft .	$\mathrm{D}=2$,	ft .	$\mathrm{d}=2$,	ft .	$\mathrm{d}=2$	ft .	b) $=2$.	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=3$	ft .
y	v	j	v	y	V	y	v	y	v	y	v	y	V	y	v	y	v	y	V	y	V
1.9	3.48	1.9	4.56	1.9	5.29	1.9	5.76	1.9	5.76	1.9	5.72	1.9	5.58	1.9	4.88	1.9	4.13	2.5	3.08	2.5	3.05
1.3	3.30	1.3	4.27	1.3	5.07	1.3	5.51	1.3	5.51	1.3	5.36	1.3	5.29	1.3	4.60	1.3	4.02	1.9	3.37	1.9	2.90
. 8	2.80	. 8	4.06	. 8	4.74	. 8	5.07	. 8	5.03	. 8	4.85	. 8	4.88	. 8	4.34	. 8	3.84	1.3	3.52	1.3	2.58
. 3	2.32	. 3	3.66	. 3	4.27	. 3	4.42	. 3	4.42	. 3	4.27	.3	4.49	. 3	3.98	. 3	3.44	. 8	3.55	. 8	2.39
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 3	3.19	. 3	2.08

February 15, 1967, Section 225, Right bank station 2, Left bank station 66

Sta.		Sta.$\mathrm{D}=2.4 \mathrm{ft}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
$\mathrm{D}=2.2$	$\mathrm{t}_{\mathrm{v}} .$	$D=2 \text {. }$	$\mathrm{ft} .$ \mathbf{v}	$\mathrm{D}=2$	$\mathrm{ft} .$ \mathbf{v}		$4 \mathrm{ft} .$	$\mathrm{D}=2$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$				$\mathrm{ft} .$ v		$\mathrm{ft} .$ v						$f t .$
1.9	1.30	1.9	3.59	1.9	4.74	1.9	4.99	1.9	5.47	1.9	5.51	1.9	5.47	1.9	5.18	1.9	4.60	2.5	4.06	2.4	3.40	2.5	2.46
1.3	1.41	1.3	3.55	1.3	4.45	1.3	4.81	1.3	5.22	1.3	5.15	1.3	5.11	1.3	4.88	1.3	4.31	1.9	3.80	1.8	3.01	1.9	2.46
. 8	1.37	. 8	3.34	. 8	4.20	. 8	4.60	. 8	4.85	. 8	4.78	. 8	4.67	. 8	4.49	. 8	4.06	1.3	3.52	1.2	2.76	1.3	2.28
. 3	1.26	. 3	2.87	. 3	3.62	.3	4.02	. 3	4.13	. 3	4.02	.3	3.95	.3	3.91	. 3	3.70	. 8	3.37	. 7	2.54	. 8	2.23
	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	. 3	3.16	. 2	2.54	. 3	2.07

February 15, 1967, Section 230, Right bank station 4, Left bank station 70

| 2.5 | 3.01 | 2.5 | 4.96 | 2.5 | 6.26 | 2.5 | 6.62 | 2.5 | 6.69 | 1.8 | 5.43 | 1.9 | 5.05 | 1.9 | 4.63 | 1.9 | 4.13 | 2.5 | 3.30 | 2.5 | 3.52 | 2.5 | 2.72 |
| :--- |
| 1.9 | 3.41 | 1.9 | 4.78 | 1.9 | 5.15 | 1.9 | 5.40 | 1.9 | 5.54 | 1.2 | 5.18 | 1.3 | 4.87 | 1.3 | 4.52 | 1.3 | 4.06 | 1.9 | 3.48 | 1.9 | 3.31 | 1.9 | 2.69 |

| 1.9 | 3.41 | 1.9 | 4.78 | 1.9 | 5.15 | 1.9 | 5.40 | 1.9 | 5.54 | 1.2 | 5.18 | 1.3 | 4.87 | 1.3 | 4.52 | 1.3 | 4.06 | 1.9 | 3.48 | 1.9 | 3.31 | 1.9 | 2.69 |
| ---: |
| 1.3 | 3.44 | 1.3 | 4.67 | 1.3 | 4.88 | 1.3 | 5.18 | 1.3 | 5.29 | .7 | 4.85 | .8 | 4.56 | .8 | 4.24 | .8 | 3.80 | 1.3 | 3.37 | 1.3 | 3.12 | 1.3 | 2.54 |
| .8 | 3.12 | .8 | 4.31 | .8 | 4.49 | .8 | 4.81 | .8 | 4.92 | .2 | 4.20 | .3 | 3.97 | .3 | 3.73 | .3 | 3.30 | .8 | 3.19 | .8 | 2.72 | .8 | 2.28 |
| .3 | 2.65 | .3 | 3.77 | .3 | 3.91 | .3 | 4.24 | .3 | 4.24 | - | - | . | - | - | - | - | - | .3 | 2.76 | .3 | - | .3 .1 .16 | |

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
February 15, 1967, Section 235, Right bank station 1, Left bank station 69

Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
$\mathrm{D}=2.3$		D=2.	ft .	D=2.	3 ft .	D=2.		$D=2$	ft .	D=2	ft .	$\mathrm{D}=2$	f ¢.	$\mathrm{D}=2$	6 ft .	D=2	6 ft .	D=3	ft .	D=3.	ft .	D=3.	ft .
y	V	y	V	y	V	y	V	y	v	y	v	y	v	y	V	y	v	y	V	y	V	y	V
1.9	3.95	1.9	4.74	1.9	4.99	1.9	5.33	1.9	5.36	1.9	5.25	1.9	4.99	1.9	4.34	1.9	3.88	2.5	3.59	2.5	2.87	2.5	2.28
1.3	3.80	1.3	4.63	1.3	4.78	1.3	5.11	1.3	5.11	1.3	4.99	1.3	4.85	1.3	4.06	1.3	3.62	1.9	3.46	1.9	2.58	1.9	1.99
. 8	3.55	. 8	4.27	. 8	4.49	. 8	4.74	. 8	4.74	. 8	4.63	. 8	4.49	. 8	3.77	. 8	3.37	1.3	3.34	1.3	2.28	1.3	1.59
. 3	3.12	. 3	3.77	. 3	3.91	. 3	4.13	. 3	4.16	. 3	4.09	. 3	4.06	. 3	3.34	. 3	3.05	. 8	3.17	. 8	2.03	. 8	1.37
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 3	2.85	. 3	-	. 3	-

February 15, 1967, Section 240, Right bank station 2, Left bank station 68
Sta. S Sta. 10 Sta. 15 Sta. $20 \quad$ Sta. 25 Sta. $30 \quad$ Sta. 35 Sta. $40 \quad$ Sta. $45 \quad$ Sta. $50 \quad$ Sta. 55 Sta. 60

$\begin{gathered} \mathrm{D}=3.0 \\ \mathrm{y} \end{gathered}$	ft	$\mathrm{D}=2$ y	ft.	$\mathrm{D}=2$	$\mathrm{ft.}$	$\mathrm{D}=2$ y	v	$\mathrm{D}=2$ y	ft	$\mathrm{D}=2$	$\mathrm{ft} .$	$\mathrm{D}=2$ y	$\mathrm{ft} .$	$\mathrm{D}=2$	$f \text { f. }$	$\mathrm{D}=2$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$	$\mathrm{D}=2$ y	$\underset{v}{\mathrm{f}} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\mathbf{v t}$
2.0	3.26	1.9	4.24	1.9	4.85	1.9	5.29	1.9	5.47	1.9	5.58	1.9	5.40	1.9	5.25	1.9	4.56	1.9	3.98	1.8	3.34	1.9	2.98
1.4	3.16	1.3	3.80	1.3	4.74	1.3	5.03	1.3	5.18	1.3	5.07	1.3	5.11	1.3	5.03	1.3	4.38	1.3	3.80	1.2	3.26	1.3	2.85
. 9	2.90	. 8	3.52	. 8	4.45	. 8	4.70	. 8	4.85	. 8	4.92	. 8	4.70	. 8	4.63	. 8	4.06	. 8	3.52	. 7	3.19	. 8	2.65
	2.32				3.88		4.		4.13		4.31				4.02								

February 15, 1967, Section 245, Right bank station 4, Left bank station 78

Sta. 10$\mathrm{D}=3.1 \mathrm{ft}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
$\begin{gathered} \mathrm{D}=3 . \\ \mathrm{y} \end{gathered}$	ft. V	$\begin{gathered} D=2 \\ y \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{V} \end{aligned}$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\underset{\mathbf{V}}{\mathrm{ft}}$	$\begin{gathered} \mathrm{D}=2 \\ \mathrm{y} \end{gathered}$	$\stackrel{f t}{\mathrm{~V}} .$	$\begin{gathered} \mathrm{D}=2 . \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} \mathrm{D}=2 . \\ \mathrm{y} \end{gathered}$	$\mathrm{ft} .$	$\begin{gathered} D=2 . \\ y \end{gathered}$	$\mathrm{ft} .$		$\mathrm{ft} .$	$\mathrm{D}=2$	$\mathrm{ft}_{\mathrm{v}} .$	$\mathrm{D}=2$.	$\underset{v}{f t .}$	$\mathrm{D}=2.6$	$\underset{\mathrm{v}}{\mathrm{ft}} .$
2.5	3.37	1.9	3.95	1.9	4.63	1.8	5.22	1.9	5.22	1.9	5.33	1.9	5.33	1.9	5.18	1.9	4.78	1.9	4.38	1.9	3.73	1.9	3.30
1.9	3.19	1.3	3.73	1.3	4.42	1.2	4.96	1.3	5.07	1.3	5.15	1.3	5.07	1.3	4.99	1.3	4.78	1.3	4.38	1.3	3.55	1.3	3.26
1.3	2.72	. 8	3.55	. 8	4.16	. 7	4.63	. 8	4.70	. 8	4.74	. 8	4.63	. 8	4.67	. 8	4.52	. 8	4.16	. 8	3.34	. 8	2.76
. 8	1.81	. 3	3.19	. 3	3.73	. 2	4.13	. 3	3.98	. 3	4.06	. 3	4.06	. 3	4.06	. 3	3.95	. 3	3.73	. 3	2.94	. 3	2.54
3	1.09										-				-			-					

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
February 15, 1967, Section 250, Right bank station 0 , Left bank station 67

$\begin{aligned} & \text { Sta. } \\ & \mathrm{D}=2.8 \end{aligned}$		Sta. 10		Sta. 15		Sta. 20		St:		Sta, 30		Sta. 35		Stia. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
	ft .	$\mathrm{D}=2$	ft.	D=2	3 ft .	$\mathrm{D}=2$	3 ft .	$D=2$	4 ft .	$\mathrm{D}=2$	ft .	$\mathrm{j}=2$	4 ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$.	ft .	D=3	ft.
y	V	y	v	y	v	y	V	y	V	y	V	y	v	y	v	y	V	y	v	y	v	y	v
2.4	3.59	1.9	4.34	1.9	5.03	1.9	5.18	1.9	5.40	1.9	-	1.9	5.43	1.9	5.36	1.9	4.49	1.9	3.84	1.9	3.88	2.4	2.72
1.8	3.41	1.3	4.13	1.3	4.78	1.3	4.96	1.3	5.18	1.3	5.22	1.3	5.22	1.3	5.03	1.3	4.27	1.3	3.88	1.3	3.88	1.8	2.76
1.2	3.16	. 8	3.88	. 8	4.45	. 8	4.63	. 8	4.81	. 8	4.81	. 8	4.88	. 8	4.74	. 8	3.91	. 8	3.66	. 8	3.70	1.2	2.72
. 7	2.83	. 3	3.37	. 3	3.88	. 3	4.02	. 3	4.16	. 3	4.16	. 3	4.24	. 3	4.06	. 3	3.44	. 3	3.26	. 3	3.41	. 7	2.32
. 2	2.43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 2	2.07

February 15, 1967, Section 260, Right bank station 4, Left bank station 71

$$
\text { Sta. } 25 \text { Sta. } 30 \text { Sta. } 35 \text { Sta. } 40 \quad \text { Sta. } 45 \quad \text { Sta, } 50 \quad \text { Sta. } 55 \text { Sta. } 60 \text { Sta. } 65
$$

Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
D=2.	ft .	$\mathrm{D}=2$.	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$.	ft .	D=2	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$		$\mathrm{D}=2$	ft .	D=2	ft .	$\mathrm{D}=2$	ft .	$\mathrm{D}=2$	ft .	D=2	
y	v	y	v	y	v	y	V	y	v	y	V	y	v	y	v	y	v	y	V	y	v	y	V
1.8	3.23	1.9	4.34	1.9	4.92	1.9	5.58	1.9	5.69	1.9	5.69	1.9	5.58	1.9	5.47	1.9	4.78	1.9	4.16	1.9	-	1.9	2.90
1.2	2.94	1.3	4.09	1.3	4.67	1.3	5.15	1.3	5.36	1.3	5.29	1.3	5.15	1.3	5.07	1.3	4.49	1.3	4.02	1.3	3.37	1.3	2.72
. 7	2.54	. 8	3.84	. 8	4.42	. 8	4.81	. 8	4.88	. 8	4.92	. 8	4.74	. 8	4.74	. 8	4.24	. 8	3.80	. 8	3.08	. 8	2.51
. 2	2.14	. 3	3.44	. 3	3.91	. 3	4.27	. 3	4.20	. 3	4.20	. 3	4.13	.3	4.20	. 3	3.84	. 3	3.37	. 3	2.83	. 3	1.92

February 15, 1967, Section 270, Right bank station 3, Left bank station 66

$\begin{aligned} & \text { Sta. } \\ & D=2.5 \end{aligned}$	$\begin{aligned} & 5 \\ & \mathrm{ft} \end{aligned}$	$\begin{aligned} & \text { Sta. } 10 \\ & D=2.5 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 15 \\ & D=2.5 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & D=2.6 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & D=2.6 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } \quad 30 \\ & D=2.6 \mathrm{ft} . \end{aligned}$		$\text { Sta. } 35$		Sta. 40		Sta. 45				Sta. 55		Sta. 60	
y	v	y	V	,	v	y	V	y	V	y	V	y	v	y	\checkmark	y	V	y	V	y	v	y	
1.9	1.85	1.9	4.60	1.9	4.67	1.9	5.22	1.9	5.54	1.9	5.72	1.9	5.61	3.9	5.47	1. 9	4.78	1.9	3.70	1.9	2.90	1.9	2.3
1.3	1.85	1.3	4.45	1.3	4.52	1.3	4.99	1.3	5.22	1.3	5.43	1.3	5.33	1.3	5.22	1.3	4.56	1.3	3.34	1.3	2.65	1.3	1.96
. 8	1.66	. 8	4.20	. 8	4.31	. 8	4.63	. 8	4.88	. 8	5.07	. 8	4.96	. 8	4.85	. 8	4.31	. 8	2.43	. 8	2.39	. 8	1.70
. 3	1.55	3	3.70	3	3.88	3	4.09	. 3	4.34	. 3	4.34	. 3	4.42	. 3	4.38	. 3	3.84	3	1.62	. 3	1.78	. 3	1.

February 15, 1967, Section 280, Right bank station 3, Left bank station 70

Sta. 10$\mathrm{D}=3.0 \mathrm{ft}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
		D=2		D=2	ft .	$\mathrm{d}=2$	4 ft .	$\mathrm{D}=2$		D=2	ft.	Sta.	60								
y	V	y	V	y	V	y	V	y	v	y	V	y	v	y	V	y	v	y	V	y	v
2.5	3.66	1.9	4.38	1.9	5.22	1.9	5.61	1.9	5.61	1.9	5.58	1.9	5.61	1.8	5.25	1.9	4.70	1.9	3.91	2.5	3.37
1.9	3.44	1.3	4.09	1.3	4.88	1.3	5.29	1.3	5.33	1.3	5.25	1.3	5.33	1.2	4.96	1.3	4.56	1.3	3.73	1.9	3.16
1.3	3.26	. 8	3.73	. 8	4.49	. 8	4.85	. 8	4.88	. 8	4.92	. 8	4.81	. 7	4.63	. 8	4.24	. 8	3.44	1.3	3.16 2.94
. 8	3.12	. 3	3.34	. 3	4.02	. 3	4.27	. 3	4.31	. 3	4.20	. 3	4.34	. 2	4.13	. 3	3.84	. 3	3.44	1.3	2.94 2.62
. 3	2.35	-	-	-	-	-	-	-	-	-	4.2	.	4.34	. 2	4.13	. 3	3.84	. 3	3.19	. 8	2.62 2.35

Table 2.--Masared velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
February 1, 1968, Section 99, Right bank station 0, Left bank station 62

$\begin{aligned} & \text { Sta. } \\ & \begin{array}{c} \mathrm{D}=3.3 \\ y \end{array} \end{aligned}$	6 ft . V	Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55			
				D=2	ft.	$\mathrm{D}=2$	ft .	D=2.	ft .	D=3	ft .	$\mathrm{D}=3$	ft .	D=3	ft .	$\mathrm{D}=3$	ft .	D=3.	ft .				
		y	V			y	V	y	V	y	V	v	v	y	v	y	V	y	v	y	V	y	V
2.5	2.80	2.5	4.49	2.5	5.18	2.5	5.61	2.5	6.03	2.5	6.17	2.5	6.28	2.5	5.96	2.5	5.49	2.5	4.58	2.5	3.32		
1.7	3.14	1.7	4.00	1.7	4.83	1.7	5.29	1.7	5.61	1.7	5.76	1.7	5.87	1.7	5.45	1.7	4.99	1.7	4.00	1.7	3.16		
1.2	2.96	1.2	3.57	1.2	4.52	1.2	4.90	1.2	5.16	1.2	5.27	1.2	5.40	1.2	5.05	1.2	4.60	1.2	3.68	1.2	2.78		
. 8	2.72	. 8	3.34	. 8	4.27	. 8	4.72	. 8	4.72	. 8	4.85	. 8	5.05	. 8	4.67	. 8	4.42	. 8	3.44	. 8	2.56		
. 4	2.26	. 4	3.10	. 4	4.00	. 4	4.33	. 4	4.40	. 4	4.42	. 4	4.67	. 4	4.27	. 4	4.16	. 4	3.23	. 4	2.16		

February 1, 1968, Section 100, Right bank station 0 , Left bank station 57

Sta. 10$\mathrm{D}=2.7 \mathrm{ft}$.		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50	
		$\mathrm{D}=2$	$\mathrm{ft} .$ v	$\mathrm{D}=2$.	$\mathrm{ft} \text {. }$ v		$\mathrm{ft} .$		$\mathrm{ft} .$	$\mathrm{D}=3$	ft . V		$\mathrm{ft} .$	$\mathrm{D}=3$	$\mathrm{ft} .$		$\mathrm{ft} .$ v
2.3	4.15	2.5	4.83	2.5	5.51	2.5	6.03	2.5	6.14	2.5	6.25	2.5	6.03	2.5	5.22	2.5	3.62
1.5	4.92	1.7	4.76	1.7	5.34	1.7	5.63	1.7	5.65	1.7	5.74	1.7	5.42	1.7	4.67	1.7	3.30
1.0	3.58	1.2	4.45	1.2	4.96	1.2	5.18	1.2	5.16	1.2	5.22	1.2	4.97	1.2	4.40	1.2	2.99
. 6	3.43	. 8	4.24	. 8	4.67	. 8	4.88	. 8	4.88	. 8	4.88	. 8	4.67	. 8	4.27	. 8	2.89
. 2	2.92	. 4	3.95	. 4	4.29	. 4	4.47	. 4	4.58	. 4	4.49	. 4	4.33	. 4	3.77	. 4	2.58

February 1, 1968, Section 101, Right bank station 1, Left bank station 67

Sta. 15$D=2.3 \mathrm{ft}$		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
			ft		ft		$\mathrm{ft} .$		ft. v				$\mathrm{ft} .$					$D=3 \text {. }$	$\mathrm{ft} .$
1.7	4.00	1.7	4.76	1.6	4.97	1.6	5.29	2.5	5.87	2.5	6.01	2.5	5.29	2.5	5.51	2.5	4.87	2.5	3.21
1.2	3.82	1.2	4.40	1.1	4.63	1.1	4.85	1.7	5.52	1.7	5.58	1.7	4.88	1.7	5.11	1.7	4.70	1.7	3.61
. 8	3.66	. 8	4.18	. 7	4.36	. 7	4.56	1.2	5.11	1.2	5.05	1.2	4.47	1.2	4.69	1.2	4.43	1.2	3.62
. 4	3.45	.4	3.95	. 3	4.07	. 3	4.25	. 8	4.74	. 8	4.74	. 8	4.29	. 8	4.45	. 8	4.22	. 8	3.50
								4	4.38	,	4.38	. 4	4.00	.	4.20	. 4	4.00	4	3.

Table 2.--Measured velocicy, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
February 1, 1968, Section 159, Right bank station 1, Left bank station 88

Sta. 10	Sta. 15	Sta. 20	Sta. 25	Sta. 30	Sta. 35	Sta. 40	Sta. 45	Sta. 50	Sta. 55	Sta. 60	Sta. 65
$\mathrm{D}=3.1 \mathrm{ft}$.	$\mathrm{D}=2.6 \mathrm{ft}$.	$\mathrm{D}=2.6 \mathrm{ft}$.	$\mathrm{D}=2.6 \mathrm{ft}$.	$\mathrm{D}=2.5 \mathrm{ft}$.	$\mathrm{D}=2.3 \mathrm{ft}$.	$\mathrm{D}=2.3 \mathrm{ft}$.	$\mathrm{D}=2.2 \mathrm{ft}$.	$\mathrm{D}=2.1 \mathrm{ft}$.	$\mathrm{p}=1.9 \mathrm{ft}$.	$\mathrm{D}=1.9 \mathrm{ft}$.	$\mathrm{D}=1.8 \mathrm{ft}$.
$y \quad V$	$y \mathrm{~V}$	y V	y V	y V	y V	y V	y V	y V	y V	y	y
2.53 .35	1.74 .11	1.74 .88	1.75 .20	1.75 .56	1.75 .69	1.75 .69	1.75 .63	$1.7 \quad 5.51$	$1.7 \quad 5.13$	1.74 .56	1.74 .16
1.73 .10	1.23 .75	1.24 .45	1.24 .74	1.24 .92	1.25 .20	1.25 .07	1.25 .13	1.25 .09	1.24 .81	1.24 .49	1.24 .07
1.22 .76	. 83.53	.84 .11	.84 .43	. 84.74	.84 .85	.84 .85	. 84.81	. 84.76	. 84.52	.84 .29	. $8 \quad 3.91$
. 82.49	. 43.34	. 43.79	.44 .13	.44 .34	.44 .43	.44 .42	.44 .43	.44 .36	.44 .36	.44 .06	$.4 \quad 3.70$
. 42.12	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -
Sta. 70	Sta. 75										
$\mathrm{D}=1.7 \mathrm{ft}$.	Dm1.6 ft.										
y V	y V										
1.23 .77	1.23 .35										
. 83.66	. 83.26										
.43 .43	. 43.08										
	February 1, 1968, Section 160, Right bank station 0, Left bank station 85										
Sta. 14	Sta. 19	Sta. 25	Sta. 30	Sta. 35	Sta. 40	Sta. 45	Sta. 50	Sta. 55	Sta. 60	Sta. 65	Sta. 70
Dw2.7 ft.	$\mathrm{D}=2.6 \mathrm{ft}$.	D=2.4 ft.	$\mathrm{D}=2.3 \mathrm{ft}$.	$\mathrm{D}=2.2 \mathrm{ft}$.	$\mathrm{D}=2.1 \mathrm{ft}$.	$\mathrm{d}=2.0 \mathrm{ft}$.	Dmi.9 ft.	$\mathrm{D}=1.9 \mathrm{ft}$.	$\mathrm{D}=1.9 \mathrm{ft}$.	$\mathrm{D}=1.9 \mathrm{ft}$.	D=1.9 ft.
y V	y V	y V	$y \mathrm{~V}$	$y \quad V$	$y \quad V$	y V	y V	y V	y V	y V	y V
1.74 .40	1.74 .90	2.25 .36	1.755 .51	1.75 .56	$1.7 \quad 5.54$	1.75 .49	1.75 .16	1.74 .96	1.74 .58	1.74 .33	1.73 .68
1.24 .02	1.24 .49	1.75 .22	1.25 .05	1.25 .15	1.25 .18	1.25 .15	1.24 .83	1.24 .78	1.24 .45	1.24 .15	1.23 .53
. $8 \quad 3.77$. 84.24	1.24 .79	. $8 \quad 4.74$.84 .85	. 8	.84 .85	. 84.54	. 84.54	. 84.25	. 83.91	. 83.35
.43 .61	.43 .93	. 84.51	.44 .36	.44 .43	.44 .49	.44 .47	. 4.24	.44 .20	.43 .97	.43 .64	$.4 \quad 3.14$
- -	- -	.44 .15		- -	- -	-	- -	- -	- -	- -	- -

Table 2.-Measured velocity, V, in feet per second, at indicated hights above riverbed, v, in feet - Continued
Nay 21, 1968, Sectiun 22j, Kight bank station 2, Left bank station 63

Sta, 5		Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55	
D=4.7	ft	D=6	ft .	$\mathrm{D}=6$	ft.	$\mathrm{D}=4$	ft .	$\mathrm{D}=4$.	ft.	$\mathrm{D}=4$	ft .	$\mathrm{D}=3$.	ft .	D=3	ft .	$\mathrm{D}=4$	ft .	$\mathrm{D}=4$	ft .	D=4.	ft .
y	V	y	V	y	v	y	V	Y	V	y	¢	y	V	y	v	y	v	y	V	y	V
3.8	2.99	3.9	3.50	4.0	3.16	4.0	3.48	3.5	3.64	3.6	3.59	3.4	3.44	3.3	3.23	3.3	3.79	3.2	3.89	3.5	3.61
2.3	3.37	2.9	3.32	3.0	3.17	3.0	3.25	2.5	3.48	2.6	3.53	2.4	3.48	2.3	3.16	2.3	3.66	2.2	3.80	2.5	3.61
1.4	3.37	1.5	3.03	1.6	2.43	1.6	2.67	1.1	3.17	1.2	3.26	1.5	3.37	1.4	3.25	1.4	3.59	1.3	3.75	1.6	3.52
0.6	2.67	0.7	. 75	. 8	. 98	. 8	1.11	. 3	2.99	. 6	3.17	. 9	3.19	. 8	3.30	. 8	3.57	. 7	3.71	1.0	3.44
0.1	1.76	. 2	. 96	. 3	. 68	. 3	-	-	-	. 1	-	. 4	2.65	. 3	3.12	. 3	3.52	. 2	2.30	. 5	3.32

May 21, 1968, Section 227, Right bank station 3, Left bank station 70

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=4.0 \mathrm{ft} . \end{aligned}$		Sta, 15		Sta. 20		Sta. 25		Sta, 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
		D=4	ft .	D=4	ft .	$\mathrm{D}=4$ y	ft .	D-5	$\begin{aligned} & \mathrm{ft} . \\ & v \end{aligned}$	D-6	ft .	$\mathrm{D}=6$	$\mathrm{ft} .$ v	$\mathrm{D}=5$	$\mathrm{ft}_{\mathrm{v}} .$	D=5	$3 \mathrm{ft} .$	D=4	ft.	D=4	ft .	D $=3.3$ y	ft .
3.4	2.53	3.5	3.32	3.5	3.34	3.5	3.12	3.5	2.90	4.1	3.91	4.1	3.79	4.2	3.82	4.1	3.14	4.3	3.12	4.0	3.01	-	-
2.4	3.01	2.5	2.96	2.5	2.96	2.5	2.98	2.5	2.69	3.1	3.79	3.1	3.43	3.2	3.80	3.1	3.05	3.3	3.28	3.3	3.43	3.0	2.25
1.5	2.02	1.6	2.80	1.6	2.69	1.6	2.74	1.6	2.53	2.3	3.59	2.3	3.75	2.4	3.80	2.3	3.03	2.5	3.28	2.5	3.44	2.2	2.60
. 9	2.94	1.0	2.72	1.0	2.60	1.0	2.60	1.0	2.41	1.3	3.17	1.3	1.16	1.4	3.64	1.3	3.01	1.5	3.12	1.5	2.45	1.2	1.07
. 4	2.80	. 5	2.56	. 5	2.39	. 5	2.51	0.5	2.23	. 3	-	. 3	. 75	. 4	1.39	. 3	-	. 8	2.21	. 8	2.99	. 5	. 55

$\begin{aligned} & \text { Sta. } 5 \\ & D=5.5 \mathrm{ft} . \end{aligned}$		Sta. 10		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55	
		D=5	ft .	$\mathrm{D}=5$		D=4	ft.	$\mathrm{D}=4$	ft .	D=4	ft .	D=4	ft .	D=5	ft .	$\mathrm{D}=4$	ft .	D=4	ft.	D=4	ft.
y	V	y	V	y	V	y	V	y	V	y	V	y	V	y	V	y	V	y	v	y	v
4.0	3.03	4.0	3.50	3.9	3.41	4.0	3.16	3.9	3.21	3.7	2.85	3.9	2.63	4.0	2.56	3.8	3.44	3.9	3.17	3.9	2.96
3.3	3.43	3.3	3.43	3.2	3.41	3.3	3.21	3.2	3.30	3.0	2.96	3.2	2.54	3.3	2.72	3.1	3.34	3.2	3.19	3.2	2.99
2.5	3.28	2.5	3.28	2.4	3.46	2.5	3.17	2.4	3.30	2.2	3.07	2.4	2.58	2.5	2.85	2.3	3.08	2.4	3.01	2.4	2.89
1.5	2.85	1.5	2.85	1.4	3.50	1.5	2.99	1.4	3.10	1.2	2.81	1.4	2.49	1.5	2.87	1.3	2.53	1.4	2.53	1.4	2.45
. 8	2.89	. 8	2.89	. 7	3.43	. 8	2.94	. 7	2.90	. 5	2.65	. 7	2.32	. 8	2.60	. 8	2.34	. 7	2.34	. 7	2.07

Table 2.--Measured vulocity. V, in feat per uecond, at indicated hughte above riverbed, y, in feet - Concinued
May 21, 1968, Section 231, Right bank station 4, Left bank station 70

Sta. 10$\mathrm{D}=4.7 \mathrm{ft}$.		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
		D-5	ft .	$\mathrm{D}=5$	ft .	$\mathrm{D}=4$	ft .	$\mathrm{D}=3$	ft .	$\mathrm{D}=5$		$\mathrm{D}=3$.		$\mathrm{D}=4$.	ft.	D-4	ft.	D=5	ft.	D-5.	ft .
y	V	y	V	y	V	y	\checkmark	y	v	y	V	y	v	y	v	y	v	y	\checkmark	y	V
4.0	2.90	4.0	3.05	3.9	3.12	3.8	3.37	3.8	3.17	3.5	3.43	3.5	2.69	3.8	2.63	3.5	3.26	4.0	3.16	3.8	3.66
3.3	3.05	3.3	2.98	3.2	3.12	3.1	3.61	3.2	3.59	2.9	3.32	2.9	2.98	3.2	2.94	2.9	3.23	3.2	2.99	3.0	3.59
2.5	3.07	2.5	2.94	2.4	3.03	2.3	3.59	2.1	3.62	1.8	3.12	1.8	3.03	2.1	3.05	1.8	3.08	2.1	2.90	1.9	3.30
1.5	2.74	1.5	2.65	1.4	2.90	1.3	3.30	1.5	3.59	1.2	2.90	1.2	2.92	1.5	2.99	1.2	2.98	1.5	2.85	1.3	3.07
. 8	2.16	. 8	2.37	. 7	2.16	. 6	3.14	. 8	3.48	. 5	1.19	. 5	2.67	. 8	2.81	. 5	2.41	. 8	2.65	.6	2.62

May 21, 1968, Section 233, Right bank station 1, Left bank station 72

$\begin{aligned} & \text { Sta. } 5 \\ & \mathrm{D}=4.6 \mathrm{ft.} \end{aligned}$		$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=5.0 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=4.7 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=3.9 \mathrm{ft} . \end{aligned}$		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
y y	V	D=5.0	V	y	v	D	V		V		V		V	y	v	y	V	y	v	y	V	y	V	y	ft
3.9	2.87	3.8	3.68	4.0	3.52	-	-	3.2	3.03	3.3	2.76	3.4	3.28	3.4	3.01	3.3	2.90	3.4	2.90	4.2	3.35	3.6	3.35	3.9	2.
3.1	3.14	3.0	3.57	3.2	3.41	3.2	3.10	2.4	2.87	2.5	2.98	2.6	3.25	2.6	2.74	2.5	2.85	2.6	2.90	3.3	3.21	2.7	3.28	3.3	2.4
2.0	3.23	1.9	3.37	2.1	3.23	2.1	3.17	1.6	2.89	1.7	2.85	1.8	3.10	1.8	1.98	1.7	2.71	1.8	2.98	1.8	3.10	1.2	3.16	1.8	
1.4	3.17	1.3	2.89	1.5	3.10	1.5	3.19	. 9	3.03	1.0	2.72	1.1	2.90	1.1	1.53	1.0	2.51	1.1	3.08	1.1	2.53	. 5	2.89	1.1	
7	2.92	. 6	2.01	. 8	2.67	8	3.12	. 3	2.94	4	2.60	. 5	2.69	5	1.34	4	2.07	. 5	2.85	. 5	1.05			. 5	

May 29, 1968, Section 225, Right bank station 4, Left bank station 63

$\begin{aligned} & \text { Ste. } 5 \\ & \mathrm{D}=5.7^{\mathrm{ft} .} \end{aligned}$		Sta. 10		Sta. 15		Sta. 20		Sta. 25		$\text { Sta. } 30$		Sta. 35		Sta. 40		Sta. 45		Sta. 50	
		$\mathrm{D}=6$.		Das	6 ft .							D=4	ft .						ft .
y	V	yy	V	y	V	y	V	y	v	y	V	y	V	y	v	y	V	y	V
4.2	2.65	4.3	3.68	4.2	3.86	4.1	3.55	4.3	4.13	4.1	4.00	4.0	3.61	4.0	3.30	4.3	2.78	4.3	3.08
2.9	3.46	3.0	3.32	2.9	3.62	2.8	3.07	3.0	3.59	2.8	3.64	3.0	3.55	3.0	3.34	3.0	2.87	3.0	2.99
1.9	2.71	2.0	2.25	1.9	3.43	1.8	2.85	2.0	2.83	1.8	3.03	2.0	3.50	2.0	3.41	2.0	2.90	2.0	2.71
1.2	1.81	1.3	1.26	1.2	3.10	1.1	2.54	1.3	2.51	1.1	2.76	1.3	3.26	1.3	3.30	1.3	2.87	1.3	2.37
. 6	1.64	. 7	1.21	. 6	2.87	. 5	1.99	. 7	-	. 5	-	. 7	-	. 7	-	7		. 7	-

Table 2,-Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
May 29, 1968, Section 227, Right bank station 1, Left bank station 70

$\begin{aligned} & \text { Sta. }{ }^{10} \text {. }=4.9 \mathrm{ft} . \end{aligned}$		Sta, 15$\mathrm{D}=5.0 \mathrm{ft}.$.		Sta. 20		Sta. 25		Sta, 30		Sta. 35		Sta. 40		Sta. 45		Sta, 50		Sta. 33			
		$\mathrm{D}=5$.	ft .	D=4.	ft .	$\mathrm{D}=5$	It.	$\mathrm{d}=6$.	ft .	D=4.	ft.	$\mathrm{D}=5$		$\mathrm{D}=6$.	ft .	D=8	ft .				
y	V			y	V	y	v	y	v	y	V	y	V	y	v	y	v	y	v	y	V
4.3	3.35	3.9	3.50	3.9	3.59	3.5	4.06	3.9	3.77	4.0	3.48	4.0	4.02	3.9	4.02	3.7	3.75	3.8	3.70		
3.0	3.41	3.0	3.55	3.0	-	2.7	4.04	2.6	3.68	2.7	3.26	2.7	3.89	2.6	3.70	2.4	3.50	2.5	3.12		
2.0	3.28	2.0	3.44	2.0	3.55	2.0	4.02	1.9	3.64	2.0	3.16	2.0	3.80	1.9	3.61	1.7	2.85	1.8	3.37		
1.3	2.81	1.3	2.76	1.3	3.10	1.3	3.89	1.2	3.41	1.3	2.51	1.3	3.57	1.2	3.39	1.0	1.41	1.1	3.29		
. 7	2.17	. 7	1.53	. 7	-	. 7	-	. 7	-	. 7	-	. 7	-	. 6	-	. 4	-	. 5	-		

May 29, 1968, Section 229, Right bank station 1, Left bank station 65

$\begin{aligned} & \text { Sta. } 10 \\ & \mathrm{D}=5.1 \mathrm{ft} . \end{aligned}$		Sta. 15		Sta. 20		Sta. 25		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55	
		D=4		$\mathrm{D}=4$.	f.	D=3	ft .	D=4	ft.	D=4,		D-4.	ft .	D=5.	ft .	D=4.7	ft .	D=4.	ft .
y	v	y	\checkmark	y	v	y	v	y	V	y	v	y	v	y	V	y	V	y	v
4.0	4.02	4.0	4.34	3.9	4.56	3.2	3.52	3.2	3.59	3.6	3.93	3.7	3.84	3.7	3.71	3.7	3.82	3.7	3.21
2.8	4.15	2.8	3.95	2.7	4.52	2.8	3.66	2.8	3.61	2.4	3.95	2.5	3.80	2.5	3.66	2.5	3.64	2.5	3.48
2.0	4.20	2.0	4.36	1.9	4.52	2.0	3.79	2.0	3.70	1.6	3.89	1.7	3.79	1.7	3.70	1.7	3.43	1.7	3.62
1.2	3.93	1.2	4.27	1.1	4.49	1.2	3.82	1.2	3.75	. 7	3.82	. 8	3.62	. 8	3.48	. 8	3.17	. 8	3.53

May 29, 1968, Section 231, Right bank station 1, Left bank station 71

$\begin{aligned} & \text { Sta. } 10 \\ & D=5.0 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 15 \\ & \text { D=5.1 ft. } \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=5 . \mathrm{ft}^{2} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=4.3 \mathrm{ft.} \end{aligned}$		Sta. 30 $\mathrm{D}=4.3 \mathrm{ft}$.		$\begin{aligned} & \text { Sta. } 35 \\ & \mathrm{D}=4.1 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 40 \\ & \mathrm{D}=4.5 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 45 \\ & \mathrm{D}=4.9 \mathrm{ft} \end{aligned}$		$\begin{aligned} & \text { Sta, } 50 \\ & \mathrm{D}=5.0 \mathrm{ft} \end{aligned}$		Sta. 55		Sta. 60	
y	v	y	v	y	V	y y	V	y	V	D=4	V	d y	v .	D=4.	$\mathrm{V}^{\text {v }}$	y y	V	d=4	V	D=5	V
4.0	3.37	4.0	3.75	4.0	3.75	4.0	3.48	4.0	3.55	3.7	3.86	3.5	3.55	4.0	4.04	3.8	4.09	3.8	4.13	4.0	3.46
3.4	3.61	3.4	3.73	3.4	3.73	3.4	3.34	3.4	3.34	3.4	3.50	3.2	3.32	3.4	3.68	3.2	3.93	3.2	4.00	3.4	3.61
2.0	3.57	2.0	3.66	2.0	3.66	2.0	3.01	2.0	3.05	2.0	3.10	1.8	2.92	2.0	3.35	1.8	3.79	1.8	3.91	2.0	3.50
. 8	3.25	. 8	3.23	. 8	3.37	. 8	2.78	. 8	2.94	. 8	2.56	. 6	2.67	. 8	3.14	. 6	3.46	. 6	3.62	. 8	2.41

$$
\text { Yay } 29,1968 \text {, Section } 233 \text {, Kight bank station } 0 \text {, Left bank station } 75
$$

	10 ft.	$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=4.9 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=5.0 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=5.3 \mathrm{ft.} . \end{aligned}$		Sta, ${ }^{\text {d }} \mathbf{5} 50 \mathrm{ft}$.		$\begin{aligned} & \text { Sta. } 35 \\ & \mathrm{D}=4.8 \mathrm{ft} . \end{aligned}$		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60	
y	V	y	V	y	V	y	v	y	v	y	v	y	V	D=4.	V	D=4	v_{t}.	$\mathrm{D}=4$		D $=5.0$ y	$\stackrel{\mathrm{ft}}{\mathrm{v}}$
4.0	3.26	3.9	3.48	3.8	3.75	4.0	4.11	4.0	3.95	3.8	3.61	3.6	3.41	3.6	2.90	3.4	3.26	3.7	3.86	3.7	3.53
3.4	3.26	3.3	3.26	3.2	3.61	3.4	4.07	3.4	3.70	3.2	3.26	3.3	3.41	3.3	2.83	3.1	3.34	3.4	3.86	3.4	3.35
2.0	3.07	1.9	2.87	1.8	3.37	2.0	4.07	2.0	3.53	1.8	2.92	1.9	3.39	1.9	2.81	1.7	2.89	2.0	3.14	2.0	2.80
. 8	2.37	. 7	2.56	. 8	3.12	. 8	3.70	. 8	3.23	. 6	2.58	. 7	2.98	. 7	2.67	. 5	1.96	. 8	2.74	. 8	2.17

Table 2.-Meneured velocity, V, in feet per second, ac indicated heighto above riverbed, y, in feet concinued
June 11, 1969, Section 245, Right bank station 7, Left bank station 86

			$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=4.8 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 30 \\ & \mathrm{D}-4.9 \mathrm{ft} . \end{aligned}$		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
$\begin{gathered} \mathrm{D}=4.8 \mathrm{ft} . \\ \mathrm{y} \end{gathered}$	$\begin{gathered} D=4 . \\ y \end{gathered}$	$\stackrel{f}{\mathrm{v}} \mathrm{t}$			$\begin{gathered} D=4 . \\ y \end{gathered}$			ft_{v}		ft \mathbf{V}		$\underset{v}{f t} .$		ft_{V}		$\mathrm{ft} .$ \mathbf{v}	D=5	$\mathrm{ft}_{\mathrm{v}} .$	D=6.6 y	ft. v
$4.3 \quad 3.01$	4.1	3.93	4.3	3.84	4.2	3.57	4.3	3.91	4.2	4.07	4.2	3.95	4.2	3.41	4.2	2.94	4.3	3.55	4.3	3.08
3.23 .82	3.0	4.25	3.2	3.97	3.1	3.61	3.2	3.73	3.1	3.79	3.1	3.79	3.1	3.30	3.1	2.67	3.2	3.71	3.2	3.39
2.23 .82	2.0	4.15	2.2	3.82	2.1	3.46	2.2	3.59	2.1	3.12	2.1	2.65	2.1	3.05	2.1	2.39	2.2	3.64	2.2	3.53
1.33 .73	1.1	4.00	1.4	3.66	1.2	3.21	1.3	3.34	1.2	2.14	1.2	1.90	1.2	2.67	1.2	2.21	1.3	3.52	1.3	2.63
. $5 \quad 3.64$. 3	3.77	. 5	3.52	.4	2.96	. 5	2.98	. 4	1.61	. 4	1.72	. 4	-	. 4	-	. 5	-	. 5	-
Sta. 70	Sta.	75																		
$\mathrm{D}=5.8 \mathrm{ft}$.	D=5.	ft .																		
$y \quad \mathrm{~V}$		v																		
4.23 .64	4.2	3.70																		
3.13 .84	3.1	3.80																		
2.13 .86	2.1	3.73																		
1.23 .68	1.2	3.03																		

June 11, 1969, Section 250, Right bank station 2, Left bank station 79

$\begin{aligned} & \text { Sta. } 15 \\ & D=4.8 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=4.3 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=4.3 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 30 \\ & \mathrm{D}=4.3 \mathrm{ft} . \end{aligned}$		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65		Sta. 70	
D=4	V	$\mathrm{D}=4$	V	d=4.	${ }_{V}$	D=4	$\mathrm{V}^{\text {ft. }}$	y	ft.	y	v	D	V	- y	t.	y	ft.		V		V		f.
3.9	3.46	4.0	3.57	4.0	3.62	4.0	4.13	4.0	4.16	4.0	3.71	4.0	4.06	4.0	4.38	4.0	4.36	4.0	4.45	4.0	4.07	4.0	2.65
3.1	3.57	3.2	3.73	3.2	3.79	3.2	4.16	3.2	4.13	3.2	3.43	3.2	4.06	3.2	4.40	3.2	4.07	3.2	4.24	3.2	3.97	3.2	2.92
2.1	3.75	2.2	3.64	2.2	3.80	2.2	4.07	2.2	3.93	2.2	3.07	2.2	3.80	2.2	4.31	2.2	3.57	2.2	3.71	2.2	3.77	2.2	2.98
1.2	3.77	1.3	3.61	1.3	3.70	1.3	3.88	1.3	3.66	1.3	2.85	1.3	3.61	1.3	4.15	1.3	3.30	1.3	3.43	1.3	3.21	1.3	2.85
. 4		. 5	3.57	. 5	3.59	. 5	3.68	. 5	3.50	. 5	2.80	. 5	3.28	. 5	3.98	. 5	3.37	. 5	3.14	. 5	2.65	. 5	2.49

Table 2,-Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
June 11, 1969, Section 255, Right bank station 1, Left bank station 74

$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=5.1 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 20 \\ & \mathrm{D}=4.3 \mathrm{ft} . \end{aligned}$		$\begin{aligned} & \text { Sta. } 25 \\ & \mathrm{D}=4.6 \mathrm{ft} . \end{aligned}$		Sta. 30		Sta. 35		Sta. 40		Sta. 45		Sta. 50		Sta. 55		Sta. 60		Sta. 65	
y	V	y	V	y	v	y	V	y	V	y	v	y	V	d y	$\mathbf{f t}$		$\mathbf{f t}$	$\mathrm{D}=7$	$\stackrel{f t}{v} .$	D=5	$\stackrel{f t}{\mathrm{v}} .$
4.0	4.22	3.9	4.42	4.0	4.61	4.0	4.43	4.0	4.38	4.0	4.31	4.0	4.49	4.0	3.80	4.0	3.30	4.0	3.79	4.0	2.96
3.2	4.27	3.1	4.56	3.2	4.72	3.2	4.54	3.2	4.43	3.2	4.51	3.2	4.61	3.2	3.95	3.2	3.26	3.2	3.70	3.2	2.96
2.2	4.13	2.1	4.51	2.2	4.63	2.2	4.45	2.2	4.33	2.2	4.54	2.2	4.51	2.2	3.16	2.2	2.72	2.2	3.55	2.2	2.69
1.3	4.07	1.2	4.38	1.3	4.56	1.3	4.18	1.3	4.09	1.3	4.09	1.3	4.36	1.3	1.12	1.3	1.16	1.3	2.90	1.3	2.14
. 5	3.95	. 4	4.36	. 5	4.33	. 5	3.64	. 5	3.80	. 5	4.22	. 5	3.46	. 5	-	. 5	-	. 5	. 89	5	1.64

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Continued
Rio Grande conveyamec chanal near San harchai, s. suex
December 21, 1965, Section $2249+93$, Right bank station 0 , Left bank station 70

Sta. 15		Sta. 25		Sta. 35		Sta. 45		Sta. 50		Sta. 53		Sta. 55	
		$\mathrm{D}=4$.	ft .	D=4	ft .	$\mathrm{D}=4$.	7 ft	$\mathrm{D}=4$.	ft .	1) $=4$	ft .	$D=4$	ft
y	V	y	V	y	V	y	v	y	v	y	v	y	v
4.0	5.85	4.0	7.14	4.0	7.63	4.0	7.36	4.0	7.54	4.0	7.14	4.0	5.76
3.0	6.06	3.0	7.25	3.0	7.93	3.0	7.89	3.0	7.59	3.0	7.29	3.0	6.91
2.0	5.58	2.0	6.68	2.0	7.25	2.0	7.25	2.0	7.14	2.0	6.78	2.0	6.41
1.2	5.16	1.2	6.08	1.2	6.71	1.2	6.66	1.2	6.59	1.2	6.15	1.2	5.85
. 5	4.61	. 5	5.18	. 5	5.78	. 5	5.74	. 5	5.54	. 5	5.27	. 5	5.03

Deceuber 21, 1965, Section 2243+62, Right bank station 0, Left bank station 67

$\begin{aligned} & \text { Sta. } 15 \\ & \mathrm{D}=4.5 \mathrm{ft} . \end{aligned}$		Sta. 25		Sta. 35		Sta. 45		Sta. 50		Sta. 55	
		$\mathrm{D}=4$.	ft .	$\mathrm{D}=4$	ft .	$\mathrm{D}=5$	ft .	D=5	ft .	D=5	ft .
y	V	y	V	y	V	y	v	y	V	y	V
4.0	5.24	4.0	7.34	4.0	7.89	4.0	7.52	4.0	7.14	4.0	6.08
3.0	5.76	3.0	7.58	3.0	8.07	3.0	7.78	3.0	7.29	3.0	6.57
2.0	5.70	2.0	7.00	2.0	7.36	2.0	7.31	2.0	6.77	2.0	5.76
1.2	5.38	1.2	6.37	1.2	6.69	1.2	6.64	1.2	6.28	1.2	4.88
5	4.76	5	5.47	. 5	5.83	5	5.76	. 5	5.47	. 5	4.0

Table 2.--Measured velocity, V, in feet per second, at indicated heights above riverbed, y, in feet - Concluded Rio Grande conveyance chunnel near Nogal Canyon, N. Nex.
December : 2, 1965. Section $1318+00$. Right bank station 0 , Left bank station 80

$\begin{aligned} & \text { Sta. } 2 \mathrm{C} \\ & \mathrm{D}=4.3 \mathrm{ft} . \end{aligned}$		Sta. 30$\mathrm{D}=5.0 \mathrm{ft}$.		$\begin{aligned} & \text { Sta. } 40 \\ & \mathrm{D}=4.9 \mathrm{ft} . \end{aligned}$		Sta. 50			
		Dm4	ft .						
		y	V	y	V	y	V		
3.0	4.89			3.0	7.13	3.0	7.75	3.0	7.87
2.0	3.73	2.0	6.60	2.0	7.07	2.0	7.23		
1.2	3.46	1.2	6.23	1.2	6.53	1.2	6.73		
. 5	3.05	. 5	5.45	. 5	5.51	. 5	5.69		
						cmbe	22.		
Sta. 3C		Sta. 50		Sta. 70		Sta. 90			
D=3.5		D=3.4	ft .	D=2.9	ft.	D=2.7	ft .		
y	V	y	V	y	V	y	V		
2.5	6.55	2.5	7.34	2.5	7.16	2.5	5.03		
1.5	5.97	1.5	6.62	1.5	6.59	1.5	5.13		
. 9	5.58	. 9	6.10	. 9	6.01	. 9	4.56		
. 3	4.42	. 3	4.76	. 3	4.85	. 3	3.59		

Cable 3.- Summary of size analyses and related data for point-intritutud sediment samples

Date	Station (ft)	Water Discharge ${ }_{\left(\mathrm{Et}^{3} \text { per }\right.}$ second)	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	```Total Depth of Flow D (ft)```	Height above Bed y (it)	$\frac{0-y}{y}$	Percent finer than indicated size, in man					Concentration, in m / $/ 1$						
												Sample	of Size class n-rim					
												Finer	0.062	0.125	0.250	0.500	Cowrser	
							0.062	0.125	0.250	0.500	1.00		0.062	0.125	0.250	0.500	1.00	0.062

Rio Grande conveyance channel near Bernardo, N. Mex.

$\begin{aligned} & 1965 \\ & \text { Nov, } 29 \end{aligned}$	20	1,250	6	Sampling section 255, Right bank station 4 , Left bank station 71														
				4.2	3.7	0.14	66	93	100	--	--	2,690	1,780	726	188	0	0	910
				4.2	1.5	1.80	41	75	99	100	-	4,530	1,860	1,540	1,090	45	0	2,670
				4.2	1.0	3.20	44	75	99	100	-	4,490	1,980	1,390	1,080	45	0	2,510
				4.2	. 5	7.40	38	68	97	100	-	5,120	1,950	1,540	1,480	154	0	3,170
				4.2	. 3	13.0	17	34	89	100	--	12,100	2,060	2,060	6,660	1,330	0	10,000
	30	1,250	6	4.2	3.7	. 14	67	92	100	--	--	2,680	1,800	670	214	0	0	880
				4.2	1.5	1.80	50	81	100	--	--	3,710	1,860	1,150	705	0	0	1,850
				4.2	1.0	3.20	--	-	--	--	-	. 710	1.	1,150	--	-		1,850
				4.2	. 5	7.40	27	50	94	100	--	7,340	1,980	1,690	3,230	440	0	5,360
				4.2	. 3	13.0	22	40	86	100	--	9,000	1,980	1,620	4,140	1,260	0	7,020
	40	1,250	6	4.2	2.7	. 56	55	88	100	--	-	3,400	1,870	1,120	408	0	0	1,530
				4.2	1.5	1.80	45	78	100	-	--	4,400	1,980	1,450	968	0	0	2,420
				4.2	1.0	3.20	34	66	99	100	-	5,860	1,990	1,880	1,930	59	0	3,870
				4.2	.5	7.40	28	54	96	100	-	7,440	2,080	1,930	3,120	298	0	5,360
				4.2	. 3	13.0	15	33	90	100	--	15,200	2,280	2,740	8,660	1,520	0	12,900
	50	1,250	6	3.8	2.7	. 41	55	85	100	-	--	3,380	1,860	1,010	507	0	0	1,520
				3.8	1.5	1.53	53	82	100	--	--	3,500	1,860	1,020	630	0	0	1,640
				3.8	1.0	2.80	49	79	100	--	-	3,770	1,850	1,130	792	0	0	1,920
				3.8	. 5	6.60	38	65	96	100	--	5,190	1,970	1,400	1,610	208	0	3,220
				3.8	. 3	11.7	15	26	71	99	100	13,300	2,000	1,460	5,990	3,720	133	11,300

Tabie 3.-- Continued,

Date	Station (ft)	Water Discharge $Q^{Q}$$\left(\mathrm{tr}^{3}\right.$ per second)	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Total Depth of Flow (ft)	Height above Bed (ft)	$\frac{D-y}{y}$	Percent finer than indicated size, in mix						Concentration, in $\mathrm{il} / \mathrm{g} / 1$					
												Sample						
												$\begin{aligned} & \text { Finer } \\ & \text { than } \\ & 0.062 \end{aligned}$	$\begin{gathered} \frac{\text { fize }}{0.062} \\ 0.00 \\ 0.120 \end{gathered}$	$\begin{gathered} \text { cass } \\ 0.125 \\ \text { to } \\ 0.250 \end{gathered}$	$\left[\begin{array}{l} 10.250 \\ 0.250 \\ 0.500 \end{array}\right.$	$\begin{aligned} & 0.500 \\ & 1.00 \\ & 100 \end{aligned}$	$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \end{gathered}$	
							0.062	0.125	0.250	0.500	1.00							

$\stackrel{\sim}{N}$

Sampling section 252, Right bank station 4, Left bank station 69
$\begin{array}{llllllllllllllll}\text { Nov. } 30 & 20 & 1,250 & 4 & 4.0 & 3.0 & .33 & 54 & 84 & 100 & -2 & -2 & 2.980\end{array}$

4.0	3.0	.33	54	84	100	-	--	2,980	1,610	894	477	0	0	1,370
4.0	1.5	1.67	46	77	99	100	-	3,500	1,610	1,090	770	35	0	1,890
4.0	1.0	3.00	38	68	98	100	-	4,390	1,670	1,320	1,320	88	0	2,720
4.0	.5	7.00	36	63	96	100	-	4,560	1,640	1,230	1,500	182	0	2,920
4.0	.3	12.3	13	26	77	100	--	14,100	1,830	1,830	7,190	3,240	0	12,300
4.0	3.0	.33	57	87	100	-	-	2,760	1,570	828	359	0	0	1,190
4.0	1.5	1.67	43	76	100	-	--	3,900	1,680	1,290	936	20	0	2,220
4.0	1.0	3.00	37	67	98	100	-	4,500	1,670	1,340	1,400	90	0	2,830
4.0	.5	7.00	23	45	90	100	-	7,280	1,670	1,600	3,280	728	0	5,610
4.0	.3	12.3	18	42	93	100	-	9,390	1,690	2,250	4,790	657	0	7,700

Table 3.-- Continued.

Date	Station (ft)	Water Discharge Q(ft t^{3} persecond)	$\begin{gathered} \text { Water } \\ \text { Tempers- } \\ \text { ture } \\ T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Total Depth of Flow (ft)	Height above Bed (ft)	$\frac{0-y}{y}$	Percent inner than indicated size, in min					Sample	Concentration, in 3 : 21					
												- of Size class in. 72						
							0.062	0.125	0.250	0.500	1.00		${ }_{0}^{\text {than }}$	c	${ }_{0.250}^{\text {co }}$	${ }_{0}^{\text {co }}$	$\begin{array}{r} t 0 \\ 1.00 \end{array}$	$\begin{array}{r} \text { than } \\ 0.062 \end{array}$

$\begin{aligned} & 1966 \\ & \text { May } 4 \end{aligned}$	Sampling section 245, Right bank station 3, Left bank station 78																	
	15	1,280	17	4.2	3.7	. 14	55	85	99	100	--	1,650	908	495	231	16	$0 \quad 742$	
				4.2	2.5	. 68	46	76	97	100	-	2,080	957	624	437	62	0	1,120
				4.2	1.2	2.50	38	69	95	100	--	2,490	946	772	647	125	0	1,540
				4.2	. 8	4.25	41	69	94	100	--	2,300	943	644	575	138	0	1,360
				4.2	. 5	7.40	36	66	95	100	-	2,620	943	786	760	131	0	1,680
				4.2	. 3	13.0	35	64	94	100	--	2,740	960	795	822	164	0	1,780
	25	1,280	17	4.3	3.8	. 13	52	80	99	100	--	1,790	931	501	340	18	0	859
				4.3	2.5	. 72	42	70	96	100	-	2,200	924	616	572	98	0	1,280
				4.3	1.2	2.58	36	63	89	100	-	2,610	940	705	679	287	0	1,670
				4.3	. 8	4.38	33	58	88	100	-	2,870	947	718	861	344	0	1,920
				4.3	. 5	7.60	33	58	85	100	-	2,830	934	708	764	424	0	1,900
				4.3	. 3	13.3	35	61	89	100	--	2,640	924	686	739	290	0	1,720
	35	1,280	17	5.1	4.6	. 11	54	83	99	100	-	1,690	913	490	270	17	0	777
				5.1	2.5	1.04	41	68	93	100	-	2,310	947	624	578	162	0	2,350
				5.1	1.2	3.25	39	66	93	100	-	2,380	928	643	643	167	0	1,450
				5.1	. 8	5.38	36	64	94	100	--	2,710	976	759	813	163	0	1,730
				5.1	.5	9.20	26	50	88	100	-	3,990	1,040	958	1,520	479	0	2,950
				5.1	. 3	16.0	23	47	85	100	-	4,320	994	1,040	1,640	648	0	3,330

Table 3.--Continued.

Date	Station (ft)	Water Discharge Q(ft t^{3} persecond)	```Water ```	```Total Depth of FIow D (ft)```	Height above Bed (ft)	$\frac{D-Y}{y}$	Percent ifner than indicated size, in num					Concentration, in $=\mathrm{g} / 1$						
												Sample	of Size class ${ }^{\text {conem }}$					
												$\begin{aligned} & \text { Finer } \\ & \text { than } \\ & 0.062 \end{aligned}$	$\begin{gathered} 0.062 \\ t 0 \\ 0.125 \end{gathered}$	$\begin{gathered} 0.125 \\ t 0 \\ 0.250 \end{gathered}$	$\begin{gathered} 0.250 \\ 0.500 \end{gathered}$	$\begin{aligned} & 0.500 \\ & t 0 \\ & 1.00 \end{aligned}$	$\begin{gathered} \text { Coarser } \\ \text { then } \\ 0.002 \end{gathered}$	
							0.062	0.125	0.250	0.500	1.00							

\mapsto	May 4	45	1,280	17	5.8	5.3	. 09	49	77	96	100	--	1,870	916	524	355	75	0	954
N					5.8	2.5	1.32	35	58	82	100	-	2,650	928	610	636	477	0	1,720
					5.8	1.2	3.83	32	55	83	100	-	2,810	899	646	787	478	0	1,910
					5.8	. 8	6.25	31	51	79	100	--	2,980	924	596	834	626	0	2,500
		55	1,280	17	4.5	4.0	. 12	54	79	96	100	--	1,700	918	425	289	68	0	782
					4.5	2.5	. 80	40	64	86	100	--	2,360	944	566	519	330	0	1.420
					4.5	1.2	2.75	35	57	82	100	-	2,660	931	585	665	479	0	1,730
					4.5	. 8	4.62	36	61	85	100	-	2,530	911	633	607	380	0	1,620
					4.5	. 5	8.00	32	54	79	100	-	2,920	934	642	730	613	0	1,990
					4.5	. 3	14.0	32	54	81	100	-	2,960	947	651	799	562	0	2,010
		65	1,280	17	5.3	4.8	. 10	68	91	100	-	-	1,270	864	292	114	0	0	406
					5.3	2.5	1.12	44	69	88	100	-	2,120	933	530	403	254	0	1,190
					5.3	1.2	3.42	34	55	80	100	-	2,650	901	557	663	530	0	1,750
					5.3	. 8	5.62	26	42	69	100	--	3,530	918	565	953	1,090	0	2,610
					5.3	. 5	9.60	28	46	74	100	-	3,320	930	598	930	863	0	2,390
					5.3	.3	16.7	29	45	70	99	100	3,100	899	496	775	899	32	2,200

Cable 3.-- Continued.

Date	Station (ft)	Water Discharge $Q$$\left(\mathrm{ft}^{3}\right.$ persecond)	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	```Total Depth of Flow D (ft)```	Height above Bed y (ft)	$\frac{D-y}{y}$	Percent finer than indicated size, in rim					Concentration, in ris/l						
												Sample	- of Size class in mm					
												Finer	0.062	0.125	0.250	0.500	Coarser	
							0.062	0.125	0.250	0.500	1.00		0.062	0.125	0.250	0.500	1.00	0.002

Sampling section 255, Right bank station 3, Left bank station 72

Table 3.-- Continued.

Date	Station (ft)	Water Discharge ${ }^{Q} \mathrm{~F}^{3}$ (ft ${ }^{3}$ per second)		Total Depth of flow $\underset{\text { (ft) }}{\text { D }}$	Height above Bed (ft)	$\frac{D-y}{y}$	Perceat ifner than indicated size,					Concentration, in $\overline{3} / 11$						
												Sample	$\begin{gathered} \text { Finer } \\ \text { than } \\ 0.062 \end{gathered}$	of size ciass				
												${ }_{0}^{0.062}$		to	to	to	Coarser	
							0.062	0.125	0.250	0.500	1.00			0.125	0.250	0.500	1.00	0.062

Table 3.--Continued.

Date	$\begin{aligned} & \text { Station } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Water } \\ & \text { Discharge } \\ & Q \\ & \text { Q }^{3} \text { per } \\ & \text { second) } \end{aligned}$	```Water Tempera- ture T (%)```	```Total Depth of Flow D (ft)```	Height above Bed y (ft)	$\frac{b-y}{y}$	Percent finer than indicated size, in mm					Concentration, in $\mathrm{mg} / 1$						
												Sample	of Size cinss, in mil.					
												Finer	0.062	0.125	0.250	0.500	Coarser	
							0.062	0.125	0.250	0.500	1.00		0.062	0.125	0.250	0.500	1.00	0.062

Rio Grande conveyance channel near San Marcial, N.Mex.

	$\begin{aligned} & 1965 \\ & \text { Dec. } 21 \end{aligned}$	25	1,860	3	4.7	4.0	. 18	59	88	100	--	--	2,350	1,390	681	282	--	--	960
N					4.7	3.0	. 57	46	79	100	--	--	3,120	1,440	1,030	655	--	--	1,680
0					4.7	2.0	1.35	41	73	100	--	--	3,530	1,450	1,130	953	--	--	2,080
					4.7	1.2	2.92	27	55	98	100	--	5,530	1,490	1,550	2,380	111	--	4,040
					4.7	0.5	8.40	22	47	97	100	--	7,340	1,610	1,840	3,670	220	--	5,730
		35	1,860	3	4.7	4.0	. 18	59	85	100	--	--	2,290	1,350	595	344	--	--	940
					4.7	3.0	. 57	47	77	100	--	--	3,010	1,410	903	692	--	--	1,600
					4.7	2.0	1.35	36	69	100	--	--	3,980	1,430	1,310	1,240	-	--	2,550
					4.7	1.2	2.92	26	53	98	100	--	5,890	1,530	1,590	2,650	118	--	4,360
					4.7	0.5	8.40	16	36	93	100	--	9,950	1,590	1,990	5,670	696	--	8,360
		50	1,860	3	4.7	4.0	. 18	65	92	100	--	--	2,140	1,390	577	171	--	--	750
					4.7	3.0	. 57	50	83	100	-	--	2,940	1,470	970	500	--	--	1,470
					4.7	2.0	1.35	38	73	100	--	--	3,840	1,460	1,340	1,040	--	--	2,380
					4.7	1.2	2.92	27	60	100	--	--	5,740	1,550	1,890	2,290	--	--	4,190
					4.7	0.5	8.40	19	44	96	100	--	8,360	1,590	2,090	4,350	335	--	6,770

Table 3.-Continued.

Date	Station (ft)	Water Discharge ${ }_{\left(f^{3}\right.}$ (ft ${ }^{3}$ per second)										Concentration, in ms/h						
														0.062 $\begin{aligned} & \text { O.125 }\end{aligned}$				
														0.125	0.250	0.500	1.00	0.062

	Dec. 21	25	1,860	3	4.7	4.0	. 18	59	88	100	--	--	2,650	1,560	769	318	--	--	1,090
					4.7	3.0	. 57	46	79	100	--	--	3,550	1,630	1,170	745			1,920
					4.7	2.0	1.35	37	68	100	--	--	4,450	1,650	1,380	1,420			2,800
N					4.7	1.2	2.92	28	56	98	100	-	5,990	1,680	1,680	2,520	120	--	4,310
					4.7	0.5	8.40	21	46	95	100	--	8,370	1,760	2,090	4,100	418	--	6,610
		35	1,860	3	4.9	4.0	. 23	53	86	100	--	--	3,060	1,620	1,010	428	--	--	1,440
					4.9	3.0	. 63	44	78	100	-	-	3,850	1,690	1,310	847	--	--	2,160
					4.9	2.0	1.45	37	72	100	-	-	4,770	1,760	1,670	1,340	-	--	3,010
					4.9	1.2	3.08	29	62	100	--	--	6,200	1,800	2,040	2,360			4,400
					4.9	0.5	8.80	21	52	99	100	-	8,620	1,810	2,670	4,050	86	-	6,810
		50	1,860	3	5.4	4.0	. 35	54	84	100	-	-	2,830	1,530	850	453	-	-	1,300
					5.4	3.0	. 80	42	73	100	-	-	3,780	1,590	1,170	1,020			2,190
					5.4	2.0	1.70	34	66	99	100	--	4,760	1,620	1,520	1,570	48	--	3,140
					5.4	1.2	3.50	27	58	98	100	-	6,380	1,720	1,980	2,550	128	--	4,660
					5.4	0.5	9.80	23	49	93	100	-	7,660	1,760	1,990	3,370	536	-	5,900

Table 3--Continued.

Date	Station$(f t)$	Water Discharge Q^{Q}(ft t^{3} persecond)		Total Depth of Flow (ft)	Height above Bed $\stackrel{y}{f}$ (ft)	$\frac{a-y}{y}$	Percent finer than indicated size,in mm					Concentration in me/l						
												Sainple	$\begin{aligned} & \text { Finer } \\ & \text { than } \\ & 0.062 \end{aligned}$		$\begin{aligned} & 0.125 \\ & t 0 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 15.1250 \\ & 0.50 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.500 \\ & \text { to } \\ & 1.00 \end{aligned}$	Coarser than 0.062
							0.062	0.125	0.250	0.500	1.00							

Rio Grande conveyance channel near Nogal Canyon, N. Mex.
Sampling section $1318+00$, Right bank station 0 , Left bank station 80

Table 4.-- Sumary of fize anelyeet and related daca for depth integrated aediment mamples

Date	Time	Samb pliug Sec- tion	$\left\lvert\, \begin{gathered} \text { Water } \\ \text { ofscharge } \\ 9 \\ \left(\mathrm{ft}^{3} \mathrm{per}\right. \\ \text { second) } \end{gathered}\right.$	```Water Tempera- tare T (')```	Percent finer than indicated size, in ma								Concentriation, in $\mathrm{m} / \mathrm{g} / 1$,							Median Diameter ${ }^{6} 50$ ($n=1$	Gradation σ
													Sample	- of Size class, in mam							
					0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00		Finer chan 0.062	($\begin{gathered}\text { c.062 } \\ \text { to } \\ 0.125\end{gathered}$	$\left[\begin{array}{c}0.125 \\ \text { to } \\ 0.250\end{array}\right.$	($\begin{gathered}0.250 \\ \text { to } \\ 0.500\end{gathered}$	$\left[\begin{array}{c}0.500 \\ 50 \\ 1.00\end{array}\right.$	Coarser		

Rio Grande conveyance channel near Bernardo, N. Mex.

	$\begin{aligned} & 1965 \\ & \text { Peb. } 3 \end{aligned}$		$\begin{aligned} & \text { Meir } \\ & \text { do } \\ & \text { do } \\ & \text { do } \end{aligned}$	$\begin{aligned} & 560 \\ & 550 \\ & 540 \\ & 550 \end{aligned}$	$\begin{array}{r} 6 \\ 9 \\ 11 \\ 10 \end{array}$	162115	19261721	28342530	$\begin{aligned} & 32 \\ & 40 \\ & 29 \\ & 35 \end{aligned}$	$\begin{aligned} & 40 \\ & 52 \\ & 38 \\ & 45 \end{aligned}$	88858086	$\begin{array}{r} 100 \\ 99 \\ 100 \\ 99 \end{array}$	$\frac{100}{100}$	$\begin{aligned} & 2,230 \\ & 1,790 \\ & 2,520 \\ & 2,160 \end{aligned}$	710720730760	$\frac{178}{215} 1,070$		${ }_{251}^{268}$	${ }^{18}$	1,520	0.18.19	1.41
		0945																				
		1320																				
		1505														227	1,060	504	0	1,790	. 19	1.52
		1700				18										216	286	281	22	1,400	.. 18	1.47
\%	Feb. 3	1205	236	550	8	19	24	34	40	50	86	100	--	1,880	750	188	677	263	0	1,130	. 19	1.51
		1430	236	540	10	29	36	51	62	76	99	100	-	1,190	738	167	274	12	0	452	. 14	1.42
		1630	236	550	10	27	30	49	60	75	98	100	-	1,320	792	198	304	26	0	528	. 14	1.46
	Feb. 3	1030	255	560	7	27	33	47	56	70	99	100	-	1,340	750	188	389	13	0	590	. 14	1.35
		1400	255	540	9	27	33	50	60	76	100	-	-	1,260	756	202	302	0	0	504	. 13	1.36
		1600	255	550	10	28	35	53	61	77	100	--	-	1,240	756	198	285	0	0	484	. 14	1.38
	Feb. 4	0830	Weir	575	6	15	17	27	31	40	85	100	-	2,490	770	224	1,120	373	0	1,720	. 18	1.45
		1000	do	575	7	13	15	24	28	40	91	100	-	2,690	750	323	1,370	242	0	1,940	. 17	1.38
		2220	do	575	8	17	20	30	34	45	89	99	100	2,280	780	251	1,000	228	23	1,500	. 18	1.43
		1415	do	575	9	14	18	26	30	40	90	100	-	2,600	780	260	1,300	260	0	1,820	. 17	1.39
	reb. 4	0900	255	575	5	24	31	43	51	67	9	100	-	1,520	773	243	406	15	0	745	. 14	1.36
		1100	255	575	7	25	35	50	59	4	100	-	-	1,320	779	193	343	0	0	541	. 14	1.36
		1340	255	575	9	23	36	51	6	5	100	-	-	1,350	06	204	340	0	0	544	. 14	1.36

Table 4.-- Continued.

Date	Time	Sam- pling Sec- tion	Water Discharge ($\mathrm{ft}^{\frac{Q}{3}} \mathrm{per}$ second)	$\begin{gathered} \text { Hater } \\ \text { Tempera- } \\ \text { ture } \\ \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Percent finer than indicated size, in min								Concentration, in mg/1,							Median Diameter d56 (min)	Gradation 0
					0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00	Samply	$\begin{aligned} & \text { Finer } \\ & \text { than } \\ & 0.062 \end{aligned}$		$\frac{z e c}{0.125} \begin{aligned} & 125 \\ & 0.250 \end{aligned}$	$\begin{gathered} 5,25,27 \\ 0.250 \\ 0.500 \end{gathered}$		$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \end{gathered}$		
May 12	0750	Weir	980	14	--	--	--	72	87	98	100	--	3.536	2,540	529	388	71	0	990	0.11	1.60
	0900	de	930	14	-	-	--	73	88	97	100	--	3,300	2,410	495	297	99	0	890	. 11	1.65
	1000	do	910	15	20	23	38	70	86	97	100	--	3,420	2,390	547	376	103	0	1,030	. 12	1.71
	1100	do	910	15	-	--	--	71	86	97	100	--	3,380	2,400	507	372	101	0	980	. 12	1.67
	1200	do	910	16	--	-	--	74	88	97	100	--	3,270	2,420	658	294	98	0	850	. 11	1.63
	1335	Weir	910	17	-	--	-	75	89	98	100	-	3,110	2,330	435	280	62	0	780	. 11	1.65
	1430	do	920	17	-	--	-	74	89	98	100	-	3,220	2,380	483	290	64	0	840	. 11	1.61
	1530	do	1,110	17	--	-	--	71	88	98	100	-	3,680	2,610	626	368	74	0	1,070	. 11	1.62
	1630	do	1,090	17	-	-	-	74	89	98	100		3,360	2,490	504	302	67	0	870	.10	1.63
	1730	do	1,010	17	--	-	--	72	86	96	100	-	3,210	2,310	449	321	128	0	900	. 12	1.72
May 12	0920	240	930	14	22	26	41	74	90	99	100	-	3,120	2,340	468	281	31	0	780	. 11	1.60
	1030	240	910	14	--	-	-	77	91	99	100	-	3,130	2,410	438	250	31	0	720	. 11	1.61
	1230	240	910	16	-	-	--	76	91	100	-	-	3,150	2,390	472	284	0	0	760	.10	1.58
	1420	240	910	17	-	-	-	78	92	99	100	-	2,990	2,330	419	209	30	0	660	. 10	1.64
	1615	240	1,100	17	-	--	--	75	89	98	100	-	3,650	2,740	511	328	73	0	910	. 11	1.67
	1730	240	1,010	17	-	-	-	76	91	99	100	--	3,300	2,510	495	264	33	0	790	. 10	1.58

Table 4.--Continued.

Date	Time	Sant- pling	Yater Discharge	Water Tempera-	Percent iner than indicatersizo in:								Conomcrition, in mz/1, of Size ciass, in							Nedfan Diameter d50 (m (m)	Grááation σ
		Section	$\begin{gathered} \text { ft }^{Q} \text { per } \\ \text { second) } \end{gathered}$	$\begin{gathered} \text { ture } \\ \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00	Sampl	Friner than 0.062	0.062 to 0.125	0.125 to 0.250	0.250 to 0.500	$\begin{gathered} 0.500 \\ t 0 \\ 1.00 \end{gathered}$	$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \end{gathered}$		

Table 4.-- Continued.

	Date	Time	Sam- pling Sec- tion	Water Discharge (ft ${ }^{\frac{9}{3}}$ per second)	```Water Tempera- ture T ('0```	Percent finet than indicated size, in ma								Concencration, in $-: / 2 / 2$ of Size class, in …							Median Diameter d5: (Gradation σ
						0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00	Samplo	$\left\lvert\, \begin{aligned} & \text { Finer } \\ & \text { than } \\ & 0.062\end{aligned}\right.$	$\left\lvert\, \begin{gathered}0.062 \\ \text { to } \\ 0.125\end{gathered}\right.$	[$\left.\begin{gathered}0.125 \\ \text { to } \\ 0.250\end{gathered} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 0.250: 0 \\ & \text { to } \\ & 0.500\end{aligned}\right.$	$\begin{gathered} 0.500 \\ 10 \\ 1.00 \end{gathered}$	$\begin{gathered} \text { Coarsex } \\ \text { th.an } \\ 0.002 \end{gathered}$		
$\underset{N}{\mathbf{N}}$	June 3	0850	Weir	1,280	16	--	--	--	59	79	95	100	--	3,090 1	1,820	618	494	155	0	1,270	. 12	1.63
		1100	do	1,300	17	14	18	27	62	81	96	100	-	3,330 2	2,060	633	500	133	0	1,270	. 12	1.59
		1205	do	1,300	17	--	--	--	52	68	90	99	100	4,080 2	2,120	653	898	367	41	1,960	. 17	1.75
		1330	do	1,280	17	--	--	--	62	80	94	100	--	3,290 2	2,040	592	461	197	0	1,250	. 12	1.70
	June 3	--	322	1,290	17	--	--	--	66	87	99	100		2,900 1	1,910	609	348	29	00	990	. 11	1.46
	Nov. 29	1000	Weir	1,250	3	--	--	--	--	--	\cdots	--	--	3,430 1	1,590	-	---	---	-	1,840	--	--
		1030	do	1,250	3	-	--	--	--	--	--	--	--	3,510 1	1,550	--	---	--	-	1,960	-	--
		1100	do	1,250	4	8	11	17	41	68	93	100	-	4,220 1	1,730	1,140	1,060	290	0	2,490	. 13	1.61
		1200	do	1,250	4	--	-	--	-	--	--	--	--	4,750 1	1,990		--	--	-	2,760	--	--
		1230	do	1,250	4	--	-*	--	--	--	--	--	--	4,710 1	1,950	--	---	--	-	2,760	--	--
		1300	Weir	1,250	5	--	-	\cdots	-	-	-	-	-	4,210 1	1,910	--	- --	--	-	2,290	--	--
		1330	do	1,250	6	--	-	--	-	-	-	-	-	4,6901	1,870	-	- $\bar{\square}$	-	-	2,820	--	--
		1400	do	1,250	6	1	4	15	37	63	92	100	--	4,730 1	1,750	1,230	1,370	380	0	2,980	. 14	1.61
		1430	do	1,250	6	--	-	--	-	-	--	--	-	4,790 1	1,800	--	- --	- --	-	2,990	--	--
		1500	do	1,250	6	--	--	-	-	-	--	--	-	5,390	1,810	--	- --	- -	-	3,580	--	--
		1530	Weir	1,250	6	-	--	--	-	-	-	-	-	4,590 1	1,770	-	- --	--	-	2,820	--	--
		1600	do	1,250	6	--	-	-	--	-	-	--	-	4,820 1	1.770	-	- -	-	-	3,050	--	--

Table 4.-- Cont inued.

Date	Time	Sam- pling Ser- tion	Water Discharge (ft ${ }^{\frac{0}{3}}$ per second)	WaterTempera-tureT$\left({ }^{\circ} \mathrm{C}\right)$	Percent finer than indicated size, in mm								Concontration, in $\mathrm{m} \mathrm{g} / \mathrm{l}$,							Sedian Diameter des (min)	$\begin{gathered} \text { Grada- } \\ \text { tion } \\ 0 \end{gathered}$
													Samplo	- of size class, in atia							
					0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00		than 0.062	$to 012$	\|co	(to	[$\begin{array}{r}\text { to } \\ 1.00\end{array}$	$\begin{aligned} & \text { than } \\ & 0.062 \end{aligned}$		

Nov. 30	0800	Weir	1,250	3	--	--	--	-	--	--	--	--	4,550	1,550	--	--	--	--	3,000	--	--
	0900	do	1,250	3	--	--	--	--	--	--	--	--	4,120	1,450	--	--	--	--	2,670	--	--
	1000	do	1,250	3	7	9	15	33	53	87	100	--	4,560	1,460	958	1,550	593	0	3,100	. 16	1.63
	1100	do	1,250	3	-	--	--	-	--	-	--	--	4,100	1,540	--	--	--	--	2,560	--	--
	1200	Weir	1,250	4	--	--	--	-	-	-	-	-	4,380	1,570	-	-	-	-	2,810	--	--
	1230	do	1,250	4	--	--	--	--	--	-	--	--	4,480	1,580	---	--	-	-	2,900	-	-7
	1300	do	1,250	4	7	8	15	34	57	86	100	--	4,590	1,560	1,060	1,330	640	0	3,030	. 15	1.72
Sov. 30	0835	245	1,250	2	--	--	--	--	--	--	--	--	3,520	1,580	--	--	--	--	1,940	--	--
	0935	245	1,250	3	-	-	-	-	--	-	-	-	3,260	1,540	--	--	--	--	1,720	--	--
	1030	245	1.250	3	11	13	22	48	74	99	100	-	3,070	1,470	798	768	31	0	1,600	. 13	1.42
	1130	245	1,250	3	-	-	-	-	-	-	-	-	3,320	1,550	-	--	-	--	1,770	--	--
	1225	245	1,250	4	-	-	--	-	-	-	-	-	3,590	1,580	-	-	-	--	2,010	--	--
	1330	245	1,250	4	10	12	20	46	76	99	100	-	3,380	1,550	1,010	777	34	0	1,830	. 12	1.48
	1420	245	1,250	5	--	--	-	-	-	--	-	-	3,390	1,550	--	--	--	--	1,840	--	--

Tablë 4. -- Continued.

Date	Time	Sam- pling Sec- tion	Water Discharge (ft ${ }^{9}$ second)	```Water Tempera- ture T (%)```	Percent finer than indicated size, in mm								Concentration, in mg/1,							Median Diameter C_{50} (man)	$\begin{gathered} \text { Grada- } \\ \text { tion } \\ \sigma \end{gathered}$
													of Size class, in man								
					0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00	Samole	$\begin{array}{\|r\|} \hline \text { Finer } \\ \text { than } \\ 0.062 \end{array}$	$\left[\begin{array}{c} 0.062 \\ \text { to } \\ 0.125 \end{array}\right]$	$\left.\left\lvert\, \begin{array}{c} 0.125 \\ \text { to } \\ 0.250 \end{array}\right.\right]$	$\begin{gathered} 0.250 \\ \text { to } \\ 0.500 \end{gathered}$	$\begin{gathered} 0.500 \\ \text { to } \\ 1.00 \end{gathered}$	$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \\ \hline \end{gathered}$		
1966																					
May 4	0800	Weir	1,280	16	--	--	--	26	50	90	97	100	3,320	860	797	1,330	332	0	2,460	0.16	1.58
	0830	do	1,280	16	--	--	--	29	53	89	99	100	3,080	890	739	1,110	308	31	2,190	. 15	1.63
	0900	do	1,280	16	--	--	--	32	60	52	100	--	2,780	890	778	890	222	0	1,890	. 14	1.55
	0930	do	1,280	16	--	--	--	33	60	91	100	--	2,710	890	732	840	244	0	1,820	. 14	1.63
	1000	do	1,280	16	6	8	12	26	47	86	100	--	3,490	910	733	1,360	489	0	2,580	. 17	1.62
	1030	Weir	1,280	17	--	--	--	24	46	85	100	--	3,780	910	832	1,470	567	0	2,870	. 14	1.63
	1100	do	1,280	17	--	--	--	27	51	90	100	--	3,440	930	826	1,340	344	0	2,510	. 16	1.59
	1130	do	1,280	18	--	--	--	26	48	86	99	-	3,350	870	737	1,270	436	34	2,480	. 16	1.64
	1200	do	1,280	18	--	--	--	28	50	83	99	100	3,320	930	730	1,100	531	33	2,390	. 17	1.70
	1230	do	1,280	18	-	--	--	28	50	87	100	--	3,390	950	746	1,250	407	34	2,440	. 16	1.64
	1300	Weir	1,280	19	-	--	--	28	51	90	100	--	3,340	940	768	1,300	334	0	2,400	. 16	1.58
	1330	do	1,280	19	--	-	--	27	47	85	100	--	3,360	900	672	1,280	504	0	2,460	. 17	1.65
	1400	do	1,280	20	7	8	13	29	52	92	100	--	3,280	950	754	1,310	262	0	2,330	. 15	1.54
	1430	do	1,280	20	-	-	-	34	56	88	100	-	2,770	940	609	886	332	0	1,830	. 16	1.67
	1500	do	1,280	21	--	--	--	29	49	88	100	-	2,870	830	574	1,120	344	0	2,040	. 17	1.57
	1530	do	1,280	21	-	--	-	29	49	83	99	100	3,060	890	612	1,040	490	31	2,170	. 17	1.70

Table 4 .-- Continued

pate	Time	Sam- pling Sec- tion	$\begin{gathered} \text { Water } \\ \text { Discharge } \\ \left(\mathbf{f t}^{\frac{9}{3}}\right. \text { per } \\ \text { second } \end{gathered}$	```Water ```	Percent finer than indicated size, in man								Concentration, in mg/1,							Median Diameter dso (mim)	Gradation σ
					0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00	Sariple	$\begin{array}{\|l\|} \hline \text { Finer } \\ \text { than } \\ 0.062 \end{array}$	$\begin{gathered} 0.062 \\ \text { to } \\ 0.125 \end{gathered}$	$\begin{gathered} 0.125 \\ \text { to } \\ 0.250 \end{gathered}$	$\left\lvert\, \begin{gathered} 0.250 \\ \text { to } \\ 0.500 \end{gathered}\right.$	$\left[\begin{array}{l} 0.500 \\ t 0 \\ 1.00 \end{array}\right.$	$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \end{gathered}$		
May 4	0920	240	1,280	16	--	--	--	52	81	98	100	--	1,720	894	499	293	34	0	826	0.11	1.47
	1020	240	1,280	17	12	15	23	50	79	96	100	--	1,750	875	508	297	70	0	875	. 12	1.51
	1115	240	1,280	17	--	--	-	52	79	95	100	--	1.730	900	467	277	86	0	830	. 12	1.58
	1450	240	1,280	20	--	--	--	53	78	95	100	--	1,760	933	440	299	88	0	827	. 12	1.55
May 4	1005	260	1,280	16	--	-	--	45	77	99	100	--	2,070	930	662	455	21	0	1,140	.11	1.33
	1050	260	1,280	17	11	14	20	44	74	98	100	-	2,100	920	630	504	42	0	1,180	. 12	1.47
	1140	260	1,280	18	--	--	-	44	70	96	100	--	2.010	880	523	523	80	0	1,130	.13	1.55
	1215	260	1,280	18	--	--	-	48	75	97	100	--	1,910	917	516	420	57	0	993	. 12	1.48 1.53
	1325	260	1,280	19	--	-	-	48	75	97	100	--	1,860	893	502	409	56	0	967 638	. 12	1.53 1.41
	1410	260	1,280	20	-	--	-	58	86	100	--	--	1,520	882	426	213	0	0	638	. 10	
Nov. 23	1055	240	1,270	8	-	\cdots	-	53	77	99	100	--	3,900	2,070	936	858	39	0	1,830	. 12	1.45
	1250	250	1,480	8	-	--	--	55	77	99	100	--	4,320	2,380	950	950	43	0	1,940	. 13	1.47
	1340	255	1,500	8	--	--	-	58	79	99	100	--	4,560	2,640	958	912	46	0	1,920	. 13	1.48
	1425	260	1,570	8	--	--	--	62	81	99	100	-	4,800	2,980	912	864	48	0	1,820	. 12	1.48
1967Feb. 2																					
	1120	240	650	6	--	--	--	40	70	99	100	-	1,930	770	579	560	19	0	1,160	. 13	1.38
	1200	245	650	7	--	-	-	41	71	98	100	--	2,000	820	600	540	40	0	1,180	. 12	1.39
	1315	250	650	7	-	--	--	45	73	88	100	-	1,880	850	526	489	19	0	1,030	. 12	1.37
	1330	255	650	7	--	--	--	43	72.	100	--	--	1,950	840	566	546	0	00	1,110	. 12	1.39
	1420	260	650	8	--	-	--	47	75	100	-	-	1,880	884	526	470	0	0	996	. 12	1.38
Feb. 14	1115	260	630	6	--	--	--	-	-	--	--	--	1,560	750	--	---	-	-	810	-	--
	1050	280	630	6	--	--	-	-	--	--	-	-	1,730	780	-	--	--	--	950	--	--
Feb. 15	1540	220	630	9	-	-	-	-	-	--	-	-	1,540	780	-	-	-	-	760	--	--
	1320	240	630	8	-	-	-	--	-	-	-	-	1,530	760	--	--	- --	-	770	-	--
	1150	260	630	6	-	-	-	--	-	-	-	-	1,700	810	-	-	-	--	890	--	-
	1045	280	630	6	-	-	-	-	-	--	-	-	2,070	990	-	- -	--	--	1,080	--	--

Table 4.-- Continued.

Date	Time	Sam- pling Sec- tion	Water Discharge	```Nater Tempera- ture T (%)```	Perceat intur than Indicazey sizu, in way								Concentration, $\mathrm{En} \mathrm{mg} / 1$, of Size cliss, ian							Secian Diameter cisu (픈)	Gradation σ
			$\begin{gathered} Q^{Q} \\ \text { (ft }{ }^{3} \text { per } \\ \text { second) } \end{gathered}$		0.002	0.004	0.016	0.062	0.125	0.250	0.500	1.00	Sampld		$\left\|\begin{array}{c} 0.002 \\ 10 \\ 0.125 \end{array}\right\|$	$\begin{gathered} 0.125 \\ t 0 \\ 0.250 \end{gathered}$	$\begin{gathered} 0.250 \\ t 0 \\ 0.500 \end{gathered}$	$\begin{gathered} 0.500 \\ t 0 \\ 1.00 \end{gathered}$	Courzur		
$\begin{aligned} & 1968 \\ & \text { Feb. } 1 \end{aligned}$																					
	1030	99	750	5	--	--	--	52	71	99	100	--	2,300	1,200	437	644	23	0	1,100	0.13	1.44
	1125	100	750	6	--	--	--	54	74	100	--	--	2,430	1,310	486	632	0	0	1,120	. 13	1.45
	1210	101	750	6	--	--	--	55	73	99	100	--	2,140	1,180	385	556	21	0	960	. 14	1.44
	1425	159	750	7	--	--	--	58	78	100	--	--	2,140	1,240	428	471	0	0	900	. 13	1.42
	1530	160	750	8	--	--	--	55	73	99	--	-	2,230	1,230	401	580	22	0	1,000	. 14	1.45
May 21	1025	Weir	860	18	20	23	33	74	S8	97	100	--	2,840	2,100	398	256	85	--	740	. 12	1.69
	1230	do	860	20	--	-	--	74	87	98	100	--	2,770	2,050	360	305	55	--	720	. 12	1.69
	1240	do	860	20	--	--	--	76	90	99	100	--	2,580	1,960	361	232	26	--	620	. 11	1.65
	1530	do	860	20	--	-	--	77	89	98	100	--	2,640	2,030	317	238	53	--	610	. 12	1.69
	1610	do	860	20	--	--	--	76	88	97	100	--	2,830	2,150	340	255	85	--	680	. 12	1.77
May 21	1130	225	860	--	--	--	--	74	88	99	100	--	2,770	2,050	388	305	28	-	720	. 12	1.61
	1255	227	860	20	--	--	--	77	90	99	100	--	2,610	2,010	339	235	26	--	600	. 11	1.60
	1335	229	860	20	--	-	--	62	73	88	99	100	3,180	1,970	350	477	350	32	1,210	. 17	1.94
	1410	231	860	20	--	--	--	66	77	88	100	--	2,970	1,960	327	327	356	--	1,010	. 16	2.11
	1500	233	860	21	--	--	--	79	92	100	--	--	2,530	2,000	329	202	--	--	530	. 10	1.56
May 29	1125	225	1,010	-	--	---	--	74		99			3,050	2,260	488	275	31	--	790	. 10	1.61
	1300	227	1,010	21	-	--	--	70	89	99	100	--	3,220	2,250	612	322	32	--	970	. 10	1.61
	1400	229	1,010	21	--	--	--	74	92	99	100	-	3,020	2,230	544	211	30	--	790	. 09	1.59
	1440	231	1,010	22	--	-	--	73	90	98	100	--	3,050	2,230	519	244	61	--	820	. 10	1.61
$\begin{aligned} & 1969 \\ & \text { June } 11 \end{aligned}$																					
	1010	Weir	1,560	18	--	-	--	75	90	98	100	-	5,530	4,150	830	442	111	--	1,380	. 11	1.46
	1300	do	1,390	19	--	--	--	80	92	98	100	-	7,210	5,770	865	432	144	-	1,440	. 10	1.52
	1145	245	1,410	18	--	-	-	81	94	99	100	--	5,910	4,790	768	295	59	--	1,120	. 10	1.46
	1400	250	1,370	19	-	-	-	77	88	94	100	-	7,700	5,930	847	462	462				
	1430	255	1,330	19	--	---	-	83	94	99	100	--	7,690	6,380	842	385	77	--	1,310	. 11	1.50

Table 4. -- Continued.

Date	Time	Sam- pling Sec- tion	$\begin{gathered} \text { Water } \\ \text { Discharge } \\ Q \\ \text { (ft }{ }^{3} \text { per } \\ \text { second) } \end{gathered}$	Water Temperature T (${ }^{\circ} \mathrm{C}$)	Percent finer chin indicated size, in imm								Concentration, in mg/1,							Median Diameter $\mathrm{d}_{5} \hat{}$ (min)	Gradation -
													Sample	of Size class, in mim							
					0.002	0.004	0.016	0.062	0.125	0.250	0.5001	1.00		Finer than 0.062	$\left\lvert\, \begin{gathered}0.062 \\ \text { to } \\ 0.125\end{gathered}\right.$	$\left[\begin{array}{l}0.125 \\ \text { to } \\ 0.250\end{array}\right.$	($\begin{gathered}0.250 \\ \text { to } \\ 0.500\end{gathered}$	[$\begin{gathered}\text {. } 500 \\ 10 \\ 1.00\end{gathered}$	$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \end{gathered}$		

Rio Grande conveyance channel near San Marcial, N. Mex.

1965																			
Dec. 21	1035	$2249+931,800$	3	8	10	16	33 34	64	98	100	--	4,330 1,490	1,410	1,540 1,560	90 150	0	3,040 3,220	0.13	1.42
	1200	$2243+621,800$	3	7	9	14	34	65	97	100	--	4,870 1,650	1,510	1,560	150	0	3,220	.13	1.47
Rio Grande conveyance channel near Nogal Canyon, N. Mex.																			
Dec. 22	0930	1318+00 1,750	3	8	9	16	35	67	97	100	-	4,360 1,530	1,390	1,310	130	0	2,830	. 13	1.50
	1040	1306+00 1,750	3	8	9	16	37	71	99	100	--	4,130 1,530	1,400	1,160	40	0	2,600	. 12	1.43

Table 5,--Sumary of size andyses of bed materfal

Sampling Section	Water Discharge (ft $t^{\frac{Q}{3}}$ per second)	```Water Tempera- ture T (%)```	Bed Material								Bed Form
			Percent finer than indicated size, in mm						Median Diameter d_{50} (mm)	Gradation 0	
			0.062	0.125	0.250	0.500	1.00	2.00			

Rio Grande conveyance channel near Bernardo, N. Mex.

Table 5.--Cont.

Sampling Section	$\begin{gathered} \text { Water } \\ \text { Discharge } \\ Q \\ \text { (ft }{ }^{3} \text { per } \\ \text { second) } \\ \hline \end{gathered}$	```Water Tempera- ture T (%)```	Bed Material								Bed Form
			Percent finer than indicated size, in mm						Mcdian Diameter d_{50} (mim)	Gradation 0	
			0.062	0.125	0.250	0.500	1.00	2.00			
	June 2, 1965										
250	1,190	17	0	4	75	98	100	--	0.20	1.30	Transition
250	1,180	17	0	7	58	99	100	--	. 24	1.42	Do.
	June 3, 1965										
322	1,290	17	0	11	85	99	100	--	. 18	1.34	Flat.
	November 29, 1965										
245	1,250	4	0	12	82	99	100	--	. 18	1.40	Do.
	November 30, 1965										
245	1,250	3	0	12	84	99	100	--	. 18	1.42	Do.
	May 4, 1966										
246	1,280	17	0	1	26	79	99	100	. 33	1.52	Transition
248	1,280	17	1	5	43	89	100	--	. 27	1.54	Do.
250	1,280	18	1	8	66	98	100	--	. 21	1.46	Do.
252	1,280	18	1	7	70	91	99	100	. 20	1.55	Do.
254	1,280	19	1	9	69	93	100	,	. 21	1.48	Do.
	November 23, 1966										
240	1,270	8	0	6	85	100	--	--	. 18	1.30	Flat
245	1,330	8	0	4	65	96	100	--	. 22	1.36	Do.
250	1,480	8	0	5	71	95	100	--	. 21	1.35	Do.
255	1,500	8	0	5	69	99	100	-	. 21	1.36	Do.
260	1,570	8	0	5	77	100	--	--	. 20	1.30	Do.

Table 5, - Cont.

Sampling Section	Water Discharge ($\mathrm{ft}^{\frac{9}{3}}$ per second)	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	Bed Material								Bed Form
			Percent ifner than indicated size, in mm						Median Diameter d_{50} (mm)	Gradation σ	
			0.062	0.125	0.250	0.500		2.00			
	February 2, 1967										
240	650	6	0	6	84	99	100	--	0.19	1.30	Flat
245	650	7	0	7	77	99	100	--	. 19	1.36	Do.
250	650	7	0	6	82	100	--	--	. 19	1.29	Do.
255	650	7	0	7	79	100	--	--	. 19	1.34	Do.
260	650	8	0	12	92	100	--	--	. 17	1.32	Do.
	February 14, 1967										
220	630	6	0	8	79	99	100	--	. 19	1.38	Do.
230	630	6	0	11	86	100	--	--	. 18	1.35	Do.
240	630	6	0	15	89	100	--	--	. 17	1.36	Do.
250	630	6	0	16	91	100	--	--	. 17	1.34	Do.
260	630	6	0	11	81	100	--	--	. 18	1.38	Do.
270	630	6	0	8	89	100	--	--	. 18	1.29	Do.
280	630	6	0	7	90	100	--	--	. 18	1.26	Do.
	February 15, 1967										
220	630	9	0	4	64	99	100	--	. 22	1.35	Do.
230	630	8	0	4	70	98	100	--	. 20	1.37	Do.
260	630	6	0	8	85	100	--	--	. 19	1.31	Do.
280	630	6	0	7	80	100	--	--	. 19	1.33	Do.
	February 1, 1968										
99	750	5	0	3	63	99	100	--	. 23	1.32	Flat.
100	750	6	0	5	60	100	--	-	. 18	1.37	Do.
101	750	6	0	13	82	99	100	-	. 18	1.40	Do.
159	750	7	0	5	73	100	--	--	. 20	1.76	Do.
160	750	8	0	5	79	100	--	--	. 20	1.32	Do.

Table 5.--Cont.

Sampling Section	Water Discharge ($f t^{\frac{Q}{3}}$ per second)	Water Temperature T ($\left.{ }^{\circ} \mathrm{C}\right)$	Bed Materlal								Bed Form
			Percent finer than indicated size, in mm						Median Diameter d_{50} (mm)	Gtadakion 0	
			0.062	0.125	0.250	0.500	1.00	2.00			

Rio Grande conveyance channel near San Marcial, N. Mex.

2,249+93	1,860	3	0	21	90	100	--	--	0.16	1.44	Standing
2,243+62	1,860	3	0	14	80	100	--	--	. 18	1.43	Do,
	Rio Grande conveyance channel near Nogal Canyon, N. Mex.										
	December 22, 1965										
1,318+00	1,750	3	0	14	79	100	--	--	. 18	1.45	Standing
1,300+00	1,750	3	0	19	91	100	--	--	. 17	1.38	Do.

Table 6.--Cross-section data for Rio Grande conveyance channel near iernardo

Sampling Section	Water Discharge ${ }^{9}$(ft ${ }^{3}$ per second)	Water Surface Elevation H, (ft)	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Width } \\ \text { B } \\ \text { (ft) } \end{gathered}$	$\begin{gathered} \text { Area } \\ A \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$	Mean Velocity v (ft per second)	Mean Depth D (ft)	Suspernded Sediment Concentration C (mg/1)	Bed Slaterial		Bed Foria
									Median Diameter ${ }^{d}$ (mm)	Gradation σ	

	0	580	38.0	--	160	252	2.30	1.57	--	--	--	Dune-Ripple.
	40	580	35.0	--	65	208	2.79	2.44	--	--	--	Dune.
	80	580	32.0	--	108	220	2.64	2.05	--	--	--	Do.
	120	580	29.5	--	95	200	2.90	2.10	--	--	--	Do.
	160	580	26.9	--	79	146	3.97	1.84	, 700	--	--	Flat.
	193	580	25.0	11	73	140	4.14	1.91	1,600	--	--	Do.
	194 Weir Structure											
	200	580	24.3	-	63	138	4.20	2.20	--	--	--	Do.
	240	580	22.5	--	68	206	2.82	3.00	---	--	--	Dune.
	280	580	20.3	--	64	154	3.75	2.41	--	--	--	Dune-Ripple.
	320	580	18.6	--	82	103	3.56	1.98	--	--	--	Dune-Flat.
	340	580	17.8	--	1.0	209	2.77	1.89	--	--	--	Dune.
A												

0	630	37.2	--	156	167	3.77	1.07	--	--	--	Dune-Fla
40	630	34.5	--	45	168	3.75	1.98	--	--	--	Do.
80	630	31.8	--	107	155	4.06	1.45	--	--	--	Flat.
120	620	29.4	--	93	190	3.26	2.04	--	-	--	Dune-Fla
160	620	27.3	-	81	233	2.66	2.88	--	--	--	Dune.
193	620	25.2	8	75	189	3.28	2.52	2,300	--	--	Flat.
194 Weix Structure											
200	620	24.0	-	63	167	3.71	2.65	--	--	--	Do.
240	620	22.0	--	68	162	3.83	2.38	--	--	--	Do.
280	610	20.0	-	64	174	3.50	2.72	--	--	--	Do.
320	610	18.4	-	82	179	3.40	2.18	-			Do.
340	610	17.5	-	107	186	3.28	1.74	--	--	--	Do.

Table 6.--Cont luued

Sampling Section	Water Discharge (ft $^{\text {Q }}$ persecond)	Water Surface Elevation H (ft)	\qquad	Width B (ft)	Area A (ft $\left.t^{2}\right)$	```Mean Velocity v (ft per second)```	Mean Depth D (ft)	\qquad	Bed Material		Bed Form
									Median Diameter $d_{\text {su }}$ (man)	Gralation σ	
March 4-5, 1965											
0	590	37.4	3	113	253	2.33	2.24	--	--	--	Ripples.
20	590	36.3	3	103	281	2.10	2.73	--	--	--	Dune-Ripple.
40	590	34.8	3	86	258	2.29	3.00	--	--	--	Dune.
60	590	33.2	4	138	246	2.40	1.79	--	--	--	Dune-Ripple.
80	590	31.9	4	108	204	2.89	1.88	--	--	--	Do.
100	590	30.5	4	55	155	3.80	2.82	--	--	--	Flat.
120	590	29.4	4	94	164	3.60	1.75	--	--	--	Do.
140	590	28.4	5	63	154	3.83	2.44	--	--	--	Do.
160	590	27.4	6	82	240	2.46	2.92	--	--	--	Dune.
193	590	25.1	6	75	167	3.54	2.22	2,300	--	--	Flat.
194 Weir Structure											
200	590	23.9	4	63	155	3.80	2.48	--	--	--	Do.
220	590	23.0	4	61	165	3.57	2.71	--	--	--	Do.
240	590	22.0	4	68	172	3.43	2.54	--	--	--	Do.
260	590	21.0	4	63	168	3.51	2.67	--	--	--	Do.
280	590	20.1	5	63	177	3.33	2.81	--	--	--	Do.
300	590	19.2	6	72	169	3.49	2.35	--	--	--	Do.
320	590	18.2	6	80	175	3.37	2.19	-	--	--	Do.
340	590	17.2	7	107	190	3.10	1.77	--	--	--	Do.

Table 6.--Continued

Sampling Section	Water Discharge ($\mathrm{ft}^{\frac{Q}{3}}$ per second)	Water Surface Elevation H ω (ft)	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	Width B (ft)	Area A (ft^{2})	Mean Velocity v (ft per second)	Mean Depth D (ft)	Suspended Sediment Concentration C (mg/1)	Bed Material		Bed Forin
									Median Diameter $d_{\text {su }}$ (mm)	Gradation σ	

0	475	37.5	,	151	248	1.91	1.64	--	0.20	1.46	Dune.	.129
20	480	36.1	9	103	210	2.28	2.04	--	. 24	1.46	Do.	. 192
40	480	34.7	9	85	223	2.15	2.62	--	. 32	1.64	Do.	. 23.2
60	485	33.1	9	138	226	2.14	1.64	--	. 22	1.31	Do.	. 145
80	485	31.8	9	108	230	2.11	2.13	--	. 17	1.50	Do.	.185
100	490	30.8	10	56	198	2.47	3.53	--	. 24	1.33	Do.	. 359
120	490	29.6	10	94	213	2.30	2.25	--	. 25	1.36	Do.	213
140	495	28.5	11	63	198	2.50	3.14	--	. 26	1.38	Do.	. 323
160	495	27.3	11	82	203	2.44	2.48	--	. 22	1.40	Do.	. 249
193	500	24.9	11	75	180	2.78	2.40	1,200	. 22	1.31	Do.	.275
194	Struct											
200	350	23.9	7	65	162	2.16	2.49	--	. 22	1.33	Do.	. 164
220	350	22.8	7	60	149	2.35	2.48	--	. 22	1.31	Do.	.178
240	350	21.6	7	67	108	3.24	1.61	--	. 16	1.24	Flat.	.159
260	350	20.7	7	65	139	2.52	2.13	--	. 19	1.30	Dune.	.168
280	350	19.9	8	64	164	2.14	2.56	--	. 23	1.32	Do.	.168
300	350	19.0	8	71	160	2.19	2.25	--	. 24	1.34	Do.	151
320	350	18.1	9	82	163	2.15	1.99	--	. 19	1.37	Dune-Ripp	. 13
340	350	17.0	10	107	172	2.04	1.61	-	. 21	1.31	Dune-Ripp	. 106

Table 6.--Continued

Sampling Section	Water Discharge (ft ${ }^{\frac{Q}{3}}$ per second)	Water Surface Elevation $\mathrm{H} \omega$ (ft)	Water Temperature T (${ }^{\circ} \mathrm{C}$)	Width B (ft)	Area A (ft^{2})	Mean Velocity V (ft per second)	Mean Depth D (ft)	Suspended ${ }^{1 /}$SedimentConcen-trationC$(\mathrm{mg} / \mathrm{l})$	Bed Material		$\begin{aligned} & \text { Bed } \\ & \text { Foria } \end{aligned}$
									Median Diameter ${ }^{d}$ (mm)	$\begin{gathered} \text { Grada- } \\ \text { tion } \end{gathered}$	

0	180	36.9	12	157	112	1.61	0.71	--	--	--	Dune.
20	180	35.2	12	100	114	1.58	1.14	--	--	--	Do.
40	180	33.7	12	81	108	1.67	1.33	--	--	--	Dune-Flat.
60	180	32.3	13	134	123	1.46	. 92	--	--	--	Flat-Dune.
80	180	30.8	13	103	122	1.48	1.18	--	--	--	Do.
100	180	29.3	13	50	102	1.77	2.02	--	--	--	Flat.
120	180	28.5	13	90	106	1.70	1.18	--	--	--	Do.
140	180	27.3	13	58	106	1.70	1.83	--	--	--	Dune.
160	180	26.2	14	75	104	1,73	1.39	--	--	--	Flat.
193	180	24.3	14	73	116	1.55	1.59	790	--	--	Do.
194 - Weir Structure											
200	180	23.2	14	61	98	1.84	1.60	--	--	--	Dune
220	180	22.1	15	58	96	1.88	1.65	--	--	--	Do.
240	180	21.2	16	66	105	1.71	1.59	--	--	--	Do.
260	180	20.3	16	63	96	1.88	1.52	-	--	--	Do.
280	180	19.3	17	62	107	1.68	1.72	--	--	--	Flat-Dune
300	180	18.5	18	70	117	1.54	1.67	--	--	-	Flat.
320	180	17.6	18	80	114	1.58	1.42	--	--	--	Do.
340	180	16.7	18	105	114	1.58	1.08	--	-	--	Do.

									Suspended ${ }^{\text {¹/ }}$	Bed Ma	rial		
	Sampling Suction	Water D1scharge (ft $t^{\frac{0}{3}}$ per second)	$\begin{gathered} \text { Water } \\ \text { Surface } \\ \text { Elevation } \\ \text { (fu } \\ (f t) \\ \hline \end{gathered}$	\qquad	$\begin{gathered} \text { Width } \\ \mathbf{B} \\ \text { (ft) } \end{gathered}$	$\begin{aligned} & \text { Axea } \\ & A \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { Velocity } \\ \text { V } \\ \text { (ft per } \\ \text { second) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { Depth } \\ D \\ (f t) \end{gathered}$	\qquad Concen- cration (mg/1)	Median Diameter ${ }^{d_{50}}$ (mm)	$\begin{gathered} \text { Grada- } \\ \substack{\text { tion } \\ \hline} \end{gathered}$	Bed Form	
	April 15-16, 1965												
	0	1,000	38.4	12	162	462	2.16	2.85	--	0.23	1.54	Flat-Dune.	$20-4$
	20	1,000	37.3	12	106	428	2.34	4.05	--	. 24	1.39	Dune.	39
	40	1,000	36.0	12	89	385	2.60	4.33	--	. 23	1.35	Do.	. 46
	60	1,000	34.3	13	139	424	2.36	3.04	--	. 23	1.34	Do.	
	80	990	33.0	13	111	311	3.18	2.80	--	. 18	1.26	Flat-Dune.	. 37
$\stackrel{\square}{\square}$	100	985	31.8	13.	60	233	4.23	3.89	--	. 19	1.27	Flat.	c8
$\stackrel{+}{\infty}$	120	985	31.0	13	99	358	2.75	3.62	--	. 27	1.42	Dune.	.41
	140	980	29.7	14	66	286	3.43	4.34	--	. 23	1.30	Flat-Dune.	. 61
	160	960	28.1	14	83	269	3.57	3.24	--	. 20	1.27	Dune.	.48
	193	960	25.6	14	77	203	4.74	2.64	2,000	. 18	1.26	Flat.	.52
194 - Weir Structure													
	200	710	24.5	12	65	153	4.64	2.36	1,400	. 19	1.35	Do.	. 35
	220	715	23.3	12	61	157	4.55	2.58	--	. 18	1.31	Do.	. 37
	240	715	22.2	12	68	181	3.95	2.64	--	. 18	1.35	Do.	. 33
	260	715	21.3	13	65	182	3.93	2.80	--	. 19	1.34	Do.	. 35
	280	715	20.3	13	64	188	3.80	2.94	--	. 18	1.30	Do.	- 36
	300	715	19.3	13	72	202	3.54	2.81	-	. 22	1.35	Flat-Dune.	. 32
	320	715	18.3	14	83	190	3.76	2.29	-	. 17	1.29	Flat.	. 27
	340	715	17.3	14	110	209	3.42	1.90	-	. 18	1.29	Do.	.21

Table 6.--Continued.

								Suspended:	Bed Ma	rial	Bed Form
Sampling Suction	Discharge (ft $t^{\frac{Q}{3}}$ per second)	Surface Elevation $\mathrm{H} \omega$ (ft)	```Tempera- ture T (%)```	Width B (ft)	$\begin{aligned} & \text { Area } \\ & \wedge \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Velocity } \\ & V \\ & \text { (ft per } \\ & \text { second) } \end{aligned}$	Mean Depth D (ft)	Sediment Concen- tration C (mg/1)	Median Diameter $d_{\text {su }}$ (mm)	Gradation σ	
$\text { April 29-30, } 1965$											
0	900	37.6	14	160	305	2.95	1.91	--	--	--	Dune.
20	900	36.6	14	105	243	3.70	2.31	--	--	--	Do.
40	900	35.5	14	87	357	2.52	4.10	--	--	--	Do.
60	900	34.1	14	139	336	2.68	2.42	--	--	--	Do.
80	900	32.6	15	109	277	3.25	2.54	--	--	--	Do.
100	900	31.5	15	59	310	2.90	5.25	--	--	--	Do.
120	900	30.7	16	98	316	2.84	3.23	--	--	--	Do.
140	900	29.1	16	64	191	4.71	2.99	--	--	--	Flat.
160	900	28.1	16	84	309	2.91	3.68	--	--	--	Dune.
193	900	25.8	16	77	255	3.53	3.31	3,900	--	--	Do.
194 - Weir Structure.											
200	740	25.0	14	66	239	3.10	3.62	3,200	--	--	Do.
220	740	23.9	14	64	275	2.69	4.30	--	--	--	Do.
240	740	22.7	14	68	280	2.64	4.12	--	--	--	Do.
260	740	21.4	14	63	184	4.02	2.92	--	--	--	Flat.
280	740	20.5	14	64	212	3.49	3.31	--	--	--	Do.
300	740	19.5	14	72	196	3.78	2.72	--	-	--	Do.
320	740	18.7	14	83	212	3.49	2.55	--	--	--	Do.
340	740	17.7	14	109	217	3.41	1.99	-	-	--	Do.

Table 6.--Continued.

								Suspended ${ }^{\text {² }}$	Bed Me	ial	Bed Form
Sampling Section	Discharge (ft ${ }^{Q}$ per second)	Surface Elevation $\mathrm{H} \omega$ (ft)	Temperature T (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Width } \\ B \\ (f t) \end{gathered}$	Area A ($f t^{2}$)	```Velocity V (ft per second)```	Mean Depth D (ft)	Sediment: Concen- tration C (mg/1)	Median Diameter $d_{\text {su }}$ (mm)	Gradation σ	

May 17-18, 1965

0	835	37.9	--	160	365	2.28	2.28	--	0.18	1.40	Dune.	. 20
20	835	36.7	--	111	293	2.85	2.64	--	. 23	1.48	Dune-Fiat.	29
40	835	35.5	--	88	316	2.64	3.59	--	. 27	1.48	Dune.	.36
60	835	34.1	--	140	346	2.41	2.47	--	. 24	1.53	Flat-Dune.	. 23
80	835	32.9	21	110	265	3.15	2.41	--	. 26	1.77	Dune.	. 29
100	835	31.7	--	60	304	2.74	5.07	--	. 23	1.36	Do.	5
120	835	30.8	--	100	320	2.61	3.20	3,500	. 25	1.42	Do.	- 32
140	795	29.4	--	66	296	2.68	4.48	3,600	. 24	1.56	Do.	41
160	795	28.3	-	84	325	2.44	3.87	--	. 24	1.39	Do.	32
193	795	26.0	--	79	292	2.72	3.70	--	. 29	1.70	Dune-Flat.	35
194 - Weir Structure												
200	795	25.6	--	68	308	2.58	4.53	--	. 23	1.46	Dune.	. 49
220	795	24.6	--	66	279	2.85	4.23	--	. 23	1.37	Flat.	. 41
240	795	23.5	-	72	275	2.89	3.82	--	. 22	1.34	Flat-Dune.	. 38
260	795	22.5	22	65	275	2.89	4.24	--	. 28	1.66	Dune.	.42
280	795	21.4	-	67	289	2.75	4.32	--	. 25	1.39	Dune-Flat.	41
300	795	20.3	--	74	304	2.61	4.11	--	. 38	1.52	Dune.	. 37
320	795	19.1	--	84	391	2.03	4.65	--	. 24	1.42	Do,	. 22
340	795	17.9	--	111	290	2.74	2.61	--	. 20	1.40	Do.	.25

Table 6.-- Continued

Sampling Section	Water Discharge (ft ${ }^{\frac{Q}{3}}$ per second)	Water Surface Elevation Hu (ft)	Water Temperature T (${ }^{\circ} \mathrm{C}$)	WidthB(ft)	Area A (ft ${ }^{2}$)	Mean Velocity V (ft per second)	Mean Depth D (ft)	Suspended-SedimentConcen-trationC$(\mathrm{mg} / \mathrm{l})$	Bed Material		Bed Form
									Median Diameter $d_{\text {su }}$ (mm)	Gradation σ	

May 27-28, 1965

0	1,170	37.6	18	162	399	2.94	2.46	4,500	0.23	1.36	Dune.	
20	1,170	37.0	18	106	354	3.31	3.34	2,620	. 25	1.38	Do.	. 4
40	1,170	35.6	19	89	299	3.92	3.36	2,640	. 24	1.39	Transition.	. 50
60	1,170	34.3	19	140	374	3.13	2.67	3,430	. 21	1.37	Dune.	- 22
80	1,170	33.3	19	112	368	3.18	3.28	2,530	. 14	1.35	Do.	- 型禹
100	1,170	32,2	19	62	406	2.88	6.55	2,410	. 29	1.62	Do.	. 72
120	1,170	31.1	21	99	351	3.34	3.55	3,150	. 26	1.44	Do.	
140	1,170	30.0	21	68	327	3.58	4.81	2,470	. 24	1.50	Dune-Flat.	. 60
160	1,170	28.7	21	85	377	3.10	4.43	2,650	. 23	1.42	Flat-Dune.	52
193	1,170	26.5	21	81	355	3.30	4.38	3,810	. 25	1.38	Dune-Flat.	53
194	Struct											
200	1,090	25.9	18	70	295	3.70	4.22	3,150	. 23	1.64	Transition.	5
220	1,090	24.8	18	67	343	3.18	5.12	2,910	. 19	1.69	Dune.	. 68
240	1,090	23.6	18	71	276	3.95	3.89	3,110	. 23	1.30	Transition.	, 57
260	1,090	22.4	18	64	301	3.62	4.71	3,260	. 20	1.45	Dune.	, 6
280	1,090	21.2	18	66	313	3.48	4.74	3,230	. 24	1.49	Do.	. 61
300	1,090	20.0	18	73	273	3.99	3.74	3,330	. 18	1.39	Transition	. 55
320	1,090	18.6	18	82	245	4.45	2.99	3,080	. 18	1.29	Flat.	. 47
340	1,090	17.6	18	110	281	3.88	2.56	2,890	. 19	1.31	Do.	. 37

Table 6.-- Continued.

Sampling Section	$\begin{gathered} \text { Water } \\ \text { Discharge } \\ Q \\ \text { (ft }{ }^{3} \text { per } \\ \text { second) } \end{gathered}$	$\begin{aligned} & \text { Water } \\ & \text { Surface } \\ & \text { Elevation } \\ & \text { H } \omega \\ & (f t) \end{aligned}$	```Water Tempera- ture T (%)```	$\begin{gathered} \text { Width } \\ B \\ (f t) \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \left.\stackrel{A}{(} t^{2}\right) \end{aligned}$	Mean Velocity v (ft per second)	Mean Depth D (ft)	$\begin{gathered} \text { Suspended }{ }^{l /} \\ \text { Sediment } \\ \text { Concen~ } \\ \text { tration } \\ \text { C } \\ (\mathrm{mg} / 1) \\ \hline \end{gathered}$	Bed Material		Bed Form	
									$\begin{gathered} \text { Median } \\ \text { Diameter } \\ \mathbf{d}_{\text {su }} \\ (\mathrm{mm}) \end{gathered}$	Gradation σ		
June 10-11, 1965												
0	720	38.0	17	159	313	2.30	1.97	--	--	--	Dune.	
20	720	36.7	17	105	306	2.35	2.91	--	--	--	Do.	
40	720	35.4	17	89	288	2.50	3.24	--	--	--	Do.	
60	720	33.9	17	138	303	2.38	2.20	--	--	--	Do	
80	720	32.6	17	110	268	2.68	2.44	--	--	--	Dune-Flat.	
100	720	31.1	17	57	183	3.93	3.21	--	--	--	Flat.	
120	720	30.4	17	98	264	2.72	2.70	--	--	--	Dune-Flat.	
140	720	29.1	17	64	231	3.12	3.61	--	--	--	Dune.	
160	720	27.9	17	83	274	2.62	3.30	--	--	--	Do.	
193	720	25.7	18	77	273	2.64	3.55	2,200	--	--	Do.	
194 - Weir Structure												
200	685	25.0	16	66	248	2.76	3.76	2,500	0.24	1.37	Flat-Dune.	36
220	685	24.0	16	64	303	2.26	4.74	--	. 24	1.37	Dune.	$\begin{array}{r} 37 \\ 25 \end{array}$
240	685	22.7	17	69	254	2.70	3.69	--	. 24	1.40	Dune-Flat.	.35
260	685	21.4	17	64	179	3.82	2.80	--	. 18	1.28	Flat.	.37
280	685	20.4	17	65	265	2.58	4.08	--	. 26	1.38	Dune.	.37
300	685	19.4	18	72	258	2.66	3.59	--	. 23	1.33	Do.	33
320	685	18.0	18	81	277	2.47	3.43		. 26	1.40	Do.	$.20$
340	685	17.1	19	108	313	2.18	2.90	-	. 24	1.41	Do.	.22

Table 6.-- Continued.

Sampling Section	Water Discharge (ft ${ }^{\frac{Q}{3}}$ per second)	Water Surface Elevation H ω (ft)	Water Temperature T (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Width } \\ & B \\ & \text { (ft) } \end{aligned}$	Area A (ft ${ }^{2}$)	$\begin{aligned} & \text { Mean } \\ & \text { Velocity } \\ & V \\ & \text { (ft per } \\ & \text { second) } \end{aligned}$	Mean Depth D (ft)	\qquad	Bed Material		Bed Forti
									Median Diameter d_{50} (min)	Gradation σ	

June 24-25, 1965

0	1,140	38.7	--	163	419	2.72	2.57	--	0.24	1.36	Dune.	. 26
20	1,160	37.3	--	106	411	2.82	3.88	--	. 24	1.45	Do.	40
40	1,160	35.9	--	89	346	3.35	3.89	--	. 23	1.43	Do.	48
60	1,170	34.5	--	140	393	2.98	2.81	--	. 20	1.36	Do.	. 31
80	1,180	33.3	--	112	385	3.06	3.44	--	. 20	1.40	Do.	. 39
100	1,320	32.2	--	62	346	3.82	5.58	--	. 21	1.45	Do.	. 78
120	1,330	31.3	20	100	407	3.27	4.07	--	. 24	1.36	Dune-Flat.	. 49
140	1,330	29.9	--	69	287	4.63	4.16	--	. 18	1.30	Flat.	.71
160	1,310	28.8	--	85	333	3.93	3.92	--	. 24	1.44	Dune.	51
193	1,240	26.6	--	81	361	3.43	4.45	2,800	. 30	1.77	Flat.	.50
194	Struct											
200	1,000	25.8	--	68	325	3.08	4.78	2,800	. 25	1.43	Dune.	2
220	1,000	24.7	-	67	272	3.68	4.06	--	. 22	1.39	Flat-Dune.	
240	1,000	23.5	--	70	307	3.26	4.39	--	. 24	1.48	Dune.	33
260	1,000	22.4	21	66	320	3.12	4.85	--	. 26	1.50	Do.	16
280	1,000	21.2	--	66	304	3.29	4.61	--	. 23	1.54	Flat-Dune.	6
300	1,000	20.0	-	72	317	3.15	4.40	--	. 26	1.46	Dune-Flat.	2
320	1,000	18.8	--	83	318	3.14	3.83	-	. 22	1.35	Flat.	44
340	1,000	17.5	-	110	336	2.98	3.06	-	. 24	1.48	Dune.	34

Table 6.-- Continued,

$\begin{aligned} & \text { Sampling } \\ & \text { Section } \end{aligned}$	Water Discharge (ft ${ }^{\frac{Q}{3}}$ per second)	Water Surface Elevation H ω (ft)	Water Temperature T (${ }^{\circ} \mathrm{C}$)	Width B (ft)	$\begin{aligned} & \text { Area } \\ & A \\ & \left(f t^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { Velocity } \\ & V \\ & \text { (ft per } \\ & \text { second) } \end{aligned}$	Mean Depth D (ft)	Suspended ${ }^{1 /}$SedimentConcen-trationC$(m g / 1)$	Bed Material		Bed Form
									$\begin{gathered} \text { Median } \\ \text { Diameter } \\ \text { dsu } \\ \text { (mm) } \\ \hline \end{gathered}$	Gradation σ	

July 22, 1965

0	1,060	38.0	26	164	380	2.79	2.32	--	0.21	1.34	$\text { Dune. } .41$	
20	1,060	37.6	26	106	354	2.99	3.34	--	. 21	1.34		
40	1,060	35.9	26	89	234	4.53	2.63	--	. 18	1.28	$\begin{array}{cc} \text { Flat. } & .49 \\ \text { Do. } & 31 \end{array}$	
60	1,060	34.4	26	140	252	4.21	1.80	--	. 17	1.36		
80	1,060	33.3	27	112	406	2.61	3.63	--	. 18	1.45		
100	1,060	32.0	27	60	290	3.66	4.83	--	. 22	1.47	Flat-Dune.	
120	1,060	31.0	27	99	316	3.35	3.19	--	. 23	1.42	Do.	4
140	1,060	29.9	27	68	294	3.61	4.32	--	. 25	1.49	Dune.	64
160	1,060	28.6	27	85	322	3.29	3.79	--	. 28	1.48	Do.	. 53
193	1,060	26.3	27	81	347	3.05	4.28	960	. 26	1.52	Do.	. 53
194	Structure											
200	1,060	25.9	27	68	306	3.46	4.50	--	. 24	1.36	Do.	$\cdot 64$
220	1,060	24.7	27	68	315	3.37	4.63	--	. 24	1.32	Do.	. 64
240	1,060	23.5	27	70	228	4.65	3.26	--	. 22	1.29	Flat.	62
260	1,060	22,3	27	65	322	3.29	4.95	---	. 20	1.39	Dune.	67
280	1,060	20.9	27	67	286	3.71	4.27	--	. 26	1.34	Do.	. 65
300	1,060	19.7	27	73	314	3.38	4.30	--	. 28	1.57	Do.	$5)$
320	1,060	18.2	27	82	334	3.17	4.07	--	. 26	1.50	Do.	
340	1,060	16.5	27	108	288	3.68	2.67	--	. 22	1.34	Transition.	. .401

Table 6.-- Continued.

Table 6.,- Continued.

Sampling Section	Water Discharge ($\mathrm{ft}^{\frac{Q}{3}}$ per second)	```Water Surface Elevation H\omega (ft)```	Water Temperature T (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Width } \\ B \\ (f t) \end{gathered}$	$\begin{aligned} & \text { Area } \\ & A \\ & \left(f t^{2}\right) \end{aligned}$	Mean Velocity v (ft per second)	Mean Depth D (ft)	Suspended ${ }^{1 /}$SedimentConcen-trationC(mg/l)	Bed Material		$\begin{aligned} & \text { Bed } \\ & \text { Foria } \end{aligned}$
									Median Diameter $\mathbf{d}_{\text {su }}$ (mm)	Gradation σ	

September 23, 1965

86	108.5	1.47	1.27	--	0.18	1.41	Dune.	. 01
105	95.2	1.68	. 91	--	. 18	1.34	Dune-Ripple.	. 050
88	96.4	1.66	1.10	--	. 19	1.32	Ripple.	. 059
138	108.5	1.47	. 79	--	. 20	1.35	Do.	. 038
107	99.1	1.61	. 93	--	. 22	1.34	Ripple-Dune.	. 049
54	90.8	1.76	1.67	--	. 19	1.31	Do.	.095
92	98.0	1.63	1.07	--	. 18	1.32	Ripple	. 057
61	95.4	1.68	1.56	--	. 20	1.41	Dune	7
78	101.5	1.58	1.30	--	. 16	1.44	Do.	.067
75	116.8	1.37	1.56	1,200	.13	1.59	--	
59	87.5	1.83	1.48	--	. 25	1.32	Dune	. 088
57	88.9	1.80	1.56	--	. 24	1.43	Do.	097
66	87.2	1.83	1.32	--	. 25	1.48	Do.	. 078
64	89.8	1.78	1.40	--	. 27	1.43	Do.	- 095
60	96.2	1.66	1.59	--	. 21	1.55	Ripple.	. 054
69	100.6	1.59	1.46	-	. 22	1.43	Do.	. 075
79	102.2	1.56	1.29	--	. 22	1.38	Do.	
106	127.2	1.26	1.20	--	. 26	1.62	Ripple-Flat.	. 649

Table 6.--Continued.

Sampling Section	Water Discharge (ft $\mathrm{t}^{0} \mathrm{per}$ second)	```Water Surface Elevation H\omega (ft)```	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Width } \\ \text { B } \\ (f t) \end{gathered}$	Area A (ft^{2})	Mean Vulocity V (ft per second)	Mean Depth D (ft)	Suspended-- Sediment Concentration C (mg/l)	Bed Material		Bed Form
									$\begin{aligned} & \text { Median } \\ & \text { Diameter } \\ & d_{50} \\ & (\mathrm{~mm}) \end{aligned}$	Gradation 0	

20	520	36.9	14	105	144	3.62	1.37	-	0.17	1.33	Flat	.216
40	520	35.4	15	89	151	3.45	1.69	--	. 16	1.35	Do.	
60	520	33.7	16	140	154	3.38	1.10	--	. 16	1.38	Do.	.16
80	520	32.3	16	109	150	3.47	1.38	--	. 16	1.30	Do.	. 21
100	520	30.7	16	55	128	4.07	2.32	--	. 18	1.33	Do.	44
120	520	29.6	16	94	155	3.36	1.65	--	. 18	1.40	Do.	
140	520	28.3	16	63	135	3.85	2.15	--	. 15	1.35	Do.	36
160	520	27.1	16	81	150	3.46	1.85	--	.16	1.30	Do.	. 28
193	520	24.9	16	77	150	3.48	1.94	--	. 16	1.42	Do.	29
								1,200				
194 - Weir Structure												
								1,100				
200	520	23.9	16	62	134	3.89	2.15	--	. 17	1.41	Do,	
220	520	22.8	16	62	134	3.88	2.16	--	. 17	1.30	Do.	37
240	500	21.4	11	67	169	2.96	2.52	-	. 19	1.40	Dune.	25
260	500	20.5	11	66	199	2.51	3.02	-	. 24	1.44	Do.	26
280	500	19.4	11	64	188	2.66	2.94	-	. 22	1.45	Do.	26
300	500	18.3	11	70	193	2.59	2.76	-	. 24	1.44	Do.	24
320	500	17.1	11	81	201	2.49	2.48	-	. 22	1.38	Do.	. 21
340	520	16.1	16	107	234	2.22	2.19	--	. 23	1.48	Do.	. 21

Tabla 6.-- Continued,

Sampling Section	Water Discharge ($\mathrm{ft}^{\mathrm{Q}^{3}}$ per second)	```Water Surface Elevation Hw (ft)```	```Water Tempera- ture T (%)```	Width B (ft)	$\begin{gathered} \text { Area } \\ A \\ \left(f t^{2}\right) \end{gathered}$	```Mean Velocity v (ft per second)```	Mean Depth D (ft)	Suspended ${ }^{\text {I }}$ Sediment Concen- tration C (mg/1)	Bed Material		Bed Forn
									\qquad	Gradation σ	

20	1,490	37.9	12	107	388	3.84	3.63	--	0.28	1.49	Dune-Flat.	6
40	1,490	36.3	12	90	292	5.10	3.24	--	. 21	1.42	Flat.	75
60	1,490	35.1	12	140	309	4.82	2.21	--	. 18	1.33	Do.	45
80	1,490	33.8	12	114	305	4.89	2.68	--	. 19	1.37	Do.	
100	1,490	32.2	13	61	264	5.64	4.33	--	. 23	1.44	Do.	104
120	1,490	31.1	13	100	292	5.10	2.92	--	. 18	1.46	Do.	. 63
140	1,490	29.8	13	68	266	5.60	3.91	--	. 20	1.47	Do.	.93
160	1,490	28.6	13	85	291	5.12	3.42	--	. 20	1.40	Do.	-74
193	1,490	26.1	13	80	280	5.32	3.50	--	. 19	1.34	Do.	.77
								3,300				
194	Struct											
								3,200				93
220	1,490 1,490	25.3 24.2	13	68	260	5.73	3.82	--	. 20	1.53	Do.	. 97
240	1,490	23.0	13	69	269	5.54	3.90	--	. 23	1.32	Do.	
260	1,490	21.8	10	67	280	5.32	4.18	--	. 20	1.29	Do.	
280	1,490	20.5	10	66	277	5.38	4.20	--	. 22	1.45	Do.	85
300	1,490	19.3	10	72	270	5.52	3.75	--	. 19	1.35	Do.	
320	1,490	18.1	10	83	270	5.52	3.25	-	. 19	1.37	Do.	67
340	1,490	17.0	10	109	298	5.00	2.73	--	. 18	1.37	Do.	51

Table 6.-- Continued.

								j^{17}	Bed Ma	rial	Bed Forin
Sampling Section	Water Discharge (ft $t^{\frac{3}{3}}$ per second)	Water Surface Elevation $\mathrm{H} \omega$ (ft)	```Water Tempera- ture T (%)```	$\begin{gathered} \text { Width } \\ B \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Area } \\ A \\ \left(\mathrm{it}^{2}\right) \end{gathered}$	Mean Velocity v (ft per second)	Mean Depth D (ft)	$\begin{aligned} & \text { Sediment } \\ & \text { Concen- } \\ & \text { tration } \\ & C \\ & (\mathrm{mg} / 1) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Median } \\ \text { Diameter } \\ \mathbf{d}_{\text {su }} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Gradation σ	

November 30, 1965

	194	Struct							4,500				
	200	1,250	24.6	--	67	244	5.12	3.64	--	--	--	Flat.	
	220	1,250	23.5	--	64	253	4.94	3.95	--	--	-	Do.	
	240	1,250	22.5	-	68	251	4.98	3.69	--	--	--	Do.	
	260	1,250	21.4	\cdots	65	251	4.97	3.87	--	-	--	Do.	
	280	1,250	20.3	--	66	251	4.97	3.81	--	-	--	Do.	
	300	1,250	19.2	--	72	245	5.10	3.40	--	--	--		
	320	1,250	18.1	-	82	243	5.14	2.97	-	-	--	Do.	
	340	1,250	17.0	--	109	270	4.62	2.48	--	--	--	Do,	
						uary	1966						
$\overline{v i}$	0	1,130	38.2	2	160	256	4.42	1.60	--	0.18	1.36	Flat.	. 28
	20	1,130	36.7	2	105	247	4.58	2.35	--	. 18	1.46	Do.	. 43
	40	1,130	35.2	2	88	233	4.85	2.65	--	. 19	1.47	Do.	. 51
	60	1,130	33.9	2	140	257	4.40	1.84	--	. 19	1.40	Do.	.32
	80	1,130	32.8	3	110	250	4.52	2.27	--	. 19	1.40	Standing	Waves, .41
	100	1,130	31.3	3	38	221	5.11	3.81	--	. 21	1.51	Do.	. 78
	120	1,130	30.2	3	98	249	4.55	2.54	--	. 17	1.44	Flat.	.46
	140	1,130	29.1	3	66	229	4.94	3.47	--	. 20	1.50	Do.	. 68
	160	1,130	28.0	3	84	249	4.55	2.96	--	. 19	1.44	Do.	. 54
	193	1,130	25.8	3	80	243	4.65	3.04	--	. 18	1.38	Do.	.56
	194 -	Structu							4,200				
	200								3,800				48
	220	1,000	22.9	1	68	225	4.52	3.25 3.63	--	. 24	1.60	Do.	.52
	240	1,000	21.8	1	67	221	4.52	3.30	--	. 22	1.51	Do.	.48
	260	1,000	20.7	1	64	220	4.55	3.44	--	. 20	1.48	Do.	. 51
	280	1,000	19.6	1	63	230	4.35	3.65	--	. 19	1.42	Do.	. 52
	300	1,000	18.6	1	71	222			--				
	320	1,000	17.6	1	81	228	4.39	2.81	--	. 18	1.42	Do.	- 110
	340	1,000	16.5	1	107	256	3.91	2.39	-	. 18	1.52	Do.	30

Table 6.-- Continued.

								Suspended-	Bed Material		Bed Form	
Sampling Section	$\begin{gathered} \text { Discharge } \\ Q \\ \left(\mathrm{ft}^{3}\right. \text { per } \\ \text { second) } \end{gathered}$	Surface Elevation $H \omega$ (ft)	$\begin{gathered} \text { Tempera- } \\ \text { ture } \\ \mathbf{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Width B $(f t)$	$\begin{gathered} \text { Area } \\ \text { A } \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { Velocity } \\ & V \\ & \text { (ft per } \\ & \text { second) } \end{aligned}$	Mean Depth D (ft)	Sediment Concen- tration C $(m g / 1)$	Median Diameter $\mathrm{d}_{\text {su }}$ (mm)	Gradation σ		
February 16, 1966												
20	820	36.4	2	105	206	3.98	1.96	--	0.17	1.36	Flat.	25
40	820	35.1	2	88	199	4.12	2.26	--	. 18	1.40	Do.	
60	820	33.7	2	140	209	3.92	1.49	--	. 16	1.32	Do.	. 19
80	820	32.5	2	111	208	3.94	1.87	--	. 17	1.33	Do.	.23
100	820	31.1	2	58	182	4.50	3.16	--	. 19	1.35	Do.	45
120	820	30.1	2	97	198	4.14	2.04	---	. 16	1.36	Do.	, 27
140	820	28.8	3	66	183	4.48	2.77	--	. 17	1.33	Do.	.39
160	820	27.6	4	83	195	4.20	2.35	--	. 18	1.36	Do.	. 31
193	820	25.4	4	78	195	4.20	2.50	--	. 19	1.47	Do.	.33
194 - Weir Structure $\quad 2,100$												
200	820	23.9	4	63	182	4.50	2.89	--	. 17	1.38	Do.	.41
220	820	22.7	4	62	178	4.60	2.87	--	. 20	1.41	Do.	
240	820	21.7	4	67	193	4.25	2.88	--	. 20	1.52	Do.	. 39
260	820	20.6	4	66	190	4.31	2.88	--	. 17	1.38	Do.	.40
280	820	19.6	4	64	198	4.14	3.09	--	. 18	1.44	Do.	.41
300	820	18.6	4	72	191	4.30	2.65	-	. 18	1.40		. 36
320	820	17.6	5	82	197	4.16	2.40	--	. 16	1.33	Do.	. 32
340	820	16.7	5	109	220	3.72	2.02	--	. 16	1.39	Do.	. 24

Table 6.-- Continued.

Sampling Section	Water Discharge (ft ${ }^{\text {Q }}$ per second)	Water Surface Elevation H ω (ft)	```Water Tempera- ture T ('0```	Width B (ft)	Area A (ft^{2})	Mean Velocity V (ft per second)	Mean Depth D (ft)	Suspended ${ }^{1}$SedimentConcen-trationC$(\mathrm{mg} / \mathrm{l})$	Bed Material		Bed Foria
									Median Diameter $d_{\text {su }}$ (mm)	$\begin{aligned} & \text { Grada- } \\ & \text { tion } \\ & \sigma \end{aligned}$	

March 8, 1966

20	600	35.4	8	107	175	3.42	1.64	--	0.18	1.40	Flat.	23
40	600	35.0	8	89	173	3.47	1.94	--	. 18	1.38	Do.	. 27
60	600	33.4	8	140	196	3.07	1.40	--	. 18	1.35	Do.	
80	600	32.2	9	109	165	3.64	1.51	--	. 17	1.36	Do.	. 22
100	600	30.7	9	56	147	4.09	2.62	--	. 22	1.53	Do.	. 13
120	600	29.6	9	94	173	3.46	1.84	--	. 17	1.34	Do.	3
140	600	28.4	9	64	149	4.03	2.33	--	. 19	1.40	Do.	. 38
160	600	27.3	9	82	168	3.56	2.05	--	. 18	1.44	Do.	. 30
193	600	25.1	10	78	174	3.45	2.23	--	. 18	1.45	Do.	. 31
								1,800				
194 - Weir Structure 1,800												
200	600	23.5	11	63	148	4.07	2.34	--	. 18	1.40	Do,	$\begin{array}{r} 39 \\ 40 \end{array}$
220	600	22.5	11	61	159	3.77	2.61	--	. 21	1.47	Do.	40 37
240	600	21.5	11	66	164	3.66	2.48	--	. 22	1.52	Do.	37
260	600	20.4	11	65	157	3.81	2.42	--	. 18	1.44	Do.	
280	600	19.5	12	64	175	3.43	2.73	--	. 19	1.51	Do.	.38
300	600	18.5	12	72	170	3.54	2.36	--	. 19	1.42	Do.	34 30
320	600	17.6	12	82	176	3.40	2.15	--	. 16	1.28	Do.	
340	600	16.5	12	109	193	3.12	1.77	--	. 16	1.34	Do.	122

Table 6.-- Continued.

Sampling Section	Water Discharge ft^{Q} per second)	Water Surface Elevation $H \omega$ (ft)	Water Temperature T (${ }^{\circ} \mathrm{C}$)	Width B (ft)	$\begin{gathered} \text { Area } \\ A \\ \left(f t^{2}\right) \end{gathered}$	Nean Velocity V (ft per second)	Mean Depth D (ft)	Suspended- ${ }^{1 /}$SedimentConcen-trationC$(\mathrm{mg} / 1)$	Bed Material		Bed Foris
									Median Diameter d_{50} (mm)	Gradation σ	

0	1,050	38.2	16	161	392	2.68	2.43	--	0.19	1.32	Dune.	.25
20	1,050	36.8	17	107	244	4.30	2.28	--	. 18	1.28	Flat.	38
40	1,050	35.7	17	89	371	2.83	4.17	--	. 25	1.47	Dune.	46
60	1,050	34.1	17	140	259	4.05	1.85	--	. 16	1.33	Flat.	. 29
80	1,050	33.0	18	113	269	3.90	2.38	--	. 18	1.37	Do.	.36
100	1,050	31.6	18	59.	211	4.98	3.58	--	. 19	1.40	Do.	. 2.70
120	1,050	30.8	18	104	356	2.95	3.42	--	. 22	1.43	Dune.	
140	1,050	29.6	18	69	308	3.41	4.46	--	. 24	1.47	Do.	59 48
160	1,050	28.4	18	85	347	3.03	4.08	--	. 26	1.44	Do.	
193	1,050	25.8	18	80	230	4.57	2.88	--	. 22	1.32	Flat-Dune.	
								1,500				
194 - Weir Structure.												
200	1,050	25.0	18	67	232	4.53	3.46	--	. 19	1.38	Flat.	. 61.
240	1,050	22.5	18	69	224	4.69	3.25	--	.17	1.36	Do.	
260	1,050	21.8	18	66	325	3.23	4.92	--	. 32	1.92	Dune.	. 62
280	1,050	20.6	18	69	330	3.18	4.78	--	. 27	1.62	Do.	. 54
300	1,050	19.3	18	73	338	3.11	4.63	--	. 25	1.49	Do.	.56
320	1,050	18.1	18	83	335	3.13	4.04	-	. 28	1.79	Do.	. 49
340	1,050	16.8	19	110	377	2.79	3.43	--	. 24	1.87	Do.	. 37

Table 6.-- Continued.

Sampling Section	Water Discharge (ft $\mathrm{t}^{\frac{Q}{3}}$ per second)	Water Surface Elevation $H \omega$ (ft)	Water Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	Width B (ft)	$\begin{aligned} & \text { Area } \\ & \text { A } \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	Mean Velocity V (ft per second)	Mean Depth D (ft)	Suspended Sediment Concen- tration C (mg/1)	Bed Material		Bed Foris
									$\begin{gathered} \text { Median } \\ \text { Diameter } \\ d_{\text {Su }} \\ (\mathrm{mm}) \end{gathered}$	Gradation σ	

20	250	35.4	24	102	134	1.87	1.31	--	0.21	1.50		.098
40	250	34.0	24	85	144	1.74	1.69	--	. 20	1.52	Dune.	.117
60	250	33.1	24	138	141	1.77	1.02	--	. 24	1.34	Do.	$.072$
80	250	31.6	24	108	144	1.74	1.33	--	. 24	1.38	Do.	
100	250	29.9	24	53	139	1.80	2.62	--	. 16	1.32	Flat,	. 188
120	250	28.7	25	95	132	1.89	1.39	--	. 18	1.57	Dune.	. 105
140	250	27.2	27	62	130	1.92	2.10	--	. 24	1.54	Do.	. 16
160	250	26.0	27	78	129	1.94	1.65	--	. 26	1.54	Do.	13
193	250	24.5	27	77	157	1.59	2.04	--	. 23	1.34	Do.	, 13
								1,100				
194	Struc											
200	250	23.1	27	64	129	1.94	2.02	--	. 24	1.45	Do.	16
220	250	21.6	27	62	82	3.05	1.32	--	. 17	1.28	Flat.	.16
240	250	20.1	27	66	85	2.94	1.29	--	. 17	1.27	Do.	12
260	250	19.0	26	65	127	1.97	1.95	--	. 23	1.50	Dune.	- 16
280	250	17.8	26	63	134	1.87	2.13	-	. 22	1.60	Do.	. 1
300	250	16.9	26	70	147	1.70	2.10	--	. 23	1.54	Ripple.	
320	250	16.4	26	79	170	1.47	2.15	--	. 28	1.63	Do.	3
340	250	15.4	26	107	142	1.76	1.33	--	. 21	1.27	Do.	. 09

Table 6.a-Continued

Sampling Section	Water Discharge (ft $t^{\frac{Q}{3}}$ per second)	Water Surface Elevation H ω (ft)	```Water Tempera- ture T ('0```	$\begin{gathered} \text { Width } \\ \text { B } \\ (f t) \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \text { A } \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	Mean Velocity V (ft per second)	Mean Depth D (ft)	Suspended- ${ }^{\text {I }}$SedimentConcen-trationC(mg/l)	Bed Material		Bed Forin	
									$\begin{aligned} & \text { Median } \\ & \text { Diameter } \\ & d_{\text {su }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { Grada- } \\ \text { tion } \\ \sigma \end{gathered}$		
May 23, 1968												
0	815	38.1	17	156	358	2.28	2.29	--	0.23	1.90	Dune	20 .29
20	815	36.9	17	106	326	2.50	3.08	--	. 27	1.38	Do.	- 35
40	815	35.8	18	89	336	2.42	3.78	--	. 25	1.37	Do.	. 38
80	815	33.0	18	111	312	2.61	2.81	--	. 24	1.33	Do.	28
100	815	31.7	18	59	180	4.53	3.05	--	. 18	1.23	Flat.	. 53
120	815	30.6	18	93	330	2.46	3.55	--	. 26	1.63	Dune.	, 31
140	815	29.6	18	67	279	2.92	4.17	--	. 25	1.46	Do.	. 16
160	815	28.4	18	86	298	2.73	3.47	--	. 23	1.36	Do.	. 36
193	815	26.0	18	80	281	2.90	3.51		. 25	1.47	Do.	.39
								$3,800$				
194 - Weir Structure 3,800												
200	885	--	19	70	314	2.82	4.48	--	. 24	1.36	Do.	. 49
220	885	24.6	19	69	301	2.94	4.36	--	. 24	1.40	Do.	.50 .50
240	885	23.1	20	68	301	2.94	4.43	--	. 25	1.53	Do.	. 50
260	885	21.9	20	69	250	3.54	3.63	--	. 22	1.36	Do.	. 50
280	885	20.8	20	69	302	2.93	4.37	--	. 27	1.65	Do.	. 50
300	885	19.6	20	72	321	2.76	4.46	--	. 24	1.41	Do.	.48
340	885	17.1	20	109	326	2.71	2.99	--	. 25	1.45	Do.	.31

[^0]Table 7.--Sumary of average values for stream flow and sedment data, Rio Grande conveyance channel near Bernardo, N. Mex.

	Water		Water	Sean		Sater	water		Material			Suspended		
Date	$\begin{gathered} \text { Discharge } \\ \text { Q } \\ \text { (ft }{ }^{3} \text { per } \\ \text { second) } \end{gathered}$	Reach Length (ft)	```Suriace Width B (ft)```	Depth of flow	$\begin{gathered} \text { Yean } \\ \text { velocity } \\ v \\ (\mathrm{fps}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Surface } \\ \text { Slope } \\ \mathrm{S} \\ \left(\times 10^{-4}\right) \\ \hline \end{gathered}$	Temperature T $\left({ }^{\circ} \mathrm{C}\right)$	Median Diameter d_{50} $(\mathrm{~mm})$	Fall Velocity ω (fps)	$\begin{gathered} \text { Grada- } \\ \text { tion } \\ 0 \end{gathered}$	Dominant Bed Form	Sediment Concentration c $(\mathrm{mg} / \mathrm{l})$	$\begin{gathered} \text { Manning } \\ n \end{gathered}$	c / \sqrt{g}
Aug. 25, 1965	127	19,700	91	0.93	1.50	7.4	27	0.20	0.089	1.40	Flat.	2,500	0.026	10.1
Aug. 25	127	14,000	68	1.16	1.61	5.4	29	. 24	. 115	1.45	Do.	2,500	. 024	11.3
Sept. 23	160	14,000	70	1.39	1.64	5.2	20	. 24	. 103	1.46	Dune.	1,180	. 026	10.8
April 1	180	19,700	92	1.21	1.62	6.6	13	--	--	--	Transition	790	. 027	10.1
April 1	180	14,000	71	1.49	1.70	4.7	17	--	--	--	Dune.	790	. 025	11.3
June 14, 1966	250	17,300	89	1.56	1.80	6.4	26	. 22	. 098	1.45	Do.	1,100	. 028	10.0
Mar. 19, 1965	350	14,000	73	2.08	2.30	4.9	8	. 21	. 069	1.32	Do.	1,200	. 023	12.7
Mar. 18	485	19,700	96	2.22	2.28	6.6	10	. 23	. 082	1.42	Do.	1,200	. 028	10.5
Oct. 29	500	8,000	70	2.71	2.63	5.4	10	. 22	. 077	1.42	Do.	1,100	. 026	12.1
Oct. 28	520	16,000	92	1.62	3.56	7.0	15	. 16	. 053	1.35	Flat.	1,200	. 015	18.6
Feb. 18	540	19,700	90	1.96	3.08	6.3	6	. 22	. 072	1.33	Transition	1,300	. 019	15.4
Feb. 19	540	14,000	73	2.12	3.48	4.8	7	. 18	. 053	1.27	Flat.	1,300	. 015	19.2
Jan. 9	580	12,000	112	1.96	2.64	6.9	--	--	--	--	Dune.	1,600	. 023	12.6
Mar. 4	590	19,700	92	2.30	2.78	6.3	4	--	--	--	Transition.	. 2,300	. 023	12.9
Mar. 5	590	14,000	72	2.38	3.45	4.8	5	--	--	--	Flat.	2,300	. 017	18.0
Mar. 8, 1966	600	13,300	89	1.89	3.57	6.5	9	. 18	. 056	1.41	Do.	1,800	. 016	18.0
Mar. 8	600	14,000	73	2.30	3.57	5.0	11	. 19	. 064	1.42	Do.	1,800	. 016	18.6
Jan. 15, 1965	615	14,000	77	2.26	3.53	4.6	8	--	--	--	Do.	2,300	. 016	19.2
Jan. 15	625	19,700	99	1.86	3.40	6.4	8	--m	--	--	Do.	2,300	. 017	17.4
June 11	685	14,000	74	3.54	2.61	5.6	17	. 24	. 098	1.37	Dune.	2,500	. 031	10.3
April 16	715	14,000	74	2.47	3.91	5.1	13	. 19	. 066	1.32	Flat.	1,400	. 016	19.4
June 10	720	19,700	98	2.76	2.67	6.4	17	--	--	--	Dune.	2,200	. 028	11.2
April 30	740	8,000	78	2.62	3.63	4.6	14	--	--	--	Flat.	3,200	. 017	18.4
May 17	795	14,000	76	3.96	2.64	5.5	19	. 25	. 107	1.44	Dune.	3,600	. 033	10.0
May 23, 1968	815	19,700	94	3.19	2.72	6.1	18	. 24	.100	1.46	Do.	3,800	. 029	10.9
Feb. 16, 1966	820	17,300	92	2.14	4.16	6.4	2	. 17	. 044	1.37	Flat.	2,100	. 015	19.8
Feb. 16	820	14,000	73	2.66	4.23	5.1	4	. 18	. 051	1.41	Do.	2,100	. 015	20.2
May 17, 1965	835	12,400	110	2.87	2.64	6.1	17	. 24	. 098	1.49	Dune.	3,600	. 028	11.1
May 23, 1968	885	10,000	69	4.32	2.97	6.2	19	. 24	. 100	1.45	Do.	3,800	. 033	10.0
April 29	900	19,700	98	2.96	3.10	6.0	15	-	--	--	Do.	3,900	. 024	13.0

Table 7.--Continued.

			Water Surface Width B (ft)	Mean Depth of flow	$\begin{gathered} \text { Mean } \\ \text { Velocity } \\ V \\ \text { (ips) } \end{gathered}$	Water Surface Slope $\mathrm{S}^{-10}$$\left(\times 10^{-i}\right)$	Water Temperature T (${ }^{\circ}$ C)	Bed Material Median Fall Grada- Diameter Velocity tion dso ω 0 $(m m)$ $(f p s)$ 			$\begin{gathered} \text { Dominant } \\ \text { Bed } \\ \text { Form } \end{gathered}$	```Suspended Sediment Concentration C (mg/1)```		$\underset{n}{\text { Manning }}$	c/ $\sqrt{3}$
Date		Reach Length (ft)													
Apr. 15, 1965	980	19,700	99	3.39	2.92	6.6	13	0.22	0.082	1.34	Dune.		2,000	0.029	10.9
June 25	1,000	14,000	75	4.16	3.21	5.9	22	. 24	. 108	1.45	Do.		2,800	. 029	11.4
Jan. 5	1,000	14,000	73	3.14	4.37	5.2	3	. 20	. 058	1.49	Flat.		3,800	. 017	19.2
May 12	1,050	19,700	101	2.96	3.51	6.3	18	. 21	. 082	1.38	Transitio		1,500	. 022	14.3
May 12	1,050	14,000	75	4.12	3.40	6.2	18	. 24	. 098	1.63	Dune.		1,500	. 028	11.9
July 22	1,060	15,300	100	3.20	3.31	6.4	27	. 22	. 100	1.42	Transitio		1,900	. 025	12.9
July 22	1,060	14,000	75	3.99	3.54	6.7	27	. 24	. 115	1.40	Dune.		1,900	. 027	12.1
May 27	1,090	14,000	75	3.88	3.74	5.9	18	. 21	. 082	1.44	Do.		3,100	. 024	13.8
Jan. 4, 1966	1,130	19,700	99	2.45	4.65	6.4	4	. 19	. 055	1.44	Flat.		4,200	. 015	20.7
May 28, 1965	1,170	$\begin{aligned} & 15,300 \\ & 17,300 \end{aligned}$	94	3.80	3.28	6.1	19	. 23	. 095	1.43	Dune.		2,900	. 027	12.0
Nov. 30	1,250	14,000	74	3.39	4.98	5.5	3	--	--	--	Flat.		4,500	. 016	20.3
Mar. 31, 1966	1,350	14,000	75	3.57	5.04	6.0	17	. 19	. 071	1.44	Do.		3,700	. 017	19.2
Nov. 9, 1965	1,490	15,300	94	3.18	4.98	6.8	13	. 21	. 077	1.41	Do.		3,300	. 017	18.9
Nov. 10, 1965	1,490	14,000	75	3.64	5.46	6.0	10	. 20	. 067	1.38	Do.		3,200	. 016	20.6

$1 /$ Prior to $0 c$ rober 1, 1965, the concentration 1 isted is the measured suspended concentration at the section. Following October 1 , 1965, the concentration listed is the total concentration measured at the weir, section 194.

Table 8.--Summary of measured suspended-sediment analyses, May 27-28, 1965, Rio Graide conveyance channel near Bernardo, N. Mex.

Sam- pling Sec- tion	Water Discharge ($\mathrm{ft}^{\frac{0}{3}}$ per second)	$\begin{gathered} \text { Mean } \\ \text { Velocity } \\ V \\ (f p s) \end{gathered}$	```Water ```	Percent finer than indicated size in mm					Sample	Concentration, in mg/1,						Median Diameter d_{50} (mim)	Gradation σ	
										$\begin{gathered} 0.062 \\ t 0 \\ 0.125 \end{gathered}$	$\begin{gathered} \text { fire } \\ 0.125 \\ \text { to } \\ 0.250 \end{gathered}$	0	$\begin{gathered} \frac{\pi m}{0.500} \\ t 0 \\ 1.00 \end{gathered}$	$\begin{gathered} \text { Coarser } \\ \text { than } \\ 0.062 \end{gathered}$				
				0.062	0.125	$\frac{10}{} \frac{10}{}$	10.5301	1.00							$\begin{aligned} & \text { Finer } \\ & \text { than } \\ & 0.062 \end{aligned}$			
0	1,170	2,94	18	37	47	77	96	100		4,500	1,670	450	1,350	855	180	2,830	0.22	1.65
20	1,170	3.31	18	63	79	92	99	100	2,620	1,650	419	341	183	26	970	. 14	1.95	
40	1,170	3.92	19	65	84	98	100	--	2,640	1.720	502	370	53	0	920	. 12	1.55	
60	1,170	3.13	19	48	64	91	100	--	3,430	1,650	549	926	309	0	1,780	. 16	1.65	
80	1,170	3.18	19	67	91	100	--	--	2,530	1,700	607	228	0	0	830	. 10	1.36	
100	1,170	2.88	19	69	91	99	100	--	2,410	1,660	530	193	24	0	750	. 10	1.42	
120	1,170	3.34	21	53	70	86	99	100	3,150	1,670	536	504	410	32	1,480	. 18	1.94	
140	1,170	3.58	21	68	89	99	100	--	2,470	1,680	519	247	25	0	790	. 11	1.52	
160	1,170	3.10	21	63	85	97	100	--	2,650	1,670	583	318	80	0	980	. 11	1.58	
193	1,170	3.30	21	49	68	90	99	100	3,810	1,870	724	838	343	38	1,940	. 15	1.72	
200	1,090	3.70	18	65	88	98	100	--	3,150	2,050	725	315	63	0	1,100	. 10	1.53	
220	1,090	3.18	18	72	93	100	---	--	2,910	2,100	611	204	0	0	810	. 10	1.44	
240	1,090	3.95	18	67	87	98	100	--	3,110	2,080	622	342	62	0	1,030	. 11	1.56	
260	1,090	3.62	18	65	86	98	100	--	3,260	2,120	685	391	65	0	1,140	. 11	1.59	
280	1,090	3.48	18	66	85	97	100	--	3,230	2,130	614	388	97	0	1,100	. 11	1.61	
300	1,090	3.99	18	65	88	99	100	--	3,330	2,160	766	366	33	0	1,170	. 10	1.45	
320	1,090	4.45	18	69	90	100	--	--	3,080	2,130	647	308	0	0	950	. 10	1.46	
340	1,090	3.88	18	72	93	100	--	--	2,890	2,080	607	202	0	0	810	. 09	1.42	

[^0]: $1 /$ Prior to October 1, 1965, the concentration listed is the measured suspended concentration at the section. Following October 1 , 1965, the concentration listed is the total concentration measured at the weir, section 194.

