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ABSTRACT

A THEORY OF TOPOGRAPHICALLY BOUND BALANCED MOTIONS AND

APPLICATION TO ATMOSPHERIC LOW-LEVEL JETS

The response of a stratified fluid to forcing from the lower boundary is studied both analyt-

ically and numerically. The lower boundary forces a flow field through orographic obstacles and

potential vorticity anomalies. It is argued that these mechanisms contribute to themaintenance of

low-level jets (LLJs) that are observed regularly in the vicinity of the Rocky Mountains and the

Andes. Low-level jets function as one of the primary mechanisms through which topography and

surface heating influence regional and global climates.

On thef -plane a horizontal transform of the governing equation for potential vorticity leads

to a vertical structure equation that is solved using Green’s functions. Onthe sphere a vertical

transform of this system leads to a horizontal structure equation that is solved using spheroidal

harmonics. These analytic solutions lead to a conceptually simple picture of the fluid response to

forcing. However, these derivations only lead to closed analytic solutionsfor the case of an isen-

tropic lower boundary. When the lower boundary is not isentropic a massless layer must be included

in the domain and the solution is then found iteratively. For the cases including amassless layer the

system is approximated using finite differences and solved with an over-relaxation procedure.

Solutions are presented for the geostrophically balanced, steady response of the fluid to three

idealized lower boundaries. An isentropic ridge is studied to determine the rolenon-heated orog-

raphy plays on the wind field. Then a flat heated lower boundary and a non-isentropic ridge are
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studied. The cases with a heated lower surface result in a cyclonic wind field that is anchored over

the topography. Observations show a prominent cyclonic wind field centered on both the Rocky

Mountains and the Andes. The idealized cases studied in this work allow for the examination of

fluid systems analogous to the Great Plains LLJ and the South American LLJ. Both the mean be-

havior of these jets and their variability have important climatological and economic impacts on the

plains regions of North and South America.

One of the purposes of this work is to interpret particular LLJ systems as part of the oro-

graphically bound, balanced motion associated with the potential vorticity anomalies produced by

solar heating. This research proposes the jets on opposite sides of the mountains to be a single

response to potential vorticity forcing that is the result of radiative heatingon the Rockies and the

Andes. Although the importance of heated orography to LLJs has tended tobe downplayed in the

literature, it is shown here to be a significant component in the maintenance ofLLJs.
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Chapter 1

INTRODUCTION

1.1 General Motivation

How does a stratified fluid respond to an obstacle in its path? The fluid will eitherpass over

or move around the sides of the obstacle. The details of the resulting fluid motionwill depend on

the initial velocity and stratification of the fluid as well as the size, shape, and temperature of the

obstacle. Although this may seem to be an overly simplified scenario, it has important implications

for the fluid motions that are observed in the atmosphere and oceans as a response to the complex

orography of the Earth. The atmosphere is strongly stratified and is certainly influenced by numer-

ous large mountain ranges as the Earth rotates. Notable examples of prominent mountains that are

known to have major impacts on the climate and weather are the Rocky Mountains,the Andes, the

mass of land and ice in Greenland, and the Tibetan plateau. All of these orographic features ex-

perience seasonal and diurnal fluctuations in surface temperature which also serve to influence the

atmospheric flow. The research presented here explores the generalresponse of a stratified fluid to

both isentropic and non-isentropic orography.

The steady, topographically bound balanced response of a fluid to orography was studied

by Eliassen (1980). His classification for isentropic flows used the following method. Begin by

assuming the lowest isentropic surface (a surface of constant entropy) follows the lower boundary in

the far field. Isentropic obstacles are then defined as those whose geopotential surface continuously

follows an isentropic surface. A non-isentropic obstacle (Eliassen’s ‘warm’ obstacle) is one whose

geopotential surface protrudes through one or more isentropes, usually at a summit. These two



     
 
 

 

 

 

 

     

 

 

 

 

 

 
 

     
 
 

 

 

 

 

Figure 1.1: Schematic representing three idealized fluid configurations to bestudied. Contours
represent lines of constant potential temperature (isentropes), the vertical axis could be either height
or pressure. On the left is an isentropic obstacle, the middle is a heated flat lower surface, and the
right is a heated obstacle.

types of obstacles represent fundamentally different distributions of entropy within the fluid domain.

Eliassen showed that solutions for an isentropic ridge were only possible ifthe height of that ridge

did not exceed a critical value. If this ‘critical crest height’ was exceeded, the ridge must be a warm

obstacle. Because Eliassen’s paper did not address a heated lower boundary his warm obstacles

always corresponded to objects that exceed the critical crest height. However, orographic features

that are radiatively heated also satisfy his criterion for a warm obstacle even if their crest height does

not exceed the critical crest height. Non-heated warm obstacles are characterized by isentropes that

are compressed over the summit, with the lowest isentropic surfaces bendingup as they intersect

the lower boundary. In contrast, heated obstacles are characterized by isentropes that are stretched

out over the summit with the isentropic surfaces bending down as they intersect the lower boundary

as in the right panel of Fig. 1.1.

The impact of three simple lower boundary conditions on the atmospheric wind and mass

fields is studied in this dissertation. Figure 1.1 shows a schematic representation of these three

cases. On the left is an isentropic ridge which was studied by Eliassen (1980). The center panel

represents a heated lower surface with a constant geopotential. A combination of these two cases

results in a heated obstacle as shown in the right panel. The contours are isentropes, or lines of
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constant potential temperature. Isentropes that intersect with the lower boundary indicate a tem-

perature gradient along that boundary and can represent a ‘heated’ boundary. When considering a

fluid in hydrostatic and geostrophic balance that conserves potential vorticity, compressed isentropic

surfaces result in anticyclonic motion, while stretched isentropic surfaceslead to cyclonic motion.

Thus in the case of an isentropic obstacle there will be anticyclonic vorticity over the summit where

the isentropes are compressed and cyclonic vorticity in the surroundings.When the lower boundary

is heated the interpretation of the isentropes is more complicated because potential vorticity is not

conserved. However, the results of this research and observations shown in the next chapter indicate

that, even with a heated lower boundary, compressed isentropes indicate anticyclonic vorticity while

vertically stretched isentropes lead to cyclonic vorticity.

Figures 1.2 and 1.3 show the mean circulation around both the Andes and the Rocky Moun-

tains to be dominated by cyclonic flow. Embedded within this flow around the Andes are the South

American Low-Level Jet (SALLJ) to the east, and the Chilean Low-LevelCoastal Jet (CLLCJ) to

the west. Similarly, the cyclonic flow around the Rocky Mountains includes the Great Plains Low-

Level Jet (GPLLJ) and the California Coastal Low-Level Jet (CCLLJ). This observed mean flow

suggests that there could be a connection between the flow generated by aheated ridge and the

persistent low-level jets on either side of these mountain ranges.

Relatively fast moving confined currents of air in the lower atmosphere areconsistently ob-

served in the vicinity of many mountainous regions. Numerous atmospheric phenomena with some

form of a horizontal wind field maximum in the lower troposphere have been referred to as low-

level jets (LLJs). Bonner (1968) developed a number of characteristics that have often been used

to define the North American Great Plains Low-Level Jet (GPLLJ) and more recently the South

American Low-Level Jet (SALLJ). Many of the common definitions for LLJs include the following

three characteristics in the wind field: a horizontal wind maximum in the lower 2 kmof the tropo-

sphere, a moderate to high vertical and/or horizontal gradient in the wind field, and a measurable

diurnal oscillation. One of the results of this work is to interpret particular low-level jet systems as

part of the orographically bound, balanced motion associated with the potential vorticity anomalies
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produced by solar heating.

Figure 1.2: January 2003 mean 925 hPa wind (scale of 10 m s−1 vector indicated just below the
colorbar) from the NCEP-DOE Reanalysis II data (Kanamitsu et al. 2002), which has the hori-
zontal/vertical resolution T62/L28. Vectors are not drawn in the region ofthe Andes above 925
hPa (at T62 horizontal resolution). The background map shows topography (see colorbar, scale is
100’s m), with the La Plata river basin outlined in red. Adapted from Tarasova et al. (2006) and
Noguès-Paegle et al. (2001).

Descriptions of low-level jets began to appear in the literature as early as the1930s (Far-

quharson 1939). At the time very little was understood about these atmospheric motions and almost

no relevant data was available. Research picked up in the fifties as the strong influence of LLJs on

precipitation was realized. In spite of sparse data the early studies did a reasonable job of identify-

ing the dominant characteristics of the LLJs. (see Means 1952, Hoecker1963, Bonner 1968, Hoxit

1975, and references therein). Most of the initial focus was on the GPLLJ but the past couple of
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decades have seen a dramatic growth of interest in other LLJs around theglobe (Vera et al., 2006;

Jiang et al., 2010; Rife et al., 2010; and references therein).

As the basic characteristics of LLJs became more clear, additional questions arose as to why

the jets existed. What physical explanation could explain such regularly occurring but highly vari-

able phenomena? Some of the first studies to propose specific physical mechanisms responsible for

the generation and maintenance of the jets were those by Buajitti and Blackadar (1957), Blackadar

(1957), Wexler (1961) and Holton (1967). Blackadar’s approach focuses on the daily oscillation of

solar heating. During the day radiation from the sun heats the Earth’s surface and leads to the gen-

eration of wind as a response to pressure gradients. Because of largefriction near the surface, the

boundary layer wind quickly becomes turbulent, which implies a high value of the eddy viscosity.

After sunset, radiatively driven boundary layer turbulence ceases and the eddy viscosity decreases

dramatically. The wind in the LLJ is often observed to become supergeostrophic as it is shielded

from boundary layer friction. Blackadar hypothesized that this leads to an oscillation in the total

wind field as a result of the oscillation of the ageostrophic wind in response tothe Coriolis force (an

inertial oscillation). This would lead to a northward wind maximum in the early morning.

In 1961 Wexler attributed the location of the GPLLJ to a simple deflection by the mountains

of Central America of the winds in the Bermuda high pressure system and considered the GPLLJ

as analogous to the Atlantic gulf stream. He argued that the local effects of radiation and friction

used in Blackadar’s argument were not enough to create the highly concentrated wind field in the

LLJ but that it was fundamentally due to large scale inertial forces. Similarly,deflection of the trade

winds over South America by the Andes has been proposed as one of several possible mechanisms

responsible for the SALLJ (Vera et al., 2006). According to Holton (1967) scale analysis can show

that the GPLLJ is not a close analogue to oceanic western boundary currents. However, a mechani-

cal deflection of wind currents by the mountains does play an important role inthe life cycle of the

American LLJs. The coastal LLJs in particular are strongly impacted by the Pacific high pressure

systems.

Holton (1967) examined the oscillations of a density field over uniformly heatedgently slop-
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ing terrain (e.g. the Great Plains). The resulting mechanism he proposed as responsible for the

GPLLJ can be illustrated by looking at the variation of the pressure gradient force between the day

and night. During the day relatively high regions of the terrain will be heatedmore than air at the

same altitude that is not at the surface. This uneven heating leads to a pressure gradient force di-

rected towards the higher elevation. East of the Rocky Mountains this results in an westward flow

which is turned northward by the Coriolis force. Jiang et al. (2007) provide a helpful analysis of

Holton’s theory and show the output from the Geophysical Fluid Dynamics Laboratory (GFDL)

atmospheric general circulation model (AGCM). They show (see their Fig.5) the zonal pressure

gradient force, air temperature, and wind fields averaged over the latitudes 30N to 40N at 1800 Lo-

cal Time (LT). The pressure gradient force is clear on both sides of theRocky Mountains and forces

upslope wind. An inertial oscillation due to the Coriolis force acting to the right of the motion, if

given enough time, will result in a northward flow east of the mountains. During the night, radiative

cooling of the orography reverses this process with an eventual southward flow. These flows result-

ing from the heating add to the mean summertime northward wind over the Great Plains. Thus the

mean flow is enhanced by the northward flow at night and decreased by the southward flow during

the day.

Jiang et al. (2007) also compared the AGCM to the North American Regional Reanalysis

to investigate the relative importance of the mechanisms proposed by Blackadar and Holton. They

found that both mechanisms are necessary for producing a GPLLJ that compares well with observa-

tions. Blackadar’s theory accounts well for the diurnal oscillation but not the location of the GPLLJ.

Wexler’s theory accounts well for the location but not the strength or diurnal oscillation and Holton’s

theory does reasonably well with both the location and strength of the LLJ but struggles with the

vertical structure and phase. Holton’s approach also does not account for the uneven surface heating

which is clearly occuring each day. Another weakness of Blackadar’stheory is that if the GPLLJ

is largely due to the inertial oscillation that is forced by changes in eddy viscosity then we should

observe similar jets everywhere that eddy viscosity changes periodically.We do not observe this;

instead LLJs are almost always found near some prominent topographic feature such as a mountain
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range or a coastline. This suggests that orography may serve to concentrate or amplify the affects

considered by Blackadar.

South American mean January 2003 winds at 925 mb are shown in Figure 1.2.A striking

feature is the strong cyclonic flow centered around the Andes. The South American Low-Level Jet

is seen in the southward flow east of the Andes and the Chilean Low-Levelcoastal jet is clear in

the northward flow over the eastern Pacific Ocean. The La Plata river basin is outlined in red. The

SALLJ has a major impact on the South American hydrologic cycle, particularlyin the La Plata

basin. This basin extends over parts of five countries and supports a significant production of food

and hydroelectric energy. Understanding the spatial extent, strength, and variability of the SALLJ

is therefore critical for the regional economies of several different countries.

Figure 1.3 (from Jiang et al. 2007) shows the climatological summertime mean windvec-

tors at 925 mb. The top panel (1.3a) shows the North American Regional Reanalysis (NARR).

The NARR is a combination of the National Centers for Environmental Predictionmesoscale Eta

forecast model and data from October 1978 to December 2003. The resolution of NARR is 32 km

with 45 vertical layers and output every 3 hours. For more information seeJiang et al. (2007). The

middle panel (1.3b) shows a control run by the GFDL atmospheric generalcirculation model (real-

istic topography, full physics model with resolution of 1◦ latitude by1.25◦ longitude and 24 vertical

levels), and the lower panel (1.3c) shows another run by the GFDL modelbut with the orography

removed.

In general there is very good agreement between the NARR (1.3a) and the model (1.3b).

The model captures well the location and spatial structure of the GPLLJ andthe jet off the coast

of California. The model does not however calculate the correct magnitude of the subtropical high

in the western Atlantic or the maximum in the LLJ wind field over the Gulf coast. The model also

does not capture the correct wind field in the Gulf of California. When the orography is removed,

the low-level structure in the wind field is dramatically altered. There are no longer any LLJs; the

wind fields in the eastern Pacific and over the southern Great Plains are fairly uniform. The wind

maxima that are present have been greatly weakened and spread out. This figure clearly shows the
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important affect of orography on the LLJs.

These two figures strongly suggest that the Rocky Mountains and the Andes impact the for-

mation and maintenance of the GPLLJ, the SALLJ and the LLJs off the west coasts of California

and Chile. The orographic impact can best be understood as having several components. Possibly

the most obvious impact is the unchanging shape of the mountains that protrude into the atmosphere

forcing the wind to change course. As shown in this dissertation low-level jets are also influenced

through the radiative heating that occurs at the surface of the mountains.Another indirect effect on

the LLJs comes from latent heating as a result of weather induced by the mountains. When looking

at observations and model output it is not easy to determine which of these effects, if any, dominate

or how they interact with each other.
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Figure 1.3: The meridional wind component (shading; m s−1) at 03 local time for (a) the North
American Regional Reanalysis (NARR), (b) the GFDL atmospheric general circulation model
(AGCM) with orography, and (c) the identical AGCM with continentality but with the orography
reduced to zero. Vectors show the summer mean wind, scale of 8 m s−1 is in upper right corner.
From Jiang et al. (2007).
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1.2 Influence of low-level jets on regional and global climates

Persistent and strong low-level jets have a major impact on the regional climates in both

North and South America. Both the GPLLJ and SALLJ transport large amounts of moisture from

low tropical latitudes to the interiors of the continents and benefit agriculturalproduction. The

largest annual flux of moisture into the interior of North America occurs during the summer months

and is attributed to the GPLLJ (Higgins et al. 1997). A significant amount of the moisture necessary

for the agriculturally productive La Plata basin in South America is transported there by the SALLJ

(Marengo et al. 2004, Vera et al. 2006). There are also persistent coastal jets off the west coasts

of the Americas. The coastal jets strongly influence the weather patterns and radiation budgets of

the regions and lead to intense oceanic coastal upwelling. This upwelling is a vital component of

the coastal economies and leads to rich marine ecosystems (Jiang et al. 2010). The California

coastal LLJ (CCLLJ) has been the subject of many studies while the ChileanLow-Level Coastal Jet

(CLLCJ) has received less attention. Due to the excellent data now available for the Great Plains

LLJ and the significant economic impact of both the GPLLJ and the South American LLJ, these two

LLJs have been studied much more than other documented LLJs around the globe.

Not only do the American LLJs directly impact the moisture budget, they have also been

closely tied to the formation of large regions in the atmosphere that are favorable to deep convec-

tion and mesoscale convective systems (MCSs). This is accomplished by the jets importing large

amounts of warm, humid air from lower latitudes, enhancing upward motion in the lower tropo-

sphere and creating instabilities that often lead to convective activity. This most often occurs down-

stream of the LLJ maxima in the so-called exit region of the jet. Thus the seasonal fluctuations in

the strength and location of LLJs can influence the distribution of deep convective events (Stensrud

1996, Vera et al. 2006). This connection between LLJs and deep convective activity is one of their

clearest connections to regional and global climates.

Mesoscale large convective systems (MCSs) impact the global climate in several ways. They

produce a high proportion of the global precipitation. The vertical gradient of heating produced

by MCSs strongly influences the atmospheric large-scale flow field (Houze, 2004). They influence
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the radiation budget through the production of abundant high-level clouds and the surface energy

budget through latent heat fluxes. The global distribution of lightning hasbeen shown to correlate

highly with the distribution of MCSs (see Houze 2004, fig. 47). Through their strong influence on

MCSs, LLJs thus indirectly impact many components of the global climate.

Mesoscale convective complexes (MCCs) are a subset of MCSs. Theyoccur primarily over

land, tend to be quasi-circular, and are usually quite intense (Maddox, 1980). It has been hypothe-

sized that their high intensity is in part due to large low-level buoyancy overland that results from

the daytime radiative heating. However, over land the boundary layer becomes stable at night and

does not generally provide a favorable environment for MCCs to form or intensify. This should lead

to a clear minimum of MCSs over land because they need more than the 10 to 12 hours of favor-

able boundary layer conditions that are provided by daytime heating. This isdistinctly not what the

observations show. In fact, in the subtropics and midlatitudes almost all of theMCCs observed by

Laing and Fritsch (1997, see Houze Fig. 46) occurred over land, notthe ocean. Figure 46 of Houze

(2004) also clearly shows the regions where MCCs preferentially form tobe the same regions of

North and South America that experience LLJs. These LLJs, which reach their maximum strength

at night, bring copious amounts of warm, moist air from the tropics into the Great Plains and the

La Plata basin making the nighttime boundary layer in these regions more favorable for the main-

tenance of MCSs than they would be otherwise. This is the mechanism throughwhich the spatial

distribution of MCSs over Earth is heavily influenced by LLJs. It is therefore reasonable to conclude

that LLJs should not be ignored when modeling the Earth’s climate (Stensrud1996).

Of the many studies on LLJs, two papers by Byerle and Paegle (2002, 2003) are among only

a few that mention the cyclonic circulation over the Rockies and the Andes. The focus of these

studies is on the interaction between the orography and the mean zonal flow.They demonstrate

how orography can function as a scale transfer mechanism to focus global scale patterns into re-

gional responses. This can potentially lead to increased predictability for extreme LLJ events. The

barotropic vorticity equation is used to study the possible impact of stationary Rossby waves on the

weather patterns over the plains regions of North and South America.
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Spatial and temporal variability of low-level jets are perhaps the most important character-

istics for those living in regions directly impacted by LLJs. For example, if the mean center of a

LLJ shifts by 70 km the regional rainfall pattern would also shift and couldresult in the rainfall

for a particular region significantly changing. Similarly, if the month in which the LLJ occured

most frequently changed the resulting regional weather would most likely change as well. Both of

these effects strongly impact agriculture because of the influence on precipitation rates during the

growing season for a particular area.

Low-level jets can be thought of as regionally and globally forced meso-synoptic features

of the general circulation that impact local climates. There are LLJs throughout the atmosphere

with a wide spectrum of characteristics that are influenced by many different factors. The dominant

patterns of variability and structure of a particular jet are usually due to the physical mechanisms

that are forcing and maintaining that jet. We know that natural seasonal fluctuations in these jets

influences regional temperatures and precipitation but it is usually not clear exactly how. Trying

to understand the natural variability of LLJs and any possible future changes in their behavior is a

major current challenge.

1.3 Research hypothesis

The hypothesis for the research presented in this dissertation is that the balanced atmospheric

response to a heated lower boundary significantly influences the formationand maintenance of low-

level jets. Specifically, this work examines the dynamically balanced response of a stratified fluid

to obstacles and temperature anomalies on the lower boundary. This is relevant to multiple regions

of the globe that experience persistent low-level jets. It is proposed that the jets on opposite sides of

the North and South American mountains are part of a single response to potential vorticity forcing

that is the result of radiative heating at the surface of the Rocky Mountains and the Andes. The

results imply that the Great Plains LLJ and the California coastal LLJ are two components of the

same response to diabatic heating of the Rocky Mountains and similarly that the South American

LLJ and the LLJ off the coast of Chile are part of the same response to heating of the Andes. Each
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of these four jets has been previously studied, but almost exclusively in isolation. The dynamical

approach taken here provides a unified view for understanding the topographically bound balanced

motions that are important to the life cycle of LLJs.

Although the work of Eliassen (1980) was not specifically applied to LLJs itis relevant to

them and provides physical insight into the dynamical characteristics of these prevalent phenomena.

His paper laid the theoretical groundwork for this research, but did notaddress applications to LLJs

or find solutions for non-isentropic objects as is done here.

Three simplified cases are mathematically studied. Figure 1.1 gives a schematic picture

of these cases. An isentropic ridge for which no isentropes intersect thelower boundary, a flat

(constant geopotential surface) lower boundary with a non-constantlower isentropic surface, and a

non-isentropic ridge with isentropes intersecting its surface. These threecases describe well many

observed scenarios in the atmosphere including a temperature gradient along a flat lower boundary

and heated orography.

Isentropic surfaces are used as the vertical coordinate because of their convenient conser-

vation properties for adiabatic processes. A material element of fluid will not cross an isentropic

surface unless it is diabatically heated. This allows for simple interpretations of the potential vor-

ticity dynamics. Isentropic surfaces that intersect the ground are one ofthe primary difficulties this

coordinate system leads to because it is challenging to correctly formulate thelower boundary con-

dition. Incorporating a massless layer and slightly modifying the necessary transforms to and from

spectral space allows for a consistent physical domain with isentropic surfaces and a geopotential

lower surface that is intersected by isentropes.

Although LLJs have been studied extensively for decades, to the best of the author’s knowl-

edge, the approach presented here is unique and leads to new insights concerning the forcing and

variability of these jets. Orographic affects have been known to impact the LLJs for as long as

they have been studied. The precise impact of simple orographic heating has rarely been quantified;

this research develops an analytic theory for this and applies it to the atmosphere. This allows for

the determination of how the heated orography influences the wind and mass field apart from other
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forcing mechanisms.

In short, this dissertation presents the solutions governing the response of a stratified fluid

to a heated lower boundary. The primary question motivating this research iswhether heating of

the Rocky Mountains and the Andes plays a significant role in the generationand maintenance of

low-level jets. One of the results is the ability to directly compute the impact of changing diabatic

forcing on the lower boundary.

The next chapter describes relevant observations of low-level jets. Chapter 3 lays out the

dynamical system to be studied and derives solutions on thef -plane. A critical crest height is

derived above which it is no longer mathematically possible for an object to beisentropic. The

wind field is plotted for an isentropic ridge using these analytic solutions. Chapter 4 is similar to

chapter 3 but the solution of the invertibility principle is generalized to a sphere. The solutions

derived in chapters 3 and 4 are only closed solutions for the case of no heating along the lower

boundary. In order to compute the wind and mass fields that result from heated lower boundaries

chapter 5 solves the invertibility principle using finite-difference approximations of the governing

equations. An analysis is then made of the results and how they compare to general observations of

LLJs. Final conclusions and a discussion of the implications of this research are given in chapter 6.
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Chapter 2

OBSERVATIONS OF LOW-LEVEL JETS

2.1 Classification

A precise classification of a low-level jet is difficult because of the plethora of phenomena

that have been referred to as LLJs. The term has been used for regions of high speed horizontal

wind having intense diurnal fluctuations, and for regions with no diurnal fluctuations. High speed

wind fields that result from mountain gaps and extend for roughly 200 km were referred to as

LLJs (Macklin et al., 1990) as well as the synoptic scale Great Plains LLJ (on the order of 1000

km). Arakawa (1956) has discussed wind patterns at 500 mb as LLJs whilethe height of the wind

maximum described by Macklin et al. (1990) was at just 80 m above groundlevel (AGL). If a

maximum in the wind field at any height, with unspecified shear characteristics,and a horizontal

extent that ranges from the small meso-scale to the synoptic scale can be referred to as a LLJ then

the atmospheric phenomena that fall under the term LLJ will be so diverse and numerous that a

general explanation of the dominant forcing mechanisms and variability should not be expected.

Of the many LLJ definitions that have been used, one that has become prevalent is that

proposed by Bonner (1968) in his study of the GPLLJ. He required the height of the wind maximum

AGL to be no greater than 1.5 km (this is the same height used by Blackadar (1957)). In addition

a hierarchy of criteria were defined based on the magnitude of the wind. Astaken directly from

Bonner (1968) these criteria are as follows.

(1) The wind speed at the level of maximum wind must equal or exceed 12 m/s and must

decrease by at least 5 m/s to the next higher minimum or to the 3 km level, whichever is



lower.

(2) The wind speed at the level of maximum wind must equal or exceed 16 m/s and must

decrease by at least 8 m/s to the next higher minimum or to the 3 km level, whichever is

lower.

(3) The wind speed at the level of maximum wind must equal or exceed 20 m/s and must

decrease by at least 10 m/s to the next higher maximum or to the 3 km level, whichever is

lower.

Figure 2.1: Isotachs (m s−1) along the southwest to northeast cross-section running from (21.5S,
63.5W) to (19.2S, 58.7W). The data was obtained between 15:00 and 16:20 UTC on 6 February
2003 (during SALLJEX) by the sawtooth flight trajectory of one of the NOAA P-3 aircraft. From
Vera et al. (2006).

These conditions indicate that the stronger the wind speed maximum is for a LLJthe greater

the vertical shear will be. Bonner did not enforce a requirement that theGPLLJ exhibit a diurnal

cycle, but the diurnal nature of the jet was clear in his observations (he also did not specify anything

about the horizontal shear of the jet). The work of Reiter (1963) suggests that jets with a strong

diurnal component that are connected to the nocturnal inversion shouldbe referred to as ‘inversion

wind maxima’ rather than LLJs, although this term has not been fully adopted inthe literature.

Reiter goes on to say that the term low-level jet should refer to wind fields that have a strong
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horizontal and vertical gradient and be noticeably impacted by the Coriolis force (this eliminates

strong low-level regional flows). The reality is that often the term low-level jet as used in the

literature is purely based on the vertical profile of the horizontal wind field (such as those shown in

Figure 2.3).

The South American Low-Level Jet Experiment ( SALLJEX) chose to adopt the criteria of

Bonner (1968) for their studies of the SALLJ. Thus the magnitude and the vertical profile of the

horizontal wind was the primary focus while the horizontal gradient was not. Figure 2.1 shows data

from SALLJEX near a LLJ maxima. The zig-zag numbered line across the figure tracks the course

of the aircraft which took the data. Along the bottom of the figure the orography can be seen in grey,

the slight rise on the left side of the figure is the foothills of the Andes, but theprimary mountain

mass is not displayed. The jet in this figure has high vertical and horizontalshear in the wind field,

reaching a maximum speed of 25 m/s. This provides a good example of a LLJ that fits the somewhat

generic characteristics of LLJs proposed in Chapter 1.

Figure 2.2 (from Rife et al., 2010) provides a global view of the LLJs thathave a strong

diurnal fluctuation. Note the GPLLJ is clearly present in the July map and the SALLJ is clear in the

January map. Also apparent are nocturnal LLJs on the west coast ofSouth Africa, throughout the

Asian monsoon region,just off the Somalian coast, and western Australia. This map was specifically

created to view nocturnally maximizing LLJs at or near their peak times, the time is simultaneously

midnight at every point on the map. The index that is plotted was calculated based on two criteria.

First, the wind at 500 m AGL must be stronger at local midnight than local noon and second the

wind speed at 500 m AGL must be stronger than that at 4 km AGL. Based onthese requirements

every grid point is assigned a numeric value which is then plotted as the colorsin Figure 2.2, the

wind field is also shown with vectors to give a basic idea of the spatial structure of the jets. All of

the global LLJs that were subjectively identified by Stensrud (1996) where successfully identified

using this objective technique developed by Rife et al. (2010).
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2.2 Data Coverage

Based on the literature, the interest in low-level jets began with the Great Plains LLJ in the

1930s. At the time there was only sparse data over that region, making it difficult to ascertain the

basic characteristics of the jet. Over the past several decades, as technology has improved and

interest in increasingly accurate weather forecasts has grown, the datacoverage of the GPLLJ has

become more regular and dense. Although data coverage has been steadily increasing in many

areas, in 2010 the only “well instrumented region” in which a nocturnal LLJoccurred was the

Great Plains of North America according to Rife et al. (2010). Sparse data coverage in many of

the regions that regularly experience strong LLJs has made validation of LLJ model simulations

difficult. Accurately observing the jets is necessary when checking how well mesoscale and global

models simulate LLJs. Observations are also a necessary component for calibrating remotely sensed

data sets. The connection between LLJs and MCSs as well as the transport of large amounts of water

vapor by LLJs make it clear that they need to be correctly represented in GCMs, remotely sensed

data, and reanalysis products.

Obtaining high quality observations of LLJs has been difficult in the past for a variety of

reasons. The jets in the Americas occur in regions with moderate to low populations which often

corresponds to a low number of weather stations. Surface observations alone are not sufficient, and

when the vertical profile of wind is measured, it needs to be at a fairly high resolution to properly

resolve a LLJ. Another difficulty is that the LLJ wind maxima rarely occur near the traditional syn-

optic observation times for launching rawinsondes (0 and 12 UTC) but rather in the early morning

hours. This results in the LLJs either being significantly underestimated, or all together missed in

some of the observations.

Radiosondes take direct in-situ measurements of temperature, humidity, and pressure as a

function of height. When the wind data is also processed they are called rawinsondes. Radars

and satellites also can provide wind measurements by tracking clouds. Radiosondes offer a more

direct and precise measurement, but they are limited in space and time becausethey represent the

atmospheric positions at a single horizontal location and time. Radars and satellites offer much
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Figure 2.2: 21-yr mean NLLJ index and 500m AGL wind field for January and July calculated from
hourly analyses. The scale of a 10 m s−1 wind vector is indicated in bottom right of January figure.
See text for details. From Rife et al. 2010.

better spatial and temporal coverage, but they usually need verification by an external data source

and can only observe atmospheric conditions when measurable aerosols are present.

Many of the radar systems currently in use have difficulty resolving the lower structure of

LLJs. The NOAA404-MHz radars only begin taking wind measurements at500m AGL, but Sten-

srud (1996) (see his Fig. 3) shows that46% of LLJs occurred below this height and Whiteman et al.

(1997) show that over50% of LLJs occur below500m, making consistent and accurate LLJ obser-

vations with these radars impossible. The National Weather Service (NWS) applies an operational

wind algorithm that smooths the 6-second wind data over a 2 minute interval. Thissignificantly

downgrades the temporal resolution of their radiosonde data and results inquite a different LLJ
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Figure 2.3: Wind profile vs height from a high-resolution research rawinsonde (solid), a regular
NWS rawinsonde (dashed), and the NWS averaged high-resolution rawinsonde (dotted). From
Stensrud et al. 1990.

profile than is given by unsmoothed raw data. Figure 2.3 was taken from Stensrud et al. (1990)

and clearly illustrates this discrepancy between vertical wind profiles takenby different radiosondes

or smoothed in time. The solid line shows a wind profile taken with an unaveragedhigh-resolution

research rawinsonde. The wind sharply increases to a maximum of almost 20 m/s below 500m AGL

before sharply dropping back to lower values. Note that the magnitude of the LLJ is significantly

underestimated by the regular NWS rawinsonde and the averaged high-resolution rawinsonde. The

height of the maximum wind is also overestimated. Another kind of radar being used in the U.S. is

the WSR-88D. This produces wind profiles every half-hour, but they are only calculated over verti-

cal intervals of 304m, so the vertical resolution is quite poor. It was also shown that a high degree

of quality control is needed to confirm the validity of remotely sensed data, which is obviously a

problem over regions with little to no in situ observations.

As part of their study of the Great Plains LLJ climatology Whiteman et al. (1997) compared

data from a404-MHz radar with that from a915-MHz radar. The915-MHz radar was found to have

20



sufficient vertical resolution to resolve many LLJ characteristics but wasfrequently contaminated

with noise produced by nocturnally migrating birds. Another source of valuable data is the National

Oceanic and Atmospheric Administration Profiler Network (NPN) which consists of 35 doppler

radar sites in 17 states of the central United States. These sites provide hourly vertical wind profile

data and are an excellent source of data for the study of the GPLLJ. In contrast to the GPLLJ, the

regions of South America with LLJs have been poorly observed. This hasmade it difficult to form

a clear picture the SALLJ mean characteristics, particularly its natural variability.

In addition to increasing direct observations, the development of better reanalysis products

has given an improved understanding of the global atmosphere and ocean systems. The global re-

analysis developed by Rife et al. (2010) provides mesoscale horizontalresolution with grid spacing

of 40 km. The reanalysis hourly data allows for relatively detailed study of the spatial structure and

diurnal cycles of LLJs around the globe. One of the goals of Rife et al. (2010) is to determine the

underlying common features of NLLJs around the globe.

Thus throughout most of the past several decades some observationsof LLJs have been

available but several key issues created accuracy problems with the data. The situation is improving

but it will still be quite a while before a high quality climatology of LLJs is available.Rather than

focusing on climatological aspects of LLJs the next section presents observations from individual

days or averages over short time periods of the LLJs in the Americas. Thiswill help guide the

choice of parameters used in the analysis of chapter 5 and instruct our interpretation of the results.

2.3 North and South American Low-Level Jets

The purpose of this section is to provide a simple picture of the American LLJs that is derived

mostly from observations but with a few of the characteristics drawn from model forecasts. Figures

2.4-2.7 show mean reanalysis meridional wind fields and isentropes that were measured during

the Year of Tropical Convection (YOTC) mission. The resolution of the reanalysis wind fields is

0.5◦×0.5◦ and there are11 irregularly spaced vertical levels. The mission occurred from May,2008

through April,2010. For more information see Waliser et al. (2010). Plots from the summer season
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Figure 2.4: Mean warm season reanalysis meridional wind field at 21 S from the Year of Tropical
Convection. The magnitude of wind is given by colorbar, black contours are isentropes.

in each hemisphere were chosen. Wind fields around the Andes are shown at 21S and 30S. The

SALLJ often maximizes near the latitude of 20S, but as seen in Fig 2.5 the coastal LLJ is stronger

farther south. Cross sections of the wind fields around the Rocky Mountains are shown at 30N and

35N. As shown in Figure 1.2 the GPLLJ maximizes at about 25N, but as seenin Figures 2.6-2.7 it

is still quite strong at 30N and 35N.

The zonally symmetric cyclonic motion centered on the mountain ranges is the most obvious

feature of the wind fields in these four figures. The coastal LLJs tend to have a broader horizontal

scale and a wind maxima that is closer to the surface than the jets to the east of themountain ranges.

The isentropes are generally drawn down over the mountain ranges, andintersect the surface along
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Figure 2.5: Same as 2.4 but at 30 S

the sides and tops of the mountains. This agrees with the basic conceptual model of the potential

temperature field above a heated ridge that was proposed in chapter 1. Itis also worth noting that the

meridional wind is nearly zero directly over the mountain crests. For the solutions of the invertibility

principle derived in chapters 3 and 4 the wind will be assumed to be zero over the ridge crest. This

assumption is not necessary for the solution method of chapter 5.

2.3.1 The South American LLJs

The combination of very sparse data in the region of the SALLJ, and poor resolution in

the cases where data is regularly being taken has led to a poor representation of the SALLJ and

the precipitation cycle in reanalysis products. The region to the east of the Andes was so poorly
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observed in the last century that the SALLJ was not identified until the 1980s based on individual

case studies and a small number of rawinsonde observations. Based on Fig. 4 of Vera et al. (2006)

there are no operational radiosonde sites directly to the east of the Andesbetween 15 S and 30 S.

Because this is the critical region of the SALLJ the temporary observationalnetwork that was set up

for SALLJEX included six radiosonde sites and more than ten pilot balloon sites in this particular

region, with additional sites in the surrounding areas. SALLJEX providedan accessible source of

high quality data for the region east of the Andes during the observing period of 15 November 2002

through 15 February 2003. Radiosondes, pilot balloons, and a denserain gauge network were used

to gather data in parts of Argentina, Brazil, Paraguay, Bolivia, and Peru. The SALLJEX mission

did an excellent job of determining important spatial and short term temporal characteristics of the

SALLJ and supplied data that will continue to be used in future research.

Figure 2.1 shows a specific SALLJ event in February 2003 with a maximum wind around

25 m/s at a height of 800-700 hPa. This was considered a moderate eventand can be taken as

representative of the SALLJ. Throughout SALLJEX the height of the maximum wind fluctuated

between 500m-3km. Often the height of the maximum wind will rise during the day,reflecting the

deepening mixed layer with the jet ‘riding’ along the top. North of 20 S Saulo etal. (2000) suggest

that during the warm season the SALLJ maximizes between 0600 and 1200 UTC. When the core of

the jet is around 30 S the time of the jet maximum shifts to about six hours earlier.

During the observational period of SALLJEX there were 112 recordedMCS cases with an

average lifetime of 11 hours. There were two peak times at which the MCSs reached their mature

stage. This tended to occur either in the afternoon or in the night/early morning. It was shown

that the maximum extent of the MCSs was reached in phase with the time of the LLJ maximum

for around70% of the cases occurring over Argentina, southern Brazil, and Uruguay. SALLJEX

confirmed the diurnal variability of the LLJ wind field, but did not obtain the diurnal fluctuations

of the rainfall (Vera et al. (2006)). Several previous studies had suggested that the northwestern

Argentinian low (NAL) influences the southward intensification of the SALLJ, which was confirmed

with SALLJEX data.
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The Chilean low-level coastal jet was studied by Jiang et al. (2010). Their paper focuses

on understanding the characteristics and dynamics of the Chilean coastal LLJ. It is primarily a

modeling study that used output from twice-daily 48 hour forecasts for thesoutheast Pacific region

that were made in support of the Variability of the American Monsoon System (VAMOS) field

campaign (October and November 2008). They propose that synoptic scale forcing is the primary

forcing mechanism driving the Chilean coastal LLJ. The southeast Pacific high pressure system

(SEPH) is the dominant pattern of the synoptic environment and its location wasshown to be well

correlated with the strength of the CCLLJ. The SEPH tends to move east-to-west between two

preferred locations. These correspond to it being either close to or farfrom the coastline. When

the SEPH moves closer to shore, the LLJ intensifies and the location of the windmaximum moves

south.

There are striking similarities between the Chilean coastal LLJ and the California coastal

LLJ. They are both directed equatorward and have similar spatial scales.The wind speed maxima

for both are located between 100 and 200 km offshore and follow mountainous regions of coastline

while being strongly influenced by the high pressure systems of the Pacific totheir west. These

similarities suggest that the coastal jets could be forced by similar dynamical mechanisms. Several

studies (Jiang et al. 2010, Muñoz and Garreaud (2005), Chao (1985)) have hypothesized that there

are three important factors that play into the forming of these two subtropicalcoastal jets: subtropi-

cal high pressure systems, the topography along the coast, and the land-sea differential heating.

2.3.2 The North American LLJs

The Great Plains low-level jet has been extensively documented and a proper review of the

literature is outside the scope of this dissertation. The basic characteristics as discussed by Bonner

(1968) and Whiteman et al. (1997) are briefly summarized below. Bonner studied data from 47

rawinsonde stations in the United States for the years 1959 and 1960, Whiteman et al. (1997) used

data from a single station near the border of Oklahoma and Kansas during atwo year period (7 April

1994 through 30 March 1996). In general the Whiteman et al. (1997) study had much better vertical
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Figure 2.6: Same as 2.4 but for 30 N

and temporal resolution, but because it is from only a single site, the resultsfrom Bonner’s study is

also instructive.

Bonner found that GPLLJs occurred most frequently over Oklahoma and Kansas; this con-

firms the good choice of location chosen for the study by Whiteman et al. (1997). Bonner also

found that GPLLJs tend to have the maximum wind speed occur in the early morning and that they

occur most frequently in the months of August and September. In contrastto the theory of Black-

adar (1957) he determined that the heights and magnitudes of the LLJs havelarge variability and do

not correlate well with the height of the surface inversion.

The study of Whiteman et al. (1997) revealed several interesting features about the GPLLJ.

They did not find a large difference in frequency between the warm andcold seasons. The strongest
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Figure 2.7: Same as 2.4 but for 35 N

LLJs are much more common than previously thought and the mean height of thewind maximum

is significantly lower than other studies have reported. The mean height of the wind maximum was

given by Bonner (1968) as 785 m AGL, Mitchell et al. (1995) showed itto be 1000 m AGL, and

Whiteman et al. (1997) reported it to be 596 m AGL. This discrepancy is claimed to be entirely due

to the differences in vertical resolution of the observing tools used in the different studies. It seems

clear that there is a significant amount of variability in the height of the wind maxima for both the

GPLLJ and the SALLJ and that better vertical resolution is needed in the observations. Based on

Whiteman et al. (1997) the vertical structure of the GPLLJ has an averagewind speed maximum of

17. 1 m/s with this maximum usually occurring below 500 m AGL.
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2.3.3 Summary

The observations presented in this chapter highlight the dominant cyclonic wind field around

the Rocky Mountains and the Andes. It should also be noted that the coastal jets of the Americas

have common characteristics, as do the LLJs over the plains regions on these two continents. The

jets over the plains tend to maximize at night or early in the morning and are often more frequent

during the warm season. They have a wind speed maximum on the order of 20 m/s and generally

occur between 500 m and 2000 m AGL. Neither of the coastal jets are as close to the mountains as

the plains jets and are more directly tied to the high pressure systems of the Pacific. Likewise, there

are similarities between the mountain ranges of the Americas. Both the Rocky Mountains and the

Andes are generally oriented in the north-south direction. They both are bordered on the west by

the Pacific ocean and on the east by plains gently sloping to lower elevations.On the other hand

the Andes are higher, steeper, and narrower than the Rockies and the Andes are much closer to the

equator. In the following chapters we explore the hypothesis that these similarities of the LLJs are

in part due to the atmospheric response to the heating of these mountains.
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Chapter 3

DYNAMICAL THEORY OF TOPOGRAPHICALLY BOUND BALANCED

MOTIONS ON THE f -PLANE

3.1 Introduction

Eliassen (1980) considered the following geostrophic adjustment problem.Initially, a stably

stratified fluid is in a state of rest over a level bottom surface on anf -plane. Over some arbitrary

time interval, the bottom topography is raised to its final shape and any transient inertia-gravity

waves are allowed to disperse away. The final adjusted wind and mass fields are then determined

via the potential vorticity (PV) invertibility principle. He found that a solution with aconstant

density lower surface could only occur when the height of the orography was less than some critical

value, which is here called the critical crest height. For orography that exceeds the critical crest

height, the summit will penetrate into the less dense layers above.

Eliassen derived analytic solutions for the case of an isentropic object witha height less than

the critical crest height. He did not plot these solutions or derive solutionsfor any obstacles that

penetrated through the surface density layer (his ‘warm’ obstacle). His paper clearly demonstrated

the usefulness of isopycnic or isentropic coordinates for geostrophic adjustment problems when

used in combination with the conservation of potential vorticity.

This research examines a similar problem of the balanced wind and mass fieldsnear topog-

raphy that has been heated by radiative processes, resulting in a cyclonic flow around the obstacle.

This allows for an interpretation of the prominent low-level jet circulations observed over the Amer-

icas as part of the topographically bound motion associated with the PV anomalyproduced by solar



heating. Specifically, the Great Plains low-level jet and the California coastal low-level jet are part

of the same dynamical response to heating of the Rocky Mountains and both the South American

low-level jet and the Chilean coastal low-level jet are part of the same dynamical response to heating

of the Andes.

The vertical coordinate of the mathematical model was chosen to be potential temperature

because of the simple mathematical form the expression for PV takes, its closeanalog to Eliassen’s

model, and the fact that potential temperature generally increases monotonically with height in the

atmosphere. This quickly raises the question of how to handle a lower boundary that is not an

isentropic surface whenever the domain of interest includes the lower troposphere. An excellent

discussion on the implementation of isentropic coordinates is given by Hsu andArakawa (1990).

They list several advantages of using this coordinate system, a few of which are summarized here.

(1) Potential temperature (entropy) is conserved for a material element for adiabatic processes.

This implies that isentropic surfaces are also material surfaces.

(2) The expression for Ertel’s potential vorticity in isentropic coordinatesdoes not include the

vertical derivative of the horizontal velocity. This is one of the reasonsisentropic coordi-

nates are especially convenient when analyzing PV dynamics.

(3) This choice of coordinates provides a quasi-Lagrangian view of thegeneral circulation of

the atmosphere. When diabatic heating is zero, the pressure torque acting on the coordinate

surfaces is the only mechanism for angular momentum to be vertically transferred.

Of course there are disadvantages to using this coordinate system as well.The two primary

ones being the already mentioned intersection of isentropes with the lower boundary and the fact

that the mass between two surfaces can become infinitesimally small, leading to computational

difficulties. As discussed by Hsu and Arakawa (1990) these are technical difficulties rather than

intrinsic and can be dealt with in a straightforward way.

To the best of the author’s knowledge the idea of using material surfacesfor the vertical

coordinate was first proposed by Starr (1945). Shortly after this, Lorenz (1955) used isentropic
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surfaces in his definition of available potential energy. He developed the idea of ‘massless’ layers

to cope with the problem of isentropes that intersect the surface. When anisentrope intersects the

surface, imagine that it continues just under the surface. The pressure along this subsurface isentrope

is defined to be the surface pressure at that location, thus there can be no mass between the isentrope

at the surface and the one ‘below’ it. This implies the pseudodensity(−1
g∂p/∂θ) is equal to zero and

the PV is infinite in the massless layer. Fulton and Schubert (1991) demonstrated the practicality

of using a massless layer with the semigeostrophic equations. They applied thisapproach to the

problem of surface frontogenesis. The basic idea is to formulate the predictive equation in terms of

the inverse of the PV. The governing equations are still valid in the massless layer and numerical

schemes for solving the system of equations have been presented in the literature (see Fulton and

Schubert, 1991; Arakawa and Hsu, 1990).

In the next section the basic elliptic system is set up with appropriate boundary conditions

and the invertibility principle is derived. All of the interesting physics of the problem comes directly

from the lower boundary condition and the intersection of isentropic surfaces with this boundary.

For the particular system studied here, finding an analytic solution is much simpler in spectral space

than it is in physical space. With this in mind a horizontal Fourier transform is applied to the system

and results in a vertical structure equation. This vertical structure equation can be solved in at least

two ways. The method using a Green’s function is presented because of itscompactness and insight.

3.2 Basic governing equations

The following sections present equations describing the simplest possible physical system

that still retains the ability to describe the balanced response of a fluid to underlying heated orogra-

phy. Consider the inviscid, adiabatic, quasi-geostrophic, quasi-hydrostatic, motions of a compress-

ible stratified fluid on anf -plane. The basic equations for this system can be written as

Dug

Dt
− fv +

∂M

∂x
= 0, (3.1)

Dvg

Dt
+ fu+

∂M

∂y
= 0, (3.2)
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∂M

∂θ
= Π, (3.3)

Dσ

Dt
+ σ

(

∂u

∂x
+
∂v

∂y

)

= 0, (3.4)

where

(fvg,−fug) =

(

∂M

∂x
,
∂M

∂y

)

(3.5)

are the geostrophic velocity components. The Exner function is defined byΠ = cp(p/p0)
R/cp ,

M = θΠ + φ is the Montgomery potential,φ is the geopotential,σ = −(1/g)(∂p/∂θ) is the

pseudo-density, and

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
(3.6)

is the material derivative. The constant reference pressure is assumed to bep0 = 1000 hPa,R =

287.0 J kg−1 K−1 is the gas constant of dry air, andcp = 1004 J kg−1 K−1 is the specific heat of

dry air at constant pressure. The buoyancy frequencyN(θ) is an important parameter that gives a

measure for the degree of stability of the fluid under consideration. It is here defined by

N2(θ) =
g2

θ2

(

−dΠ̃
dθ

)−1

. (3.7)

WhenN2 > 0 the fluid is stable, whenN2 < 0 the fluid is unstable. Following Eliassen (1980) two

special cases of the buoyancy frequency are considered which will be referred to as reference state

1 and reference state 2. For Reference state 1 we assume that the buoyancy frequency is inversely

proportional toθ, i.e.,N(θ) = N1θB/θ, whereN1 andθB are constants. A second reference state

could also be defined by assuming the buoyancy frequency is a constant,i.e.,N(θ) = N2.

3.3 Invertibility principle

The material conservation law for potential vorticity takes the formDP/Dt = 0. For y-

independent motions the potential vorticity is defined by

P =

(

f +
∂v

∂x

)(

−1

g

∂p

∂θ

)−1

, (3.8)

with f denoting the constant Coriolis parameter,g the acceleration of gravity,v(x, θ) the merid-

ional component of the flow, andp(x, θ) the pressure. In the far-field the flow vanishes, and the
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pressure and potential vorticity take on the horizontally homogeneous values p̃(θ) andP̃ (θ), which

are related by

P̃ = f

(

−1

g

∂p̃

∂θ

)−1

. (3.9)

Denoting the density byρ(x, θ) and the far-field density bỹρ(θ), it is easily shown that

θρ(dΠ/dp) = 1 andθρ̃(dΠ̃/dp̃) = 1, whereΠ̃ = cp(p̃/p0)
R/cp . This allows the ratio of (3.8) to

(3.9) to be written in the form

f
P

P̃
=

(

f +
∂v

∂x

)(

∂p̃/∂θ

∂p/∂θ

)

=

(

f +
∂v

∂x

)

(

ρ̃(dΠ̃/dp̃)(∂p̃/∂θ)

ρ(dΠ/dp)(∂p/∂θ)

)

=

(

f +
∂v

∂x

)

(

∂Π̃/∂θ

∂Π/∂θ

)

,

(3.10)

where the last equality follows from approximating the(ρ̃/ρ) factor by unity. Using the definition

for buoyancy frequency, (3.10) can also be written in the form

∂v

∂x
+

(

fθ2N2P

g2P̃

)

∂Π′

∂θ
= f

(

P

P̃
− 1

)

, (3.11)

whereΠ′(x, θ) = Π(x, θ)− Π̃(θ) is the Exner function anomaly.

We shall require that (3.11) holds in a region that includes an underlying topographic feature

whose geopotential surface is specified byφS(x). We assume that, due to radiative processes, the

potential temperature varies along the topography according to the specified functionθS(x). For

simplicity, we assume that bothφS(x) andθS(x) are symmetric aboutx = 0. The inverse ofθS(x)

is xS(θ). When aθ surface intersects the topographic surface, it is considered to run justunder the

topographic surface with a pressure equal to the surface pressure and thus form a layer that contains

no mass. The point at which a particularθ surface intersects the topographic surface is defined to

bexS(θ). The isentropic surface that is below the earth’s surface over the topographic feature and

is at the earth’s surface in the far-field is labeledθB. TheθB surface is the lowest isentrope that is

in the massless layer for all values ofx and defines the lower boundary of the domain. Thus, inθ

space, the massless layer is defined to be the regionθB ≤ θ < θS(x). The crest isentrope (θC) is

defined to be the isentrope that just touches the crest of the ridge. Assuming both geostrophic and
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hydrostatic balance leads to the thermal wind relation given below in (3.13). Equations (3.12) and

(3.13) are Cauchy-Riemann conditions on the unknown functionsv(x, θ) andΠ′(x, θ).

We now assume that, except in the massless layer, the potential vorticity is uniform on each

isentropic surface, i.e.,P (x, θ) = P̃ (θ) for xS(θ) < x <∞, so that the right hand side of (3.11) is

zero and (3.11) simplifies to the top entry in (3.12) below. In the massless layer, the pseudodensity

vanishes, i.e.,∂p/∂θ = 0, or equivalently∂Π/∂θ = 0, which can be written as the second line

in (3.12). An alternative derivation consists of multiplying (3.11) byP̃ /P and then taking the

limit as P → ∞. As for boundary conditions, we require thatv andΠ′ approach zero in the far-

field. We also require that the upper boundary is both an isentropic (θ = θT ) and isobaric surface,

which is expressed in the second line of (3.14). To formulate the lower boundary condition we

combine thex-derivative ofM − θΠ = φ with the geostrophic and hydrostatic relations to obtain

f [v − θ(∂v/∂θ)] = (∂φ/∂x), which, when applied atθ = θB yields the bottom entry in (3.14). In

summary, the elliptic problem is

∂v

∂x
+

(

fθ2N2

g2

)

∂Π′

∂θ
= 0 for xS(θ) < x <∞,

(

fθ2N2

g2

)

∂Π′

∂θ
= f for 0 ≤ x < xS(θ),

(3.12)

f
∂v

∂θ
− ∂Π′

∂x
= 0 for 0 ≤ x <∞, θB ≤ θ ≤ θT , (3.13)

with boundary conditions

v → 0 and Π′ → 0 as x→∞,

Π′ = 0 at θ = θT ,

f

(

v − θ∂v
∂θ

)

=
dφS(x)

dx
at θ = θB.

(3.14)

3.4 Fourier transform of the invertibility principle

To solve the invertibility problem (3.12)–(3.14) Fourier integral transformsare used. For

simplicity it is assumed that the specified functionsφS(x) andθS(x) are symmetric inx, so that

Π′(x, θ) is symmetric inx andv(x, θ) is antisymmetric inx. The Fourier sine transform pair for
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v(x, θ) is

v̂(k, θ) =
2

π

∫ ∞

0
v(x, θ) sin(kx) dx, (3.15)

v(x, θ) =

∫ ∞

0
v̂(k, θ) sin(kx) dk, (3.16)

while the Fourier cosine transform pair forΠ′(x, θ) is

Π̂′(k, θ) =
2

π

∫ ∞

0
Π′(x, θ) cos(kx) dx, (3.17)

Π′(x, θ) =

∫ ∞

0
Π̂′(k, θ) cos(kx) dk. (3.18)

A similar cosine transform pair exists for the surface geopotentialφS(x) and its transform̂φS(k).

We now wish to Fourier transform (3.12), (3.13), and the last two lines of (3.14). To Fourier

transform (3.13) we multiply it bysin(kx) and integrate overx from 0 to∞, thereby obtaining

(3.23) below. To Fourier transform (3.12) we first multiply the top line in (3.12) by cos(kx) and

integrate overx from xS(θ) to∞, thereby obtaining

∫ ∞

0

∂v(x, θ)

∂x
cos(kx) dx−

∫ xS(θ)

0

∂v(x, θ)

∂x
cos(kx) dx+

fθ2N2

g2

d

dθ

∫ ∞

xS(θ)
Π′(x, θ) cos(kx) dx

= −fθ
2N2

g2
Π′(xS(θ), θ)

dxS(θ)

dθ
cos(kxS(θ)).

(3.19)

Similarly, multiplying the bottom line in (3.12) bycos(kx) and integrating overx from 0 to xS(θ),

we obtain

fθ2N2

g2

d

dθ

∫ xS(θ)

0
Π′(x, θ) cos(kx) dx =

∫ xS(θ)

0
f cos(kx) dx+

fθ2N2

g2
Π′(xS(θ), θ)

dxS(θ)

dθ
cos(kxS(θ)).

(3.20)

Taking the sum of (3.19) and (3.20), noting the cancellation of the twoΠ′(xS(θ), θ) terms, we

obtain
∫ ∞

0

∂v(x, θ)

∂x
cos(kx) dx+

fθ2N2

g2

d

dθ

∫ ∞

0
Π′(x, θ) cos(kx) dx =

∫ xS(θ)

0

(

f +
∂v(x, θ)

∂x

)

cos(kx) dx.

(3.21)

Integrating the first term by parts, using the symmetry conditionv(0, θ) = 0 and the lateral boundary

conditionv → 0 asx → ∞, and then noting the transform relations (3.15) and (3.17), we obtain
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(3.22), whereF (k, θ) is defined in (3.25). In summary, the Fourier transform of the elliptic problem

(3.12)–(3.13) is

kv̂ +

(

fθ2N2

g2

)

dΠ̂′

dθ
= F (k, θ), (3.22)

f
dv̂

dθ
+ kΠ̂′ = 0, (3.23)

with boundary conditions

Π̂′ = 0 at θ = θT ,

θ
dv̂

dθ
− v̂ =

k

f
φ̂S(k) at θ = θB,

(3.24)

whereF (k, θ) is defined by

F (k, θ) =
2

π

∫ xS(θ)

0

(

f +
∂v

∂x

)

cos(kx) dx

=
2

π

∫ xS(θ)

0

[

f +
1

f

(

θ
d2ΠS(x)

dx2
+
d2φS(x)

dx2

)]

cos(kx) dx.

(3.25)

The first line of (3.25) can be interpreted as a measure of the “absolute isentropic vorticity in the

massless layer." In the second lineF (k, θ) is composed of three separate pieces, the first is due to

the Coriolis force, the second depends on the radiative heating along the surface, and the third piece

depends on the particular shape of the ridge being studied. Note that, forθ > θC , (3.25) yields

F (k, θ) = 0 sincexS(θ) = 0. In other words, (3.22) is a homogeneous equation above the crest

isentrope. The second line in (3.25) is derived as follows. In the masslesslayerφ(x, θ) = φS(x)

andΠ(x, θ) = Π(x, θS(x)), so that the Montgomery potential in the massless layer is given by

M(x, θ) = θΠ(θS(x)) + φS(x). Using this formula forM(x, θ) in (∂v/∂x) = (1/f)(∂2M/∂x2),

we obtain the second line in (3.25), which allows us to computeF (k, θ) in terms of the specified

functionsΠS(x), θS(x), andφS(x). Rather than having to specify bothΠS(x) andθS(x) it would

be nice ifθS(x) was the only function (except the lower geopotential surface) that needed to be

specified. The Exner function at the geopotential surface can be writtenas

ΠS(pS(x)) = cp

(

ps(x)

p0

)γ

= cp

(

ρ̃θSR

p0

)

γ
1−γ

. (3.26)

Whereγ = R/cp and the assumptioñρ/ρ = 1 has been used, as it was in the derivation of (3.11).

Now, rather than having to specify bothθS(x) andps(x) we only needθS(x). For a given topo-
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graphic scenario, onceθS(x) is given, the wind and mass fields that result from the adjustment to

the topography and temperature along the lower boundary should be computable.

As can be seen from the vertical structure equations (3.22)–(3.24), balanced wind and mass

fields are forced in two ways: byF (k, θ) and byφ̂S(k). When bothF (k, θ) and φ̂S(k) vanish,

the solutions of (3.22)–(3.24) arêv(k, θ) = 0 and Π̂′(k, θ) = 0. Thus, for nontrivial solutions

we can consider three special cases: (i) nonzero topography (φ̂S(k) 6= 0) with no variation of

potential temperature along the bottom boundary (F (k, θ) = 0); (ii) flat topography (̂φS(k) = 0)

but with variation of potential temperature along the bottom boundary (F (k, θ) 6= 0); and (iii)

nonzero topography with a variation of potential temperature along the surface. Eliassen (1980)

studied case (i) and showed that physically reasonable solutions are possible only if the crest height

of the mountain is less than a critical value. In case (i) the topographically bound balanced flow is

anticyclonic, so this special case is not useful for describing cyclonic flows such as those shown in

Figs. 1.2 and 1.3.

Our analysis shows that, for a given reference state buoyancy frequency profileN(θ) and

topographyφS(x), the only remaining field that needs to be specified is the potential temperature

distribution along the lower boundary, i.e.,θS(x) or its inversexS(θ). The entire distributions of

the balanced wind and mass fields are then given by the solutionsv(x, θ) andΠ′(x, θ) of the elliptic

problem (3.12)–(3.14).

In the next section we consider theN(θ) profile for reference state 1 which allows for a

simple analytical solution of (3.22)–(3.24).

3.5 Solution of the vertical structure equation

The Exner function for reference state 1 can be found by integrating (3.7) to obtain

Π̃1(θ) = cp −
g2

θ2
BN

2
1

(θ − θB) , (3.27)

after which the reference state hydrostatic equation can be integrated to obtain

M̃1(θ) = cpθ −
g2

2θ2
BN

2
1

(θ − θB)2 . (3.28)
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Figure 3.1: Pressure as a function ofθ as computed from (3.27) for reference state 1 (solid curve)
and for reference state 2 (dashed curve).

Sinceφ̃1(θ) = M̃1(θ)− θΠ̃1(θ), we can use (3.27) and (3.28) to obtain

φ̃1(θ) =
g2

2θ2
BN

2
1

(

θ2 − θ2
B

)

. (3.29)

The relationship of pressure and potential temperature for reference state 1, as determined from

(3.27), is plotted as the solid curve in Fig. 3.1 and for reference state 2 as the dashed curve, where

we have chosencp = 1004.5 J kg−1 K−1, g = 9.8 m s−2, θB = 295K, and(θB/g)N
2
1 = 5.1373 K

km−1.

Equations (3.22)–(3.23) represent a system of two equations and two unknowns. When one

of the unknowns is eliminated a second order ordinary differential equation with variable coeffi-

cients is obtained. If̂Π′(k, θ) is eliminated and reference state 1 is assumed, the second order

ordinary differential equation with constant coefficients forv̂(k, θ) is found to be

d2v̂

dθ2
− κ2v̂ = − gκ

fθBN1
F, (3.30)

and the boundary conditions are

dv̂

dθ
= 0 at θ = θT , (3.31)
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θ
dv̂

dθ
− v̂ =

k

f
φ̂S(k) at θ = θB, (3.32)

whereκ(k) = gk/(fθBN1). We now solve (3.30)–(3.32) via the Green’s functionG(k, θ, θ′).

Green’s functions are quite useful when solving nonhomogeneous differential equations. The

basic approach is to replace the forcing function with a delta function and solve the resulting equa-

tion. Thus from (3.30) the Green’s function is the solution of the differential equation

d2G
dθ2
− κ2G = −κδ(θ − θ′), (3.33)

with the homogeneous boundary conditions

dG
dθ

= 0 at θ = θT , (3.34)

θ
dG
dθ
− G = 0 at θ = θB, (3.35)

where the Dirac delta functionδ(θ − θ′) vanishes forθ 6= θ′ and satisfies

∫ θ′+

θ′−
δ(θ − θ′) dθ = 1. (3.36)

The variableθ′ represents a single point of excitation; or an impulse at the point in the domain where

θ = θ′. ThusG is the solution of (3.30) when the forcing is concentrated at the pointθ = θ′. The

solution of (3.30) for general forcing is then given by an integral overmultiple Green’s functions at

each point of excitation.

For θ′ ≤ θ ≤ θT , the Green’s function is a constant times the solution of the homogeneous

version of (3.30) satisfying the upper boundary condition (3.31), while for θB ≤ θ ≤ θ′ the Green’s

function is a constant times the solution of the homogeneous version of (3.30)satisfying the lower

boundary condition (3.32). The two constants are determined by requiringthatG(k, θ, θ′) is contin-

uous atθ = θ′ and that the jump in the first derivative satisfies

[

dG
dθ

]θ′+

θ′−

= −κ, (3.37)

which is obtained by integrating (3.33) across a narrow region surrounding θ = θ′, making use of
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Green’s Function
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Figure 3.2: The Green’s function for select values ofκθB. For this figureθ′ = 305K.

(3.36). This procedure results in

G(k, θ, θ′) =
1

D



















cosh[κ(θT − θ)] {κθB cosh[κ(θ′ − θB)] + sinh[κ(θ′ − θB)]} for θ′ ≤ θ ≤ θT ,

cosh[κ(θT − θ′)] {κθB cosh[κ(θ − θB)] + sinh[κ(θ − θB)]} for θB ≤ θ ≤ θ′,
(3.38)

where

D = cosh[κ(θT − θB)] + κθB sinh[κ(θT − θB)]. (3.39)

To express the solution̂v(k, θ) in terms of the Green’s function, we multiply (3.30) byG(k, θ, θ′),

multiply (3.33) byv̂(k, θ), and then take the difference of the resulting equations to obtain

d

dθ

(

G dv̂
dθ
− v̂ dG

dθ

)

= − gκ

fθBN1
FG + κv̂ δ(θ − θ′). (3.40)

Integrating (3.40) overθ, using the top boundary conditions (3.31) and (3.35) and the bottom bound-

ary conditions (3.32) and (3.35), using the delta function property (3.36), and finally using the
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Green’s function symmetry propertyG(k, θ′, θ) = G(k, θ, θ′), we obtain

v̂(k, θ) =
g

fθBN1

∫ θT

θB

F (k, θ′)G(k, θ, θ′) dθ′

− N1

g
φ̂S(k)

(

cosh[κ(θT − θ)]
cosh[κ(θT − θB)] + κθB sinh[κ(θT − θB)]

)

.

(3.41)

Using v̂ in combination with (3.23) gives

Π̂′(k, θ) = − g2

fθ2
BN

2
1

∫ θT

θB

F (k, θ′)
∂G(k, θ, θ′)

∂θ
dθ′

− φ̂S(k)

(

κ sinh[κ(θT − θ)]
cosh[κ(θT − θB)] + κθB sinh[κ(θT − θB)]

)

.

(3.42)

The first term on the right hand side of the these solutions describes the response of the fluid due to

the isentropic vorticity forcing in the massless layer, the second term describes the response due to

the orography.
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Figure 3.3: Wind field for an isentropic lower boundary. The Gaussian halfwidth of the mountain
is 500 km, the maximum height is H=1700m, and the latitude is 30N. Solid black contours are the
isentropes.

Figure 3.3 shows the solution for an isentropic mountain. There is no masslesslayer in this

case so the entire solution is forced from the term in equation (3.41) that involves the geopotential.
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Note that although this chapter has been developed usingθ as the vertical coordinate, and bothv̂ and

Π̂ were computed in (x,θ)-space this figure is shown in (x,p)-space. This makes it easier to view

the isentropic mountain that is forcing the atmospheric response. Figures willbe shown in Chapter

5 using both (x,θ)-space and (x,θ)-space and the relative advantages will be discussed.

3.6 Critical crest height

An important parameter of the preceding theory is the maximum height an obstacle can have

while remaining an isentropic object with no isentropes intersecting its surface. In the following

an analytical expression is derived which predicts this height. Although thedetails are different,

the logic of this section closely follows that of Eliassen (1980) in his derivation of the critical crest

height (Hc).

For our balanced physical system we have assumed that hydrostatic balance (∂M/∂θ = Π)

holds. Because pressure decreases with height, it follows thatΠ will also decrease with height and

θ must increase monotonically with height for it to qualify as a vertical coordinate. This implies

∂2M

∂θ2
=
∂Π

∂θ
< 0. (3.43)

Assuming the Exner function can be written as a sum of a mean part and a perturbation part and

using the buoyancy frequency from reference state 1, the above inequality can be written as

(

g

N1θB

)2

>
∂Π′

∂θ
=

∫ ∞

0

∂Π̂′

∂θ
cos(kx)dk. (3.44)

The solution for an isentropic mountain was found to be

θBN1

g
Π̂′(k, θ) = −k

f
φ̂S(k)

(

e−κ(θ−θB) − e−κ(2θT−θB−θ)

1 + κθB + (1− κθB)e−2κ(θT−θB)

)

. (3.45)

We now can write a general inequality that depends on the function specifying topography which

must hold for a hydrostatic atmosphere:

(

g

N1θB

)2

>

∫ ∞

0
κ2φ̂S(k)

(

e−κ(θ−θB) + e−κ(2θT−θB−θ)

1 + κθB + (1− κθB)e−2κ(θT−θB)

)

cos(kx)dk. (3.46)

For an isentropic surface, there is no massless layer and the potential temperature along the orogra-

phy will be constant (θS = θB = constant). The maximum height of the obstacle will be atx = 0
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Figure 3.4: Critical crest height as a function of latitude for reference state 1.

andθ = θB. Using a Gaussian shaped obstacle we can write

(

g

N1θB

)2

=
gHca√

2

∫ ∞

0
κ2e−(ak/2)2

(

1 + e−2κ(θT−θB)

1 + κθB + (1− κθB)e−2κ(θT−θB)

)

dk, (3.47)

or, changing the integration variable

1

Hc
=
afθBN1√

2

(

θBN1

g

)2 ∫ ∞

0
κ2 e

−(afθBN1κ/2g)2
(

1 + e−2κ(θT−θB)
)

1 + κθB + (1− κθB)e−2κ(θT−θB)
dκ. (3.48)

Theoretically this predicts the maximum height an obstacle in the atmosphere can have before it

is required to puncture one or more isentropic surfaces. The significantdependence on latitude

apparent in Fig. 3.4 becomes important for mountain ranges that have a large north-south extent

such as the Rocky Mountains and the Andes. Mountains at low latitudes havea much smaller

critical crest height and therefore can be expected to penetrate through the lower isentropes even for

relatively weak heating cases. The main concentration of the highest peaks in the Rocky Mountains

occurs in the mid-latitudes while much of the Andes are closer to the equator. The critical crest

height also depends on the width of the mountain, as shown in Fig. 3.5. The Gaussian half-width of

the idealized mountain is plotted on the horizontal axis for five different latitudes. Wide ridges or

mountains have a higher critical crest height than do narrow mountains at agiven latitude. Both of
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Figure 3.5: Critical crest height as a function of Gaussian halfwidth for reference state 1 at five
different latitudes.

these figures indicate that the Andes will tend to have a significantly lower critical crest height than

the Rocky Mountains.

Note that this has been computed for an atmosphere at rest with no heating. This parameter

Hc then cannot be directly compared with the environment we observe, but it should give us a

reasonable feel for which topographic regions the lower bound must break through isentropes.
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Chapter 4

TOPOGRAPHICALLY BOUND BALANCED MOTIONS ON THE SPHERE

4.1 Introduction

In general there are several methods of solution for the elliptic system thatwas derived in the

previous chapter. As shown there, one approach is to use Fourier transforms in the horizontal di-

rection and then use Green’s functions to solve the vertical structure equation. This method worked

well and the solutions (3.41-3.42) were used to generate the Fig. 3.3. However, it was unclear how

to generalize this method to a spherical domain. Here we present a different derivation that allows

for solutions to be found on the sphere. This method starts with a transform inthe vertical dimen-

sion. This leads to a horizontal structure equation that can be solved usingspheroidal harmonics.

Instead of the solution being composed of Green’s functions as in the last chapter, the solution here

is composed of vertical structure functions that satisfy a Sturm-Liouville problem. For clarity and

comparison with the previous chapter, the derivation will be done first on an f -plane, after which

the generalization to the sphere will be straightforward.

4.2 Invertibility principle

To begin, the governing equation of the flow (3.11) is rewritten in terms of the Montgomery

potential anomalyM ′(x, θ). Equation (3.11) then takes the form

∂2M ′

∂x2
+

(

f2θ2
BN

2
BP

g2P̃

)

∂2M ′

∂θ2
= f2

(

P

P̃
− 1

)

. (4.1)



As we did for equation (3.11) we assume that, except in the massless layer, the potential vorticity

is uniform on each isentropic surface, i.e.,P (x, θ) = P̃ (θ) for θS(x) < θ ≤ θT , so that (4.1)

simplifies to the top entry in (4.2) below. In the massless layer, the pseudodensity vanishes, i.e.,

∂p/∂θ = 0, or equivalently∂Π/∂θ = 0, which can be written as the second line in (4.2). Alter-

natively (4.1) could be multiplied bỹP/P and then the limit taken asP → ∞. As for boundary

conditions, we require thatM ′ approaches zero in the far-field, which is expressed in (4.3). We

also require that the upper boundary is both an isentropic (θ = θT ) and isobaric surface, which is

expressed in (4.4). To formulate the lower boundary condition we subtract M̃ − θ(∂M̃/∂θ) = φ̃

fromM − θ(∂M/∂θ) = φ to obtainM ′ − θ(∂M ′/∂θ) = φ − φ̃, which, when applied atθ = θB

yields (4.5). In summary, the elliptic problem is

∂2M ′

∂x2
+

(

fθBNB

g

)2 ∂2M ′

∂θ2
= 0 for θS(x) < θ ≤ θT ,

(

fθBNB

g

)2 ∂2M ′

∂θ2
= f2 for θB ≤ θ < θS(x),

(4.2)

with boundary conditions

M ′ → 0 as x→∞, (4.3)

∂M ′

∂θ
= 0 at θ = θT , (4.4)

M ′ − θ∂M
′

∂θ
= Φ(x) at θ = θB. (4.5)

Two interesting special cases occur: (i)θS(x) = θB andΦ(x) 6= 0; (ii) θS(x) 6= θB andΦ(x) =

0. In special case (i), all the orographic features are isentropic, so only the top line in (4.2) is

relevant and the entire forcing comes from the specifiedΦ(x) field. In special case (ii), there are no

orographic features but potential temperature varies along the flat lowerboundary, so that the entire

forcing comes from the massless layers associated with the specifiedθS(x) field. Special case (ii)

is useful in understanding the flow patterns forced by land-sea contrast on an Earth-like planet with

no mountains.
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4.3 Solution of the invertibility principle on the f -plane via transform methods

To solve the invertibility problem (4.2)–(4.5) we first introduce the vertical transform pair

M ′
ℓ(x) =

1

θT − θB

∫ θT

θB

M ′(x, θ)Vℓ(θ) dθ, (4.6)

M ′(x, θ) =
∞
∑

ℓ=0

M ′
ℓ(x)Vℓ(θ), (4.7)

whereVℓ(θ) are the vertical structure functions, which satisfy the Sturm-Liouville problem

d2Vℓ

dθ2
+

(

g

θBNBcℓ

)2

Vℓ = 0, (4.8)

dVℓ

dθ
= 0 at θ = θT , (4.9)

Vℓ − θ
dVℓ

dθ
= 0 at θ = θB, (4.10)

with the integerℓ denoting the index of the vertical mode. Only solutions withc2ℓ > 0 are possible.

For c2ℓ > 0 the solution of (4.8) satisfying the upper boundary condition (4.9) is

Vℓ(θ) = Aℓ cos

(

g(θT − θ)
θBNBcℓ

)

, (4.11)

where

Aℓ =
√

2

{

1 +
sin [2g(θT − θB)/(θBNBcℓ)]

2g(θT − θB)/(θBNBcℓ)

}−1/2

(4.12)

is the normalization factor. The lower boundary condition (4.10) is satisfied ifcℓ satisfies the tran-

scendental equation

tan

(

g(θT − θB)

θBNBcℓ

)

− NBcℓ
g

= 0. (4.13)

Approximate solutions of (4.13) are given by

cℓ ≈
g(θT − θB)

ℓπθBNB
. (4.14)

The first eleven solutions of (4.13), indexedℓ = 0, 1, 2, · · · , 10, are given in the second column

of Table 4.1, while the approximate solutions are given in the third column. The vertical structure

functionsVℓ(θ) satisfy the orthonormality relation

1

θT − θB

∫ θT

θB

Vℓ(θ)Vℓ′(θ) dθ =



















1 ℓ′ = ℓ

0 ℓ′ 6= ℓ.

(4.15)
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Note that (4.6) can be obtained by multiplying (4.7) byVℓ′(θ), integrating overθ, and then using

the orthonormality relation (4.15).

-2 -1 0 1 2
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300
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320

330

340

350

360
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Figure 4.1: Vertical structure functionsVℓ(θ) for ℓ = 0, 1, 2, 3.

To take the vertical transform of (4.2) we first multiply the bottom line in (4.2) byVℓ(θ) and

integrate fromθB to θS(x), thereby obtaining

∫ θS(x)

θB

(

fθBNB

g

)2 ∂2M ′

∂θ2
Vℓ dθ =

∫ θS(x)

θB

f2 Vℓ dθ. (4.16)

Similarly, multiplying the top line in (4.2) byVℓ(θ) and integrating fromθS(x) to θT , we obtain

∫ θT

θB

∂2M ′

∂x2
Vℓ dθ +

∫ θT

θS(x)

(

fθBNB

g

)2 ∂2M ′

∂θ2
Vℓ dθ =

∫ θS(x)

θB

∂2M ′

∂x2
Vℓ dθ. (4.17)

Taking the sum of (4.16) and (4.17), we obtain

∫ θT

θB

{

∂2M ′

∂x2
+

(

fθBNB

g

)2 ∂2M ′

∂θ2

}

Vℓ dθ =

∫ θS(x)

θB

(

f2 +
∂2M ′

∂x2

)

Vℓ dθ. (4.18)

Integrating the(∂2M ′/∂θ2)Vℓ term by parts twice, using the boundary conditions (4.4), (4.5), (4.9),

and (4.10), and finally recalling the transform relation (4.6), we obtain

d2M ′
ℓ

dx2
− f2

c2ℓ
M ′

ℓ = Fℓ. (4.19)
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where

Fℓ(x) =
1

θT − θB

∫ θS(x)

θB

(

f2 +
∂2M ′

∂x2

)

Vℓ dθ −
(

fNB

g

)2 θBVℓ(θB)

θT − θB
Φ(x). (4.20)

To solve the horizontal structure problem (4.19) we now introduce the Fourier transform pair

M̂ ′
ℓ(k) =

2

π

∫ ∞

0
M ′

ℓ(x) cos(kx) dx, (4.21)

M ′
ℓ(x) =

∫ ∞

0
M̂ ′

ℓ(k) cos(kx) dk, (4.22)

wherek is the horizontal wavenumber. A similar cosine transform pair exists for the surface geopo-

tentialΦ(x) and its transform̂Φ(k). Taking the Fourier cosine transform of (4.19) we obtain

M̂ ′
ℓ(k) = − c2ℓ F̂ℓ(k)

f2 + c2ℓk
2
, (4.23)

which is the spectral space solution of the original invertibility problem (4.2)–(4.5). This solution

can be transformed back to physical space through the use of (4.7) and(4.22), which results in

M ′(x, θ) = −
∞
∑

ℓ=0

{

∫ ∞

0

c2ℓ F̂ℓ(k)

f2 + c2ℓk
2

cos(kx) dk

}

Vℓ(θ). (4.24)

In the next section we examine this solution for the special case of an isentropic mountain.

4.4 The case of an isentropic mountain

Now consider the special case in which the mountain is an isentrope, i.e.,θS(x) = θB so that

(4.20) reduces to

Fℓ(x) = −
(

fNB

g

)2 θBVℓ(θB)

θT − θB
Φ(x). (4.25)

For all the calculations presented in this section we have chosen the geopotential on the lower

boundary as

Φ(x) = gHe−x2/a2

, (4.26)

where the constantsH anda respectively specify the mountain height and width. The Fourier cosine

transform of (4.26) yields

Φ̂(k) =
gHa√

2
e−a2k2/4, (4.27)
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so that

F̂ℓ(k) = −
(

fNB

g

)2 θBVℓ(θB)

θT − θB

gHa√
2
e−a2k2/4. (4.28)

Plugging this into (4.23) gives

M̂ ′
ℓ(k) =

(

c2ℓ
f2 + c2ℓk

2

)(

fNB

g

)2 θBVℓ(θB)

θT − θB
Φ̂(k). (4.29)

The Montgomery potential in(x, θ) space is then obtained using (4.7)

4.5 Invertibility principle on the sphere

In this section the previous argument is generalized to a spherical domain. Using the longi-

tudeλ and the latitudeϕ as horizontal coordinates and the potential temperatureθ as the vertical

coordinate, and denoting the zonal component of the flow byu and the meridional component byv,

the governing equations for inviscid flow on the sphere take the form

Du

Dt
−
(

2Ω sinϕ+
u tanϕ

a

)

v +
∂M

a cosϕ∂λ
= 0, (4.30)

Dv

Dt
+

(

2Ω sinϕ+
u tanϕ

a

)

u+
∂M

a∂ϕ
= 0, (4.31)

Π =
∂M

∂θ
, (4.32)

Dσ

Dt
+ σ

(

∂u

a cosϕ∂λ
+
∂(v cosϕ)

a cosϕ∂ϕ
+
∂θ̇

∂θ

)

= 0, (4.33)

whereΩ anda are the Earth’s rotation rate and radius,M = θΠ + φ is the Montgomery potential,

φ is the geopotential,Π(p) = cp(p/p0)
κ is the Exner function,σ = −(1/g)(∂p/∂θ) is the pseudo-

density, and(D/Dt) = (∂/∂t)+u(∂/a cosϕ∂λ)+v(∂/a∂ϕ)+ θ̇(∂/∂θ) is the material derivative.

The variablesu, v,M, p are functions of(λ, ϕ, θ, t).

The potential vorticity principle, derived from (4.30), (4.31) and (4.33), is

σ
DP

Dt
= −∂v

∂θ

∂θ̇

a cosφ∂λ
+
∂u

∂θ

∂θ̇

a∂ϕ
+
(

2Ωµ+∇2ψ
) ∂θ̇

∂θ
, (4.34)

where the potential vorticity is defined by

P =
(

2Ωµ+∇2ψ
)

(

−1

g

∂p

∂θ

)−1

, (4.35)
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with µ = sinϕ and with the relative vorticity expressed as the horizontal Laplacian of the stream-

function, i.e.,

∇2ψ =
∂2ψ

a2(1− µ2)∂λ2
+

∂

a2∂µ

(

(1− µ2)
∂ψ

∂µ

)

. (4.36)

As in the derivation on thef -plane, in the reference state the flow is assumed to vanish. The ratio

of the potential vorticity (4.35) to the reference state potential vorticity is given by

2Ωµ
P

P̃
=
(

2Ωµ+∇2ψ
)

(

∂Π̃/∂θ

∂Π/∂θ

)

. (4.37)

To convert (4.37) into an invertibility principle, we need to formulate a balancecondition

between the nondivergent wind fieldψ and the anomaly of the Montgomery potential, defined by

M ′ = M − M̃ , whereM̃(θ) is hydrostatically related tõΠ(θ) via dM̃/dθ = Π̃. The balance

condition used here is an approximation of the linear balance condition∇ · (2Ωµ∇ψ) = ∇2M ′.

The approximation is obtained by considering2Ωµ to be slowly varying, so that the linear balance

condition simplifies to∇2(M ′ − 2Ωµψ) = 0, from which the local linear balance conditionM ′ =

2Ωµψ then follows. Discussions of the accuracy of this local linear balance condition can be found

in Schubert and Masarik (2006), Verkley (2009), and Schubert etal. (2009). SinceΠ − Π̃ = Π′ =

∂M ′/∂θ = 2Ωµ(∂ψ/∂θ), (4.37) can now be written in the form

∇2ψ +

(

θN2Ωµ

g

)2 P

P̃

∂2ψ

∂θ2
= 2Ωµ

(

P

P̃
− 1

)

, (4.38)

where we have defined the reference state buoyancy frequencyN(θ) by

N2(θ) =
g2

θ2

(

−dΠ̃
dθ

)−1

. (4.39)

For the reference state we assume that the buoyancy frequencyN(θ) is inversely proportional toθ,

i.e.,N(θ) = NBθB/θ, whereNB andθB are constants.

We shall require that (4.38) holds on a sphere that includes topographicfeatures whose

geopotential is specified byΦ(λ, µ). We assume that, due to radiative processes, the potential

temperature varies along these topographic features according to the specified functionθS(λ, µ).

As in chapter 3 the regionθB < θ < θS(λ, µ) is the massless layer.
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We now assume that, except in the massless layer, the potential vorticity is equal to the

reference value, i.e.,P (λ, µ, θ) = P̃ (µ, θ), so that (4.38) simplifies to the top entry in (4.40) below.

In the massless layer, the pseudodensity vanishes, i.e.,∂p/∂θ = 0, or equivalently,∂Π/∂θ = 0,

which can be written as the bottom entry in (4.40). As for boundary conditions, we require that

the upper boundary is both an isentropic (θ = θT ) and isobaric surface, i.e.,Π = Π̃, which, using

the hydrostatic equation and the balance condition, can be written as∂M ′/∂θ = 2Ωµ(∂ψ/∂θ) =

0, or simply as (4.41) below. At the bottom boundary the geopotential isφ = Φ(λ, µ), so that

θ[∂(M − M̃)/∂θ] = θ(Π − Π̃) = M − M̃ − Φ, or equivalently,2Ωµ[ψ − θ(∂ψ/∂θ)] = Φ. In

summary, the elliptic problem forψ is

∇2ψ +

(

2ΩµθBNB

g

)2 ∂2ψ

∂θ2
= 0 for θS(λ, µ) < θ ≤ θT ,

(

2ΩµθBNB

g

)2 ∂2ψ

∂θ2
= 2Ωµ for θB ≤ θ < θS(λ, µ),

(4.40)

with boundary conditions

∂ψ

∂θ
= 0 at θ = θT , (4.41)

ψ − θ∂ψ
∂θ

= Ψ at θ = θB, (4.42)

whereΨ is defined in terms ofΦ by Φ = 2ΩµΨ.

4.6 Solution of the invertibility problem via transform met hods on the sphere

To solve the invertibility problem (4.40)–(4.42) we introduce the vertical transform pair

ψℓ(λ, µ) =
1

θT − θB

∫ θT

θB

ψ(λ, µ, θ)Vℓ(θ) dθ, (4.43)

ψ(λ, µ, θ) =
∞
∑

ℓ=0

ψℓ(λ, µ)Vℓ(θ), (4.44)

whereVℓ(θ) are the vertical structure functions introduced earlier.

To take the vertical transform of (4.40) we first multiply the bottom line in (4.40)by Vℓ(θ)

and integrate fromθB to θS(λ, µ), thereby obtaining

∫ θS(λ,µ)

θB

(

2ΩµθBNB

g

)2 ∂2ψ

∂θ2
Vℓ dθ =

∫ θS(λ,µ)

θB

2ΩµVℓ dθ. (4.45)
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Similarly, multiplying the top line in (4.40) byVℓ(θ) and integrating fromθS(λ, µ) to θT , we obtain

∫ θT

θB

∇2ψ Vℓ dθ +

∫ θT

θS(λ,µ)

(

2ΩµθBNB

g

)2 ∂2ψ

∂θ2
Vℓ dθ =

∫ θS(λ,µ)

θB

∇2ψ Vℓ dθ. (4.46)

Taking the sum of (4.45) and (4.46), we obtain

∫ θT

θB

{

∇2ψ +

(

2ΩµθBNB

g

)2 ∂2ψ

∂θ2

}

Vℓ dθ =

∫ θS(λ,µ)

θB

(

2Ωµ+∇2ψ
)

Vℓ dθ. (4.47)

Integrating the(∂2ψ/∂θ2)Vℓ term by parts twice, using the boundary conditions (4.9), (4.10), (4.41),

and (4.42), and finally recalling the transform relation (4.43), we obtain

∇2ψℓ −
ǫℓµ

2

a2
ψℓ = Fℓ, (4.48)

where

ǫℓ =

(

2Ωa

cℓ

)2

(4.49)

is Lamb’s parameter and

Fℓ(λ, µ) =
1

θT − θB

∫ θS(λ,µ)

θB

(

2Ωµ+∇2ψ
)

Vℓ(θ) dθ

−
(

2ΩµθBNB

g

)2 Vℓ(θB)

(θT − θB)θB
Ψ(λ, µ).

(4.50)

The first term on the right hand side can be interpreted as a measure of the“absolute isentropic

vorticity in the massless layer."

To solve the horizontal structure problem (4.48) we now introduce the spheroidal harmonic

transform pair

ψℓmn =
1

4π

∫ 1

−1

∫ 2π

0
ψℓ(λ, µ)S∗

mn(ǫℓ;λ, µ) dλ dµ, (4.51)

ψℓ(λ, µ) =

∞
∑

m=−∞

∞
∑

n=|m|

ψℓmn Smn(ǫℓ;λ, µ), (4.52)

whereSmn(ǫℓ;λ, µ) are the spheroidal harmonic functions, which satisfy

∇2Smn −
ǫℓµ

2

a2
Smn = −αmn(ǫℓ)

a2
Smn, (4.53)

where the integerm is the zonal wavenumber, the integern is the total wavenumber, and the values

αmn(ǫℓ) are the eigenvalues of the spheroidal harmonic operator. The orthonormality relation for
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spheroidal harmonics is

1

4π

∫ 1

−1

∫ 2π

0
Smn(ǫℓ;λ, µ)S∗

m′n′(ǫℓ;λ, µ) dλ dµ =



















1 (m′, n′) = (m,n)

0 (m′, n′) 6= (m,n).

(4.54)

Note that (4.51) can be obtained by multiplying (4.52) byS∗
m′n′(ǫℓ;λ, µ), integrating overλ andµ,

and then using the orthonormality relation (4.54). A concise summary of spheroidal harmonics is

given in Abramowitz and Stegun (1965, pages 751–769). A more extensive discussion is given in

Flammer (1957). The Mathematica software package (versions 6 and higher) has built-in support

for computing spheroidal harmonic eigenvalues and eigenfunctions.

To take the spheroidal harmonic transform of (4.48) we multiply it byS∗
mn(ǫℓ;λ, µ) and

integrate over the entire sphere, thereby obtaining

∫ 1

−1

∫ 2π

0
ψℓ

(

∇2S∗
mn −

ǫℓµ
2

a2
S∗

mn

)

dλ dµ =

∫ 1

−1

∫ 2π

0
FℓS

∗
mn dλ dµ, (4.55)

where we have used
∫∫

S∗
mn∇2ψℓ dλ dµ =

∫∫

ψℓ∇2S∗
mn dλ dµ. Using the complex conjugate of

(4.53), the transform relation (4.51), and noting thatFℓ(λ, µ) andFℓmn are related by a transform

pair identical to (4.51) and (4.52), we can simplify (4.55) to

ψℓmn =
Fℓmn

αmn(ǫℓ)
, (4.56)

which is the spectral space solution of the original invertibility problem (4.40)–(4.42). This solution

can be transformed back to physical space through the use of (4.44) and (4.52), which results in

ψ(λ, µ, θ) =

∞
∑

ℓ=0

∞
∑

m=−∞

∞
∑

n=|m|

Fℓmn

αmn(ǫℓ)
Vℓ(θ)Smn(ǫℓ;λ, µ). (4.57)

Onceψ(λ, µ, θ) is known, the wind field can easily be computed because we have assumed thewind

field is nondivergent.

4.7 Discussion of various solution methods

Why has the same physical system been written as two distinct elliptic problems asgiven

by (3.12-3.14) and (4.2-4.5)? Recall that the elliptic problem from chapter2 is solved with Fourier
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transforms. This approach led to a solution but the transforms were complicated by the boundary

between the atmosphere and the massless layer and it was not clear how to generalize the results

to a spherical domain. However, rewriting the system in terms of the perturbation Montgomery

potential as in (4.2–4.5) leads to an elegant transform process and the spherical generalization can

be derived. This is why two distinct elliptic problems were used.

The next chapter solves the invertibility principle using finite-difference approximations. In

this case the elliptic problem is written in terms of the full Montgomery potentialM . Often when

using transforms, variables that represent perturbations (likeΠ′ andM ′) which approach zero in

the far field make the definition of boundary conditions convenient. With a finite-difference system

this is not necessary because there is more flexibility in the choice of boundary conditions. In the

following chapter there is no need to use perturbation variables and so the full Montgomery potential

is used. Thus three different elliptic systems have been used to represent the same physical system.

It is straightforward to show that they are all equivalent.
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ℓ cℓ (m s−1) cℓ (m s−1)
Exact Approximate

0 365.2 ∞
1 51.52 52.64
2 26.18 26.32
3 17.50 17.55
4 13.14 13.16
5 10.52 10.53
6 8.768 8.773
7 7.517 7.520
8 6.578 6.580
9 5.847 5.849
10 5.263 5.264

Table 4.1: The spectrum of gravity wave speedscℓ, and approximate gravity wave speeds for the
values ofℓ listed in the left column. The exact values ofcℓ have been computed from (4.13) and the
approximate values from (4.14) usingθB = 295 K, θT = 360 K, g = 9.81 m s−2, and(θB/g)N

2
B =

5.1373 K km−1.
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Chapter 5

NUMERICAL SOLUTIONS

5.1 Comparison between analytic and numerical solutions

The analytically derived solutions given by (3.41) and (3.42) offer a ‘clean’ mathematical

description of the influences orography and heating have on the balanced atmospheric wind and

mass fields. These equations are valid for arbitrary orography and forcing by the functionF (k, θ).

However, to move from these solutions to a quantitative measure of how the wind and mass fields

respond to a precise and specific forcing scenario, more work must be done. The process of comput-

ing wind fields for a given orography and a specifiedF (k, θ) has uncovered several mathematical

subtleties that lead to further insight concerning the incorporation of a massless layer into a de-

scription of fluid systems. This chapter presents the results for the three simple cases discussed in

chapter 1 and sketched in Fig. (1.1).

The original intent of using the transform method was to transform the system of equations

(3.12)-(3.14) into spectral space where a solution would presumably be simpler to derive. However,

the transformed system (3.22)-(3.24) contains the forcing termF (k, θ) which cannot be directly

expressed in terms of specified quantities. When seeking to computev(x, θ) andΠ′(x, θ) there

are two problems with (3.22)-(3.24). First, these equations are partly in physical space and partly in

spectral space. Second, it is clear thatv(x, θ) cannot be computed from̂v(k, θ) (using 3.16) because

v̂(k, θ) depends onF (k, θ), andv(x, θ) must be known to computeF (x, θ). What this implies is

that we cannot simply dictate or choose a givenF (k, θ) in the massless layer and then compute the

resultantv(x, θ). BothF (k, θ) andv(x, θ) are unknowns.



Further, because this is an elliptic systemF (k, θ) depends not only on the geometry of the

mountain, the potential temperature along the lower boundary, andv(x, θ) within the massless layer,

but also onv(x, θ) throughout the domain. Specifying a givenF (k, θ) at each grid point within the

massless layer and then computing the resulting wind field will not work. However, F (k, θ) can

be found through an iterative procedure. If we specify the lower heating, and the shape of the

topography, a first approximation ofF (k, θ) can be found. Then an approximate wind field is

computed, and using the boundary conditions, topography, and wind field, the approximation of

F (k, θ) can be recalculated and updated. This process is repeated until the wind field andF (k, θ)

are no longer significantly changing with additional iterations.

To understand why our original solution method has broken down in this way, a closer look

at (3.12)-(3.14) is helpful. It was originally assumed this was a linear, constant coefficient (when

reference state 1 is assumed forN(θ)) system and that accordingly, Fourier transforms would lead

to a unique solution. This is not true. Equation (3.12) is a variable coefficient linear equation and as

such, there is no guarantee that Fourier transforms will lead to a closed form solution. This can be

seen if (3.12) is rewritten as

α
∂v

∂x
+

(

fθ2N2

g2

)

∂Π′

∂θ
=



















0 xS(θ) < x <∞

f 0 ≤ x < xS(θ)

(5.1)

whereα = 1 except in the massless layer whereα = 0. The solutions derived using transforms

led to insights concerning the behavior of the physical system, especially in the case of isentropic

obstacles, but the transform did not produce easily computable solutions.It appears that the best

way forward then is to use an iterative solution method. This is what follows.

5.1.1 Finite difference discretization and successive over-relaxation

When the system of equations is solved using finite difference approximations, transforms

are not needed and it is unnecessary to separate the fields into a mean part and a perturbation part as

was done in the previous two chapters. Here the system is written in terms of thefull Montgomery

potential. As before, potential vorticity is assumed to be conserved where the potential vorticity
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is defined by (3.8) with the notation the same as in previous chapters. Using thegeostrophic and

hydrostatic formulas((∂M/∂x, ∂M/∂θ) = (fv,Π)) the potential vorticity can be written as the

following invertibility relation

g

fθρP

(

f2 +
∂2M

∂x2

)

+
∂2M

∂θ2
= 0 for θS(x) < θ ≤ θT ,

∂2M

∂θ2
= 0 for θB ≤ θ < θS(x),

(5.2)

where the densityρ is given in terms ofM by

ρ =
p0

Rθ

(

1

cp

∂M

∂θ

)(1−κ)/κ

. (5.3)

Note that the full density is now being computed, which introduces a weak nonlinearity. The top

line of (5.2) represents the system above the massless layer. In the massless layer,P → ∞. In

this limit the top line of (5.2) becomes the second line of (5.2) to governM in the massless layer.

Along the left and right boundariesM is required to equal the specified functioñM(θ). The upper

boundary is required to be both an isentropic (θ = θT ) and an isobaric surface with a constant Exner

functionΠT . To formulate the lower boundary condition we note thatM − θ(∂M/∂θ) = φ, and

apply this atθ = θB. The boundary conditions are then expressed as

M = M̃(θ) at x = ±L, (5.4)

∂M

∂θ
= ΠT at θ = θT , (5.5)

M − θ∂M
∂θ

= φS(x) at θ = θB. (5.6)

As a first step towards an iterative solution of this elliptic problem, the numericalgrid must

be defined by discretizing the geometric domain. Our domain is divided intoJ ×K grid cells with

grid points given by(xj , θk) = (−L+ j∆x, θB +k∆θ) with j = 0, 1, . . . , J andk = 0, 1, . . . ,K,

where∆x = 2L/J and∆θ = (θT − θB)/K. We then seek an approximate solution with gridpoint

valuesMj,k ≈M(xj , θk) satisfying the discrete form of equation (5.2)

Aj,k

[

(f∆x)2 +Mj−1,k − 2Mj,k +Mj+1,k

]

+Mj,k−1 − 2Mj,k +Mj,k+1 = 0,

(5.7)
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where the dimensionless coefficientAj,k is defined by

Aj,k =
g(∆θ)2

fθkρj,kPj,k(∆x)2
. (5.8)

The discretized versions of (5.5) and (5.6) are

Mj,K −Mj,K−1 = ΠT ∆θ at θ = θT , (5.9)

Mj,0 −
θB

∆θ
(Mj,1 −Mj,0) = φS(xj) at θ = θB. (5.10)

Note that the problem is nearly isotropic on the grid outside of the massless layer if Aj,k ≈ 1, which

can serve as a rough guide for the choice of the ratio∆θ/∆x. Also note that (5.7) applies both

outside and inside the massless layer, withAj,k 6= 0 outside andAj,k = 0 inside the massless layer.
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Figure 5.1: Meridional wind field (shading, warm colors are positive, cool colors negative, contour
interval =1 m/s) for an isentropic lower boundary computed using over-relaxation. The maximum
height of the Gaussian mountain is1700 m and its halfwidth= 500 km. The maximum winds are
14.3 m/s.

We solve the discrete equations (5.7), (5.9), and (5.10) using the followingstandard succes-

sive over-relaxation (SOR) procedure. The current estimate ofMj,k is denoted byM̂j,k, but should
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not be confused with the use of the ‘hat’ notation in chapter 3 to denote the spectral space component

of a variable. From the current solution estimateM̂j,k, sweeping through the grid in lexicographic

order, we first compute the current estimate of density from

ρ̂j,k =
p0

Rθk

(

M̂j,k+1 − M̂j,k−1

cp2∆θ

)(1−κ)/κ

, (5.11)

the current estimate of the dimensionless coefficient from

Âj,k =



















g(∆θ)2

fθkρ̂j,kPj,k(∆x)2
if θS(xj) < θk < θT

0 if θB < θk < θS(xj)

(5.12)

and then the current residual from

r̂j,k = M̂j,k−1 + M̂j,k+1

+ Âj,k

[

(f∆x)2 + M̂j−1,k + M̂j+1,k

]

− 2
(

1 + Âj,k

)

M̂j,k.

(5.13)

The solution estimate on the interior is then updated by

M̂j,k ← M̂j,k +
ωr̂j,k

2
(

1 + Âj,k

) (5.14)

whereω is the overrelaxation factor and (5.13) and (5.14) are computed at the gridpoints1 ≤ j ≤

J −1, 1 ≤ k ≤ K−1. Finally, the top and bottom boundary points are updated from the boundary

conditions (5.9) and (5.10), written in the form

M̂j,K ← M̂j,K−1 + ΠT ∆θ for 1 ≤ j ≤ J − 1, (5.15)

M̂j,0 ←
(θB/∆θ)M̂j,1 + φS(xj)

1 + (θB/∆θ)
for 1 ≤ j ≤ J − 1. (5.16)

Equations (5.11)-(5.16) are iterated, starting with the initial estimateM̂j,k = M̃(θk). This initial

estimate does not change on the lateral boundariesj = 0 andj = J . The number of iterations can

be increased until the desired level of accuracy is attained.

The above iterative procedure determines the Montgomery potential in the entire domain for

a given geopotentialφS(x) and a given potential temperatureθS(x) along the lower surface. From
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the Montgomery potential the wind field can be easily recovered using geostrophic balance, and the

pressure field can be computed using the hydrostatic approximation. The wind field can now be

computed throughout the entire domain for a specific forcing function.

Figure 5.1 shows the solution computed for an isentropic ridge of the same height as the ridge

shown in Fig. 3.3. A comparison of these two figures shows that the solution derived using Green’s

functions (3.41-3.42) and the solution found with the above iterative procedure give similar results.

These figures are not expected to be identical because Fig. 3.3 was computed assuming the density

was equal to the far-field density (only depends onθ) while Fig. 5.1 was computed with density as

a function ofθ andx.

5.2 Results

All of the wind fields shown here were computed in (x,θ)-space and then interpolated to

(x,p)-space. In many cases a particular wind field is shown in both (x,θ)-space and (x,p)-space.

This provides two different views of the same information and hopefully makes interpretation easier.

Thinking of the atmospheric response to forcing in a domain withθ as the vertical coordinate and

massless layers along the lower boundary is somewhat abstract. In (x,θ)-space the massless layer

appears as a mountain along the lower boundary. This is not a physical mountain, but simply shows

the regions where isentropic (θ) surfaces pass under the ground in physical space. When viewing a

figure plotted in (x,p)-space, if the lowest pressure surface is uniform the massless layer does not

appear and the isentropes intersect the lowest pressure surface. Often, the lowest pressure surface is

not uniform and the massless layer appears as a mountain that representslocations where pressure

surfaces are not defined. The shapes representing the massless layer in (x,θ)-space and (x,p)-space

are different from each other, and neither corresponds exactly to theactual orography in physical

space. Comparing figures in pressure coordinates with those inθ coordinates is a useful way to

develop an intuition of the fluid response to obstacles.

All of the figures in this chapter (and Fig. 3.3) show the wind field as shadedcontours in1

m/s intervals with warm colors representing positivev (into the page) and cool colors representing
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Figure 5.2: Meridional wind field (shading,1 m/s intervals) for an isentropic ridge withH =1800
m, vmax = 15.4 m/s. Black contours are isentropes (top) and isobars (bottom).
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Figure 5.3: Meridional wind field (shading,1 m/s intervals) for a heated flat lower surface with a6
K temperature anomaly and Gaussian halfwidth a = 600 km,vmax = 12.7 m/s. The massless layer
in (x,p)-space (top) is indicated by black object along lower boundary, in (x,θ)-space (bottom) it is
indicated by the thick black line. Contour spacing in the massless layer is 1 hPa.
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Figure 5.4: Meridional wind field (shading,1 m/s intervals) for a heated ridge with a6 K temperature
anomaly,H=1800 m,a=600 km,vmax = 11.13 m/s. The massless layer is indicated by the black
object (top) and the thick black line (bottom). Halfwidth of ridge is 900 km. Contour spacing in the
massless layer is 50 hPa except for lowest contour of 975 hPa.
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Figure 5.5: Same as Fig. 5.3 except with a12 K temperature anomaly,vmax = 27.27 m/s. Contour
spacing in the massless layer is 4 hPa.
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Figure 5.6: Same as Fig. 5.4 except with a12 K temperature anomaly,vmax = 10.3 m/s.
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negativev (out of the page). For the figures shown in (x,p)-space the black contours show isentropes

(surfaces of constant potential temperature) in intervals of2 K. The figures shown in (x,θ)-space

have isobars contoured in black.

Figures 5.2-5.6 show the wind fields that result from the three simple cases discussed previ-

ously and represented in Fig 1.1. An isentropic ridge with a crest height of1800 m is shown in Fig.

5.2 and can be clearly identified by the fact that the isentropes do not intersect the ridge and the flow

is anticyclonic. A flat lower boundary with a potential temperature anomaly of 6K is shown in Fig.

5.3, which results in a 12.7 m/s cyclonic flow. Figure 5.4 combines these two forcing cases into a

heated ridge with a crest height of 1800 m and a heating anomaly of 6 K.

Note that the isentropic lower surface has anticyclonic flow anchored over the ridge, but

for the case of the flat lower boundary the flow is cyclonic. The heated ridge with a temperature

anomaly of6 K has anticyclonic flow but when the temperature anomaly is12 K the flow becomes

cyclonic. This demonstrates the competing influences of the purely orographic forcing and the

temperature forcing. Once the surface temperature anomaly has become strong enough to overcome

the orographically forced tendency towards anticyclonic motion, the wind field produced by a heated

ridge grows with the tempterature anomaly. The results also demonstrate (not shown) that, as the

width of the ridge grows for a set temperature anomaly, the influence of the anomaly is spread out

and effectively acts as a weaker anomaly.

It is also apparent in (x-θ)-space that the isentropic ridge case does not contain a massless

layer, but for the heated flat lower boundary and heated ridge a massless layer is present and marked

as the area below the thick black line. Pressure in the massless layer is independent ofθ, as is clear

from the vertical isobars within the massless layers of Figs. 5.3 and 5.4. Thisis required by the

hydrostatic approximation. Although the pressure is uniform inθ within the massless layer, it varies

strongly as a function ofx, which requires a nonzero wind field. The velocity is required to satisfy

the lower boundary condition given by (5.6), which can be seen as the slope of the velocity increases

with the magnitude of the velocity along the lower boundary. The concept of nonzero velocity

underneath the surface of the ground is admittedly strange but is valid based on the governing
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equations. Because there is zero mass within this region of the domain, there can be no mass flux

regardless of the structure of the velocity field inside the massless layer.

For the isentropic case potential vorticity is conserved. Combining this with the use of isen-

tropic coordinates leads to an intuitive explanation for the wind field response to the mountain as

seen in Fig. 5.2. Recall that, in the absence of heating, mass cannot crossthe isentropic surfaces.

This constrains how the mass field must adjust when the isentropes are movedup or down. One of

the primary benefits to using isentropic coordinates is the simplicity of the expression for potential

vorticity. The denominator of the potential vorticity is given by the pseudodensity−(1/g)(∂p/∂θ),

which becomes smaller when the isentropes are compressed as over the crest of the isentropic ridge.

Because the potential vorticity is conserved, the decrease in magnitude of the denominator implies

the numerator also must decrease. The only part of the numerator that candecrease in magnitude is

∂v/∂x, so a negative meridional velocity gradient is required, which is exactly what Fig. 5.2 shows.

It is apparent that the velocity gradient is greatest where the isentropesare the most compressed.

Similar reasoning can be applied to the case of stretched isentropes with the only difference being

the sign of the velocity gradient. The isentropic structure for the cases with aheated lower boundary

is quite different. The heating forces mass across isentropic surfaces.As radiation heats the surface,

an upslope motion is generated. When the mass moves upward it is transferred from one isentropic

layer to next warmer layer. This is what physically causes the isentropes tobend down towards the

heated surface. The stretched isentropic layers generate a wind field that is oriented opposite to that

which results from the isentropic case with compressed isentropes.

Each of figures 5.2-5.3 show the wind maximum to be in the lowest layers of the fluid and to

decay rapidly in the vertical and horizontal directions. This matches well witha basic description

of a low-level jet. In agreement with the insights offered by the invertibility principle, all three

figures show an increased gradient in the velocity field when the isentropes are either compressed

or stretched out. These figures clearly indicate that in the absence of other factors a (sufficiently)

diabatically heated surface will result in a cyclonic wind field. It is also clearthat the jets of opposite

sign on either side of the ridge are two components of the same response to theforcing. A heated
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ridge does not lead to a single LLJ, but two LLJs that form a cyclonic or anticyclonic circulation.

5.3 Technical Discussion

Solving this system by relaxing finite difference approximations of the continuous equations

highlights two aspects of the problem. The first is that the grid representing our domain is not

in general isotropic. This most likely slows down the relaxation procedure and necessitates going

through many more iterations than would be required for an isotropic grid. Ifthe grid spacing in the

vertical and horizontal is carefully chosen to result in the coefficientA being approximately equal

to 1, the grid outside the massless layer is nearly isotropic. Within the massless layerA equals zero

and the grid will not be isotropic regardless of the grid spacing. The second complication arises

because the system is strongly coupled in the vertical dimension of the massless layer, but only

indirectly coupled in the horizontal direction. For Gauss-Seidel over relaxation using lexicographic

ordering this also leads to very slow convergence. It is possible that using line relaxation in the

vertical would help this. Both of these issues cause the iteration procedureto be slow, with many

iterations necessary before the residual can be said to be small.

The computed value of the residual needs to be put in a meaningful contextto determine

how many iterations of the solution procedure are necessary. Often the magnitude of the residual

can be compared to the magnitude of the forcing. Applying this method here is notstraightforward

because the forcing is only present in part of the domain, but the residual is defined at each grid

point. We have chosen to compare the norm of the residual after a single iteration to the norm of

the residual for a later iteration. When this norm has decreased by about2 orders of magnitude

the wind field no longer significantly changes with further iterations. Most ofthe figures shown

have been iterated until the residual has decreased by more than two orders of magnitude. Over-

relaxation parameters of around1.7 to 1.95 have been used. It is difficult to theoretically estimate

an optimal overrelaxation parameter because our domain is composed of an isotropic region and a

non-isotropic region. The values used were obtained through a series of numerical tests.
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Chapter 6

CONCLUSIONS

6.1 Overview

The research presented in this dissertation shows that heated topographic features are an

important component to the forcing of atmospheric low-level jets. This hypothesis is demonstrated

by calculating the balanced response of a stratified fluid to forcing along thelower boundary. The

forcing used here is intended to mimic atmospheric obstacles and surface heating. The results

clearly show that the wind field generated by a heated ridge includes LLJs of opposite sign on either

side of the ridge.

The basic method used is very simple. The forcing takes the form of a potential vorticity

anomaly that is determined by the boundary conditions along the lower boundary. This potential

vorticity is then used to compute the wind field through the invertibility principle that isderived in

chapters 3, 4, and 5. Figure 1.1 shows the three cases this method was applied to: an isentropic

ridge along the lower boundary, a heated lower boundary with a flat geopotential surface, and a

heated ridge. To the best of the author’s knowledge, the potential vorticityinvertibility principle in

isentropic coordinates has not previously been solved when the lower boundary includes mountains.

Three separate methods have been used to solve the invertibility principle. Chapter 3 finds

solutions by using Fourier transforms in the horizontal dimension to derive avertical structure equa-

tion that is then solved using the appropriate Green’s functions. Analyticalsolutions are plotted for

the wind field that is forced by an isentropic ridge. Assuming the fluid to satisfyhydrostatic balance

and requiringθ to increase monotonically with height an expression for the critical crest height is



derived. Ridges that are higher than the critical crest height must penetrate the lower isentropes in

the domain while ridges with a height below this value can remain isentropic if no heating is present.

This provides a generalization of the theory presented by Eliassen (1980). Chapter 4 uses a similar

approach to solve the invertibility principle but vertical transforms are usedto derive a horizontal

structure equation. This derivation is generalized to a sphere and the horizontal structure equation

is solved using spheroidal harmonics. The analytical solutions derived inchapters 3 and 4 are only

closed form solutions for the case of an isentropic lower surface. Whenheating is introduced along

the lower boundary of an isentropic domain a massless layer is inevitable and the solutions must be

found iteratively. The third method for solving the invertibility principle was to use finite difference

approximations of the governing equations which are then solved in chapter5 using Gauss-Seidel

over-relaxation.

Another useful result of this research is the practical presentation of the massless layer. It

is intended that this work will help to clarify how the massless layer can be incorporated into the

solution of other problems in a straightforward manner.

6.2 Summary of wind field response to forcing

Isentropic ridges produce an anticyclonic wind field. The closer the ridgeheight comes

to the critical crest height the tighter the isentropes are packed over the ridge and the stronger the

corresponding wind field is. In contrast, the case of a heated flat lower boundary results in a cyclonic

wind field. When these two cases are combined into the case of a heated ridgethe total wind field is

decreased due to the competing impacts of the isentropic orography and the heating. For temperature

anomalies that are quite small the mechanical influence of the ridge is dominant and the wind field

is anticyclonic. However, for temperature anomalies that are closer to thoseobserved (in YOTC)

the heating along the lower boundary is the dominant factor and the wind field iscyclonic. The

heated ridge shown in Fig. 5.4, with a temperature anomaly of 6K, has an anticyclonic flow, while

the heated ridge shown in Fig. 5.6 with a temperature anomaly of 12K, has a cyclonic flow. Byerle

and Paegle (2003) noted a change from cyclonic to anticyclonic flow during the North American
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winter. They attributed this to a change in the zonal flow and the interaction with the orography.

The results here suggest this transition is due to the winter temperature anomalydropping below the

critical value that is needed for a cyclonic circulation.

The solutions computed in chapter 5 also show that in general the wind field willbe stronger

for a stronger temperature anomaly when the width and height of a ridge areconstant. Similarly,

for a constant magnitude of the temperature anomaly, the wind field will decrease in strength as the

width of the ridge is increased.

The persistent occurrence of LLJs in the atmosphere has led to many ideasconcerning the

possible mechanisms for their development. Blackadar (1957) hypothesized that the jets are due

to an inertial oscillation acting on the diurnal cycle of boundary layer eddy viscosity while Holton

(1967) proposed that a buoyancy-driven flow over sloping terrain was the primary process responsi-

ble for the jets. Wexler (1961) claimed the GPLLJ is an analogue to the westernboundary currents

of the ocean basins. The North and South American LLJs are also often attributed to a simple de-

flection of the trade winds by the orography. Each of these mechanisms areimportant to the LLJs

observed in North and South America but no individual mechanism can entirely explain their gen-

eration, maintenance, and variability. The work presented here shows that heated orography also

needs to be included in this list of influential mechanisms for LLJs.

The basic characteristics of the wind field from the YOTC data shown in Figs.2.4-2.7 agrees

well with the results shown in Fig. 5.6. The orientation of the wind field (cyclonic) is the same and

the magnitude is similar to that shown by the YOTC data. The figures in chapter 5 can be inter-

preted as representing means of roughly 1-3 months. If the temperature distribution along the lower

boundary is made larger, say 20K (see Jiang et al. 2010), the wind speeds are closer to what would

be expected for daily or weekly mean fields. The parameters used to computeall of the wind fields

shown in chapter 5 were chosen to be comparable to Earth-like mountains with realistic tempera-

ture anomalies along the lower boundary. It is probably not appropriate tomake direct comparisons

between the results of chapter 5 and observations of specific jet events or even climatologies be-

cause the assumptions of a steady, nonviscous fluid will certainly lead to discrepancies between the
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computed and observed wind fields, especially along the lower boundary, which is precisely where

the LLJ maxima in chapter 5 are located.

The YOTC data of the meridional wind field and potential temperature distributionfor two

Rocky Mountain latitudes and two Andes latitudes are intended to give a general idea of the mean

wind and temperature distributions during the warm season of those regions. The results computed

in chapter 5 show general agreement with the basic wind and temperature characteristics. However,

a detailed comparison between the results of this research and observations of atmospheric LLJs is

beyond the scope of this work.

6.3 Final Discussion

Contributions to our understanding of fluid systems made by this research can be divided into

two components. First, the general question of how a stratified fluid responds to a non-trivial lower

boundary has been solved. The isentropic coordinate invertibility principlewas solved for the case

of a domain including a massless layer. This can be applied to a variety of interesting problems in

future research. The second component is the application of the previously mentioned solutions to

the study and interpretation of atmospheric LLJs.

There are several mechanisms that are known to be important to the generation of LLJs.

These include the kinematic redirecting (deflection) of the flow by mountains, theinertial oscillation

acting with the fluctuating boundary layer turbulence, and the pressure gradient force. Often these

mechanisms act on a regional scale and only influence one side of a mountainrange at a given time.

As a result, past studies have generally studied each LLJ in isolation. This research makes it clear

that a heated mountain influences jets on both flanks which indicates a strong connection between

the LLJs on opposite sides of the Rocky Mountains and the Andes.

Because a steady state has been assumed the time evolution of potential vorticityand wind

can obviously not be seen. This model only computes the wind field that results from the potential

vorticity at an instant in time. Alternately, this could be interpreted as the potentialvorticity averaged

over a time interval. This does not imply the wind field for the chosen time or periodis less accurate;
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it simply means that we cannot say anything about the potential vorticity field before or after the

chosen time interval.

It may seem that in the analytical parts of this research the system was overly simplified

by assuming symmetry inx, that density only varies as a function ofθ, and idealized orographic

shapes. When the solutions are found through finite difference approximations these simplifications

are unnecessary and can be dropped. Particular scenarios that aremore complex than the analytic

derivation allowed for can then be studied. Having first derived analytical solutions for simple cases,

the solutions found through iteration can be more readily interpreted.

This research lays the groundwork for future projects in several directions. The efficiency

of the finite difference solution method could most likely be increased. The system of weakly-

nonlinear equations that result from the finite-difference solution of the invertibility principle is

quite sparse. This suggests that a solution method such as the conjugate gradient method may work

well. Developing an algorithm that utilizes multi-grid methods is also possible and would almost

certainly converge to the correct solution faster than does the over-relaxation method used here.

One potential future project would be to carry out a similar study with more complex to-

pography, possibly in spherical coordinates. If the topography beingstudied is more complex, the

heating along the lower boundary should also be adjusted and will probablyneed to be more com-

plex as well. The results here have been presented in a fairly general manner but they could be used

for particular case studies. The atmospheric response to heated orography is clearly important to

monsoon circulations. It would be interesting to study particular surface heating profiles and oro-

graphic structures in this context. Specific case studies could also be made of the Rocky Mountains

or Andes using data from particular months and latitudes similar to the YOTC data shown in chapter

2. This would offer insight into the importance of the surface heating to the LLJs relative to other

forcing mechanisms active at that time.
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