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ABSTRACT
METABOLIC ENGINEERING OF CYANOBACTERIA: DEVELOPING MOLECULAR
TOOLS AND CHARACTERIZING STRAIN PERFORMANCE IN LIGHT:DARK

CYCLES

The conversion of CO, and light energy to biofuels holds promise for a
renewable and environmentally responsible source of energy that could meet the
growing demand for transportation fuels. However, early efforts to commercialize
biofuels from plants were hampered by social, economic, and technological
difficulties. Photosynthetic microbes present an opportunity for a more efficient
conversion of fixed carbon to biofuels by bypassing the need of harvesting sugars
from plants to be fermented by heterotrophic bacteria. More recently, cyanobacterial
technologies have received considerable interest due to their ease of genetic
manipulation that enables them to produce a myriad of biofuels and biochemicals
directly from CO.. This relatively nascent technology needs to be developed in order
to realize its commercial potential.

Metabolic engineering is the systematic improvement of strains through the
use of a variety of theoretical and experimental techniques. To date, heterologous
pathways expression has been the most successful in model heterotrophic
organisms (e.g. E. coli) and advances from these systems have to be carefully
transferred over to cyanobacteria. Though several studies have demonstrated the
capability of engineering cyanobacteria to produce biofuels, there is yet to be any
commercially feasible production platform of fuels from CO,. Amongst the

challenges is the need to improve yields and titers from recombinant strains.



However, the physiology of cyanobacteria is distinct from that of heterotrophic
organisms and therefore requires careful design and study in order to optimize for
higher yields. This thesis contributes several technologies to foster the scale-up of
cyanobacteria systems from the bench to industrial scale.

We first developed a markerless chromosomal modification method in WT
Synechocystis PCC6803 that could reduce the metabolic load and cultivation cost
compared to plasmid-based expression methods. We established a counter-
selection method that necessitates two rounds of modifications in order to screen for
the desired mutant harboring the gene(s) of interest. In the first round, a synthetic
circuit consisting of a nickel inducible toxin gene (mazF) and a kanamycin resistance
marker is integrated into a specific locus in WT Synechocystis. In the second round,
a construct harboring gene(s) of interest is transformed into the prerequisite strains
and screen on Ni?* to obtain the desired mutants.

Next we established a free fatty acid (FFA) producing platform in
Synechocystis PCC6803 by pursuing three goals: 1) deletion of acyl-acyl carrier
protein (acyl-ACP) synthetase (aas), 2) optimize the expression of thioesterase |
(TesA) with a promoter library and 3) examine the effects of light:dark cycles on FFA
production in Synechocystis. For the first goal, we were successful in engineering an
aas deletion strain that had increased FFA production. In the second goal, we
developed four Synechocystis variants with increasing TesA expression strengths
from the aas deletion strain. No increase in FFA production was observed between
the TesA expressing strains (with aas deleted) compared to the baseline aas
deletion strain. On the protein level, we found no evidence of TesA enzyme activity

even though TESA peptides were detected in our Synechocystis strains. In the third



goal, we learn that diel light:dark cycles causes a significant decrease in production
of FFAs in FFA producing mutants of Synechocystis compared to continuous light.
We did not observe any transcriptional changes in the fatty acid biosynthesis
pathway between our WT and FFA producing strains to explain these changes.

In summary, this thesis is impactful in two ways: 1) it entails the development
of a markerless genetic modification method for use in cyanobacteria and 2) it
characterizes the production of FFAs from engineered cyanobacteria under diel
light:dark cycles. Overall, this thesis helps address the difficulties in the development

of cyanobacteria systems for eventual use in an industrial setting.
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CHAPTER 1: MOTIVATION, CURRENT RENEWABLES AND WHY

CYANOBACTERIA

DEMAND FOR BIOFUELS

Environmental consequence of fossil fuel use

We can hardly gather our material needs without getting in the car, starting
the engine, and stepping on the gas pedal. Liquid fuel is flushed into the engine and
combusted to yield locomotion, a privilege of this modern era that allows us to get to
our favorite destinations. It is affordable and available. In the U.S, there as an
average of 1.86 vehicles per household in 2009, and this number has been rising
since 1969 (from 1.12) [1]. Although this trend indicates a healthy growth of the
transportation sector, the increase in number of vehicles on the road has its
environmental repercussions. While producing locomotive energy, the combustion of
gasoline and diesel produces CO, as a by-product. According to EPA estimates
between 1990 and 2013, CO, emissions from fuels combusted for transportation
have been steadily rising. Of the 1718.4 million metric tons (MMT) of CO, equivalent
emitted in 2013, ~97% came from the combustion of petroleum [2]. But what is the
harm?

Radiative forcing is a term used to describe the effect of gas concentrations
on the net radiative flux change at the tropopause (a boundary in the earth’s
atmosphere) [3]. A positive radiative forcing indicates an increase in the energy of
Earth-atmosphere system, thereby leading to the warming of the system. Between

1750 and 2005, increased CO, concentration (most likely due to human activities)



caused the largest positive radiative forcing known to date [4]. Given this
relationship, it is even more unsettling to know that the current CO: level is at an
alarming 400 parts per million (ppm) [5] and rising. This is the highest level seen in
the past 400,000 years (predicted from Vostok ice cores) [6]. But what constitutes a
dangerous CO:; level? A comprehensive study by Hansen et al. [7] discusses this
subjective question. Using a coupled atmosphere-ocean model (GISS ModelE), they
concluded that a CO, level exceeding 450 ppm would be considered “dangerous”.
The dangers of global warming are universal. Climate models have correlated
the increase in CO, levels to rises in global temperature and rising sea levels [8]. A
2007 study by the Intergovernmental Panel on Climate Change (IPCC) presented the
likelihood of more frequent hot days and nights as “virtually certain”, while increases
in heat waves and heat precipitation events as “very likely” [9]. The dire impacts on
agriculture, water supply, ecosystem, coastal infrastructure, and human health is
further detailed in this report. Another imminent danger is ocean acidification. When
the oceans absorbs CO, released from the burning of fossil fuels, its pH rises [10].
This has led to adverse consequences on marine phytoplankton [11] and coral reefs
[12] which would indirectly effect the fisheries and local economies of many nations

[13].

Advent of Biofuels

So what happens to the CO. in the environment? Several models have
predicted a very low decay rate of CO,. Most of the CO, will remain in the
environment “forever” [7, 14]. As global energy consumption and population is

expected to rise in the future [15], fossil fuels combustion will likely follow this trend.



Ideally, fossil fuels should be exploited only if its CO, emissions are ameliorated.
Current technologies provide two possible routes for CO, capture and sequestration:
1) long term storage that involves CO; capture, compression, and underground
storage, and 2) biological capture (via photosynthesis) and conversion to useful
products. The biological route is ideal because the biomass accumulated can be
turned into useful products such as fuels and chemicals.

The advent of fuels from biomass (i.e. biofuels) holds promise for a renewable
fuel with zero or lowered net CO, emissions. A life cycle bioenergy assessment by
Schmer et al. conducted for ethanol production from switchgrass fields illustrates this
potential [16]. Their highest yielding farms produced approximately 3000 L/ha of
ethanol while completely displacing greenhouse gas emissions (net zero). On the
other hand, the potential of photosynthetic microorganisms (algae in particular) is
also viable depending on the unit operations. In a life cycle assessment for a
microalgae to biodiesel process with filter press dewatering, Sander et al. reported a
net CO, emission of -20.9 kg/functional unit [17]. Although there is yet to be a life
cycle assessment on biofuels from cyanobacteria, a favorable analysis is probable
because cyanobacteria are similar to microalgae in terms of efficiency of harnessing
light energy and CO fixation [18] while also being more genetically amenable.

Another benefit for the development of biofuels is energy security. In current
times, the world is facing political turmoil in many oil-producing countries. Hence, the
U.S’s increased reliance on foreign oil also incurs risk to its political and economic
security [19]. The country’s transportation sector is particularly vulnerable because
the US currently imports more than 50% of its oil. Politically, the trading of oil has

benefited dictatorial regimes that could feed into anti-US fundamentalism and



unintended aggression (terrorism) in the future. Fortunately, discussions on the US’s
energy independence through the development of renewables is on-going, and a
growing body of experts are highlighting rural development and income to farmers as
benefits of home grown energy [20].

The formation of the National Renewable Energy Laboratory (NREL) was in
response to energy crises in the 1970s. The Aquatic Species Program was a small
but integral part within their biofuels program with the emphasis of producing
hydrogen and biodiesel from algae [21]. The continued rise in crude oil prices and

environmental concerns during the 1990s spurred the development of 1%

generation
renewables. The abundance of corn and the available fermentation technologies
gave birth to ethanol as a 1% generation biofuel. However, due to their unintended
influence on food prices, 2" generation biofuels were developed based on non-food
crops conversion technologies. Even so, the use of arable land for fuel production
triggered the food versus fuel debate. This lead to the birth of 3" generation biofuels

from algae and cyanobacteria. Progress in this field is paving the way for a promising

alternative to plant-based biofuels.

REVIEW OF CURRENT BIOFUEL TECHNOLOGIES

Biofuels from plants

As of 2006, ethanol accounts for 99% of US biofuel production with corn being
the most common feedstock due to its high starch content [22, 23]. Two processes
commonly employed for the production of corn ethanol are 1) dry grinding and 2) wet
milling. Dry grinding has a slightly higher ethanol yield compared to wet milling (2.8

gallons of ethanol per bushel of corn versus 2.5 for wet milling) [22]. However, the



wet milling process allows for co-production of a variety of valuable products. A
typical dry grinding process involves 5 steps: corn grinding, cooking, liquefaction,
saccharification (process that breaks starch into sugars), and fermentation. Similar to
dry grinding, the wet milling process separates the corn into its constituents (starch,
fiber, gluten, and germ) prior to liquefaction. After saccharification, the fermentation
to biofuels employs heterotrophic microorganisms such as E. coli and yeast
(reviewed in the next section).

Second generation biofuels focuses on non-food crops as feedstocks for
cellulosic biofuel production. The economic feasibility of cellulosic biofuels depends
on feedstock availability in the given geographic region [24]. Under low CO,
environments (200-400ppm) and high daytime growing temperatures (>30°C), C4
grasses are most commonly used for biomass generation due to their higher
photosynthesis rates compared to C3 grasses [25]. Examples of C4 grasses include
maize, sugarcane, sorghum, and switchgrass (corn is also a C4 crop but not
considered a grass). These feedstocks are processed to yield lignocellulose, simple
sugars, and starch. While sugars and starch serve as immediate substrates for
fermentation (reviewed in the next section), lignocellulose (the most abundant of the
raw materials) will need to undergo hydrolysis prior to fermentation [26].

Dry lignocellulosic biomass consists of 40-60% cellulose, 20-40%
hemicellulose, and 10-25% lignin [27]. The presence of lignin in the biomass hinders
the hydrolysis of hemicellulose and cellulose and are usually removed [27] or
degraded [28]. There are several physical, chemical, and biological hydrolysis
processes that will simplify cellulose and hemicellulose to sugars. Physical methods

such as wet oxidation, liquid hot water, CO, explosion, and steam explosion yields



high amount of sugar while forming minimal by-products (in-depth review in [29]).
Efficient chemical methods include treatment with dilute (1-1.5%) sulfuric acid at high
temperatures [30]. Alkaline treatment processes with sodium hydroxide (NaOH) or
ammonia are costly but effective at solubilizing lignin while leaving hemicellulose in
an insoluble form [27]. Both acid/alkaline methods require neutralization prior to
fermentation. Milder biological processes use cellulases and hemicellases

synthesized primarily by the fungi Trichoderma reesei to yield sugars [31].

Conversion of plant sugars to biofuels

Heterotrophic microorganisms play a significant role in the conversion of plant
sugars to biofuels. An important obstacle prior to fermentation is the formation of five
carbon sugars (arabinose, galactose, and xylose) that constitute up to 25% of the
hydrolyzed cellulosic biomass [32]. In response, extensive metabolic engineering
efforts have enabled the utilization of these sugars in Sacccharomyces [33] and E.
coli [34]. Beyond that, the conversion of starch and sugars from plant feedstocks to a
variety of products is briefly summarized in the following paragraphs (well reviewed
in [35] and [36]).

Plant sugars can be fermented to two main categories of fuels: alcohols and
fatty acid-derived fuels. The latter includes a conversion step to biodiesel. Reported
maximum theoretical yields (yield calculations summarized in [37]) of select fuel
molecules from glucose are summarized in Table 1.

Alcohols: The yeast Saccharomyces cerevisiae has been traditionally
employed to ferment plant sugars to ethanol with upwards of 90% maximum

theoretical yield [38]. Extensive metabolic engineering efforts in E. coli have resulted



in a strain with a maximum ethanol titer of 45 g/L [39]. Recently reported ethanol
titers in continuous cultures of Saccharomyces cerevisiae were as high as 71.3 g/L
[40]. Besides ethanol, E. coli has been successfully engineered to produce high titers
of 1-butanol (1.2 g/L in 60 hrs [41]), isobutanol (~20 g/L in 100 hrs [42]), 1-propanol
(3.5 g/Lin 72 hrs [43]), and isopentanol (1.5 g/L in ~50 hrs [44]) through the
introduction of heterologous pathways. Though Clostridium acetobutylicum has been
successfully engineered to produce butanol (17.6 g/L [45]) and n-butanol (10 g/L in
360 hrs [46]), plasmid stability in the host poses severe challenges to long term
production.

Table 1. Comparison of reported maximum biofuel theoretical yields from glucose (in
g fuel per g glucose) and Lower Heating Values (in MJ/kg) to gasoline and diesel.

Fuel molecule Lower heating value Maximum theoretical yield
(MJ/kg)' (g fuel per g glucose)*""*!
Ethanol 26.95 0.51 17
1-propanol 30.68 0.43 1%7]
n-Butanol 34.37 0.41 1
Isobutanol 32.96 0.41 18
Isopentanol 37.79° 0.33 14!
Palmitic acid (C16:0) 39.26° 0.34 B¢
Hydrogen 120.21* 0.13 P
Gasoline 43.48 -
Diesel 42.79 -

Free fatty acids: Presently, the heterologous production of fatty acid-derived
biofuels in E. coli stems primarily from free fatty acid (FFA) precursors (see Fig 1 for
an overview of the fatty acid biosynthesis pathway is). This approach is based upon
the fact that the fatty acid biosynthesis pathway is the rate-limiting step to growth in

E. coli[51, 52]. The very first experiments that yield FFAs from this pathway dates as

All values obtained from Oak Ridge National Laboratory (ORNL) appendix unless otherwise noted Link
Estimated based on data for pentanol from NIST WebBook. No combustion data available for isopentanol.

Estimated based on data for solid palmitic acid from NIST WebBook.

B s R S

Theoretical equilibrium yield.



far back as the 90s [53]. Today, two “textbook” approaches are commonly employed
to increase FFA production in E. coli: i) deletion of genes leading to 3-oxidation (a
pathway that breaks down fatty acyl-coAs to generate acetyl-coAs), and ii)
expressing thioesterases that hydrolyze fatty acyl-ACPs to FFAs. In E. coli, the
highest total FFA titer achieved to date is ~8.6 g/L in ~60 hrs [54]. So far, the length
and composition of FFAs produced is dependent on thioesterase expressed (‘TesA
[563], BTE [55], CcTE [56], RcTE [57]).

Upgrading FFAs to biofuel: FFAs are biodiesel precursors. They need to be
derivitized or esterified (either chemically or biologically) to fatty acid methyl, ethyl, or
propyl esters (FAME, FAEE, and FAPE respectively) in order to be used as diesel
fuel. Chemical routes to convert FFAs to biodiesel typically uses methanol as the
methyl donor and can be catalyzed through an acid or a base reaction. Acid-
catalyzed transesterification uses concentrated sulphuric acid (H.SO.) and excess
methanol (methanol:oil of 20:1 to 245:1) to achieve almost complete conversion of
FFAs to FAME [58]. Based-catalyzed transesterification with either potassium
hydroxide (KOH) [59] or sodium hydroxide (NaOH) [60] and methanol (methanol:oil
of 9:1 or 7:1 respectively) can achieve up to 88% conversion. Biological routes occur
at much slower rates but uses comparatively less methanol (~3:1) with immobilized
lipases (e.g. Candida anarctica lipase) to achieve up to 90% conversion [61].
Besides biodiesel, FFAs can be catalytically decarboxylated/decarbonylated to
alkanes through the use of Palladium on carbon (Pd/C) catalyst at high temperatures
[62]. Recently Lennen et al. demonstrated a continuous process for the conversion of

FFAs from E. colito decane [63].



The deployment of 1% and 2" generation biofuels is hampered by social and
economic complications. One of the severe consequence of increased plant-based
biofuels is it poses competition for arable land for agriculture that is intended to
provide food and feed for a growing world population. A farmer’s dilemma also spans
from the need to feed a growing population versus attaining more profit per acre of
land [64]. Other sources also indicate that biofuel production from food crops would
lead to increases in food prices and reduction in availability of calories [65]. In terms
of process economics, vigorous pretreatment methods (i.e. hydrolysis to sugars)
narrow the margin of profitability. Even so, the volatile prices of sugar has been
known to influence the process economics of biofuel production (ethanol [66]).
Methods to improve feedstock yields are limited and require breeding or genetic
engineering. The former is utilized more frequently while the latter is discouraged
due to its low public acceptance [24]. Thermochemical process (such as pyrolysis
and gasification) to convert lignin to useful chemicals may further improve process

economics [67].

Biofuels from algae (microalgae)

So far, it is obvious that the conversion of CO- to fuels via plant feedstocks
involves several intermittent steps. Despite the remarkable yields and titers of fuel
from heterotrophic microorganisms, the production of biofuels in these systems is
inefficient at several levels. The first being the use of substrates, namely the sugar
sources (i.e. glucose and starch) which have to be extracted from plant feedstocks.
The extraction process is costly and produces waste. Secondly, once the substrates

have been fermented, only a fraction of the substrates are converted to the product



of interest (see Table 1.), thereby incurring more waste. The numerous steps in
conversion are costly and incur substantial waste, a factor that hampers the large-
scale production of biofuels [68]. The development of technologies that minimizes
the number of conversion steps would hence improve its economic feasibility.

The advent of algae biofuels (i.e. 3" generation) alleviates economic
inefficiencies in biofuel production by removing the influence of sugar from the
process economics. Algae’s major advantage is their ability to accumulate lipids (up
to 90% dry weight) in the form of triacylglycerol (TAG) [69]; a biodiesel precursor. In
terms of unit operations, algae biofuels consolidates the CO, harvesting and fuel
production step, thereby bypassing several intermittent steps when compared to
crop-based biofuels (i.e. pre-treatment, lignocellulose hydrolysis, and fermentation).
Other advantages of algae over crops include year round production on non-arable
land, higher biomass yields [70], and the ability to yield valuable co-products (i.e.
recombinant proteins and nutritional supplements) [71]. Even so, several challenges
in large-scale conversion of algae to biofuels remains prevalent: 1) cultivation and
recovery of biomass, 2) nitrogen removal and induction of TAG synthesis and 3)
efficient conversion of biomass to desirable products.

Open ponds are the cost viable option for large-scale cultivation of algae
biomass. However, they produce exceedingly low biomass yield [72] and is
frequently plagued by virus, bacteria, and zooplankton contamination [73]. Cultivation
in photobioreactors offers higher biomass yields and more controlled environment at
increased cost. Despite their variable investments, the cost of open ponds and
photobioreactors will decrease with scale-up due to the economy of scale [74].

Besides cultivation, the recovery of biomass constitutes a large portion of the total

10



production cost [75]. Flocculation and filtration methods are needed to concentrate
the algae biomass to a slurry prior to drying and recovery of metabolites [76].
Centrifugation can also be employed for biomass with high-value products.

Secondly, the large-scale induction of lipid accumulation in algae is no trivial
task. It is well known that algae accumulates TAGs during nitrogen stress/depletion
[21]. In a chemostat, algae TAG production is induced by ammonia (NHs)
stripping/volatilization [77] based on the following chemical reaction: NH;" + OH =
NH; (g) +H20. By adjusting for NH4" utilization and maintaining the pH of the culture
broth above 7, the equilibrium can be shifted to the right (thereby volatilizing NH3) by
bubbling air [78]. However, nitrogen stress/depletion also decreases growth rate [79],
and therefore the lipid content of the culture has to be carefully monitored to
determine the best interval for harvesting [77]. In scaling up, monitoring the lipid
content may pose a challenge in both open ponds and photobioreactor systems;
likely more so in open ponds.

The ideal biomass conversion process would separate the algae biomass into
its constituents (lipid, protein, and sugar) and process them to valuable products.
Abundant conversion options exist. The lipid portion (TAGs) would undergo
transesterification to biodiesel (methods compared in [80]) while the protein portion
can be converted to animal feed and biofertilizers [81]. The sugars and starch
portions can be fermented to a variety of fuel molecules.To further maximize
profitability, the residual algal biomass (consisting of complex carbohydrates and cell
wall material) can be hydrolyzed into fermentable sugars [82]. Alternatively,
thermochemical conversion options exist whereby the biomass would be gasified

(via fast pyrolysis) to yield bio-oil [83].
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Algal feedstock improvement is possible through metabolic engineering.
Although efforts to increase TAG production in Chlamydomonas reinhardtii via
genetic engineering has had mixed results, the metabolic engineering of algae to
produce therapeutic proteins such as vaccines and immunotoxins has seen more
success [84]. From a genetic engineering standpoint, organelle
compartmentalization in algae allows for several ways of genetically modifying the
organism i.e. chloroplast, nuclear, endoplasmic reticulum, or mitochondrial
engineering [85]. Chloroplast engineering has been the preferred method (at least in
Chlamydomonas reinhardtii) due to the relative ease of transformation and the ability
to accumulate high amounts of recombinant protein [84]. Nuclear engineering has
been difficult because it generally results in random integration of genes [86], rapid

gene silencing [87], and low amounts of recombinant protein [84].

Cyanobacteria: the algae alternative

Due to their relative ease of genetic amenability, the development of
cyanobacterial technologies has garnered tremendous progress. Between 2009 and
2012, the increase in publications related to cyanobacterial biofuel technologies has
been rapid [88]. To date (2015), several cyanobacteria strains have been engineered
for production of a variety of fuel molecules and chemicals (comprehensively listed in
[89]). Part of the reason is that many strategies employed in the engineering
heterotrophic organisms (i.e. E. coli) are highly transferable to cyanobacteria. For
example, the production of three and four carbon alcohols (e.g. isopropanol, 1-

butanol, 2,3-butanediol, isobutanol) have been engineered in E. coli the prior to 2010
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[35], and by the present time (2015) the production of these molecules have been
largely successful in cyanobacteria [90-93].

Additionally, cyanobacteria technologies have several improvements over
algal systems. While the conversion technologies of algae biomass to products can
be used in a similar manner for cyanobacterial biomass, cyanobacteria cultures do
not need to be stressed or induced to produce the desired product (unless the
desired product is polyhydroxybutyrate (PHB)). Secondly, a unique feature of
cyanobacterial production systems is that most fuel molecules that they produce are
readily excreted. This directly benefits product recovery on an industrial scale as
methods to separate fuel from media (e.g. adsorption, liquid-liquid extraction and gas
stripping [94]), and its unit operations [95] are well established. Thirdly, the genetic
amenability of cyanobacteria provides the flexibility of producing a variety of fuel
molecules (versus being limited to biodiesel in algae) to accommodate the demands
of other fuel combustion systems such as aviation fuel.

So why aren’t there commercial biofuels?

While the prospects of cyanobacterial production systems seem optimistic,
the deployment of biofuels is still not cost competitive compared to crude oil.
Historically, the price of crude oil has been volatile as its supply is mainly derived
from politically unstable regions. From the past, unstable crude oil prices has favored
the development of renewables [21]. In the present, energy security correlates to
national security [96]. For the near future, stable prices of transportation fuels can be
maintained either by continued US presence in the Middle East, or a leap forward in

efficiency of producing renewable fuels. The latter has to be the better plan.
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A recent study shows that the productivity of a current promising
cyanobacterial system (specifically Atsumi et al.’s system [90]) exceeds current
yields of 1%, 2" and 3™ generation biofuels on a per hectare basis [97]. However,
the increased capital cost to house these systems (closed photobioreactors) still
hampers its economic feasibility. To address this limitation, the development of cost-
effective photobioreactors and even higher yielding cyanobacterial strains has to be
pursued. In literature, some promising production strains from cyanobacteria include
ethanol (5.5¢g/L in 25 days [98]), 2,3-butanediol (2.38 g/L in 18 days [91]),
isobutyraldehyde (1.10 g/L in 6 days [90]), and FFAs (~50mg/L in 17 days [99]). To
date, there is yet to be any published literature on the life cycle assessment of
biofuels from cyanobacteria. However, the economic feasibility of cyanobacterial
systems is very heavily dependent on the microbe fuel yields from CO, (personal
communication with Jennifer Markham, process engineer at NREL, ACS 2015 [100]).
For the scope of my thesis, | will focus on the optimization of cyanobacteria strains to
improve yields through metabolic engineering.

METABOLIC ENGINEERING — OVERVIEW AND COMMERCIAL SUCCESS

“Metabolic engineering is the directed improvement of cellular properties through the
modification of specific biochemical reactions or the introduction of new ones, with
the use of recombinant DNA technology.”
- Gregory Stephanopoulos [101]
In the present, metabolic engineering has grown to encompass cross-field
associations. Common associations include (but not limited to) “feedstock

LE 11 L1 LEN 1] LE 11

upgrading”, “synthetic biology”, “systems engineering”, “omics”, “cell physiology”,
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“high-throughput sequencing”, “metabolic flux-analysis”, “flux balance analysis”,
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“‘expression and deletion libraries”, and “genetic engineering”. Principally, metabolic
engineering always involves 2 practices: 1) incur changes and 2) detect changes
(personal communication with Dr. Reardon sometime in 2011). For this thesis,
metabolic engineering is interpreted as a field that applies numerous technologies to
study, develop, and ultimately repurpose living systems for novel applications.

There are several accounts of commercial successes of metabolic
engineering. In recent times, DuPont and the British firm Tate and Lyle formed a
venture to produce biologically derived 1,3-propanediol (Bio-PDO™), a molecule
typically produced from petroleum sources. They developed a system that converts
corn sugar into Bio-PDO™ by using engineered E. coli. Bio-PDO™ is now used to
make Sorona®, a fiber and fabric mimic that can be used to make apparel and
carpet [102]. Besides commodity chemicals, the development of the precursor to the
anti-malarial drug — artemisinic acid, has been pioneered in a collaboration between
Jay Keasling’s lab at University of California, Berkeley and Amyris Biotechnologies.
The pathway for the production in artemisinic acid in A. annua plant was successfully
transferred to yeast, and hence enabled mass production from sugars [103].
Challenges in engineering cyanobacteria
Overview of FFA production in E. coli and cyanobacteria

While the metabolic engineering of heterotrophic systems has enjoyed
commercial success, the metabolic engineering of cyanobacterial systems is nascent
and has to be optimized in order to realize its commercial potential. In metabolic
engineering research, E. coli has primarily been the organism of choice. This is true
especially in engineering of the fatty acid biosynthesis pathway to produce biofuels

and biochemicals. The knowledge gathered and strategies employed in E. coli can
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be harnessed and expedited to other organisms including cyanobacteria. The
ensuing sections provide an overview of the fatty acid biosynthesis pathway and
current efforts to convey the lessons learned in E. coli to engineering cyanobacterial

systems.

Background of FA biosynthesis pathway

The FA biosynthesis pathway is a crucial pathway in Synechocystis (and
prokaryotes in general) because it functions as the supplier of FAs that are building
blocks for phospholipids. FA biosynthesis is one of the major anabolic pathways that
use acetyl-CoA (a 2-carbon molecule, 2C) as a substrate. The reactions in FA
synthesis are summarized in Fig 1. The first committed step in FA synthesis occurs
with an ATP-dependent reaction where acetyl-CoA is carboxylated to malonyl-CoA

(3C). Malonyl-CoA is then acylated to malonyl-acyl carrier protein (malonyl-ACP)

) accBACD
Glycolysis Acetyl-CoA Malonyl-CoA
fabH fabD
Acetyl-ACP Malonyl-ACP
fabF
R-ketoacyl-ACP = Membrane lipid
fabG fabF synthesis
PisX, PIsY,
R-hydroxyacyl-ACP Acyl-ACP “ 11848
Aas
fabz Trans-2-enoyl-ACP fabl FFA

Fig 1. A simplified metabolic pathway of Fatty Acid Synthesis in Synechocystis
PCC 6803. Blue solid arrows represent known reactions and dashed arrows
represent unknown reactions. Text above or below the blue solid arrows
represent known genes that code for enzymes that catalyze the reaction.
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before entering the FA elongation cycle. Malonyl-ACP and a molecule of acetyl-ACP
combine in a condensation reaction to form acetoacetyl-ACP (4C, represented by B-
ketoacyl-ACP in Fig 1).

Acetoacetyl-ACP then undergoes a reduction step to reduce its C3 carbonyl
group to yield 3-hydroxybutanoyl-ACP (4C) followed by a dehydration on the now C3
hydroxy group to yield but-2-enoyl-ACP (4C). The C=C in but-2-enoyl-ACP is
reduced to yield a saturated FA chain butyryl-ACP (4C). For further elongation,
malonyl-ACP undergoes a condensation reaction with butyryl-ACP (instead of acetyl-
ACP) to form 3-oxohexanoyl-ACP (6C) and goes through the same cycle of reactions
to yield a saturated straight chain hexanoyl-ACP (6C). In Synechocystis, this
elongation cycle repeats until the products consist primarily of palmitoyl-ACP (16C)
and stearoyl-ACP (18C), which makes up the main constituents of their total FA
composition. All varying FA chains bound to ACP are grouped into the term acyl-

ACP.

FFA production in E. coli

The FA biosynthesis pathway is a promising route to produce FA derived fuels
and chemicals such as fatty alcohols, alkanes/alkenes, and free fatty acids (FFA).
FFA in particular, are precursors to the synthesis of fatty acid esters (FAME or
FAEE), which could serve as biosynthetic replacement to diesel [104]. In the
oleochemical industry, FFA can be used to produce antibacterial agents [105],
polymer surface coatings [106], soaps [107], and surfactants [108]. Taken as a
whole, the vast application of FFAs makes it attractive for industrial-scale production

and a suitable precursor for the next generation of renewable fuels and chemicals.
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There are several reactions that are known to use acyl-ACP as substrates.
Thioesterases are enzymes that cleave the ACP moiety from acyl-ACP chains to
yield FFAs. In E. coli, FFAs and exogenous fatty acids can be imported and
activated to acyl-CoA (by fadD) to be used in B-oxidation (a pathway that breaks
down acyl-coA to acetyl-coA) [109]. To produce excess FFAs in E. coli, two common
strategies are employed [110]: 1) deleting genes that lead FFAs to B-oxidation, and
2) expressing thioesterases that hydrolyze acyl-ACPs to FFAs. Pertaining to 2), the
length of the FFA chain depends on the thioesterase length preference for acyl-ACP.

The overexpression of thioesterase | (TesA) in E. coli has been most
commonly pursued. TesA has a wide substrate preference for acyl-ACPs: C12:0,
C14.0, C14:1, C16:0, C16:1, C18:0, and C18:1 [53, 110]. The N-terminal of TesA
collocates the protein into the periplasmic space of cell membranes. By truncating
the N-terminal (to yield ‘TesA), the protein is localized to the cytosol [53]. This is
essential because the synthesis of acyl-ACP occurs in the cytosol and hence the
presence of TesA in the cytosol would allow for the effective hydrolysis to FFA. In E.
coli, the simultaneous deletion of fabD and overexpression of ‘ TesA has been shown
to increase the production of FFA [56, 110, 111]. The expression of plant
thioesterase has also been successful in E. coli. When a plant C12:0 thioesterase
(BTE) was expressed in a fadD knockout strain of E. coli, the resulting strain
produced C12 and C14 saturated and unsaturated FFAs [55, 63]. Recently, the
characterization of a library of plant acyl-ACP thioesterases in E. coli has been
established [112]. In 2008, Liu et al. investigated the use of E. coli as a platform for

production of FFAs [56]. The group’s subsequent publication further improved the
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production of FFA in a fed-batch fermentor to a titer of ~1g/L of total FFAs [111]. So

far, the highest total FFA titer achieved in E. colito date is ~8.6 g/L in ~60 hrs [54].

FFA production in cyanobacteria

In recent times, the advances of FFA production in E. coli have been adapted
to cyanobacteria. In 2010, researchers at Arizona State University successfully
engineered a glucose tolerant (GT) variant of Synechocystis PCC 6803 for the
production of FFAs. Their work was subsequently retracted and republished in 2011
[113]. By expressing various plant thioesterases in GT Synechocystis, Liu et al.
demonstrated that not all plant thioesterases worked as they would in E. coli[113].
Expression of a C8:0 and C10:0 thioesterase (Ch FabtB2) and a C12:0 thioesterase
(Uc FatB1) lead to no significant improvement of FFA production in GT
Synechocystis. On the other hand, expression of a C14:0 thioesterase (Cc FatB1)
lead to a slight increase in secreted FFA. Surprisingly, the biggest contribution to
FFA production and secretion came from the expression of ‘TesA from E. coli. This
modification altered FA composition of the culture and resulted in the highest
increase in total secreted FFA [113].

So far, Liu et al.’s work focuses on the effects of pathway perturbation around
the key pathway intermediate acyl-ACP. In E. coli, the accumulation of acyl-ACP
induces a negative feedback that down regulates the activity of several enzymes
(fabl, fabH, and ACC) in the FA synthesis pathway [114-116]. Although the actual
mechanism of regulation is unclear, acyl-ACP accumulation is known to have
adverse effects on the FA synthesis pathway [114]. By hydrolyzing acyl-ACP to FFA,
the size of the acyl-ACP pool would be reduced and therefore less of this inhibition

would be expected. In Synechocystis, acyl-ACPs are synthesized in two ways: 1)
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through the FA synthesis pathway and 2) through the recycling of FFAs released
from membrane lipids (B-oxidation is not known in Synechocystis). The enzyme
acyl-ACP synthetase (Aas) has been found to be responsible for recycling FAs
released from membrane lipids. In 2010, Kaczmarzyk et al. tied the deletion of Aas
to secretion of FFA and the inability of the cells to utilize exogenous FFA [117]. The
simultaneous expression of ‘TesA and deletion of Aas would reduce acyl-ACP pool

size and thus relieve the feedback inhibition of acyl-ACP on FA biosynthesis.

The role of genetic tools in improving yields

Liu et al.’s work illustrates one of the early developments of fatty acid-derived
fuels and chemicals from cyanobacteria. Other work has since followed suit [99,
118]. Though promising, further development is essential in realizing the commercial
potential of cyanobacterial systems. In general, recombinant systems always require
optimization to fit their repurposed role. Generic metabolic engineering strategies
including expressing novel pathways, deleting competing reactions, and
overexpressing endogenous pathways, all of which occurs at the DNA level, has had
success, though limited. In many cases, the more-is-better mentality (i.e. using the
strongest promoters and highest copy number plasmids) struggles to achieve
improvements in yield and titers. Major consequences of this strategy include 1) the
buildup of toxic intermediates and 2) depravation of metabolites that are essential for
the organism’s growth [119].

To improve yields, pathways and metabolic balance of the system has to be
carefully optimized. For pathway optimization, the interplay of several strategies is

prevalent (reviewed in [120]): varying DNA copy number and promoters [63, 119],
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optimizing ribosome binding sites [121], regulate enzyme turnover rate [122],
regulate enzyme production ([123]), and post-translational balancing [124, 125].
Metabolic load is defined as the portion of the cell’s resources (such as ATP,
nucleotides, and cellular metabolites) directed toward to maintenance of newly
introduced recombinant enzymes or pathways [126]. Plasmid maintenance is an
example of metabolic load, where increasing plasmid size and copy number has
been known to effect cellular growth and respiration rates in E. coli[127, 128]. In
terms of metabolic balancing, reducing metabolic load (from plasmid replication and
maintenance) and trimming cultivation cost (by having no antibiotic selection) can be
attained by integration of DNA modifications into the chromosomal DNA [120]. The
fine-tuning of expression of heterologous pathways (at the DNA, RNA, protein, and
post-translational level) and reducing metabolic relies heavily on the use of genetic
tools. Hence, the use of genetic tools is quintessential in optimizing recombinant
systems. The following section will briefly summarize some of the genetic tools
developed in cyanobacteria as well as several optimization strategies in E. coli that

have been (and could be) conveyed to cyanobacteria systems.

DNA integration methods

It is unlikely that one strain of cyanobacteria strain can fulfill the function of
producing diverse fuels across all geographic areas. Parameters such as the
availability of PAR light, temperature fluctuations, types of water sources, and
tolerance to toxicity will determine which strains are more suitable to produce a
desired fuel or be employed at a desired location. Hence, the development of
cyanobacterial tools plays a key role in enabling the metabolic engineering of various

cyanobacterial strains. Fortunately, most cyanobacteria are easily transformable via
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DNA integration into the chromosome or through the use of replicating plasmids
(reviewed in [129]). Chromosomal DNA insertion is the more common method in
cyanobacteria. The strategy involves tagging a gene of interest with an antibiotic
resistance marker and introducing them into the chromosomal DNA via homologous
recombination. As for plasmids, there are several broad host range plasmids that
can be used in cyanobacteria: pDU1 [130], pPMQAK1 [131], pTCP2031V [132],
RSF1010 [133], and pFC1 [134]. Both methods use antibiotics to screen for desired
mutants. With this strategy, the number of available resistance markers limits

subsequent modifications.

Markerless genetic modification

The ability to incur multiple genetic changes in cyanobacteria is essential in
realizing the full potential of metabolic engineering. In GT Synechocystis, markerless
genetic manipulation methods have been traditionally used for multiple rounds of
genetic changes [135]. This system uses sacB which is an enzyme that converts
sucrose to levans (a toxin which is lethal to the cell [136]) to screen for mutants that
have taken up gene(s) of interest. However, this system is limited to cyanobacteria
that are sucrose tolerant. In response, our lab pioneered the development of a novel
counter selection method that does not rely on the ability to grow on sucrose [137]
(manuscript in chapter 2). Other markerless methods have since been developed for

Synechococcus PCC 7002 [138], and Synechococcus PCC 7942 [139].

Promoter characterization
Promoters can be used to fine-tune metabolism for optimal production of
desired products or for developing novel tools for specialized and broad host range

applications (e.g. markerless genetic modifications [137], enzyme turnover rate
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control [122]). So far, most promoters have been built and tested for use in E. coli
and has shown poor performances when used in cyanobacteria [131]. This could be
attributed to differences in intracellular environment and regulation between the two
systems. Cyanobacterial promoters are distinct from that of E. coli and are
commonly found in three groups: 1) metal inducible, 2) light inducible and 3)
constitutive (comprehensively list in [129]). Amongst them, the most responsive are
metal inducible promoters Pisiag (repressed 6000-fold GFP fluorescence by 30 uM
EDTA [140]) and Pnsg (induced 800-fold transcript abundance by 0.5 uM NiCl,
[141]). The discovery of a super strong constitutive promoter (Pgpcseo) in
Synechocystis enables the production of up to 15% of total soluble protein from
heterologous genes [142]. Alternatively, a weak constitutive promoter is rnpB [131].
A commonly used light inducible promoter is Ppspan [143, 144]. Recently, a library of
wide range inducible promoters (both light and dark inducible) was developed in

Synechocystis [145].

Gene expression optimization

Optimizing the expression of known rate-limiting enzymes involved in the
production of desired molecules has been shown to be effective. In E. coli, the
production of polyphosphate and isopentyl diphosphate were increased by varying
the copy number of plasmids harboring genes of rate limiting enzymes (ppk and dxs
respectively) [146]. Using the same strategy, the optimized expression of
thioesterases BTE [63] and ‘TesA [111] lead to increased FFA production in E. coli.
The same strategy has been applied to cyanobacteria. Gao et al. optimized ethanol

production in Synechocystis by expressing two copies of pyruvate decarboxylase
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(pdc) [98]. Our lab has attempted to optimize ‘TesA°© expression in Synechocystis

via promoter libraries. Data will be discussed in chapter 3.

Module-based optimization

The culmination of the above mention genetic tools has allowed for
Multivariable Modular Metabolic Engineering (MMME). In E. coli, this strategy
involves grouping several interconnected pathways into “modules” and balancing
each module to attain the maximum amount of target molecule of interest. In Xu et
al., three modules consisting of glycolysis, acetyl-CoA activation, and fatty acid
biosynthesis were modularly balanced (by mixing combinations of high, medium, and
low copy number plasmid for each “module”) to achieve maximum FFA production
[54]. The same approach has been used to maximize taxol precursor [147] and
isoprenoid production [119] in E. coli. The key successes of these approaches rely
heavily on established expression technologies (i.e. promoters, plasmids, and codon
optimization etc.) and the rapid generation of strains to cover a large solution spaces
(32 strains generated and tested in [147], 24+ strains in [54]). Hence, the
development of genetic tools and cloning methods in cyanobacteria will enable the
use of MME to optimize production in cyanobacterial systems.
Two other genetic tools (i.e. RBS optimization and degradation tags) that show

promise for optimization of cyanobacterial systems are discussed below:

Ribosome Binding Site (RBS) optimization

RBSs encoded in promoters, are sites of ribosome binding to mRNA. In
prokaryotes, they are known as the shine dalgarno sequence. The effectiveness of
ribosome binding to mMRNA depends on the base-pairing potential with the anti-shine

dalgarno sequence and the distance from the start codon [148]. Algorithms to
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optimize RBS via thermodynamic models exist [121] which can generate several
candidate RBS sequence that can be used to balance translation and indirectly,
improve enzyme stability. Recently, RBS optimization of a 5-enzyme heterologous
pathway in E. coli maximized NADPH regeneration rates and lead to increased
terpenoid production [149]. For cyanobacteria, RBS optimization of a 3-enzyme
heterologous pathway in Synechococcus PCC7942 lead to increased 2,3-butandiol

production [150].

Degradation tags

Degradation tags can be used to control protein turnover rates and eliminate
misfolded proteins. In addition, their potential can be extended to regulate the
turnover rate of endogenous proteins to change the flux of metabolic reactions.
Synechocystis has several endogenous degradation tags encoded by the peptide
sequences ASV, AAV, and LVA. These tags have been shown to lead to the modular
degradation of YFP (with LVA being the most efficient [131]). In E. coli, ssrA tags are
peptide sequences (AANDENYALAA) added to the C-terminus of unfinished or
misfolded proteins to be degraded by the proteases encoded by clpX [151].
Recently, a library of modified ssrA tags has been developed for Synechocystis
[122]. The use of these degradation tags to improve production in engineered

strains of E. coli or cyanobacteria has yet to be explored.

Understanding cyanobacteria growth physiology

Cyanobacteria are inhabitants of virtually any environment on the globe, even
those that are strenuous. Freshwater cyanobacteria are commonly known to form

blooms when nutrients conditions are suitable (low N to P ratios (<29) [152]) and
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revert to their dormant state once the conditions change. In the Antarctic cold desert,
a dry valley with no visible life forms, some cyanobacteria are known to survive in
between the crystals of porous rocks [153]. Nonetheless, it is clear that their
metabolism is highly flexible and adaptable to nutrient and light availability.
Commercial use of cyanobacteria entails exposing them to forces out in the open
(e.g. light:dark cycles). Understanding their physiology on the bench scale will help
expedite their scale-up and reveal potentials that could be harnessed for metabolic

engineering applications.

Light availability

Cyanobacteria exhibit circadian rhythms to allow for maximal productivity in
daily sunlight fluctuations [154-156]. Diurnal changes in transcription, primarily
studied via microarrays, suggest that mMRNA expression patterns change drastically
throughout the day and are highly affected by light:dark cycles [157-160]. In addition,
several promoters in cyanobacteria are known to be light responsive (e.g. the high
light induced psb [144] and the dark induced IrtA [161]) . Prominent changes on the
metabolite level are also prevalent under diurnal cycles. For example, glycogen has
been known to play a key role in energy storage: the glycogen stores are replete in
the day and deplete in the night [162, 163].

Exposure to excess light can cause photoinhibition (defined as the decrease
in the maximum efficiency and/or rate of photosynthesis [164]) and results in
reduction in overall rates of carbon fixation and the ability to convert light energy into
chemical energy [165]. On the contrary, the absence of light creates an anoxic
environment (i.e. environment with low O, concentrations) that would be suitable for

oxygen sensitive enzymes (an hence pathways). This would allow for production of
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molecules during the dark periods (e.g. 1-butanol [166]). Therefore, light availability
has to be considered in the design and characterization of recombinant

cyanobacteria strains.

Nutrient deprivation

Cyanobacteria have evolved to survive under several stressed conditions
such as nitrogen, iron, sulfur, and phosphorus depravation. In general, nutrient
depravation causes several dramatic changes in cellular structure including the
degradation of phycobilisomes to minimize absorption of excess excitation energy
and the cessation of cell division [167]. Visually, cultures of cyanobacteria turns from
green to pale white in a phenomena known as chlorosis [168]. In the case of nitrogen
depravation, stress regulators (ntcA [169]) and response regulators (sigE [170] and
rre37 [171]) plays a significant role in up-regulating glycogen and sugar catabolism,
leading to the production of PHB. The identification of these regulators in nutrient
depravation studies can be beneficial for metabolic engineering. For instance, these
regulators can be used to increase production of desired molecules in engineered
strains (overexpression libraries discussed in chapter 4). Moreover, this potential can
be expanded upon as similar responses are likely occurring during iron [172], sulfur

[173], and phosphorus [174] depravation.

SIGNIFICANCE OF THESIS

Development of a markerless genetic modification method for cyanobacteria.

Our motivation for this work was to develop a markerless genetic modification
method to be universally used in organisms that can undergo homologous

recombination (particularly cyanobacteria and algae). To do this, we derived the idea
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from a previous method that uses a toxin gene (sacB) to screen for mutants that
have taken up the gene of interest [135]. Unfortunately, the use of sacB is limited to
sucrose tolerant WT Synechocystis. In our work, we developed a system to
effectively mimic sacB through the use of an E. coli toxin gene, mazF, under the
control of a nickel-inducible promoter. Chapter 2 will discuss the development of this
technology in greater detail. This study has been turned into a publication in 2012
[137]. We have since adopted this method as a “standard” protocol in our lab and

use it to generate mutants of Synechocystis.

Optimizing gene expression of ‘TesA to increase production of FFA in

Synechocystis.

TesA codes for thioesterase | from E. coli. This enzyme is localized in the
periplasm and cleaves the ACP moiety of long chain acyl-ACP to yield FFAs. By
truncating its leader sequence (yielding ‘TesA), the enzyme remains in the cytoplasm
and has been shown to cause increased FFA production in E. coli [53]. In 2011, the
expression of a codon-optimized version of this gene in Synechocystis (‘TesA%°)
yielded the same effect [113]. Hence, we set out to see if we could optimize the
expression of another ‘TesA“® gene in Synechocystis through the use of the Ppspail
promoter suite developed in our lab. We learn that the promoter suite was successful
at increasing mRNA abundance of ‘TesA“®. Unfortunately, ‘TesA“© did not translate
to a functional protein as we saw no evidence of enzyme activity and little to no
increase in FFA production compared to a baseline knockout strain (Aaas). Though

TESA peptides were detected, the abundance was too low to quantify. We
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hypothesize that the protein is likely misfolding in Synechocystis. Further details of

this work are discussed in chapter 3.

Understanding the effects of diel light:dark cycles on FFA production

While characterizing the effects of ‘TesA“C in Synechocystis, we also worked
on understanding the effects of 12 hr light:dark cycles on the growth and production
of FFAs in our engineered strains. This work is intended to begin to replicate
industrial conditions inside the lab in order to better understand the performance of
cyanobacterial systems out in the open. This work was also motivated by the fact
that light availability influences production; as cell density increases, light availability
per cell decrease. Hence, we characterized their growth and production across 6
days to monitor their long-term performances. Our results indicate significant
cessation of FFA production in our FFA producing strains under 12 hr light:dark
cycles compared to continuous light. Transcriptionally, the fatty acid biosynthesis
pathway showed no significant changes between the WT and a FFA producing
mutant. We hypothesize that differences in cellular metabolism in the light phase

versus the dark phase caused the decrease in FFA production.

Generation of an overexpression library in Synechocystis

Overexpressing upstream pathways can lead to improvements in production
of desired downstream molecules [54]. In 2013, 4 gene targets (2 in FA synthesis
and 2 in sugar catabolism) were proposed for overexpression in a FFA producing
mutant of Synechocystis. The constructs designed to overexpress these targets was
planned for the same loci in Synechocystis under the control of an endogenous Ni**

inducible promoter. Since plasmid construction was methodical, Dr. Peebles

29



challenged me to come up with more potential targets. By the present day (2015),
the library has been expanded to a total of 14 gene targets (comprehensively list and
reviewed in Chapter 4). Of the 14 targets, 8 of them have been successfully
transformed into a FFA producing strain of Synechocystis (strain GG1.3, AAas with
“TesA“© under the control of Pyspail anex). Upon discovery that our ‘TesA®C expressing
strains of Synechocystis had no enzyme activity, we halted the characterization of
these strains and focused on creating a new metabolic sink. Chapter 4 discusses
several candidates for a new metabolic sink in Synechocystis.

This work contributes to the field of metabolic engineering of cyanobacteria in
two aspects: 1) development of novel tools and 2) the characterization of FFA
production from cyanobacteria under light:dark cycles. The efforts in optimizing gene
expression via promoter libraries to increase production in cyanobacteria are also
described. The initiation of a gene overexpression library for Synechocystis that

would be beneficial for increasing productivity of downstream products is highlighted.

SUMMARY

Since the energy crisis in the 1970s, the development of biofuel technologies
has gained tremendous leaps in efficiencies [97]. Depending on geographic
availability of substrates, light, land, and water, the efficient and sustainable
production of biofuels in the near future would be derived from a mixture of 1
through 3 generation biofuel technologies. Metabolic engineering has and will
continue to play a substantial role in improving the efficiencies of all these systems.
This thesis contributes to the metabolic engineering of cyanobacteria by developing

genetic tools, optimizing strains, characterizing growth physiology, and generation of
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overexpression libraries. The results of all these efforts will be detailed in the ensuing
chapters.

- lan Cheah (August 2015)
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