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ABSTRACT

RESOURCE MANAGEMENT FOR EXTREME SCALE HIGH PERFORMANCE

COMPUTING SYSTEMS IN THE PRESENCE OF FAILURES

High performance computing (HPC) systems, such as data centers and supercomputers, coor-

dinate the execution of large-scale computation of applications over tens or hundreds of thousands

of multicore processors. Unfortunately, as the size of HPC systems continues to grow towards

exascale complexities, these systems experience an exponential growth in the number of failures

occurring in the system. These failures reduce performance and increase energy use, reducing the

efficiency and effectiveness of emerging extreme-scale HPC systems. Applications executing in

parallel on individual multicore processors also suffer from decreased performance and increased

energy use as a result of applications being forced to share resources, in particular, the contention

from multiple application threads sharing the last-level cache causes performance degradation.

These challenges make it increasingly important to characterize and optimize the performance and

behavior of applications that execute in these systems.

To address these challenges, in this dissertation we propose a framework for intelligently char-

acterizing and managing extreme-scale HPC system resources. We devise various techniques to

mitigate the negative effects of failures and resource contention in HPC systems. In particular,

we develop new HPC resource management techniques for intelligently utilizing system resources

through the (a) optimal scheduling of applications to HPC nodes and (b) the optimal configuration

of fault resilience protocols. These resource management techniques employ information obtained

from historical analysis as well as theoretical and machine learning methods for predictions. We

use these data to characterize system performance, energy use, and application behavior when op-

erating under the uncertainty of performance degradation from both system failures and resource

contention. We investigate how to better characterize and model the negative effects from system
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failures as well as application co-location on large-scale HPC computing systems. Our analysis of

application and system behavior also investigates: the interrelated effects of network usage of ap-

plications and fault resilience protocols; checkpoint interval selection and its sensitivity to system

parameters for various checkpoint-based fault resilience protocols; and performance comparisons

of various promising strategies for fault resilience in exascale-sized systems.
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Chapter 1

Introduction and Overview

High-performance computing (HPC) systems such as data centers and supercomputers are

complex systems that coordinate the execution of large-scale computation of applications over

tens or hundreds of thousands of multicore processors. Unfortunately, applications executing in

parallel across multicore processors can suffer from decreased performance and increased energy

use as a result of the applications being forced to share resources and consequently interfering with

each other’s execution. This interference occurs at multiple levels of the system from individual

components (e.g., threads in a multicore processor forced to share the last-level processor cache)

to the system level (e.g., applications sharing network resources). Complicating matters further,

as the size of HPC systems continues to grow exponentially the systems also experience an expo-

nential growth in the number of failure-related events that occur and cause interrupts in application

execution. These failures cause further decreases in performance and increases in energy use, mak-

ing HPC progress more challenging. The research discussed here examines ways of intelligently

utilizing system resources and addressing distributed failures to mitigate these negative effects in

HPC systems.

The progress of HPC systems in terms of both performance and energy efficiency are contin-

ually monitored by the Top500 [2] and Green500 [3] lists respectively. Extrapolating the energy

use and performance from the top supercomputers on these lists highlights the necessity of design-

ing the next generation HPC systems around energy efficiency. Even if the most energy-efficient

HPC system from [3] were scaled to exascale complexities and able to retain its peak performance

efficiency of 17 GFlops/W, such a system would still require at least $59 million per year just to

operate. Additional overhead from increased system failures add further operational costs. With-

out suitable resilience techniques in operation the system would experience significantly increased

energy costs from failed applications. It is estimated that the significantly smaller 13 petaflop Blue

Waters systems would spend over $400, 000 in wasted energy without checkpoint/restart resilience
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helping to mitigate the wasted energy of system failures. Given the superlinear increase in failure

rates that is expected as systems progress toward exascale, the consideration of HPC resilience is

critical for the design of an exascale system.

This research investigates both how to better characterize and model the negative effects that

resource sharing and system failures have on large-scale computing systems, as well as develop-

ing techniques for intelligently utilizing system resources through optimal application scheduling.

Relying on scheduling to better utilize system resources for solving these performance and energy

problems allows the users of HPC systems the benefit of being able to be unaware of the complex

strategies employed by the system on their behalf to provide the most efficient execution possible.

Figure 1.1: Overview of the framework proposed for HPC resource management.

Here we describe our development of a resource management framework used for analyzing

and improving these HPC environments. An overview of this framework is depicted in Figure 1.1.

2



The top center of the figure shows the framework’s three resource management objectives of en-

ergy, reliability, and performance for HPC systems.

The left-hand side of the figure details examples of the uncertain characteristics associated

with application execution (e.g., execution overhead and inter-application interference) that make

resource management in HPC systems challenging. To help reduce this uncertainty several of

the chapters in this dissertation detail methodologies that allow for the creation of application

performance prediction models that can be utilized by HPC resource management techniques to

make better scheduling decisions for the applications demanding system resources.

The right-hand side of the figure gives examples of system constraints that limit the demand

that can be satisfied by the system scheduler when attempting to accommodate an application’s

expected (or predicted) execution behavior. Interactions among the demands of applications on

system resources, the resource’s respective constraints, and the effects of decisions made by the

system scheduler are complex. The research discussed throughout this dissertation employs models

that describe the behavior of system resources (e.g., resource contention, application resilience

behavior, and the system’s responses to failures) for these complex situations.

Our proposed framework ensures that the design of the system’s application scheduler can

be made aware of the system’s design objectives as well as the constraints associated with the

system’s available resources, the application’s resource demands, and the application’s execution

characteristics. The system scheduler then works with the available data to ensure the system’s

objectives are met by determining for each application:

• when the application should begin execution;

• on which processors the application should execute;

• the type and timing of events associated with the application’s resilience to system failures.

The models and design methodologies discussed in this dissertation have been integrated into our

simulated analyses of system behavior and are used to assess our resource management technique’s

ability to accommodate the system objectives of performance, reliability, and minimized energy.

3



The remainder of this dissertation is organized as follows. The next chapter (Chapter 2) dis-

cusses the impact that memory interference has on HPC systems and outlines a methodology that

can be used to model application memory interference behavior and make predictions about the

effects that co-location will have on the application’s execution. We utilize this prediction method-

ology by creating a memory interference aware resource management framework and analyzing its

benefit to an environment that suffers from performance degradation due to application co-location.

We analyze the behavior of resilience protocols used for mitigating system failures in HPC sys-

tems in Chapter 3 and develop models for simulating the behavior of several resilience protocols

being proposed for future extreme scale HPC systems. Chapter 4 discusses how the resilience

protocol models from Chapter 3 can be utilized to build a resilience aware resource management

framework. Chapters 5 and 6 consider in more detail the optimization of multilevel checkpoint-

ing intervals for improving application performance, system energy use, and application execution

time prediction accuracy. A closer examination of the interrelated effects of checkpointing and

the system’s communication network is conducted in Chapter 7. We conclude in Chapter 8 with a

discussion of future directions for this research.
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Chapter 2

HPC Node Performance and Energy Modeling with

the Co-Location of Applications

2.1 Introduction
There is an inherent trade-off in large-scale computing systems between reducing the use of

system resources by consolidating applications into as few server processor nodes as possible (to

reduce system power), and the performance degradation that occurs to these applications as a

result of sharing system resources with other applications (e.g., [7], [8]). Memory interference

caused by multiple applications co-located on a multicore processor has been shown to negatively

impact application performance (e.g., [9], [10], [11], [6], [12]). Specifically, the sharing of system

resources such as DRAM and the last-level cache by co-located applications creates contention

and increases the memory intensity of all applications running on the multicore processor [6].

This increase in memory intensity results in a corresponding increase in average memory access

time, which ultimately contributes to an increase in the application’s overall execution time. This

increase in execution time is significant, and in some cases can as much as double or triple the

execution time of an application as compared to its baseline execution time, i.e., when unhindered

by co-location interference [13].

Multicore processors are pervasive throughout many kinds of computing systems, but the per-

formance degradation effects caused by co-location interference are most likely to be prevalent

This work was done jointly with Ph.D. student Ryan Friese and masters student Eric Jonardi. The full list of co-
authors is listed in [4]. This work was supported by the National Science Foundation (NSF) under grant numbers CNS-
0905339, CCF-1252500, CCF-1302693, ACI-1339745, and an NSF Graduate Research Fellowship. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF. The authors thank Hewlett Packard (HP) of Fort Collins for providing us some of the
machines used for testing. A preliminary version of portions of this work appeared in [5] and [6].
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in large-scale server systems and high-performance computers. This is because in those types of

computing systems, executing multiple applications on multicore processors results in high mem-

ory interference and therefore causes performance degradation [14]. Having a methodology that is

capable of predicting how well a system will run in a particular co-location scenario is very use-

ful for such systems. The results of this work show how the information obtained from accurate

predictions of co-location performance degradation can be integrated into intelligent application

scheduling, and thus lead to system performance improvement due to better utilization of the hard-

ware. Better utilization of the hardware provides increased opportunities to reduce power and save

energy through server consolidation, while still maintaining quality of service constraints in an im-

proved manner over a co-location naïve scheduler. This work provides a methodology that can be

used to create co-location aware performance models capable of predicting application execution

time and energy use when co-located with other applications on a multicore processor in an HPC

node.

The methodology for analyzing system performance that is described in this work is general

enough to be applicable to any set of applications running on any multicore processor. Once ap-

plication performance information for a particular combination of multicore processor and target

applications has been collected, the methodology uses machine learning techniques to construct

performance models characterizing that information. After they are trained, these models require

only a single serial baseline measurement of parameters for each application running alone in the

system. The models use this serial baseline measurement to make predictions about the perfor-

mance degradation from memory interference that will occur when the application is executing

with different types of co-located applications. While it has been shown in [10] that the degree

to which an application’s use of memory resources varies among different phases throughout the

application’s execution, this work illustrates that having such fine grain information is not always

necessary to make accurate predictions.

After describing how the methodology operates, the theory behind the proposed methodology

is validated by using real-world data collected on three Intel Xeon server-class machines that were
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set to execute a collection of scientific application workloads, with some models providing up

to 98% accuracy. In addition to creating and demonstrating a methodology that is capable of

being ported across processor architectures, this work also provides insight into what memory-use

information is most important to obtain for a set of applications running in a system to predict the

impact of co-location on performance and energy use.

The last portion of this work demonstrates the utility of the proposed modeling methodology

through the creation and analysis of a consolidating slack-based scheduling heuristic that utilizes

the execution time prediction models generated from the proposed modeling methodology to assist

in its application co-location decisions. This “co-location aware” scheduling heuristic is shown in

simulated studies to provide a significant performance improvement over a similar consolidating

slack-based scheduling heuristic that is naïve to the effects of performance degradation caused by

co-location.

This chapter makes the following contributions:

(a) identifies factors that can characterize slowdown during application co-location scenarios;

(b) proposes a novel methodology to integrate these factors into multi-granularity and multi-

fidelity performance models that can be used to predict application execution time and energy

use under co-location scenarios;

(c) shows that a fine level of detail is not always necessary to achieve reasonable prediction accu-

racy;

(d) validates the methodology with real-world data obtained from running co-located scientific

workloads on contemporary Intel Xeon server-scale multicore processors with up to 12 cores

per processor;

(e) demonstrates through simulation the utility of the modeling methodology through the creation

of a consolidating slack-based scheduling heuristic that utilizes models created from the pro-

posed modeling methodology for its scheduling decisions.
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The rest of this chapter is organized as follows. The following section discusses related work

in this area. The modeling methodology is presented in Section 2.3. Section 2.4 details the testing

environment and data collection used for validating the models. Experimental results that validate

the models are examined in Section 2.5. A demonstration of the modeling methodology’s utility is

shown in Section 2.6. The chapter concludes with a summary of the main contributions in Section

2.7.

2.2 Related Work

2.2.1 Overview

Several works have explored the effect of co-location on application performance and energy

use in multicore environments and the use of scheduling heuristics for improving the efficiency

of high performance computing. Here the most relevant prior works in these areas are briefly

summarized.

2.2.2 The Effect of Application Co-location on Performance and Energy Use

The authors in [9] examine how co-locating multiple applications on a single multicore proces-

sor affects performance. However, their work focuses on a general examination of the effects that

co-location has on the system as a whole, and does not examine the effects on specific applications

as our work does. This work also does not create co-location performance models the way that our

work does, nor does it discuss modeling energy use. Our work also discusses a heuristic approach

for mapping co-located processes to processor cores, whereas their analysis only examines a single

processor node, providing a less precise view than our work where we consider an entire system.

The study in [10] provides an excellent review of how the architecture on which an application

is executed can affect the cache use and memory intensity of that application. That work, however,

does not attempt to make predictions about performance degradation as we do, but rather it shows

the importance of including memory intensity and cache usage information when characterizing

performance degradation in the presence of application co-location.
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The work in [15] describes the challenges faced by applications sharing resources, and a need

for the ability to perform precise predictions of performance degradation. The paper presents its

“Bubble-Up” methodology for predicting performance degradation. However, it does not consider

the impact of dynamic voltage and frequency scaling on application performance as we do in our

work, and their study does not collect experimental data or characterize the memory interference

effects of having more than two applications co-located, whereas we examine the performance

degradation effects of more than two co-located applications

The authors in [11] present an extension to the “energy roofline” model that explores the effect

of memory intensity (from the perspective of arithmetic intensity) on execution time and power

use. The study executes a series of constructed microbenchmarks on twelve machine architectures

and provides an analysis of the performance of the systems. While that study collects data about

performance degradation from memory interference on a set of real machines, it uses small “mi-

crobenchmark” tests on machines, as opposed to the scientific workloads we use. Moreover, their

work does not create models to predict execution times or energy use based on memory interfer-

ence.

Similar to our work, the work in [16] examines creating a portable methodology using machine

learning techniques for predicting application performance degradation from shared resources. The

authors in that paper also incorporate shared resources beyond the last-level cache. However, in-

corporating those resources causes the resulting model to be complicated, and their model requires

the constant monitoring of a large number of processor performance counters, which can cause

system-wide slowdown for all running applications. In contrast, our methodology needs to collect

performance counter information about each application only a single time, and provides a better

prediction of performance. Additionally, our methodology guarantees a uniform selection of train-

ing data over the possible co-location space (allowing for more portability) while the work from

these authors selects the vast majority of its training data at random.

A methodology for online estimation of an application’s execution under co-location is pre-

sented as the “Application Slowdown Model” in [12]. Similar to our work, their work makes
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predictions of application performance degradation by monitoring processor performance coun-

ters. However, their work does not perform any experiments on how the methodology performs

for any actual server class processor as our work does, and therefore it is potentially limited in

its portability or performance on actual systems. Additionally, their work limits their proposed

models to analyzing the effect of performance degradation on application execution time and does

not attempt to model energy as our work does.

Our work in [6] measures memory interference from application co-location, and its impact

on system performance and energy use for a single Intel i7 machine. However, that work does

not create models that predict system performance, and the scope is restricted to only a single

consumer class machine.

We acknowledge that work exploring the effect of simultaneous multithreading (SMT) on ap-

plication performance is an open and active area of research. Papers such as [17], [18], and [19]

examine scheduling and resource use of applications executed utilizing SMT. We chose to focus

our study on the interference that applications experience at an inter-core granularity, and for this

study we have turned off SMT to remove the possibility of application interference in the L1 cache.

2.2.3 Scheduling Heuristics

Examples of prior work in scheduling for large-scale HPC systems have appeared in [20], [21],

[22], and [23]. In [20], the authors look at the problem of energy-constrained dynamic alloca-

tions of tasks in heterogeneous cluster computing environments, in the presence of individual task

deadlines. The work in [21] proposes power and thermal-aware scheduling to optimize individual

tasks reaching their deadlines. A “utility” metric is defined in [22] that is used in combination with

several energy-aware scheduling heuristics to provide a method of resource allocation that can

maximize task performance while operating under a system energy constraint. The work in [23]

examines energy-aware static resource allocation of a “bag of tasks” in a heterogeneous computing

system. However, all of these existing techniques in scheduling do not focus on co-location effects

that can significantly impact the validity of scheduling decisions.
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In contrast to the above prior works, some researchers have proposed slack-based heuristics

to improve system performance. For example, the work in [24], [25], [26], and any of the other

numerous works that rely on the backfilling technique first described in [27], all rely on slack-

based heuristics that perform their calculations based on predictions of application execution time.

All of these works use application slack to provide better scheduling around uncertainty, but none

of them account for the effects of performance degradation from co-location. As we demonstrate

later, slack-based heuristics that are co-location aware can outperform co-location naïve slack-

based heuristics. Consideration of co-location in the slack calculations of these works could be

used to improve upon the work presented in these papers.

2.3 Modeling Methodology

2.3.1 Overview

The proposed modeling methodology uses two types of machine learning techniques, linear

modeling and neural networks, for constructing the predictive models. These techniques have

been used in prior related work [16], [15], but were limited in attribute selection and scope. For

each machine learning technique, several models of varying levels of complexity and utilization of

application features were built.

2.3.2 Model Features

Both the execution time and energy prediction models use up to eight separate features of

application execution to predict how the target application performance or energy use is impacted

by co-located applications. The eight features were chosen by performing a principal component

analysis (PCA) [28] on the data collected from multicore processors considered in this work. PCA

allows us to observe which features were most important to include in the models.

The features selected are a general set that are observable in almost all multicore processors.

The models we construct use various combinations of the features. These models use different

combinations of features, ranging from those that are most-commonly available to a scheduler
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to combinations that require detailed information about the application and may be difficult to

obtain on some platforms. The eight features that we selected after our PCA analysis are shown in

Table 2.1. The table gives the name of the feature in the first column, and the description of that

feature in the second column. The “target” application in the table is the one for which slowdown

or increased energy use due to co-location is being predicted. The baseline execution time is the

execution time of the target application without any co-location present. A task’s memory intensity

is defined to be the ratio of a task’s last-level cache missed to the total number of instructions that

the task has executed. Memory intensity is discussed further in Section 2.4.

Table 2.1: Model features

feature name description of feature
baseExTime baseline execution time of target application at all P-states
numCoApp number of co-located applications
coAppMem sum of co-application memory intensities
targetMem target application memory intensity

coAppCM/CA sum of co-application last-level cache misses/cache accesses
coAppCA/NI sum of co-application last-level cache accesses/instructions
targetCM/CA target application last-level cache misses/cache accesses
targetCA/NI target application last-level cache accesses/instructions

Table 2.2: Model feature sets

set name features within set
A baseExTime
B baseExTime, numCoApp
C baseExTime, numCoApp, coAppMem
D baseExTime, numCoApp, coAppMem, targetMem
E baseExTime, numCoApp, coAppMem, targetMem,

coAppCM/CA, coAppCA/NI
F baseExTime, numCoApp, coAppMem, targetMem,

coAppCM/CA, coAppCA/NI, targetCM/CA, targetCA/NI
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2.3.3 Generality of the Models

The features shown in Table 2.1 can be combined to create models of various complexities.

The model feature sets listed in Table 2.2 represent six possible models, one baseline model (model

“A”) that uses only the baseExTime feature for predictions, and five other models. For each of the

five other models, the resource manger (scheduler) has a certain amount of baseline information

about the system, the target application, and the other applications co-located on the system. The

progression from one model to the next represents a realistic process where the resource manager

progressively obtains more detailed information about the computing system and its executing

applications.

Designing a methodology that provides several models with various levels of complexity allows

a system designer greater freedom to make use of the modeling methodology to predict application

performance and energy use. Providing a set of models with a range of complexities allows for

a prediction model with a basic feature set to be used when more detailed application execution

information for applications in the system is not available. For example, a system designer may

not know or have the ability to measure the performance counter derived information (explained

in Section 2.4) required to create more complicated models, but could have access to adequate

application information (such as baseExTime and NumCoApp) to use the methodology to design

simpler models that still give reasonable prediction accuracy and benefit from co-location aware-

ness.

2.3.4 Linear Modeling Technique

To predict the impact of application performance degradation and energy use during execution

under co-location, twelve linear models were developed: a set of six models for execution time

prediction, and a set of six models for energy use prediction. Each of the six models in each set of

models were constructed using the six model feature sets listed in Table 2.2. Each linear model is

the sum of the products of the utilized features (denoted fi) and the model coefficients determined

during training (denoted for the execution time model as cti and denoted for the energy use model
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as cei), plus a constant const. Linear regression is used to calculate the values for the coefficients.

A general linear model for predicting co-located execution time using N features (linear execution

time prediction LETP ) takes the form of:

LETP =
N∑
i=1

(cti ∗ fi) + const . (2.1)

The linear prediction of execution time and energy differ only in the objective that the models

are trained to predict (execution time or energy use). A general linear model for predicting co-

located energy use using N features (linear energy use prediction LEUP ) takes the form of:

LEUP =
N∑
i=1

(cei ∗ fi) + const . (2.2)

2.3.5 Neural Network Modeling Technique

From our observation of application execution in the presence of co-location, we noted that

there are a few instances of nonlinearity in some of the features. This observed nonlinearity pro-

vided the motivation for creating a prediction model using a neural network that can capture such

nonlinearities.

Neural networks are a class of machine learning techniques that can be used for creating pre-

dictive models [29]. The approach attempts to mimic the function of the human brain by defining

several “layers of neurons.” Each neuron layer is composed of some number of individual neurons

that take the outputs of the previous layer as each of their inputs, with the inputs to the first layer

of neurons being the features of the data available in each model (see Tables 2.1 and 2.2 ). The

final output is the value of the predicted execution time or energy use that the application will

experience under co-location.

Each neuron operates by multiplying each of its N inputs, xi, by N corresponding weight

parameters, wi, summing these results, and finally evaluating the sum with a nonlinear function f .

The kth neuron in layer j (denoted yjk) operates according to:
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yjk = f(
N∑
i=1

xiwi) . (2.3)

The nonlinear function f in Equation 2.3 is called the activation function of the neuron, and

attempts to mimic the biological process that occurs during activation of an actual neuron. Any

sigmoidal function will satisfy this activation function, but the hyperbolic tangent function (tanh)

was chosen in particular for this work because it allows for faster convergence when using gradient

methods for training the weight parameters [30]. It is this activation function that allows neural

networks to capture nonlinearities when modeling.

The neural network is trained by adjusting the weight values at each neuron to minimize an

objective function that measures the squared error between the neural network’s set of predicted

values of the training data and the actual values of the data. Optimal weight values were deter-

mined using a conjugate gradient because it provides fast convergence [31]. Two separate neural

networks were created for the execution time and energy predictions, respectively. As with the

linear models, the neural network execution time prediction models were trained using measured

execution time values of the target application, and the neural network energy use models were

trained using measured energy use values of the target application.

2.3.6 Model Accuracy

All models are evaluated using Mean Percent Error (MPE) and Normalized Root Mean Squared

Error (NRMSE) to offer two different measures for comparing model predicted values to actual

values. Error measurements are only made for the target application’s execution time or energy

use in each test, not for all applications co-located in the system.

The magnitudes of the actual values within the data vary greatly (e.g., when modeling execu-

tion time, actual values could range from as little as 150 seconds to over 1000 seconds based on

the application that is being executed and the state of co-location of the applications in the system).

Thus, when finding MPE, a calculation of relative error, allows the evaluation of prediction accu-
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racy independent of these magnitudes for each of the M sample points of data. In the equation,

predicted values are denoted pj and actual values are denoted by aj . MPE is defined as:

MPE = 100 ∗ 1

M

M∑
j=1

|pj − aj
aj

| . (2.4)

NRMSE gives an indication of the variance of the predicted values from the actual values. For

M sample points, NRMSE provides a ratio of Root Mean Squared Error (an absolute error) and

the interval of values that the actual data can take (the largest actual data value amax minus the

smallest actual data value amin). Normalized root mean squared error is defined as:

NRMSE =

√∑M
j=1(pj−aj)2

M

amax − amin
. (2.5)

2.4 Implementation

2.4.1 Testing Environment

This section describes a testing environment that can be used for the modeling methodology’s

data collection and validation. The testing environment that is described is not only effective and

easy to use for collecting the data, but also easy to replicate and can be used on a wide variety of

multicore processors.

Operating System

One of the objectives of this research was to design a methodology that can be applied to a

wide variety of computing systems. The testing environment was designed to be portable across

many multicore processor architectures to allow for simplicity in gathering test data and ease of

recreating the testing environment for future users of this work. To ensure accurate data is col-

lected, the testing environment is run from a “lightweight” command line version of the Ubuntu

14.04 operating system [32] installed on a USB drive. This minimizes the effect that the operating

system has on application execution. Non-essential OS utilities and kernel daemons were removed

so that the applications being monitored suffer as little interference as possible from unpredictable
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events in the OS. Such an environment mimics a large-scale computing platform meant to execute

multiple applications concurrently.

Processor Performance Counters

Modern multicore processors provide the ability for developers to monitor hardware events that

occur inside a multicore processor during the execution of an application [33]. Through the use of

specialized “performance counters” present in the processor, it is possible to track the number of

occurrences of certain events that take place, such as the number of instructions executed or last-

level cache misses. These performance counters are architecture dependent, and due to differences

among microarchitectures the number and types of performance counters that are available to the

system are not consistent (e.g., differences described in [34], [35], and [36]). Given the design goal

of having portability for the methodology, interfacing directly with these hardware performance

counters is not a feasible option. Therefore, the testing environment makes use of two tools to

facilitate interactions with the hardware.

The first tool is “Performance Application Programming Interface" (PAPI) [37], an API that

was made specifically to provide portability when accessing performance counters across different

architectures. PAPI has created a general list of more than 100 standard performance counter

“presets” that are likely to be present in a modern processor. PAPI has made it more accessible to

interface with these counters across architectures.

The second tool the testing environment utilizes is the HPC toolkit [38]. This suite of tools

interfaces with PAPI and makes it easier to monitor and collect information from multiple perfor-

mance counters in the system. Specifically, HPC toolkit’s “hpcrun-flat” application profiler is used

to collect performance counter information because it is able to run with very low overhead.

Measuring Cache Use

From [6], it is known that applications that need to access data from memory more often tend

to experience a larger amount of performance degradation due to co-location. These performance

degradations are incorporated into the prediction models by collecting measurements related to
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these effects. We have found that three hardware performance counter measurements can be used

to collect the information necessary for deriving the metrics used in our methodology’s models:

(a) number of last-level cache misses an application experiences (LLCM) that represents the num-

ber of times an application must access main memory;

(b) number of instructions the application executes (NI);

(c) total number of last-level cache accesses the application attempts (TCA).

The model features that are derived from these measurements were listed in Section 2.3. It

should be noted that last-level cache misses and accesses are dependent on architecture, and can

refer to either the L2 or L3 cache depending on the multicore processor that is being used. It

is also important to note that when collecting test results for the execution of applications, the

values measured in these performance counters can only represent a sum of the total events of that

type that have occurred during the time the performance counters are monitored, in this case the

duration of the application’s execution.

One notable metric derived from this data is application memory intensity. Memory intensity is

defined to be a ratio of an application’s LLCM to NI. This metric gives an idea of the rate at which

an application needs to go to main memory to fetch data. It is useful because it shows whether

an application’s execution will be more likely to be memory-bound relative to another application,

meaning that its performance depends more on memory access speed rather than computational

speed. Memory intensity also gives some idea of how much an application tends to access memory.

A highly memory-intensive application is more likely to utilize the shared cache resources more,

and therefore it will tend to affect, and be more affected by, the effects of memory interference

from other applications.

Processor Performance States (P-states)

Processor performance states (P-states [33]) are a set of discrete voltage and frequency values

in which a multicore processor can operate. P-states utilize dynamic voltage and frequency scal-

ing (DVFS), supported in all contemporary multicore processors. DVFS techniques can reduce
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the dynamic operating power of a multicore processor to consume less power or to temporarily

reduce the operating temperature due to the multicore processor having exceeded a thermal thresh-

old. However, these benefits come at the cost of having to throttle the multicore processor speed

by decreasing the clock frequency. This effectively always increases the execution time (and thus

decreases system performance) of any application running on the multicore processor. The range

and number of P-state frequencies that are available in a system are highly dependent on the archi-

tecture of the multicore processor. Processor P-states are likely to change in HPC systems based

on the system’s need to reduce power or temperature. In this work, this effect is taken into account

through knowledge of the baseline execution time of each application at a given P-state. The P-

state in which each processor is going to be executed is assumed to be known before execution of

the co-located applications. Each P-state has a different baseline execution time and the P-state of

the processor is implicitly an input to each of the models by virtue of its value of baseline execution

time.

Measuring Power and Energy Use

We used aWatts Up? PRO power meter [39] to measure application power and energy use.

The Watts Up? PRO power meter measures instantaneous power use of a target load at the “wall

outlet” level with a sampling rate of once per second. Power values were recorded at the “wall

outlet” level for the system as a whole. The resulting data then provided a record of the system’s

power use over the execution of each application. The data could also be summed to give the value

of the total energy used by the system during the application’s execution, or averaged to give the

average power used by the system during the application’s execution.

2.4.2 Data Collection and Experimental Setup

Benchmark Applications

The applications run as testing workloads for the model validation were taken from two sci-

entific benchmark suites. The set of eleven applications considered vary in the types of tasks

that they perform and are characterized by a wide spread of memory intensity values. Table 2.3
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Table 2.3: Memory intensity classification

applications classification baseline memory intensity
(LLCM / NI)

canneal (P) Class I 1.84×10−2

cg (N) Class I 1.56×10−2

ua (N) Class II 1.63×10−3

sp (N) Class II 1.50×10−3

lu (N) Class II 1.11×10−3

fluidanimate (P) Class II 8.60×10−4

freqmine (P) Class III 3.47×10−5

blackscholes (P) Class III 1.88×10−5

bodytrack (P) Class IV 8.69×10−7

ep (N) Class V 6.27×10−10

swaptions (P) Class V 4.22×10−10

shows the applications examined in this study. Applications taken from the PARSEC benchmark

suite [40] are denoted with (P), and applications from the NAS benchmark suite [41] are denoted

with (N). The table also shows each application’s associated baseline memory intensity values,

where baseline memory intensity values are measured when the applications are executed on a

multicore processor by themselves without interference caused by co-location.

As shown in Table 2.3, these applications have been categorized into five memory intensity

classes, denoted “Class I” through “Class V.” Class I applications are the most memory-intensive

applications, meaning that they have the highest number of last-level cache misses per number

of instructions executed and are more memory bound, while Class V applications are the least

memory-intensive, meaning that they experience fewer last-level cache misses per number of in-

structions executed, and their execution is more CPU bound. Categorizing the applications into

groups allows applications from particular groups to be referred to in a more general manner.

These groupings allow for a broader use of the methodology for performance prediction.

Having application class values allows a developer the possibility to be able to use our mod-

eling methodology even if it is not possible to obtain a detailed measurement of an application’s

memory use. If an estimate of the memory intensity of a particular application type could be made

based on its historical use, or if an application developer had prior experience developing similar
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Table 2.4: Multicore processors used for validation

processor num. cores L3 cache frequency range
Intel Xeon E3-1225v3 4 8MB 800 MHz-3.20 GHz

Intel Xeon E5649 6 12MB 1.60-2.53 GHz
Intel Xeon E5-2697v2 12 30MB 1.20-2.70 GHz

applications with known characteristics of memory use, then these applications could be broadly

categorized into one of these memory intensity classes. Having this general classification of an

application, the developer can still gain some insight as to the expected performance of the system

by running the model substituting average memory intensity values for that application’s class in

place of its unavailable measured values. A system designer can create more classes than those

we consider, to improve resolution and classification granularity, especially if a much larger set of

applications is considered. However, for the sake of brevity in discussion, we restrict the number

of classes to five in this work.

It should be noted that the memory intensity values listed in Table 2.3 are calculated from

baseline measurements for one specific system (Xeon E5-2697v2). The memory intensity values

do not vary widely among the machines tested, thus the application memory intensity classes are

used to represent categories for the Xeon family of multicore processors considered. It is also

important to note that the memory intensity values among application classes tend to differ by

orders of magnitude. This allows for clearer distinctions to be drawn among application classes.

Multicore Processors Tested

The specifications of the multicore processors tested during the validation of the methodology

are shown in Table 2.4. All multicore processors used are from the Intel Xeon family of multicore

processors, with a varying number of available cores (ranging from four to twelve), L3 (last-level)

cache sizes, and frequency ranges. Detailed information about these processors can be found

in [34], [35], and [36].
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Model Training

Training data was collected from each multicore processor to construct the models discussed in

Section 2.3. The training data for all of the machines was collected in the form of execution time,

total energy use, and average power values of various co-location combinations using all eleven

applications as target applications co-located with a subset of four of the applications available in

the testing environment. Specifically, cg, sp, fluidanimate, and ep were used as the applications that

were co-located with each “target” application. Because our preliminary results show that more

memory intensive applications tend to have a greater interference effect on co-located applications,

we biased our selection of three of the co-location applications towards more memory intensive

applications. The ep application is also included to represent the effects of co-location with a more

CPU intensive application. This limitation of four co-location applications was imposed to keep

the number of tests that were executed for training tractable.

When measuring application performance, data is collected for only a single “target” appli-

cation during any given co-location test. Initial baseline tests were run that measured each ap-

plication’s execution without co-location across six P-state frequencies to determine how each

application performed without interference from other applications. This baseline test provides a

basis of comparison for the effect of co-location interference on each application. The training

data was collected for each of the eleven target applications by running tests that co-locate each

application with multiple copies of each of the four co-location applications mentioned earlier.

Multiple homogeneous copies of each of these co-location application types were heterogeneously

executed with the target application, for each of the number of co-locations denoted in the “number

of co-locations” column shown in Table 2.5. Each of these sets of tests were performed once for

each of the six selected P-states on each multicore processor. The P-state frequencies are shown in

Table 2.5. Each of the columns three to six in the table represent nested loops in the data collection

code of Algorithm 1.

Thus, each attribute that is included as parameters to the data collection increases the size of

the co-location space substantially. For example, the data collected for the third row of Table 2.5
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is for six different frequencies, eleven different target applications, a selection of one of four co-

located application types, and one of six choices of the number of copies of the selected co-located

application to run with the target application for a total of 6x11x4x6 = 1584 co-location scenarios.

Algorithm 1 Training data collection
1: for each multicore processor do
2: for each P-state frequency do
3: for each target application do
4: for co-located application do
5: for each number of co-locations of co-located application do
6: get_exec_time_of_target()
7: get_system_energy_use_during_target_execution()
8: get_average_power_use_during_target_execution()
9: end for

10: end for
11: end for
12: end for
13: end for

The “num. of co-locations” column in Table 2.5 shows the number of additional applications

that were homogeneously co-located with the target application (i.e., all co-located applications

are of the same type). The applications ranged on each multicore processor from only a single co-

located application occupying one additional core, to co-located applications running on all of the

multicore processor’s available cores (i.e., one target application plus n−1 co-located applications

for a multicore processor that has n cores). Setting up the training data in this way is an attempt

to sample the set of all possible co-locations for a given machine in a uniform way that minimizes

the amount of training data that is needed to calculate coefficients for the model. For all of the

co-location scenarios represented by the three rows in Table 2.5, we collected experimental data

which we used in Section 2.5 to evaluate the accuracy of our prediction methods.

Model Testing

Application testing was performed by partitioning the training data described in Section 2.4.2

(the co-location scenarios from Table 2.5) by repeated random sub-sampling based on the boot-
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Table 2.5: Training schedule

processor num.cores frequencies (GHz) target co-location num. of
(n) apps. apps. co-locations

Intel Xeon 4 3.20, 2.70, 2.20, all cg,sp,fluidanimate,ep 1,2,3
E3-1225v3 1.80, 1.30, 0.80
Intel Xeon 6 2.53, 2.40, 2.26, all cg,sp,fluidanimate,ep 1,2,3,4,5
E5649 2.00, 1.73, 1.60
Intel Xeon 12 2.70, 2.40, 2.10, all cg,sp,fluidanimate,ep 1,3,5,7,9,11
E5-2697v2 1.80, 1.50, 1.20

strapping approach first described in [42]. Thirty percent of the data was randomly selected and

withheld from the training process of each model. After training, the withheld data was tested

using each of the models and measured for accuracy. In this way, each model was tested using

data that had not been seen previously during training. This withheld data is referred to as the

testing data. The partitioning process was repeated twenty times, each time with a new random se-

lection of points being withheld from training. The error values from each of these twenty training

and testing partitioned groups was then averaged to determine the overall accuracy of each model.

2.5 Experimental Results

2.5.1 Overview

This section discusses the performance results of each of the twenty-four models. Altogether

there are two sets (one set for execution time predictions, and the other set for energy use predic-

tions) of 12 models (two classes of modeling techniques - linear, and neural network - with six

variants each, based on the six model feature sets in Table 2.2). Each of the feature sets offers

a trade-off between prediction accuracy and model sophistication. Figure 2.1 shows the execu-

tion time prediction accuracy for the 4-core Intel Xeon E3-1225v3, 6-core Intel Xeon E5649, and

12-core Intel Xeon E5-2697v2 multicore processors. Figure 2.2 shows the energy use prediction

accuracy for the same three processors. Model prediction accuracy for both the training and test-

ing data sets presented in both MPE and NRMSE is included for each of the machine learning

techniques.
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Figure 2.1: Execution time prediction model performance per feature set for each Intel Xeon processor. (a,
c, e) Show MPE for the performance of training and testing data sets for model feature sets A through F. (b,
d, f) Show NRMSE for the performance of training and testing data sets for model feature sets A through
F. The figure shows results for each of the machine learning techniques: linear (blue) and neural networks
(green). Each point on the figure represents an average of twenty different partitions of the data into training
and testing data. Annotations next to points indicate the value of the point. The lighter shaded lines indicate
the performance of each model on individual partitions, the darker shaded lines indicate the average value
across all twenty partitions.

Each data point in Figure 2.1 and Figure 2.2 represents the average training error or average

testing error from twenty partitions of the data (as discussed in Section 2.4.2) for each particular

model. Results for each of the twenty individual partitions are shown as the lighter shaded lines
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Figure 2.2: Energy prediction model performance per feature set for each Intel Xeon processor. (a, c, e)
Show MPE for the performance of training and testing data sets for model feature sets A through F. (b, d, f)
Show NRMSE for the performance of training and testing data sets for model feature sets A through F. The
figure shows results for each of the machine learning techniques: linear (blue) and neural networks (green),
as well as a comparison to the results that are obtained by simply multiplying the corresponding feature set
of the neural network execution time prediction for each processor (the results shown in Figure 2.1) to each
test’s measured baseline average power value (red). Each point on the figure represents an average of twenty
different partitions of the data into training and testing data. Annotations next to points indicate the value
of the point. The lighter shaded lines indicate the performance of each model on individual partitions, the
darker shaded lines indicate the average value across all twenty partitions.

for each set of models, showing the range of values for each of the darker shaded average lines. As

can be seen in the figures, the range of values among each partition that was tested does not vary
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much (at most 1.5% for extreme cases). The annotations next to points represent the average value

across the twenty partitions for that model.

In addition to results for each feature set of both machine learning techniques, Figure 2.2

showing energy prediction model results also shows how effective it would be to make power-

based predictions about energy use by multiplying an application’s measured average power use

with its predicted execution time under co-location (i.e., “avgPower ∗ timePrediction”). This

last set of power-based energy prediction models is presented to serve as a basis of comparison

for the models generated by the methodology, and does not serve as part of the overall modeling

methodology.

The value representing an application’s average power use (avgPower) is baseline average

power, a measured value collected for each application type and for each processor P-state. This

value represents the average amount of power (specified in watts) that the application uses through-

out its execution. Similar to the model features listed in Table 2.1, baseline average power use is a

value that is measured from an application’s execution without co-location, and is obtained during

the collection of application energy data specified in Section 2.4.2.

The predicted execution time value (timePrediction) used for the calculation of each “avgPower∗

timePrediction” energy prediction model is generated by the corresponding neural network exe-

cution time prediction model from the methodology for that particular feature set for that particular

processor. For example, if an energy use prediction for an application running on the 4-core Intel

Xeon E3-1225v3 processor is made using the “avgPower ∗ timePrediction” model feature set

“D” then the execution time prediction for the calculation would be made using the neural network

model feature set “D” execution time prediction model for the 4-core Intel Xeon E3-1225v3 pro-

cessor (the neural network model results that are shown in Figure 2.1). The neural network model

was used for execution time predictions because it provides better accuracy than the linear model,

as discussed below.
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2.5.2 Results of Linear Modeling

Overview

As the linear model feature sets become more advanced (i.e., as the models progress from using

feature set A to feature set F), both the training and testing errors generally decrease for both the

execution time and energy use sets of prediction models for all three processor types, indicating

that the models become increasingly accurate when using increasingly advanced feature sets. It

can be further seen from the lighter shaded lines showing the performance of individual partitions

for both the execution time and energy prediction models of all three processors that as the model

feature sets become more advanced the variance seen among individual partition results tends to

decrease, indicating that the more complicated models have greater precision in addition to greater

accuracy.

The complexity of the sample space makes it challenging for the linear models to perform well

and improve significantly beyond the accuracy of the baseline model (relative to the improvement

demonstrated by the neural network models). As mentioned earlier, non-linearity in the data makes

predictions with these linear models less accurate.

Linear Execution Time Modeling

For all three multicore processors tested, the more advanced linear models provide only a

modest improvement in execution time prediction accuracy over the baseline linear model (model

A) when feature information is added to the models. Linear execution time model results are shown

in Figure 2.1. The 4-core processor results (Figure 2.1 (a, b)) have a training and testing error that

reduces by about 1% MPE and 0.004 NRMSE from model A to model F. The 6-core processor

(Figure 2.1 (c, d)) shows a reduction of about 2.74% for both training and testing MPE from model

A to model F. The 12-core processor (Figure 2.1 (e, f)) shows only about a 1% MPE improvement

from the addition of more model features from model A to model F. The linear NRMSE variance

results for the 6-core and 12-core processors follow very similar trends, reducing by about 0.008-

0.009 NRMSE for both processor’s training and testing results from model A to model F.
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Linear Energy Use Modeling

In general, the prediction accuracy for the energy use models tends to be lower than the execu-

tion time models, indicated by the models having higher MPE and NRMSE values. However, they

also show a greater increase in accuracy as the models become more advanced. Linear energy use

model results are shown in Figure 2.2. The 4-core processor results (Figure 2.2 (a, b)) have training

and testing error that reduces by about 3.7% and 4% MPE, respectively, and a 0.015 NRMSE de-

crease in training error and 0.016 NRMSE decrease in testing error from model A to model F. The

6-core processor (Figure 2.2 (c, d)) shows a reduction of about 5.01% MPE and 0.024 NRMSE for

training data and 4.81% MPE and 0.023 NRMSE for testing data from model A to model F. The

12-core processor results (Figure 2.2 (e, f)) shows a 5.36% MPE and 0.023 NRMSE improvement

for training data and a 5.12% MPE and 0.025 NRMSE improvement for testing data from model

A to model F.

It should be noted that even though the linear models for energy use are not able to outper-

form the neural network models, they still significantly outperform the energy calculation made

by the “average power multiplied by co-located execution time.” This is explained in detail in

Section 2.5.4.

2.5.3 Results of Neural Network Modeling

Overview

To allow for a fair comparison, the linear and neural network models use the same training

and testing data partitions. The first observation to note regarding the neural network models is

their clear improvement in prediction accuracy over the linear models, except for the single case

of the execution time prediction model B for the 4-core Intel Xeon E3-1225v3 machine shown in

Figure 2.1 (a, b).

The neural network models exhibit similar results to the linear models of the lighter shaded

lines converging with the more advanced feature sets, indicating increased model accuracy and

precision. In addition, with more advanced feature sets, the neural network model results in a
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closer grouping of the lighter shaded lines than with the linear models. This implies that the

individual partition results of the neural network models show less deviation from their mean than

the predictions made by the linear models with the same partitions of data, indicating that the

neural networks typically provide more consistent predictions than the linear models.

Neural Network Execution Time Modeling

Predictably, the complex neural network models, which utilize the most information, perform

the best at predicting application execution time.

Neural network execution time prediction model results are shown in Figure 2.1. The 4-core

processor results (Figure 2.1 (a, b)) have training and testing error that reduces by about 7.08%

MPE for training and 5.97% MPE for testing, and 0.021 NRMSE for training and 0.018 NRMSE

for testing from model A to model F. The 6-core processor (Figure 2.1 (c, d)) demonstrates a

reduction of about 5.36% for training MPE and 5.24% for testing MPE, and 0.030 NRMSE for

training and 0.029 NRMSE for testing from model A to model F. The 12-core processor (Figure 2.1

(e, f)) shows about a 4.7% MPE improvement and a 0.021 NRMSE improvement for training error,

a 4.57% MPE improvement and a 0.022 NRMSE improvement for testing error from the addition

of more model features from model A to model F.

Neural Network Energy Use Modeling

The general prediction accuracy for the energy use models tends to have higher error values

than the execution time models. Neural network energy use model results are shown in Figure 2.2.

The 4-core processor results (Figure 2.2 (a, b)) have training and testing error that reduces by about

11.34% and 10.55% MPE respectively, and a 0.046 NRMSE decrease in training error and 0.050

NRMSE decrease in testing error from model A to model F. The 6-core processor (Figure 2.2 (c,

d)) shows an MPE reduction of about 8.51% MPE and 0.055 NRMSE for training data and 8.1%

MPE and 0.045 NRMSE for testing data from model A to model F. The 12-core processor results

(Figure 2.2 (e, f)) shows a 9.74% MPE and 0.046 NRMSE improvement for training data and a

9.43% MPE and 0.044 NRMSE improvement for testing data from model A to model F. It should
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be noted that the neural network energy prediction models for all three processors significantly

outperform the energy calculation made by “average power multiplied by co-located execution

time.”

2.5.4 Calculating System Energy Use from Time Predictions and Average

Power

The “avgPower ∗ timePrediction” results shown in Figure 2.2 (indicated by the red line in

each portion of the figure) demonstrate the benefits associated with using our proposed energy

prediction models (indicated by the blue and green lines in the figure) as opposed to the more

approximate calculation of energy, i.e., using measured average power multiplied by the execution

time prediction. The problem with these simpler calculations of energy use lies in the necessity

of using an application’s baseline average power. Even as the execution time prediction in the

calculation becomes more accurate (moving from an execution time model using feature set “A” to

one using feature set “F”), the resulting energy use prediction shows little to no improvement. An

application’s baseline average power use turns out to not be a sufficiently accurate measurement

for making energy predictions calculated from power and execution time. Even if it were possible

to make perfectly accurate execution time predictions, the “avgPower ∗ timePrediction” models

could not improve in their energy use predictions, demonstrating the necessity of using a more

sophisticated modeling methodology, such as the one we propose, for making predictions about

application energy use under the influence of application co-location.

Unfortunately an application’s baseline average power is the only fair power measurement that

can be used for this energy calculation without making the resulting model at least as complex as

using models from our proposed methodology. Any power measurement that could be used to more

accurately predict energy use would require either average power measurements directly measuring

the effects of co-location on an application’s average power, or power measurements that would

require a more sophisticated modeling strategy to be used effectively for energy calculation. In
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either case, trying to more accurately predict energy use when using power and execution time

measurements would not be effective without the creation of a more sophisticated model.

Another interesting effect caused by the inaccuracy of the average power by time calculation is

observed when the execution time model increases in accuracy (moving left to right from model A

to model F) for each processor type shown in Figure 2.2. Both training and testing MPE actually

increase when using the “avgPower ∗ timePrediction” energy use calculation. This is because

the execution time prediction models used for the timePrediction value are making more accurate

execution time predictions, and thus causing the energy use calculations to make more precise pre-

dictions of an inaccurate energy use value. That is, the model is making more accurate predictions

of “avgPower ∗ timePrediction,” but because the use of baseline average power produces results

that are inherently inaccurate, the MPE increases as the execution time predictions incorporate

more features.

The reason that all three processors’ NRMSE values of “avgPower ∗ timePrediction” de-

crease as the predicted execution time value of the model becomes more accurate is because the

calculation of NRMSE starts as a calculation of an absolute error (root mean squared error) that is

then normalized to the range of the aggregate whole of the actual data (as shown in Equation 2.5),

whereas MPE is a relative error that is normalized to the actual energy use value at each data

point. Because of this, small changes in these larger energy use predictions produce larger effects

in NRMSE than it does in MPE where these larger predictions are each normalized by larger data

values.

A more detailed analysis of these model results shows that the predictions made with the

“avgPower ∗ timePrediction” models tend to have the most variation in prediction accuracy

for co-locations that produce higher values of energy use. Consequently, as the execution time

predictions improve from models using feature set “A” to models using feature set “F,” the en-

ergy use data that has higher values experiences the most improvement in its prediction accuracy.

Even though the model predictions are inherently inaccurate because of their reliance on baseline

average power, these predictions of high valued data were the worst off to begin with, so the im-
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provement in the execution time predictions provide the resulting energy use predictions of these

higher valued data points a noticeable improvement.

2.5.5 Model Accuracy

The illustrations in Figure 2.3 and Figure 2.4 provide a more detailed view of the accuracy

of the predictions made by the most accurate execution time prediction model and the most ac-

curate energy use model created for the 6-core Intel Xeon E5649 machine. Each of the icons in

Figures 2.3(a) and 2.4(a) respectively represents the distribution of each application’s measured

execution time and energy use data. The icons in Figures 2.3(b) and 2.4(b) respectively repre-

sent the distribution of error for the predictions of each application’s measured execution time and

energy use data. The larger width across each icon indicates a higher density of data points.

Figure 2.3(a) shows a detailed view of each application’s execution time distribution on a 6-core

Intel Xeon E5649 machine. The 120 points inside each application’s distribution mark the specific

execution time values measured for each test run of the application. Figure 2.3(b) shows a detailed

view of the performance of the neural network model using feature set F (the most accurate model)

on the execution time data shown in Figure 2.3(a). Distributions of the percent error between the

model’s execution time predictions and the application’s actual execution times are shown for each

application. The lines across each distribution represents the distribution’s median (dashed line)

and upper and lower quartiles (dotted lines). Figure 2.3 demonstrates that the model’s predictions

are typically accurate (their error is close to zero), that about half of the model’s predictions are

±2% from the actual execution time values, and that nearly all of the predictions are within 5% of

the actual execution time values.

The energy use prediction model results of the data shown in Figure 2.4 are very similar to

those of the execution time prediction model from Figure 2.3. Each of the distributions shown

in Figure 2.4(a) shows a detailed view of each application’s energy use distribution on a 6-core

Intel Xeon E5649 machine, with the 120 points in each distribution marking specific energy use

values of each respective application. Figure 2.4(b) shows a detailed view of the performance of the
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Figure 2.3: (a) Distributions of each application’s execution time. (b) The accuracy of the neural network
model using feature set F predicting execution time for each application, on the 6-core Intel Xeon E5649
machine.

neural network model using feature set F (the most accurate model) on the energy use data shown in

Figure 2.4(a). Distributions of the percent error between the model’s predictions of energy use and

the actual energy use are shown for each application. The lines across each distribution represents

the distribution’s median (dashed line) and upper and lower quartiles (dotted lines). Again, the

figure shows a low error in model prediction accuracy for the majority of the data points. About

half of the model’s predictions are approximately ±2.5% from the actual energy use values, and

nearly all of the predictions are within about 7% of the actual values.
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Figure 2.4: (a) Distributions of each application’s energy use. (b) The accuracy of the neural network
model using feature set F predicting energy use for each application, on the 6-core Intel Xeon E5649 ma-
chine.

Not surprisingly, by comparing the distributions of energy use shown in Figure 2.4(a) to the

distributions of execution time shown in Figure 2.3(a), it can be seen that the distributions are

fairly correlated. However, as discussed in Section 2.5.4, this correlation does not result in accurate

energy use predictions when simply multiplying execution time and baseline power.
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2.6 Prediction Model Utility

2.6.1 Overview

Predictions made about HPC system node performance are only useful if they can be shown

to provide some benefit to the system. This section specifically demonstrates an example of the

value of our modeling methodology’s execution time prediction models when applied to scheduling

compute node resources in a simulated 500-node homogeneous HPC system composed of system

nodes with 4-core Intel Xeon E3-1225v3 processors. It is shown that, due to the impact of co-

location interference on execution performance, scheduling with our proposed methodology can

provide significant improvements in overall system performance.

2.6.2 Simulator

We designed a simulator to provide a comparison between a scheduling heuristic that is naïve

to the effects of memory interference from co-location, and a heuristic that is aware of memory in-

terference by utilizing the proposed modeling methodology. The simulator is event-based, with the

ability to simulate execution of multiple applications on large-scale HPC platforms. The simulator

is also capable of modeling the effects of memory interference due to co-location on individual

nodes through the use of “memory interference events.” At a memory interference event, applica-

tions experience a delay in their execution, resulting in an increase in their execution times that is

dependent on their specific co-location scenario (i.e., which application types are running on the

other cores of the processor). The amount of execution time increase experienced by a particular

application for a given co-location scenario was determined empirically from data collection on

the 4-core Intel Xeon E3-1225v3 processor, as discussed later in Section 2.6.3.

2.6.3 Data Collection

To ensure that the simulated HPC environment would be able to simulate memory interference

from co-location as accurately as possible, additional data collection beyond what was described

in Section 2.4.2 was needed. That is, an exhaustive set of data for all possible co-location combina-
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tions of the applications used for simulation was collected on a real machine for these experiments

to ensure accurate simulation based analysis. This complete set of data ensured a more accurate

estimation of the real-world execution time for all the applications co-located on a multicore pro-

cessor in the system. Because it would be prohibitively time consuming to collect application

execution time information for all possible application co-locations for all of the eleven appli-

cations used for validating the methodology (the applications listed in Table 2.3), the work for

this simulated study considers only a subset of these applications (cg, sp, fluidanimate, and ep,

described in Section 2.4.2).

All data collection was performed using the same testing environment described in Section 2.4.1.

All data was collected at the lowest numbered P-state (highest performance P-state) of the 4-core

Intel Xeon E3-1225v3 machine. The data used for the simulator was collected as a series of nested

loops specifying the applications to be run on each core, as outlined in Algorithm 2.

Algorithm 2 Simulator data collection
1: for each multicore “targetApp” in {cg, sp, fluidanimate, ep} do
2: for each multicore “coApp1” in {IDLE, cg, sp, fluidanimate, ep} do
3: for each multicore “coApp2” in {IDLE, cg, sp, fluidanimate, ep} do
4: for each multicore “coApp3” in {IDLE, cg, sp, fluidanimate, ep} do
5: get_exec_time_of_target()
6: end for
7: end for
8: end for
9: end for

The three processor cores that execute the co-located applications need to include an “IDLE

application” in addition to the four application types cg, sp, fluidanimate, and ep to allow for

application scheduling situations where no applications are scheduled on a particular core. This

gave a total of 4x5x5x5 = 500 co-location scenarios for which data was collected. The exhaustive

data collection described above was performed ten times. An average of each data point out of the

ten sets of collected data was used for the simulation experiments.
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2.6.4 Task Simulation

Simulated instances of applications are referred to as tasks. Tasks can be any of the four appli-

cation types, cg, sp, fluidanimate, and ep, and upon arrival, each task’s type is selected according

to a uniform random distribution. This makes the number of each application type arriving into the

system for scheduling equally likely.

For a given task i, the arrival time of that task into the system is defined as TAi , and is de-

termined using a Poisson process. The first task to arrive into the system arrives at time zero

(TA0 = 0), and all subsequent tasks arrive according to the previous task’s arrival time (TAi−1
) plus

an exponential random variable Ti ∼ Exp(λ) with an expected arrival rate of E[Ti] = 1
λ

. Tasks

arriving in this manner allow for flexibility in adjusting the subscription level of the system by only

having to modify a single parameter λ. Task arrival time is given by

TAi = TAi−1
+ Ti . (2.6)

Tasks that do not complete execution by their deadlines are removed from the system. The

deadline of any given task i is denoted TDi , and is generated using the task’s arrival time TAi and

baseline execution time. Baseline Execution Time is defined in Section 2.3.3 and denoted here

as the variable ETB. Task deadlines take a uniform random value over an interval [a, b] giving

TDi = Ui(a, b), with a defined as task arrival time plus a parameter β multiplied by baseline

execution time, i.e.,

a = TAi + βETB . (2.7)

The end of the interval of the uniform random variable, b, is defined as task arrival time plus a

parameter γ multiplied by baseline execution time, i.e.,

b = TAi + γETB . (2.8)
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For all experiments shown, β = 1.2 and γ = 2.0, thus making a task’s deadline equal to the task’s

arrival time plus a random value between 1.2∗ETB and 2.0∗ETB. The task deadline for this work

is

TDi = TAi + U(1.2, 2.0) ∗ ETB . (2.9)

2.6.5 Scheduling Heuristics

Overview

The goal of our scheduling heuristics is to maximize the number of tasks that complete by

their deadlines. We simulate the behavior of two consolidating slack-based scheduling heuristics,

one that is naïve to the effects of memory interference from application co-location (co-location

naïve) and one that is aware of the effects of memory interference due to application co-location

(co-location aware). These heuristics are utilized during simulated scheduling events that map

tasks to processor cores. Scheduling events occur every time tasks arrive to the system, or processor

cores become free. Consolidation-based schedulers attempt to maximize the number of cores

that are executing tasks in each multicore processor node before powering up additional system

nodes. Consolidation-based scheduling has been shown to provide benefits for HPC systems by

minimizing the number of processor nodes that need to be active during a system’s execution, and

therefore reducing the power needs and potentially increasing the energy efficiency of the system

(e.g., [7], [8]). We use a consolidation approach for our sample use of co-location in scheduling,

and are aware that their are trade-offs between the consolidation approach and an approach where

tasks are distributed throughout the system.

Both the co-location naïve and co-location aware heuristics use a measure of a task’s slack for

making scheduling decisions. Task slack is a prediction of the time a task has remaining between

when it is expected to finish and its deadline. The task slack calculation is used to ensure that

a task will have enough time to completely execute under a given co-location scenario, and this

calculation differs between a co-location naïve heuristic and a co-location aware heuristic. The
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task slack is defined in detail in Section 2.6.5. It is the goal of all scheduling heuristics used for

these experiments to create schedules that maximize the number of tasks that meet their deadlines,

while consolidating tasks as much as possible.

Task Slack

Calculating task slack provides an estimate of the amount of time that is available between

when a task is expected to be completed and its deadline. Because predictions of task execution

time are necessary for calculations of task slack, it is to be expected that a better prediction of task

execution time would produce a better prediction of task slack, and consequently allow any slack-

based scheduling heuristics dependent on task execution times to produce better task schedules.

For some task i in the simulated system, co-location naïve slack, SCNi , is calculated as the

task’s deadline (TDi defined in Section 2.6.4) minus the task’s co-location naïve predicted time of

completion, TCNi , calculated as the task’s baseline execution time (defined in Section 2.3.3) plus

the simulated current time (CT ). Thus, the co-location naïve slack equation is

SCNi = TDi − TCNi . (2.10)

The major difference between the equations for calculating co-location naïve and co-location

aware task slack is that, instead of using the value of the task’s baseline execution time for pre-

dicting a task’s execution time, the co-location aware slack calculation uses a prediction of the

co-location aware time at which a task will be completed, denoted TCAi . Before a task begins

executing and has been assigned to a processor node the initial value of TCAi is equal to the cur-

rent time of the simulator (CT ) plus the task’s baseline execution time value. After the task’s

initial completion time has been calculated, the co-location aware slack for each task i, denoted

SCAi , is calculated as the task’s deadline (TDi) minus the task’s co-location aware completion time

prediction (TCAi), i.e.,

SCAi = TDi − TCAi . (2.11)
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However, after the scheduling heuristic has assigned the task to a processor core, the time at

which the task will be completed changes due to its co-location with other applications, and the

value of TCAi must be recalculated. The prediction of a target task’s completion time after being

co-located with other tasks is challenging because:

(a) the interference a target task will experience during its execution will change over time as

either the tasks that it is co-located with finish executing, or as new tasks arriving into the

system are co-located with the target task during its execution;

(b) the target task itself will cause interference with the other tasks it is co-located with, increasing

their execution time, and thereby changing the duration of each task’s interference effects on

the target task, making the execution time prediction harder.

The first problem can be solved by having the scheduling heuristic recalculate a task’s slack

value at every scheduling event (when tasks arrive into the system, or processor cores become free),

thus ensuring that the slack value is up-to-date whenever the value needs to be used for scheduling.

The second problem of finding an accurate prediction (as far as an underlying execution time

prediction model will allow) for all tasks co-located on a multicore processor node despite there

being a continuous complex interaction among them is solved through the iterative approximation

algorithm shown in the pseudo-code in Algorithm3.

Algorithm 3 takes a set of tasks co-located on a processor, denoted T, and calculates the pre-

dicted completion time of all tasks in the set. Each task in the set of co-located tasks presented to

the algorithm may be in various states of progress through their execution, and will have previous

predictions of their completion times recorded from earlier in their execution that will be used in

the algorithm.

The algorithm starts by recording the simulator’s current time in the variable IS that stores

the start time of the current co-location interval. The co-location interval is defined as the largest

interval of time that the co-located tasks in the processor is guaranteed not to change. For example,

if two tasks, A and B, are co-located on a processor then each of these tasks will have a previously
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Algorithm 3 Predicted time to task completion under current co-location (TCAi)

1: inputs: a set T of the tasks co-located on the same processor node
2: outputs: a set T′ of tasks with predicted completion times
3: let IS = CT
4: while the size of T > 0 do
5: let IE be the earliest task completion time value in T
6: for each task t in T do
7: calculate PUI of t under co-location T
8: TCAi = TCAi + PUI ∗ (IE − IS)
9: end for

10: for each task t in T do
11: if IE + 1 ≥ TCAi then
12: add t to T′

13: remove t from T
14: end if
15: end for
16: IS = IE
17: end while
18: return T′

predicted completion time calculated earlier in the simulation. Let the predicted completion time

of task A be CT + 5 and that of task B be CT + 10. Then for this scenario the co-location interval

is from CT to CT +5 which is the interval during which these tasks are guaranteed to be executing

co-located together. As another scenario, consider a task C that arrives and is co-located with tasks

A and B with task C having a completion time of CT + 4. In this scenario the co-location interval

will be from CT to CT + 4.

The calculation of predicted unit interference PUI is where our methodology’s execution time

prediction models are utilized. The predicted value of a task’s execution time under co-location,

is denoted ETC . After the execution time prediction has been made by the prediction model, the

task’s baseline execution time (ETB) is subtracted from this value and the result is then dived by

the task’s baseline execution time to obtain a calculation of the increase in execution time a task

experiences during a one second unit of execution for a particular co-location scenario. Thus, PUI

is

PUI =
ETC − ETB

ETB
. (2.12)
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The general procedure for calculating each task’s completion time occurs in the while loop

starting on line 4. An iteration of this while loop starts by finding the end of the current co-location

interval, IE (line 5). Next, the for loop on line 6 updates the completion times of each task in T

by first calculating the task’s PUI according to Equation 2.12, then multiplying this value by the

value of the current co-location interval (IE− IS), and finally adding it to the task’s last predicted

completion time (lines 6-8). After each task’s completion time has been updated for the current

iteration of the while loop, the for loop on line 10 removes tasks from T with predicted completion

times within 1 second after the end time of the co-location interval (necessary for establishing

which tasks will be in the next co-location interval), and puts them in the set T′. The algorithm

then updates the co-location interval start time of the next iteration of the while loop to be the

current interval’s end time (line 16). The algorithm continues iterating through the while loop until

all tasks have been removed from T, indicating that completion time predictions have been made

for all tasks co-located on the node, and returns the set T′ of tasks with updated completion times.

After the predictions of completion time under the current co-location scenario has been completed

for each task in the processor node, the co-location aware slack for each task i, is calculated as

defined earlier in Equation 2.11.

The neural network model F for the 4-core Intel Xeon E5-1225v3 system (the model used for

execution time predictions in this simulated study) is trained just once, using the entire set of data

collected as specified in Section 2.4.2. The accuracy of this execution time prediction model has a

training performance MPE of 2.50% when trained with the full set of training data.

Co-Location Naïve Scheduling Heuristic

The co-location naïve scheduling heuristic is shown in Algorithm 4, and takes as input the set

of “unmapped tasks” U that are a set of tasks that have arrived into the system but have not yet

been scheduled to a processor core, and the list N of processor nodes with available cores. The

algorithm returns a mapping of a subset of the tasks in U to a subset of the nodes in N.

Algorithm 4 starts by sorting tasks in U from least slack to most slack according to their slack

values calculated with Equation 2.10, then stores these values in the list U′, and initializes the
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boolean variable NA, which indicates if a node is available, to false (line 3-4). Next, the algorithm

enters the outer for loop that iterates over each task ui in U′ (line 5). Because the list is sorted

according to slack, the tasks that are closest to their deadlines and most in need of scheduling get

considered for scheduling first. At the beginning of each iteration of the outer for loop the set

of nodes N is sorted from the node with the least number of available cores to the node with the

most number of available cores, and stored in N′. It is this list N′ that is subsequently iterated over

in the inner for loop (lines 6-7). Allowing the nodes to be iterated over in this way encourages

consolidation. In line 8, the co-location naïve slack SCNi is calculated for task ui if it were to be

scheduled on node nj . If the calculated slack prediction is greater than zero then NA is set to true,

the available node nj is recorded to the variable that stores the node with available slack NWAS,

and the algorithm breaks from the inner loop, otherwise it checks the next processor node (lines

9-12). Once the inner for loop is complete, if there was a node available, then task ui is scheduled

onto the node recorded in NWAS, otherwise the algorithm moves on the next unmapped task

(lines 15-16). After the outer for loop has iterated through all of the unmapped tasks, the algorithm

is complete.

Co-Location Aware Scheduling Heuristic

The co-location aware scheduling heuristic operates similarly to the co-location naïve schedul-

ing heuristic, and is shown in Algorithm 5. The only difference between the co-location aware

heuristic and the co-location naïve heuristic is the scope and calculation of task slack (lines 8-9).

In addition to using the co-location aware slack calculation of Equation 2.11 for its task slack pre-

dictions, the co-location aware scheduling heuristic is aware of the other tasks already executing

on the node nj and calculates slack for all the tasks on the node, not just the unmapped task ui.

When the algorithm checks the slack for all tasks in the node, it is not only checking to see if the

unmapped task ui will be able to finish executing when subjected to node nj’s co-location, but also

checking to make sure that placing ui on the node will not produce so much interference that it

could make the co-located applications already executing on node nj miss their deadlines.
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Algorithm 4 Co-location naïve consolidating slack-based scheduling heuristic
1: inputs: unmapped tasks U, nodes with available cores N
2: outputs: a mapping of a subset of U to a subset of N
3: let U′ be a sorted list of tasks U from least slack to most slack
4: initialize NA = False
5: for each task ui in U′ with i = 1 to the size of U′ do
6: let N′ be a sorted list of nodes N from least to most number of available cores
7: for each node nj in N′ with j = 1 to the size of N′ do
8: calculate co-location naïve slack, SCNi , for task ui on node nj
9: if SCNi > 0 then // ui can be completed on node nj

10: NA = True
11: NWAS = nj
12: break
13: end if
14: end for
15: if NA then // it is predicted that task ui can be completed
16: assign ui to execute on node NWAS
17: end if
18: end for

Algorithm 5 Co-location aware consolidating slack-based scheduling heuristic
1: inputs: unmapped tasks U, nodes with available cores N
2: outputs: a mapping of a subset of U to a subset of N
3: let U′ be a sorted list of tasks U from least slack to most slack
4: initialize NA = False
5: for each task ui in U′ with i = 1 to the size of U′ do
6: let N′ be a sorted list of nodes N from least to most number of available cores
7: for each node nj in N′ with j = 1 to the size of N′ do
8: calculate co-location aware slack, SCAk , if ui were added to the node
9: // SCAk is calculated for all tasks on node nj , with k = 1 to the number of tasks on the

node
10: if all tasks have slack SCAk > 0 then // ui can be completed and will not cause missed

deadlines on node nj
11: NA = True
12: NWAS = nj
13: break
14: end if
15: end for
16: if NA then // task ui can mapped without causing missed deadlines
17: assign ui to execute on node NWAS
18: end if
19: end for
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Perfect Prediction Scheduling Heuristic

A third scheduling heuristic that we consider in our study demonstrates co-location aware

scheduling with perfect prediction (perfect pred) of application interference. As the name suggests,

the “perfect prediction” scheduler shows how the co-location aware scheduling heuristic would be-

have if the modeling methodology was capable of perfectly predicting an application’s execution

time under any co-location situation. The “perfect prediction” scheduler makes its scheduling de-

cisions using the same scheduling procedure as the co-location aware scheduling heuristic outlined

above in Section 2.6.5, except that instead of using our proposed co-location interference modeling

methodology for its prediction of a task’s increased execution time under co-location, its execu-

tion on a simulator allows it to predict the future execution time values under co-location obtained

after profiling on a real system. Therefore a task’s execution time and slack under co-location are

“predicted” perfectly accurately for the purposes of scheduling.

It is not possible for such a scheduler to exist outside of a controlled simulation, but it is shown

here for the purposes of providing an upper bound on what is achievable for any consolidation

based co-location aware heuristic. The difference in performance between the co-location aware

scheduling heuristic using “perfect prediction” and the co-location aware heuristic using the pro-

posed modeling methodology for its predictions gives an indication of how often tasks miss their

deadlines due to inaccurate predictions, instead of environmental factors of the computing system.

2.6.6 System Measurements

Overview

We use four different measures for comparing the heuristics in the system: system performance,

core utilization, node utilization, and core utilization of active nodes (each defined in the follow-

ing sections). Each measure gives a different view of how the heuristics behave during system

simulation, and allows for a detailed analysis of the system.

System Performance Measure

After a simulation has completed, each task will be in one of three states.
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(a) completed: The task was scheduled to a processor core and successfully completed at or before

its deadline.

(b) missed deadline: The task was scheduled to a processor core, but was unable to be completed

before its deadline. This outcome occurs when a scheduling heuristic makes a mistake in its

assumption about a task’s execution time (for instance, the task experiences longer execution

times due to co-location interference). When a task misses its deadline it is removed from its

processor core at its deadline time.

(c) unassigned: When the number of arrived tasks in the system exceeds the number of available

cores (either physically available cores, or cores that a scheduling heuristic determines can be

used without causing missed deadlines) then the task is put in a queue of arrived tasks waiting

to be scheduled. If the task is unable to be scheduled before its deadline, then at the time of its

deadline the task is removed from the system and labeled as “unassigned.”

The goal of this scheduler is to complete as many tasks by their deadlines as possible, thus

reducing the number of tasks that miss their deadlines or are not executed at all. The overall

system performance using a particular scheduling heuristic is determined by measuring the number

of tasks that meet their deadlines at the end of system simulation.

Core Utilization Measure

A system core is considered active if it is executing a task. The core utilization CU at a

particular instant of the system’s simulation is calculated from the ratio of the system’s active

cores (AC) to the system’s total cores (TC), i.e.,

CU =
AC

TC
. (2.13)

Node Utilization Measure

A system node is considered active if it has at least one active core. The system’s node

utilization NU is a measure of the percentage of active nodes in the system (nodes with at least
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one task is running on the node). Node utilization is calculated simply as a ratio of the number of

nodes with at least one active core (active nodes denoted AN ) to the total number of nodes in the

system (denoted TN ), i.e.,

NU =
AN

TN
. (2.14)

Core Utilization of Active Nodes Measure

The core utilization of active nodes (CUAN) is a system measure that examines how consoli-

dated tasks are in the system by examining how “full” active nodes are in the system. If the tasks

in the system are consolidated, then the value of CUAN is high, and if the tasks in the system are

spread out across processor nodes, then the value of CUAN is low. The CUAN metric is calculated

as the sum over all active nodes in the system of the number of active cores in each active node

ACINi divided by the total number of cores in that active node TCINi. This sum is then divided

by the total number of active nodes (AN ), i.e.,

CUAN =

AN∑
i=1

ACINi
TCINi

AN
. (2.15)

Because the simulated HPC system used in this study is homogeneous with each node consisting

of a 4-core processor TCINi will always be equal to four in this system. However, this equation

can be generalized to a heterogeneous system with any number and distribution of cores per node.

2.6.7 Experimental Setup

Simulations were performed at two different task subscription levels. The total number of tasks

that arrive at the simulated system for each subscription level remain a constant value of 8000 tasks

in each simulation. This way, the only difference between simulations in one subscription level

and another are the 1
λ

values associated with the expected arrival times of the tasks (described in

Section 2.6.4). The subscriptions levels are defined as oversubscribed with 1
λ

= 0.1 and undersub-

scribed with 1
λ

= 0.25. The oversubscribed system has tasks arriving to the system at a higher rate

than the system can execute them.
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The subscription levels provide a good range of situations in which an HPC system could

be operating. The resulting performance of each of the scheduling heuristics for each of these

subscriptions levels provides a good assessment of when the system benefits from a co-location

aware scheduling heuristic.

After the arrival pattern and deadlines of the tasks are determined according to Section 2.6.4 for

each of the subscription levels, the 500 node system is simulated with each of the three scheduling

heuristics described in Section 2.6.5 (co-location naïve, co-location aware, and “perfect predic-

tion”) for a total of six simulated system scenarios.

2.6.8 Experimental Results

Simulation results for demonstrating the utility of the modeling methodology are shown in

Figures 2.5 and 2.6 for each of the subscription levels discussed in the experimental setup from

Section 2.6.7. The most important result from the simulation is its demonstration of the utility

of our co-location interference modeling methodology. For both subscription levels, the heuristic

performance results shown in Figures 2.5(a) and 2.6(a) indicate that the co-location aware heuris-

tic is able to complete more tasks than the co-location naïve heuristic by avoiding missing task

deadlines, while at the same time, performing competitively with the perfect prediction heuristic.

The performance of the “perfect prediction” heuristic in Figures 2.5(a) and 2.6(a) further

demonstrates how many of the tasks fail to be completed because of a missed deadline (due to

an inaccurate execution time prediction) or fail to be completed because they are not able to be

scheduled in the system. As expected, the co-location aware scheduling heuristic with “perfect

prediction” does not have a single task that misses its deadline for either of the two task sub-

scription levels. However, even for the “perfect prediction” scheduling heuristic, tasks that are

executed in an oversubscribed system (shown in Figure 2.5(a)) are sometimes unassigned, indi-

cating that it would never be possible to complete more than approximately 78% of the tasks that

arrive to the system. Given this upper bound on performance, our co-location aware scheduling

heuristic performs very well. In both subscription level scenarios where we use our co-location
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Figure 2.5: Simulation results of an oversubscribed 500 node homogeneous system comprised of 4-core
Intel Xeon E3-1225v3 processors. (a) Shows scheduling heuristic performance. (b) Shows node utilization
of the simulated system. (c) Shows core utilization of the simulated system. (d) Shows core utilization of
active nodes (CUAN) of the simulated system. In (a), the purple bar shows the percentage of total tasks
completed, the brown bar shows the percentage of total tasks that missed their deadlines, and the green bar
shows the percentage of tasks that were left unassigned. In (b), (c), and (d) the red line indicates the naïve
heuristic utilizations, the green line indicates the co-location aware heuristic utilizations, and the blue line
indicates the perfect prediction utilizations.

aware scheduling heuristic, the number of completed tasks for our heuristic comes within 3% of

the heuristic with “perfect prediction.”

It can be observed from the results for the three utilization metrics of each heuristic shown

in Figure 2.5 and Figure 2.6 that there is a trade-off for each heuristic between the subscription

level of the tasks in the simulated system and each heuristic’s ability to consolidate tasks in the

system. For both subscription levels, the co-location aware heuristic provides worse consolidation
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Figure 2.6: Simulation results of an undersubscribed 500 node homogeneous system comprised of 4-core
Intel Xeon E3-1225v3 processors. (a) Shows scheduling heuristic performance. (b) Shows node utilization
of the simulated system. (c) Shows core utilization of the simulated system. (d) Shows core utilization of
active nodes (CUAN) of the simulated system. In (a), the purple bar shows the percentage of total tasks
completed, the brown bar shows the percentage of total tasks that missed their deadlines, and the green bar
shows the percentage of tasks that were left unassigned. In (b), (c), and (d) the red line indicates the naïve
heuristic utilizations, the green line indicates the co-location aware heuristic utilizations, and the blue line
indicates the perfect prediction utilizations.

than the co-location naïve heuristic. This is to be expected because the co-location aware heuristic

specifically leaves processor cores idle if scheduling tasks to those cores would cause other tasks

in the system to miss their deadlines. By examining the oversubscribed system in Figure 2.5(b),(c),

and (d), it can be observed that the co-location naïve heuristic aggressively consolidates tasks in the

system because the node utilization, core utilization, and core utilization of active nodes (CUAN)

are all close to 100% for the majority of the system simulation. In contrast, the co-location aware

51



heuristic still takes advantage of all the nodes in the system (node utilization is still at 100%), but

is more selective about its use of cores and therefore has core utilization, and CUAN values that

peak at about 90% and do not remain constant throughout the simulation. Similar conclusions can

be drawn from the results for the undersubscribed system shown in Figure 2.6. In this system,

the co-location naïve heuristic still has the highest levels of core utilization and CUAN, but has a

lower node utilization, indicating that it is more aggressively consolidating tasks in the system due

to its inability to foresee the potential problems that arise when tasks are co-located on the same

multicore processor.

2.7 Conclusions
We proposed a modeling methodology that predicts application execution time and energy use

when under co-location interference effects caused by resource sharing among cores in a multicore

processor. The methodology is general enough to be applied to any multicore processor and set

of applications. To validate our methodology, its effectiveness was demonstrated by applying

it to three server class Intel Xeon multicore processors with up to 12 cores, executing real data

workloads from two scientific benchmark suites. After validation, the utility that such prediction

models can provide was demonstrated by creating a scheduling heuristic that takes advantage of

the proposed modeling methodology for its scheduling decisions.

Specifically, this work used machine learning techniques to make predictions about applica-

tion performance degradation due to contention in shared cache and main memory resources when

multiple applications were co-located on the same multicore processor. While simpler linear mod-

els do not provide a significant increase in prediction accuracy from the addition of application

memory use information, the results from Figure 2.1 and Figure 2.2 show that neural networks

can provide very accurate predictions of application execution time and energy use. For the neural

network model, when using only a subset of the application features, it is still able to produce fairly

accurate performance predictions. Using all the features, the neural network achieved a very small

MPE of 2% and an NRMSE of around 0.01 on all processors tested. Considering that performance
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degradation due to co-location can extend an application’s execution time quite significantly, even

a model with access to only a limited set of model features may be able to provide good enough

predictions to improve the performance of schedulers in HPC systems.

Applying our methodology to create models for a large-scale simulated system enabled us to

examine the benefit of a co-location aware scheduling heuristic that can provide substantial per-

formance improvement in a simulated homogeneous 500 node system. Although the experiments

in Section 2.6 were only performed for a homogeneous system of 4-core nodes, it is reasonable

to expect that the benefits demonstrated can be replicated in either a homogeneous or heteroge-

neous system that includes processor nodes with more cores. Not only is the interference from

co-location that applications experience likely to be greater in machines with more cores, but the

results shown in Figure 2.1 indicate that for the more advanced feature sets the prediction models

tend to perform even better for the 6-core and 12-core systems than they do for the 4-core system

used for those experiments.
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Chapter 3

A Performance and Energy Comparison of Fault

Tolerance Techniques for Exascale Computing

Systems

3.1 Introduction
System reliability has recently become a looming and unsolved problem in the field of HPC.

Today’s HPC systems are nearing the performance capability of one-hundred petaflops [44]. Cur-

rent HPC systems experience failures on the order of every few days, but models indicate that an

exascale-sized system will likely experience system failures several times an hour [45].

Contemporary HPC systems have thus far been able to successfully mitigate the effects of

system failures through the use of checkpoint-based rollback recovery and redundant execution of

code using additional hardware. However, as the mean time between failures (MTBF) of future

HPC systems decreases, these traditional approaches to system resilience either do not scale to

meet the system’s increased demand for performance or require too much energy to be feasibly

implemented [46].

Recent works have proposed several alternative resilience techniques that are potentially better

able to handle the increasing numbers of failures associated with these larger scale systems [45]

[47] [48]. However, the relative performance and energy use of each of these techniques when

compared with one another is unclear.

This work was performed jointly with the full list of co-authors listed in [43]. This work is supported by the
National Science Foundation (NSF) under grants CCF-1252500 and CCF-1302693. This research also used the CSU
ISTeC Cray System supported by NSF Grant CNS-0923386.
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This work provides a simulated comparison of the performance and energy use of three of these

new resilience techniques for HPC systems. The simulated system is based on analytical models

for the NAS Block Tridiagonal benchmark application [41] executing at extreme scale, as well as

measurements taken from the Block Tridiagonal benchmark executed on real-world server-class

processors. Each resilience technique’s performance and energy use is simulated with varying sys-

tem sizes and hardware component reliability levels. Analysis is performed detailing the strengths

and weaknesses of each resilience technique. We conclude with a comparison between each tech-

nique’s performance relative to the others, as well as each technique’s performance compared to a

traditional checkpoint restart resilience approach.

With this chapter we make the following novel contributions:

• we construct a methodology for simulating the execution, power consumption, and energy

use of extreme-scale computing systems operating with the uncertainty of hardware failures;

• we provide a comparison of the relative performance and energy consumption of four strate-

gies for extreme-scale high performance and cloud computing resilience.

3.2 Related Work

3.2.1 Overview

We limit the resilience techniques considered to those that are transparent to application pro-

grammers and system users. While several other techniques for mitigating the effects of system

failures exist, we refer the reader to the summaries provided of such works in [49], [50], and [51].

Specifically this work focuses on examining techniques utilizing rollback recovery and redundancy.

3.2.2 Rollback Recovery

Rollback recovery based techniques rely on periodically saving the system’s executing state

and rolling back to an earlier state after the occurrence of a failure. Such a technique is referred to

as checkpointing [52] [53]. All rollback recovery techniques rely on this notion of checkpointing in
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some form. Because of their nature of loading an earlier system state after a failure, all rollback re-

covery techniques necessarily lose some productivity as the restarted applications must recompute

work lost between the time of the failure and the time of the last checkpoint. Our work exam-

ines three types of rollback recovery techniques: checkpoint restart, multilevel checkpointing, and

message logging.

Checkpointing and Restarting

Checkpointing is by far the most commonly used resilience technique employed by today’s

HPC systems. The most general implementation of the checkpointing technique operates by stop-

ping the system’s execution at regular intervals to save the state of all executing applications to a

permanent storage device, typically a parallel file system (PFS). Such a checkpointing technique is

called a blocking, coordinated checkpoint [49]. Several variations and improvements on this tech-

nique have been made since its initial inception. Attempts have been made to create non-blocking

or semi-blocking checkpointing, which allows the system to continue to execute while checkpoints

are saved to permanent storage [54] [55]. Attempts have also been made to allow for uncoordi-

nated checkpoints of the system, preventing the need for all processes in the system to restart when

a failure occurs [56]. However, the length of time associated with checkpointing, restarting, and

recomputing work lost to a system failure, and the frequency that the system needs to take check-

points for very large scale applications with any of these checkpointing techniques has been shown

to provide diminishing returns with increasing system sizes. Traditional checkpointing alone is

thus not expected to be capable of providing resilience to systems at exascale sizes.

Multilevel Checkpointing

Multilevel checkpointing involves multiple levels of checkpointing, each level offering a trade-

off between the time required by the system to checkpoint or restart, and the level of failure severity

from which the checkpoint can recover [47]. In general, checkpoints of different levels correspond

to saving data to different levels of the memory subsystem or allow for saving checkpoints across

the memory of one or more partner nodes. Checkpoint levels also may employ various encod-
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ing techniques (such as RAID or Reed-Solomon coding) to improve the resilience offered by a

particular checkpoint level [47] [57]. Attempts also have been made to reduce checkpointing’s

dependence on the PFS [58] [59] [60]. One challenge associated with using multilevel checkpoint-

ing is in determining the optimal number of checkpointing levels and the optimal computation

intervals between checkpoints at each level. Various solutions to this problem have been pro-

posed [47] [61] [62].

Message Logging

Message logging attempts to provide resilience to a system by recording messages sent among

processes to create snapshots of the system’s execution distributed across system memory [63].

When a failure occurs, the failed node is able to use messages stored in the memory of other

system nodes to save on the amount of rework that is performed by the system when restarting

from a checkpoint on a failure [64].

3.2.3 Redundancy

Redundancy based techniques improve a system’s reliability by executing redundant copies of

the same piece of code [65]. It is possible to implement redundancy in either hardware or software

[50], but in either case the improved reliability comes at a cost of using additional resources.

Because of its necessity for using more resources, redundancy alone is typically not considered

to be viable resilience solution for exascale systems. However, recent been made to allow the

system to utilize redundancy in less resource-intensive ways. Dynamic redundancy allows for

the executing application to choose a subset of processes for redundant execution [66]. Partial

redundancy combines redundancy with checkpointing, and allows for applications to redundantly

execute a portion of processes in the system, providing improved resilience for part of the system,

while using only a portion of the necessary system resources [48].
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3.3 HPC System Simulator

3.3.1 Overview

Because no exascale system is currently available, we perform experiments via simulation. We

have created an event-based simulator capable of simulating application execution on arbitrarily

large systems [22] [4]. Simulated applications execute under the influence of randomly generated

system failures, but are able to employ various resilience techniques capable of helping to mitigate

the impact that those failures have on the application’s execution. Throughout an application’s

simulated execution, values of execution time and energy use are recorded for the simulated events

associated with computation (execution toward the application’s completion), checkpoints (saving

a backup of the application’s current computation progress), restarts (restoring the application

progress saved in the last system checkpoint after a failure occurs), recovery (recomputing progress

lost to a failure after the system has restarted), and failed checkpoints or restarts (when failures

occur during checkpoint or restart events).

With the exception of computation events, the actions taken for each simulated event are de-

termined according to the resilience technique employed by the simulated system, as outlined in

Section 3.3.3.

3.3.2 Modeling System Failures

The probability of failures occurring in HPC systems are commonly modeled according to

exponential distributions [67]. Our simulator follows this assumption and generates failures ac-

cording to a Poisson process, with each new failure arriving according to the previous failure’s

arrival time (TAi−1
, with TA0 = 0) plus a random variate generated from an exponential distribu-

tion Ti ∼ Exp(λsys) with an expected arrival rate of E[Ti] = 1
λsys

. The parameter λsys indicates

the average failure rate of the entire system, and is defined as the number of nodes in the simulated

system, Nsys, divided by the MTBF of the system nodes, MTBFNode,

λsys =
Nsys

MTBFNode
, (3.1)
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with Nsys and MTBFNode explicitly defined in Sections 3.3.3, 3.5.2, and 3.5.3 for each experi-

ment.

In addition to the time at which failures occur, some resilience technique’s behavior depends

on having information about which system node has failed (in the case of redundancy) and the

severity of the failure (in the case of multilevel checkpointing). Failure generation in our simulator

accommodates both of these additional failure attributes. When determining which node has failed

the simulator assumes a uniform random distribution over all active nodes in the system and selects

one node at random as the failed node. The level of failure severity is determined by the type

of system failure and the implementation of the multilevel checkpointing technique. We have

assumed the multilevel checkpointing implementation of [47]. During simulation, the probability

of having a failure at a severity level j is determined by the ratio of the number of failures that

occur at failure severity level j, λLj , to the total number of failures, λLtot , for failures measured

from a system over an extended interval of time. The resulting discrete set of probabilities for each

of the j levels is used to create a probability mass function. During simulation, random variates

are sampled from this probability mass function to produce integers that define the severity level

of each failure.

3.3.3 Resilience Technique Simulation

Four resilience techniques have been implemented in our simulator. A traditional check-

point restart based technique, Checkpoint Restart, as well as three techniques proposed for next-

generation HPC systems. The multilevel checkpointing approached described in [47], Multilevel

Checkpoint, an implementation of message logging outlined in [45], Parallel Recovery, and a tech-

nique combining traditional checkpointing with partial redundancy of the system hardware in [48],

Redundancy. We now describe the implementation of these techniques.

Checkpoint Restart

The Checkpoint Restart technique implemented in our simulator is the traditional periodic,

blocking, coordinated checkpointing technique, with its checkpoints saved to a PFS. This basic
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strategy for checkpointing has been the baseline that is compared against by many contemporary

works in HPC resilience. All three of the next-generation resilience techniques explored in this

work not only use this traditional checkpointing technique as a baseline for comparing their own

work, but all of them, to some extent, base their own improved techniques on this approach.

Multilevel Checkpointing

The approach in [47] implements a three-level checkpointing model. Associated times for

checkpointing, TCLj , times for restarting, TRLj , and failure severity ratios,
λLj
λLtot

, are defined ac-

cording to [47]. The optimal checkpoint intervals at each level also are determined according to

the Markov model in [47].

Parallel Recovery

The technique in [45] adapted in our simulator is an improvement to the message logging re-

silience technique. Parallel Recovery allows for faster recovery from a system failure by allowing

the failed node’s work to be temporarily parallelized across several nodes after being restarted,

thereby reducing the time needed by the system to recompute the work lost to a failure. As with

all message logging techniques, parallel recovery benefits the system by allowing functional nodes

being used by the executing parallel job that included the failed node to remain idle while the failed

node recomputes work lost due to a failure. This decreases both the system power needed during

recovery as well as the chance that a failure will interrupt the recovering system in comparison to

other checkpoint based techniques. However, unlike other message logging techniques, parallel re-

covery improves checkpointing and restart time by utilizing in-memory checkpointing as outlined

in [68].

Partial Redundancy

The Partial Redundacy technique in [48] combines traditional checkpointing with varying de-

grees of hardware redundancy. “Partial” redundancy is achieved by allowing only a fraction of

the total system nodes required by the executing application to have redundant hardware during its
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execution. For example, a degree of redundancy of r = 2.5 dictates that each virtual process of

an executing application requiring a single node will have at lease two physical nodes performing

the same computation, and half of the virtual processes will have three physical nodes performing

the same computation. At the same time, checkpoints are taken by the system at regular inter-

vals. When failures occur on system nodes, the system only requires a restart if failures occur on

all (possibly redundant) physical nodes associated with one of the application’s virtual processes

before the next checkpoint.

3.4 Exascale Modeling Methodology

3.4.1 Overview

The foundation of each of our simulated system experiments is either based on measurements

taken from a real-world system or extrapolated from analytical equations. This section details the

methodology we use to construct various system setups for simulating applications executing at

extreme scales.

3.4.2 NAS Block Tridiagonal Benchmark at Extreme Scales

Without access to an exascale system it is not possible to directly measure application perfor-

mance, energy use, or behavior of the application operating when employing a given resilience

technique. However, the work in [69] provides an asymptotic analysis of the execution of the NAS

Parallel Benchmark’s Block Tridiagonal (BT) application [41] at extreme scales. An instance of

the BT application executes with: P MPI ranks (with each rank mapped to a single CPU core),

q =
√
P data blocks per MPI rank, a problem size of N3 total data points, and (N

q
)3 data points

per data block. Analysis in [69] indicates that, for each executed time step of the application, each

MPI rank will have 2994N
3

q2
total floating point operations of computation work, occupy 368N

3

q2

bytes of data in memory, send a total of 6q messages between MPI ranks, and transmit a total of

1320N
2

q
bytes of messages.
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Because the BT application exhibits weak scaling, by definition as the number of MPI ranks

P increases to P ′ the computational work per MPI rank remains constant. With the computational

work of each MPI rank constant, it is shown in [69] that the amount of memory used by each MPI

rank also remains constant, and that the data volume of communications increases by a factor of

6
√
P ′/P to give a total scaled communication volume of

V = 1320
N2

q
6
√
P ′/P , (3.2)

sent in a total of

K = 6

√
P ′

P
(3.3)

messages. For a network latency of L converted to units of seconds and a bandwidth of BW

in units of gigabytes per second, using Equations 3.2 and 3.3 we can derive the time spent on

communication in each time step as

TCOMM = KL+
V

BW
. (3.4)

For a node with Ncores number of cores, executing at RFLOPS floating point operations per

second, the time spent on computation in each time step, for each MPI rank is

TCOMP =
2994Ncores

RFLOPS

N3

q2
. (3.5)

3.4.3 Real-World System Measurements

Several parameters required for performing experiments with our simulated system require

real-world measurements of execution of a node. Node measurements were taken from the execu-

tion of an HP Z820 workstation [70]. The target Z820 machine used has two sockets, with each

socket supporting a 12-core Intel Xeon E5-2697v2 processor [36], for a total of 24 cores in the

compute node.
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System Power measurement

Power measurements of the Z820 system were taken using a “Watts Up? PRO” power meter

[39]. The “Watts Up? PRO” monitors the instantaneous power use of the Z820 at the “wall outlet”

level, recording samples at one second intervals. Power use of the system was measured for the

BT application during application execution, PNODE , application checkpointing, PNODEC , and

application restarting, PNODER . The system idle power, Pidle, was measured by recording system

power use during execution of the Linux sleep command.

Checkpoint and Restart Measurements

Checkpointing and restarting of the BT application was performed on our target system using

the Distributed Multithreaded Checkpointing (DMTCP) system [71]. The BT application was

executed using 25 MPI ranks (making most efficient use of the Z820 system node), and checkpoint

and restart times were measured natively by DMTCP. Checkpointing to RAM was measured by

writing to and reading from a system RAM disk. Checkpoint time to and restart time from RAM

were measured from an average of ten samples as TCRAM = 0.34 seconds and TRRAM = 0.24

seconds, respectively.

Node Performance

Measurement of the Z820 system node performance was accomplished using processor per-

formance counters. Performance counters are built into the Intel Xeon E5-2697v2 hardware [36]

and allow the user to monitor hardware events during an application’s execution, with minimal

impact on the application’s performance [33]. The system node performance parameter (RFLOPS)

was calculated by monitoring the floating point operations executed by the BT application and

averaging that total by BT’s execution time.

3.4.4 Communication Power Model

The power used for system communication is calculated for each system node. Given a switch

power of PS = 100 watts, the number of nodes linked by a single switch (node concentration)
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of NC = 12 nodes, and given that a network interface controller of a single node consumes

NIC = 10 watts at full utilization [72], the power spent by a single node for communication

during computation is

PCOMMComp
=

PS
NC

+NIC
TCOMM

TCOMP + TCOMM

. (3.6)

The power spent by a single node for communication during a time of high network traffic, such

as during a checkpoint or restart (CR), is

PCOMMCR
=

PS
NC

+NIC . (3.7)

3.4.5 Resilience Technique Specific Parameters

In addition to the parameters measured for a system node’s execution, each of the four re-

silience techniques implemented in the simulator requires its own set of parameters to govern the

technique’s execution.

Checkpoint Restart Parameters

Checkpoint Restart reads and writes its checkpoint data to a PFS. For our experiments, we

assume an equal checkpoint and restart time using a PFS of TCPFS = TRPFS = 20 minutes,

as observed in prior work [46]. The optimal checkpoint period, τ , is derived from the system’s

checkpoint time and failure rate according to [73] as

τ =

√
2TCPFS
λsys

− TCPFS . (3.8)

Multilevel Checkpointing Parameters

Our experiments use a simulated Multilevel Checkpointing system of three levels. The first

level writes checkpoints to the node’s local RAM, the second level writes checkpoints to RAM in

a partner node, and the third level checkpoint is written to a shared PFS. Additionally, whenever a
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higher level checkpoint is taken, all lower level checkpoints are taken simultaneously, with lower

level checkpoint time masked by the time of the higher checkpoints, as outlined in [47].

The time used for taking a level one checkpoint, TCL1
, is TCL1

= TCRAM and time for a level

one restart, TRL1, is TRL1
= TRRAM . Checkpointing to and restarting from partner nodes are

each expected to take about two minutes [45]. We use this same assumption for our simulation

experiments, setting level two checkpoint and restart times to TCL2
= TRL2

= 2 minutes. Level

three checkpoints to the PFS are defined to be twenty minutes. The optimal computation interval

and number of lower level checkpoints taken before taking a higher level checkpoint is determined

using the Markov model in [47].

As outlined in Section 3.3.2, multilevel checkpointing requires knowing the probability of

failures at each severity level. We derive these values from data presented in [47] as the level

one, two, and three failure ratios λL1

λLtot
= 0.308, λL2

λLtot
= 0.545, and λL3

λLtot
= 0.147, respectively.

Parallel Recovery Parameters

For our simulation study, we assume that the number of system nodes available for parallel

recovery after a failure is φ = 8. We assume that this level of parallelism will reduce the time for

recovery by a factor of σ = 7.26, as measured in [45]. The temporary slowdown of the application

due to load imbalance after recovery and until the next checkpoint is assumed to be Λ = φ+1
φ

. As

with multilevel checkpointing, the checkpoint and restart time for parallel recovery from RAM is

two minutes.

Partial Redundancy Parameters

All parameters associated with the Partial Redundancy resilience technique remain the same

as the Checkpoint Restart technique, except for the inclusion of the parameter r, indicating the

system’s degree of redundancy. We vary the parameter r from 1.25× to 2× redundancy based on

the experiment being performed, as described in Section 7.4.
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3.4.6 Simulated System Setup

Studies are performed using three different simulated systems: small scale, sunway, and exas-

cale. Values for the parameters of each simulated system are presented in Table 3.1.

Small Scale System

The small scale system is a homogeneous system composed of 10,923 nodes. The small scale

system’s nodes are based on the same HP Z820 machines that were used in the real-world system

measurements in Section 3.4.3. Measurements for network latency and bandwidth were taken

from [74]. Parameter values for the small scale system are listed in the second column of Table 3.1.

The power and performance values listed are averaged over ten samples, and are rounded to the

nearest integer.

Sunway System

The sunway system is our recreation of a system capable of performing similar to China’s

Sunway TaihuLight supercomputer, the world’s highest performing system as of November 2017

[44]. The third column of Table 3.1 shows the system parameters we use to simulate the sunway

system. While the sunway system has a theoretical peak performance of 125 petaflops, we run our

experiments with the simulated system node performance parameter (RFLOPS) calculated from

the sunway’s maximum measured performance of 93 petaflops. We have assumed a linear increase

in power consumption of checkpointing, restarting, and idling from the small scale system to the

sunway system. We also assume that the time that it takes for a sunway system node to checkpoint

and restart are the same as the values used for our small scale system. All other values for the

sunway system’s simulation parameters are taken from [75].

Exascale System

Similar to the sunway system the exascale system is a homogeneous system. Each system

node is similar in architecture to the sunway system, but we assume that at the time of an exascale

machine’s construction the number of computation processing entities per node will have doubled
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Table 3.1: Simulated System Parameters

parameter small scale sunway exascale

P 262,144 10,647,169 134,217,728

Nsys 10,923 40,960 260,112

Ncores 24 260 516

RFLOPS 27 GFLOPS 2271 GFLOPS 4507 GFLOPS

PNODE 312 watts 375 watts 375 watts

PNODEC 278 watts 334 watts 334 watts

PNODER 278 watts 334 watts 334 watts

Pidle 127 watts 153 watts 153 watts

L 1.2µs 1µs 0.8µs

BW 40 Gb/s 96 Gb/s 192 Gb/s

TS 100 100 100

performance 295 TFLOPS 93 PFLOPS 1.2 EFLOPS
P : number of processor cores (MPI ranks) used by BT;
Nsys: number of system nodes;
Ncores: number of cores per node;
RFLOPS : performance of a node;
PNODE : power consumed by a node during computation;
PNODEC

: power consumed by a node when checkpointing;
PNODER

: power consumed by a node when restarting;
Pidle: power consumed by a node when idle;
L: network communication latency;
BW : network communication bandwidth;
TS: timesteps executed by BT (determines application execution time).
performance: calculated total system performance

from 256 to 512, with each node still having an additional four cores used for both computation

and node management. The number of system nodes is then scaled to perform at an exascale level.

Parameter values for the exascale system are displayed in the fourth column of Table 3.1. With

the exascale system, we assume that node power consumption will continue to decrease, allowing

system node power to remain the same as for the sunway system, despite the increase in the number

of cores per node. We also assume internode communication will continue to improve, allowing

an exascale system to have a network latency L = 0.8µs and a bandwidth BW = 192 Gb/s. Using

the scaled value for node performance, an instance of the BT application executing at a problem

size requiring 134,217,728 MPI ranks would require 260,112 system nodes, and operate at 1.2

EFLOPS.

67



Figure 3.1: Resilience technique efficiency at various levels of system node reliability. Efficiency is defined
to be the ratio of an application’s time without slowdowns (from failures or checkpointing) over the appli-
cation’s execution time with slowdowns (from failures or checkpointing). Each bar in the figure represents
the average of 200 trials. Standard deviations are shown for each bar.

Figure 3.2: Resilience technique energy use for four different levels of system node reliability. The height
of each bar in the figure depicts the normalized total energy consumed by each technique for each study.
The colors of each bar represent how system energy was consumed. Total energy consumption is normal-
ized to the Parallel Recovery technique at each respective level of system node reliability. Each bar in the
figure represents the average of 200 trials. Standard deviations of each technique’s normalized total energy
consumption are also shown for each bar.

3.5 Simulation Studies

3.5.1 Overview

We utilized our simulation environment to conduct two sets of studies. Each study simulated

the BT application according to the methodology presented in Section 3.4. We refer to each inde-

pendent simulation of a study as a trial. The outcomes of each trial vary based on the randomness
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associated with modeling failures outlined in Section 3.3.2 For each study we executed 200 inde-

pendent trails, recording in each trial the amount of simulated time it took the BT application to

run to completion, as well as the energy used by the system during computation, checkpointing,

restarting, recovering after restarts, and failed checkpoints and recoveries.

3.5.2 System Node Reliability

The first set of studies focuses on investigating how each of the four resilience techniques

behaves under varying levels of system node reliability. We ran each simulation on the small scale

system, varying the system node reliability by modifying the MTBFNode parameter to values of

5, 10, 20, and 40 years of mean time between failures. We tested each level of system reliability

with each of the four resilience techniques. For the Partial Redundancy technique, we explored

four different degrees of system redundancy, 1.25×, 1.5×, 1.75×, and 2×. The results of the

experiments are shown in Figures 3.1 and 3.2. In each figure, groupings of bars along the x-axis

indicate the different values of MTBFNode.

Figure 3.1 shows the efficiency of each resilience technique. Efficiency is defined to be the

ratio of an application’s time without slowdowns (from failures or checkpointing) over the ap-

plication’s execution time with slowdowns (from failures or checkpointing). The color of each

bar indicates the resilience technique in the experiment, and the height of each bar indicates the

average efficiency of the trials.

Figure 3.2 shows the normalized system energy consumption of the same experiments shown in

Figure 3.1. Each bar in Figure 3.2 has been normalized to the average value of the Parallel Recov-

ery experiment data in each MTBFNode grouping. The colors of each bar indicate the breakdown

of energy consumed in each experiment, with the colored portions of each bar representing the por-

tion of total energy used for each type of simulated event defined in Section 3.3. The height of each

bar indicates the average of the total normalized energy consumed for the trials in the experiment.

Comparing the results in Figure 3.1 and Figure 3.2 it can be observed that the Parallel Recovery

technique provides the most efficiency for every node reliability level except MTBFNode = 40,
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Figure 3.3: Resilience technique efficiency at various system sizes. Efficiency is defined to be the ratio of
an application’s time without slowdowns (from failures or checkpointing) over the application’s execution
time with slowdowns (from failures or checkpointing). Each bar in the figure represents the average of 200
trials. Standard deviations are shown for each bar.

Figure 3.4: Resilience technique energy use at various system sizes. The height of each bar in the figure
depicts the normalized total energy consumed by each technique. The colors of each bar represent how
system energy was consumed. Total energy consumption for each system size is normalized to the Parallel
Recovery technique. Each bar in the figure represents the average of 200 trials. Standard deviations of each
technique’s normalized total energy are shown for each bar. Annotations in the subset of the exascale results
represent each truncated bar’s average value and standard deviation.

and uses the least amount of energy for all node reliability levels. However, while the Partial

Redundancy technique is more efficient in one case, the system efficiency provided by the Partial

Redundancy technique clearly comes at a high energy cost, due to the increase in total system

nodes necessary to utilize the technique.

As is to be expected, all resilience techniques result in an increase in efficiency with more

reliable system nodes (increasing values of MTBFNode). From the standard deviations of each
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experiment, it can be observed that Parallel Recovery and Partial Redundancy with a redundancy

degree of 2× are much more consistent (have smaller standard deviation values) than the other

resilience techniques.

3.5.3 System Size Scalability

The second set of simulations investigates how each of the four resilience techniques behave

as the system size increases. We simulated each of the resilience techniques from the studies in

Section 3.5.2, but varied the simulated system among the three systems described in Section 3.4.6.

A node MTBF of MTBFNode = 10 years was used for all simulations. The results from our

system size scalability simulations are in Figure 3.3 and Figure 3.4, with each figure’s organization

similar to Figure 3.1 and Figure 3.2, except that bar groupings indicate system size instead of

node reliability. Each of the results in Figure 3.4 has been normalized to the result for the Parallel

Recovery technique. The Checkpoint Restart experiments and the Partial Redundancy experiments

with a degree of redundancy of 1.25× and 1.5× require an excessive amount of energy and the

bars depicting their results have been truncated, with the averages and standard deviations of their

respective sets of trials indicated on each respective bar.

Examining the results in Figures 3.3 and 3.4 it is clear that only the Parallel Recovery technique

and the Partial Redundancy technique with a degree of redundancy of 2× are capable of scaling

to exascale system sizes with any reasonable execution efficiency. However, Partial Redundancy

is outperformed by Parallel Recovery for every system size, and use of the Partial Redundancy

technique also comes at a high energy cost relative to Parallel Recovery. Examining the results

shown for the sunway system, it can be observed that even for today’s largest HPC system sizes

(i.e., sunway) the energy cost of using traditional checkpointing is larger than for Partial Redun-

dancy, despite the high energy cost of using additional (redundant execution) nodes with Partial

Redundancy. Checkpoint Restart also provides far less benefit than the other techniques from an

efficiency standpoint, indicating that there exist better alternatives to the traditional Checkpoint

Restart technique even for HPC systems being used today.
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3.6 Conclusions
We performed simulations comparing the performance and energy use of four HPC and cloud

computing resilience techniques. The techniques considered are the traditional Checkpoint Restart

technique, as well as Multilevel Checkpointing, Parallel Recovery, and Partial Redundancy, three

techniques proposed for next generation large-scale HPC systems. Our results indicate that Parallel

Recovery and Partial Redundancy with a degree of redundancy of 2× are the best at maintaining

the performance of executing applications, both with decreasing system node reliability, and in-

creasing system sizes, from today’s largest computers through to exascale-sized machines. When

comparing system energy efficiency, the Parallel Recovery technique was the most energy efficient

in all system sizes and node reliabilities.
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Chapter 4

Resilience-Aware Resource Management for

Exascale Computing Systems

4.1 Introduction
As the computing power of large-scale computing systems increases exponentially over time,

the failure rates of these systems have increased exponentially as well. While most current large-

scale computing systems experience failures of some type every few days, projection models indi-

cate that the next generation of these machines will experience failures many times an hour [46].

On average, today’s 13.3 petaflop Blue Waters system experiences an application failure every 15

minutes. If these failed applications were not able to be recovered through the use of the traditional

checkpoint and restart resilience protocol their failed execution would likely cost the system over

$400 K in energy wasted due to unrecoverable failed applications [78]. However, the resilience

protocols implemented in today’s HPC and cloud computing systems are impractical at the ex-

ascale level, due to their high overheads [45]. Several new promising resilience protocols have

recently been proposed for next generation HPC systems [45], [47], [48].

Unfortunately, little work has been done to assess the performance of these emerging proto-

cols on a common computing environment [79]. This not only makes the relative strengths and

weaknesses of these protocols unclear, but also makes assessing the underlying assumptions about

each protocol’s behavior less consistent. Our work provides a methodology for simulating the ex-

ecution of applications operating at exascale-like system sizes in the presence of uncertainty due

This work was performed jointly with the full list of co-authors listed in [76]. This work was supported by the
NSF under grants CCF-1252500 and CCF-1302693. This work utilized CSU’s ISTeC Cray system, which is supported
by the NSF under grant number CNS-0923386. The authors thank HP of Fort Collins for providing us some of the
machines used for testing. A preliminary version of portions of this work appeared in [77].
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to failures across the system. We use our methodology to model an exascale computing environ-

ment and utilize this environment to simulate four resilience protocols: one contemporary protocol

(checkpointing and restarting) and three protocols proposed for use in future systems (multilevel

checkpointing, parallel recovery, and partial redundancy). Using this common environment, we

simulate each resilience protocol’s performance as greater demands are placed on each one through

increasing system utilization for a set of applications with a variety of execution characteristics.

We developed a set of synthetic benchmark applications inspired by an analysis of today’s sci-

entific benchmark suites operating at scale [69]. The resulting benchmarks provide the simulated

exascale system with a set of applications that have a diverse range of execution characteristics

capable of scaling to extreme sizes. We demonstrate how application performance compares when

using each resilience protocol and identify the trade-offs present for different combinations of

applications and resilience protocols.

We also analyze an exascale-sized system under a typical HPC use-case scenario as it is utilized

over a period of days to weeks to service a large number of submissions of applications with a

wide variety of execution characteristics. We show the impact that failures and overhead from

employing resilience have on this environment and the level of benefit that each resilience protocol

would provide to such a system. We conclude by utilizing our analyses of resilience protocol

performance and trade-offs to demonstrate how resource management can be used to improve

system performance by making “resilience-aware” scheduling decisions. The resulting resource

management techniques are able to both select the resilience protocol likely to provide the best

efficiency for each application (based on the execution characteristics of the application), as well

as providing the resource manager with more accurate predictions of application execution time in

the presence of failures and overhead from resilience.

In summary, in this chapter we make the following novel contributions:

• we create a simulation-based methodology capable of modeling and analyzing the execution

of applications in an exascale environment;
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• we develop a set of exascale synthetic benchmark applications inspired by modern scientific

benchmarks;

• we provide a performance comparison of four state-of-the-art HPC resilience protocols

(checkpoint restart, multilevel checkpointing, parallel recovery, and partial redundancy) op-

erating over the simulated execution of applications with a diverse range of execution char-

acteristics and sizes;

• we analyze the behavior of a simulated exascale system over an extended period of time

when executing many applications under the influence of several strategies for HPC re-

silience and application scheduling, and demonstrate that overhead from failures and re-

silience protocols negatively affect system resource management;

• we analyze some of the assumptions made by the parallel recovery protocol [45] and show

that, given less optimistic assumptions, our implementation allows for consideration of and

alternative response to situations with more severe failures;

• we demonstrate the ability to improve system performance in a large-scale failure-prone

system by making the system’s resource management techniques “resilience aware.”

The remainder of this chapter is organized as follows. Section 4.2 discusses contemporary and

proposed resilience protocols, highlights and describes the background of the four protocols com-

pared in this chapter, as well as discusses some prior work related to scheduling in failure-prone

systems. In Section 4.3, we describe the modeling methodology we use for our system simulator.

Our implementation of HPC resilience protocols is detailed in Section 4.4. Section 4.6 analyzes

the behavior of the simulated resilience protocols as applications scale to exascale system sizes.

Section 4.7 describes the resource management techniques for our study of a typical system use-

case scenario, and the results of these studies are discussed in Sections 4.8 and 4.9. We conclude

with a summary of this work in Section 3.6.
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4.2 Related Work

4.2.1 Overview

Our work broadly covers topics associated with modeling and evaluating the performance a

system can achieve when it is oversubscribed (i.e., there are more applications than the system

is capable of executing) as well as the performance of HPC resilience protocols in extreme-scale

HPC systems. Many important papers have explored these two topics separately, but very few have

examined the effects that failures and overhead from resilience have on the system’s performance

when managing system resources with multiple applications executing in the system.

4.2.2 HPC Resilience

Background

The work we consider here discusses system-level HPC resilience that allows application pro-

grammers and users of the system to be oblivious of the strategies for HPC resilience that are being

employed on their behalf. We focus on providing a comparison of several checkpoint-based HPC

resilience protocols. Our prior work ( [43], [77]) has been among the first efforts to provide an

analytical comparison of these protocols in large-scale systems. However, these efforts were less

comprehensive than our work here. We have greatly extended our prior work to analyze the impacts

of varying workloads and varying application execution characteristics, and to examine trade-offs

among resilience strategies in the presence of resource management strategies at exascale system

sizes. We acknowledge that other strategies for providing resilience to HPC systems exist and we

refer the reader to the surveys of such work, [79], [50]. Our work differs significantly from these

high-level surveys by providing simulated comparisons of the performance of the protocols.

All checkpointing-based protocols rely on periodically saving the system’s execution state and

restarting from an earlier error-free state after the occurrence of a failure [52], [53]. Because recov-

ery from a failure requires these protocols to load a copy of the system state that is not up to date,

all checkpointing protocols lose some productivity because of the need to recompute work lost be-

tween the time of the failure and the time of the last checkpoint, as well as the time involved with
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storing and loading those saved system states. We provide a comparison of four HPC resilience

protocols that utilize system checkpointing: checkpoint restart, multilevel checkpointing, message

logging, and checkpointing combined with redundancy.

Checkpointing and Restarting

Checkpointing is by far the most commonly used resilience protocol employed by today’s

large-scale computing systems. The most general implementation of the checkpointing protocol

operates by stopping the system’s execution at regular intervals to save the state of all executing

applications to a permanent storage device, typically a PFS. Such a protocol is referred to as a

blocking, coordinated checkpoint [79].

Several variations and improvements on this protocol have been made since its initial incep-

tion. Attempts have been made to create non-blocking or semi-blocking checkpointing that allows

the system to continue to execute while checkpoints are saved to permanent storage [54], [55].

Attempts also have been made to allow for uncoordinated checkpoints of the system, preventing

the need for all processes in the system to restart when a failure occurs [56].

However, the length of time associated with checkpointing, restarting, and recomputing work

lost due to a failure, and the frequency that the system needs to take checkpoints for very large-

scale applications when implementing any of these checkpointing protocols, has been shown to be

ineffective at managing increasing system sizes [45]. Thus, traditional checkpointing alone is not

expected to be capable of providing satisfactory resilience at exascale sizes.

Multilevel Checkpointing

Because different types of failures can affect a computing system in different ways, not all

failures require restarting the system from a checkpoint to the PFS [80]. Multilevel checkpointing

exploits this by providing several levels of checkpointing. A multilevel checkpointing scheme may

allow for checkpoints (a) to RAM that are faster but able to recover from fewer types of failures

and (b) checkpoints saved to a partner node’s RAM that are less frequent but able to recover

from more types of failures, in addition to (c) checkpoints saved to the system’s PFS. Each level
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offers a trade-off between the time required to checkpoint and/or restart, and the level of failure

severity from which the checkpoint can recover [47]. Checkpoint levels may also employ various

encoding techniques (such as RAID or Reed-Solomon coding) to improve the resilience offered by

a particular checkpoint level [47], [57]. Other attempts have been made to reduce checkpointing’s

dependence on the PFS [58], [60]. One challenge associated with using a multilevel checkpointing

protocol is in determining the optimal number of checkpointing levels, and the optimal schedule

of checkpoints at each level. Various solutions to this problem have been proposed [47], [61], [62],

[81].

Message Logging

Message logging attempts to provide resilience to a system by recording messages sent among

processes to create snapshots of the system’s execution distributed across system memory [63].

When a failure occurs, the failed node is able to use messages stored in the memory of other system

nodes to reduce the amount of rework that is performed by the system when recovering [64]. Using

message logging for resilience may save computation time, because the recovering node does not

need to wait for the re-computation of other nodes, but rather only for the stored results from the

node’s computation to be sent. Message logging also saves on the energy used by the system

during recovery, because only the failed system node needs to perform re-computation, and the

rest of the system can remain idle until the failed node has recovered [82]. The parallel recovery

resilience protocol that we consider is an extension to message logging that allows the work that

was executing on the failed node to be parallelized across neighboring nodes during recovery [45].

Redundancy

Redundancy improves a system’s reliability by executing multiple copies of the same piece of

code [65]. It is possible to implement redundancy in either hardware or software [50], but in either

case the improved reliability of the system comes at the cost of using additional resources.

Recent attempts allow the system to utilize redundancy in less resource-intensive ways. Dy-

namic redundancy allows for the executing application to choose a subset of processes for re-
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dundant execution [66]. Partial redundancy combines redundancy with checkpointing, and allows

for applications to redundantly execute a portion of processes in the system, providing improved

resilience for part of the system, using only a portion of the resources [48]. Adaptive process

replication attempts to combine partial redundancy with proactive fault tolerance to make better

decisions about which processes should be replicated [83].

4.2.3 HPC Resource Management

Scheduling for HPC Systems

A very large body of work exists on scheduling applications in HPC systems to improve per-

formance and resource utilization. We examine how resource management in an exascale-sized

system can be improved when considering the use of value-based (or utility) functions. A large

amount of work exists discussing how the use of value functions can improve system resource

management [84], [85], [86], [87], [88], [22], [89], [90].

These papers do not examine how the behavior of their resource management techniques

change when executing applications at extreme scales, where the probability of system failure neg-

atively affects the quality of allocation decisions. Our work does take this extreme-scale behavior

into account in our analyses, and further provides methods for allowing some of these techniques

to be “resilience aware” and to make better decisions in the unpredictable exascale environment.

Resilience-Aware Resource Management

Most approaches to provide parallel applications with resource management that is aware of

uncertainty in system reliability deal either with scheduling that in some form relies on replicated

copies of the executed applications (redundancy) or only with application sizes that are substan-

tially smaller than the size of the system [91], [92], [93], [94], [95], [96]. None address the system-

level scheduling problem associated with extreme-sized applications arriving to an exascale-sized

system or the use of system-level resilience protocols. Furthermore, our results indicate that

replication-based resilience protocols are not capable of performing well when scheduling large

applications (discussed in Section 4.8).
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There have been other of resilience-aware resource management in addition our prior work

in [77]. For example, the work in [97] analyzes the occurrence of failures in a system and uses

that information to construct a method for analyzing the reliability of any given set of nodes. An

arriving application can then be scheduled to the set of nodes that are likely to provide it with

the best reliability. The work in [98] proposes a resource management technique that redistributes

failed applications in the system to assist in minimizing the application’s execution time. Through

the use of system-level strategies for resilience, our work has an advantage in that it is not resource

management technique specific, and can potentially benefit any resource management technique

the system designer chooses to implement.

4.3 Exascale Modeling Methodology

4.3.1 Overview

Given the impossibility of performing experiments on an exascale system, we have designed

an event-based simulator used for modeling systems of arbitrary size [43], [77], [4]. The sys-

tem experiences randomly generated failures that affect the simulated execution of applications in

the system. Throughout the system’s simulation an application’s execution is affected by events

associated with each application’s:

• arrival: time at which an application arrives,

• mapping: process by which the resource management heuristic assigns the application to

system nodes,

• computation: execution toward application completion,

• failures: the failure of a system node,

• checkpoints: saving a backup of the application’s current computation progress,

• restarts: restoring the application progress saved in the last system checkpoint after a failure

occurs,
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• recovery: recomputing progress lost to a failure after the system has restarted,

• failed checkpoints or restarts: when failures occur during checkpoint or restart events.

Checkpoints, restarts, and recovery are all resilience-protocol specific events that determine

how an application behaves with failures. Each of these events affects applications differently

based on the type of resilience protocol employed by the application, the application’s execution

characteristics, and the characteristics of the failures. This is discussed in detail in Section 4.4.

The remaining events associated with the simulator’s management of application arrival, mapping,

computation, and failures are all attributes of the system and behave the same regardless of the

resilience protocol being used. In particular, while failure events have a large impact on the behav-

ior of the resilience-protocol related events, failure events themselves are a function of the size of

the system and the reliability of the system’s nodes, and are not affected by the resilience protocol

employed.

4.3.2 Modeling Extreme Scale Applications

To ensure our simulated environment has access to a diverse range of applications that will be-

have similarly to future exascale applications, we create a set of synthetic benchmarks that vary in

their attributes of communication behavior, memory use, and size. We base most of our modeling

assumptions for these extreme scale applications on the analysis of the NAS Parallel Benchmark

applications [41] performed in [69]. The analysis focused primarily on the Block Tridiagonal (BT)

benchmark application, but concluded with a general analysis of the entire NAS Parallel Bench-

mark suite. The authors determined that, with the exception of the Embarrassingly Parallel (EP)

application (which experiences almost no communication), the applications in the benchmark suite

all become heavily communication bound at large system sizes. The analysis performed for the BT

application indicates that at extreme scales communication began to dominate as much as 80% of

the application’s execution time depending on which parameter set was used for the application’s

execution.
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Similar to the BT application, our synthetic benchmarks are defined with a discrete set of time

steps. The number of time steps needed to execute an application is represented by the variable TS ,

with identical execution characteristics in each time step. Each benchmark spends some percentage

of each time step communicating, represented by the variable TC , with the remaining portion of

each time step spent working on computation, represented by the variable TW . We assume time

steps are one minute in length with, TW , TC ≥ 0, and TW + TC = 1 minute, thus allowing

application execution times to be of arbitrary length (equal to a chosen number of time steps) and

unaffected by the application’s size. For all simulated studies performed here, applications have

between 180 to 1440 time steps giving every executing application an execution time between

three hours to a full day when executed without delays from failures or events related to resilience

(such as time spent checkpointing). This delay-free execution time is the application’s baseline

execution time and is represented by the variable TB.

In keeping with the results in [69], our synthetic benchmarks have two levels of communi-

cation, TC = 0 (representing a type of application similar to the NAS EP application with little

to no communication) and TC = 0.75 )representing a similar level of communication seen by

the communication dominant applications from the analysis in [69]). Each of the two levels of

communication to have two sizes of memory requirements represented by the variable Nm. Ap-

plications can have values of Nm = 32 GB of memory per node or Nm = 64 GB of memory per

node. Defining the synthetic benchmarks in this way allows the system access to four application

types with a diverse range of communication and memory characteristics. Each of the application

types are defined in Table 4.1.

We assume that all of our synthetic application types exhibit weak scaling so that as the number

of nodes used by the application increases with application size. The application’s attributes of

computation time, communication time, and memory used per node remain constant. Details about

the sizes of applications in each simulated study are discussed further in Sections 4.6, 4.8, and 4.9.

For the simulated studies in Sections 4.8 and 4.9, each application arriving has an individual

deadline. Applications that are removed from the oversubscribed system because they could not
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Table 4.1: Characteristics of Application Types

memory per node

communication intensity 32 GB 64 GB

low communication: 0% (TC = 0.0) L32 L64

high communication: 75% (TC = 0.75) H32 H64

meet their deadlines are called dropped applications and the percentage of total applications that

are dropped is one performance metric that we use. Deadline values for each application are

selected to be the application’s arrival time, TA, plus the application’s baseline execution time

multiplied by a random value, U , uniformly selected between 1.5 and 2.5, giving a deadline of

TD = TA + U(1.5, 2.5) ∗ TB . (4.1)

4.3.3 Simulated System Setup

The simulated exascale system is a homogeneous system inspired by the architecture used to

develop China’s Sunway TaihuLight supercomputer [75], the world’s highest performing system

since June of 2016 and still the world’s top system as of June 2017 [99]. Each Sunway TaihuLight

system node has a multicore architecture composed of four clusters of 64 computational processing

elements (CPEs), with each cluster managed by a single management processing element (MPE)

that also performs computational work allowing for a total of 65 cores of computation in each core

cluster. The four core clusters in a node provide a total of about 3.1 TFLOPs over 260 cores. Our

exascale system assumes that the number of CPEs on a node will roughly increase by a factor of

four by the time an exascale machine is developed, allowing for a total of 1, 028 cores per node

providing approximately 12 TFLOPs for each system node. A system composed of 120,000 of

these nodes would perform at an exascale level.

The Sunway TaihuLight system has 8 GB of DDR3 RAM at each of its four core clusters,

giving each node a total of 32 GB of RAM. We again assume that future systems are likely to have

memory increases of about a factor of four in comparison to today’s systems, giving our simulated
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system a total memory capacity of 128 GB per node. In addition to an increase in capacity, we also

assume that future memory is likely to utilize newer architectures, allowing for increased aggregate

memory bandwidth, BM . Today’s best memories perform at a rate of up to 25 GB/s [100], and we

conservatively estimate that future memories will perform at about BM = 40 GB/s.

4.3.4 System Failure Model

We assume that failures can be characterized by three attributes: the time of the failure’s oc-

currence, the node on which the failure occurs (the location of the failure), and the severity class

of the failure. We model the uncertainty associated with each attribute using random variables and

assume independence between both the individual failure occurrences as well as the attributes of

each failure.

The time between system failures is modeled by a Poisson process, a common assumption in

failure modeling [67]. Every failure occurs according to the previous failure time (TFi−1
, with

TF0 = 0) plus a random variate generated from an exponential distribution Ti ∼ Exp(λs) with

an expected rate of E[Ti] = 1
λs

. The parameter λs indicates the average failure rate of the entire

system, and is defined as the number of nodes in the simulated system that are active, Na, divided

by the MTBF of the system nodes, Mn, i.e.,

λs =
Ns

Mn

. (4.2)

The location of the failure’s occurrence represents which system node failed and consequently

which application is impacted by the failure. When determining which node has failed, the simu-

lator assumes a uniform random distribution over all active nodes (nodes that are not idle) in the

system, and selects one node at random as the failed node.

The severity class of failure corresponds to the type of failure that has occurred in the system.

This attribute is used by multilevel checkpointing protocols to determine which level of saved

checkpoint is necessary to enable recovery from a specific type of failure and is also used when

determining the optimal duration of intervals between checkpoints of different levels. For the
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implementation of the message logging rollback recovery protocol that we consider, the severity

of the failure that occurs is used to determine if it will be possible to use the system’s logged

messages during recovery, or if (beyond a certain failure class) the system will need to rework

from a saved checkpoint without the assistance of message logging. These assumptions and the

effect of a failure’s class on each resilience protocol’s behavior is discussed further in Section 4.4.

We define the specific mapping of types of failures to classes of failure severities based on

the analyses of types of failures present in HPC systems presented in [78] and [101]. We define

the probability of experiencing a class j severity failure according to the ratio of the number of

failures that occur at each failure severity class, λCj , to the total number of failures, λCt , measured

over an extended interval of time. The resulting discrete set of ratios for each class is used to

create a probability mass function from which random variates are sampled to define the severity

attribute of each failure. We assume that failure types in a future exascale-sized system will occur

in similar relative frequencies to those experienced by today’s system, but with failures occurring

more frequently.

We define three severity classes. The first class corresponds to failures that could reasonably

be recovered from using a checkpoint stored in a node’s local RAM (events such as software-

related network and file system interrupts). The second failure severity class relates to failures that

require a system node to be restarted or replaced and consequently require restarting the application

from a checkpoint stored outside of the node, in this case a checkpoint stored in a partner node’s

RAM. Class two severity failures include hardware failures affecting only a single node or software

interrupts that require the node to restart. The third class of failure severity encompasses all other

types of failures that cannot be handled by failure classes one and two, including hardware failures

affecting multiple nodes and hardware or software events that cause a system-wide outage. The

data presented in [78] and [101] details the frequencies of 33 types of failures in the Blue Waters

system that caused several hundreds of system interrupts over a timespan of hundreds of days of

system execution. Using this information we calculated the probabilities of failure class severities

for our three-class failure model to be approximately λC1

λCt
= 0.138, λC2

λCt
= 0.784, and λC3

λCt
= 0.078.

85



Because the Blue Waters system is heterogeneous (with CPUs and GPUs running together) and our

simulated system is homogeneous, our calculations of failure severity class distribution excludes

failures related to GPUs. Additionally, our failure severity class distribution excludes failures that

do not cause system interrupts.

4.3.5 Communication Model

System communication plays a large role in the behavior and performance of some of the

resilience protocols we examine. We assume that future exascale systems are likely to have im-

proved communication over today’s systems, and base our communication model on the “NDR

InfiniBand” network in [102]. Our communication network assumes a latency value of L = 0.5

µs, a bandwidth value of BN = 600 GB/s, and a maximum number of simultaneous connections

at each switch NS = 12. Further details about the role of communication is discussed for each

resilience protocol in Section 4.4.

4.4 Resilience Protocol Modeling

4.4.1 Overview

Four styles of HPC resilience protocols have been implemented in our system simulator. A tra-

ditional checkpoint restart based protocol, checkpoint restart, as well as three protocols proposed

for next-generation computing systems: a multilevel checkpointing approach described in [47],

multilevel checkpoint; an implementation of message logging based on the work presented in [45],

parallel recovery; and a protocol combining traditional checkpointing with partial or full redun-

dancy of the executing application from [48], redundancy. The following subsections present

details of how each resilience protocol was modeled, with all relevant parameters summarized in

Table 4.2. Optimal checkpoint interval determination for each resilience protocol is discussed in

Section 4.5.
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Table 4.2: Resilience Protocol Parameters

parameter use in modeling

TS number of time steps

TB application baseline execution time

TC portion of each time step spent on communication

TW portion of each time step spent on computation work

Nm memory used by the application

Na number of system nodes used by the applications

L network latency

BN communication bandwidth

BM memory bandwidth

NS number of network switch connections in router

λa application failure rate

Mn system component MTBF

τ optimal checkpoint period

TCPFS time required to checkpoint to a PFS

TCL1
time required for a level one checkpoint

TCL2
time required for a level two checkpoint

µ message logging slowdown

r degree of redundancy

4.4.2 Checkpoint Restart

Our implementation of the checkpoint restart resilience protocol performs periodic blocking

uncoordinated checkpointing, with its checkpoints saved to a PFS. This checkpointing strategy

allows simultaneously executing applications to be checkpointed or restarted independently from

one another. This protocol also allows for optimal checkpoint intervals to be defined for individual

applications rather than for the system as a whole, which benefits smaller applications that would

otherwise experience suboptimal performance if checkpointed at exascale failure frequencies.

The time that the checkpoint restart protocol requires to read and write its checkpoint data to

a PFS, TCPFS , is dependent on application size, memory use, and system parameters for commu-

nication. We assume that at any given time the maximum number of nodes from which the PFS
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is capable of receiving data is equal to the maximum number of switch connections that enter the

memory system (NS). Application checkpoints to the PFS are typically slowed down by network

congestion due to the large number of nodes needing access the PFS during a checkpoint. Because

the latency associated with checkpoints to the PFS is negligible in comparison to the total check-

point time, we do not consider latency in our equation for checkpoints to the PFS. The time for

checkpoints to a PFS is defined as

TCPFS =
Nm

BN

∗ Na

NS

. (4.3)

Parameters for the applications and environment in this study impose a checkpoint and restart time

of between 8-17 minutes for an exascale-sized application depending on the application’s type.

The optimal checkpoint period is dependent on the application’s checkpoint time and the ob-

served failure rate. Each application’s failure rate is given by λa = Na
Mn

.

4.4.3 Multilevel Checkpointing

The multilevel checkpointing approach from [47] that we implement in our simulator is a three-

level checkpointing model. Each checkpointing level offers a trade-off between the time required

to save or restore a checkpoint and the severity class of the failure from which it can recover.

The first checkpoint level writes to the node’s local RAM, with the time required for taking

a level one checkpoint being simply the amount of memory per node required by the application

divided by the node’s memory transfer rate

TCL1
=
Nm

BM

. (4.4)

The second checkpoint level stores its checkpoints to RAM in a partner node. Application

nodes are assumed to be contiguous allowing for minimum latency between checkpoints sent be-

tween nodes. The nodes used by the application are partitioned into two groups, with each node

in one group having a corresponding partner node in the second group. During a level two check-
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point, the nodes in one group first perform a level one checkpoint (saving the checkpoint data to

their own local node) and then send that checkpoint data to their respective partner nodes in the

second group. The two groups then switch roles to allow for checkpoint data from the second

group to be saved. The time to perform a level two checkpoint is equal to the time required to

perform a level one checkpoint, plus the time required to send the data to the partner node, plus the

time required to write the data to memory in the partner node. This time is then multiplied by two

to account for the time required for both groups of partner nodes to store checkpoint data making

the total time for a level two checkpoint equal to

TCL2
= 2(TCL1

+ L+
NM

BM

) . (4.5)

The third level checkpoint is written to a PFS, and the time required is the same as presented

in Eqn. 4.3. During a level three checkpoint, a level two checkpoint (and consequently also a level

one checkpoint) is also saved by the system. These lower-level checkpoints can be performed in

parallel with the level three checkpoint. Additionally, we also assume checkpoint and restart times

are symmetric. Failure severity classes are defined according to the outline in Section 4.3.4.

4.4.4 Parallel Recovery

The parallel recovery protocol in [45] is an improvement to the message logging resilience

protocol, and we base most assumptions about the behavior of a message logging protocol on the

behavior of parallel recovery. Parallel recovery allows for faster recovery from a system failure

by allowing the failed node’s work to be temporarily parallelized across several nodes after be-

ing restarted, thereby reducing the time needed by the system to recompute the work lost to a

failure. As with all message logging protocols, parallel recovery benefits the system by allowing

most of the system to remain idle while only the failed node is recovered. This decreases both

the system power needed during recovery as well as the chance that a failure will interrupt the

recovering system. However, unlike other message logging protocols, parallel recovery improves

checkpointing and restart time by utilizing the in-memory checkpointing protocol outlined in [68].
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The in-memory checkpointing protocol behaves similarly to the level two checkpoint to a partner

node described in Section 4.4.3. We therefore used Eqn. 4.5 to represent the time required for an

in-memory checkpoint or restart.

Utilization of the parallel recovery protocol imposes additional overhead involved with mes-

sage logging, because the system must spend time storing every message that is sent. The amount

of overhead an application experiences from message logging, µ, is therefore directly proportional

to the amount of communication required by the application. Here we assume this value for our

synthetic applications is equal to µ = 1 + TC
10

which gives a range of values for message logging

slowdown that are very close to those listed in [45]. The increase in execution time from message

logging increases the application baseline execution time when using parallel recovery to

T ∗B = µTS(TW + TC) = µTS . (4.6)

The parallelization allowed for a recovering system node in [45] is assumed to be limited to

parallelizing across a maximum of eight other system nodes for an estimated 7.26× reduction in

recovery time. Through experimentation, we found that for our simulated exascale system the

improved performance achievable though node parallelization during recovery starts to produce

diminishing returns if parallelized across more than 32 nodes. Based on [45], we allow a recovering

application parallelized across 32 nodes to produce an approximate 29.04× estimated reduction in

recovery time. The remainder of the parallel recovery specific parameter values are from [45].

The parallel recovery protocol from [45] assumes that all system failures can use in-memory

checkpointing, restarting, and stored messages required for parallel recovery. However, because

some types of failures can cause multiple simultaneous node failures (i.e., failures of the type

belonging to failure severity class three defined in Section 4.3.4), this assumption is likely to be

optimistic if parallel recovery were employed in a real exascale system. In contrast, the imple-

mentation of parallel recovery employed by our simulated system allows for applications to utilize

the recovery advantages offered by parallel recovery and in-memory checkpointing for failures of

severity class one and class two, but requires a restart from the PFS for class three severity failures,
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similar to the behavior of multilevel checkpointing. Aside from the impact that this has on the

resilience protocol’s performance, this also means that the parallel recovery protocol will operate

with two checkpoint levels (one level checkpointing to a partner node’s RAM and a second level

checkpointing to the PFS).

4.4.5 Partial Redundancy

The partial redundancy protocol in [48] combines the traditional checkpointing protocol with

varying degrees of hardware redundancy. “Partial” redundancy is achieved by allowing only a

fraction of the total system nodes required by the executing application to have redundant hardware

during its execution. For example, a degree of redundancy of r = 1.5 dictates that each virtual

process of an executing application requiring a single node will have at least one physical node

performing the application’s required computation but half of the virtual processes will have a

second physical node performing the same computation. Checkpoints are still taken by the system

at regular intervals. When failures occur on nodes in the system, the system only requires a restart

from the last checkpoint if failures occur on all (possibly redundant) physical nodes associated

with the application’s virtual processes before the next system checkpoint.

Apart from the application baseline execution time, all parameters associated with the partial

redundancy resilience protocol remain the same as for the checkpoint restart protocol. To account

for the increase in application execution time for duplicated communication used by redundancy,

based on [48], the communication term in the equation for baseline execution time is scaled by the

degree of system redundancy, r,

T ∗B = TS(TW + rTC) . (4.7)

4.5 Resilience Protocol Execution Time Prediction

4.5.1 Overview

This work utilizes several execution time prediction equations that were developed for use in

resilience-aware resource management. Sections 4.5.2, 4.5.3, 4.5.4, and 4.5.5 discuss equations we
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Figure 4.1: Resilience protocol efficiency at increasing percentages of total system use, (a) by the low
memory use and low communication application defined in Table 4.1 as L32, (b) by the high memory low
communication application (L64), (c) by the low memory high communication application (H32), (d) by the
high memory high communication application (H64). Efficiency is defined to be the ratio of an application’s
execution time without slowdowns (from failures or checkpointing) over the application’s execution time
with slowdowns (from failures and checkpointing). Processors in the system experience a 2.5 year MTBF.
Each bar in the figure represents the average of 200 trials. Standard deviations are shown for each bar.
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have derived and used to both predict the expected execution time of applications executing in the

presence of failures and to determine the optimal checkpointing intervals that should be selected

for any applications that are utilizing the resilience protocols in Section 4.4 of this chapter. These

equations are also used for some of the work in Chapter 5. In Section 4.5.6, we discuss how the

execution time prediction models are used for determining optimal checkpointing intervals.

The equations we derive are inspired by work from [73] and [45], but have been greatly ex-

tended to accommodate more detailed modeling of certain aspects of application execution as well

as enabling the modeling of multiple levels for the Multilevel Checkpointing and Parallel Recovery

protocols. All equations are organized to estimate the expected values of each type of resilience,

failure, and execution-related events during application execution as described in Section 4.3.1.

The sum of these values is the total expected execution time of the application’s execution. The

application’s expected execution time for all occurrences of each event type is generally calculated

by multiplying an estimator for the expected number of occurrences of the event by the expected

execution time of the event.

4.5.2 Execution Time Model with Checkpoint/Restart

The expected application execution time when using Checkpoint Restart, TCR, is equal to the

sum of the application’s time for all:

• computation of the application without overhead from resilience or failures (baseline execu-

tion time), TB;

• successful checkpoints, Tδ;

• failed checkpoints, Tδ′;

• successful restarts, TR;

• failed restarts, TR′;

• re-computation of work lost to a failure occurring during a computation interval, TWτ ;
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• re-computation of work lost to a failure occurring during a checkpoint, TWδ
.

This gives a total expected execution time of

TCR = TB + Tδ + Tδ′ + TR + TR′ + TWτ + TWδ
. (4.8)

For the Checkpoint Restart protocol, an estimate of the application’s baseline execution time,

TB, is assumed to be known by the system designer. The time required for a single checkpoint,

δ, is also known (from profiling) so the total time for successful checkpoints, Tδ, can be precisely

calculated as the total number of successful checkpoints multiplied by δ, with the number of suc-

cessful checkpoints equal to the application’s baseline execution time divided by the computation

interval, τ , giving

Tδ =

(
TB
τ
− 1

)
δ . (4.9)

All remaining terms in Eqn. 4.8 are dependent on the number of failures that occur during the

application’s execution and must therefore be estimated. The estimated total number of failures

throughout the application’s execution is the product of the failure rate, λ, and the application’s

total execution time, giving an estimated total number of failures equal to (λTCR). This estimator

is used for all terms in Eqn. 4.8 that are dependent on failures.

Each term’s expected value is estimated as the expected number of occurrences of the event

multiplied by the expected time of the event if a failure occurs. For a chosen probability density

function (PDF) used to model the probability of a failure occurring, we calculate the expected

execution time for any event in which a failure has occurred as the expected value of the PDF with

its domain truncated to the duration of that event and normalized to the probability of a failure

occurring during the event’s duration (a truncated distribution). The use of this approach in our

equation-based model is flexible and allows for any integrable PDF to be used to represent the

distribution of system failures.

As stated in Section 3.3.2, we are assuming that failures follow an exponential distribution,

making the probability of a failure occurring during any given interval of time t for a failure rate λ
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equal to

P (t, λ) = 1− e−λt . (4.10)

As opposed to the expected value of the general PDF, which is calculated over the entire domain,

[0,∞), the truncated domain is calculated over [0, t] and makes the expected value of the truncated

PDF for the event when using an exponential distribution equal to

E(t, λ) =
1
λ
− e−λt( 1

λ
+ t)

P (t, λ)
. (4.11)

The estimator for the expected number of failures that occur during a checkpoint, α′, can be

shown to be a function of the number of successful checkpoints and the probability of a failure

occurring during a checkpoint to give

α′ =
P (δ, λ)(TB

τ
− 1)

1− P (δ, λ)
. (4.12)

Using Eqns. 4.11 and 4.12 we can calculate the expected time that the application wastes due to

failed checkpoints as

Tδ′ = α′E(δ, λ) . (4.13)

In addition to the time incurred for the failed checkpoint itself, each failed checkpoint also incurs

overhead associated with the lost computation interval when the checkpoint fails. This value, TWδ
,

is calculated as

TWδ
= α′τ . (4.14)

Note that α′ can also be divided by the value of the total number of failures during execution

(λTCR) to give the percentage of total failures that occur during a checkpoint, denoted as α.

For the Checkpoint Restart protocol, the expected percentage of failures that occur during a

restart, ζ , can be shown to be simply equal to the probability of a failure occurring during a restart

ζ = P (R, λ) . (4.15)
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This makes the total expected time that the application spends for successful restarts equal to the

total number of failures that do not occur during a restart multiplied by the time for a successful

restart

TR = (λTCR)(1− ζ)R . (4.16)

Similarly, the total time that the application spends for failed restarts is equal to

TR′ = (λTCR)(ζ)E(R, λ) . (4.17)

The calculation of TWτ in Eqn. 4.8 uses the values of α and ζ to estimate the total number of

failures that occur during computation and estimates the total expected time that the application

loses due to failures during computation as

TWτ = (λTCR)(1− ζ − α)E(τ, λ) . (4.18)

Once all values are defined, the expected execution time of the application can then be calculated

by solving Eqn. 4.8 for TCR.

4.5.3 Execution Time Model with Multilevel Checkpoint

The work in Chapters 4 and 5 utilize the following equations for making execution time predic-

tions for the multilevel checkpointing protocol, however an improved version of these equations

is discussed in Chapter 6 and the reader is encouraged to utilize the improved equations when

modeling or optimizing the multilevel checkpointing protocol. The application execution time

model when using Multilevel Checkpoint discussed here is similar to that of Eqn. 4.8, however it

is defined hierarchically to account for each level of the Multilevel Checkpoint protocol. For this

protocol, failure rates of different levels must be differentiated. For a failure severity, i = 1, ..., L,

the corresponding failure rate, λi, is defined as the product of the system failure rate, λ, and the

probability of a failure at that severity, Si, making the failure rate λi = Siλ. Each of the other vari-
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ables defined for the Checkpoint Restart protocol (i.e., Tδ, Tδ′ , ζ , R, etc.) are now L-dimensional

vectors.

The Multilevel Checkpoint protocol from [47] that we are modeling defines each higher-level

checkpoint to occur after some number of occurrences of the previous level of checkpoint (e.g., an

L2 checkpoint to a partner node’s RAM occurs after some number of instances of L1 checkpoints

to the node’s local RAM). These values defining the number of Li−1 checkpoints that must occur

before each Li checkpoint is taken are the set of L − 1 integer decision variables N1, ..., NL−1

used for optimizing the equation. The last decision variable is the computation interval, a real

number that we define as τ0. This set of decision variables hierarchically defines the amount of

computational progress made by the application once each level i checkpoint has been completed.

The variable NL, while not a decision variable, represents the number of level L checkpoints that

will occur during the execution of the entire application and is defined based on the amount of

computational progress that is made for each level L checkpoint interval.

The amount of total time spent between each level i checkpoint is referred to as the level i+ 1

computation interval. Each higher level computation interval, τi+1, is calculated as

τi+1 = TBi + Tδi + Tδ′i + TRi + TR′i + TWτi
+ TWδi

(4.19)

with the application’s total expected execution time when using Multilevel Checkpoint TML =

τL+1.

The time spent checkpointing at each level is now defined as

Tδi = Niδi . (4.20)

The estimator for the expected number of failures that occur during each level i checkpoint, α′i, is

now defined as

α′i =
P (δi,

∑i
j=1 λj)Ni

1− P (δi,
∑i

j=1 λj)
, (4.21)

97



making the expected time that is wasted due to failed checkpoints

Tδ′i = α′iE

(
δi,

i∑
j=1

λj

)
. (4.22)

The overhead associated with the lost computation interval caused by the failed checkpoint is

calculated as

TWδi
= α′i

i∑
k=1

Skτk . (4.23)

The expected percentage of failures that occur during a restart of level i, ζi, is now

ζi = SiP

(
Ri,

i∑
j=1

λj

)
. (4.24)

Making the total expected time that the application spends for successful restarts equal to

TRi = (λTML)(Si − ζi)Ri . (4.25)

The total time that the application spends for failed restarts is now

TR′i = (λTML)(ζi)E

(
Ri,

i∑
j=1

λj

)
. (4.26)

The calculation of TWτ becomes

TWτi
= (λTML)(Si − ζi − αi)E(τi, Siλ) . (4.27)

4.5.4 Execution Time Model with Parallel Recovery

The parallel recovery protocol behaves differently for failures of different severity classes. We

assume that above some severity class limit the Parallel Recovery protocol is no longer capable of

utilizing message logging or recovery in parallel and that failures from successively higher severity

classes behave according to the Multilevel Checkpoint equations from Section 4.5.3.
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Parallel Recovery must account for time lost during the same computation events as Multilevel

Checkpoint, however failures from lower severity classes that are able to utilize message logging

and recovery in parallel no longer need to account for computation time lost when a failure occurs

but instead account for the time needed for a single machine to recover the lost computation per-

formed by the node that suffered the failure as well as the additional time lost if those recovery

events fail. The time for recovering computation from a failure occurring during a computation

interval is denoted as TCτi , the time for recovering computation from a failure occurring during

a checkpoint is denoted as TCδi , the additional time lost to recoveries that fail while attempting

to recover from a failure during computation is denoted as TC′τi , and time lost to recoveries that

fail when attempting to recover from a failure during a checkpoint is denoted as TC′δi . For a lower

severity failure the expected time to compute interval i is equal to

τi+1 = TBi + Tδi + Tδ′i + TRi + TR′i + TCτi + TCδi + TC′τi + TC′δi
. (4.28)

Higher level intervals are defined by Eqn. 4.19.

Parallel Recovery’s baseline execution time, TBi , is defined accorded Eqn. 4.6. The terms in

Eqn. 4.28 representing the time for checkpoints, restarts, failed checkpoints, and failed restarts

remain the same as their definitions from Section 4.5.3.

The expected percentage of failures that occur during a recovery for a level i interval is defined

by the parameter βi. Given ζi defined by Eqn. 4.24 and a parameter, σ, representing the system’s

expected recovery speedup when recovery is parallelized, the value of βi is calculated as

βi = (Si − ζi)P
(
τi
σ
,

i∑
j=1

λi

)
. (4.29)

Given αi defined according to Eqn. 4.21, the value of βi is used when calculating the amount of

time spent recovering from a failure during computation to give
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TCτi = (λTPR)(Si − ζi − αi − βi)
E

(
τi,
∑i

j=1 λi

)
σ

. (4.30)

The corresponding time spent for failures that occur during these recoveries is equal to

TC′τi = (λTPR)(βi)E

(E(τi,∑i
j=1 λi

)
σ

,

i∑
j=1

λi

)
. (4.31)

The amount of time spent recovering from a failure that occurs during checkpointing is calcu-

lated as

TCδi = (λTPR)(αi)
τi
σ
. (4.32)

The corresponding time spent for failures that occur during these recoveries is equal to

TC′δi
= (λTPR)(αiβi)E

(
τi
σ
,

i∑
j=1

λi

)
. (4.33)

4.5.5 Execution Time Model with Redundancy

When employing Redundancy, not every failure that occurs requires the system to restart. Con-

sequently, we simplify some of the Checkpoint Restart assumptions from 4.5.2 for the Redundancy

protocol. Specifically, the execution time when using Redundancy, TRed, does not consider the ef-

fect of failures during restarts (as they far less likely to occur), and also consolidates the cost of

rework for failed computation intervals and failed checkpoints into a single term. The execution

time of an application utilizing Redundancy is equal to the sum of the application’s time for:

• computation of the application without overhead from resilience or failures (baseline execu-

tion time), TB;

• successful checkpoints, Tδ;

• successful restarts, TR;
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• work lost to a failure, including failures during computation and failures during checkpoint-

ing, TWRed
.

This gives a total expected execution time of

TRed = TB + Tδ + TR + TWRed
. (4.34)

For Redundancy, TB is now affected by the increased communication required for all redun-

dant copies of the executing application to execute synchronously. To account for this overhead,

we scale the baseline execution time of the application by a factor, µRed. Similar to [48], we de-

fined µRed based on the fraction of time the application spends on communication without any

redundancy (TC from Section 4.3.2) and the amount of redundancy permitted in the system, r, we

define this scaling factor as

µRed = 1− TC + rTC . (4.35)

The application baseline execution time when using Redundancy is then defined as the product of

µRed and the number of time steps (TS from Section 4.3.2) required for the application’s execution

TB = µRedTS . (4.36)

The total amount of time that the application spends checkpointing, Tδ, is then defined as the same

as in Eqn. 4.9.

As with traditional Checkpoint Restart, the amount of time spent restarting is a function of

the total number of failures that occur throughout the application’s execution (λTRed). However,

unlike traditional Checkpoint Restart only a fraction of the failures experienced by the system

require the application to restart. To account for this in our model we define the fraction of failures

that require a restart, Pi, for an application requiring NB system nodes without redundancy and a

system utilizing a redundancy of r as
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Pi = 1−
i∏

j=1

(
r − 1− j − 1

NB

)
, (4.37)

with P0 ≡ 0. Eqn. 4.37 assumes that the length of a computation interval and its corresponding

checkpoint is greater than the application’s MTBF (i.e., τ + δ > 1
λ

), indicating that there will be

multiple failures during this interval, but only some of them will require restarts. This assumption

allows Redundancy-based protocols to have a larger computation interval between checkpoints.

Eqn. 4.37 also assumes that 1 ≤ r ≤ 2. Utilizing Eqn. 4.37 gives a value for TR of

TR = (λTRed)(Pbλ(τ+δ)c−1)R . (4.38)

Because an application’s susceptibility to a failure increases for longer computation intervals,

when calculating the expected amount of rework caused by a failure, we must sum the probability

of a failure that causes a restart occurring as failures occur through the (τ + δ) interval. This is

accomplished by utilizing Eqn. 4.37 to give

TWRed
= (λTRed)

[ bλ(τ+δ)c−1∑
i=1

(
(τ + δ)i

bλ(τ + δ)c

)
(Pi − Pi−1)

]
. (4.39)

4.5.6 Checkpoint Interval Optimization

To optimize Eqns. 4.8 and 4.34 for maximum performance efficiency we sweep through the set

of values over the interval (0, TB) for the decision variable τ and evaluate each resilience protocol’s

respective equation to find the interval value that results in the minimum execution time. Similarly,

selecting decision variables that maximize performance efficiency for Eqns. 4.19 and 4.28 for Mul-

tilevel Checkpoint and Parallel Recovery is accomplished by evaluating each respective protocol’s

execution time at every point in a bounded region of the solution space and determining which de-

cision variable values provide the shortest execution time. This sweep of decision variable values

is bounded for τ0 by the interval (0, TB), and bounded for N1, ..., NL−1 such that the product of

these values and τ0 is greater than zero and less than the application’s baseline execution time, i.e.,
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0 < τ0

(∏L
i=1Ni

)
< TB. For both Checkpoint Restart and Multilevel Checkpoint, we can guar-

antee a global optimum is found when bounding the solution space in this way because decision

variable values outside of this region produce infinitely large execution times when the system’s

MTBF is less than the application’s baseline execution time, as is the case here.

4.6 Resilience Protocol Performance with Application Scaling
We utilized our simulation environment to conduct several sets of experiments examining the

performance of each resilience protocol. We evaluated the performance of each of the four appli-

cation types defined in Table 4.1, with each application type being scaled in size from one percent

of the exascale system (about 1.2 million CPU cores, similar in size to some of today’s largest

applications) through to an exascale-sized application requiring 123 million CPU cores. For these

experiments, the baseline execution time for each application is defined as TB = 1440 minutes

(one full day).

As systems trend towards manycore architectures, with hundreds or thousands of CPU cores

on a single socket, component failure rates are likely to increase [103], [104]. Our simulated

exascale system assumes an approximate 4× increase in the number of CPU cores per processor

over the Sunway TaihuLight system, which is likely to decrease processor reliability and increase

the likelihood of failures in the system. Most of the works we consider assume a node MTBF of

ten years for current HPC systems. We assume component failure rates will increase linearly with

the increased size of system nodes. For our experiments, we assume an MTBF of Mn = 2.5 years.

Figure 4.1 highlights the results from this set of experiments analyzing execution efficiency

for varying application sizes. Efficiency is defined to be the ratio of an application’s baseline

execution time over the application’s execution time with slowdowns from failures or resilience

protocol overhead delay, e.g., due to checkpointing. Each bar in the figure represents the average

of 200 trials simulated with the uncertainty of randomly occurring failures. The standard deviation

of these trials are shown around each bar.
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The data in Figures 4.1a-d depicts the efficiency of each of the applications in Table 4.1 as the

size of each application increases. This is indicated on the x-axis of each figure as an increase in

the percentage of system nodes occupied.

Analyzing trends when comparing the two high-communication applications (Figures 4.1c

and 4.1d) to the two low-communication applications (Figures 4.1a and 4.1b), it can be seen that

both the parallel recovery protocol and the two redundancy protocols suffer a larger decrease in

efficiency for all application sizes when the application has a higher amount of communication

than the checkpoint restart or multilevel checkpoint protocols suffer. This decrease is due to the

parallel recovery and redundancy protocol’s higher reliance on communication.

An increase in application memory use increases the time required to perform checkpoints. Be-

cause the checkpoint restart, multilevel checkpointing, and 1.5× redundancy protocols rely more

heavily on checkpoints (particularly to the PFS) than the parallel recovery and 2× redundancy pro-

tocols, results observed when comparing the high-memory applications (Figures 4.1b and 4.1d) to

the low-memory applications (Figures 4.1a and 4.1c) indicate that the checkpoint restart, multilevel

checkpointing, and 1.5× redundancy protocols are more negatively impacted by an application’s

memory use.

One trend seen throughout Figure 4.1 is a trade-off among which resilience protocol provides

the best performance for any size of the given application type. For low communication applica-

tions (Figure 4.1a and 4.1b) occupying at most half of the system, the 2× redundancy protocol

allows for the best application performance. However, because of their costly need for additional

system resources, the redundancy protocols provide zero efficiency when the application is scaled

above certain applications sizes because there are not enough nodes available in the system to em-

ploy either redundancy protocol. The multilevel checkpointing and parallel recovery protocols also

change between which protocol is optimal as application sizes increase in all but the low-memory

high-communication application (Figure 4.1c). Results in the figure indicate that the multilevel

checkpointing protocol tends to dominate over the parallel recovery protocol for application oc-

cupying between 1% to 50% of the system (depending on the application type), but the parallel
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recovery protocol tends to dominate multilevel checkpointing for larger application sizes. There

are no situations in which checkpoint restart or 1.5× redundancy resilience protocols are optimal.

These results motivate the need for an adaptive strategy to achieve low-overhead resilience.

4.7 System Resource Management

4.7.1 Overview

We explore the behavior of several techniques for resource management operating in a system

with failures and considering overhead from employing resilience techniques. Each resource man-

agement technique takes as input the set of unmapped applications and idle system nodes (nodes

that are not currently executing an application) at a mapping event and outputs a mapping of appli-

cations to system nodes. System mapping events occur immediately after an application arrives to

the system as well as immediately after an application finishes its execution. If not enough idle sys-

tem nodes are available during the mapping event to accommodate all unmapped applications, then

the remaining applications stay in the set of unmapped applications until they are either scheduled

during a future mapping event or reach their deadlines and are removed from the system.

4.7.2 FCFS Technique

First come first served (FCFS) is the most commonly employed resource management tech-

nique in HPC systems and it is therefore both important to assess its behavior in an exascale sys-

tem and also an important point of comparison for other resource management techniques. This

technique operates by scheduling applications from the set of unmapped applications in the order

that they arrive to the system until there are not enough nodes left for the most recently arrived

application. Applications not assigned to nodes are scheduled in a future mapping event.

4.7.3 Random Technique

The random resource scheduling technique randomly selects an application from the set of

unmapped applications and assigns it to execute on any available set of nodes able to accommodate

105



the application’s size. If not enough nodes are available, then the application is returned to the set

of unmapped applications for consideration in the next mapping event. This process is repeated

until the set of mappable applications is empty.

4.7.4 Slack-Based Technique

An application’s slack is calculated as the application’s deadline minus the sum of its base-

line execution time and its time of arrival to the system. The slack-based resource management

technique allows the system a means to prioritize applications based on the application’s execution

time and deadline. The set of unmapped applications is sorted based on each application’s slack

value. A negative slack value indicates that an application will not be able to complete execution

before its deadline, and it is “dropped” from the system. The technique schedules applications to

nodes in the system ordered based on increasing slack. Applications that cannot begin execution

immediately are returned to the set of unmapped applications. The slack-based scheduler contin-

ues evaluating applications until all applications are either executing in the system or have been

returned to the set of unmapped applications to be considered in future mapping events.

4.7.5 Value-Based Techniques

Typically, not all applications that arrive to a system have the same importance. Furthermore,

because the results of executing applications are typically more valuable if they are processed

quickly, the benefit that an HPC system can provide to a set of users can typically be improved

if these aspects are kept in consideration when making resource management decisions. To more

accurately analyze system performance when considering the time-varying nature and importance

of applications, we use value functions. A value function is a monotonically decreasing function

defined for each application that arrives to the system and is commonly used to quantify an ap-

plication’s importance based on information associated with the application’s expected execution

time and resource requirements [84].

For the work performed here, each application’s time-varying value is a function of the appli-

cation’s execution time, size, and the time since the application’s arrival. Each application has a
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starting value, VS , that is proportional to both an increase in the application’s size and execution

time:

VS = (100
Na

NS

) ∗ (
TS
360

) . (4.40)

An application that arrives to the system is awarded its starting value if it completes execution by

a specified “soft” deadline, TDS , defined by its arrival time and execution time

TDS = TA + 1.5TB . (4.41)

Applications unable to complete execution by their soft deadlines experience a linear depreciation

in value defined by the current time of the simulation, CT , the application’s hard deadline defined

in Eqn. 4.1, its soft deadline defined in Eqn. 4.41, and its starting value from Eqn. 4.40. The value

earned by the application if it completes execution after its soft deadline, VF , is equal to

VF = VS +−
3
5
VS

TD − TDS
(CT − TDS) . (4.42)

Defining the value function in this way implies that an application’s final value at the time it

reaches its hard deadline will have depreciated down to a fraction of its starting value, which

is consistent with other work utilizing value-based heuristics. Applications that reach their hard

deadlines without completing execution are removed from the system and earn the system zero

value.

Our resource management techniques consider four scheduling heuristics based on [89] to an-

alyze the value that will be earned by the application for successfully completing execution. We

consider heuristics that prioritize scheduling applications by:

• Max Value: the total value that will be earned by the application upon its completion

• Max VPT: the value able to be earned by each application per unit time

• Max VPN: the value able to be earned by each application per node
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Figure 4.2: Performance of the system by: (a) percentage of applications dropped from the system, and
(b) percentage of the maximum value earned by the system, for each resilience protocol and resource man-
agement technique combination. Bars in the figure represent the average of 50 arrival patterns. Standard
deviations are shown for each bar.
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• Max VPR: the value able to be earned by each application per resource required by the

application (a product of the application’s execution time and number of nodes)

4.8 Resilience Protocol Effects on Resource Management
In practice, it is unlikely that exascale systems will always be used for executing a single

exascale-sized application. Instead, in many cases such systems will spend the majority of their

time executing a larger number of smaller applications. We explore the behavior of an exascale-

sized system under this more typical use-case scenario as the system is utilized over a period

of several days to service a large number of petascale sized applications with a wide variety of

execution characteristics. We show the impact that failures have on this environment and the level

of benefit that is provided to the system by each resilience protocol.

We assume the exascale environment is oversubscribed, meaning there are always more ap-

plications submitted to the system needing to be executed than the system has the capacity to

execute. Oversubscription is typical in most HPC environments. Our experience working with

Oak Ridge National Labs and the DoD has been that their large-scale systems are almost always

oversubscribed [22], [90]. Furthermore, because an undersubcribed system is never at risk of hav-

ing applications that are unable to execute to completion, the impact of failures and resilience on

the performance of the system at any given time will simply be a function of the system’s utiliza-

tion and can be inferred from our analyses in Section 4.6. We therefore provide an analysis on

performance in an oversubscribed system that is constrained by requiring individual applications

to meet deadlines as defined in Section 4.3.3.

Each simulation begins by filling the entire exascale system with applications, forcing the sys-

tem to begin operation at full utilization. Applications then arrive to the system randomly according

to a Poisson process with a mean arrival time of six hours until a total of 500 applications have

arrived to the system. Each application that arrives to the system is uniformly randomly selected

from the set of four application types discussed in Table 4.1. Baseline execution times for each

arriving application are uniformly randomly selected to be either three, six, twelve, or twenty-four
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hours in length. The number of system nodes required by each arriving application is uniformly

randomly selected to use between one to one-hundred percent of the exascale system, based on the

eleven application sizes experimented with in Section 4.6. The processor MTBF for these studies

is 2.5 years.

Each set of 500 applications that arrives to the simulated system is referred to as an arrival

pattern. Fifty different such arrival patterns were created. The behavior of each resilience protocol

and resource management technique was examined using the same set of arrival patterns for fair

comparisons.

We compare the five resilience protocols by averaging the results of 50 arrival patterns for each

experiment and comparing those values to the average results of an Ideal Baseline that executes

without delays from failures or delays associated with overhead from resilience protocols. Each

resource management technique and resilience protocol combination is assessed in terms of both

its ability to minimize the percentage of applications that are dropped from the system, shown in

Figure 4.2a, as well as their ability to maximize value earned by the system, shown in Figure 4.2b.

In comparison to the performance of the Ideal Baseline, the results from these simulated stud-

ies in Figure 4.2 show how the presence of failures and overhead from resilience protocols neg-

atively impacts system performance by both increasing the percentage of dropped applications in

the system and earning the system less value regardless of which resilience protocol is utilized.

The results also demonstrate the superiority of the multilevel checkpointing and parallel recovery

resilience protocols over checkpoint restart and both redundancy-based protocols in an oversub-

scribed system. However, the performance of multilevel checkpointing and parallel recovery are

very similar in their ability to both maximize value and minimize the number of dropped applica-

tions. Although the results from Section 4.6 indicate that the 2× redundancy protocol is capable of

providing the best efficiency to some applications, the results in Figures 4.2a and 4.2b demonstrate

that while a particular resilience protocol may allow certain application types the best performance

in some situations, it may not be suitable for more typical system use cases of oversubscribed

systems where resources are in demand by many applications. Because a large number of the pro-
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posed resilience protocols discussed in Section 4.2 rely on some form of redundancy, these results

imply that there is a substantial constraint on the utility that can be expected from these proposed

works.

Another observation that can be made from these results is that, with the exception of FCFS

which always performs worse than the other resource management techniques, when using the

checkpoint restart or redundancy-based resilience protocols the set of applications that are able

to be successfully executed by the system is so low that it reduces the decision making ability

of the resource management techniques, making their performance very similar. The multilevel

checkpoint and parallel recovery protocols see a greater variability between the performance of

each resource management technique. However, the performance of the multilevel checkpoint and

parallel recovery protocols themselves are consistent with the results in Section 4.6.

4.9 Resilience-Aware Resource Management
The implication from the results of our studies in Section 4.6 and Section 4.8 is that there is a

potential for improving system performance by providing the system a means of making schedul-

ing decisions that are aware of the negative impact that system failures and overhead associated

with resilience protocols has on application execution. In addition to deciding when and on what

nodes an application will execute, the system resource manager intelligently selects the resilience

protocol that is most likely to provide the best performance for each application. The optimal

application-specific resilience protocol choice can be made by comparing the efficiencies each

application is expected to achieve based on predictions made for each resilience protocol by the

execution time prediction equations described in Section 4.5. We call this resilience-awareness

feature resilience selection, and it allows the system to take advantage of the trade-offs between

resilience protocol optimality described in Section 4.6 regardless of the resource management tech-

nique being employed.

If applications are being scheduled in the system using either the slack-based resource manage-

ment technique or any of the value-based resource management techniques, then the system has
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Figure 4.3: Performance of the system by (a) percentage of applications dropped from the system, and (b)
percentage of the maximum value earned by the system, for each resource management technique when
resilience-naïve and using the parallel recovery resilience protocol, and each resource management tech-
nique when resilience-aware and employing resilience-selection. Groupings of bars show four different
types of application arrival patterns. Bars in the figure represent the average of 50 arrival patterns. Standard
deviations are shown for each bar.
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the additional advantage of being able to use these same equation-based execution time predictions

to make scheduling decisions that are also aware of the decreased performance that the applica-

tion will experience in a system with failures. While the results shown in Figure 4.1 indicate that

some application types perform most efficiently when utilizing 2× redundancy, the results from

Section 4.8 demonstrate that in oversubscribed systems, such as the one considered here, use of re-

dundancy has a negative impact on the overall system performance. Use of redundancy is therefore

excluded from consideration when resource managers are utilizing resilience selection.

Simulated studies exploring resilience-aware resource management have a similar setup to Sec-

tion 4.8. However, in addition to the unbiased application arrival pattern seen in Section 4.8 that

allows for a uniformly random selection of applications of different sizes and types, these studies

also experiment with arrival patterns that are biased toward:

• high memory applications requiring Nm = 64 GB;

• high communication applications having communication values of TC = 0.75;

• large applications that occupy at least fifty percent of the exascale system.

These application arrival pattern types were chosen because they are likely exist in exascale

environments [69]. Our results depict the average percentage of applications dropped in each ex-

ecuted arrival pattern in Figure 4.3a and the average percentage of maximum value earned by the

system for each arrival pattern in Figure 4.3b. Results are shown for each resource management

technique from Section 4.7 when utilizing the parallel recovery resilience protocol (indicated by

each of the bars without hash marks in the figures) because it is most consistently the best per-

forming resilience protocol. Each resource management technique utilizing parallel recovery is

also compared to execution of the same set of arrival patterns when each technique is resilience-

aware both in its prediction of execution times and in the resilience protocol that is selected to

provide the application the best performance possible. Resilience-aware results are indicated by

the hashed bars in the figures.
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In general, the results shown in the figures demonstrate that in all cases the resilience-aware

resource management techniques improve upon their resilience-naïve counterparts by several per-

cent, and in some cases the improvement is substantially more. Because scheduling decisions

made by the FCFS and Random resource management techniques do not rely on execution time

predictions, the relatively small improvements they gain when resilience-aware in comparison to

the slack-based and value-based resource management techniques demonstrate that the improve-

ment achievable using only resilience protocol selection is not as great as that achievable when

also allowing for execution time predictions.

Even though the high-memory and high-communication sets of application arrival patterns

were expected to prove more challenging for the resource management techniques, they both per-

form similarly to the unbiased set of application arrival patterns. Unsurprisingly, arrival patterns

biased toward large applications perform notably worse than the other arrival pattern types be-

cause they require more system resources. But the large application arrival patterns still benefit by

a similar amount from being resilience-aware as the other three arrival pattern types.

Results also indicate that, for all metrics and for all application arrival patterns, the resilience-

naïve slack-based and four resilience-naïve value-based resource management techniques using

parallel recovery generally only perform within 1% to 2% of the resilience-naïve Random re-

source management technique using parallel recovery due to inaccurate execution time estimates.

However, allowing these techniques to perform “resilience-aware” on the same application arrival

patterns enables every technique to earn the system much more value (in some cases as much

as 10% more). In the case of the value-based techniques, this improvement comes by allowing

each technique to more accurately assess the relative values achievable when scheduling different

applications. However, even though there are differences in performance between the resilience-

naïve value-based techniques the resilience-aware value-based techniques, all resilience-aware

techniques tend to perform similarly within each arrival pattern type, indicating that if resilience-

aware predictions are used then the type of value-based heuristic used by the system does not

matter much. Improvement in value for the slack-based technique occurs as a bi-product of the
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resilience-aware technique being able to more accurately assess which applications are closest to

their deadlines, and respond by successfully preventing more of them from being dropped.

The performance of the slack-based resource management techniques in particular demon-

strates the benefit that can be obtained when providing certain resource management techniques

with resilience information during scheduling. For all application arrival pattern types, the slack-

based resource management techniques improve from being one of the worst-performing tech-

niques when resilience-naïve (not even able to out-perform the Random technique), to clearly

being among the best performing technique in all metrics by a significant margin when resilience-

aware. The findings from our study motivate the design of a new class of resource management

techniques that consider resilience protocol selection as an integral part of their decision making.

4.10 Conclusions
HPC resilience has become an increasingly important topic as we approach exascale system

sizes. It has also become increasingly important that the resilience protocols that are proposed

for use in these systems are analyzed in a common computing environment. This work is one

of a few studies that tests a variety of new HPC resilience protocols in such a manner. We de-

scribe a methodology that can be used to simulate exascale HPC system sizes with a diverse set of

applications able to scale to arbitrary sizes.

We utilize our simulation models to evaluate four protocols for HPC resilience, i.e., the tradi-

tionally employed checkpoint restart protocol, as well as three techniques proposed for next gen-

eration large-scale systems: multilevel checkpointing, parallel recovery, and partial redundancy.

Our analysis indicates that each resilience protocol has performance trade-offs that vary based on

application execution characteristics.

Because a production exascale system is unlikely to execute only exascale sized applications,

we study the effects that HPC resilience and system failures have on resource management for

a workload consisting of several petascale applications. Our results indicate that while multilevel

checkpointing and parallel recovery are likely to be the best performing resilience protocols, for all
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of the resource management techniques we consider there is still a significant decrease in system

performance due to failures and overhead from resilience protocols. However, we also show that

the system performance can be improved by using resilience-aware resource management tech-

niques that schedule applications to nodes, select the resilience protocol used for each application,

and use execution time predictions to address both the uncertainties introduced by system failures

and the overhead introduced by resilience.
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Chapter 5

Optimizing Checkpoint Intervals for Reduced

Energy Use in Exascale Systems

5.1 Introduction
With the number of CPU cores in large-scale computing systems increasing exponentially over

time, the failure rates in these systems have increased exponentially as well. It is expected that the

next generation of HPC machines will experience failures up to several times an hour, making the

need for effective fault resilience important for building tomorrow’s HPC systems [46].

Another important consideration for the development of extreme-scale HPC systems is the

increasingly high energy costs associated with using the system once it is operational. Today’s

largest HPC system consumes approximately 15.371 MW at full capacity (not including the costs

for cooling) [75]. Assuming even very low electricity costs of $0.06 per kWh [106] today’s systems

cost over $8M per year to operate. Based on the conservative exascale system assumptions we out-

line in Section 5.3, extrapolating these costs to exascale indicates that system operation alone will

cost a minimum of $47M per year. Reducing an exascale system’s energy requirements has been

credited as being one of the most important and challenging roadblocks associated with developing

such a system [107]. While some work has been done to explore the role that fault resilience plays

in the energy use of large scale systems, little work has been performed that specifically attempts

to reduce the impact that resilience techniques have on system energy use.

Performance efficiency is defined to be the ratio of an application’s baseline execution time over

the application’s execution time with slowdowns from failures or resilience technique overheads

This work was performed jointly with masters student Rohan Jhaveri the full list of co-authors listed in [105].
This work was supported by the NSF under grants CCF-1252500 and CCF-1302693. The authors thank Hewlett
Packard (HP) of Fort Collins for providing us some of the machines used for testing.
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(e.g., delays when taking a checkpoint). There is a critical need to allow a system designer the

opportunity to trade-off application performance efficiency (corresponding to minimizing applica-

tion execution time) with minimizing system energy use in extreme-scale systems, to optimally

balance performance goals with energy overheads.

Because the costs of operating an exascale system are very high, even for scientific applications

with an execution time as short as one day without overheads from failure and resilience related

delays, optimizing checkpoint intervals for energy use at the cost of a slight increase in application

execution time would likely allow for over a million dollars of energy savings by the end of the

application’s execution. Our results demonstrate that for a few percent reduction in performance,

the energy required to execution an application can be reduced by as much as 10%.

In summary, this chapter makes the following novel contributions:

• we develop a set of execution time and energy use prediction equations that can be utilized

to determine optimal checkpoint intervals for both traditional checkpointing and multilevel

checkpointing-based HPC fault resilience techniques;

• we provide a methodology for simulating the execution of applications operating at exascale

system sizes in the presence of uncertainty due to failures;

• we use our methodology to model an exascale computing environment and utilize this envi-

ronment to simulate the execution and energy use of both a traditional checkpointing tech-

nique as well as a multilevel checkpointing technique proposed for future exascale-sized

HPC systems;

• we simulate each resilience technique’s performance and energy use when optimizing check-

point intervals for either application performance efficiency or lower energy use and demon-

strate that a trade-off exists between optimizing for either metric;

• we perform a sensitivity analysis of the parameters associated with this trade-off.

The remainder of this chapter is organized as follows. Section 5.2 discusses the resilience

techniques we examine and discusses other work that has considered exascale resilience and energy

118



use. In Section 5.3, we describe the modeling methodology we use for our system simulator. Our

implementation of HPC resilience is presented in Section 5.4. Section 5.5 details some of the

equations we derive and use for determining optimal checkpoint intervals. Section 5.6 describes

the simulated studies we perform to demonstrate the trade-off between performance efficiency and

energy use and provides a sensitivity analysis on these results. We conclude with a summary of

this work in Section 5.7.

5.2 Related Work
The prior work we discuss here focuses on system-level checkpointing-based HPC resilience

that allows application programmers and users of the system to be oblivious to the strategies for

HPC resilience that are being employed on their behalf. All checkpointing-based techniques rely

on the notion of periodically saving the system’s executing state and restarting from an earlier

error-free state after the occurrence of a system failure [52]. We focus on two of the most popu-

lar checkpointing-based techniques, a traditional checkpoint/restart based technique and the more

recently proposed multilevel checkpointing technique.

Traditional checkpoint/restart is by far the most commonly used resilience technique employed

by today’s large-scale HPC systems. However, the length of time associated with checkpointing,

restarting, and recomputing work lost to a system failure for a large-scale application can be quite

large. Moreover, the frequency at which the system needs to take checkpoints for very large-

scale applications when implementing traditional checkpointing techniques has been shown to

significantly degrade performance with increasing system sizes [45]. Traditional checkpointing

alone is not expected to be capable of providing satisfactory resilience to exascale-sized systems.

Because different types of failures can affect a computing system by different amounts, not all

failures require restarting the system from a checkpoint to the parallel file system [80]. Multilevel

checkpointing exploits this by providing the system with several levels of checkpointing. A system

employing a multilevel checkpointing scheme may allow for levels that trade-off between check-

points to RAM (that are faster but able to recover from fewer types of failures), to checkpoints
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saved to a partner node’s RAM (that are less frequent and slower, but able to recover from more

types of failures), to checkpoints saved to the system’s parallel file system (that are the slowest but

allow recovery from almost all failures). Each level offers a trade-off between the time required by

the system to checkpoint or restart, and the level of failure severity from which the checkpoint can

recover [47].

One challenge associated with using a multilevel checkpointing technique is in determining

the optimal number of checkpointing levels to support in the system, and the optimal computation

intervals between checkpoints at each level. Various solutions to this problem have been proposed

[47] [61] [62] [81]. We also provide our own solution to the problem of determining optimal

multilevel checkpoint intervals that we described in Chapter 4 Section 4.5 and Section 5.5 of this

chapter.

Assessing the energy use associated with fault resilience techniques has been considered in

several works [108] [109] [82] [110] [43]. However, none of these works specifically optimize

checkpoint intervals to attempt to minimize energy use as our work does.

The work in [111] does specifically attempt to minimize system energy use for the check-

point/restart resilience technique. However, the authors achieve this through power capping and

not through checkpoint interval optimization as our work does. The authors in [112] do specifically

reduce energy use in a checkpoint restart-based technique by optimizing checkpoint intervals, but

their work is primarily focused on checkpointing in mobile devices that store checkpoints over the

internet and is of limited use for the exascale-size HPC systems that we consider in our work. Both

of these works also do not consider energy reduction for multilevel checkpointing.

An approach to predict checkpoint/restart execution time and energy use was explored in [45],

[82], and [73]. We have greatly extended this prior work to allow for much more accurate predic-

tions and further extended the initial ideas to allow for modeling multilevel checkpointing with an

arbitrary number of checkpoint levels.
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5.3 Exascale Modeling Methodology

5.3.1 Overview

We have designed an event-based simulator used for modeling HPC systems of arbitrary size

[43] [77] [4]. The system experiences randomly generated failures that affect the simulated execu-

tion of applications in the system. Throughout the system’s simulation an application’s execution

is affected by events associated with:

• computation: execution toward the application’s completion,

• failures: the simulated failure of a system node,

• checkpoints: saving a backup of computation progress,

• restarts: restoring the application progress saved in the last system checkpoint after a failure

occurs,

• recovery: recomputing progress lost to a failure,

• failed checkpoints or restarts: behavior of the system when failures occur during checkpoint

or restart events.

Checkpoints, restarts, and recovery are all resilience-technique specific events that determine

how an application behaves in a system with failures. This is discussed in detail in Section 5.4.

The remaining events associated with computation and failures are all attributes of the system and

behave the same regardless of the resilience technique being used by the system. In particular,

while failure events have a large impact on the behavior of the resilience-technique related events,

failure events themselves are a function of the size of the system and the reliability of the system’s

nodes, and are not affected by the resilience technique employed by the system.

5.3.2 Applications Model

We consider synthetic applications that exhibit weak scaling so that as the number of nodes

used by the application increases with application size, the application’s attributes of computation
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and memory used per node remain constant. For all simulated studies performed here, applications

are defined to execute for a full day of execution time when executed without delays from failures

or events related to resilience (such as time spent checkpointing). This delay-free execution time

is the application’s baseline execution time and is represented by the variable TB.

Memory needed for the application is represented by the variable Nm. Most of the simulations

performed in this work have a value of Nm = 32GB of memory required per node. Details

about the size and memory use of applications in each simulated study are discussed further in

Sections 5.6.

5.3.3 Simulated System Setup

The simulated exascale system is a homogeneous system inspired by the architecture used in

China’s Sunway TaihuLight 125 petaflop supercomputer [75], the world’s highest performing sys-

tem since June 2016 and still the world’s top system as of June 2017 [99]. Each Sunway TaihuLight

system node has a multicore architecture composed of four clusters of 64 computational processing

elements (CPEs) with each cluster managed by a single management processing element (MPE)

that also performs computational work allowing for a total of 65 cores of computation in each

core cluster. The four core clusters in a system node provide a total of about 3.1 TFLOPs over

260 cores. As systems trend towards manycore architectures, with hundreds or thousands of CPU

cores on a single socket, component failure rates are likely to increase [103] [104]. Our simulated

exascale system assumes an approximate 4× increase in the number of CPU cores per processor

over the Sunway TaihuLight system by the time an exascale machine is developed, allowing for

a total of 1028 cores per node providing approximately 12 TFLOPs of compute power for each

system node. A system composed of 120,000 of these high performing nodes would perform at an

exascale level.

The Sunway TaihuLight system has 8 GB of DDR3 RAM at each of its four core clusters,

giving each node a total of 32 GB of RAM. We again assume that future systems are likely to have

memory increases of about a factor of four in comparison to today’s systems giving our simulated
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system a total memory capacity of 128GB per system node, enough to allow for the multilevel

checkpointing resilience technique to operate with a working memory size of up to 40GB and still

be able to accommodate the additional memory required for lower-level checkpoints (discussed in

Sections 5.3.4 and 5.4). In addition to an increase in volume, we also assume that future memory

is likely to utilize newer architectures, allowing for increased aggregate memory bandwidth, BM .

Today’s best memories perform at a rate of up to 25 GB/s [100], we conservatively estimate that

future memories will be able to perform at about BM = 40 GB/s.

Reports on the Sunway system [75] [113] mention that a system node requires around 375

watts to operate during computation. We assume that the total power required for computation

will increase because of the large increase in the number of cores per system node, however, it

can also be expected that the energy efficiency of future processors will improve. Given that we

are assuming a 4× increase in the number of cores per system node in our simulated system, we

conservatively assume the power required for computation work, PW , will double from the power

requirements of the Sunway system.

Because the system halts all computation during checkpoints and restarts, the power required

by the system during these events is much lower than the power required for computation. Based

on power measurements we have made on several server-class Xeon processor based servers, we

assume that the power required during a checkpoint or restart, Pδ, will be equal to the node’s

idle power (we assume this to be 150 watts) plus the power required for network communication

(discussed in Section 4.3.5).

5.3.4 System Failure Model

Failures are characterized by two attributes: the time that the failure occurs and the “severity

class” of the failure. The uncertainty associated with each attribute is modeled using random

variables. We assume independence between individual failure occurrences as well as between

both the attributes of each failure.
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A common assumption when modeling failures in an HPC system is that failures follow an

exponential distribution and can be modeled by a Poisson process [67]. Every failure occurs ac-

cording to the previous failure’s arrival time (TFi−1
, with TF0 = 0) plus a random variate generated

from an exponential distribution Ti ∼ Exp(λ) with an expected arrival rate of E[Ti] = 1
λ

. The

parameter λ indicates the average failure rate of the application, and is defined as the number of

nodes required by the application, NA, divided by the mean time between failures of the system

nodes, Mn, i.e.,

λ =
NA

Mn

. (5.1)

The severity class of failure corresponds to the type of failure that has occurred in the system.

This attribute is used by multilevel checkpointing to determine which level of saved checkpoint

is necessary to enable the system to recover from a specific type of failure and is also used when

determining the optimal duration of intervals between checkpoints of different levels. These as-

sumptions and the effect of a failure’s class on multilevel checkpointing’s behavior is discussed

further in Section 5.4.

The mapping of failure types to failure severity classes is based on the analyses of types of

failures present in modern day HPC systems presented in [101] and [78]. We define the probability

of experiencing a class i severity failure according to the ratio of the number of failures that occur

at each failure severity class, to the total number of failures, measured over an extended interval

of time. The resulting discrete set of ratios for the set of classes is used to create a probability

mass function from which random variates are sampled to define the severity attribute of each

failure. We denote the probability of each of the L severity classes as S1, ..., SL. We assume that

types of failures in a future exascale-sized system will occur in similar relative amounts to those

experienced by today’s system, but with the total number of failures occurring more frequently.

For this work we define three severity classes. The first class (S1) assumes that failures can be

recovered from using a checkpoint stored in a node’s local RAM, the second class (S2) requires

the restarting application from a checkpoint stored in a partner node’s RAM, and the third and

highest class (S3) requires the system to checkpoint and restart from a parallel file system. The
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data presented in [101] and [78] details the frequencies of thirty-three types of failures in the Blue

Waters system. Using this information we determined the probability of failure severities for our

three-class failure model to be approximately S1 = 0.138, S2 = 0.784, and S3 = 0.078.

5.3.5 Communication Model

System communication plays a key role in the performance of checkpoints written to both a

partner node and the parallel file system. We account for the effects of communication on appli-

cation checkpoints taken in the system. We assume that future exascale systems are likely to have

improved communication over today’s systems, and base the communication model for the studies

performed here on the “NDR InfiniBand” network described in [102]. For most simulations in

Section 5.6, our communication network assumes a latency value of LN = 0.5µs, a bandwidth

value of BN = 600GB/s, and a maximum number of simultaneous connections at each switch

NS = 12. The effects of these values on the corresponding time required to checkpoint the system

is discussed further in Section 5.4.

The power used for system communication is calculated for each system node. Given a switch

power of PS = 200 watts and a network interface controller of a single node that consumesNIC =

15 watts at full utilization [72], the power spent by a single node for communication during a time

of high network traffic (such as during a checkpoint or a restart), PN , and defined as

PN =
PS
NS

+NIC , (5.2)

making PN equal to about 28.33 watts. Power associated with communication during application

computation is assumed to be accounted for in the power values taken from [75].

125



5.4 Fault Resilience Techniques

5.4.1 Overview

Two HPC fault resilience techniques are considered in our work and were implemented in our

system simulator: a traditional checkpoint restart based technique, checkpoint/restart, as well as

the implementation of multilevel checkpointing proposed for next-generation HPC systems in [47].

The following subsections present details of how each resilience technique was modeled.

5.4.2 Checkpoint Restart

Our implementation of the checkpoint/restart resilience technique performs periodic, blocking

checkpointing, with checkpoints saved to a parallel file system. The time that the checkpoint/restart

technique requires to read and write its checkpoint data to a parallel file system, TCPFS , is de-

pendent on number of nodes required by the application, NA, memory use Nm (defined in Sec-

tion 5.3.2), and communication bandwidth BN (defined in Section 5.3.5) to give

TCPFS =
Nm

BN

∗NA . (5.3)

The optimal checkpoint period is dependent on the application’s checkpoint time and failure

rate. As defined in Section 5.3.4, the value for an application’s failure rate is dependent on the

application’s size. We describe our calculation of the optimal interval between application check-

points (τ ) when optimizing for either maximum performance efficiency or minimum energy use in

Chapter 4 Section 4.5 and Section 5.5 of this chapter.

5.4.3 Multilevel Checkpointing

We implement the three-level multilevel checkpointing technique from [47] in our simulator.

Each checkpointing level offers a trade-off between the time required to save or restore a check-

point and the severity class of the failure from which it can recover.
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The first checkpoint level writes to the node’s local RAM. All applications save the checkpoint

concurrently with the time required for taking a level one checkpoint being simply the amount of

memory per node required by the application divided by the node’s memory transfer rate

TCL1
=
NM

BM

. (5.4)

The second checkpoint level stores its checkpoints to RAM in a partner node. The time for a

level two checkpoint is equal to the time required to send the data to the partner node (calculated

using variables defined in Section 5.3.5) plus the time required to write the data to memory

TCL2
= 2(TCL1

+ LN +
NM

BM

) . (5.5)

The equation is multiplied by two to account for both the time required for half of the system to

concurrently send checkpoint data to their respective partner nodes as well as the time required for

those nodes to receive their partner’s checkpoint data.

The third level checkpoint is written to a parallel file system, and the time required is the same

as presented in Eqn. 5.3. We assume checkpoint and restart times are symmetric. Failure severity

classes are defined according to Section 5.3.4 and determination of optimal checkpoint intervals

for each level is describe in Chapter 4 Section 4.5 and Section 5.5 of this chapter.

5.5 Energy Use Prediction and Checkpoint Interval Optimiza-

tion
The equations we derived that predict the expected execution time of applications executing in

the presence of failures when employing either the traditional checkpoint/restart or the multilevel

checkpointing techniques were described in Chapter 4 Section 4.5. This section discusses how

these execution time prediction equations are then extended for use in predicting the system’s

expected energy use when executing the application. These equations are general and able to
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Figure 5.1: Application (a) performance efficiency and (b) normalized energy use, when resilience tech-
nique checkpoint intervals are optimized for either performance efficiency or energy use and the percentage
of system nodes used by the application is increased. Bars in the figure represent the average of 200 sim-
ulated trials. Standard deviations are shown for each bar. Annotations in the figure indicate values for the
average and standard deviation of bars that have been truncated.
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be used on systems and applications of any type provided the relevant system and application

parameters can be estimated.

The energy use models for both checkpoint/restart and multilevel checkpointing are calculated

by multiplying the expected execution time of each event type with the power used to perform

that event. For computation events, system power use is equal to the power used by a node during

computation (PW , defined in Section 5.3.3) multiplied by the number of nodes used by the appli-

cation (NA from Section 5.3.4). For checkpoint or restart related events, power use is defined by

the number of nodes used by the application multiplied by the power used by a node while it is

checkpointing or restarting (Pδ, defined in Section 5.3.3). Once the values for the total execution

time have been calculated the expected execution time for each event type can be calculated. This

makes the expected total energy for checkpoint/restart, ECR, equal to

ECR = PWNA(TB + TWτ + TWδ
)

+PδNA(Tδ + Tδ′ + TR + TR′) ,

(5.6)

and EML, the expected energy for multilevel checkpointing

EML = PWNA(TB + TWτL
+ TWδL

)

+PδNA(TδL + Tδ′L + TRL + TR′L) .

(5.7)

We use the same brute force sweeping technique to optimize decision variables for minimal

energy use as we used in Chapter 4 Section 4.5.6 for determining intervals for optimal performance

efficiency except that instead of evaluating for execution time we evaluate Eqns. 5.6 and 5.7 to

find decision variable values that produce the minimum expected energy use. When optimizing for

energy use, the solution space for decision variable values has the same bounds as when optimizing

for performance efficiency.
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Figure 5.2: Application (a) performance efficiency and (b) normalized energy use, when resilience tech-
nique checkpoint intervals are optimized for either performance efficiency or energy use and the amount of
memory used by the application is increased. Bars in the figure represent the average of 200 simulated trials.
Standard deviations are shown for each bar. Annotations in the figure indicate values for the average and
standard deviation of bars that have been truncated.
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Figure 5.3: Application (a) performance efficiency and (b) normalized energy use, when resilience tech-
nique checkpoint intervals are optimized for either performance efficiency or energy use and the reliability
of system nodes is increased. Bars in the figure represent the average of 200 simulated trials. Standard
deviations are shown for each bar. Annotations in the figure indicate values for the average and standard
deviation of bars that have been truncated.
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5.6 Simulation Experiments

5.6.1 Overview

We use the equations defined in Section 5.5 to calculate checkpoint intervals that either max-

imize performance efficiency or minimize energy use and use the resulting interval values with

the simulation environment discussed in Section 5.3 to conduct several simulated experiments in

Section 5.6.2 that examine the trade-off between performance and energy. In Section 5.6.3, we

perform a sensitivity analysis that explores how this trade-off is affected when various application

characteristics and system parameters are scaled through a range of values.

5.6.2 Optimization Trade Off

In Figure 5.1, we demonstrate the performance of and energy use of the system as the simulated

application is scaled in size from one percent of the exascale system (about 1.2 million CPU cores,

similar in size to some of today’s largest applications) through to an exascale-sized application

requiring 123 million CPU cores. For these experiments, the baseline execution time for each

application is defined as TB = 86400 seconds, or one full day of execution. The energy use values

are normalized to the calculated value of the application’s baseline energy use, EB = PWNATB,

for each application size. Most of the prior work we consider assume a node MTBF of ten years for

current HPC systems. We assume component failure rates will increase linearly with the increased

size of system nodes, and consequently for our experiments we assume an MTBF of Mn = 2.5

years. We assume that the application usesNm = 32GB of memory per node. Simulated trials vary

because of uncertainty associated with randomly occurring failures. Bars in the figure represent

the average of 200 simulated trials and the error bars indicate standard deviations.

Figure 5.1 shows that for both checkpoint/restart and multilevel checkpointing there exists

a distinct trade-off between optimizing checkpoint intervals for performance efficiency and op-

timizing checkpoint intervals for energy use. Checkpoint/restart is 0.5-3% more efficient when

optimizing for performance efficiency than when optimizing for energy use but consumes as much

as 15% more energy. Multilevel checkpointing has as much as 4% higher performance efficiency
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when optimizing for performance efficiency but can consume as much as 7% less energy when

optimizing for minimum energy use. This difference in optimality arises because of the difference

in power requirements when the system is checkpointing or restarting as opposed to when it is per-

forming computation. If a system designer desires to use less energy, then the results in Figure 5.1

indicate that it is more beneficial to slightly increase the execution time of the application by taking

more frequent checkpoints that require less power but require less time be spent performing power

costly computation when recovering from a failure.

As the application’s size increases it can be observed that when optimizing for energy use with

the multilevel checkpointing technique the loss in performance efficiency increases at a slower rate

than the decrease seen in energy use, allowing the same burden on efficiency to provide larger

decrease in energy use for larger application sizes. This effect is less prevalent in the results for

checkpoint/restart.

Another trend that is seen with both checkpoint/restart and multilevel checkpointing is that

while the variance in results for both efficiency and energy use increases with application size,

the variance of results when optimizing for minimum energy use increases more slowly than the

variance in efficiency results. This indicates that in terms of both performance efficiency and

system energy use execution results are more consistent if checkpoint intervals are optimized for

minimal energy use rather than higher performance efficiency. If a system designer desires more

predictability of application execution then it is better to optimize for minimum energy use.

5.6.3 Sensitivity Analysis

We analyzed the sensitivity of the results from Section 5.6.2 to a variety of application charac-

teristics and system parameters including: application memory use, system component reliability

(expected time between component failures), communication network bandwidth, communication

network latency, and system node memory transaction speed. All simulations analyzing sensitivity

were performed by simulating an exascale-sized application with all system parameters and execu-

tion characteristics that were not being scaled for the sensitivity analysis (i.e., the parameters that
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are held constant) remaining as described in Section 5.3. All experiments we performed supported

the results discussed in Section 5.6.2 indicating the presence of a trade-off when optimizing for

efficiency or energy use as well as all analyzed parameters indicating that there is less variance

present in application execution when optimizing checkpoint intervals to minimize system energy

use.

A subset of the sensitivity results are shown in Figures 5.2 and 5.3. The figures show the

efficiency and energy use when scaling values of application memory use and system component

reliability, respectively. Bars in the figures represent the average of 200 simulated trials with

standard deviations shown for each bar.

Increase in application memory use (Figure 5.2) has a particularly large effect on both the ef-

ficiency and energy use results as well as the trade-off in improvements that can be gained by

optimizing for either efficiency or energy use. Though not all results are shown, the results for sen-

sitivity to changes in application memory size had the largest impact on performance efficiency and

system energy use for an exascale-sized application. Checkpoint/restart shows a 5-14% decrease

in energy use for at most a 3% decrease in performance efficiency when optimizing for energy

use over performance efficiency. Multilevel checkpointing achieves between a 2-6% decrease in

energy use for a 2-3% decrease in performance efficiency when optimizing for energy use over

performance efficiency.

The results in Figure 5.3 show that as component reliability (MTBF) increases, the performance

of the system increases and the energy improvement gained when optimizing energy use over

performance efficiency decreases. However, even in a highly reliable system where failures are

less common, the trade-off as well as the increased predictability of performance when optimizing

for energy use are still present and can be taken advantage of by a system designer.

5.7 Conclusions
HPC resilience has become an increasingly important topic as we approach exascale system

sizes and failures become more frequent. Similarly, as systems begin to be developed that re-
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quire hundreds of thousands of system nodes, the energy requirements of these systems becomes

extremely costly and reducing this burden continues to be an important consideration for system

designers.

We described a methodology that can be used to simulate exascale HPC systems (with the

ability to scale to arbitrary system sizes) and model the effects that extreme-scale systems have on

performance efficiency and energy use in the presence of node failures.

We utilize our simulation models to evaluate two techniques for HPC resilience, the tradi-

tionally employed checkpoint/restart technique, as well as the multilevel checkpointing technique

proposed for next generation large-scale systems and use a set of equation-based models we have

developed to optimize the checkpointing intervals of these techniques to either maximize per-

formance efficiency or minimize system energy use. Our analyses indicate that a performance

trade-off exists between optimizing these techniques for either metric. Given the presence of this

trade-off, we performed a sensitivity analysis on several parameters associated with application

and system behavior and conclude that this trade-off exists in all circumstances we test. Our re-

sults also indicate that optimizing for minimal energy use provides the system with less variable

ranges of execution times.
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Chapter 6

An Analysis of Multilevel Checkpoint Performance

Models

6.1 Introduction
As applications have demanded more computing power over time, HPC systems have required

exponentially increasing numbers of system CPU cores to provide this performance . With HPC

systems approaching exascale computing complexities, it is expected that they will require several

million CPU cores. Simultaneously, the drive to improve performance and energy-efficiency by

fabricating at smaller transistor technologies has decreased component reliability [49].

Because of these trends, as HPC systems approach extreme scales, system failure rates have in-

creased rapidly. A recent study of the Blue Waters system in [78] indicates that a 2.2× increase in

application size (from 10, 000 system nodes to 22, 000 system nodes) resulted in a 20× increase in

the probability of application failure. Given that [46] suggests that an exascale application is likely

to require at least 100, 000 system nodes, an exascale system can be expected to experience signif-

icantly higher failure rates. Moreover, the study in [78] concludes that for the 13.1 petaflop Blue

Waters system, on average an application failure caused by a system-related issue occurs every 15

minutes. An exascale machine is therefore likely to experience failures much more frequently and

has been estimated to have a system MTBF of as little as three minutes in extreme cases [47].

In such an environment, it is imperative that protocols are in place that allow HPC systems to

respond to failures when they occur and mitigate their impact on application performance. How-

ever, analysis has shown that current HPC resilience protocols such as traditional checkpoint/restart

This work was performed jointly with the full list of co-authors listed in [114]. This work was supported by
the NSF under grants CCF-1252500 and CCF-1302693. The authors thank Hewlett Packard (HP) of Fort Collins for
providing us some of the machines used for testing.
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and redundancy-based resilience are not suitable for scaling to exascale system sizes [49] [79] [45]

[43] [77]. One solution for future systems that has been researched over the last decade in antic-

ipation of these extreme-size HPC systems is multilevel checkpointing. Multilevel checkpointing

protocols exploit the fact that not all failures require costly restarts of the application from a PFS,

and that less severe failures can be restarted in significantly less time from higher levels of memory

(e.g., local or remote DRAM).

As with traditional checkpoint/restart protocols, when performing a checkpoint or restart oper-

ation the system must temporarily halt application execution. While this is necessary for successful

computation in failure-prone systems, every checkpoint incurs overhead that slows the progress of

application execution. Just as application progress is impeded by failures if the duration of compu-

tation between checkpoints is too large, checkpoints taken too frequently also incur overhead that

prevents application progress. This interaction between a given execution environment and the

duration of the interval of computation between checkpoints becomes significantly complex with

a multilevel checkpointing system. There is an optimal set of successive intervals between levels

of a multilevel checkpointing protocol. Determining these optimal intervals is an open problem

associated with multilevel checkpointing and is one of the major challenges with the successful

implementation of the protocol.

We have already developed and utilized the equations discussed in Chapters 4 and 5 for the

purposes of execution time prediction for resilience-aware resource management as well as check-

point interval optimization. However, this chapter discusses additional equations used for execu-

tion time prediction and checkpoint interval optimization for the traditional checkpoint/restart and

multilevel checkpointing resilience protocols. The equations presented in this chapter provide a

great improvement over the previous set of equations. This chapter also provides a much more de-

tailed discussion and comparison of our equations to other contemporary equations for multilevel

checkpointing including examples comparing utilization of our equations under a variety of HPC

system execution scenarios. In this chapter we make the following contributions:
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• we provide a detailed comparison among several state-of-the-art techniques for determining

multilevel checkpointing intervals;

• we demonstrate the necessity of accounting for failures during checkpoint and restart events

when modeling extreme-scale systems;

• we derive an application execution time prediction model in the presence of multilevel check-

pointing that can be used for determining the performance of checkpoint intervals;

• we show some of the limits under which multilevel checkpointing ceases to be a viable

option for providing resilience to extreme-scale systems;

• we demonstrate the superior accuracy of execution time predictions made with our model,

as well as situations in which our model outperforms other state-of-the-art techniques for

determining multilevel checkpoint intervals.

The remainder of this chapter is organized as follows. We discuss the historical development

and recent progress of multilevel checkpointing, and discuss the challenge of constructing accu-

rate models for both application execution time prediction and checkpoint interval optimization in

Section 6.2. We present our own approach to modeling a multilevel checkpointing protocol with

an arbitrary number of levels in Section 6.3. We provide a set of simulation studies comparing

several state-of-the-art multilevel checkpointing models in Section 6.4. We end the chapter with

some concluding remarks in Section 7.5.

6.2 Related work

6.2.1 Overview

Traditional checkpoint/restart techniques have been used for decades to mitigate the effects of

system failures in HPC systems. The first attempt to optimize checkpoint intervals was Young’s

first-order approximation in [53]. This execution time model was substantially improved by Daly’s

higher order execution time approximation in [73]. Daly’s work remains the most common ap-
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proach for optimizing traditional checkpointing. However, traditional checkpointing has been

shown to not provide adequate resilience for extreme-sized systems.

The first notion of utilizing different levels of checkpoints for recovering from different types

of failures was presented in [115] and this was extended to a more practical (two-level) multi-

level checkpointing protocol in the Markov model presented in [80]. Whereas traditional check-

point/restart performs a checkpoint or restarts from one level (typically the PFS), multilevel check-

pointing relies on checkpoints and restarts from multiple levels of memory (e.g., local DRAM,

remote DRAM, PFS). The benefits of a multilevel checkpointing model is that time-consuming

higher severity failures that typically occur less frequently can restart from a checkpoint to a slower

and more reliable (lower) level of memory such as the PFS; whereas the more frequently occur-

ring lower severity failures can restart much more quickly from higher (faster) levels of memory

such as local/remote DRAM. Checkpoints that are a “higher” level help restore the system from

“higher” severity failures but typically store checkpoint data in correspondingly lower levels of

memory. It is usually the case that for a multilevel checkpointing protocol with L checkpoint and

restart levels (with durations denoted δi and Ri, respectively) and L levels of failure severity (with

rates denoted λi) we have λ1 > λ2 > ... > λL while δ1 < δ2... < δL and R1 < R2... < RL. This

relationship benefits multilevel checkpointing by a direct reduction in the number of level L check-

points/restarts taken and from the fact that lower-level checkpoints to higher levels of the memory

hierarchy are able to utilize resources across the system as a whole more effectively, allowing for

better scalability and a probable reduction in network overhead. High-level checkpoints/restarts

to or from a single PFS tend to be much more dependent on the number of nodes used by the

application, i.e., the number of nodes needing to store or retrieve data.

6.2.2 Multilevel Checkpointing Techniques Considered

Our work, and that of the other multilevel checkpointing models presented here, consider HPC

systems that employ two types of multilevel checkpointing protocols. We discuss the assumptions

and common implementation of each protocol below.
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Figure 6.1: A checkpoint interval pattern for a three-level checkpointing protocol with its computation
interval denoted τ , its checkpoint lengths of each level i denoted δi, and a pattern that performs two level-1
checkpoints before a level-2 checkpoint and a single level-2 checkpoint before each level-3 checkpoint.

1) Scalable Checkpoint/Restart (SCR) [47] is an extension of the ideas from [80]. The authors

(Moody et al. [47]) develop their own Markov model that is capable of modeling application ex-

ecution under a multilevel checkpointing protocol with an arbitrary number of checkpoint levels.

SCR is designed as a pattern-based multilevel checkpointing model. This assumes that the duration

of computation between successive checkpoints is a fixed amount of time, and that the duration of

time between higher checkpoint levels is determined by the discrete number of lower level check-

points (e.g., each level-2 checkpoint will occur after some number of level-1 checkpoints and each

level-1 checkpoint will occur after a fixed interval of computation). These checkpoint interval

“patterns” define the frequency of checkpoints at each level. Figure 6.1 provides an example of

a checkpoint interval pattern for a three-level checkpointing protocol with its computation inter-

val denoted τ , its checkpoint lengths of each level i denoted δi, and a pattern that performs two

level-1 checkpoints before a level-2 checkpoint and a single level-2 checkpoint before each level-3

checkpoint. Though it is not shown in the figure, when a higher-level checkpoint is performed the

SCR protocol first performs all lower-level checkpoints (e.g., the length of a level-2 checkpoint,

δ2, would include the time required to first perform a level-1 checkpoint).

SCR is somewhat limiting in its use of patterns because it both restricts checkpoints to be taken

at discrete intervals and mandates that patterns be identical throughout an application’s execution.

It is not known (and hard to prove) if under these assumptions it is possible to produce checkpoint

intervals that are truly optimal for multilevel checkpointing protocols with an arbitrary number of
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levels. Nevertheless, these assumptions are important from a practical standpoint when considering

the model’s implementation in production HPC systems. SCR has been highly influential in the

development of multilevel checkpointing and most multilevel checkpointing models follow these

assumptions.

This model was developed as part of the SCR library and implemented as a three-level check-

pointing protocol on a BlueGene/L system. The protocol stores its lowest-level checkpoints in the

node’s local RAM, second level checkpoints are stored across partner nodes using XOR encod-

ing, and last level checkpoints are stored in the PFS. The authors present the effectiveness of their

model by analyzing its effect on application efficiency, which they define as the ratio between the

minimum run time required to complete a portion of work (with no overhead from checkpointing

or failures) and the expected run time to complete that same portion accounting for checkpoint

and recovery overheads as predicted by the model. We use this same performance metric for the

analyses we perform in this chapter.

2) The Fault Tolerance Interface (FTI) [57] extends the three-level SCR checkpointing proto-

col defined in [47] with work from [60] and [116]. The FTI protocol incorporates Reed-Solomon

encoding to provide an additional checkpointing level that is more reliable (and more computa-

tionally costly) than SCR’s level-two XOR-encoded checkpoint between partner nodes, but less

reliable than a checkpoint to the PFS, and is therefore categorized as the third checkpoint level out

of four. FTI uses the scalable SCR Markov model from [47] for estimating application efficiency

and determining optimal checkpoint intervals.

6.2.3 Multilevel Checkpoint Interval Optimization

Progress has been made in recent years toward optimizing checkpoint intervals in multilevel

checkpointing systems. One key requirement for all techniques when determining optimal check-

point intervals is having an accurate model of the application’s execution behavior under the influ-

ence of overhead from failures and resilience.
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The work that we consider by Moody et al. in [47] utilizes their Markov model to perform a

brute-force search of all possible checkpoint intervals to determine the best efficiency when opti-

mizing SCR. Because this Markov model is frequently used in other work (e.g., the FTI protocol),

this same model is used for optimizing those implementations of multilevel checkpointing. While

an optimal checkpoint pattern for an L-level checkpoint protocol is not guaranteed to have identical

sub-patterns, optimizing a multilevel checkpoint protocol with identical sub-patterns is of practical

importance to HPC system design, as mentioned earlier.

There have been two recently proposed optimization techniques in [62] and [81] that use novel

approaches for determining optimal checkpoint intervals and we consider them in this work. An

optimization of pattern-based multilevel checkpointing is considered by Benoit et al. in [81]. Work

by Di et al. in [62] includes both pattern-based and interval-based optimization techniques. An

interval-based multilevel checkpointing protocol allows the interval of time between checkpoints

at each level to be independent of the inter-checkpoint time at other levels (unlike pattern-based

protocols where higher-level checkpoints have intervals that are multiples of lower-level check-

point intervals). Their work indicates that the interval-based optimization can perform better than

pattern-based optimization. However, as noted in [81], challenges exist with practical implemen-

tations of interval-based optimization techniques that might limit their use in real systems. In par-

ticular, determining how the system should behave if checkpoints of different levels are scheduled

to occur simultaneously. Furthermore, to the best of our knowledge no multilevel checkpointing

protocols exist that have been designed to accommodate anything other than pattern-based multi-

level checkpointing. We therefore only consider the offline pattern-based optimization technique

from [62].

In our work we do not assume that checkpoint and restart events are free from failures, as

is common in several other state-of-the-art models (including [62] and [81]). Indeed, as we will

show in Section 6.4, the assumption that these events are free from failures negatively impacts the

prediction accuracy of their models. Our work also considers the effect that application execution

time has on interval optimization, which is not considered by the work in [47] and [81].
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6.3 Multilevel Checkpointing Model

6.3.1 Overview

In this section, we discuss our proposed multilevel checkpointing model. We first present

the set of equations used to estimate the execution time of an application employing multilevel

checkpointing and we end the section with a brief description of the model’s use for determining

optimal checkpoint intervals.

6.3.2 Execution Time Prediction Model

Our model is a set of continuous equations that estimate the execution of an application that em-

ploys a pattern-based multilevel checkpointing protocol following the behavior of SCR described

in [47]. We model the equation’s prediction of application execution time hierarchically, which al-

lows for the expected execution time of each lower level checkpoint interval (including application

computation as well as all overhead associated with checkpointing and failures) to be utilized in

the computation of higher level checkpoint intervals.

We define the baseline execution time of the application, TB, as the time to execute the applica-

tion without overhead from resilience or failures. In addition to TB, the expected execution time of

the application when using multilevel checkpointing, TML, is equal to the sum of the application’s

time spent executing each type of event associated with checkpointing and failures (each variable

is an L-dimensional vector):

• successful level i checkpoints, Tδi;

• level i checkpoints that have failed (failed checkpoints), Tδ′i;

• successful level i restarts, TRi;

• level i restarts that have failed (failed restarts), TR′i;

• re-computation of work lost to a failure occurring during a level i computation interval, TWτi
;

• re-computation of work lost to a failure occurring during a level i checkpoint, TWδi
.
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Each term’s expected value is estimated as the expected number of occurrences of the event

multiplied by the expected time of the event. For a chosen probability density function (PDF) used

to model the probability of a failure occurring, we calculate the expected execution time for any

event in which a failure has occurred as the expected value of the PDF with its domain truncated to

the duration of that event and normalized to the probability of a failure occurring during the event’s

duration (a truncated distribution).

We assume that failures follow an exponential distribution as assumed in most prior work in

the area [47] [73] [62] [81]. This makes the probability of a failure occurring during any given

interval of time t for some failure rate X equal to

P (t,X) = 1− e−Xt . (6.1)

In contrast to the expected value of the general PDF, which is calculated over the entire domain

([0,∞) in this case), the truncated domain is calculated over [0, t] and makes the expected value of

the truncated PDF for the event when using an exponential distribution equal to

E(t,X) =
1
X
− e−Xt( 1

X
+ t)

P (t,X)
. (6.2)

We define the failure rates associated with each checkpoint level i as λi. The system failure

rate, λ, is equal to the sum of each λi and this value is also equal to the inverse of the system’s

MTBF. We define a failure’s severity class to indicate the level of checkpoint required to restart the

system after the failure occurs. Each failure severity class variable, Si, indicates the probability of

experiencing a failure of severity i, and is equal to the ratio of λi to λ. This also means that for a

failure severity, i = 1, ..., L, the corresponding failure rate, λi, is the product of the system failure

rate, λ, and the probability of a failure at that severity, Si, making the failure rate λi = Siλ.

The multilevel checkpoint protocol from [47] that we are modeling defines each higher-level

checkpoint to occur after some number of occurrences of the previous level of checkpoint (e.g., an

L2 checkpoint to a partner node’s RAM occurs after some number of instances of L1 checkpoints
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to the node’s local RAM). These values define the number of Li−1 checkpoints that must occur

before each Li checkpoint is taken, and are the set of L− 1 integer decision variables N1, ..., NL−1

used for optimizing the equation. Thus, the variable Ni is the number of level i checkpoints before

a level i + 1 checkpoint. The last decision variable is the computation interval, a real number that

we define as τ0. This set of decision variables defines the amount of computational progress made

by the application once each level i checkpoint has been completed. The variable NL, while not a

decision variable, represents the number of level L checkpoints that will occur during the execution

of the entire application and is defined based on the amount of computational progress that is made

for each level L checkpoint interval, i.e.,

NL =
TB

τ0
∏L−1

i=1 (Ni + 1)
. (6.3)

An advantage to estimating total execution time hierarchically is that execution time predictions

for lower level computation intervals do not need to account for the occurrence of higher severity

failures when predicting the duration of each application execution event. Level i events only need

to account for failures of levels less than or equal to i making the failure rate in most of the terms

equal to
∑i

j=1 λj and we denote this value as λc.

The amount of total time spent between each level i + 1 checkpoint (including overhead from

resilience and failures) is referred to as the level i execution interval. Each higher level execution

interval, τi+1, is calculated as

τi+1 = τi(Ni + 1) + Tδi + Tδ′i + TRi + TR′i + TWτi
+ TWδi

(6.4)

with the application’s total expected execution time when using multilevel checkpointing TML =

τL+1. The remainder of this section discusses how the terms in Eqn. 6.4 are obtained.

For each level i + 1, the term τi(Ni + 1) represents the total time of lower level intervals, τi,

occurring in τi+1. We define the total number of failures during τi as γi and estimate this value

using a negative binomial distribution to obtain
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γi =
P (τi, λi)

1− P (τi, λi)
. (6.5)

Note that because lower level intervals have already accounted for lower severity failures during

computation, the failure rate used to calculate both γi and the expected value no longer needs

to be summed and becomes just λi. This makes TWτi
equal to the expected number of failures

multiplied by the expected time of those failures multiplied by the number of τi intervals occurring

during τi+1, i.e.,

TWτi
= γiE(τi, λi)(Ni + 1) . (6.6)

The total time for successful checkpoints at each level is defined as

Tδi = Niδi . (6.7)

The estimator for the expected number of failures that occur during each level i checkpoint, αi,

can be modeled using a negative binomial distribution and is calculated using

αi =
P (δi, λc)Ni

1− P (δi, λc)
, (6.8)

so that the expected time that is wasted due to failed checkpoints is given by

Tδ′i = αiE(δi, λc) . (6.9)

The additional overhead associated with the execution progress that is lost due to the failed check-

point is equal to the number of failed checkpoints at this level (αi) multiplied by the sum of the

entire failed interval plus the expected value of the overhead associated with that failed interval

level multiplied by the percent of checkpoints of that level (Sk) for each level up to and including

i. This is expressed as

TWδi
= αi

i∑
k=1

(τk + γkE(τk, λk))Sk . (6.10)
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The estimator for the expected number of successful restarts is calculated from the total number

of level i severity failures that occur in τi+1 during computation and checkpointing. We call this

value βi and it is summed using αi and γi as

βi = Siαi + γi(Siαi +Ni + 1) . (6.11)

The expected number of failures that occur during restarts of level i, ζi, is once again modeled

with a negative binomial distribution as

ζi =
P (Ri, λc)βi

1− P (Ri, λc)
. (6.12)

The total expected time that the application spends for successful restarts is equal to

TRi = βiRi , (6.13)

and the total time that the application spends for failed restarts is equal to

TR′i = ζiE(Ri, λc) . (6.14)

6.3.3 Checkpoint Interval Optimization

Optimizing Eqn. 6.4 by selecting decision variables that minimizing execution time is accom-

plished by evaluating the equation’s execution time at every point in a bounded region of the

solution space and determining which decision variable values provide the shortest execution time.

This sweep of decision variable values is bounded by the interval (0, TB) for τ0, and also bounded

such that the product of N1, ..., NL−1 with NL and τ0 is greater than zero and less than the appli-

cation’s baseline execution time, i.e., 0 < τ0

(∏L
i=1(Ni + 1)

)
≤ TB. We can guarantee a global

optimum is found when bounding the solution space in this way because decision variable values

outside of this region produce infinitely large execution times when the system’s MTBF is less
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Table 6.1: Test Systems Examined in Prior Work

system paper num. MTBF failure distribution c/r time base. exec.

levels (min.) (probability per level) (min. per level) time (min.)

M [47] 3 6944.45 (0.083, 0.75, 0.167) (0.008, 0.075, 17.53) 1440.0

B [117] 4 333.33 (0.56, 0.28, 0.14, 0.03) (0.17, 0.5, 0.83, 2.5) 1440.0

D1 [62] 2 51.42 (0.857, 0.143) (0.333, 0.833) 1440.0

D2 [62] 2 24.0 (0.833, 0.167) (0.333, 0.833) 1440.0

D3 [62] 2 12.0 (0.833, 0.167) (0.167, 0.667) 1440.0

D4 [62] 2 6.0 (0.833, 0.167) (0.167, 0.667) 1440.0

D5 [62] 2 12.0 (0.833, 0.167) (0.333, 1.67) 1440.0

D6 [62] 2 6.0 (0.833, 0.167) (0.167, 1.67) 720.0

D7 [62] 2 4.0 (0.833, 0.167) (0.667, 3.33) 360.0

D8 [62] 2 3.13 (0.870, 0.130) (0.833, 5.0) 360.0

D9 [62] 2 3.13 (0.870, 0.130) (0.833, 5.0) 180.0

than the application’s baseline execution time as is the case here. Efficiency is then calculated by

dividing the application’s baseline execution time by the calculated expected execution time.

6.4 Simulation Studies

6.4.1 Overview

We performed a set of simulation studies to both validate the behavior of our equation-based

multilevel checkpointing execution time prediction model and to provide a comparison of its per-

formance with the performance of prior work in the field when executing applications at extreme

scales. In addition, we also demonstrate the effects that both higher failure rates and longer check-

point/restart times have on application efficiency and model prediction accuracy. We identify the

importance of modeling failures during checkpoint and restart events in systems with high failure

rates. We also show the advantage that consideration of application execution time has for the

interval optimization of short-running applications.
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Figure 6.2: Performance of the multilevel checkpoint and traditional checkpoint/restart checkpoint interval
optimization techniques executing on the test systems from Table 6.1. Bars in the figure indicate the average
of 200 simulation trials with randomly occurring failures. Diamonds in the figure indicate each technique’s
prediction of the simulated performance. Standard deviations are shown for each bar.

6.4.2 HPC System Simulator

Because exascale systems do not exist, we turn to simulation to analyze the performance of

each multilevel checkpointing model. The simulations performed in this section use an event-

based simulator that models all events that occur throughout an application’s execution in a system

operating with the uncertainty of system failures. We provide a more detailed explanation of our

simulator’s operation in our prior work [43].

6.4.3 Performance on Prior Work Test Systems

This section provides a comparison between our technique for multilevel checkpoint interval

optimization that we described in Section 6.3 and some of the techniques by others discussed in

Section 6.2.3. Specifically, in addition to our own technique we consider the work by Di et al.

from [62], the work by Moody et al. from [47], the work by Benoit et al. from [81], and the classic

optimization of single-level checkpointing described by Daly in [73]. We simulate the performance

of each of these techniques on systems with varying characteristics that have been defined in prior
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Figure 6.3: Percentage of application execution spent on baseline execution of the application as well as all
resilience and failure event related overhead during the application’s execution. Each test scenario shown
represents the average of 200 trials with randomly occurring failures.

work. Each unique combination is referred to as a test system and the details of each is outlined in

Table 6.1.

The test systems are organized in order of monotonically increasing difficulty of providing fault

resilience to the system. The challenge of providing fault resilience primarily increases through

either a decrease in system MTBF (due to higher failure rates) or increasing checkpoint/restart

times (particularly to the PFS). However, in addition to differences in failure rates and checkpoint

costs, the systems also differ in the number of checkpointing levels supported by each system

as well as the distribution of failures for each failure severity class. All values in Table 6.1 are

functionally identical to the information provided by each paper indicated in column two, however

the values have been converted in format to allow for consistency so that all time values are now in

minutes and failures for each severity are expressed as probability distributions. Checkpoint times

are assumed to be equal to restart times for each system, as assumed in prior work [47] [62] [81]. In

the case of Daly’s traditional single-level checkpoint/restart model and the two-level checkpointing

model from Di et al., when considering systems that have more available checkpointing levels

than the model is able to accommodate, only the highest levels are considered (i.e., traditional
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checkpoint/restart only ever uses the highest level-L checkpoints to a PFS and Di et al. uses only

level-L and level-L− 1 checkpoints).

Each of our following experiments simulates the execution of a single large application that

employs multilevel checkpointing (with the exception of Daly’s equation which uses traditional

checkpoint/restart) to mitigate the effects of system-wide failures on application execution. In

all cases, the checkpoint intervals of the simulated test case are optimized using the multilevel

checkpointing (or checkpoint restart) modeling technique indicated in each figure.

Figure 6.2 shows the performance (efficiency) of the five checkpointing techniques considered

(our technique is shown in green) for each of the test systems described in Table 6.1. Bars in the

figure represent the average of 200 simulation trials with random failures for each specific setup,

with the standard deviations of those trials shown around each bar. The diamonds that are color-

coded to each bar in the figure indicate the prediction of the system’s efficiency by each technique.

Predictions are made based on the system’s execution characteristics and the checkpointing inter-

vals determined by each technique with accurate predictions being those located closer to the tops

of each bar.

The first trend highlighted in Figure 6.2 is the improved efficiency that a multilevel check-

pointing approach can have over traditional checkpoint/restart (Daly). The figure shows how even

though Daly’s equations for traditional checkpoint/restart are highly accurate at predicting applica-

tion efficiency (and consequently good at selecting appropriate checkpoint intervals) the traditional

checkpoint/restart protocol does not perform as well as the multilevel checkpointing protocol when

optimized by either Dauwe et al., Di et al., or Moody et al. Daly’s checkpoint/restart’s efficiency

is 50% less than that of multilevel checkpointing in the worst case. In addition to reaffirming the

conclusions from prior work, the data for traditional checkpoint/restart in Figure 6.2 also helps

to highlight the importance of having an accurate multilevel checkpointing model that is capa-

ble of making an appropriate selection of checkpoint intervals. In particular, while the multilevel

checkpoint technique by Benoit et al. performs well on test system M, because some of the ap-

proximations made by the model have large effects on prediction accuracy, its efficiency on more
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challenging test systems is worse than for a well-optimized implementation of traditional check-

pointing.

The efficiency predictions of the equations modeled by Benoit et al. in [81] are optimistic

because they do not consider the effect of failures during checkpoints or restarts and only consider

failures during computation. Consequently, the corresponding computation intervals determined

by these equations are excessively long. For all test systems, the length of the computation interval

chosen by these techniques is at least 2.5× greater than that of the other multilevel checkpointing

techniques. This disparity also increases as the challenge of providing resilience to the system

increases and can be seen in Benoit et al.’s model’s faster decrease in efficiency in comparison to

the other techniques displayed in Figure 6.2. At the same time, the execution time prediction model

results (blue diamonds for Benoit et al.) indicates that the chosen intervals have optimistically low

execution time predictions resulting in optimistically high efficiency predictions. The sharp drop

in efficiency of Benoit et al.’s equations on test system B is due to the decreasing accuracy of

their equations as the number of checkpoint levels increase. While the decrease in performance of

the other multilevel checkpointing techniques is monotonic and follows the increase in difficulty

of providing resilience to each system, the Benoit equations drop sharply from system M (with

three checkpoint levels) to system B (with four checkpoint levels) and subsequently increase in

efficiency in system D1 (with two checkpoint levels).

Simulated performance of multilevel checkpointing when optimized by either Dauwe et al.

(our work), Di et al., or Moody et al. is similar across all test systems, however the prediction

accuracy for each of these techniques can be seen to decrease slightly as test system difficulty

increases. The causes of this will be discussed in detail in the upcoming sections.

6.4.4 Failures During Checkpoints and Restarts

Figure 6.3 shows the breakdown of how application time is spent when executing an applica-

tion in a failure-prone environment and employing a resilience protocol to mitigate the effects of

failures. Each test scenario shown represents the average of 200 trials with randomly occurring
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failures. The figure shows the percentage of time spent on baseline execution time as well as time

lost to overhead from each of the resilience and failure-related events discussed in Section 6.3.

Data is shown for the same test systems presented in Table 6.1, but we limit our analysis to the

three best-performing techniques from Figure 6.2.

It is evident from the data in Figure 6.3 that as the difficulty in providing resilience to systems

increases, applications lose increasing amounts of time to failed checkpoints and restarts with at

least 30% of application time spent in these areas in the most extreme cases. Furthermore, this

increase is non-linear (in fact the increase follows the αi and ζi variables of Eqns. 6.8 and 6.12)

and affects the more extreme D7, D8, and D9 systems to a greater degree than the other systems

shown in the figure. Results for test systems D8 and D9 look almost identical because these test

systems are identical in all respects except their baseline execution time.

The rapid increase in the number of failed checkpoint and restart events is caused by the sys-

tem MTBF approaching (or even becoming less than) the length of time required to checkpoint or

restart to the PFS. While optimal intervals between checkpoints can be adjusted to compensate for

decreasing MTBF, checkpoint and restart times cannot, and this can force the system to retry check-

point and restart events several times before they can complete successfully. Because extreme-scale

systems experience increased amounts of failures during checkpoint and restart events, considera-

tion of these events is necessary for accurate execution time modeling.

6.4.5 Performance at Extreme-Scale System Difficulty

For the studies discussed in this section we analyze the four-level checkpointing system from

[117] (the system defined in Table 6.1 from Section 6.4.3 as system B) under a variety of exascale-

like execution scenarios. Specifically, we scale both system MTBF and the length of time required

by the system for checkpointing to or restarting from the PFS. It has been noted in [47] that exascale

systems are likely to experience failures with an MTBF between 3− 26 minutes and therefore we

explore five system MTBF values in this range.
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Figure 6.4: The execution of a 1440 minute application under a variety of execution scenarios with level-L
checkpoint and restart times of (a) 10 minutes, (b) 20 minutes, (c) 30 minutes and (d) 40 minutes. Bars in
the figure indicate the average of 200 simulation trials with randomly occurring failures. Diamonds in the
figure indicate each technique’s prediction of the simulated performance. Standard deviations are shown for
each bar.
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Data from [46] suggests that the improvements to network speed will increase at a similar rate

as the data required to checkpoint larger applications and consequently checkpoint times to a PFS

will likely remain constant as system sizes increase. From [46], we assume that checkpoint times to

a PFS for an exascale-sized application will likely be between 20− 40 minutes. We examine four

values for the time costs associated with checkpointing and restarting to the PFS. These values

range from 10 minutes, likely to be a conservative estimate, to 40 minutes. We only consider

scaling of the level L checkpoint/restart time because (as noted in Section 6.3) checkpoint/restart

levels less than L spread checkpoint data across system resources. Lower level checkpoints are

therefore less affected by application size. Checkpoint and restart times for lower level checkpoints

remain the same as those values listed for test system B in Table 6.1.

The results of this study are shown in Figure 6.4. The difficulty of providing resilience to each

test scenario increases both across each x-axis (as system MTBF decreases) and across sections

(a)-(d) of the figure (as the time penalty for checkpoints/restarts to a PFS increases). Bars in the

figure indicate the average of 200 simulation trials with randomly occurring failures. Diamonds in

the figure indicate each technique’s prediction of the simulated performance. Standard deviations

are shown for each bar. It is evident that multilevel checkpointing’s ability to provide resilience to

an exascale HPC system will be more impacted by system MTBF than increased checkpoint/restart

times. Decreasing system MTBF from 26 minutes to 3 minutes can decrease efficiency from over

60% to less than 1% in some cases but increasing checkpoint/restart times from 10 minutes to 40

minutes produces a maximum decrease of about 40% efficiency. It is also clear that some of these

possible exascale applications push the limit of the resilience that multilevel checkpointing can

provide. The most extreme case of a 3 minute MTBF produces less than 1% efficiency for check-

point/restart lengths greater than 10 minutes. Even a system with a 15 minute MTBF produces less

than 50% efficiency for checkpoint/restart lengths greater than 10 minutes.

The results in Figure 6.4 also clearly show the negative effect of Di et al.’s constraint of only

considering two checkpoint levels. For all execution scenarios that produce more than 1% effi-

ciency, the performance of checkpoint interval optimizations from Di et al. is noticeably worse
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than that of Dauwe et al. and Moody et al., which utilize all four checkpoint levels. It should be

noted that the poorer performance of Di et al.’s equations is primarily due to its constraint of two

checkpoint levels. We deduce this by noting that the simulated performance of all three techniques

are close to equal for the two-level checkpointing test systems from Figure 6.2 indicating that the

decreased performance of Di et al.’s equations in Figure 6.4 is caused by its restriction to only

using two checkpoint levels.

Figure 6.4 also indicates that the prediction accuracy of all optimization techniques decrease

with both decreasing system MTBF and increasing checkpoint/restart times. Prediction accuracy

of each technique is further discussed in Section 6.4.7.

6.4.6 Consideration of Application Execution Time

One advantage that both our equations and those of Di et al. have over those of Moody et al.

is our consideration of application execution time. Because even for the most pessimistic MTBF

values the highest severity system failures are still infrequent, under execution scenarios with high

level-L checkpoint/restart times it is more efficient (on average) for shorter applications not to take

time-consuming level-L checkpoints and instead risk a total application restart. As our equations

calculate the expected execution time, this effect is identified by our equations and those of Di et

al. Consequently, when selecting checkpoint intervals for those scenarios our equations (Dauwe

et al.) and those of Di et al. correctly select intervals that are optimized not to include level-L

checkpoints, while the equations from Moody et al. select interval values that are appropriate only

for longer running applications.

We demonstrate this in Figure 6.5, which shows the same set of execution scenarios discussed

in Figures 6.4a and 6.4b but with a shorter application that executes for only 30 minutes. Bars

in the figure now indicate the average of 400 simulation trials with randomly occurring failures.

Diamonds in the figure indicate each technique’s prediction of the simulated performance, with

standard deviations shown for each bar. Because the application’s execution time is less than the

mean time between level-L severity failures, our equations and those of Di et al. do not take
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Figure 6.5: The execution of a 30 minute application under a variety of execution scenarios with level-L
checkpoint and restart times of (a) 10 minutes and (b) 20 minutes. Bars in the figure indicate the average of
400 trials with randomly occurring failures. Diamonds in the figure indicate each technique’s prediction of
the simulated performance. Standard deviations are shown for each bar.
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level-L checkpoints in any of the experiments in Figure 6.5. Here we have shown the execution

of a 30 minute application as an extreme example but we have found these same results occur

to a lesser extent for an application that is 120 minutes in length. We expect that this result is

present for all extreme-size applications that have a baseline execution time that is shorter than the

mean time between the highest severity failures. Benefits to short applications from not including

level L checkpoints increase with both the increase in checkpoint/restart lengths and decreasing

MTBF values, and provide as much as a 20% efficiency improvement in some cases. While the

advantage gained in other cases may be lower, we have determined with 95% confidence that all

improvements in the figure are statistically significant.

Because this effect is only beneficial on average, one difference between the results in Fig-

ure 6.5 and those of the longer application in Figure 6.4 can be seen when comparing standard

deviations between techniques. While standard deviations are nearly identical between techniques

for every execution scenario tested in Figure 6.4, the standard deviations shown in Figure 6.5 for

the execution scenarios that have had their level-L checkpoints excluded by our equations now

have a slightly greater variation in execution time than the results for the equations from Moody et

al. that still perform a level-L checkpoint.

6.4.7 Model Prediction Accuracy

Figure 6.6 shows the prediction accuracy of the 20 system scenarios shown in Figure 6.4 in

terms of each model’s prediction of application efficiency minus the efficiency value determined

through simulation. The system scenarios in the figure have been sorted according to increasing

magnitude of error of the results for Moody et al. and show each optimization technique’s deviation

from the ideal error of zero. Here, we have only shown results for the long duration applications

discussed in Section 6.4.5 because they provide the clearest depiction of model prediction perfor-

mance. However, for shorter applications, our equations still has the best prediction accuracy in

most cases.
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Figure 6.6: Prediction error for the 20 application execution scenarios shown in Figure 6.4. The prediction
error shown is simply the difference between each multilevel checkpoint model’s prediction of efficiency and
the corresponding efficiency determined through simulation. The tests are ordered by increasing magnitude
of error of the Moody et al. model. The red line indicates a value of zero (the target error).

The results in Figure 6.6 demonstrate the benefit that our multilevel checkpointing model pro-

vides in terms of prediction accuracy over both Di et al.’s and Moody et al.’s models. As the test

numbers on the x-axis increase, the difficulty in prediction also increases and Moody et al.’s model

tends to underestimate application efficiency (by as much as 7.3%) while Di et al.’s model tends to

overestimate application efficiency (by as much as 14.4%).

The difference in prediction accuracy between our work and that of Moody et al. [47] and Di et

al. [62] are the assumptions made by each set of equations about the system’s behavior during failed

restarts. Our equations assume that if the system is restarting from a class i severity failure and

experiences a second failure of severity less than or equal to i then the system can still be restarted

from a subsequent level i checkpoint. The simulations make this assumption for all techniques.

Di overestimates efficiency because it neglects considering the effects of failures during restarts

entirely. Specifically, it does not account for the increasing impact of repeated failed restarts dis-

cussed in Section 6.4.4 that occur more frequently with both decreased MTBF and increased check-
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point/restart times. Di et al. are aware of this limitation in their model, and made a note of its effect

on prediction accuracy in [62].

The model by Moody et al. underestimates efficiency because of its pessimistic assumption

about failures during restarts. Specifically, if the system is restarting from a level-i severity failure

and experiences a second failure of level-i severity then the system needs to subsequently restart

from a level i + 1 stored checkpoint. This causes an unrealistic escalation of failure levels for

extreme-sized systems that experience significant lower severity failures. For example, if one of

the 100,000 nodes in the test system B considered here required a restart from local RAM it is

unreasonable to assume that a second event of that type occurring on any other node in the system

would necessitate any response other than attempting to load the same checkpoint from RAM

a second time. This assumption causing escalating failures in conjunction with the presence of

rapidly increasing numbers of failures (as discussed in Section 6.4.4) causes Moody et al.’s model

to have increased prediction error. Although the effect on system behavior implied by this model

assumption would have been present in several of the more extreme test cases that Moody et al.

explore with their Markov model in [47], they do not perform any simulations of their model

demonstrating the necessity of this assumption in an actual HPC system nor do they discuss this

effect in their results.

6.5 Conclusions
With this work we have developed a hierarchical continuous equation-based model for a mul-

tilevel checkpointing resilience technique operating with an arbitrary number of checkpoint levels.

Through simulation of exascale HPC systems, we have shown the model’s ability to accurately

predict application execution time in failure-prone environments as well as for determining op-

timal checkpoint intervals. We have implemented several multilevel checkpointing optimization

techniques from the literature and shown the benefit that our technique can provide over these tech-

niques in both model prediction accuracy and determining checkpoint intervals for short duration
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applications. In all circumstances, our model either outperforms the models from others’ work or

it is capable of performing within 1% of their model.

Using our simulation data we have shown that extreme-scale systems experience increasing

numbers of failures during checkpoint and restart events. We determined that the increase is caused

by decreasing MTBF values approaching the values of increasing checkpoint/restart length times.

The increased probability of failure during checkpoint/restart events causes an extremely rapid

(non-linear) increase in the amount of time lost to these events at extreme scales, and makes the

consideration of these events a necessity for accurate execution time modeling - something that is

frequently ignored.

We have also more generally shown some of the limitations of multilevel checkpointing. Sim-

ulations of single level checkpoint/restart (using Daly’s equation) show that the usefulness of a

single-level resilience protocol is limited to petascale-sized systems with MTBF on the order of

hours, and indicate that larger systems require more advanced resilience protocols such as multi-

level checkpointing. Similarly, our data also suggests the limits of multilevel checkpointing. When

utilizing multilevel checkpointing, a system with even a 15 minute MTBF will drop below 50%

efficiency for checkpoint/restart lengths greater than 10 minutes. In such cases, regardless of the

checkpoint interval optimization technique used, the system will spend less than half its time on

useful computation. Given that operating exascale systems are likely to cost tens of millions of

dollars a year, this level of resilience is likely to be unacceptable. As system sizes increase fur-

ther, other strategies may need to be employed to complement (or possibly replace) the multilevel

checkpointing protocol.
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Chapter 7

Modeling Application Fragmentation and Network

Congestion in the presence of HPC Resilience

7.1 Introduction
Studies suggest that energy consumption at exascale may be completely dominated by the

costs of data movement between communicating nodes of an application and could become the

main performance constraint [118]. In fact, several sources suggest that exascale applications

are not only likely to continue to be communication-bound as is frequently the case with today’s

applications, but are likely to have an increased dependence on communication over today’s appli-

cations, [69], [119].

Similarly, high performance computing (HPC) resilience also has been predicted to be a seri-

ous performance bottleneck for future large-scale systems [43], [77], and [45]. Given that tradi-

tional checkpoint and restart forms of resilience rely on highly communication-intensive events,

as the mean time between application failures decreases and the duration of checkpoint intervals

increases, contemporary protocols for providing HPC systems with resilience to failures will put

an ever-increasing burden on HPC communication networks.

Application performance degradation due to congestion in the communication network has

been shown to be further exacerbated by sub-optimal placement of applications in the system.

Executing with a heterogeneous collection of varying-sized applications in the system has been

shown to lead to larger applications being “fragmented” into several smaller disjoint groups that

force application traffic to be routed through the congested paths of neighboring applications and

further increasing the application’s exposure to network congestion [120].

With these interrelated issues for HPC systems in mind, this work makes two contributions

toward developing a solution. First, we construct a methodology based on the multi-commodity

162



maximum flow (MCMF) problem that can be used not only to model HPC network use but also to

model:

• network congestion effects from multiple applications executing while co-located in the sys-

tem;

• multi-granularity fragmentation effects from large applications being split into several smaller

groups that are distributed across the system;

• highly communication-intensive checkpoint-based HPC resilience effects.

Second, we discuss some of the effects that resource management has on both application suscep-

tibility and resilience-event susceptibility to performance degradation from network congestion.

The remainder of this work is outlined as follows. Section 7.2 briefly discusses some of the

related work in HPC network modeling using MCMF. Section 7.3 presents our modeling method-

ology and outlines some of our model assumptions. Section 7.4 describes our set of simulation

experiments and gives an analysis of their results. We conclude in Section 7.5 and discuss some

directions for future work.

7.2 Related Work
There has been a substantial amount of prior work that utilizes MCMF to model communication

networks [119], [121], [122], and [123]. Our work differs from these in several ways.

First, we are not just stress-testing each network topology as has been the focus of previous

work. Our methodology allows the simulated applications to have communication needs that place

specific demands on the network and will delay application execution by a quantifiable amount if

they are not met. Specifically, we do not assume infinite demand from each source to sink node

in our MCMF problem formulation. If the network is operating at or above the capacity required

by the applications currently present in the system then application communication needs may be

satisfied without incurring delay to the application.
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Second, we are measuring the effects of both intra- and inter-application network contention by

allowing more than a single application to exist in the HPC system at the same time. Additionally,

we are also acknowledging and modeling the existence of application fragmentation and the effects

that this has on application network contention.

Last, we are modeling (and indeed focus on highlighting) the presence and effects of the highly

communication-intensive HPC resilience events (e.g., application checkpoints) that will necessar-

ily occur quite frequently in future extreme-scale HPC systems. We show how application com-

munication both affects and is affected by these resilience events utilizing HPC communication

networks.

7.3 Modeling Methodology

7.3.1 Overview

We employ simulation to investigate the behavior of multiple applications executing co-located

in the same HPC network. We define a “system state” as the communication demand required be-

tween all nodes in the HPC network. A “communication demand” is defined as the average rate of

data transfer (in GB/s) needing to be sent from some particular node to another and is assumed to

remain constant throughout the system’s computation in any given system state. The ability for the

network to meet application communication demands is dependent on the communication require-

ments of all applications executing in the system and consequently changes with the system state as

either the set of applications executing in the system changes or the communication requirements

of any particular application changes. A particular application’s communication requirements may

change over time based on the application’s execution requirements or because of the occurrence

of resilience-related checkpoint or restart events. Note that any given system node is likely to have

many communication demands.

Our work models the system’s instantaneous network performance for a given system state

(i.e., the network performance that each application is expect to achieve for the duration of time

that the system remains in that state). It is assumed that in order for the application as a whole to
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progress toward completion all communication dependencies need to be satisfied for each node. If

some executing node is only able to receive a portion of the data that it needs to continue execution

it necessarily experiences a delay. As a simplification, we assume that because the execution of

all nodes are interrelated a delay in one node’s execution will result in a delay for the application

as a whole. Because we also assume that applications are likely to be communication-bound, our

definition of “application performance” implies that the percentage of an application’s performance

as a whole is equal to the maximum percentage of communication demand that can be achieved by

minimum-performing node.

As an example, take an application that executes on three nodes, node a, node b, and node c.

Say the application’s execution is communication-bound and that ideally node b receives data from

node a at a rate of 1 GB/s and that node b receive data from node c at a rate of 2 GB/s. If the system

state is such that node c is able to send data at its full demand requirement of 2 GB/s but that node

a is only able to send data at half the rate required by the node’s communication demand (i.e. its

performance is 0.5) then the application’s performance as a whole will necessarily be 0.5. Even

though the network has enough bandwidth available for node c to send data at a rate of 2 GB/s,

node b cannot make use of the data without receiving all of the data that it requires from node a.

Further, the expected delay to the application while executing in this non-ideal system state can

be estimated by dividing the time that the application spends in this system state by its calculated

performance value while in this system state.

7.3.2 Network Model

Network Topology

Prior work suggests that the dragonfly network topology is the most likely candidate for future

exascale systems [124]. We therefore use a variant of this network topology for testing the effects

of network congestion on application and resilience protocol performance. Specifically, the Cray

XC30 dragonfly topology utilizing the Cray Aries network interconnect is used for simulations

[125].
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Figure 7.1: Overview of the interconnection of the Cray XC30 network. Dark blue tiles indicate system
blades composed of eight compute nodes (compute nodes indicated by the light-blue tiles at the bottom of
the figure). Red tiles indicate blades used as cabinet service nodes with each cabinet having two service
nodes. Green links indicate all-to-all backplane link connections present between blades in a chassis (with
chassis indicated by the tan boxes). Black links indicate the connections existing between chassis. This
figure has been adapted from [1].

Figure 7.1 shows the interconnection of Cray XC30 dragonfly topology. The topology is or-

ganized so that each Aries interconnect services eight multicore processors defined as a “blade”

(depicted in the figure as dark blue squares for compute blades and red squares for blades des-

ignated as “service nodes” that forward data to the PFS). Groups of sixteen blades are combined

to form a “chassis,” (indicated by the tan-colored bounding boxes in the figure) and six chassis

compose a “two-cabinet group.” Each blade in a chassis is fully connected to every other blade

through 14 GB/s backplane links (fifteen links per blade, shown in green in the figure). Blades in

each chassis are then also fully connected to their equivalent blade in every other chassis in the

cabinet through 14 GB/s copper links (i.e., blade number one of chassis zero is fully connected to

blade number one of every other chassis in the cabinet, this is depicted by the black connections in

the figure). Cabinets are then connected to each other through 12.5 GB/s optical links in a similar

fashion to cabinet chassis (i.e., equivalent blades are fully connected between cabinets).
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Network Traffic Flow

We model the HPC system’s network use as a multi-commodity maximum-flow (MCMF) prob-

lem [126]. When modeling the network as a MCMF problem the HPC network architecture is

represented as a bidirectional graph with network interconnects defined as nodes of the graph and

links between interconnects defined as the edges between graph nodes. Bandwidth limits for each

link in the HPC network are defined as capacity constraints for edges of the graph. The resulting

graph represents the physical constraints of the network being modeled.

Once the HPC network architecture has been expressed as a graph, applications are scheduled

to nodes in the HPC system. Each node-to-node communication demand required by the appli-

cation’s communication pattern is defined as a separate commodity (and subsequently as separate

sets of constraints) in a multi-commodity flow linear program. In accordance with the assumptions

we defined in Section for our network model, for our problem formulation we also define the an

additional constraint that for each application executing in the system the percentage of commu-

nication demand satisfied must be equal for each demand in the application, i.e., the maximum

percentage of communication demand that can be achieved by minimum-performing node. These

commodity constraints are combined with the network graph’s physical constraints to define the

entire set of constraints for the linear programming problem. The objective function of MCMF

problem is then to maximize the percentage of demand that can be satisfied for all applications in

the system.

Variations of MCMF have been used to model network traffic for nearly two decades [121].

Modeling the HPC system’s communication network in this way provides the best case traffic flow,

i.e., least possible congestion for the application. If the system modeled with MCMF experiences

intra- and inter-application congestion that both affects and is affected by HPC resilience events

for this scenario of best-case traffic flow then it can be expected that this effect must exist to an

even greater degree in a real-world network traffic pattern. We therefore give each of our test cases

the best possible opportunity for performance and show the magnitude of these negative effects of

network congestion and highly communication-dependent resilience events.
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For all simulation experiments, we also assume that the application’s ability to communicate is

the only constrained resource and that applications execute with an unlimited amount of memory

and are continuously producing communication messages at a constant rate. This assumption

allows our model to directly examine the effects of network congestion in isolation of other system

factors that might further decrease application performance.

7.3.3 Application Communication Pattern

Because our simulation studies need to model an application with an arbitrarily scalable com-

munication pattern, we turn to designing a synthetic benchmark with parameterizable commu-

nication characteristics. Our synthetic application is based closely on the “BigSort” application

from CORAL’s HPC benchmark suite [127]. The application operates by having each executing

thread sort a large number of uniformly random integer values into buckets to be distributed to

other executing threads throughout the system. This application consequently exhibits an “all-to-

all” communication pattern with a parameterizable amount of communication intensity (adjustable

based on the number of integers needing to be passed between nodes of the system).

Modeling applications in this way allows for the simultaneous execution of an arbitrary number

of variously-sized applications to be modeled in the system (provided there are enough compute

nodes available). However, for this study we examine only two large applications each requiring

one full cabinet’s worth of compute blades.

7.3.4 Parallel File System

Access to the parallel file system (PFS) for each compute node is handled by blades specially

designated as “service nodes” (indicated as red squares in Figure 7.1). Despite being denoted as

a service “node” by [125], each service node actually occupies a full blade of the system. Each

cabinet has two blades dedicated to acting as service nodes allowing access to or from the PFS for

the surrounding compute nodes of the system. For each simulation, service nodes are positioned

at opposite cabinet corners of the system.
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We assume that the PFS is buffered well enough that it is capable of receiving and storing (or

accessing and sending) data at a rate equal to that of the maximum that is allowed by the service

node’s connection to the rest of the network, i.e., the bottleneck for using the PFS will be in sending

data through the communication network and not in the ability of the PFS to store the data. This

assumption allows the focus of the simulations to be on the limitations of the communication

network without additional overhead present in the PFS. Therefore the system PFS is not modeled

directly, but instead modeled as bandwidth demand requirements on the system’s service nodes.

7.3.5 System Resilience

One focus of this work is to examine both the impact that resilience events have on network

congestion as well as the impact that network congestion has on the performance of each resilience

event. This analysis focuses on examining the aspects of the multilevel checkpoint protocol dis-

cussed in [47] that utilize an HPC communication network. Specifically, the analysis focuses on

checkpoints and restarts that are saved to either a partner node’s RAM or to a PFS (respectively

denoted as a “level 2” and “level 3” checkpoints in [47]).

Because “level 2” checkpoints need to be capable of recovering from multiple node failures in a

cabinet, we assume that checkpoints and restarts that are stored in a partner node’s RAM will need

to choose a partner that is located in a separate cabinet. Level three checkpoints are stored in the

PFS and therefore require that computation nodes performing a checkpoint interact with system

service nodes to store data.

The quantity of data that needs to be sent during a checkpoint can easily consume more band-

width than is instantaneously available to the node. This effectively means that during checkpoint

and restart events applications will need to send (or receive) significantly more data than there is

bandwidth available to any given blade’s interconnect. Checkpoint and restart communication de-

mands for each application are therefore defined to be equal to the smallest link bandwidth that will

be used by the node. This utilization of interconnect bandwidth is also considered to be the best
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Figure 7.2: Percentage of ideal performance achieved by the “BigSort” application under various execution
scenarios.

possible value that can be achieved during the checkpointing event. If network congestion causes

a reduction in this utilization then the checkpoint event is experiencing performance degradation.

7.4 Simulation Experiments
We model application execution in the presence of network congestion, application fragmenta-

tion, and multiple levels of checkpoint resilience events. For the studies performed here, we exam-

ine two large applications each occupying half of the system’s nodes and sharing system network

resources. Each application’s required communication is susceptible to performance degradation

from network congestion when co-located in a system with other executing applications.

While the Cray Aries network is capable of scaling to over 500,000 cores, our analysis requires

only that there be enough cabinets to allow for multiple applications to be fragmented between

cabinets across the system. We therefore analyze a system with two cabinets utilizing the Cray

XC30 Aries dragonfly network. This allows for a system with sixteen blades per chassis × six

chassis per cabinet × two cabinets for a total of 1504 Xeon 12-core processors. A system of this

size is both sufficient for the purposes of our study and allows for tractable simulations times.

Application sizes are defined to occupy the number of nodes available in a single cabinet.

This results in a total of 752 multicore processors per application (equivalent to 9024 MPI ranks).

Application communication demands are defined for each application such that if the application

were executing alone over a contiguous set of nodes in a cabinet it will be capable of executing with
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a performance value of at least 0.99 (i.e., with minimal performance degradation from network

congestion). This is a very conservative assumption because it implies that communication is a

negligible bottleneck if the application is not experiencing additional communication overhead

from network congestion. The study in [118] suggests that future exascale-sized applications will

be significantly more communication-dominant than today’s applications, which implies that any

performance degradation applications experience from network congestion at the system size we

are analyzing is going to exist (and will likely be much worse) when scaled to exascale.

Figure 7.2 shows the percentage of ideal performance achieved by applications executing when

susceptible to performance degradation due to network congestion. We examine two levels of frag-

mentation: coarse-grain fragmentation at the system chassis level (the fragmented application(s)

have groups of compute nodes scheduled on alternating tan boxes from Figure 7.1) and fine-grain

fragmentation at the blade level (the fragmented application(s) have groups of compute nodes al-

ternating between the blue blades shown in Figure 7.1). For each granularity, we examine the

effects that fragmentation has on both application performance under standard execution as well

as when performing checkpoints. Bar groupings are shown across the x-axis of Figure 7.2.

Individual bars in each grouping show a different execution scenario:

• BigSort with no co-location: BigSort’s performance achievable when executed without any

other applications present (this value is defined so that it is within 99% of ideal);

• BigSort co-located with BigSort: BigSort’s performance when co-located with another exe-

cuting copy of BigSort;

• BigSort co-located during RAM checkpoint: BigSort’s performance when co-located with

an application that is performing a checkpoint to a partner node’s RAM;

• BigSort co-located during PFS checkpoint: BigSort’s performance when co-located with an

application that is performing a checkpoint to the PFS;
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• partner RAM checkpoint: denotes the performance of a level two checkpoint of BigSort to a

partner node’s RAM when executing co-located with a second copy of BigSort that is not in

the process of checkpointing;

• PFS checkpoint: denotes the performance of a level three checkpoint of BigSort to the PFS

when executing co-located with a second copy of BigSort that is not in the process of check-

pointing.

When observing the execution performance of BigSort under various co-location scenarios, the

application performance remains unaffected when it is not fragmented. However, the application

is affected by both co-location with other applications as well as checkpoints once the applica-

tion is fragmented. This effect is because of the increased network congestion experienced by the

application when it is fragmented across system nodes. BigSort actually experiences worse per-

formance degradation from the coarser fragmentation across system chassis than it does from the

finer fragmentation across system blades. Because BigSort has an all-to-all communication pat-

tern the finer granularity actually provides the application with more possible paths that meet the

network’s “minimum latency” routing requirement. BigSort’s performance decreases by as much

as 50% when it is experiencing the coarser chassis fragmentation but only decreases by a worst

case of 25% when it is fragmented across blades. The figure also indicates that the checkpoint

events (both to the PFS and to a partner node’s RAM) cause greater performance degradation than

if BigSort is executed co-located with another application.

The checkpoint destination (RAM or PFS) does have variations in its effect on performance

degradation based on the application’s degree of fragmentation. When the BigSort application

experiences chassis fragmentation and is co-located with a checkpointing application, checkpoints

to the PFS impact BigSort slightly more than checkpoints to a partner node’s RAM, however, this

ordering reverses at finer fragmentation levels. This effect is caused because at finer granularities,

a checkpointing application is spread out over the system and consequently have better access to

the PFS because they are able to access more service nodes than when it is isolated in a single
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cabinet. This effect is also why the performance of checkpoints to a PFS increase in performance

by as much as 18% with chassis fragmentation.

Partner node checkpoints to RAM exhibit interesting behavior in that they only decrease in per-

formance with coarse fragmentation. This is again caused by the layout of the application across

the system. Without fragmentation, checkpoints to a partner node’s RAM do not experience any

congestion because partner nodes are stored across cabinets. Because there is no fragmentation,

applications performing a checkpoint to a partner node’s RAM are able to utilize the entire link

between cabinets. Similarly, when the checkpoint to a partner node is performed at finer fragmen-

tation, the placement of applications across blades happens to allow for utilization of the entire

network link as is seen without fragmentation. This demonstrates how highly dependent these

checkpoints are to how the application is placed in the system.

In addition to examining the behavior of checkpoint events, we also examined the impact that

restart events (both to a partner node’s RAM and to a PFS) have on application execution. We

found that restart events had nearly identical effects on network congestion as checkpoint events

and we have therefore not included these data in the results.

7.5 Conclusions
The preliminary results from our study demonstrate that applications are negatively impacted

by network congestion and more specifically that the amount of network congestion that the ap-

plication experiences is affected by its degree of fragmentation. Results in this work also demon-

strate that scheduling has a significant effect on both an application’s susceptibility to performance

degradation from network congestion when co-located with other applications as well as an appli-

cation’s ability to perform checkpoints with the least possible overhead. Prior work has shown the

benefit of attempting to reduce fragmentation to increase application performance. However, our

work also demonstrates the benefit that optimal scheduling can have on the resilience protocols

employed by those applications and that the placement of applications to system nodes can have

a large impact on the resilience protocol’s performance. Specifically, we have shown that for both
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types of checkpoints examined the placement of the checkpointing application in the system can

either benefit checkpoint performance or cause severe performance degradation.

While the focus of this chapter is on measuring the magnitude of the effects that system-level

network resource contention has on applications and resilience events, we have designed the net-

work modeling methodology in a way that allows a system designer to use the network model

to estimate the expected performance degradation that both the application and resilience events

will experience for any specific mapping of applications to system nodes. This can allow an HPC

system designer access to better predictions of both application execution times and checkpoint

and restart event durations. These predictions can then be integrated into the system designer’s

framework for HPC resource management so as to allow for both better placement of applications

in the system (locations that minimize network congestions) and the selection of more optimal

checkpoint intervals.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions
The challenge of mapping application needs to system resources in HPC environments is com-

plex and involves consideration of uncertainty in application execution characteristics as well con-

straints of system resources. The research discussed over the course of this dissertation explored

the elements of a framework for providing resource management to HPC systems.

Chapter 2 discussed the fine-grained resource contention that exists in an HPC system when

application threads share multicore processor resources. Specifically, the negative impact that

memory interference caused by application co-location has on HPC systems. We outlined a novel

methodology that can be used by a system designer to model application memory interference

behavior and make predictions about the effects that co-location will have on the applications

executing in a large-scale HPC system. We then demonstrated for the first time how this prediction

methodology can be used to create a memory interference aware system scheduler and analyzed its

benefit to an environment that suffers from performance degradation due to application co-location.

The results from Chapter 2 are very helpful in our subsequent studies of HPC resilience proto-

cols to provide a more accurate performance estimation in HPC platforms. Most of the remaining

chapters of the dissertation focused on examining the system-level effects of HPC resilience in

the presence of system failures that result in interrupts in application execution. In Chapter 3, we

analyzed the behavior of several resilience protocols being proposed for mitigating system failures

in future extreme scale HPC systems and we developed models for simulating their behavior on

a common platform for the first time since the protocol’s proposal for use in large-scale systems.

The performance analysis from Chapter 3 provided insights that allowed for the work in Chap-

ter 4 discussing how those resilience technique models can be utilized to build a resilience aware

resource management framework.
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While the work of Chapters 2-4 developed resource management techniques that focused on

scheduling applications to nodes of the HPC system Chapters 5 and 6 focus more on the opti-

mal scheduling of checkpointing events. Specifically, these chapters consider in more detail the

optimization of multilevel checkpointing intervals for improving application performance, system

energy use, and application execution time prediction accuracy.

A closer examination of the interrelated effects of checkpointing and the system’s commu-

nication network is taken in Chapter 7. While the focus of this chapter was on measuring the

magnitude of the effects that system-level network resource contention has on applications and re-

silience events, the network modeling methodology has been designed in a way that compliments

this dissertation’s focus on resource management so as to allow the system designer both better

placement of applications in the system and the selection of more optimal checkpoint intervals.

8.2 Future Work
In addition to the suggestions for future work discussed in some of the prior chapters, there are

several other avenues for future research that could be taken to continue developing our work:

• The framework discussed here develops resource management strategies for fine-grain re-

source contention separately from coarse-grained resource management. The logical next

steps would be to integrate the memory interference aware resource management framework

from Chapter 2 into the resilience aware resource management framework in Chapter 4. This

unified resource management framework could further benefit from incorporating the pre-

dictions of performance degradation on application execution and resilience caused by the

network congestion that is provided by the work in Chapter 7.

• Applying our methodology from Chapter 2 to create execution time prediction models for

a large-scale simulated system enabled us to examine the benefit of a co-location aware

scheduling heuristic that can provide substantial performance improvement in a simulated

homogeneous 500 node system. The experiments were performed for a homogeneous sys-

tem of 4-core nodes. It would be therefore beneficial to extend this work to heterogeneous
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systems utilizing multicore processors with a greater number of cores per node. The inter-

ference from co-location that applications experience is both likely to be greater in machines

with more cores and also the execution time prediction models tend to perform even better

for the 6-core and 12-core systems than they do for the 4-core system.

• The work in Chapter 2 assumes that applications executing co-located in multicore proces-

sors are independent and serial. It is likely that the prediction techniques we developed will

translate well to parallel applications if the threads that compose parallel applications are

treated as if they are a large number of serial tasks. It would be beneficial for our prediction

methodology to be extended to parallel applications in this way and for it to be tested further.

• The unpredictability that memory interference causes to applications executing in HPC sys-

tems has the potential to reduce the effectiveness not only of resource management strategies

but also the system’s resilience. However, integration of these two portions of the framework

offers potential beyond optimizations of resource management strategies aimed at mitigating

the effects of these two sources of application performance degradation. Because applica-

tions tend to execute in memory intensive phases and because the overhead associated with

checkpointing affects and is affected by communication, integration of these two frameworks

allows for the possibility of improving resilience technique performance through the online

optimization of checkpoint intervals that update the schedule of applications checkpoints as

the state of the system changes over time.

• Similarly, results from Chapter 6 demonstrate that the optimal set of checkpoint intervals

change as a function of checkpoint time. Our results from Chapter 7 indicate that application

checkpoint and restart times are highly dependent on the state of the system needing to

be accommodated by the network (i.e., the communication patterns of applications in the

system and how those applications are scheduled in the system). Given that the state of the

system may change several times over the duration of an application’s execution, it follows

that the optimal set of checkpoint intervals for each application in the system also changes
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as a function of the system’s state. It would therefore be beneficial to have application

checkpoint intervals adapt to the changing system state by developing an online checkpoint

interval optimization technique (or possibly an approximation heuristic). Unifying the work

in Chapters 6 and 7 would allow for a prediction to be made of the expected duration for

performing a checkpoint or restart and for that prediction to subsequently be utilized for the

optimization of each application’s checkpoint intervals.

• The work discussed here would also benefit from the development and integration of a ther-

mal aware resource management framework. Few works have assessed the effects of system

temperature changes on the behavior of failure prone systems and this would provide an in-

teresting avenue for future research. In particular, while future exascale systems are likely

to be homogeneous systems, thermal management using dynamic voltage and frequency

scaling techniques will indirectly impose heterogeneity across system nodes when CPU fre-

quencies are changed to enable system cooling. This “imposed heterogeneity” will effect

the execution times of applications in the system, causing further system unpredictability

and making effective system resource management even more challenging.

• Given the conclusions of our results in Chapter 7, future work would benefit from utilizing

our findings to design an HPC resource manager with the ability to intelligently co-locate

applications so as to minimize the performance impact of resilience events in the system.

In addition to the work we presented, such a resource manager would benefit from further

examining network congestion effects. Specifically, the effects that network congestion and

fragmentation have on other network topologies, a wider variety of application communica-

tion patterns, and examination of additional HPC resilience protocols.

• One of the main assumptions about emerging HPC resilience techniques present in our work

and common in most of the literature is that exascale HPC systems will have enough mem-

ory to easily accommodate the additional memory overhead required for resilience. Given

that some of the emerging resilience techniques require the system to store multiple addi-
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tional copies of the application’s working memory, an important next step of the comparison

work we present in Chapter 3 is to assess how the burden each resilience protocol places

on memory changes on difference systems and with different applications. It would be of

further benefit to investigate strategies each resilience protocol could take for reducing its

burden on memory (e.g. using compression, application level checkpoints that denote and

store only what it considers important, or alternate resilience strategies that are more aware

of their memory use).
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