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ABSTRACT

INTERSECTIONS OF ψ CLASSES ON HASSETT SPACES OF RATIONAL CURVES

Hassett spaces are moduli spaces of weighted stable pointed curves. In this work, we consider

such spaces of curves of genus 0 with weights all 1
q
, q ∈ Z+. These spaces are interesting as

they have different universal families and different intersection theory when compared with M0,n.

We develop closed formulas for intersections of ψ-classes on such spaces. In our main result,

we encode the formula for top intersections in a generating function obtained by applying an

exponential differential operator to the Witten-potential.
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Chapter 1

Introduction

The moduli space of algebraic curves of genus 0 with nmarked points,M0,n (with the Deligne-

Mumford compactification [1]) has been an important topic of research in algebraic geometry.

These spaces provide an algebro-geometric tool to study how pointed rational curves vary in fami-

lies, and are of fundamental importance in areas like Gromov-Witten theory and topological quan-

tum field theories [2].

In [3], Hassett constructed a new class of modular compactifications M0,A of the moduli space

M0,n of smooth curves with n marked points parameterized by an input datum A, consisting of a

collection A = (a1, . . . , an) of weights ai ∈ Q ∩ (0, 1] such that a1 + . . .+ an > 2. We call these

spaces M0,A the Hassett spaces of rational curves.

A lot of work is being done on Hassett spaces including developing its tautological intersection

theory and weighted Gromov-Witten theory, e.g. in [4], [5] and [6]. In this work, we contribute

to the tautological intersection theory of a special case of such spaces- Hassett spaces of rational

curves with weights all 1
q
, q ∈ Z+, denoted M0,( 1

q )
n .

For this work, the following notations are used: a ψ class onM0,n is denoted as ψi; a ψ class on

M0,( 1
q )

n is denoted as ψ̄i, and the pullback of a ψ class under the reduction morphism from M0,n

to M0,( 1
q )

n is denoted ψ̂i.

First, we develop results for a special case of such spaces- Hassett spaces of rational curves with

weights all 1
2
, denoted M0,( 1

2)
n . These spaces provide for interesting spaces for combinatorial

results in its intersection theory because of the symmetry of weights and its connections with

intersection theory forM0,n. These spaces are interesting also because they are fine moduli spaces,

are isomorphic to M0,n, but have different universal families and different intersection theory.

Exploring these differences and developing some results in its tautological intersection theory is

the first contribution of this work.
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In our first result 3.1.1, we develop a closed closed formula (3.4) for the monomials in ψ̂ classes

for M0,( 1
2)

n in terms of cycles on M0,n. This closed formula is derived using the relation (2.9)

between the ψ̂ classes and ψ classes on M0,n, in which ψi is corrected by all boundary divisors

where the i-th mark is on a twig that gets contracted when pushed forward to M0,( 1
2)

n . The proof

uses this relation to obtain the ψ̂ monomials as monomials in ψ classes and boundary divisors on

M0,n. So, the summands in the resulting expansion correspond to modified ψ monomials on certain

boundary strata on M0,n that are the intersections of these boundary divisors. The dual graphs of

these strata are all ‘forked’ graphs- graphs with a ‘central’ node and some ‘forks’, e.g. figure (3.5).

We then establish a bijection between summands in the expansion corresponding to these graphs

that we call ‘P’-graphs and the unordered partitions of [n], such that cardinality of each subset

in the partition is either 2 or 1. The resulting formula (3.4) has the pullback of monomials in ψ̄

classes on M0,( 1
2)

n as a sum of the intersections of monomials in ψ classes and boundary stratum

corresponding to P-graph on M0,n. Then we derive two corollaries (3.2.1 and 3.2.2) of this result

to calculate the top intersections. These give the top intersections of ψ̂ classes as a sum of top

intersections of ψ classes on M0,n,M0,n−1,M0,n−2, . . . with some multiplicities. We point out

here that our corollaries (3.2.1 and 3.2.2) can also be deduced from theorem 7.9 in [4]. For our

work, we develop specific and explicit closed formulas for our special case of all weights 1
2

and

base our combinatorial analysis closely on the structure of dual graphs.

The main theorem 3.3.1 of this special case of weights all 1
2

encodes the closed formula (3.2.1)

for top intersections in a generating function G(t) obtained by applying a differential operator to

the Witten-potential F (t) [7]. This operator L̂ takes the form of an exponential partial differential

operator and provides a very nice compact way to describe these top intersections. The proof

of this formula also is based on a bijection between the ‘forked’ graphs and the summands in

the coefficient of the appropriate term in L̂ (F (t)). But in this, the bijection is not with graphs

corresponding to the partitions of [n], but with ‘Pk-graphs’ that are defined by replacing the i-th

mark with ki on a P-graph. Here ki is the exponent of ψ̂i in the ψ̂ monomial (3.3.2). As expected,

there is a surjection between P-graphs and Pk-graphs. For the proof, we write a new version
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of our closed formula in terms of these Pk-graphs (3.15). Then we show a bijection between the

summands in this formula and the summands in the coefficient of the appropriate term in L̂ (F (t)).

And the resulting coefficient, as a sum of all these summands, corresponds to the top intersections

of ψ̂ classes.

Then we develop the generalized versions of these results for the case of weights all 1
q
. In

our first result 4.1.1 here, we develop a closed formula (4.1) for the monomials in ψ̂ classes for

M0,( 1
q )

n in terms of cycles on M0,n. This closed formula is derived using the same relation (2.9)

between the ψ̂ classes and ψ classes on M0,n. For the proof of this theorem we use a theorem 2.2

in [8]. This theorem that applies to ω classes on M g,n gives our result as a special case, where the

number of half-edges on a fork ofDi is restricted to a maximum of q; in the case of ω classes, there

is no such restriction. And our partitions that are defined differently according to this restriction

take care of this difference. Rest of the proof can be thus read exactly from [8]. The summands in

the resulting formula correspond to modified ψ monomials on certain boundary strata on M0,n that

are the intersections of the boundary divisors as in the case of M0,( 1
2)

n . The difference is that the

dual graphs of these strata are now ‘forked’ graphs with number of half-edges on a fork varying

from 2 and q. We then establish a bijection between summands in the expansion corresponding

to these graphs that we call ‘P’-graphs and the unordered partitions of [n], such that cardinality

of each subset in the partition is between q and 1. The resulting formula (4.1) has the pullback of

monomials in ψ̄ classes on M0,( 1
q )

n as a sum of the intersections of monomials in ψ classes and

boundary stratum corresponding to P-graph on M0,n. Then we derive a corollary (4.2.1) of this

result to calculate the top intersections. These give the top intersections of ψ̂ classes as a sum of

top intersections of ψ classes on M0,n,M0,n−1,M0,n−2, . . . with some multiplicities. We point out

again here that our corollary (4.2.1 can also be deduced from theorem 7.9 in [4]. For our work,

we develop specific and explicit closed formulas for our special case of all weights 1
q

and base our

combinatorial analysis closely on the structure of dual graphs.

The main theorem 4.3.1 of this generalized case weights all 1
q

encodes the closed formula

(4.2.1) for top intersections in a generating function G(t) obtained by applying a differential op-
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erator to the Witten-potential F (t) [7]. This operator L̂ now takes the form of an exponential

partial differential operator that is more sophisticated and complex. The proof of this formula

again is based on a bijection between the ‘forked’ graphs and the summands in the coefficient of

the appropriate term in L̂ (F (t)).

The dissertation is organized as follows. In chapter 2, we give the background required for

this work which consists of a brief introduction to M0,n, ψ classes and Hassett Spaces, with some

relevant facts and lemmas on these topics. In chapter 3, we prove our first result which gives the

closed formula for the intersections of ψ̂ classes on M0,( 1
2)

n . In section 3.2, we give the results for

top intersections, and encode the formula for top intersections in the generating function that we

obtain by applying a partial differential operator to the Witten-potential.

In chapter 4, we generalize our results to the case of weights all 1
q
. We prove our first gen-

eralized result in this chapter which gives the closed formula for the intersections of ψ̂ classes

on M0,( 1
q )

n . In section 4.2, we give the results for top intersections, and encode the formula for

top intersections in the generating function that we obtain by applying a more sophisticated and

generalized partial differential operator to the Witten-potential.
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Chapter 2

Background

For background on for this work, the author has mainly used [2], [9], [7], [10] and introductory

sections of [11]. Here we will recall some selected facts we explicitly use in this work.

2.1 M 0,n

M0,n denotes the moduli space of stable, n pointed rational curves, with at worst nodal singu-

larities. The boundary of M0,n is defined to be the complement of M0,n in M0,n. It consists of all

points parameterizing nodal stable curves.

Given a rational, stable n-pointed curve (C, p1, . . . , pn), its dual graph is defined to have:

• a vertex for each irreducible component of C;

• an edge for each node of C, joining the appropriate vertices;

• a labeled half edge for each mark, emanating from the appropriate vertex.

Figure below gives an example of the dual graphs of some strata in M0,5.

Figure 2.1: On the left are the boundary strata of M0,5, and the corresponding dual graphs are on the right.
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The closures of the codimension 1 boundary strata of M0,n are called the irreducible bound-

ary divisors; they are in one-to-one correspondence with all ways of partitioning [n] = A ∪ Ac

with the cardinality of both A and Ac strictly greater than 1. We denote D(A) = D(Ac) the divisor

corresponding to the partition A, Ac.

2.2 ψ classes
For i = 1, . . . , n, we define the class ψi ∈ A1(M0,n). Let Li → M0,n be a line bundle whose

fiber over each point (C, p1, . . . , pn) is canonically identified with T ∗pi(C). The line bundle Li is

called the i-th cotangent (or tautological) line bundle. Then

ψi := c1(Li) (2.1)

where c1 is the first Chern class of the line bundle Li.

Some properties of ψ classes on M0,n that we use are the following lemmas. Interested reader

can find their proofs in [7]. Here [n] = I ∪ Ic with the cardinality of both I and Ic strictly greater

than 1.

Lemma 2.2.1. Consider the gluing morphism glI : M0,I∪? ×M0,Ic∪• →M0,n. Assume that i ∈ I

and denote by π1 : M0,I∪? ×M0,Ic∪• →M0,I∪? the first projection. Then:

gl∗(ψi) = π∗1(ψi). (2.2)

Lemma 2.2.2. Consider the forgetful morphism πn+1 : M0,n+1 → M0,n. Then, for every i =

1, . . . , n,

ψi = π∗n+1(ψi) +D({i, n+ 1}). (2.3)

Lemma 2.2.3. For any choice of i, j, k distinct, we have the following equation in A1(M0,n):

ψi =
∑

i∈I, j,k 6∈I

D(I). (2.4)
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Lemma 2.2.4 (String Equation). Consider the forgetful morphism πn+1 : M0,n+1 →M0,n. Then

πn+1∗

(
n∏
i=1

ψkii

)
=
∑
j|kj 6=0

ψ
kj−1
j

∏
i 6=j

ψkii . (2.5)

Lemma 2.2.5. Let
∑
ki = n− 3. Then

∫
M0,n

n∏
i=1

ψkii =

(
n− 3

k1, . . . , kn

)
(2.6)

where the integral sign denotes push-forward to the class of a point.

2.3 Hassett spaces
In [3], Hassett constructed a new class of modular compactifications M g,A of the moduli space

Mg,n of smooth curves with n marked points parameterized by an input datum (g,A). Here g is the

genus of the curves and A = (a1, . . . , an) is the weight data of weights ai ∈ Q ∩ (0, 1] satisfying

the inequality 2g − 2 + a1 + . . .+ an > 0.

M g,A that we call Hassett space parameterizes curves (C, p1, . . . , pn) with n marked non-

singular points on C that are A-stable if the the following two conditions are fulfilled.

1. The twisted canonical divisor KC + a1p1 + . . .+ anpn is ample.

2. A subset pi1 , . . . , pik of the marked points is allowed to coincide only if the inequality ai1 +

. . .+ aik ≤ 1 holds.

For g = 0, the stability condition means that a rational n-pointed curve (C, p1, . . . , pn) is A-

stable if on every irreducible component of C the number of nodes plus the sum of the weights of

the marks lying on the component is strictly greater than 2, with a1 + . . .+ an > 2.

In the case (a1, . . . , an) = (1, . . . , 1), this condition is nothing but the traditional notion of

an n-marked stable curve, and so the compactification M g,A is exactly the well-known Deligne-

Mumford compactification M g,n of Mg,n.

7



Definition 2.3.1. Given two weight data A,B, we say that B ≤ A if for every i, bi ≤ ai. Then

there exists a regular reduction morphism:

cB,A : M0,A →M0,B (2.7)

s.t. cB,A(C, p1, . . . , pn) is obtained by contracting twigs that become unstable when the weights of

the points are “lowered” from ai to bi.

Moduli spaces of weighted stable rational curves also have psi classes, which are defined in the

same way as in M0,n. A ψ class on M0,A will be denoted as ψ̄i.

Lemma 2.3.1. Consider the reduction morphism c : M0,n →M0,A. For i = 1, . . . , n, we have:

ψi = c∗(ψ̄i) +
∑
I3i,∑

j∈I aj≤1

D(I). (2.8)

Proof. Consider the following commutative diagram:

U0,n
C //

π

��

U0,A

π̄

��

M0,n
c //

σi

SS

M0,A

σ̄i

SS

Here U0,n and U0,A are the universal families overM0,n andM0,A respectively; π and π̄ are the

forgetful morphisms, and σi and σ̄i are the i-th tautological sections of the corresponding universal

families; c and C are the reduction morphisms. Let Si = Im(σi) and S̄i = Im(σ̄i). Then,

ψi = π?(−Si2)

ψ̄i = π̄?(−S̄2
i )

8



Now, C?(S̄i) = Si +
∑

I EI , such that i ∈ I, j ∈ I if
∑
aj ≤ 1, and EI is the exceptional divisor

in

Blow∩i∈Iσi

such that π? (EI) = D(I). Then,

c?ψ̄i = c?π̄?(−S̄2
i ) = π?C

?(−S̄i
2
) = π?(−(Si +

∑
I

EI)
2
)

= π?(−(S2
i + 2

∑
I

SiEI +
∑
I

E2
I ))

= ψi − 2
∑
I

D(I) +
∑
I

D(I)

= ψi −
∑
I

D(I)

= ψi −
∑
I3i,∑

j∈I aj≤1

D(I)

Informally, for the pullback of a ψ̄i, a ψi is corrected by all boundary divisors where the i-th

mark is on a twig that gets contracted by c. In particular we will use the above special case of

reduction morphism for this work.

Definition 2.3.2. We define the ψ̂i class as the pullback of a ψ̄ class under the reduction morphism

c : M0,n →M0,A.

ψ̂i := c?ψ̄i

9



Corollary 2.3.1. For the reduction morphism c : M0,n → M0,A, where A =
{

1
2
, 1

2
, . . . , 1

2

}
. For

i = 1, . . . , n, we have:

ψ̂i = ψi −
∑
j,j 6=i

D ({i, j}) . (2.9)

Proof. This follows from (2.8) by observing that ai + aj = 1 for all i, j when ai = 1
2
∀ i.

10



Chapter 3

Closed Formula for intersections of ψ-classes on

M
0,(1

2)
n

For the work in this chapter, A = (1
2
, 1

2
, . . . , 1

2
) for M0,A, and we denote it by M0,( 1

2)
n . In

this chapter, we develop the closed formula for integrals of ψ̂ monomials corresponding to the ψ̄

monomials on M0,( 1
2)

n .

We denote by P = {P1, P2, .., Pj, S1, S2, ..., Si} an unordered partition of [n], such that cardi-

nality of each subset in the partition is either 2 or 1. Further, if the cardinality of such subsets is

2, we denote them with Pj and if the cardinality of such subsets is 1, we denote them with Sj .

Denote by Pj1 and Pj2 the elements of Pj . Denote by F the set of all Pj’s, and by S the set of all

Sj’s. Denote by P the set of all such partitions P .

3.1 Cycle intersections
Definition 3.1.1. Given a P ∈ P, we define the graph ΓP as follows:

1. The ΓP has a ‘central’ node, with |F | number of edges with nodes on ends

2. Attach to each non-‘central’ node two half edges forming a ‘fork’; to the ‘central’ node,

attach |S| number of half-edges

3. Label a half-edges on forks with Pj1 and Pj2, and half-edges on central node with Sj’s.

So, each Pj corresponds to a fork and Sj’s to half-edges on the central node. We call this a P-

graph. |F | gives the number of forks on the graph. Each such graph is a dual graph of a stratum

in M0,n.

Clearly, the set of all P-graphs as defined above are in bijection with the set of all partitions

P ∈ P.

11



Definition 3.1.2. Given a ψ̂-monomial m = ψ̂k11 ψ̂
k2
2 ψ̂

k3
3 ...ψ̂

kr
r , a decorated P-graph ΓdP is obtained

by coloring a half-edge corresponding to point t ∈ Pj or t ∈ Sj if kt 6= 0.

Example 3.1.1. Given m = ψ̂2
1ψ̂2 on M0,6,

for P = {1, 2}, {3}, {4}, {5}, {6}, we get the decorated graph ΓdP as in figure 3.1;

for P = {1, 3}, {2, 4}, {5}, {6}, we get the decorated graph ΓdP as in figure 3.2,

and for P = {1, 3}, {5, 6}, {2}, {4}, we get the decorated graph ΓdP as in figure 3.3.

Figure 3.1: ΓdP Figure 3.2: ΓdP Figure 3.3: ΓdP

Definition 3.1.3. Consider the decorated P-graph in figure (3.4). In M0,n, this represents the dual

graph of a boundary stratum that is the image of the following gluing morphism:

gl : M0,P1∪?P1 × . . .M0,Ps∪?Ps ×M0,S∪•P1...∪•Ps →M0,n

where for each Pj , the half-edge •Pj is the mark on the node pulled back from the factor cor-

responding to the central node, and ?Pj is the mark on the node pulled back from the factor

corresponding to the respective fork. For this decorated P-graph, define the following ψ-function

:

φP(ψ) = ψ
ki1+ki2−1

•P1
. . . ψ

kit−1
+kit−1

•P t
2

ψ
kit+1−1

•P t
2+1

. . . ψ
kis−1

•Ps
ψ
ks+1

is+1
. . . ...ψ

kir
ir

(3.1)

where ψ•Pj
is the ψ-class at the •Pj mark on the factor corresponding to the central node.

12



Figure 3.4: A decorated P-graph with s colored half-edges on forks

Lemma 3.1.1. Let Di be a divisor D({i, j}) where j ∈ [n] \ {i}; then on M0,n,
s∏
i=1

Di, s ≤ n− 3,

is supported on a P-graph ΓP . And the number of forks on ΓP can vary from b s
2
c to min(bn

2
c, s).

Proof. We prove by induction. D1 =

  is clearly a P-graph. Now,

D1D2 =

  

=



0, if |{1, i1} ∩ {2, i2}| = 1
 , if |{1, i1} ∩ {2, i2}| = ∅

−

( )
, if {1, i1} = {2, i2}

So, all the graphs that support D1D2 are P-graphs. Now suppose
s∏
i=1

Di is supported on a

P-graph, and suppose that P-graph has j number of forks Pi’s, and denote by S the set of all

13



half-edges not on forks. Then,

(
s∏
i=1

Di)Ds+1 =



 

=



0, if{s+ 1, k} * Pi, S ∀ i

 , if{s+ 1, k} ⊆ S

−



 , if{s+ 1, k} ⊆ Pi for some i

So, all graphs that we get for non-zero intersections are in fact P-graphs. For the number of

forks on the graphs, there are 2 cases to consider : 1) s > bn
2
c, and 2) s ≤ bn

2
c. In the first case,

there are at least s−bn
2
c forks with both half-edges colored, and maximum number of forks is bn

2
c;

as s < n, minimum number of forks is b s
2
c. In the second case, the minimum number of forks is

b s
2
c and the maximum s. So, the number of forks on ΓP can vary from b s

2
c to min(bn

2
c, s).

Lemma 3.1.2. With Di =
∑

j D({i, j}) on M0,n, and •Pj as in Definition 3.1.3, then for M0,( 1
2)

n

ψ̂kii = ψkii −
∑
j

ψki−1
•{i,j}D({i, j}) (3.2)

Proof. Using Corollary 2.3.1,

ψ̂kii = (ψi −
∑
j

D({i, j}))ki

14



= ψkii + . . .+ (−1)ki
∑
j

D({i, j})ki

= ψkii + . . .+ (−1)ki(−1)ki−1ψki−1
•{i,j}

∑
j

D({i, j})

= ψkii −
∑
j

ψki−1
•{i,j}D({i, j})

The second equality happens as all the terms in the expansion except the first and the last vanish

due to dimension reasons. And it’s only the self intersections that are non-zero in the last term in

the expansion of (ψi −
∑

j D({i, j}))ki . The third and fourth equalities follow from the ki self

intersections of
∑

j D({i, j}).

For the result in the above lemma, we will use the following notation for brevity.

ψ̂kii = ψkii − ψki−1
•i Di (3.3)

where

Di :=
∑
j

D({i, j})

and

ψki−1
•i Di :=

∑
j

ψki−1
•{i,j}D({i, j})

Also, again for brevity, if the P-graph in figure (3.4) corresponds to partition

P = {P1, P2, .., Ps, S1, S2, ..., Sq}, then we will denote ψ•Pj
also as ψPj

in what follows.

Theorem 3.1.1. With P , F, S, Pj, Pj1, Pj2, Si as defined above, for n ≥ 5 we have for M0,( 1
2)

n :

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn =

∑
P∈P

(−1)|F | [ΓP ]
∏
Si∈S

ψ
kSi
Si

∏
Pj∈F

ψ
kPj1+Pj2−1

Pj
(3.4)

where [ΓP ] is the class of boundary stratum in M0,n with dual graph ΓP .
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Proof. Let Di =
∑

j D({i, j}). Omitting ψ̂’s with 0-exponents, and assuming WLOG that the

first r ψ̂’s remain with nonzero-exponents,

ψ̂k11 ψ
k2
2 ˆ. . .ψ̂knn = ψ̂k11 ψ̂

k2
2 ψ̂

k3
3 ...ψ̂

kr
r . Then,

ψ̂k11 ψ̂
k2
2 ψ̂

k3
3 ...ψ̂

kr
r = (ψ1 −D1)k1(ψ1 −D2)k2 . . . (ψr −Dr)

kr

using relation (2.9)

= (ψk11 − ψk1−1
•1 D1)(ψk22 − ψk2−1

•2 D2) . . . (ψkrr − ψkr−1
•r Dr)

using relation (3.3)

= (−1)s
r∑
s=0

ψ
ki1−1
•i1 ψ

ki2−1
•i2 . . . ψkis−1

•is Di1Di2 . . . Disψ
kis+1

is+1
. . . ψ

kir
ir

(3.5)

with 1 ≤ ij ≤ r and i1 < i2 < . . . < is. Now, each term in the expansion of the expression

above is supported on a P-graph from lemma 3.1.1.

Pick a P-graph with s number of colored half-edges on forks and create the corresponding ΓdP .

There are two possibilities: 1) at least one fork has both half-edges uncolored, or 2) all forks of

ΓdP have at least one colored half-edge. Let the second type of graph (figure 3.5) have t number of

forks with both half-edges colored as shown below.

Intersect both types of P-graph with φP(ψ) as defined in (3.1):

φP(ψ) = ψ
ki1+ki2−1
•1 . . . ψ

kit−1
+kit−1

•t−1 ψ
kit+1−1

•(t+1)
. . . ψkis−1

•s ψ
ks+1

is+1
. . . ...ψ

kir
ir

(3.6)

Claim : The intersection of φP(ψ) with the first type of graphs gives 0.

Proof WLOG, suppose the first type of P-graph have i1 and i2 on a fork with ki1 = ki2 = 0. Then

ki1 + ki2 − 1 = −1 and
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Figure 3.5: A decorated P-graph with no uncolored fork

φP(ψ) = ψ−1
•1 . . . ψ

kit−1
+kit−1

•t−1 ψ
kit+1−1

•(t+1)
. . . ψkis−1

•s ψ
ks+1

is+1
. . . ...ψ

kir
ir

is 0 as negative power of a ψ class by standard convention is 0.

Now, consider the second type of P-graph (figure 3.5).

Claim: φP (ψ) .ΓdP , where ΓdP is the second type of graph, uniquely determines a term in the ex-

pansion (3.5) above.

Proof : Define a map from the set of P-graphs to the terms in the expansion (3.5) as follows. For

each il in ΓdP where il is a colored half-edge on a fork, assign a Dil , to form the product
∏s

l=1Dil .

And for each fork on the graph with half-edges il and iq, assign ψ
kil+kiq−1
•m and form their product;

the result is φP(ψ). Then φ(ψ).
∏s

l=1 Dil is precisely the term in the expansion (3.5) that ΓdP̂ maps

to. Further, reversing the process, we get the preimage of a term in expansion (3.5) the unique

P-graph (figure 3.5). So, the map is in fact a bijection. And,

φP (ψ) .ΓdP =

(−1)s+
t
2 (ΓP)ψ

ki1+ki2−1
•1 . . . ψ

kit−1
+kit−1

•t−1 ψ
kit+1−1

•(t+1)
. . . ψkis−1

•s ψ
ks+1

is+1
. . . ...ψ

kir
ir

(3.7)
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= (−1)|F | [ΓP ]
∏
Si∈S

ψ
kSi
Si

∏
Pj∈F

ψ
kPj1+Pj2−1

Pj

3.2 Numerical intersections
In this section, we develop two corollaries of theorem (3.1.1) to develop two versions of a

closed formula for top intersections of ψ̂-classes on M0,n. Then we encode this formula in a

generating function obtained by applying a differential operator to the Witten-potential. As pointed

earlier, these corollaries (3.2.1 and 3.2.2) can also be deduced from theorem 7.9 in [4]. For our

work, we develop specific and explicit closed formulas here and base our combinatorial analysis

closely on the structure of dual graphs.

Corollary 3.2.1. With P , F, Pj,

Pj1, Pj2, Si as defined above, for n ≥ 5 we have:

∫
M0,n

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn =

∑
P∈P

(−1)|F |
(

|P| − 3

〈kPi1
+ kPi2

− 1〉, 〈kS〉

)
(3.8)

where
∑
ki = n− 3, and for a P = {P1, P2, . . . , Ps, S1, . . . , Sq} ,

〈kPi1
+ kPi2

− 1〉 = kP11 + kP12 − 1, . . . , kPs1 + kPs2 − 1, and 〈kS〉 = kS1 , . . . , kSq .

Proof. The proof of this is same as for theorem (3.1.1) except in the last part of evaluation of

φP (ψ) .ΓdP . Here when
∑
ki = n− 3 this evaluation gives

φP (ψ) .ΓdP =

= (−1)s+
t
2

(
n− 3− (s− t

2
)

ki1 + ki2 − 1, . . . , kit+1 − 1, . . . , kis − 1, kis+1 , . . . , kir

)
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= (−1)|F |
(

n− 3− |F |
ki1 + ki2 − 1, . . . , kis + kjs − 1, kis+1 , . . . , kir

)
as kir+1 = . . . = kin = 0

= (−1)|F |
(

|P| − 3

〈kPi1
+ kPi2

− 1〉, 〈kS〉

)

We can reduce the complexity of computation of (3.8) if we can remove the partitions P’s from

P whose graphs evaluate to 0 when intersected with φ(ψ) as described above. Also we can collect

together terms corresponding to permutations of the set {j1, j2, ..., js−t} as all these terms evaluate

to the same value as kji = 0 for all these ji.

Form a new set P′ in the following way : Make the powerset R of [r], where r denotes the

number of ψ’s with non-zero exponent in the ψ-monomial. For each setR ∈ R, create all subsets

P ′ of R whose elements are subsets of R of cardinality 2 or 1 with upper bound of number of

subsets of cardinality 2 fixed at bn
2
c. Call P′ the set of all P ′. This set P′ can also be obtained from

P via the following map: Given a partition P , project to a P ′ by forgetting all points Si ∈ P and

in a Pj ∈ P forget a point Pji if kPji
= 0. More formally, P ′ = {P ′1, P ′2, .., P ′i , S ′1, S ′2, ..S ′j} where

P ′i = Pi if kPi1 > 0 and kPi2 > 0; S ′i = Pi \ {Pij} if kPij
= 0. This is an onto map. Each P ′j has

cardinality 2, and each Si′ has cardinality 1. Denote byP ′c the set [r]\P ′1∪...∪P ′i∪S ′1∪S ′2∪..∪S ′j .

Corollary 3.2.2. With P′ as defined above, for n ≥ 5 we have:

∫
M0,n

ψ̂k11 ψ̂
k2
2 ψ̂

k3
3 ...ψ̂

kr
r =∑

P ′∈P′
(−1)s+

t
2

(n− r)!
(n− r − s+ t)!

(
n− 3− (s− t

2
)

ki1 + ki2 − 1, . . . , kit+1 − 1, . . . , kis − 1, kij1 , . . . , kjq

) (3.9)

where t = 2|{P ′i }|, s = |{Si′}|+ t and {ij1 , .., ijq} = P ′c

Proof. Corresponding to a partition P , form a corresponding decorated graph for P ′ by uncoloring

any half-edges on the central node, and ’forgetting’ the ji’s on uncolored half-edges on the forks as
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discussed above. This corresponds to P ′ = {P ′1, P
′
2, . . . , P

′

t/2, S
′
1, . . . , S

′
s−t}, where P ′i correspond

to nodes with both half-edges colored, and S ′i = it+i in the decorated graph of P in figure (3.5).

Now consider intersection of this graph with φP(ψ) as defined earlier in (3.1) :

φP(ψ).




∼= M0,3 ×M0,3, . . . ,M0,3 × φ(ψ).M0,n−3−(s− t

2
)

= (−1)s+
t
2

(
n− 3− (s− t

2
)

ki1 + ki2 − 1, . . . , kit−1 + kit − 1, kit+1 − 1, . . . , kis − 1, kij1 , . . . , kjq

)
As there are (n−r)!

(n−r−s+t)! ways of choosing the uncolored half-edges on the forks, corresponding

to ji’s, the term evaluates to

= (−1)s+
t
2

(n− r)!
(n− r − s+ t)!

(
n− 3− (s− t

2
)

ki1 + ki2 − 1, . . . , kit+1 − 1, . . . , kis − 1, kij1 , . . . , kjq

)

3.3 Generating Function for the top intersections
We start with the generating function- Witten-potential( [7]). The correlation functions are

defined as intersection numbers on the moduli space of stable n-pointed curves (here for genus 0)

as

〈τk1 . . . τkn〉 :=

∫
M0,n

ψk11 ψ
k2
2 . . . ψknn

Collecting all tau’s with equal exponent, we can write 〈τk1 . . . τkn〉 =

〈τ s00 τ
s1
1 τ

s2
2 . . . τ smm 〉. Now, define s = (s0, s1, . . .), and 〈τ s〉 := 〈τ s00 τ

s1
1 τ

s2
2 . . . τ smm 〉.
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So, for each sequence s, there is a correlation function 〈τ s〉; and |s| :=
∑
si is the number of marks

n. For the generating function, all these correlation functions are collected and used as coefficients

in a formal power series. Using notation ts =
∞∏
i=0

tsii , and s! =
∞∏
i=0

si!, the generating function is

F (t) :=
∑
s

ts

s!
〈τ s〉 (3.10)

= (1)
t30t1
3!

+ (1)
t40t2
4!

+ (2)
t30t

2
1

3!2!
+ (1)

t50t3
5!

+ (3)
t40t1t2

4!
+ (6)

t30t
3
1

3!3!
+ . . . . . .

where the coefficients of appropriate terms give the intersection numbers
∫
M0,n

ψk11 ψ
k2
2 . . . ψknn .

Observe that the total codimension of the integrand in 〈τ s〉 is
∑
isi, so |s| − 3 =

∑
isi. With this

generating function, the String equation for M0,n is the differential equation -

∂

∂t0
F =

t20
2

+
∞∑
i=0

ti+1
∂

∂ti
F

Definition 3.3.1. Define a new generating function

G(t) :=
∑
s

ts

s!
〈τ̂ s〉 (3.11)

where 〈τ̂ s〉 =
∫
M

0,( 12 )
n
ψ̂k11 ψ̂

k2
2 ˆ. . .ψ̂knn as defined earlier,

∑
ki = n− 3.

So, G(t) has as coefficients of the monomials ts

s!
the intersection numbers

∫
M0,A

ψ̂k11 ψ̂
k2
2 ˆ. . .ψ̂knn

for any value of n and any values of ki’s, with
∑
ki = n− 3.
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Theorem 3.3.1. With G(t) as defined above,

G(t) = L̂(F (t))− t30
3!

+ 2
t30t1
3!

(3.12)

where L̂ = : e−L :, and : e−L : denotes the operator with normal ordering1, and

L =
1

2

∞∑
i,j=0

titj
∂

∂ti+j−1

(3.13)

Before we prove the above theorem, consider the ψ̂−monomial
∫
M0,A

ψ̂n−3
1 . It is the coefficient

of t−monomial t
(n−1)
0 tn−3

(n−1)!
in G(t). When we apply the operator L̂ = 1− L+ : L

2

2!
: − . . . to F (t),

only the terms with the following t−monomials in F (t) contribute to the term with t−monomial
t
(n−1)
0 tn−3

(n−1)!
in L̂(F (t)): t

(n−1)
0 tn−3

(n−1)!
and t

(n−2)
0 tn−4

(n−2)!
.

The first term of L̂ is 1, which when acts on F (t) produces the t−monomial t
(n−1)
0 tn−3

(n−1)!
as it is;

the second operates as follows:

−t0tn−3
∂

∂tn−4

(
t
(n−2)
0 tn−4

(n− 2)!

)
= −(n− 1)

t
(n−1)
0 tn−3

(n− 1)!
.

No other term in F (t) contributes to the coefficient of the t−monomial t
(n−1)
0 tn−3

(n−1)!
in L̂(F (t)) .

As the monomial t
(n−1)
0 tn−3

(n−1)!
has as coefficient

∫
M0,n

ψn−3
1 , and the monomial t

(n−2)
0 tn−4

(n−2)!
has as

coefficient
∫
M0,n−1

ψn−4
1 in F (t), the coefficient of t

(n−1)
0 tn−3

(n−1)!
in L̂(F (t)) is

∫
M0,n

ψn−3
1 − (n −

1)
∫
M0,n−1

ψn−4
1 which equals∫

M
0,( 12 )

n
ψ̂n−3

1 from corollary (3.2.1).

1by normal ordering of the operator, we mean that we treat the ti’s and ∂
∂ti

’s as commuting variables, and bring
all ti’s to the left of ∂

∂ti
’s. E.g., if J = titj

∂
∂ti+j−1

,

J 2 = titj
∂

∂ti+j−1
titj

∂

∂ti+j−1
,

but
: J 2 : = t2i t

2
j

∂

∂ti+j−1

∂

∂ti+j−1
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Observe that both the contributions correspond to the two types of P-graphs that make non-

zero contributions to
∫
M0,A

ψ̂n−3
1 in corollary (3.2.1).The first are of type with no forks; the second

of type with one fork.

Definition 3.3.2. For each P-graph, the corresponding Pk-graph is defined by replacing each

i ∈ [n] on the P-graph by ki.

Clearly the map {P-graphs} → {Pk-graphs} is a surjection.

Lemma 3.3.1. In genus 0, for a given 〈τk1 . . . τkn〉 =
∫
M0,n

ψk11 ψ
k2
2 . . . ψknn as defined above, let

s = (s0, s1, . . . sn), and 〈τk1 . . . τkn〉 = 〈τ s00 τ
s1
1 τ

s2
2 . . . τ snn 〉. Consider a Pk-graph with m forks with

q distinct ki’s appearing on the forks; let such ki’s be {k1, k2, . . . kq}. Let li be the number of times

a given ki appears on any fork on the Pk-graph. Then the number of P-graphs that map to this

Pk-graph is given by:

1

|Aut(P̂k)|
sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

=: CPk
(3.14)

where |Aut(P̂k)| is the number of automorphisms of the subgraph of Pk-graph obtained from

removing half-edges on the central node.

Proof. Consider a Pk-graph with m number of forks s.t q number of ki’s appear on the forks as

defined above. Then if all n half-edges are given ordering, the number of P-graphs where half-

edges are ordered would be

s0!s1!s2! . . . sn!

Now, we divide by the permutations of half-edges on the central node to get

s0!

(s0 − l1)!

s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!

Now, restrict li to be the number of times a given ki appears on any fork on the Pk-graph. As only

q number of ki’s appear on the forks, li = 0 for i > q, so
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s0!

(s0 − l1)!

s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!
=

sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

Further we need to divide by permutations of half-edges on the forks. Let j1, j2, . . . , jf be the

number of forks with the same set of ki’s on them; and let d be the number of forks with both ki’s

same on that fork. Then, we divide by 2d (j1!j2! . . . jf !) to get

(
1

2d (j1!j2! . . . jf !)

)
sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

Observe that the number
(
2d (j1!j2! . . . jf !)

)
is the number of automorphisms of the subgraph of

Pk-graph consisting of only the forks; denote this subgraph as P̂k. Then the number of P-graphs

that map to this Pk-graph can be rewritten as :

1

|Aut(P̂k)|
sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

The reason for organizing CPk
as in (3.14) will become clear in the proof of theorem (3.3.1).

Lemma 3.3.2. With the definitions and notations above, corollary (3.2.1) can be rewritten as :

∫
M

0,( 12 )
n

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn =

∑
Pk∈Q

(−1)mCPk

∫
M0,(n−m)

ψ
ki1+ki2−1
•1 . . . ψ

ki2m−1
+ki2m−1

•m ψ
k2m+1

i2m+1
. . . ...ψ

kir
ir

(3.15)

where m is number of forks on the Pk-graph and CPk
is the number of P-graphs that map to

this Pk-graph, and Q is the set of all Pk-graphs.

Proof. This version of closed formula for
∫
M

0,( 12 )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn is just a reorganization of (3.8)

using Pk-graphs instead of P-graphs. As the map

{P-graphs} → {Pk-graphs} is a surjection, we get all the terms in (3.8).
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Now, for a general Pk-graph with m number of forks shown below, define the following oper-

ator (which appears in L̂):

DPk
:= tki1 tki2 . . . tki2m−1

tki2m
∂

∂tki1+ki2−1

. . .
∂

∂tki2m−1
+ki2m−1

(3.16)

Figure 3.6: Pk-graph with m forks

and the following term in (3.15) :

(−1)mCPk

∫
M0,(n−m)

ψ
ki1+ki2−1
•1 . . . ψ

ki2m−1
+ki2m−1

•m ψ
k2m+1

i2m+1
. . . ...ψ

kir
ir

(3.17)

By construction, the terms (3.16) are in bijection with the Pk-graphs. Furthermore, the term (3.16)

arises in L̂ as a summand in : (−1)mL
m

m!
: with some multiplicity. As part of the proof of theorem,

we will see that this multiplicity is (−1)m 1

|Aut(P̂k)| with |Aut(P̂k)| as defined in Lemma (3.3.1).

And the term (3.17) is a summand in (3.15) corresponding to this Pk-graph.

Strategy of proof of theorem (3.3.1): we will show that for a general t-monomial t0s0 t1s1 ...tl
sl

s0!s1!...sl!
,

its coefficients in G(t) and L̂(F (t))− t30
3!

are equal. And that both equal
∫
M

0,( 12 )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn . To

show that, we show a bijection between Pk graphs and the terms (3.17) which are the summands

in the formula (3.15). To show this bijection, we pick a Pk graph, and find the term (3.16) in L̂

(with some multiplicity); then we find the term T̃Pk
in F (t), such that the term (3.16) when applied

to T̃Pk
gives the t-monomial t0

s0 t1s1 ...tl
sl

s0!s1!...sl!
with coefficient the intersection number defined in (3.17).

As that exactly is the summand in (3.15) corresponding to the chosen Pk-graph, this proves the
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theorem in one direction. In the other direction, we pick a term (3.17) which is a summand in the

coefficient of t-monomial t0
s0 t1s1 ...tl

sl

s0!s1!...sl!
, and show that this maps to the same Pk-graph.

Before the proof, here is an example that illustrates the idea.

Example 3.3.1. Consider

∫
M

0,( 1
2)

61

ψ̂1
1 . . . ψ̂

1
8ψ̂

2
9 . . . ψ̂

2
13ψ̂

3
14ψ̂

3
15ψ̂

4
16ψ̂

4
17ψ̂

4
18ψ̂

5
19ψ̂

5
20ψ̂

6
21ψ̂

6
22

The corresponding t-monomial in G(t) is

t0
s0t1

s1 . . . tl
sl

s0!s1! . . . sl!
=
t0

39t1
8t2

5t3
2t4

3t5
2t6

2

39!8!5!2!3!2!2!
=: TPk

Now consider the following Pk-graph with m = 7 forks as in the following figure.

Figure 3.7: Pk-graph with m = 7 forks

The corresponding operator (3.16) is

DPk
= t71t

5
2t3t4

∂3

∂t32

∂2

∂t21

∂

∂t3

∂

∂t6

The coefficient of this term in : (−1)7L7
7!

: is given by

(−1)7

(
1

277!

)(
24

(
7

3, 2, 1, 1

))
= (−1)7

(
1

233!2!

)
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The corresponding unique term in F (t) is

t0
39t1

3t2
3t3

2t4
1t5

2t6
3

39!3!3!2!1!2!3!
=: T̃Pk

In L̂(F (t)), the corresponding term is

(−1)7

(
1

233!2!

)
(〈τ s〉)DPk

(T̃Pk
)

where

〈τ s〉 =

∫
M

0,( 1
2)

54

ψ̂1
1ψ̂

1
2ψ̂

1
3ψ̂

2
4ψ̂

2
6ψ̂

3
7ψ̂

3
8ψ̂

4
9ψ̂

5
10ψ̂

5
12ψ̂

6
13ψ̂

6
14ψ̂

6
15

Observe that the coefficient (−1)7
(

1
233!2!

)
of DPk

in : (−1)7L7
7!

: is exactly (−1)m 1

|Aut(P̂k)| as

claimed earlier. Now,

(−1)7

(
1

233!2!

)
(〈τ s〉)DPk

(T̃Pk
)

= (−1)7

(
1

233!2!

)(
8!

(8− 7)!

5!

(5− 5)!

2!

(2− 1)!

2!

(2− 1)!

3!

(3− 1)!

)
(〈τ s〉)TPk

= (−1)7

(
1

233!2!

)(
8!5!2!2!3!

2!

)
(〈τ s〉)TPk

= (−1)7

(
1

|Aut(P̂k)|

)(
8!5!2!2!3!

2!

)
(〈τ s〉)TPk

= (−1)7CPk
(〈τ s〉)TPk

which term in L̂(F (t)) has as coefficient of TPk
exactly the term (3.17) which is the summand in

(3.15) corresponding to the chosen Pk-graph.

Proof. (of theorem (3.3.1))

Consider a general term in G(t) with the corresponding t-monomial t0s0 t1s1 ...tl
sl

s0!s1!...sl!
, with coeffi-

cient
∫
M

0,( 12 )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn . Now, we will show that we get all the terms of formula (3.15) in

L̂(F (t)) = (1− : L : + : L
2

2!
: − . . .+ : (−1)mL

m

m!
: + . . .)(F (t)) and that each term corresponds

27



to a Pk-graph.

1. Pick a Pk-graph with no fork. Associated operator (3.16) in L̂ is 1, the first term in L̂, which

when applied to F (t) results in coefficient 1 for t0s0 t1s1 ...tl
sl

s0!s1!...sl!
in L̂(F (t)).

2. Pick a Pk-graph with one fork. WLOG, assume a Pk-graph with k1, k2 on a single fork, with

k1, k2 not simultaneously 0.

Case 1 : k1 6= k2. Then, the corresponding operator (3.16) as tk1tk2
∂

∂tk1+k2−1
. In L̂, this term

has coefficient −1. The term in F (t) that it operates on to produce t0s0 t1s1 ...tl
sl

s0!s1!...sl!
has t-monomial -

t0
s0 . . . tk1

sk1−1 . . . tk2
sk2−1 . . . tkl

skl

s0! . . . sk1−1! . . . sk2−1! . . . sl!
tk1+k2−1

The result of applying in −tk1tk2 ∂
∂tk1+k2−1

in L̂ to F (t) is the following :

−tk1tk2
∂

∂tk1+k2−1

(
t0
s0 . . . tk1

sk1−1 . . . tk2
sk2−1 . . . tkl

skl

s0! . . . sk1−1! . . . sk2−1! . . . sl!
tk1+k2−1)

= −sk1sk2
t0
s0t1

s1 . . . tl
sl

s0!s1! . . . sl!

So, the coefficient contributed by this operator to t0s0 t1s1 ...tl
sl

s0!s1!...sl!
in L̂(F (t)) is

−sk1sk2
∫
M0,(n−1)

ψk1+k2−1
•1 ψk33 . . . ...ψkrr

and CPk
= sk1sk2 is the number of P-graphs that map to this kind of Pk-graph.

Case 2 : k1 = k2. In this case we get the corresponding term (3.16) as t2k1
∂

∂t2k1−1
. The coefficient

of this term in L̂ is −1
2
. When −1

2
t2k1

∂
∂t2k1−1

is applied to F (t), the only terms that produces

t0s0 t1s1 ...tl
sl

s0!s1!...sl!
is

t0
s0t1

s1 . . . tk1
sk1−2 . . . tkl

skl

s0! . . . sk1−2! . . . sl!
t2k1−1
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And

−1

2
t2k1

∂

∂t2k1−1

(
t0
s0t1

s1 . . . tl
sl

s0!s1! . . . sl!

t0
s0t1

s1 . . . tk1
sk1−2 . . . tkl

skl

s0! . . . sk1−2! . . . sl!
t2k1−1)

= −1

2
sk1(sk1 − 1)

t0
s0t1

s1 . . . tl
sl

s0!s1! . . . sl!

So, the coefficient contributed by this operator to t0s0 t1s1 ...tl
sl

s0!s1!...sl!
in L̂(F (t)) is

−1

2
sk1(sk1 − 1)

∫
M0,(n−1)

ψ2k1−1
•1 ψk22 . . . ...ψkrr

and CPk
= 1

2
sk1(sk1 − 1) is the number of P-graphs that that map to to this kind of Pk-graph.

In both cases, the terms contribute −CPk

∫
M0,(n−1)

ψk1+k2−1
•1 ψk33 . . . ...ψ

kir
ir

to the coefficient of

t-term t0s0 t1s1 ...tl
sl

s0!s1!...sl!
in L̂(F (t)). So, we get both terms in 3.15 corresponding to two Pk-graphs with

one fork. Also, observe that if k1 = k2 = 0, the term −t20 ∂
∂t−1

contributes nothing.

Now consider a Pk-graph with m number of forks. WLOG, let the ki’s on the forks be

{k1, k2, . . . , k2m} as shown in figure below.Let li be the number of times a given ki appears on

any fork on the Pk-graph, and let j1, j2, . . . , jf be the number of forks with the same set of ki’s on

them; and let d be the number of forks with both ki’s same on that fork.

Then the corresponding operator (3.16) is

tk1tk2 . . . tk2m−1tk2m
∂

∂tk1+k2−1

. . .
∂

∂tk2m−1+tk2m−1

:= DPk

The coefficient of this term in L̂ as a summand in : (−1)mL
m

m!
: is given by
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(−1)m
(

1

2mm!

)(
2(m−d)

(
m

l1, l2, . . . , ln

))
= (−1)m

(
1

2dl1!l2! . . . , ln!

)
The corresponding term in F (t) is

t0
s0 . . . tk1

(sk1−lk1) . . . tk2m
(sk2m−lk2m)

s0! . . . (sk1 − lk1)! . . . (sk2m − lk2m)! . . . skn !
tk1+k2−1 . . . tk2m−1+k2m−1 =: T̃Pk

In L̂(F (t)), the corresponding term is

(−1)m
(

1

2dl1!l2! . . . , ln!

)
(〈τ s〉)DPk

(T̃Pk
)

where 〈τ s〉 is the appropriate ψ-monomial onM
0,( 1

2)
(n−m) that appears as coefficient of T̃Pk

in F (t).

Observe that the coefficient (−1)m
(

1
2dl1!l2!...,ln!

)
of DPk

in : (−1)mL
m

m!
: is exactly (−1)m 1

|Aut(P̂k)|

as claimed earlier. Now,

(−1)m
(

1

2dl1!l2! . . . , ln!

)
(〈τ s〉)DPk

(T̃Pk
)

1

|Aut(P̂k)|
s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!
=: CPk

= (−1)m
(

1

2dl1!l2! . . . , ln!

)(
s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!

)
(〈τ s〉)TPk

= (−1)m

(
1

|Aut(P̂k)|

)(
s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!

)
(〈τ s〉)TPk

= (−1)mCPk
(〈τ s〉)TPk

which term in L̂(F (t)) has as coefficient of TPk
exactly the term (3.17) which is the summand in

(3.15) corresponding to the chosen Pk-graph.

So, one direction is proved. To show bijection in the other direction, we pick a summand in the

coefficient of t0s0 t1s1 ...tl
sl

s0!s1!...sl!
= TPk

in L̂(F (t)) that comes from term : (−1)m

m!
Lm :. Let this summand
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come from the following summand in : (−1)m

m!
Lm :

(−1)m
(

1

2dl1!l2! . . . , ln!

)
(〈τ s〉)DPk

(T̃Pk
)

where

DPk
= tk1tk2 . . . tk2m−1tk2m

∂

∂tk1+k2−1

. . .
∂

∂tk2m−1+tk2m−1

,

〈τ s〉 is uniquely determined by T̃Pk
, and T̃Pk

is uniquely determined by

DPk
(T̃Pk

) = TPk

As this DPk
is in bijection with the Pk-graph as in the figure by construction, we get the term in

(3.15) corresponding to this Pk-graph as the chosen summand in L̂(F (t)). So the coefficient of

t0s0 t1s1 ...tl
sl

s0!s1!...sl!
in L̂(F (t)) equals the coefficient of t0s0 t1s1 ...tl

sl

s0!s1!...sl!
in G(t).
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Chapter 4

Closed Formula for intersections of ψ-classes on

M
0,(1

q)
n

For the work in this chapter, A = (1
q
, 1
q
, . . . , 1

q
), where q ∈ Z+ for M0,A, and we denote it by

M0,( 1
q )

n . In this chapter, we develop the closed formula for integrals of ψ̂ monomials correspond-

ing to the ψ̄ monomials on M0,( 1
q )

n .

4.1 Cycle intersections
We denote by P = {P1, P2, .., Pm, S1, S2, . . . , Sc} an unordered partition of [n], such that car-

dinality of any subset in the partition is between 1 and q. Further, Si have cardinality 1, and Pi have

cardinality other than 1. And for a Pi with cardinality zi, 2 ≤ zi ≤ q, denote by Pi,1, Pi,2, . . . , Pi,zi

the elements of Pi. Further, for P as above, denote by F the set of all Pj’s, and by S the set of all

Sj’s such that |F | = m and such that |S| = c. Let |P| denote the number of subsets in P . Denote

by P the set of all such partitions P . For a Pj , and i ∈ Pj define

αj :=
∑
i∈Pj

ki

Theorem 4.1.1. With P , F, S, Pj and αj as defined above, for n ≥ 5 we have for M0,( 1
q )

n :

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn =

∑
P∈P

[ΓP ]
∏
Si∈P

ψαi
Si

∏
Pj∈P

ψ
αj

•Pj(
−ψ•Pj

− ψ?Pj

) (4.1)

where [ΓP ] is the class of boundary stratum in M0,n with dual graph ΓP . And for each Pj , the

half-edge •Pj is the mark on the node pulled back from the factor corresponding to the central

node, and ?Pj is the mark on the node pulled back from the factor corresponding to the respective

fork, as defined in (3.1.3).
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Proof. Let

Di =
∑
I3i,∑

j∈I aj≤1

D(I)

So, the summands in the above are all the divisors that have on one node half-edges that can

vary from 2 to q in number and i mark is on that edge. Omitting ψ̂’s with 0-exponents, and

assuming WLOG that the first r ψ̂’s remain with nonzero-exponents, so that ψ̂k11 ψ
k2
2 ˆ. . .ψ̂knn =

ψ̂k11 ψ̂
k2
2 ψ̂

k3
3 ...ψ̂

kr
r . Then,

ψ̂k11 ψ̂
k2
2 ψ̂

k3
3 ...ψ̂

kr
r = (ψ1 −D1)k1(ψ1 −D2)k2 . . . (ψr −Dr)

kr (4.2)

using relation (2.9).

From here, we can proceed with the above relation to prove our result as was done for the

relation in the case of weights all 1
2

in proof of theorem (3.4). But instead we choose to use a result

already established for ω classes in theorem 2.2 in [8]. This theorem that applies to ω classes on

M g,n gives our result above as a special case. In essence, while the number of half-edges on a Di

for our case is restricted to a maximum of q, in the case of ω classes, there is no such restriction.

Rest of the computation remains the same. So, below we give the required background and this

theorem without proofs.

We define ω classes, also called stable ψ classes, which are just pull-backs of ψ classes from

spaces of curves with only one mark as follows.

Definition 4.1.1. Let g, n ≥ 1, i ∈ [n], and let ρi : Mg,n → Mg,{i} be the rememberful morphism,

i.e. a composition of forgetful morphisms for all but the i-th mark. Then we define

ωi := ρ?ψi (4.3)

in R1(M g,n).
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We call any boundary stratum where all the genus is concentrated at one vertex of the dual

graph a stratum of rational tails type. The following Lemma for the case of M g,n gives an explicit

relation between ω and ψ classes.

Lemma 4.1.1. Let g, n ≥ 1, i ∈ [n]. Then:

ψi := ωi +
∑
I3i

D(I) (4.4)

where D(I) is a divisor of rational type, and I is subset of marks on the rational tail.

This Lemma means that ψi is obtained from ωi by adding all divisors where the i-th mark is

contained in one of the two components. Now, we compare the definition (4.4) of ωi with the

definition of ψ̂i in (2.8) from Lemma 2.8 which we reproduce below.

ψi = ψ̂i +
∑
I3i,∑

j∈I aj≤1

D(I) (4.5)

We see that the only difference between the ω classes and the ψ̂ classes is the extra constraint∑
j∈I aj ≤ 1 for D(I) in the case of ψ̂ classes, and of course the difference in genus and corre-

sponding stability conditions.

Denote by P̃ = {P1, P2, .., Pm, S1, S2, . . . , Sc} an unordered partition of [n], such that cardi-

nality of any subset in the partition is greater than or equal to 1. Further, let Si have cardinality

1, and Pi have cardinality other than 1. And for a Pi with cardinality zi, zi ≥ 2, denote by

Pi,1, Pi,2, . . . , Pi,zi the elements of Pi. Further, for P as above, denote by F the set of all Pj’s, and

by S the set of all Sj’s such that |F | = m and such that |S| = c. Let |P| denote the number of

subsets in P . Denote by P̃ the set of all such partitions P̃ . For a Pj , and i ∈ Pj define

αj :=
∑
i∈Pj

ki
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Theorem 4.1.2. [theorem 2.2 in [8]] With P , F, S, Pj and αj as defined above, and g, n ≥ 1 we

have for M g,n :

ωk11 ω
k2
2 . . . ωknn =

∑
P̃∈P̃

[ΓP̃ ]
∏
Si∈P̃

ψαi
Si

∏
Pj∈P̃

ψ
αj

•Pj(
−ψ•Pj

− ψ?Pj

) (4.6)

where [ΓP̃ ] is the class of boundary stratum in M0,n with dual graph ΓP̃ . And for each Pj , the

half-edge •Pj is the mark on the node pulled back from the factor corresponding to the central

node, and ?Pj is the mark on the node pulled back from the factor corresponding to the respective

fork, as defined in (3.1.3).

The proof of the above theorem in [8] starts by expanding the left hand side as follows.

ωk11 ω
k2
2 . . . ωknn = (ψ1 −B1)k1(ψ1 −B2)k2 . . . (ψn −Bn)kn (4.7)

where

Bi =
∑
I3i

D(I)

and then establishes the following:

1. All the intersections in (4.7) are supported on dual graphs that are the forked graphs with

‘central’ node with concentrated genus, and the forks corresponding to rational tails, with

appropriate decorations of ψ classes

2. The forks on such supporting forked graphs can take any number of half-edges greater than

1. So, a supporting forked graph would be as below.

3. Corresponding to any such forked graphs, we can get more than just one intersection. This is

because there are many non-transverse intersections possible when the number of half-edges

on a divisor is greater than 2.

4. If we associate each of the forked graphs with a partition P̃ as defined above, the intersections

we get in the expansion of (4.7) is given by:
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Figure 4.1: P-graph with m forks

[ΓP̃ ]
∏
Si∈P̃

ψαi
Si

∏
Pj∈P̃

ψ
αj

•Pj(
−ψ•Pj

− ψ?Pj

)

5. Summing over all the P̃ ∈ P̃ gives the result (4.6)

So, the difference between (4.2) and (4.7) is the difference between Di and Bi, and the genus

on the central node of the resulting dual graphs. But the combinatorics of the intersections is the

same in both cases. So, using the combinatorial result in (4.7) and restricting the partitions to have

the maximum cardinality of q gives our result.

In formula (4.1), the denominator of the rational function is intended to be expanded as a

geometric series in
ψ•Pj

ψ?Pj
. So, for each Pj ∈ P , we have

ψ
αj

•Pj

−ψ•Pj
− ψ?Pj

= −ψαj−1
•Pj

+ ψ
αj−2
•Pj

ψ?Pj
− ψαj−3

•Pj
ψ2
?Pj

+ . . . (4.8)

The sum in (4.8) is finite since we defined negative powers of ψ to vanish. We also observe that

if αj = 0, the right-hand side of (4.8) equals 0. Hence the formula is supported on forked-graphs

representing strata where each fork has at least one point i with strictly positive ki .
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Here is an example that illustrates the result of the above theorem.

Example 4.1.1. Over M
0,( 1

5)
11 , consider the monomial:

ψ̂1
1ψ̂

1
2ψ̂

2
3ψ̂

3
4

And consider the following P-graph with 2 forks as in the following figure.

Figure 4.2: P-graph with 2 forks

Corresponding to this dual graph, the term in the sum in (4.1) is given by:

[ΓP ]ψ1
1.ψ•P1

0
(
−ψ4
•P2

+ ψ3
•P2
ψ?P2 − ψ2

•P2
ψ2
?P2

+ . . .
)

= [ΓP ]ψ1
1.ψ•P1

0
(
−ψ4
•P2

+ ψ3
•P2
ψ?P2 − ψ2

•P2
ψ2
?P2

)
= [ΓP ]ψ1

1
(
−ψ4
•P2

+ ψ3
•P2
ψ?P2 − ψ2

•P2
ψ2
?P2

)
The second equality is due to the fact that the terms in the infinite series after the first three

terms vanish due to dimensionality reasons.
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4.2 Numerical intersections
Corollary 4.2.1. With P , F, S, Pj, zi and αj as defined above, for n ≥ 5 and

∑
ki = n − 3, we

have for M0,( 1
q )

n :

∫
M

0,( 1
q )

n

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn =

∑
P∈P

(−1)n+|P|
(
|P| − 3

Ind (P)

)
(4.9)

where Ind (P) = kP1 , kP2 , . . . kPm with

kPi
:= kPi,1

+ kPi,2
+ . . .+ kPi,zi

− zi + 1 (4.10)

Proof. This statement follows from formula (4.1), by noticing the following two facts:

1. For any partition P ∈ P, by dimension reasons the only monomial that has nonzero evalua-

tion on [ΓP ] is ∏
Si∈P

ψαi
Si

∏
Pi∈P

(−1)|Pi|−1ψ
αi−|Pi|+1
•Pi

ψ
|Pi|−2
?Pi

(4.11)

2. For any n ≥ 3, i ∈ [n], ∫
M0,n

ψn−3
i = 1

So, all evaluations for the classes ψ|Pi|−2
?Pi

in (4.11) contribute a factor of 1 to the overall evalation

of (4.11) on [ΓP ]. It follows that, for every P ∈ P,

∫
[ΓP ]

∏
Si∈P

ψαi
Si

∏
Pi∈P

(−1)|Pi|−1ψ
αi−|Pi|+1
•Pi

ψ
|Pi|−2
?Pi

=

∫
M0,|P|

(−1)
∑
|Pi|−|F |

∏
Si∈P

ψαi
Si

∏
Pi∈P

ψ
αi−|Pi|+1
•Pi

=

∫
M0,|P|

(−1)n−|S|−|F |
∏
Si∈P

ψαi
Si

∏
Pi∈P

ψ
αi−|Pi|+1
•Pi
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=

∫
M0,|P|

(−1)n−|P|
∏
Si∈P

ψαi
Si

∏
Pi∈P

ψ
αi−|Pi|+1
•Pi

=

∫
M0,|P|

(−1)n+|P|
∏
Si∈P

ψαi
Si

∏
Pi∈P

ψ
αi−|Pi|+1
•Pi

And the above expression when evaluated for all P ∈ P gives the formula in (4.9):

∫
M

0,( 1
q )

n

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn

=
∑
P∈P

∫
M0,|P|

(−1)n+|P|
∏
Si∈P

ψαi
Si

∏
Pi∈P

ψ
αi−|Pi|+1
•Pi

=
∑
P∈P

(−1)n+|P|
(
|P| − 3

Ind (P)

)

Example 4.2.1. Over M
0,( 1

5)
11 , consider the following numerical intersection:

∫
M

0,( 1
5)

11

ψ̂1
1ψ̂

1
2ψ̂

2
3ψ̂

3
4ψ̂

1
5

And consider the following P-graph with 2 forks as in the following figure.

Figure 4.3: P-graph with 2 forks
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Corresponding to this dual graph, the term in the sum in (4.9) is given by:

[ΓP ]ψ1
1.ψ•P1

0
(
−ψ5
•P2

+ ψ4
•P2
ψ?P2 − ψ3

•P2
ψ2
?P2

)
= [ΓP ]ψ1

1.
(
−ψ5
•P2

+ ψ4
•P2
ψ?P2 − ψ3

•P2
ψ2
?P2

)
= [ΓP ]ψ1

1.
(
−ψ3
•P2
ψ2
?P2

)
= −

∫
M0,7

ψ1
1.
(
ψ3
•P2

)
= −

(
7

1, 3

)

4.3 Generating Function for the top intersections
Here again, as in section 3.3, we start with the generating function- Witten-potential( [7])- F (t)

with :

F (t) :=
∑
s

ts

s!
〈τ s〉 (4.12)

and

〈τk1 . . . τkn〉 :=

∫
M0,n

ψk11 ψ
k2
2 . . . ψknn

And our goal is to define an analogous generating function for top intersections on M0,( 1
q

)
n .

Definition 4.3.1. Define a new generating function

G(t) :=
∑
s

ts

s!
〈τ̂ s〉 (4.13)

where 〈τ̂ s〉 =
∫
M

0,( 1q )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn as defined earlier, and

∑
ki = n− 3.

So,G(t) has as coefficients of the monomials ts

s!
the intersection numbers

∫
M

0,( 1q )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn

for any value of n and any values of ki’s, with
∑
ki = n− 3.
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Theorem 4.3.1. With G(t) as defined above,

G(t) = L̂(F (t))− t30
3!

(4.14)

where L̂ = : eL :, and : eL : denotes the operator with normal ordering2, and

L =

q∑
s=2

(−1)s−1
∞∑

i1,i2,...,is=0

1

s!
(ti1 . . . tis)

∂

∂ti1+i2+...+is−s+1

(4.15)

Definition 4.3.2. For each P-graph, the corresponding Pk-graph is defined by replacing each

i ∈ [n] on the P-graph by ki.

Figure 4.4: P-graph with m forks

2by normal ordering of the operator, we mean that we treat the ti’s and ∂
∂ti

’s as commuting variables, and bring
all ti’s to the left of ∂

∂ti
’s. E.g., if J = titj

∂
∂ti+j−1

,

J 2 = titj
∂

∂ti+j−1
titj

∂

∂ti+j−1
,

but
: J 2 : = t2i t

2
j

∂

∂ti+j−1

∂

∂ti+j−1
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Figure 4.5: Pk-graph with m forks

Let Q be the set of all Pk-graphs. We call a fork on P-graph a Pi-fork, and the corresponding

fork on a Pk-graph a Qi-fork. Observe that Qm and Qn, m 6= n, can have same set of ki’s on them.

Clearly the map {P-graphs} → {Pk-graphs} is a surjection.

Lemma 4.3.1. In genus 0, for a given 〈τk1 . . . τkn〉 =
∫
M0,n

ψk11 ψ
k2
2 . . . ψknn as defined above, let

s = (s0, s1, . . . sn), and 〈τk1 . . . τkn〉 = 〈τ s00 τ
s1
1 τ

s2
2 . . . τ snn 〉. Consider a Pk-graph with m forks with

q distinct ki’s appearing on the forks; let such ki’s be {k1, k2, . . . kq}. Let li be the number of times

a given ki appears on any fork on the Pk-graph. Then the number of P-graphs that map to this

Pk-graph is given by:

1

|Aut(P̂k)|
sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

=: CPk
(4.16)

where |Aut(P̂k)| is the number of automorphisms of the subgraph of Pk-graph obtained from

removing half-edges on the central node.

Proof. Consider a Pk-graph with m number of forks s.t q number of ki’s appear on the forks as

defined above. Then if all n half-edges are given ordering, the number of P-graphs where half-

edges are ordered would be

s0!s1!s2! . . . sn!
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Let li be the number of times a given ki appears on any half-edge on the Pk-graph. Now, we divide

by the permutations of half-edges on the central node to get

s0!

(s0 − l1)!

s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!

Now, restrict li to be the number of times a given ki appears on any fork on the Pk-graph. As only

q number of ki’s appear on the forks, li = 0 for i > q, so

s0!

(s0 − l1)!

s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!
=

sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

Further we need to divide by permutations of half-edges on the forks. Let rij be the number of

times a kj appears on fork Pi. Then we divide by the order of the stabilizer of Szi , the permutation

group for each Qi-fork. Further let zi =
∑

j rij , so that zi gives the cardinality of Pi for fork Pi.

And lj =
∑

i rij . Then we need to divide by the order of the stabilizer of Sm, the permutation

group for m Qi-forks. Let there be f distinct forks and let each distinct Qj-fork be repeated mj

times. Then,

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!

 sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

Observe that the number
(

1
m1!

1
m2!

. . . 1
mf !

∏
Pi,kj

1
rij !

)
is the number of automorphisms of the

subgraph of Pk-graph consisting of only the forks; denote this subgraph as P̂k. Then the number

of P-graphs that map to a Pk-graph can be rewritten as :

1

|Aut(P̂k)|
sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

=: APk
SPk

=: CPk

where

APk
=

1

|Aut(P̂k)|
,
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and

SPk
=

sk1 !

(sk1 − l1)!

sk2 !

(sk2 − l2)!
. . .

skq !(
skq − lq

)
!

CPk
can also be written as follows:

CPk
=

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!

( s0!

(s0 − l1)!

s1!

(s1 − l1)!

s2!

(s2 − l2)!
. . .

sn!

(sn − ln)!

)
(4.17)

The reason for organizing CPk
as in (4.17) will become clear in the proof of theorem (4.3.1).

Lemma 4.3.2. With the definitions and notations above, corollary (4.2.1) can be rewritten as :

∫
M

0,( 1q )
n

ψ̂k11 ψ̂
k2
2 . . . ψ̂knn =

∑
Pk∈Q

(−1)n+|P|CPk

∫
M0,(n−m)

ψ
kP1
P1

. . . ψ
kPm
Pm

ψ
kS1
S1

. . . ...ψ
kSc
Sc

(4.18)

where CPk
is the number of P-graphs that map to this Pk-graph, and Q is the set of all Pk-

graphs. And, kPi
is as defined in (4.10).

Proof. This version of the closed formula for
∫
M

0,( 1q )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn is just a reorganization of

(4.9) using Pk-graphs instead of P-graphs. As the map

{P-graphs} → {Pk-graphs} is a surjection, we get all the terms in (4.9).

Now, for a general Pk-graph corresponding to the following P-graph with m number of forks

shown below, we define a Pk-operator DPk
which appears in L̂, a Pk-term that appears as a sum-

mand in (3.15), a t-monomial TPk
which appears in F (t) as follows.
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Figure 4.6: P-graph with m forks

Definition 4.3.3. A Pk-operator DPk
(which appears in L̂), corresponding to a P-graph with m

number of forks shown in figure (4.7) is defined as follows:

DPk
:= tP1tP2 . . . tPm

∂

∂tkP1

. . .
∂

∂tkPm

(4.19)

where,

tPi
:= tkPi,1

tkPi,2
. . . tkPi,zi

(4.20)

DPk
can also be written as follows:

DPk
=

(
n∏
i=0

tlii

)
∂

∂tkP1

. . .
∂

∂tkPm

(4.21)

Definition 4.3.4. A Pk-term that appears as a summand in (3.15), corresponding to a P-graph

with m number of forks shown in figure (4.7) is defined as follows :

(−1)n+|P|CPk

∫
M0,(n−m)

ψ
KP1
P1

. . . ψ
KPm
Pm

ψ
kS1
S1

. . . ...ψ
kSc
Sc

(4.22)

Definition 4.3.5. A t-monomial TPk
corresponding to a P-graph with m number of forks shown in

figure (4.7) is constructed as follows:
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1. To every Pi ∈ P , and every Si ∈ P , associate a tkPi
and tkSi

where,

tkPi
:= tkPi,1

+kPi,2
+...+kPi,zi

−zi+1

And form the product : (
tkP1

tkP2
. . . tkPm

) (
tkS1

tkS2
. . . tkSc

)
2. Collecting all ti’s in the expression above, and dividing by s!, as defined for terms in Witten-

potential (4.12), we get the TPk
that appears in F (t) associated with the above Pk-graph

:
ts

s!
=: TPk

(4.23)

Let

tkP1
tkP2

. . . tkPm
=

n∏
i=0

taii

And as

tkS1
tkS2

. . . tkSc
=

n∏
i=0

tsi−lii

we can rewrite TPk
as follows:

TPk
=

(
n∏
i=0

tsi−lii

(si − li)!

)( ∏
Pi∈Pk

taii
(si − li + 1) . . . (si − li + ai)

)
(4.24)

Lemma 4.3.3. With DPk
, L̂, and APk

as defined, the coefficient of DPk
in L̂ is (−1)

∑
|Pi|−mAPk

.

Proof. This follows directly by looking at the multinomial coefficient of DPk
in L̂, which is

(−1)
∑
|Pi|−mAPk

1

m!

(
1

m1!

1

m2!
. . .

1

mf !

)∏
Pi,kj

1

zi!

zi!

rij!



= (−1)
∑
|Pi|−mAPk

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!


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= (−1)
∑
|Pi|−mAPk

APk

Lemma 4.3.4. With DPk
, TPk

, and SPk
as defined, and T := t0s0 t1s1 ...tl

sl

s0!s1!...sl!
,

DPk
(TPk

) = SPk
T

Proof. Applying DPk
as defined in (4.21) to TPk

as defined in (4.24), we get :

DPk
(TPk

) = tP1tP2 . . . tPm

∂

∂tKP1

. . .
∂

∂tKPm

(TPk
)

=

(
n∏
i=0

tlii

)
∂

∂tKP1

. . .
∂

∂tKPm

(
n∏
i=0

tsi−lii

(si − li)!

)( ∏
Pi∈Pk

taii
(si − li + 1) . . . (si − li + ai)

)

=

(
n∏
i=0

tlii

)(
n∏
i=0

(
∂

∂ti

)ai)( n∏
i=0

tsi−lii

(si − li)!

)( ∏
Pi∈Pk

taii
(si − li + 1) . . . (si − li + ai)

)

=

(
n∏
i=0

si
(si − li)!

)(
n∏
i=0

tsii
si!

)

= SPk
T

Strategy of proof of theorem (4.3.1): we will show that for a general t-monomial t0s0 t1s1 ...tl
sl

s0!s1!...sl!
,

its coefficients in G(t) and L̂(F (t))− t30
3!

are equal. And that both equal
∫
M

0,( 1q )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn . To

show that, we show a bijection between Pk graphs and the terms (4.22) which are the summands

in the formula (4.18). To show this bijection, we pick a Pk graph, and find the term (4.20) in L̂

(with some multiplicity); then we find the term TPk
in F (t), such that the term (4.20) when applied

to TPk
gives the t-monomial t0

s0 t1s1 ...tl
sl

s0!s1!...sl!
with coefficient the intersection number defined in (4.22).

As that exactly is the summand in (4.18) corresponding to the chosen Pk-graph, this proves the

theorem in one direction. In the other direction, we pick a term (4.22) which is a summand in the

coefficient of t-monomial t0
s0 t1s1 ...tl

sl

s0!s1!...sl!
, and show that this maps to the same Pk-graph.
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Proof. (of theorem (4.3.1))

Consider a general term in G(t) with the corresponding t-monomial t0s0 t1s1 ...tnsn

s0!s1!...sn!
, with coef-

ficient
∫
M

0,( 1q )
n
ψ̂k11 ψ̂

k2
2 . . . ψ̂knn . Now, we will show that we get all the terms of formula (4.18) in

L̂(F (t)) and that each term corresponds to a Pk-graph.

Now consider a Pk-graph with m number of forks. Let this Pk-graph corresponding to the

following P-graph with m number of forks shown below.

Figure 4.7: P-graph with m forks

Then the corresponding operator (4.20) is

DPk
= tP1tP2 . . . tPm

∂

∂tkP1

. . .
∂

∂tkPm

=

(
n∏
i=0

tlii

)(
n∏
i=0

(
∂

∂ti

)ai)

The coefficient of this term in L̂ by Lemma (4.3.3) as a summand in : L
m

m!
: is :

(−1)
∑
|Pi|−mAPk

= (−1)
∑
|Pi|−m 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!
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The corresponding term in F (t) is

TPk
=

(
n∏
i=0

tsi−lii

(si − li)!

)( ∏
Pi∈Pk

taii
(si − li + 1) . . . (si − li + ai)

)

So, in L̂(F (t)), the corresponding term is

(−1)
∑
|Pi|−mAPk

(〈τ s〉)DPk
(TPk

)

where 〈τ s〉 is the appropriate ψ-monomial on M
0,( 1

q )
|P| that appears as coefficient of TPk

in F (t).

Observe that the coefficient of DPk
in : L

m

m!
: is exactly (−1)

∑
|Pi|−m 1

|Aut(P̂k)| as claimed earlier.

Now by Lemma (4.3.4),

(−1)
∑
|Pi|−mAPk

(〈τ s〉)DPk
(TPk

)

= (−1)
∑
|Pi|−mAPk

(〈τ s〉)SPk
T

= (−1)
∑
|Pi|−mCPk

(〈τ s〉)T

= (−1)
∑
|Pi|−mCPk

(〈τ s〉)T

= (−1)n−|S|−|F |CPk
(〈τ s〉)T

= (−1)n−|P|CPk
(〈τ s〉)T

= (−1)n+|P|CPk
(〈τ s〉)T

which term in L̂(F (t)) has as coefficient of T exactly the term (4.22) which is the summand in

(4.18) corresponding to the chosen Pk-graph.

So, one direction is proved.

To show bijection in the other direction, we pick a summand in the coefficient of t0
s0 t1s1 ...tnsn

s0!s1!...sn!
=

T in L̂(F (t)) that comes from a summand in : 1
m!
Lm : (F (t)). Let this summand be :

(−1)
∑
zi−m

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!

 (〈τ s〉)
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Also, let the corresponding summand in : 1
m!
Lm : be

(−1)
∑
zi−m

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!

D

and let it act on T̃ ,

such that

(−1)
∑
zi−m

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!

 (〈τ s〉)D(T̃ )

= (−1)
∑
zi−m

 1

m1!

1

m2!
. . .

1

mf !

∏
Pi,kj

1

rij!

 (〈τ s〉)S.T

Then, this implies that

D = DPk

= tP1tP2 . . . tPm

∂

∂tKP1

. . .
∂

∂tKPm

=

(
n∏
i=0

tlii

)(
n∏
i=0

(
∂

∂ti

)ai)

and

T̃ = TPk

and

S = SPk

as defined earlier. 〈τ s〉 is uniquely determined by TPk
, and TPk

is uniquely determined by the

following relation from lemma (4.3.4).

DPk
(TPk

) = SPk
T
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As this DPk
is in bijection with the Pk-graph as in the figure by construction, we get the term in

(4.18) corresponding to this Pk-graph as the chosen summand in L̂(F (t)) as

(−1)n+|P|CPk

∫
M0,(n−m)

ψ
KP1
P1

. . . ψ
KPm
Pm

ψ
kS1
S1

. . . ...ψ
kSc
Sc

So the coefficient of t0s0 t1s1 ...tnsn

s0!s1!...sn!
in L̂(F (t)) equals the coefficient of t0s0 t1s1 ...tnsn

s0!s1!...sn!
in G(t).
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