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ABSTRACT OF DISSERTATION 

MODELING THE UNCERTAINTY OF HYDROLOGIC PROCESSES EXHIBITING 

CHANGES 

The Geometric-Normal-Normal (GNN) model was analyzed and tested for the 

purpose of simulating hydrologic processes that exhibit changes. The general moment 

equations of the GNN model were derived, particularly the lag-k autocorrelation function. 

They can be used to estimate the model parameters based on the method of moments. Other 

estimation methods were also suggested. They include regression analysis, fitting the 

autocorrelation function (ACF), using the range properties, and using the run properties. 

The performance of these methods was tested by using simulation experiments. The results 

showed that in terms of bias and mean square error the regression and range methods are 

better than the other methods for estimating the model parameters. The GNN model was 

applied to the White Nile River flows at Malakal and the annual net basin supply (NBS) data 

for Lake St. Clair of the Great Lakes system. Simulation experiments were conducted to test 

the ability of the GNN model to preserve a number of observed statistics such as the mean, 

standard deviation, skewness, rescaled range, Hurst coefficient, longest drought, maximum 

deficit, and surplus. Results show that the GNN model, in general, performs quite well in 

preserving these statistics. An extended version of the GNN model was also formulated and 

analyzed in this study. Different methods of estimation were suggested to estimate the model 

parameters. However, application of this model to Malakal flows and Lake St.Clair NBS data 

did not show any advantage over simpler GNN. 

A multivariate contemporaneous GNN (CGNN) model was also formulated and 
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tested. The covariance structure of the model was derived and different parameter estimation 

methods were suggested. The CGNN model can be used in situations were the sites to be 

analyzed have apparent shifts in the mean for all sites. The model was used to simulate the 

observed annual streamflow records at four stations in the Nile River basin and to simulate 

the NBS records of the Great Lakes System. In both cases, the CGNN model performed well 

in preserving both basic and long term statistics for these sites. In addition, a combined -

contemporaneous GNN and contemporaneous CARMA models called GNN-CARMA was 

formulated so as to simulate apparent shifts at some sites and ARMA type of dependence at 

other sites. The model was applied to simulate NBS data for the Great Lakes System. The 

results showed the model was able to preserve the short and long term basic statistics such 

as the mean, standard deviation, rescaled range, and Hurst coefficient. 
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1.1 General Remarks 

CHAPTER I 

INTRODUCTION 

Stochastic simulation of hydrologic time series is commonly applied for planning 

and management of water resources systems. Stochastic simulation is usually based on 

a stochastic model, Le. a set of mathematical equations that describe an observed stochastic 

process. The main applications of stochastic models are data generation (simulation) and 

forecasting. Generation and forecasting are used by hydrologists for many purposes. 

These include, for example, reservoir sizing, planning and management of an existing 

reservoir, and reliability analysis of water supply systems (Salas et al, 1980). 

The main criterion for choosing a specific stochastic model is the ability of that 

model to preserve the statistical characteristics of an observed time series. Preservation of 

such characteristics is meant to be in a statistical sense (Salas et aI, 1980). It is difficult, 

if not impossible to find a model that preserves all of the statistical characteristics of the 

observed (historical) sample. The model should, though, be able to preserve the basic 

statistics of the historical sample and some other statistics which are felt to be important 

to preserve for the purpose at hand. For example storage and drought related statistics are 

important for planning reservoir systems. 

Many stochastic models have been used to model water resources systems. Some 

of these models are: Autoregressive (AR), Autoregressive Moving Average (ARMA), 

Fractional Gaussian Noise, Disaggregation, Broken Line, and Shifting Level models. The 
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shifting level models were introduced in water resources literature by Boes and Salas 

(1978) and Salas and Boes (1980). These models resemble shifting mean levels, a 

property that has been shown to be related to the Hurst phenomenon. With recognition 

that some observed hydrologic time series exhibit changes especially in the mean, shifting 

level models are attractive in modeling such time series. An important feature of the 

shifting level models is the shifts from one stage to another at random time periods. One 

particular type of shifting level model is known as the Geometric - Normal - Normal 

(GNN) model. In this study, further investigation of the GNN model will be done. 

Stochastic modeling of hydrologic time series generally involve data observed at 

one or more sites. A stochastic model is called univariate if it uses only the observed time 

series at one site. However, the planning of water resources systems generally involve 

hydrologic time series observed at more than one site (multisite). This type of multi site 

system require multivariate stochastic models to take into account both the temporal and 

the spatial dependence. The procedures followed in multivariate modeling are basically 

the same as in univariate modeling. The mathematics of multivariate models is usually 

more difficult than for the univariate models (especially for the full vector multivariate 

models). However, some simple multivariate models known as "contemporaneous 

models" have been developed (Salas et al, 1985; Hipel and Mcleod, 1994). 

1.2 Problem Definition 

Hydrologists have noticed through the years that some observed hydrological data 

such as streamflow and precipitation had experienced significant shifts where the observed 
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data changes from say high values to lower values or vice versa. An example is the Great 

Lakes System. The mean of annual Net Basin Supply (NBS) series for Lake Ontario is 

408,000 (cfs) for the period 1900-1970 while the mean is 508,000 for 1970-1990. In Lake 

Erie the mean of the annual NBS is 212,000 (cfs) and 321,000 (cfs) for the periods of 

1900-1970 and 1979-1990 respectively. This change in the mean in both lakes was 

concurrent with an increase in the over basin precipitation for both lakes that seemed to 

happen around 1970. Many reasons have been proposed to explain these shifts in the 

annual NBS in the Great Lake System. Quinn et al (1990) reported that regulation, 

interbasin diversions, and land use changes are important reasons for explaining such 

shifts. Also, climate shift was suggested as a possible reason (Quinn et aI, 1990). Kite 

(1990), in analyzing the Lake Superior levels at Duluth, found that a linear trend 

component is responsible for 20 % of the total variability. Changes in climate were 

suggested as the reason for this trend. The prediction and forecasting on the Great Lakes 

System behavior are important in the planning and management of the lakes. Most of the 

models that are used in predicting and forecasting of net basin supplies, lake levels and 

outflows assume that the data is stationary. However, such an assumption may not be 

valid in the Great Lakes System. Therefore, other models which can simulate possible 

non stationary characteristics may be useful in such cases. A more detailed review of some 

of the studies done on the Great Lakes System is included in section 2.4. 

Another example is the sudden change that occurred in the mean annual flow 

volume of the Nile river at Aswan. The mean annual flow volume for the period 1870-

1898 is 110 x 109 m3 while it is 84 x 109 m3 for the period 1899-1989. Also an upward 
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shift in the annual flows of the White Nile River at Mongalla and Malakal happened 

around 1961. A similar upward shift around 1961 is also apparent in the levels of Lakes 

Victoria, Kioga, and Albert (Salas and Boes, 1980). Another example is that of the Great 

Salt Lake in Utah where the water levels started to increase in the 1960's after a long 

period (1870-1960) of decreasing water levels (Kite, 1989). Likewise, in the Colorado 

River at Leez Ferry, Arizona, a change from high flows to lower flows had occurred near 

1930 (Wallis, 1977). Potter (1976) showed precipitation records of six stations in the 

northeast region of USA that have shifts in their records and suggested that the shifts may 

have occurred because of natural climate shifts. However, in a later paper (potter, 1979) 

he suggested that the shifts may have occurred from errors (inconsistencies) in the data. 

Furthermore, Hubert et al (1989) showed that the annual streamflow records of the Niger 

and Senegal rivers exhibit shifts. Several suggestions were proposed to explain this 

shifting phenomenon. Climate change, change in watershed boundary, and man made 

effects are the main proposed reasons (Wallis, 1977). Shifting level models may be useful 

in such cases as they can simulate such observed shifts (Salas and Boes, 1980). Also, 

shifting level models are operationally simple. Therefore, investigation of shifting level 

models is an important subject in hydrology and water resources that deserve further 

attention and investigation. 

1.3 Research Objectives 

The general objective of this research is to further develop certain types of Shifting 

Level processes for modelling and simulation of hydrologic processes exhibiting changes 
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in the mean. Specific objectives of this research are: 

1. To examine and compare alternative methods for estimating the parameters of 

certain Shifting Level models and test their applicability by using the actual 

hydrologic systems and hydrologic data. 

2. To formulate a multivariate Shifting Level model which can be used to model 

observed hydrologic records at more than one site including parameter estimation 

methods and testing. 

3. To examine the applicability of the models to actual hydrologic data and 

compare the performance of such models to preserve the short term and long term 

characteristics of such data. 

1.4 Dissertation Outline 

Chapter 2 presents a review of the literature relevant to this study. The chapter 

begins with a brief history about the application of the stochastic theory and modeling in 

hydrology. Also, the chapter reviews some of the current models that are widely used in 

modeling water resources. Next, the Hurst phenomena is revisited and possible 

explanations of this phenomena that are available in the literature are reviewed. 

Chapter 3 discusses the causes of the shifts that are observed in some hydrological 

processes. These causes will be defined and analyzed. Finally, some of the studies that 

have been done on observed hydrological processes that exhibit shifts are reviewed. 

Special attention is given to the examples of the Nile River System and the Great Lakes 

System. 
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Chapter 4 describes methods to estimate the parameters of univariate GNN model. 

Then simulation studies to verify and validate the GNN model are presented. Finally a 

new version of the GNN model is described. The multivariate shifting level models 

including parameter estimation methods and simulation studies to explore its applicability 

are discussed in Chapter 5. Then a summary of the conclusions of this research and 

recommendations for further research on this topic are included in Chapter 6. 
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2.1 General Remarks 

CHAPTERll 

LITERATURE REVIEW 

Stochastic modeling of hydrological processes is commonly used by hydrologists 

and engineers to solve problems such as reservoir sizing, reservoir operations and 

evaluating the risk of failure of a water resources system. The application of the theories 

of stochastic processes has attracted the attention of hydrologists because of the random 

nature that is present in such processes. Hazen (1914) is believed to be the first one to 

introduce the problem of reservoir sizing in contexts of a random and uncertain process. 

In that paper, the so called probability paper, which has been used extensively in the field 

of statistical hydrology was introduced was introduced. Sudler (1927) published what is 

considered to be the first paper that introduced the idea of stochastic generation. In that 

paper, the observed annual runoff values were written on cards, shuffled, and then drawn 

one by one without replacement. Hurst (1951) in his efforts to find the required size of 

the Aswan Dam analyzed records of many geophysical time series. He used range analysis 

to find the required size. The importance of that paper from a scientific point of view was 

the discovery that the rescaled range of certain geophysical time series behaved differently 

than the usual time series available at that time. This discrepancy was called later the 

"Hurst Phenomena" and will be discussed thoroughly in the next section. 

The formal development of stochastic modeling in hydrology occurred in the 

1960's (Thomas and Fiering, 1962; Yevjevich, 1963) with the introduction of the 
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autoregressive (AR) models. Subsequently, extensive research has been done to improve 

the use of these models, introduce new models and investigate their theoretical statistical 

properties. Several stochastic models have been used for modeling the water resources 

systems (Salas et al, 1985). These are AR models, ARMA models, Fractional gaussian 

models, Broken line models and Shifting level models. Usually, the development and use 

of a stochastic model involve the following steps (Stedinger et al, 1982): 

1- obtain hydrologic observed data such as streamflow data. 

2- selection of models that describe the marginal probability distributions of the 

investigated observed data. 

3- selection of an appropriate model of the spatial and temporal dependence of the 

data. 

4- computer implementation of the suggested model and verifying that the model 

is working as specified. 

5- validate the model by simulation. 

6- use of the suggested model. 

Since planning and management of water resources systems involve observed time 

series at many sites, multivariate stochastic analysis of such systems attracted the attention 

of hydrologists since the 1960's. Many multivariate models have been suggested to 

account for the temporal and spatial dependence of hydrologic data. Piering (1964) 

proposed a two station model that preserves the historical lag-zero cross correlation and 

the lag-l autocorrelation. Matalas (1967) suggested the multivariate AR( 1) model that is 

applicable to several sites and preserves the lag-zero cross correlation and the lag-l 
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autocorrelation. O'Connell (1974) formulated a multivariate ARMA(1,I) model. Salas 

et al (1980) suggested the contemporaneous ARMA model which is a simplification of the 

multivariate model where the parameter matrices are assumed to be diagonal. The 

importance of the contemporaneous model is the uncoupling of the model equations such 

that separate models of different orders can be used for each site. The cross correlation 

between the sites is preserved through the noise term. Although the concept of 

multivariate modeling is the same as in univariate modeling, the mathematical formulation 

and operation of the multivariate models is more complicated when compared to univariate 

modeling especially for full-vector models (Salas et al, 1985). This difficulty was eased 

however by the development of the contemporaneous model mentioned above. 

2.2 Hurst Phenomena 

Hurst (1951) in his efforts to find the required size of the Aswan Dam in Egypt, 

analyzed many hydrological and climatological time series. What he found is , till today, 

one of the most controversial issues that faced hydrologists and statisticians. Hurst 

analyzed 690 annual geophysical time series such as streamflow, precipitation, 

temperature, and tree rings. For each series he plotted the logarithm of the sample mean 

of the observed values of the rescaled adjusted range Ii Nt." versus the logarithm of the 

length of the time series N divided by 2 and estimated the (Hurst) coefficient H as the 

slope of the straight line fit. Mathematically Hurst's fitted equation can be represented as: 

(2-1) 
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Note that Eq. (2-1) can be generalized to 

R- ... '" 
= 

N (2-2) 

The H values estimated by Eq.(2-1) had a mean value of 0.73 and a standard deviation of 

0.092. In the same paper Hurst derived the asymptotic value of the mean adjusted range 

as 

E(RN') = a N o.5 (2-3) 

where a = 1.2533. To verify his results he generated 30 sequences of size 100 of 

normally distributed independent variables and using the generated data he estimated the 

coefficient a close to 1.25 indicating that his derivation is probably true. This discrepancy 

between theoretical and practical observation is called "Hurst Phenomena". 
r····· .... "".iI'l\\. '/\~ 

I Feller (1951)\found that Eq. (2-3) does apply for any normally distributed lID 
\ 

variables with finite variance. Furthermore, Barnard (1956) 3;R4 showed that Eq. (2-3) also 

applies for any short-memory time series model. Troutman (1976) showed that Eq. (2-3) 

is true also for any model with summable autocovariance function. 

Since Hurst's early work, this phenomena (some times referred to as a puzzle) 

occupied the minds of hydrologists and statisticians as well. Mesa and Po veda (1993) 

stated: 

"The Hurst effect is one of the most important unsolved problems in stochastic 
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hydrology. There is ample evidence to support this statement. Ever since 

Hurst IS [1951] original work, there has been a proliferation of papers about 

it. Some of the most important awards of the hydrology community have gone 

to contribution towards its solution. " 

Several reasons have been suggested to explain this phenomena. These reasons can 

be generally classified into three categories. First, is that the Hurst phenomena is a pre­

asymptotic or transitory behavior (Salas et al, 1979). The argument here is that the 

existing series are not long enough to have attained the asymptotic value of H=O.S. 

Second, the Hurst phenomena is due to the dependance structure of the time series 

(persistence) (Feller, 1951). The third explanation is that the Hurst phenomena is due to 

nonstationarity of the mean which was suggested by Hurst (1957), Klemes (1974), Klemes 

(1975), Potter (1975), Potter (1976), and Salas et al (1979). 

Wallis and OlConnel (1973) claimed that transience and autocorrelation function 

are important factors in explaining the Hurst phenomena. Salas et al (1979) generated 

very long samples by using three models: ARMA(1, 1), AR(1) and the Geometric-Normal­

Normal (GNN) shifting mean model. The Hurst coefficient was shown to behave 

differently depending on the length of the series N. For small N the Hurst coefficient was 

greater than 0.5. In the pre-asymptotic transient region, the Hurst coefficient was much 

greater than 0.5 and in the asymptotic region (very large N) the Hurst coefficient 

converges to 0.5. 

Feller (1951) suggested that the dependance structure of the time series is a possible 

explanation to Hurst phenomena. Matalas and Huzzen (1967) using Monte Carlo 

11 



experiments simulated 10,000 sequences of a Gaussian-Markov process for values of the 

lag-l autocorrelation coefficient ranging from 0 to 0.9. Results indicated that the Hurst 

coefficient was found to be in the range of 0.58 and 0.87. These results are compatible 

with Hurst's findings for various geophysical time series. O'Connell (1974) suggested that 

an ARMA (1,1) may behave as a long memory model and may preserve the Hurst 

phenomena. To do that the AR coefficient must be close to unity. However, Klemes 

(1974) noted that O'Connell's model is very close to being non-stationary. Furthermore, 

Hipel and Mcleod (1978) showed that a properly fitted ARMA (1,1) model can preserve 

the Hurst phenomena. Gomide (1975) analyzed the AR (1) model with lag-l 

autocorrelation coefficients in the range of 0.0 to 0.90 by using simulation experiments. 

His results indicated that the mean Hurst coefficient was 0.75 which is very close to 

Hurst's findings. Mandelbrot and Wallis (1969) and Mandelbrot and Van Ness (1968) 

suggested that the Hurst phenomena can't be explained by short memory models since for 

these models the asymptotic behavior for the range for these models follow Eq. (2-3) (i.e. 

H -t 0.5 as N -t (0). As a result, they suggested that a long memory model can preserve 

the Hurst phenomena. The theory behind suggesting long memory models to model 

geophysical processes is the hypothesis that such processes are driven by a very long 

memory mechanism for which the effect of the distant past is not negligible. This is the 

main difference between long and short memory models. In the latter models, the effect 

of the distant past is identified but is negligible. As a result, Mandelbrot and Van Ness 

(1968) proposed the fractional gaussian model for modeling hydrologic processes. The 

important characteristic of that model is its very long memory feature. The model was 
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shown to be successful in preserving the Hurst coefficient of an observed time series. 

However, the model received a lot of criticism because of the lack of physical justification. 

Many hydrologists questioned the assumption of long memory in hydrological processes. 

Klemes (1974) stated that: 

"By what sort of physical mechanism can the influence of, say, the mean 

temperature of this year at a particular geographic location be transmitted 

over decades and centuries?". 

The nonstationarity of the mean to explain the Hurst phenomena was first suggested 

by Hurst himself (Hurst, 1957). He performed four experiments with playing cards that 

involved shifts in the mean. For each experiment, 1000 numbers were generated using 

these cards. Results indicated that the Hurst coefficient was calculated as 0.7 with a 

tendency towards 0.5 as N approached 1000. He concluded that the generated time series 

were very similar to the observed geophysical series he analyzed in his first paper in 1951. 

In this regard, Hurst is considered as being the first scientist to suggest that shifting means 

can explain the Hurst phenomena. Klemes (1974) analyzed the possible causes for the 

Hurst phenomena. He criticized the long memory hypothesis as a reason to explain the 

Hurst phenomena and showed that some non-stationarity models with no memory (zero 

memory) can explain the Hurst phenomena. Klemes, like Hurst, suggested that the non­

stationarity of the mean can explain the Hurst phenomena. In that regard, he suggested 

possible physical reasons which support the non-stationarity of the mean hypothesis. He 

suggested that earthquakes, tectonic movements in the earth's crust, erosion and 

sedimentation, changes in vegetation cover and man made changes can have some effects 
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on the mean of many hydrological processes and thus supporting the non-stationarity of 

the mean hypothesis. Klemes also used simulation experiments to test weather the non­

stationarity of the mean can explain the Hurst phenomena. Random samples with periodic 

changes in the mean and with randomly alternating means were generated and analyzed. 

Results showed that for such processes, the Hurst coefficient is greater than 0.5 and 

asymptotically approaches 0.5 as N --+ 00. 

Potter (1975) and (1976) joined Hurst and Klemes in proposing the shifting mean 

hypothesis as a possible explanation for the Hurst phenomena. He showed six 

precipitation records that apparently exhibit shifts in their means. Like Klemes, he used 

simulation experiments with shifting means and reported similar results to those obtained 

by Klemes. Boes and Salas (1978) extended the works of Hurst, Klemes, and Potter and 

formulated a mixture model for shifting levels. They showed that Hurst, Klemes, and 

Potter models are all special cases of a generalized mixture model. One of the models that 

belong to the family of the shifting level models is the Geometric-Normal-Normal (GNN) 

model. Salas and Boes (1980) analyzed this model and suggested the method of moments 

to estimate the model parameters. Their estimates depend on the sample variance and the 

sample lag-1 and lag-2 autocorrelation coefficients. Also, Salas and Boes claimed that the 

apparent presence of shifts in the mean in some hydroclimatological data is attributed to 

phenomenological reasons rather than due to non-homogeneity or inconsistency of the data. 

The GNN model was also shown to have some advantages over corresponding ARMA 

(1,1) models in preserving the run and deficit properties of an observed time series. 

Obeysekera (1980) analyzed the run and range properties of the GNN model. Obeysekera 
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derived the distributions of the run and range properties of the model by using a discrete 

version and extending the results to the continuous case. He concluded that the GNN 

model is an attractive option to be used in modeling hydrological processes that exhibit 

shifts in their mean. 

Mesa and Poveda (1993) presented several methods to determine if a time series 

exhibits the Hurst effect. They suggested that Pox diagrams alone are not sufficient and 

suggested GEOS (geophysical record diagrams), statistical tests, and empirical evidence 

tests should also be used. GEOS tests are visual tests for the existence of the Hurst effect 

in a given time series. Mesa and Poveda (1993) illustrated that these tests are more 

powerful than pox diagrams due to the fact that the GEOS diagrams are scaled down 

properly not only with respect to the adjusted range but also with respect to the variance 

and other moments as well. The main limitation of such tests is that the records must be 

long enough in order to draw any conclusions. The above tests were applied to different 

observed data among which is the data sets which were used originally by Husrt. 

According to their tests, the data do not show any existence of Hurst effect except for the 

mud curves. Also, they suggested that long memory does not appear to be a good 

explanation and that non stationarity of the records is a more reasonable explanation. Sen 

(1991) illustrated that even though the annual flow series is stationary, the cumulative 

departures exhibit cyclic features that account for more than 95 % of the variability in the 

Hurst coefficient. As a result, he proposed an alternative to direct modeling of time series 

in order to preserve the Hurst phenomena. His method is based on modeling the 

cumulative departures of the annual flows series from their sample mean value and 
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consequently simulation and data generation be done based on these departures rather than 

the original time series. Eltahir (1996) proposed a physically based explanation of the 

Hurst phenomena. The author suggested that ENSO ( El Nino Southern Oscillations) 

events excites similar oscillations in the tropical climate, which are then teleconnected to 

the Nile flow through the rainfall producing mechanisms at the sources of the Nile 

(Eltahir, 1996). Eltahir developed a mathematical relationship between ENSO index and 

the Nile mean annual flow. He also developed a probability table for use in predicting the 

Nile flood. The table is based on classifying the mean annual flows as high, low, and 

average floods and an ENSO index as cold, normal, and average. He concluded by 

suggesting that the Nile flood responds to natural variability in ENSO which occurs at 

several time scales ranging from annual to decadal and even longer which causes 

significant non stationarity in the mean of the annual flow process. 
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CHAPTERm 

OBSERVED SHIFTS AND CAUSFS OF SHIFTS IN HYDROLOGIC 

PROCFSSFS 

3.1 Observed Hydrologic Time Series That Exhibit Shifts 

3.1.1 Nile River System 

The Nile River is the longest river in the world. The river is 6825 Km long and 

originates from lake Victoria and drains in Egypt. Figures 3-1 through 3-3 show the 

historical mean annual flows at Aswan, Malakal, and Mongalla stations of the Nile River. 

Figure 3-4 through 3-6 show the annual net basin supply (NBS) record for lakes Victoria, 

Kyoga, and Albert. Some interesting features may be observed in these records. The 

mean annual flows at Aswan for the period 1870-1989 are shown in Fig. 3-1. The lag-l 

autocorrelation coefficient for the 1870 - 1989 record is 0.4 while it is 0.2 for the period 

1914 - 1989. This change in the correlations is due to the shift in the flow regime 

observed in the Aswan flows. The mean of the annual flows for the periods 1877-1898 

and 1899-1989 are 110 milliards of cubic meters (mcm) and 84 mcm, respectively. An 

upward shift in the annual NBS is noticed in Lakes Victoria, Kyoga, and Albert and in the 

annual flows at Mongalla and Malakal. The upward shift was more noticeable in Mongalla 

than in Malakal. The mean annual flows at Mongalla jumped from approximately 24.4 

mcm for the period 1920-1960 to approximately 48.9 mcm for the period 1961-1983. In 

Malakal, the mean jumped from approximately 26.6 mcm to approximately 35.3 mcm for 

the same periods. The peak flow was measured in 1964 for both stations. Also Figs 3.1 
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and 3.2 show that another peak in the annual flows happened around 1917 and 1918 in 

both stations. This peak was, however, smaller than the one of 1964. This raises the 

question about the likelihood of experiencing other future considerable changes in the 

flows at both stations and the capabilities of the current models for simulating and 

forecasting such hydrological features. The lag-1 autocorrelation coefficient of the annual 

flows for Mongalla for the period 1914-1983 is 0.893. This is a very high value and is 

rare to find in other observed data. This is predictable , however, since high correlation 

coefficients can indicate that the data is experiencing some kind of grouping ( periods of 

high flows followed by periods of low flows). The longest drought, at demand level equal 

to the mean annual flow is 42 years for the period 1914-1983. This value is very high and 

rare to experience in other stations that do not exhibit shifts. The rescaled adj usted range 

of the annual flows for Mongalla is 29.8 which can be categorized as a high value. The 

Hurst coefficient is 0.954 which is a very high value and probably is difficult to find in 

other stations. These statistics suggest that the shift that is apparent in Mongalla is quite 

significant. The main statistical characteristics for Malakal are similar to those for 

Mongalla. The reason for such high values for these two stations is the storage effect of 

the equatorial lakes. 

One of the reasons proposed to explain the shifts in Lake Victoria levels and flows 

at Mongalla and Malakal, is that earthquakes in that region changed the hydrology of the 

Lake Victoria and caused this shift (Shahin, 1992). Shalash (1980) claimed that the 

operation policies at Owen Falls dam is the reason for this shift. In other studies, it was 

proposed that the Owen Falls operations were responsible for only 0.03 meters of the total 
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rise in the levels of lake Victoria (Shahin, 1992). Changes in land use have also been 

suggested as possible reasons (Sene et al, 1994; Salas and Boes,1980). Increases in 

precipitation was also suggested as a possible reason for the shift (Shahin et al, 1992). In 

a recent study, (Sene et al, 1994), applied annual and monthly water balance models to the 

lake's levels and showed that the variations in the levels are related to rainfall variations. 

One of the reasons suggested to explain the shift at Aswan flows that two different 

methods were used to measure flows in the two periods. From 1870 to 1902 the flows 

at Aswan were measured by a gauge calibrated by infrequent float measurements (Shahin, 

1992). After 1902, the measurements were more direct and more advanced than the pre 

1902 period. It was shown that the flows of the 1870-1902 period were overestimated by 

8% (Shahin, 1992). Still, the flows of the 1870-1902 period are higher than those of 

1902-1989 even if we subtract the 8 % from the 1870-1902 tlows (Shahin, 

1992). El Nino was also suggested as a possible reason for the shift (Shahin, 1992). 

However, this theory was not proven conclusive since El Nino years were not always 

correlated (Shahin, 1992). 

In a recent study, Eltahir proposed that ENSO is indeed related to the natural 

variability of the Nile river flows. Eltahir used the annual flow record of the Nile River 

and SST anomaly averaged over the regions 6° - 2° N, 170° - 90° W; 2° N - 6° S, 180°-

90° W; and 6° -10° S, 150° - 110° W (ENSO index) for the period 1872 - 1972. The 

relationship between the Nile mean annual flows and the ENSO index is: 

mean annual flow of the Nile = 88.5 - 8.7 (ENSO index) 

The coefficient of correlation for the above relation is -0.9 (Eltahir, 1996). He also 
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suggested that the natural variability in the annual flows of the Nile can be decomposed 

into two components, namely the mean which is strongly related to ENSO and a random 

fluctuation that occurs around the varying mean due to climatic factors other than ENSO. 

The author claimed that the non stationary mean and the random fluctuation explain 25 % 

and 75 % of the observed natural variability, respectively (Eltahir, 1996). He also used 

the Nile mean annual flows and classified them as low, average, and high floods and 

developed a probability table that relates such floods with SST. He suggested that mean 

of the Nile flood oscillates in time according to the oscillations of SST which exhibits, 

among others, annual, decadal, and longer oscillations. Finally, he concluded by 

suggesting that this relationship between the Nile floods and ENSO is a potential candidate 

for explaining the Hurst phenomena. 

3.1.2 Great Lakes System 

Another significant shift is the one observed in the Great Lakes system. Figures 

3-7 through 3-11 show the annual NBS record for lakes Superior, Erie, St. Clair, 

Michigan-Huron, and Ontario. Low lake levels during 1930's and 1960's are observed 

in lakes Erie and Ontario. In contrast, high levels are observed in the 1950's, 1970's and 

mid 1980's. In 1986, a record high water level was set in all lakes except lake Ontario 

which caused major economic losses (Quinn et al, 1990). This record level was followed 

by a significant decline in the levels in 1987 and 1988 (Quinn et al, 1990). Many studies 

have been done in an attempt to find the possible reasons for these shifts in the lakes 

system. Quinn et al (1990) compared the record of 1986 with the 1838 lake levels. It was 
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found out that the 1838 record for lake Michigan - Huron is 50 cm higher than the 1986 

record. Several reasons were suggested to explain this difference in the records between 

1838 and 1986. These reasons are regulation, interbasin diversions and land use changes 

primarily deforestation and artificial drainage (Quinn et al, 1990). All these effects were 

found to cause some changes in the conditions between 1838 and 1986 but could not 

explain the 50 cm difference in the lake levels. Therefore, a possibility of climate shift that 

resulted in high precipitation was proposed to explain the high records in 1838 (Quinn et 

al, 1990). The recurrence of such climatic conditions could result in major flooding and 
1 

huge economic loss. Quinn (1978) studied the effect of regulations on Lake superior. A 

hydrologic response model was used to evaluate these effects. Results showed that 

regulations have caused an increase in the lake Superior levels since the construction of the 

International Railroad Bridge and the Chandler-Dunbar power canal in 1901-1921. Bishop 

(1990) studied the lakes Erie and Michigan-Huron levels using the measured records, 

archeological evidence and historical documents. Maximum possible water levels were 

deduced from archaeological information of early European settlements as well as 

prehistoric Indian settlements. Also, water level data was also deduced from stratigraphic 

evidence and hydrologic simulations. By comparing the deduced data with the measured 

data since 1819, it was concluded that the water levels fluctuations for the last 1800 years 

are not different from the recorded data since 1819. Kite (1990) used spectral analysis to 

analyze some of the observed time series data. A linear additive model consisting of a 

linear trend, periodicity, and autoregressive components was assumed. The above model 

was applied to lake superior levels at Duluth, Minnesota. It was found that 97 % of the 
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total variance can be explained by this model. The trend component was responsible for 

20% of the total variance. It was suggested in that study that the existence of the linear 

trend is a result of "changes in climate" rather than a "green house" climate change. 

Prediction and forecasting on the Great Lakes system is an important subject to 

water resources planners and decision makers. Stochastic analysis can be used in such 

cases to find these predictions and forecasts. Most stochastic models in operational 

hydrology rely on the assumption of stationarity of the data. If the data is not stationary, 

the usual practice in applied hydrology is to change such non stationary data into stationary. 

This is done by removing all parameters which cause the non stationarity like trend and 

seasonality. Privalsky (1992) examined the mean annual water levels of the period 1860-

1988 of lake Erie at Cleveland and found that their mean, variance, and spectrum are non 

stationary and indeed are time dependant. The mean annual data was still non stationary 

even after the linear trend was removed. Therefore, the data was best presented as a 

mixture of a linear trend and a non-stationary product random process with the stationary 

part represented by an AR process. It was found that study that with this structure the 

statistical predictability of the data was proven to be low. Irvine et al (1992) used 

multiplicative seasonal ARIMA models to the monthly mean level data for the period 

1900-1986 of lakes Erie and Ontario. One, two, three and six month step ahead forecasts 

were obtained for the period 1984-1986 and were compared with the observed data of that 

period. Results show that the general trend of the data was reproduced for all the 

forecasting time steps. However, a three month was recommended as the maximum ahead 

steps in order to obtain good results. 
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3.1.3 Other Observed Data 

An apparent shift can be observed in the annual flows of the Colorado River at 

Leez Ferry, Arizona. The observed annual flows at this station are shown in Fig. 3-12. 

The mean for the period 1914-1933 was 17 million acre-ft (mat) while the mean for the 

period 1946-1965 was 13.3 maf (Salas and Boes, 1980). Stockton (1977) used 

paleoenvironmental indicators to reconstruct flows for the past 450 years. He concluded 

that the apparent shift is a result of climate change. In contrast to Stockton claim, change 

in watershed boundary conditions was also proposed to explain the shift in the flows (Salas 

and Boes, 1980). Figure 3-13 shows the mean annual levels for the Great Salt Lake in 

Utah. The water levels started to increase in the 1960's after a long period (1870-1960) 

of decreasing water levels (Kite, 1989). The water levels rose to a record of 1283.77 m 

in 1986. This increase in the water levels resulted in an increase in surface area of the lake 

from 2500 Km2 to 6500 Km2
• Consequently, the damages were estimated as $300 million. 

\ 

The rise in the water levels was caused probably because of the increase in precipitation 

within the basin (Kite, 1989). The three years preceding 1986 were the wettest on record 

and the annual inflows from adjacent rivers to the lake were way above normal for these 

years. Karl and Young (1986) analyzed the Salt Lake basin from a meteorological point 

of view and claimed that such wet period has a return period of around 120 years and 

concluded that the occurrence of such periods is a result of climate fluctuations rather than 

climatic change (Kite, 1989). Potter (1976) showed precipitation records of six stations 

(Fig. 3-14 ) in the North Eastern part of USA that apparently have shifts in their mean and 

argued that most of the shifts in these records are significant. Hubert et al (1989) analyzed 
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the annual stream flow records of the Niger and Senegal rivers from 1900 to 1984 (Figs. 

3-15 and 3-16 respectively). They suggested that the record can be classified into 5 

different phases. The first , third and fifth are characterized by low flow periods whereas 

the other two periods are dominated by high flows. By analyzing the precipitation records 

in the basins of both rivers, Hubert et al (1989) concluded that climatological conditions 

which existed are responsible for the apparent shifts. 

The United States Geological Survey (USGS) published a report called Hydro-

climatic Data Network (HCDN) which is a collection of selected runoff stations in the 

USA for the period 1874-1988. These stations were selected on the basis to study the 

effects of climate variability on the observed runoff. The runoff data of these stations are 

available on a CD-ROM prepared by USGS. The selection criteria of the runoff stations 

can be summarized as follows: (1) Record length. Record length of at least 20 water 

years. All records of less than 20 years were not selected unless the record is uniquely 
\ ' 

located in an under represented geographic area. (2) Record accuracy. Stations are 

included if the mean daily discharge is rated at least good. The term good was defined as 

that 95% of daily mean discharge values are assessed to be within 10% of the true value. 

This rating will reflect the judgement of the office that obtained and prepared the discharge 

records. (3)Basin conditions. All records that have no flow diversions, augmentation, 

regulation of streamflow and reduction in base flow due to ground water pumping. The 

only exception is that when the above conditions remain unchanged throughout the record 

length. If a record is presently affected by the above activities and an earlier part of the 

record is not affected, then only the early part will be selected if it meets the other criteria. 
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(4) Measured discharge values. All discharge data measured by the standard practices 

followed by USGS. If due to any practical problem which prevented measurement, such 

as ice conditions, then the discharge will be estimated. If a large number of estimated 

values existed, then the station will not qualify for HCDN. Also, no station is included in 

the HCDN if the data at that station is constructed using information from other sources. 

Also no filling of missing data or extension of records was carried out in the HCDN. 

Based on these condition, 1659 stations in USA were selected and are available in the 

HCDN CD-ROM. In analyzing some of the records of the 1659 stations in HCDN, the 

following stations were obtained where they show an apparent shifts in their records. 

1. Kalhi stream near Honolulu, Hawaii. 

2. Green River at Green River, Utah. 

3. Beaver River near Beaver, Utah. 

4. Salmon river at White Bird, Idaho. 

It should be pointed out that the author did not analyze all the 1659 stations available in 

HCDN. The author's purpose in analyzing some of the stations in HCDN was to show 

some examples of records that exhibit shifts. The purpose was not to find all the stations 

that exhibit shifts among the 1659 stations. The annual flow records of the above stations 

are available in Figs 3-17 through 3-20. 

Turner (1996) studied the reliability of storage schemes with dendrohydrology and 

the Hurst phenomena. He suggested that the water supply planners should investigate 

whether a yield study period of the water supply storage schemes provides a representative 

sample of long term streamflow characteristics of the watershed. The author suggested 
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that the most recorded severe drought (1928-1934) based on observed streamflow records 

was also the worst drought in 421 years of reconstructed record using dendrohydrology in 

the Sacramento River. On the other hand, the most sever drought (1945-1951) in the 

Santa Ynez River is actually the ninth worst drought in 443 years of reconstructed record. 

Figure 3-21 shows the mean annual flows of these rivers which shows the variability of 

the mean of annual flows during consecutive periods of about 60 years. This suggests that 

the area had experienced different climatological conditions for the past 400( years which 

could explain the apparent shifts in these records. 

Ropelewski and Halpert (1996) studied the relationship between precipitation 

amounts and ENSO in different regions of the world. Specifically, the authors attempted 

to quantify the relationship based on shifts in the statistical distribution of precipitation 

amounts with emphasis on shifts in the median, which are associated with the warm and 

cold phases of ENSO (Ropelewski and Halpert, 1996). The data used was the monthly 

precipitation totals for about 1500 stations in different parts of the world for the period 

1901 through 1992. Figures 3-22 through 3-25 show some of their results. Figure 3-22 

shows the precipitation distribution for northeastern South America. The authors 

suggested that for that region, a subtle shift in the precipitation amounts is associated with 

warm phase conditions of EN SO. In North America region, the authors suggested that the 

range of precipitation amounts between the 10th and 90th percentiles remain near the base 

period range of about 200 mm for the Gulf region (Fig.3-23) for both warm and cold 

phases (Ropelewski and Halpert, 1996). The Great Basin region of North America showed 

a shift toward wetter conditions in association with warm episodes (Ropelewski and 
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Halpert, 1996). The central Pacific, south-central Pacific, and Indonesia regions (Figs. 

3-24 and 3-25 ) experienced dramatic ENSO related shifts in precipitations (Ropelewski 

and Halpert, 1996). The central Pacific median precipitation amount of 2650 mm was 

associated with the warm phase of ENS 0 . This amount is almost twice the base period 

median and more than three times the median amount associated with the ~old phase as 

shown in Fig. 3-25 (Ropelewski and Halpert, 1996). 

3.2 Causes For Shifts in Hydrologic Processes 

Many geophysical time series have been shown to exhibit shifts in their records. 

Several reasons were suggested to explain these shifts. These reasons can be summarized 

as follows: 

1- Climate 

Nowadays, it is not possible not to hear about the effects of climate on our daily 

lives. The most recent example is the current increase in coffee prices allover the world 

which has been connected to climate conditions in South America. The Boston Globe 

(February, 1997) reported that this increase in coffee prices is the most increase since the 

1970' s and expected that the prices will continue to rise. Climate is one of the important 

elements which effects the geophysical time series such as precipitation and runoff records. 

There is a definite relationship between climate conditions and precipitation amounts which 

in turn will effect the runoff process. Much research have dealt with analyzing, exploring, 

and identifying relationships between climate and precipitation. Of importance to us are 
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the studies which dealt with possible climate conditions which can cause shifts in the 

statistical properties (such as the mean or median) of observed geophysical processes. 

Several studies had suggested that there is a consistent relationship between precipitation 

and E1 Nino events. E1 Nino is a climate event associated with anomalous 

warmings of the western coasts of the South American continent especially Peru, Ecuador, 

and Chile. Quinn (1987) provided a detailed definition of E1 Nino as follows: 

"Originally, EI Nino referred to the warm current that sets southward each year 

along the coast of southern Ecuador and northern Peru during the southern 

hemisphere summer when the southeast trade winds are weakest. It was named EI 

Nino ("the child") by devout inhabitants of this region in reference to the "Christ 

Child" since it ordinarily sets in shortly after Christmas. " 

El Nino has become one of the hot topics that even the layman is aware of 

because of its climatic and economic impacts around the world. Barber (1988) illustrated 

the economic impact of the 1972-1973 E1 Nino on world market. That event was 

responsible for decreases in Anchovy Catch and increases in the soy consumption. This 

resulted in higher prices for soy around the world which resulted in permanent clearings 

of Amazon forest and North American wetlands for agriculture. As a result, investigation 

of E1 Nino which includes forecasting and predicting of E1 Nino events and the 

possible impact of such events on precipitation and agriculture is one of the important 

topics that not only interest scientists but also the average layman. 

Ropelewski et al (1986) analyzed several temperature and preci pi tation records in 

different regions in USA, Canada, and Mexico to investigate the possible association 
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between temperature and precipitation patterns with the El Nino I Southern Oscillation 

(ENSO) events. The study showed that the above normal precipitation amounts in the 

regions of southern US and northern Mexico are consistently correlated with ENSO years 

(Fig. 3-26). Of the 22 ENSO events, 18 are associated with above norma precipitation in 

this region as shown in fig. 3-26. Similar findings were reported for the Great Basin area 

of the western USA (Fig. 3-27). However, in the high plains area, there was no evidence 

of association between ENSO and precipitation amounts in that region (Fig. 3-28). 

Temperature patterns were also found to be consistent with ENSO events in the areas of 

Alaska and western Canada. These regions experimented positive temperature anomalies 

during ENSO years. On the other hand, parts of southern USA experienced negative 

temperature anomalies in ENSO years. 

In a recent study, Ting et al (1996) illustrated that there is an apparent consistency 

between north pacific sea temperatures (SST) and the precipitation over the Great Plains 

region. Specifically, the authors used a singular value decomposition between North 

Pacific SST and precipitation in USA for the period 1946-1988. They suggested that a 

wet year over the great plains is accompanied by above normal SST over eastern north 

pacific and below normal SST over the central north pacific. O'Brien et al (1995) 

suggested that the USA precipitation is largely associated with El Nino and EI Viejo. 

However, Ting et al (1996) in studying the relationship between winter time telconnection 

patterns during extreme phases of the zonal mean circulation and the El Nino I ENSO 

events for the period of 1947-1994 suggested that the large mid-latitude natural variability 

may also contributes toward the anomalous U.S. precipitation. 
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Eltahir (1996) explored the hypothesis that the natural variability in flows of the 

Nile river is related to ENSO events by testing the relationship between the annual flow 

record at Aswan and the SST anomaly for the period 1872 through 1972. The author 

provided a mathematical relationship between ENSO and the annual flow record at Aswan. 

The author concluded by proposing the hypothesis that the mean of the annual flow process 

in the Nile River varies in time following ENSO, resulting in a non-stationary process and 

causing the Hurst phenomena. 

The controversy over the responsibility of El Nino / ENSO to cause upnormal 

events has not yet been solved. Some scientists believe that ENSO itself may be changing 

due to long term rise in sea surface temperatures over the entire equatorial pacific (Science 

Bit, 1996). To put this issue in prospective, NCAR climatologist Gerald Meehl states 

(Science Bit, 1996): 

"There is the possibility that the mean SST regime in the pacific has warmed up 

due to some kind of longer term fluctuation. In that case, you could have 

oscillations occurring that are superimposed on that warmer mean. If you compare 

these recent oscillations to the older mean, it's all going to look relatively warm, 

like a perpetual El Nino. If the average state of the climate system is 

undergoing longer term fluctuations, then what you define as El Nino or 

La Nina La Nina depends on what you take as the mean itself" 

The long term changes in the climate can also supported by the argument that some regions 

which were covered with ice and snow millions or thousands years ago are now farm lands 

or in some cases changed to deserts. Turner (1996) showed that the reconstructed (using 
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tree rings) mean annual flows in the Sacramento and the Santa Ynez Rivers varies 

significantly for the past 400 years. Long periods of time (60 years) were shown to be wet 

when compared to other periods which can be considered as dry. 

Several investigations of the possible effects of climate change on the hydrologic 

processes have been done. Flascka et al (1987) applied a water balance model to some 

selected watersheds in Nevada and Utah. Their results indicate that with an increase in the 

average annual temperature by 2° C cOl:1Pled with a 10 percent decrease in precipitation 

would result in reducing runoff from 17 to 28 % of the present mean (Flaschka et al, 

1987). Lettenmaier et al (1990) used a rainfall snow melt - runoff models to simulate 

runoff in four catchments in California. Climate scenarios produced from different 

GCM's with CO2 doubling assumption were used to drive the rainfall snowmelt - runoff 

models. Results show that runoff will be shifted from spring to winter and also deliveries 

from the reservoirs will be lowered under the produced climatic scenarios. More recently, 

Gutowski et al (1993) used a physical model for severe hurricanes to study the effect of 

global warming on hurricane - induced floods in southeastern Florida based on CO2 

doubling climate change. Results show that under this assumption a 40 % increase in 

precipitation for severe hurricanes would result in the studied area. As a result, the 100-

year flood which is used for many water resources management in that area would increase 

by 10% and the flooded area would increase by 22 % . 

2-0ther Factors 

There are many other factors that can effect the geophysical time series. Watershed 

31 



conditions is an important factor which can have a great impact on the geophysical 

processes. There are many factors which will effect the response of a watershed. Geology, 

topography, soil type and condition, vegetation, degree of urbanization ..... etc will effect 

the response of a certain watershed to an input such as precipitation. The watershed 

conditions always change with time and the degree of change depends on the intensity of 

the forcing factors and the unique characteristics of a certain watershed. Natural events 

such as earthquakes, land slides, fires .... etc may have a great impact on the response of 

a watershed and thus changing the hydrologic balance of this watershed. Scott D.F (1993) 

studied the effects of man-made fires in some catchments in south Africa. It was found in 

that study that, as a result of these fires, the hydrographs of post fire periods were higher 

and steeper. The duration, however, was little changed. The most important reason for 

the changes in the hydrological response of the studied catchments is the reduced 

infiltration which is caused by the water repellency of the soils of the burned catchments. 

Other factors that also contribute to the response of a catchment to fires are soil properties, 

degree of soil heating and vegetation. 

Human activities when dealing with water resources systems have a major impact 

on these systems. Many activities will cause changes in some parameters of the watershed 

conditions and as a result some changes in the observed water resources time series might 

occur. The major activities by humans that can have significant effect on the water 

resources of any area are: 

1-Reservoir or dam construction. 

2-urbanization. 
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3-water use by agriculture or industry. 

There are many purposes for building dams and reservoirs. Some of these purposes 

are flood control, water storage, power generation ... etc. These dams or reservoirs will 

have a significant effect on the distribution of the down stream flow. Flows which are 

released from them will be regulated. Seasonal variability of the original flows will be 

altered and changed because the dam or the reservoir will decrease the outflow in the flood 

season and increase it in the dry or low season. As a result, the temporal distribution of 

the outflow will be less variable and more uniform. Williams and Wolman (1984) 

reported an average decrease of 40 % of the annual flows below 29 dams in the central and 

western united states. 

Another effect of dams is that they trap sediment behind them and prevent the 

downstream movement of this sediment. This process will have significant effects on the 

size and shape of downstream channels and thus effecting the flows downstream (Hirsch 

et al, 1990). To study the effect of dams and reservoirs, the Platte River in Wyoming, 

Colorado and Nebraska is a good example. Major storage structures were built in 1909, 

1938, 1939, 1941 and 1957 along the river. This major regulation had substantially 

decreased the annual instantaneous peak discharge at North Platte from about 511 m3 Is 

before 1909 to about 72 m3
/ s after 1957. Also, decreases in channel width occurred at 

many cross sections along the river. In contrast, the mean discharges of the Green river, 

which is a major tributary of the Colorado river, were not affected by the construction of 

the Gorge reservoir in 1962 even though the sediment discharge was decreased by 21 % 

(Hirsch et al, 1990). The construction of large reservoirs may also have significant 
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impact on the local climate conditions. With the existence of large reservoirs, the 

evaporation rates will be affected because of the existence of a large source of moisture 

for the atmosphere (Bates et al, 1994). This will possibly result in a local climate change 

and thus resulting in significant effects on the water resources of the area. In a study to 

evaluate the effect of the Great Lakes on the local climate of the lakes area, Bates (1993) 

used a local atmospheric model coupled with a global GeM to find that the existence of 

the lakes is responsible for 50-70 % of the precipitation amounts over the lakes area. 

Urbanization has a significant effect on the response of a watershed and thus on the 

observed output (i.e. runoff) from that watershed. With urbanization, parts of the 

watershed will be changed into impervious areas. This change will result in decreases in 

the amounts of water that are usually lost due to the infiltration process and thus increases 

in the surface runoff will result (Hirsch et al, 1990). Also, as a result of urbanization, the 

runoff velocity will increase and the time of concentration, defined as the time between 

the center of mass of precipitation to the center of mass of runoff, of the watershed will 

decrease. As a result, the peak discharge will increase even if the total amount of runoff 

is constant (Hirsch et ai, 1990). The effect of urbanization on smaller floods is greater 

than the effect on large floods (Hirsch et al, 1990). This is because for large floods, the 

soil will be usually saturated and thus infiltration losses will decrease and as a result the 

soil will behave as an impervious material. 

Water use by industry or agriculture is another factor that will cause changes in the 

water resources of an area. This is because the use of water by these industries is 

increasing every year due to population increases and the higher standard of living of 
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people. Therefore, many water resources projects were developed to supply water needed 

by these industries and as a result, changes of the water resources of that area are 

expected. Also, because of human activities to cultivate land, significant changes in the 

watershed conditions could happen and as a result changes in the response of the watershed 

are also expected. 

Besides the above three activities, there are many other human activities that could 

have significant effects on the water resources. Examples are interbasin transfers, land 

drainage, mining, man induced vegetation and channel alterations. 

35 



140.---------------------------------------~ 

-w 120 .s 
CD 
E 
o 
:g100 
o -o 

'" "E 
~80 

g 
~ ...J60 
u. 

40+---~_.--~--._~--,_--~_.--~--~~--~ 

1870 1890 1910 1930 
Year 

1950 1970 1990 

Fig 3-1 Historical annual flows for the Nile River at Aswan 
(1871 - 1989) 

70~--------------------------------------~ 

10+-~~--~~~--~~~~--~~~--~~~~ 

1910 1920 1930 1940 1950 1960 1970 1980 1990 
Year 

Fig 3-2 Historical annual flows for the White Nile River 
at Mongalla (1914 - 1983) 

36 



~,-------------------------------------------~ 

0 45 

S 
Q) 

E 
040 
:c 

::::J 
o -~35 

"E 
~ 
g30 

~ 
....J 
LJ.. 25 

-- -- -------:-A-;--Mf\j--------- ------ ---{ 
--V--y-\;J----v------------------------------

20~~--r_~~--~~--~~~--~~~~~~--~~ 

1910 

Fig 3-3 

1920 1930 1940 1950 1960 1970 1980 
Year 

Historical annual flows for the White Nile River 
at Malakal (1912 - 1989) 

1990 

l00.-------------------------------------------~ 

BO -------------------------------------------------

~ 
$ 
Q) 

~ 60 t----- ---------------------------
ii 
:::J 
U 

'0 40 
", 

"E 
~ g20 
~ 
Z 

o 

1910 1920 1930 1940 1950 
Yea, 

1960 1970 1980 1990 

Fig 3-4 Historical annual NBS for Lake Victoria (1913 - 1989) 

37 



~~-----------------------------------. 

_ 15 
e! 
~ 
E 10 
o 
:0 
~ 
o 
'0 5 
(/) 

"E 
Jg 
gO+-~f----J--""'----++--H-'\--h-1---"~-\-1';;::Hf-+-++---"M-l 

(f) 
III 

Z -5 

-1 0 -t--,---.-----,---,----,--.--_.____--.-~__r----.--r__-r--_._~___j 

1910 19~ 1930 1940 1950 1960 1970 1980 1990 
Year 

Fig 3-5 Historical annual NBS for Lake Kyoga (1913 - 1989) 

15~-----------------------------------. 

~ 10 

~ 
E 
o 
:0 
~ o 
'0 
(/) 

"E Jg O+-----i---------.lI-+F---------+-I------------I 

g 
(f) 

~ -5 

-1 0 +---,---r-----,---r---,r---.,..---.----r---.------r____.--~_.______r_~____t 

1910 19~ 1930 1940 1950 1960 1970 1980 1990 
Year 

Fig 3-6 Historical annual NBS for Lake Albert (1913 - 1989) 

38 



1~r-----------------------------, ~r-----------------------------~ 

500 ••••.•.••...••.•.....•.•.•.....••••..••••.•••••••••••••••••••.••.••.•... 
1200 

~+-~~-r~~~~~~~~~~~~ 
1900 1910 1920 1930 19040 1950 1960 1970 1980 1990 

Y-

·100 +-~~-r~~~~-,-~-.-~-r--..--.~--I 
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 

Y-

Fig 3-7 Historical annual NBS for lake Superior (1900 -1989) Fig 3-8. Historical annual NBS for Lake Erie (1900 - 1989) 

1~...-------------------------------, 

120 •......................................................................... 

100 

j: 
:3 40 
Z 

20 

.2O+-~~-r~~~r-..--.~-r~~~~~ 

1900 1910 1920 1930 19040 1950 1960 1970 1980 1990 
Y •• 

Fig 3-9 Historical annual NBS for Lake St.Clair (1900 - 1989) 

2200 800...---------------------, 

2000 •.••.•.•.••.••••...•....•.•.••..•.•..•..........•....•...•.....••..... 

1800 ................................................................ . 

:S1~ 

j1400 

11200 
(I) 

~1000 

800 

800 •....•......••.•.•..•.•.••.•..•....•.••.•.....•..•..••...•.•....•......• 

~+-~-~~~~~~~~~~~~ 
1900 1910 1920 1930 19040 1950 1960 1970 1980 1990 

Y-

Fig 3-10 Historical annual NBS for Lake Michigan-Huron 
(1900-1989) 

700 ........................................................................ . 

2OO+-~~-r~~~~~--~~~~~~ 

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 
Y-

Fig 3-11 Historical annual NBS for Lake Ontario (1900 - 1989) 

39 



3SOOO l 
30000 

I 
I 
;\ ; \ II , 

$ 25000 -; 
j \ I ! I 

\ 

:a. I 

1 ~ 

\ 
:. , 

ir~/~ ~ § 10000 + (\ \ 
I \ V \ :-

3 ISOOO i· 
:J ~ II ~ I I 
; 10000 .:. 

.... 

I 1/ 
~ I 

i 
U SOOO T 

o •. I -
1900 1920 1940 1960 1980 2000 

YEAR 

Fig 3-12 Historical annual flows of the Colorado River at Leez Ferry, Arizona for the period 
1914 through 1920 . 

.... 

." ... 
CD 

~ 
•. g 
...:~ 
eN ,-
~~ 

ii 
N -a 
a 
,e 
.~ -a 
In 

I:: 
'~+---~--~----~--~---r--~--~~--__ --~--~ 

lIsS1. tiLe. 18S1. 1893. lSU. 1~. 1~"1. ~~. lS11. U.fIi. 20"1. 
T.~,. 

Fig 3-13 Historical mean annual levels for the Great Salt Lake, Utah. After Kite (1989). 

40 



z 
o 
~ 

i 

~ 

i ... 
'" 0 • -' 

i 

.' 

• . 
d' •• • 

. . . . . . -
.' 

.. . . 

· . . .. 

. ' . . .. " .... . 
e ...... a. • ... .. 

.. . --. . . . . 
" · 

. . 

.. 

. .... • •• .U 

q .-. .. . -. . , •• a •• .. .. . .. 

. .. a, ._ 
" 

., . , .' " • I . 
, " .. '. . · ., 

" 

. 
e ••• 

· -.... : -t· • • ••• • _ •••• -a; _ ... .. . . . -
.. .. 

. y' .. .. ..-

. . . · . ...-'-~--~~~~~~~~.'~'-'-'~"~"~"----~'~' .U _ •• • •• ". 

e •• - ......... ".. • • . . 

I • 

. . ' . , 

· . 

. . .. . .... 
' .. 

'. 

. . 

" -, . .. 

..... '" 
'" I , Ii I v. ..' • I, 

• • •• i • .-
~~~~~~~·~'~·~~~_~~~:_·--_'~w~·~·~·~· . • .. e. • i •• • ~'.: .. ., . .' .. . . 

" 

2DJ 

I :~ ..... . t. ,. I. c' • 

& ' 
. . ",. 

i .. . 
•• 

J 

.. 

s ..... · ... _ ... _.: 
§ 

... _ .. 

. "" ..• -.-· .. . .......... ~.-...;.--' .. .. -' . . 
.. 

• .JI •• •• . . ' ..... , 
.. . "' . 

, . 

.. 

. . .. . . . . 

.. 
· . . .-. .. . .. ..•. . .- ..... . .... ' .. _ .... 

--~ •• ~~~>~"-.~--~~'.V.!' • .... 
• _. a. ... a. • •• 

3s.o. 
1 iii , iii i , --_ .... __ .. _--- iii 

____ ... .l. 

Fig 3-14 Precipitation Records (in inches) for six stations in the Northeast~ USA 
After Potter (1976). 41 



--.~ , 
: 
i 

. 
! 

. 
! 

~ 
-. 

: 
I 

: 
a 
'Me loll' l.a .. .aw ~ ..... , .... ,.,. 

~ ~ 

Fig 3-15 Historical annual flows (cfs) for Niger River at Koulikoro. After Hubert et a1 (1989). 

· ~ .... 
= 
.~ 

· 
· .. 
;: 

• · =-
~ 

· · .. · .. 
• a.. .~ .". 

Fig 3-16 Historical annual flows (cfs) for Senegal River at Bakal. After Hubert et al (1989). 

42 



180 ~------------------------------------------------~ 

160 

140 

fil 
t. 120 
~ 

:: 100 o -
5 
~ 80 
~ r: 60 
~ 

40 

20 

o +-~--~~--~--~~--~~~~--~~--~~--~~~ 
1910 1920 1930 1940 1950 

YEAR 
1960 1970 1980 1990 

Fig 3-17 Historical annual flows for Kalhi stream near Honolulu, Hawaii. 

1600,1-----------------------------------------------

1400 1 

::: 1000 o 
~ 

~ 800 I ~600 

400 T 
200r--~--r_~--._~--,_~T--~--~~--~~--~~ 

1900 1910 1920 1930 1940 1950 1960 197 
YEAR 

Fig 3 -18 Historical annual flows for Green River at Green River, Utah. 

43 



500~------------------------------------1 

~O! ~ 

roo t 1 j\ I r \ 11 J 
~ 250 1 \f \1 \ / \ I 

I I \/ \ 

r • ;/ 200 , 
I 

t 
150 -;-'---r--~---'----r------.---r----:----r---1 

1900 1920 1940 1960 1980 
YEAR 

Fig 3-19 Historical annual flows for Beaver River near Beaver, Utah. 

2200 -,-----

:!ooo .;.. 
I 

1800 L o : 
g 1600 1 
:: i 
1""'\ : 

::s 1..lQ() 1 
:: i 

3 1200 t 
~ 1000 1 

I 
I 800+­
I 
~ 
I 

600 !--~---~I--~--~--~ __ ~ __ ~ ____ __ 

:!ooo 

1920 1940 1960 
YEAR 

1900 1980 2000 

Fig 3-20 Historical annual flows for Salmon River at White Bird, Idaho. 

44 



20 

18.0 

COLORADO RIVER -13m!. 

, .... 
t3.8 

12.1 

w 11,A ---- 12 
..a tU - -... 

.t.-4",0_ 

'1 

~l" 
'mit 

~I 
-II 

-,aD 
" i o 

.'j -ua 
,~ 

-1AO l-~-----r------,Tgo------,~~------~,~~----~,_~----~,~~----~,.o~~--~,~~-----:~ Q 
1S11O ,-

'! 
• ~.~ 

o 20JI 123 
~ -

• ~ 
Z2.5! 

Q 

~ 

c 
2Q.Q~ 

~ 

'; -1 i1" ~:~AR~ 
~ i ,- 110n 101",/ 18.1 
... 20 '\ ",'" 19.2 

i ~. . . .1.", ·~~··~~l·":iwr:t'\it.· 17.4 •• '---",~'''j'vN'''''''' .... -:~.... 175 i 
2 :i..aJ 90% 81% V ~l I\)rt'J 15.0 ~ 
~ ~ z 

"'" z z l. __ ----~~----~------~----~----~~----~----~~----~----:=,u ~ o ....., 1111Q 11QQ 1750 1800 1850 1.0 ltao 2OCIO ~ ~ 1550 1Il00 YEAR j 
Q 2HZ -U 397% 

SANTA YNE RIVER 

295% 
190 ~ 

• 17Q! 
'SO ~ 

.5 
130 

~ ... -.............. ~; ....... -.................. ~; ......... ~p. ....... ~·I 
40 

a 

30 -2!- --;;;- 67% 30 ~ 
-1.0 46% 51% ~ 

~~~~~~------~----~------~----~------~--__ ~ ______ ~ ____ ~'a 2 
'560 

,. ,. ,. 
11aO 

,_ 2OCIO 

Fig 3-21 Accumulated Deviations of Mean Annual Flow from the Overall Mean, and Mean 
Annual Flows for Generally wet, Norma;, and Dry Periods from Dendrohydrolo­
gically Unimpaired Streamflows. After Turner (1996). 

45 



~ ... 
u .-
u e .-----.-
~ 

Nortfiea$fS6utftAmerica 
JuI(Ol"': Mar(+); 

1500 

1400 

"1300 

1200 

1100 

1000 

900 

800 

700 
WARM BASE COLD 

Fig 3-22 Precipitation distributions for (from left to right warm episodes, the base period, and 
cold episodes for northeastern South America. The horizantal line on each solid box 
represents median(50th percentile) precipitation amounts. Each solid box delineates 
the 70th (top) and 30th (bottom precipitation percentiles. The vertical line delineates 
the 90th and 10th percentile values. After Ropelewski and Halpert (1996). 

46 



Gulf and Northern Mexico 
. . 

Oct(O) .~ Mar(+) 
600 ----~----~--~~----~ 

500 

~ 
u ... 
u 
e 400 .­--.-
~ 

300 

200 L-__ ~ ____ ~ ____ ~ __ ~ 

WARM BASE COLD 

Fig 3-23 Precipitation distributions for (from left to right warm episodes, the base period, and 
cold episodes for northeastern South America. The horizantalline on each solid box 
represents median(50th percentile) precipitation amounts. Each solid box delineates 
the 70th (top) and 30th (bottom precipitation percentiles. The vertical line delineates 
the 90th and 10th percentile values. After Ropelewski and Halpert (1996). 

47 



en 
"-
0 -0 
e .---.-
~ 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

Central Pacific 
May(O) - Mar(+) 

500 ~----~----~--~------
WARM BASE COLD 

Fig 3-24 Precipitation distributions for (from left to right warm episodes, the base period, and 
cold episodes for northeastern South America. The horizantal line on each solid box 
represents median(50th percentile) precipitation amounts. Each solid box delineates 
the 70th (top) and 30th (bottom precipitation percentiles. The vertical line delineates 
the 90th and 10th percentile values. After Ropelewski and Halpert (1996). 

48 



en ... 
Go.) ... 
Go.) 

e .---.-
~ 

1900 

1800 

1700 

1600 

1500 

1400 

1300 

1200 

1100 

1000 

900 

800 

700 

600 

Fiji/New Caledonia 
Oct(O) - Mar{+) 

. . 

WARM BASE COLD 
Fig 3-25 Precipitation distributions for (from left to right warm episodes, the base period, and 

cold episodes for northeastern South America. The horizantal line on each solid box 
represents median(50th percentile) precipitation amounts. Each solid box delineates 
the 70th (top) and 30th (bottom precipitation percentiles. The vertical line delineates 
the 90th and 10th percentile values. After Ropelewski and Halpert (1996). 

49 



Vl 
0 

.... ... "... , .. 

M 

I -
LIJ 
-' -.... 
Z 
&AI 
U 
~ 

"" L 

• 

-I • • I 

i "I AI Ii ~"-I" I" II i i "I" Ii "I i I"" d tw" i ru i.l" III u., i H. Ii ,II q i I HI i ~)I Ii" " 

--I II - II II 

.• 7' . .. •• .IIS 1'05 

II II 

"'S "25 •• 11 ""1 tlSS 

GULF AND MEXICAN REGION 
(OCT-MAR) 

U 

'.IS 117' 

100 

I- 75 

50 

L... 25 

o 
I'" 

Fig 3-26 Time series of the GM region, i.e., Gulf and Mexican, precipitation for the October(O) to March(+) season. Precipitation 
is represented by the average of the precipitation percentiles for each of the stations within the area; ENSO years are 
represented by the dark bars. Of the 22 ENSO episodes shown here, 18 are associated with above normal precipitation in 

the Gulf area. After Ropelewski and Halpert (1986). . 



x 
~ 
0-
z 

)C 

'" Q 
Z -

~--~----~--~--~--~--~--~--~lao 

".S I'Z5 

I I 

-

.. 

-

• I 

I"S lias 

INI 

r 

rt rt 
l 

I . 

'145 , .. s 

GREAT BASIN 
(APR-OCT) 

r j r 

• 
II ~UL ~ 

, , , 

1 

~I 
L 

r 
,as. .,.S • ISS IHS 1175 

GREAT BASIN 
(APR.-ocr) 

a 

75 

50 

- 25 

a 
'ns 

I b 
t a a 

I-- 7S 

~ r - 50 

~ 25 

-

I '0 
.MI 

Fig 3-27 As in Fig 3.26 except in the Great Basin area for the April(O) to October)O) "season" 
based on (a) the climate division and (b) station precipitation. Of the 11 (14) ENSO 
episodes in the climate division (station) time series, 9 (12) were associated with above 
normal precipitation. After Ropelewski and Halpert (1986). 

51 



w 
.,j -... z 
'" u 
~ 
~ 
L 

)C 

10M 
Q 
Z 

1M .... -

~----~--~--~----__ --~--~--~-tOO 

HICH PLAINS 
(APR-OCT) 

a 

7S 

so 

2S 

a 

--------------~----~--~--~--~----~------~----~--~tOO 

HIGH PLAINS 
(APR.-OCT) 

b 

Fig 3-28 As in Fig 3.26 except for the High Plains region, based on (a) the climate division and 
(b) station data. A consistent ENSO-related response is not evident for this area. After 
Ropelewski and Halpert (1986). 

52 

7S 

so 

2S 

a 



CHAPTER IV 

UNIV ARIA TE SHIFTING MEAN PROCESS 

4.1 The GNN Model 

In this chapter, the GNN model will be defined and formulated. Parameter estimation 

methods will be introduced and analyzed. Generation experiments will be done to test the 

performance of the estimation methods. This will be done by generating data from GNN 

using preselected population parameters. The sample parameters estimated from the 

generated data will be compared with the population parameters. Then, the GNN model will 

be applied to observed hydrologic data. The observed data will be fitted by appropriate GNN 

models. The parameters of the models will be estimated using the methods of parameter 

estimation mentioned above. Simulation studies will be conducted with the fitted models. 

This will be done by generating data using the estimated parameters. The generated statistics 

will be compared to the observed statistics to test whether the GNN model is capable of 

simulating series similar to the observed data. In addition, the GNN-I model will be 

formulated and tested by simulation experiments. 

4.1.1 Model Formulation 

Let {NJ be a sequence of iid positive integer - valued random variables (Boes and 

Salas, 1978~ Boes and Salas, 1980). These random variables represent the random time span 

of common means. Let {Mj} be a sequence ofiid random variables with mean = Jl and 

variance = (J~ • These random variables represent the different means for the different time 
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2 
spans. Let {Zn} be a sequence of iid random variables with mean=O and variance= Oz 

These random variables represent the noise terms. Also assume that the sequences {Nj }, {~} 

and {Zi} are independent. Now form the following series (Boes and Salas, 1978): 

M3 + ZN
1 

+ N2 + 1 ' •••• M3 + ZN + N + N , •••• 
1 2 3 

The nth term of the above series is defined as: Xn = Mn* + Zn where 

M* = n 

n 

= L M. i(s. s.](n) 
) J-l' J 

j=1 

where 

Sj = Nl + N2 + ....... + ~ ; So = 0, and I is the indicator function. Now when {N} 

is geometrically distributed and {M} and {Z} are normally distributed, the shifting level model 

is called the GNN model. 
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4.1.2 Moment Equations of The GNN Model 

The GNN model can be expressed at time t as: 

(4-1) 

The mean of the X process can be found by taking expectation in Eq. (4-1) 

which suggests that the GNN model is stationary in the mean. Multiplying both sides ofEq. 

(4-1) by X. gives 

(4-2) 

Taking expectation ofEq. (4-2) 

and since Z and M are independent, i.e. E (Mt* Zt) and E (ZtMt* ) are both equal to 

zero, Eq. (4-3) reduces to: 

(4-4) 

55 



In addition, since E (Mt* Mt* ) = E (MtM
I

) (Boes and Salas, 1978) and 

E (X,xt ) = a; + J.12 , 

E (M#t) = a! + J.12 and 

2 
E (ZtZt ) = az 

then from Eq. (4-4) it follows 

which indicates that the GNN model is stationary in the variance. 

Multiplying both sides ofEq. (4-1) by ~-k gives 

(4-5) 

(4-6) 

Taking expectation ofEq. (4-6) and considering that M and Z are independent, it follows 

(4-7) 

Furthermore, since Z is uncorrelated , Eq. (4-7) simplifies to: 

(4-8) 
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In addition 

cov (M,* , M/~k ) = E (M/ M/~k ) - E (M,* ) E (M/ ~k ) 

= E (M,* M/~k ) - Jl2 

COV (XI ' ~-k ) = E (XI ~-k ) - E (XI) E (~-k ) 

= E (X, ~ _ k ) - Jl2 

so that 

(4-9) 

Moreover, assuming that the Ni'S are geometrically distributed Boes and Salas ( 1978) showed 

that: 

(4-10) 

where p is the geometric distribution parameter. Then Eq. (4-9) can be written as 

k>O (4-11) 

where Px(k) = lag-k autocorrelation coefficient of the X process. 

Considering time lags i and k such that i < k the following can be written from 
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Eq. (4-11): 

2 
Px(k) ax 

px(i) a~ 
= 

a~ (1 - p)k 

a~ (1 - p)i 

and after simplifying it yields 

PxCk) = C1 _ p)k-i 
PxCi) 

(4-12) 

(4-13) 

Then the parameter p can be expressed as a function of the lag-i and lag-k correlations as 

-- 1 - [PxCk)]k~i fi k nd k P or i > 0, > 0, a i < 
Px(i) 

2 
Furthermore, from Eq. (4-11) one can get am as 

PxU) a~ 
(1 - p)'" 

for i > 0 

Also, from Eq. (4-5), we can express a~ as follows: 

4.1.3 Range Properties of the GNN Model 

(4-14) 

(4-15) 

(4-16) 

In discussing the range properties of the GNN model, Obeysekera (1980) showed that the 
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following asymptotic equations for the mean range Rn and the mean rescaled range Rn* * 

that were developed by Troutman (1976) for continuous models are applicable for the GNN 

model: 

1 1 
2 - -

E [R] ~ 2 (_)2 'Y n 2 
n 1t 

(4-17) 

1 1 

E[R **] ~ (~)2 ~ n 2 
n 1t 

(4-18) 

where 

00 

~2 = 1 + 2 L Px(k) (4-19) 
k=l 

00 

f = 0; ( 1 + 2 L Px(k» (4-20) 
k=l 

From Eqs. (4-19) and (4-20) 

(4-21) 

Obeysekera (1980) showed that for the GNN model, y2 ofEq. (4-20) can be expressed as: 

(4-22) 
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or 

(4-23) 

Then the parameter p of the GNN model can be expressed as: 

2 P (1) 
P = x 

p2 - 1 
(4-24) 

4.1.4 Run Properties of the GNN Model 

The expected value of the positive run length for the GNN model can be expressed 

as (Obeysekera, 1980): 

f G(Q-m) fJm) dm 
1 - P G(Q-m) 

E(T+) = ------------ (4-25) 

1 - (1- p) f G(Q-m) fJ..m) dm 
1 - P G(Q-m) 

where E(T+) = expected value of the positive run length at a truncation level Q, p = I-p, 

and 

00 

G(Q-m)= f fz(z) dz 
Q-m 

1 2 1 --x __ e 2 

/i1c 

(4-26) 

(4-27) 
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4.1.5 Parameter Estimation of The GNN Model 

The parameters to be estimated are: p (geometric distribution 

parameter), a~ (variance of the M process), and a; (variance of the Z process). 

Method of moments (MOM) 

In this method, the population parameters are equated to their estimates from the observed 

sample. Therefore, from Eq (4-14), the parameter p can be estimated as 

" = 1 _ [Px(k)]k~i 
P " (.) Px I 

for i >0, k > 0, and i < k (4-28) 

In this dissertation, the choice is made that i is always less than k. This choice is adapted 

2 
throughout this dissertation unless otherwise indicated. From Eq. (4-15) am can be 

estimated as: 

pii) a; 
(1 - flY 

for i > 0 

Likewise, from Eq. (4-16) a; can be estimated as: 

where a; and Px(k) are estimated from the observed series as follows: 
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n-k 

L (XI - x) (XI_k - X ) 
1 1=1 

- - -------------------n 

in which x is the sample mean and n = sample size. 

(4-31) 

(4-32) 

It is clear from Eqs. (4-28) through (4-30) that the estimated parameters depend very 

much on the choice of i and k. Different estimates can be obtained by choosing different i and 

k combinations. It is possible that the chosen i and k will produce unreasonable estimates of 

the parameters such as negative variance for the {M} or the {Z} process. To identify which 

values of i and k can be used to estimate the model parameters, the following (parameter 

space) conditions must be met by the GNN model: 

(1) 0 < p < 1, (2) a~ > 0, and (3) a; > o. 

Equation (4-28) suggests that for the condition (1) to be met, the following should 

be satisfied 

[
" (k)]_l. o < ~ k-I < 1 
Px(i) 

for i<k and k>O 

Since i is less than k, the following should be true 
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and Px(i) and Px(k) are both positive or negative. 

Equation (4-29) suggests that condition (2) is always true if 

and since O<p<l, then the lag-i correlation coefficient Px(i) used in the above equation 

must satisfy the following condition: Px(i) > O. Furthermore, from condition (I) both lag-i 

and lag-k correlation coefficients must be both positive or negative, then the following must 

also be true 

'f ,,2 < ,,2 Equation (4-30) suggests that condition(3) is always true 1 am ax' Then from 

Eq.(4-29), we can conclude that 

< 1 

Furthermore from this condition to and Eq. (4-28), we can also conclude that 

After some algebra it gives 
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k 

[i\(i)] i < Px(k) 

In summary, the sample correlations that are used to estimate the model parameters 

using MOM must comply with the following: 

(a) Px(i) > 0 

(b) Px(k) > 0 

(c) Px(k) < Px(i) 
k -

(d) (Px(i)) i < Px(k) 

Parameter Estimation Using Regression Analysis 

The least squares method is widely used in estimating the parameters of several 

stochastic models such as the ARMA(p,q) model. Since traditional least squares methods are 

not applicable in the case of the GNN model, the regression analysis was used instead. 

Taking natural logarithm of both sides ofEq. (4-13), one can write: 

[ 
P (k)] 

log _x_. = (k-i) loge! - p) 
Px(l) 

for i < k (4-33) 

which is a linear regression equation of the form: 

Y=bX+Q 

[
Px(k)] where Y = log --. 
pi1) 

x = k - i b = loge! - p) and a=O. 
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The coefficient b can be estimated using the least squares method as 

b = _;=_1 __ _ 

L 

L x~ , 
;=1 

where L is the number of lags used in the regression model. Then the parameter p can be 

estimated as 

p = 1 - exp[b] (4-34) 

Finally the parameters a! and a; can be estimated using Eqs. (4-29) and (4-30). 

The difference between using this method of estimation over the direct MOM is that 

in the direct MOM only two correlation coefficients are used to estimate the model 

parameters as seen from Eqs. (4-28) through (4-30). On the other hand, in the regression 

method more than two lags are used to estimate the parameter p. This suggest that more 

information is used in estimating the model parameters and thus this method may be more 

reliable than the direct MOM. Note also that the parameter space of this method is exactly 

the same as the direct MOM. In other words the conditions imposed on the sample 

correlation coefficients that are used to estimate the model parameters in the direct MOM are 

the same for this method. Therefore, no further restrictions are imposed by using this method 

over the direct MOM method. 
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Parameter Estimation by Fitting the Autocorrelation Function 

Another alternative to using the estimated values of p x( k) k= 1, .... from Eq. (4-32) for the 

MOM estimation of the model parameters is to fit an autocorrelation function for the 

observed series and use the fitted function to estimate the model parameters using the method 

of MOM. The autocorrelation function can be fitted using the following equation: 

Px(k) = A e - C k ,for k > 0 ( 4-35) 

Taking natural logarithm of both sides ofEq. (4-35) 

(4-36) 

Equation (4-36) is a linear regression equation of the form 

Y = bX + a (4-37) 

where Y = loge Px(k) , X = k, b = - C and a = loge A. Coefficients a and 

b will be determined by the least square method. Only autocorrelation that are greater than 

Zero will be used because of the log in Eq. (4-36). The least square estimates ofa and b can 

be found as: 
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L L 

X;Y;-LX;LY; 
b" ;=1 ;=1 ;=1 

= -----------------------

L L 

where X = (IlL) LX;, Y = (IlL) L Y; , and L is the number of lags used in fitting 
i= 1 i= 1 

the autocorrelation function. Then A and C can be estimated as: 

A = exp [a] (4-38) 

( 4-39) 

Thus, the parameters p, cr!, and cr~ can be estimated using Eqs. (4-28), (4-29), and (4-30) 

respectively in which the correlations are taken from the fitted equation (4-35) instead of 

using the raw values from Eq.(4-32). Note that in this case the estimated parameters are 

independent from the choice of lags i and k to be used. In other words, the estimated value 

ofp from Eq. (4-28) is the same when, for example, we use the fitted correlations for lags 

i= 1 and k=2 and when we use the correlations for lags i=3 and k=4. 

The above procedure was applied to the sites Malakal of the Nile River System and 

Lake St. Clair of the Great Lakes System. Figure 4-1 shows the autocorrelogram for Malakal 

annual flows for the period (1912-1989) derived from Eq.(4-32) and the fitted 

autocorrelograms where the number of lags (L) is taken as 10, 20, and 30 lags. Figure 4-2 

is a similar plot for Lake St.Clair for the period (1900-1989). These figures show that for 
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Malakal, the fitted correlograms for L=l 0, 20, and 30 are about the same. So the GNN 

model parameters estimated by using this method will be about the same regardless of the 

choice ofL. On the other hand, the fitted correlograms for lake St.Clair seem to vary with 

L and the GNN model parameters will depend on the choice ofL. 

Parameter Estimation Using Range Properties 

Equation (4-24) can be used to estimate the parameter p as follows: 

p = (4-40) 

where p x( 1) is estimated from Eq. (4-32) and p2 is estimated from Eq. (4-19) as follows 

L 

"2 " ~ = 1 + 2 ~ pik) (4-41 ) 
k=l 

in which a cut-off maximum number of lags is used to approximate the infinite sum in Eq. (4-

( d . ,,2 nd ,,2 19). Then Eqs. 4-29) and (4-30) are use to estImate C1m a C1z . 

To find the parameter space for the GNN model using this method, the three 

conditions mentioned earlier for the MOM method must be satisfied. From Eq. (4-40), 

condition(1), i.e. 0 < p < 1 ,(refer to page 58) is satisfied if 

o < 2 pi1) < 1 

p2 -1 
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The left hand side of this expression implies 

"'2 
Two cases are recognized here: (a) if i\( 1) > 0 ,then ~ > 1. Thus from Eq. (4-41) one 

L L 

can write 1 + 2 L Px(k) > 1 which is equivalent to L pX<k) > O. (b) if 
k=l L k=\ 

Px(1) < 0 ,then ~2 < 1 ,and L PxCk) < 0 
k=l 

The right hand side of the foregoing expression implies 

Substituting p2 ofEq. (4-41) in the above expression, one can write 

L L L 

2 Px(l) < 2 L Px(k) or PxCl) < L Px(k). It follows 0 < L PxCk). 
k=l k=l k=2 

Summarizing, condition (1) requires the following : 

L 

L PxCk) > 0 if Px(l) > O. 
k=2 

L 

I Px(l) I > L Px(k) if Px(l) < O. 
k=2 

From Eqs. (4-29) and (4-30), conditions (2) and (3) are satisfied if Px(i) > 0 and 
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px(i) < (1 - P Y where p is estimated from Eq. (4-40). Therefore, in using the range 

method of estimation the following restrictions apply: 

(a) When Px(l) > 0 ,then 
co 

i. 0 < L Px(k) 
k=2 

ii. Px(i) > 0 

iii. Px(i) < (1 - p); 

(b) When Px(l) < 0 
co 

1. I Px(l) I > L Px(k) 
k=2 

11. Px(i) > 0 

iii. Px(i) < (1 - p)i 

Parameter Estimation Using Run Properties 

In cases where the variances of the {M} and {Z} processes are both equal to one (i.e. 

a~ = a; = 1.0) then Eq. (4-25) can be solved analytically to estimate p. It can be shown 

that the analytical solution can be expressed as: 

-p - loge I I-pi 
E (T+) = --------

p2 - (I-p) (-p- logejI-pl ) 

where E (T +) = an estimate of the expected positive run length at truncation level Q as 

was defined in Eq. (4-25). However, in practice the parameters o~ and 0; could be 

different from one, so this method has limited application for estimating the model 

parameters. 
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Summary of Alternative Estimation Techniques 

2 2 
The parameters of the GNN model to be estimated are p, am ,and az Five 

parameter estimation methods have been introduced. They are: 

1. Method of moments (MOM) 

2 
In this method, the parameter p is estimated by using Eq. (4-28). The variances CJm ' 

and a; are estimated by using Eqs.(4-29) and (4-30), respectively. 

2. Using regression analysis via MOM 

In this method, the parameter p is estimated by using Eq. (4-34). 

estimated by using Eqs. (4-29) and (4-30), respectively. 

3. Using fitted autocorrelation function via MOM 

In this method, the parameter p is estimated by using Eq. (4-28) using the fitted 

correlations. a! ,and a~ are estimated by using Eqs. (4-29) and (4-30) respectively. 

4. Using range properties of the GNN model 

In this method, the parameter p is estimated by using Eq. (4-40). 

estimated by using Eqs. (4-29) and (4-30), respectively. 

5. using run properties of the GNN model 

In this method the parameter p can be estimated by using the analytical solution ofEq. 

(4-25) which was discussed earlier. Note however that the analytical solution can be used 

only in cases where the parameters CJ~ and CJ; are both equal to one. 

4.1.6 Performance of the Estimation Methods 

The performance of the estimation methods to estimate the model parameters was 
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tested by using the data generation method. Data was generated by using known (population) 

GNN model parameters. The generated samples were then used to estimate the model 

parameters using the different estimation methods mentioned in the previous section. Then 

estimated parameters from the generated samples will be compared to the population 

parameters. 

2 
The population parameters used in the generation experiment were am = 1.0, 

2 az =1.0, and p = 0.05,0.15, and 0.25. Using these parameters, 100 samples oflengths 50, 

100, 200, and 500 were generated. The generated data was then used to estimate the model 

parameters using each method of estimation. The results of the generation experiments are 

shown in Tables 4-1 through 4-15. These tables are self explanatory. Each table shows the 

population parameters, the generated parameters, bias, and the square root of the mean 

square error (RMSE) for each estimation method. These quantities are estimated as follows. 

Consider a model that has a number of (population) parameters and statistical properties. 

Let 9 represent any such parameter or property. The model is used to generate n samples 

of size N. From each generated sample, 9 is estimated, so that an array of estimates 

91' 92, .... , 9n is obtained and the mean m(9) and standard deviation s(9) of 9 are 

determined from such an array. Then, the bias, Bias(9) and the root mean square error, 

RMSE(9), are determined by: 

Bias(9) = 9 - 9 

RMSE(9) = VBias 2 + S2(9) 
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In our data generation experiment we considered n= 100 and various values of N as above 

noted. In some cases, some samples resulted in estimating unreasonable parameters such as 

p> 1. In such cases, more samples were generated so that we will have 100 samples for 

which the estimated parameters for each sample are reasonable. The number of generated 

samples that was needed to achieve the 100 samples is shown in column 5 in the tables. 

In general, results show that the MOM performance depends on the choice of the lags 

i and k which are used in Eqs. (4-28) and (4-29) to estimate the model parameters. The 

MOM, method generally, did not peIform well in reproducing the population parameters of 

the GNN model. This method resulted, in general, in high bias in estimating the model 

parameters. The biases for p and CJ~ decreased as N increases for all cases. F or CJ~ the 

biases, in general, decreased as N increases for p = 0.15 and p = 0.25. However, there is no 

consistent behavior for the biases for CJ~ when p =0.05. The regression analysis method 

performed better than MOM in reproducing the population parameters in terms of bias and 

RMSE as shown in Tables 4-1 through 4-15. In general, this method produced the smallest 

bias in estimating the parameters p and 0; among all other methods except for p=O.25. The 

performance of the regression analysis method depends on the lag i used in Eq. (4-29) to 

estimate CJ! . The best performance in terms of bias and RMSE is when i = 1. The results, 

however deteriorate in terms of bias and RMSE when i > 1. The method based on the fitted 

autocorrelation function performed well in reproducing the parameters p and CJ~ This 

method however, resulted in high bias and RMSE in estimating CJ! as shown in Tables 4-3, 

4-8, and 4-13. The performance of this method depend on the choice of the number of lags 

(L) which is used in fitting the autocorrelation function. U sing the range properties to 
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estimate the model parameters resulted in relatively high bias in estimating the parameter p 

(for p=O.OS, and O.IS) when compared with the regression method as shown in Tables 4-4 

and 4-9. However, the range method produced less bias than the regression method for p = 

0.2S as shown in Table 4-14. The performance of this method depends on the choice ofi in 

Eq. (4-29). The best results were obtained when i =1 and the results deteriorated when i >1. 

Using the run properties to estimate the model performance did not perform well in 

reproducing the model parameters. This method resulted in high bias and RMSE in 

estimating the model parameters. 

In summary the regression analysis method performed better than the other methods 

in reproducing the population parameters for p=O.OS and p=0.15. The range method 

performed relatively better than the other methods for p = 0.25. In general, these two 

methods performed better than the MOM and fitting autocorrelation methods. 

4.1.7 Application of the GNN Model to Observed Hydrologic Data 

In this section, data generation will be used to test whether the GNN model is capable 

of preserving some basic statistics of the observed historical data. Two sets of observed data 

were used: the annual flows of the white Nile River at Malakal and the annual net basin 

supplies (NBS) at Lake St.Clair of the Great Lakes System. Figure 4-3 shows the observed 

annual flows for Malakal for the period 1912 - 1989 and Fig. 4-4 shows the historical NBS 

for Lake St. Clair for the period 1900 - 1989. The GNN model was fitted to the historical 

data for these two sites. The parameters were estimated by using the methods discussed in 
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section 4.1.5. Once the parameters were estimated, 100 samples of the same length as the 

historical record were generated. The generated sequences were analyzed statistically. The 

statistics that were used in the analysis are: 

I. mean and standard deviation 

2. Skewness coefficient 

3. Lag-I autocorrelation coefficient 

4. The partial sum of the autocorrelation function (ACF) defined 
L 

as E Px (i) where L is the number of lags used in the sum and is taken as 10 and 
i = 1 

20. 

5. The longest drought at truncation level equal to the mean annual flow. 

6. The rescaled adjusted range. 

7. Hurst coefficient. 

8. Surplus. 

9. Deficit. 

The storage-related statistics are particularly important in modeling time series for 

simulation studies of reservoir systems. Since such characteristics are functions of the 

dependence structure of a series, they are also useful in identifying the degree of temporal 

dependence of a series. Consider the time series y;, i = 1, ... , N and a subsample y b ••• , y 11 with 

n 5 N. Form the sequence of partial sums S; as 

i = 1, ... , n 

where So = 0 and Y n is the sample mean determined by 
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_ 1 n 

Yn = (-) L Y i 
n i = 1 

Define the sample standard deviation by 

Then the adjusted range and the rescaled adjusted range are calculated by 

R ** 
n 

R * 
n 

respectively. The Hurst coefficient for a series is estimated by 

In ( Rn ** ) 
K = ----- n>2 

In(nI2) 

~~i 
Another important storage related static is the surplus. Consider the time series Yi' 

" 
i = 1 ..... N, and the demand level d is equal to the sample mean y A surplus occurs when 

Yi > d consecutively during one or more years until y i ~ d again. Assuming that u 

surpluses occur in a given hydrologic sample, the maximum surplus or simply surplus is given 

by 
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Likewise, drought-related statistics are also important in modeling hydrologic time 

senes. A deficit occurs when Yi < d consecutively during one or more years 

until Y i ~ d again. Such a deficit can be defined by its duration L, its magnitude M, and 

its intensity I = MIL. Assuming that m deficits occur in a given hydrologic sample, the 

longest deficit duration (longest drought or maximum run-length) is given by 

and the maximum deficit magnitude (maximum run-sum) is 

The above statistics were obtained from the generated samples. Then average statistics were 

computed based on all generated samples. Such average statistics were compared with the 

corresponding historical statistics. 

White Nile River at MaIakaI 

The GNN model was fitted to the annual flows of the white Nile river at Malakal for 

the period 1912 - 1989. The MOM, regression analysis, fitting the autocorrelation function, 

and using the range properties methods were used to estimate the model parameters. The 

estimated parameters are shown in Table 4-16. For each estimation method the estimated 

parameters were used to generate 100 samples of annual flows of equal length to the 
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historical flows. The average statistics of the generated data were compared to the observed 

statistics of the historical sample. Tables 4-17 through 4-19 show the results of the 

generation experiment. The results are presented in three columns for each tested statistic 

(i.e. mean, standard deviation, longest drought ....... etc), as shown in these tables. The second 

column represents the mean value of each statistic calculated from the generated series. The 

first and the third columns are simply the generated value of column 2 plus or minus one 

standard deviation of the generated value. 

Table 4-17 shows that the GNN model did preserve the mean very well for all the 

methods of estimation tested. The standard deviation was also well preserved by all methods 

except perhaps for method 2 (using regression analysis) where there is some bias. The 

skewness however, was not preserved because the original skewed data was not transformed. 

The lag-l autocorrelation coefficient was well preserved using all estimation methods except 

for the method based on fitting of the autocorrelation function, (labeled method 3 in the 

tables). The preservation of the partial sum of the ACF is important in water resources since 

it is directly related to the range as shown in section 4. 1.3. The range is an important statistic 

in water resources as it is related to reservoir sizing. Hence, it is expected that the ability of 

any model to preserve the range is directly related to the ability of the model to preserve the 

partial sum of the ACF. In general, the partial sums of the ACF for L=10 is reasonably well 

preserved by all estimation methods except for method 3 (based on fitting the ACF) and 

method 1 (using MOM with i=2, k=6). However, for L=20 the results are not as good and 

only method 2 (using regression analyssis) was relatively successful. The rescaled range was 

well preserved using all methods of estimation except for method 3. Similarly the Hurst 
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coefficient was well preserved using all methods of estimation except for method 3. The 

regression method performed the best (in terms of bias) in preserving the rescaled range and 

the Hurst coefficient at Malakal. The longest drought was also well preserved using all 

methods of estimation except for method 3 which underestimated the longest drought. In 

general, the regression method performed the best in preserving the historical statistics at 

Malakal. 

Similar generation experiments were made using ARMA(p,q) models of different 

orders. The parameters of the ARMA models were estimated using the methods of moments 

(MOM) and least squares (LS). The estimated parameters are shown in Table 4-20 and the 

results are shown in Tables 4-21 to 4-23. The ARMA models performed quite well in 

preserving the mean and the standard deviation. The skewness was not preserved because 

the analysis was made based on the original data which is skewed. The lag-l autocorrelation 

coefficient was well preserved using all ARMA models. ARMA( 1,1) model resulted in the 

least bias among all other ARMA models. However, AR(l) performed better than the other 

ARMA models in preserving the partial sums of the ACF. AR(l) model also performed 

better than the other ARMA models in preserving the longest drought, rescaled range, and 

the Hurst coefficient. In comparing the performances of the GNN and ARMA models in 

preserving the lag-l autocorrelation coefficient, the ARMA models resulted in less bias than 

the GNN model. However, for the partial sums of ACF, the GNN model based on the 

regression analysis estimation method performed better (in terms of bias ) than ARMA models 

as shown in Tables 4-18 and 4-22. Similarly the rescaled range and the Hurst coefficient were 

best preserved using the GNN model based on the regression analysis estimation method. In 
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preserving the longest drought ARMA models had, in general, a better performance than the 

GNNmodel. 

Figures 4-5 through 4-11 compare the historical and generated autocorrelogram for 

the GNN model using the different methods which were used to estimate the model 

parameters. Likewise, Figs. 4-12 through 4-18 show the generated autocorrelograms for the 

ARMA models. From these figures, one can conclude that all the models studied did perform 

well in preserving the overall shape of the historical autocorrelogram except for the GNN 

model based on fitting the ACF estimation method. The decay of the autocorrelogram is 

slower for the AR(I) than other ARMA models. For the GNN model, the decay of the 

autocorrelogram was slowest for the case based on the regression analysis estimation method 

as shown in Fig. 4-9. 

The correlograms plotted in Figures 4-5 through 4-11 for the GNN model 4-12 

through 4-18 for ARMA models were obtained based on the 100 samples of generated data. 

In other words, the plotted correlogram is the average of the 100 correlograms obtained from 

the generated samples. Figures 4-5,4-9, and 4-11 for the GNN model and 4-12, 4-14, and 

4-15 for ARMA models also show another correlogram which was obtained based on one 

(generated) sample. This sample was formed by putting the 100 generated samples mentioned 

above next to each other thus forming one long sample of 100 x 78 = 7800 data points. Then 

a correlogram was obtained based on such long series. By examining these figures one can 

see that the correlation estimated based on the 100 samples were biased (always 

underestimated). One can explain this bias by the fact that if one uses the long time series 

(7800 data points) to calculate the correlations, the overall mean based on the 7800 data 

80 



points will be used to calculate the correlations. On the other hand, if one uses 100 samples 

each consisting of 78 data points and calculates the correlation for each sample and then 

computes the average of all these correlations, these correlations will always be 

underestimated because the mean value for each sample (based on the 78 data points) will 

be different. This is always true regardless if the sample mean (based on 78 data points) is 

higher or lower than the overall mean (based on 7800 data points). This is one of the 

disadvantages associated with testing the ACF in this manner which is probably the standard 

method among hydrologists in conducting simulation experiments. However, for evaluating 

the preservation of other properties such as drought and storage related statistics, the only 

feasible choice is to generate samples of length equal or less than the length of the historic 

sample. This is because storage and drought related statistics are quantities that vary with 

the sample length. 

At this point, it would be interesting to look at the generated flows from the GNN 

model and compare them with the historical flows to see if the GNN model was able to 

generate flows that, in general, resemble the historical flows. Figure 4-19 shows the 

historical flows at Malakal along with 7 generated samples of equal length using the GNN 

model where the parameters were estimated using the regression analysis method. These 

figures suggest that in at least 6 of the 7 samples the GNN model was capable, in general, of 

producing the basic characteristics of the historical flows (i.e. some kind of shift in the mean). 

Likewise Figs. 4-20 and 4-21 show 7 generated samples from the AR(I) and ARMA(I, I) 

models, respectively. Out of the 7 samples, only two or three samples show some kind of 

shift in the mean for the AR( 1) and ARMA( 1,1) models. Similar results were obtained for 
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higher order ARMA models (not shown here). The point here is that the GNN model appears 

to be more consistent than ARMA in picking up the shifts observed in the historical data. 

As was discussed earlier, the skewness coefficient was not preserved using the GNN 

or the ARMA models. In an attempt to preserve the skewness coefficient, the historical data 

was transformed using a logarithmic transformation such as 

where XI is the transformed series, Y
I 

is the observed series, and C is the transformation 

coefficient. The transformation coefficient for Malakal was estimated to be -21. The 

transformed data was then used to estimate the GNN model parameters using the four 

estimation methods discussed above. The estimated parameters are shown in Table 4-16. For 

each estimation method, the estimated parameters were used to generate 100 samples of equal 

length to the historical sample. These generated values were then transformed into skewed 

data by inverting the above equation as 

The results of these generation experiments are presented in Tables 4-24 through 4-26 for the 

GNN model and 4-27 through 4-29 for the ARMA models. Table 4-24 shows that the mean, 

standard deviation and skewness coefficient are all well preserved except may be for the 

regression analysis method which resulted in the highest bias with respect to the preservation 
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of the standard deviation. MOM with i=l, k=8 resulted in the highest bias with respect to the 

preservation of the skewness coefficient. For lag-l autocorrelation coefficient the fitting of 

the ACF resulted in the highest bias whereas MOM with i= 1, k=8 produced the smallest bias. 

Notice that for lag-l autocorrelation coefficient the biases based on the transformation case 

are higher than those obtained based on the original untransformed data except for method 

3. The regression analysis and MOM methods had the best performance in preserving the 

partial sum of the ACF as shown in Table 4-25. Also, for the regression method, the bias 

based on the transformation case is lower than the bias based on the original untransformed 

data for L=lO. The opposite is true for L=20. The regression analysis and MOM methods 

performed better than the other methods in preserving the rescaled range and the Hurst 

coefficient. However, the regression method resulted in the highest bias in preserving the 

longest drought. For the ARMA models, Table 4-27 shows that the mean, standard 

deviation, and skewness coefficient are well preserved. For lag-l autocorrelation coefficient 

and the partial sum of ACF the biases based on the transformation case are higher than those 

obtained based on the original untransformed data for all estimation methods. For the longest 

drought, the ARMA models based on the transformation case overestimated this statistic for 

all estimation methods whereas they underestimated the longest drought based on the original 

untransformed case for all estimation methods. F or the rescaled range and the Hurst 

coefficient, the biases based on the transformation case are higher than those obtained based 

on the original untransformed data for all estimation methods. 

Monte Carlo experiments were also used to test the performance of the GNN and 

ARMA models to preserve the rescaled range, longest drought, maximum deficit, and surplus 
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for different data lengths. For this purpose, the GNN model fitted to the historical flows for 

Malakal was used to generate 100 samples of synthetic data of different lengths. These 

lengths are 30, 38, 46, 54, 62, 70, and 78 years. The average rescaled range, the longest 

drought, the maximum deficit, and the surplus based on the generated samples and the 

historical ones are shown in Figs. 4-22, 4-26, 4-30, and 4-34 respectively. The historical 

statistics are calculated based on averaging over a given data length. F or example the 

historical rescaled range for a data length of say 30 years is calculated by finding the sample 

rescaled range based on the record for years 1 through 30 and then from year 2 through 31 

and so on. The average of all these rescaled ranges is calculated and that is what is shown 

in the figures as the historical rescaled range. These figures show that the GNN model did 

perform well in preserving these important statistics for different sample lengths. Similar 

experiments with ARMA(p,q) were also conducted. The results are shown in Figs. 4-23 

through 4-25 for the rescaled range, Figs. 4-27 through 4-29 for the longest drought, Figs. 

4-31 through 4-33 for the maximum deficit, and Figs. 4-35 through 4-37 for the surplus. 

From these figures, it is shown that, in general, the GNN model performed better than the 

ARMA(p,q) models in preserving these important statistics for Malakal. However, the 

ARMA( 1,1) has performed slightly better than GNN in preserving the maximum deficit. 

Lake St. Clair 

The GNN model was fitted to the historical Net Basin Supply (NBS) data for the 

period (1900-1989). As in the first example, 100 samples were generated of equal length to 

the historical sample using the estimated parameters for each method. The results are shown 
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in Tables 4-30 through 4-32. Table 4-30 shows that the mean and the standard deviation are 

well preserved for all cases. The MOM, regression analysis, and range methods performed 

better than the fitting autocorrelation method in preserving the rescaled range and the Hurst 

coefficient as shown in Tables 4-30 through 4-32. The MOM method performance changes 

with the choice of i and k. The longest drought was overestimated except for the fitting of 

the ACF estimation method. The rescaled range was underestimated for all estimation 

methods. Overall, the GNN model did perform well in preserving the basic short and long 

term statistics. 

Several ARMA models were also fitted to the historical data at lake St. Clair. The 

method of moments (MOM) was used to estimate the model parameters. The least squares 

method was used to estimate the model parameters in cases when the MOM estimated 

parameters did not satisfy the stationarity condition for the fitted model. As in the previous 

case, 100 samples were generated using the estimated parameters. Each sample was of equal 

length to the historical series. The results of the simulation experiments for the ARMA 

models are shown in Tables 4-33 through 4-35. The ARMA models performed slightly better 

than the GNN model in preserving the longest drought. The GNN, however performance was 

outstanding when compared with the ARMA models in preserving the rescaled range. This 

is one of the advantages of using the GNN model when dealing with data that exhibit apparent 

shifts such as the NBS record at lake St.Clair. The range is a very important statistic 

especially in reservoir operations and design. The simulation model used should be able to 

preserve the range in such cases. As a result the GNN model can be used in cases where the 

preservation of the range is very important. 
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Figures 4-38 through 4-46 show the generated autocorrelograms for the GNN model 

using the different methods of estimation. Figures 4-47 through 4-53 show the generated 

autocorrelograms for the ARMA models. The regression analysis method results show that 

the historical autocorrelogram is well preserved by using this method especially for the high 

lags as shown in Fig 4-46. This is probably the reason that the rescaled range was very well 

preserved using this method. Figure 4-54 show 7 generated samples for lake St. Clair from 

the fitted GNN model where the parameters were estimated using the, regression analysis 

method. Figures 4-55 through 4-57 show generated samples from the ARMA(I,I), 

ARMA(2,2), and ARMA(3, 1) models respectively for lake St.Clair. These figures show that 

the GNN model was capable of reproducing the basic characteristics of the historical NBS 

especially the apparent shift which is observed in the historical NBS. ARMA(2,2) and 

ARMA(3, 1) were also capable of mimicking the shifting phenomena observed in the historical 

NBS. Note however that the number of parameters that are needed for the GNN model 

(three parameters) is less than the number of parameters for the ARMA(2,2) or the 

ARMA(3,1) (four parameters). 

As was done for Malakal, the historical NBS record was transformed using the log 

transformation presented in the previous section. The coefficient C was estimated as 106. 

Simulation experiments were done using the transformed data to check weather the skewness 

can be preserved and to check the effect of the transfonnation on the performance of the 

GNN model to preserve the historical statistics. The results are presented in Tables 4-36 

through 4-38. Results show that the log transformation of the historical data performed well 

in preserving the skewness. As for the Malakal case, the transformation resulted in slightly 
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higher biases in preserving the other historical statistics especially for the lag-l 

autocorrelation coefficient and the longest drought. 

Monte Carlo experiments were also used to test the performance of the GNN and 

ARMA models to preserve the rescaled range, longest drought, maximum deficit, and surplus 

for different data lengths for lake St.Clair. The results are shown in Figs. 4-58 through 4-73. 

These figures show that for St. Clair the GNN clearly performed better than the ARMA 

models in preserving the rescaled range and the surplus. However, ARMA(I, 1) and 

ARMA(2, 1) models has, in general, performed slightly better than GNN in preserving the 

longest drought and the maximum deficit. The conclusion here is that both the GNN, 

ARMA( 1,1) and ARMA(2, 1) all performed well in mimicking its historical record. The GNN 

has the edge over ARMA( 1,1) and ARMA(2, 1) models in preserving the rescaled range and 

the surplus. The latter models have a somewhat slight edge in preserving the drought 

duration and the maximum deficit. 

4.2 The GNN-l model 

The term representing the noise in the GNN model was assumed to be an uncorrelated 

process (white noise). One way to introduce correlation is by adding a moving average term. 

The resulting model is called GNN-I. Adding this extra parameter might help in better 

modeling the observed data in terms of preserving its statistical characteristics. Also this 

model can be used as an alternative to GNN in cases where GNN could not be fit to the data 

so model. 
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4.2.1 Model formulation 

The GNN-I model is defined as : 

(4-42) 

Note that the difference between this model and the GNN model is the addition of a moving 

average term to the GNN model. The assumption about the M,· and the Z, processes 

are as defined in section (4.1.1) for the GNN model. Therefore, following the same procedure 

as was done for the GNN model, one can write: 

( * *) 2 E M t M t - k = am ( I-p ) for k> 0 

and 

for k ~ 0 

Following the same procedure as for the GNN model, we can find the moment equations of 

the GNN-1 model. Multiplying both sides ofEq. (4-42) by X, and taking expectation: 

E ( XI X, ) = E ( M,· X, ) + E ( Z, X, ) - 8 E ( Z'_1 X, ) 

= E ( M,* M,* ) + E ( Z, Zt ) + 82 E ( Zt-l Zt-l ) 

2 2 1'\2 2 = am + az + 0- az 

And finally, the above equation can be written as: 
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2 2 2 2 a =0' +( 1 +8)0' x m z (4-43) 

Multiplying both sides ofEq. (4-42) by ~-l and taking expectation gives 

(4-44) 

In general, multiplying both sides ofEq. (4-42) by ~-k and taking expectation, one can 

show that: 

for k > 1 

4.2.2 Range Properties of The GNN-l Model 

The range properties developed by Troutman (1976) which were mentioned in section 4.l.3 

apply for the GNN-l model. It can be shown (see proofin Appendix A) that the following 

equation applies: 

2 Px(2) 
P = ---------------

p2 - 1 - 2 Px(l) 
(4-45) 

where p2 is as defined as in Eq. (4-22). 

4.2.3 Parameter Estimation of the GNN-l Model 

The parameters to be estimated are p (geometric distribution parameter), O'~ (variance of 

the M process), a; (variance of the Z process), and 8 (moving average coefficient). 

89 



Method of Moments 

Following the same procedure as for the GNN model, the MOM parameters of the GNN-l 

model can be estimated as: 

P" -- I - (Px(k)]k~i fi k or j< ,j > I 
Px(i) 

and 

Px(i) &~ 
(I-pY 

and we can use Eqs. (4-43) and (4-44) to estimate e and a; as follows: 

,,2 
az = ---

(I + f?) 

&~ ( 1 - P ) - a~ P x( 1 ) 
9 = -----------------

(4-46) 

(4-47) 

( 4-48) 

(4-49) 

Substituting Eq. (4-48) in (4-49), it can be shown that 9 can be found by solving 

the following quadratic equation: 

A 92 
+ B 9 + C = 0 where A= a~ ( I - P ) - a~ Px( I) , B= a~ - a~ ,and 

2 2 
C = am ( I -P ) - ax pi I) . 
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Using Regression Analysis 

Following the same procedure as for the GNN model, the parameter p can be 

estimated using the following regression model : 

[
p (k)] 

log _x_. = (k-i) log(l - p) 
Px(l) 

fa r i > 1, k > 1, and i < k 

(4-50) 

The parameter p can be estimated from the above regression model using the least squares 

method as was done in the GNN model. Note that the difference between the above equation 

and Eq. (4-34) of the GNN model is that i and k in the above model can't be equal to 1. In 

other words the lag-I autocorrelation coefficient will not be used in the estimation of the 

parameter p of the GNN-I model. 

Using Range Properties 

From Eq. (4-45), we can write: 

p = 
2 i\(2) 

(4-51) 

Once p is estimated, then a! can be estimated using the MOM method 

mentioned in section 4.5.1 above. 
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4.2.4 Application of the GNN-l Model to Observed Hydrologic Data 

Lake St. Clair 

The GNN-l model was fitted to the historical Net Basin Supply (NBS) data for the 

period 1900 to 1989. 100 samples were generated of equal length to the historical sample 

using the estimated parameters. Tables 4-39 and 4-40 show the results of this experiment. 

Table 4-39 show that the mean and the standard deviation are well preserved for all cases. 

The storage and drought related statistics are also well preserved as shown in Table 4-40. 

The generated and the historical ACF functions for lake S1. Clair for each estimation method 

are shown in Figs. 4-74 through 4-79. These figures suggest that this model, in general, 

performed well in preserving the ACF for Lake St. Clair. By comparing the results for the 

GNN and the GNN-I models, one can argue that the performance of the GNN-I model was 

similar to that of the GNN model. The MOM method performance changes with the choice 

of i and k. As in the previous example, the longest drought was overestimated while the 

rescaled range was underestimated. The regression analysis method performed well in 

preserving the mean and the standard deviation as well as the longest drought and the rescaled 

range. Overall, the GNN-l did perform well in preserving the basic short and long term 

statistics. In fact the performance of the GNN-I model is very close to the performance of 

the GNN model in preserving the short and long term properties of the NBS record for lake 

St.Clair. One may wonder, however, that since GNN-l model has an additional parameter 

over the GNN model, one expects that the GNN-I should perform better. One should know, 

however, that this case is similar to the case of the ARMA(I, I) and ARMA(2, I) models as 

an example. It is not unusual to find that in some cases the ARMA( 1,1) performs better than 
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the ARMA(2, 1) even though ARMA(2, 1) has an additional parameter. It should be 

mentioned here that the GNN-I model could not fit to the Malakal flows. The use of Eqs. 

(4-48) and (4-49) resulted in negative discriminant when solving the quadratic equations 

formulated form the above equations. As a result no generation was done for Malakal. 

As for the GNN model, the Monte Carlo experiments were also used to test the 

performance of the GNN-I model to preserve the rescaled range of observed time series for 

different data lengths. The average rescaled range and the longest drought based on the 

generated samples was compared to the historical ones are shown in Figs. 4-80 and 4-81. 

When comparing these figures with those for the GNN model, it is apparent that the GNN 

and GNN-l models had similar performances in preserving the rescaled range and the longest 

drought. 

Lake Ontario 

The GNN and GNN-l models were also fitted to the historical Net Basin Supply 

(NBS) data for lake Ontario for the period 1900 to 1989. The regression method was used 

to estimate the parameters of the fitted models. 100 samples of equal length to the historical 

sample using the estimated parameters were generated. Tables 4-41 and 4-42 show the 

results for the GNN and GNN-l models respectively. The performance of the GNN model 

was slightly better than GNN-l in preserving the rescaled range, surplus, and maximum 

deficit. The models have similar performance in preserving the longest drought. It is 

apparent that the GNN model has a slight edge over the GNN-I model. The extra parameter 

that GNN-I model has over the GNN model does not appear to improve the performance of 

93 



the GNN-I model. However, the GNN-I can be used as an alternative in cases where the 

GNN model could not be fitted to the data. 
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Table 4-1 

Parameter 

p 

a! 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.05, a! = 1.0 and O~ = 1.0. The method of Moments (MOM) estimation are 

used in which p is estimated using Eq. (4-28) where i= 1, k=2, and a! 
estimated using Eqs. (4-29) and (4-30) . 

Sample Population Generated Bias RMSE 
Length e m(A) 

50 0.050 0.282 -0.232 0.287 

100 0.050 0.250 -0.200 0.273 

200 0.050 0.165 -0.115 0.193 

500 0.050 0.097 -0.047 0.087 

50 1.000 1.053 -0.053 0.707 

100 1.000 0.917 0.083 0.461 

200 1.000 1.015 -0.015 0.503 

500 1.000 0.982 0.018 0.368 

50 1.000 0.726 0.274 0.440 

100 1.000 0.828 0.172 0.339 

200 1.000 0.878 0.122 0.243 

500 1.000 0.948 0.052 0.123 

95 

# 
Samples 

247 

172 

143 

133 

247 

172 

143 

133 

247 

172 

143 

133 



Table 4-2 

Parameter 

p 

O~ 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.05, a! = 1.0 and O~ = 1.0. The method of regression analysis estimation 

is used in which p is estimated using Eq. (4-34) where the number of lags (L) = 20,and 

a! and O~ are estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.050 0.116 -0.066 0.151 135 

100 0.050 0.119 -0.069 0.105 113 

200 0.050 0.096 -0.046 0.082 100 

500 0.050 0.071 -0.021 0.042 100 

50 1.000 0.733 0.267 0.793 135 

100 1.000 0.718 0.222 0.686 113 

200 1.000 0.851 0.149 0.503 100 

500 1.000 0.915 0.085 0.383 100 

50 1.000 0.912 0.089 0.322 135 

100 1.000 0.952 0.048 0.220 113 

200 1.000 0.986 0.014 0.146 100 

500 1.000 0.983 0.017 0.093 100 
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Table 4-3 

Parameter 

P 

O! 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.05, O! = 1.0 and O~ = 1.0. The method of fitting the autocorrelation 

function is used in which the number of lags used (L)=20, p is estimated using Eq. (4-

28) where i= 1, k=2, and O! and O~ are estimated using Eqs. (4-29) and (4-30). 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.050 0.093 -0.043 0.080 130 

100 0.050 0.106 -0.056 0.090 116 

200 0.050 0.088 -0.038 0.069 104 

500 0.050 0.071 -0.021 0.042 100 

50 1.000 0.504 0.496 0.776 130 

100 1.000 0.715 0.285 0.653 116 

200 1.000 0.899 0.101 0.549 104 

500 1.000 0.957 0.043 0.416 100 

50 1.000 0.971 0.029 0.334 130 

100 1.000 0.921 0.079 0.307 116 

200 1.000 0.937 0.063 0.265 104 

500 1.000 0.941 0.059 0.184 100 
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Table 4-4 

Parameter 

P 

2 
am 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.05. a! = 1.0 and a~ = 1.0. The method of using the range properties 

estimation is used in which p is estimated using Eq. (4-40) where the number of lags (L) 

= 20. and O! and O~ are estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(A) 

Samples 

50 0.050 0.157 -0.107 0.139 126 

100 0.050 0.136 -0.086 0.112 108 

200 0.050 0.107 -0.057 0.072 100 

500 0.050 0.090 -0.040 0.045 100 

50 1.000 0.719 0.281 0.782 126 

100 1.000 0.757 0.243 0.670 108 

200 1.000 0.858 0.142 0.510 100 

500 1.000 0.934 0.066 0.390 100 

50 1.000 0.920 0.080 0.303 126 

100 1.000 0.958 0.042 0.205 108 

200 1.000 0.978 0.022 0.139 100 

500 1.000 0.964 0.036 0.093 100 
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Table 4-5 

Parameter 

P 

2 
am 

2 az 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.05, a! = 1.0 and a; = 1.0. The method of using the run properties 

estimation is used in which p is estimated using Eq. (4-25), and a! and a; are 

estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.050 0.068 -0.018 0.061 126 

100 0.050 0.056 -0.056 0.040 108 

200 0.050 0.043 0.007 0.026 100 

500 0.050 0.037 0.013 0.114 100 

50 1.000 0.602 0.398 0.710 126 

100 1.000 0.681 0.319 0.641 108 

200 1.000 0.797 0.203 0.501 100 

500 1.000 0.881 0.119 0.377 100 

50 1.000 1.037 -0.037 0.254 126 

100 1.000 1.034 -0.034 0.190 108 

200 1.000 1.040 -0.040 0.130 100 

500 1.000 1.017 -0.017 0.081 100 
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Table 4-6 

Parameter 

P 

2 
am 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.15, a! = 1.0 and 0; = 1.0. The method of Moments (MOM) estimation 

are used in which p is estimated using Eq. (4-28) where i = 1, k= 2, 

and a! and 0; are estimated using Eqs. (4-29) and (4-30) . 

Sample Population Generated Bias RMSE # 
Length e m(8) 

Samples 

50 0.150 0.315 -0.165 0.240 180 

100 0.150 0.284 -0.134 0.206 138 

200 0.150 0.219 -0.069 0.149 115 

500 0.150 0.176 -0.026 0.088 108 

50 1.000 1.192 -0.192 0.685 180 

100 1.000 1.078 -0.078 0.492 138 

200 1.000 1.023 -0.023 0.329 115 

500 1.000 1.018 -0.018 0.283 108 

50 1.000 0.763 0.237 0.467 180 

100 1.000 0.827 0.173 0.358 138 

200 1.000 0.925 0.075 0.260 115 

500 1.000 0.960 0.040 0.142 108 
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Table 4-7 

Parameter 

p 

2 
am 

2 az 

Results of the Generation Experiment for the GNN model with population paramet~rs 

p=0.15, a! = 1.0 and a: = 1.0. The method of regression analysis estimation 

is used in which p is estimated using Eq. (4-34) where the number of lags (L) = 20,and 

a! and a: are estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.150 0.131 0.019 0.092 115 

100 0.150 0.141 0.009 0.086 107 

200 0.150 0.161 -0.011 0.076 100 

500 0.150 0.159 -0.090 0.077 100 

50 1.000 0.832 0.168 0.754 115 

100 1.000 0.909 0.091 0.534 107 

200 1.000 0.925 0.075 0.390 100 

500 1.000 0.992 0.008 0.302 100 

50 1.000 0.992 0.008 0.305 115 

100 1.000 1.015 -0.015 0.265 107 

200 1.000 1.009 -0.009 0.188 100 

500 1.000 0.971 0.029 0.154 100 
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Table 4-8 

Parameter 

p 

0
2 
m 

0: 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.15, o! = 1.0 and 0: = 1.0. The method of fitting the autocorrelation 

function is used in which the number of lags used (L)=20, p is estimated using Eq. (4-

.22 
28) where 1= 1, k=2, and Om and Oz are estimated using Eqs. (4-29) and (4-30). 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.150 0.117 0.034 0.081 119 

100 0.150 0.133 0.017 0.083 111 

200 0.150 0.158 -0.008 0.076 103 

500 0.150 0.153 -0.003 0.066 104 

50 1.000 0.629 0.371 0.801 119 

100 1.000 0.759 0.241 0.657 III 

200 1.000 0.866 0.134 0.536 103 

500 1.000 0.957 0.043 0.448 104 

50 1.000 1.137 -0.137 0.398 119 

100 1.000 1.111 -0.111 0.416 111 

200 1.000 1.051 -0.051 0.395 103 

500 1.000 1.005 -0.005 0.355 104 
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Table 4-9 

Parameter 

P 

2 
am 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.15, a! = 1.0 and a; = 1.0. The method of using the range properties 

estimation is used in which p is estimated using Eq. (4-40) where the number of lags (L) 

= 20, and a! and a; are estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.150 0.217 -0.067 0.117 109 

100 0.150 0.196 -0.046 0.098 107 

200 0.150 0.195 -0.045 0.090 100 

500 0.150 0.173 -0.023 0.059 100 

50 1.000 0.845 0.151 0.766 109 

100 1.000 0.920 0.080 0.523 107 

200 1.000 0.955 0.045 0.376 100 

500 1.000 0.999 0.001 0.280 100 

50 1.000 0.924 0.076 0.322 109 

100 1.000 0.975 0.025 0.273 107 

200 1.000 0.979 0.021 0.190 100 

500 1.000 0.964 0.036 0.119 100 
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Table 4-10 

Parameter 

p 

2 
Om 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.15. O! = 1.0 and O~ = 1.0. The method of using the run properties 

2 
estimation is used in which p is estimated using Eq. (4-25), and Om 

estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE 
Length a m(6) 

50 0.150 0.055 0.095 0.105 

100 0.150 0.047 0.103 0.108 

200 0.150 0.044 0.106 0.108 

500 0.150 0.037 0.113 0.114 

50 1.000 0.677 0.323 0.656 

100 1.000 0.763 0.237 0.487 

200 1.000 0.797 0.203 0.372 

500 1.000 0.858 0.142 0.286 

50 1.000 1.102 -0.102 0.287 

100 1.000 1.134 -0.134 0.252 

200 1.000 1.137 -0.137 0.199 

500 1.000 1.106 -0.106 0.138 
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and 0
2 

are z 

# 
Samples 

108 

102 

100 

100 

108 

102 

100 

100 

108 

102 

100 

100 



Table 4-11 

Parameter 

P 

2 
am 

a~ 

Results of the Generation Experiment for the GNN model with population parameters 

p=O.25, 0; = 1.0 and 0: = 1.0. The method of Moments (MOM) estimation 

are used in which p is estimated using Eq. (4-28) where i= 1, k=2, 

and a~ and 0: are estimated using Eqs. (4-29) and (4-30) . 

Sample Population Generated Bias RMSE # 
Length e m(8) 

Samples 

50 0.250 0.372 -0.122 0.240 205 

100 0.250 0.341 -0.091 0.221 133 

200 0.250 0.323 -0.073 0.164 114 

500 0.250 0.273 -0.023 0.103 101 

50 1.000 1.175 -0.175 0.634 205 

100 1.000 1.090 -0.090 0.437 133 

200 1.000 1.094 -0.094 0.423 114 

500 1.000 1.039 -0.039 0.263 101 

50 1.000 0.818 0.182 0.470 205 

100 1.000 0.841 0.156 0.437 133 

200 1.000 0.874 0.126 0.312 114 

500 1.000 0.953 0.047 0.185 101 
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Table 4-12 

Parameter 

p 

a! 

? a; 

Results of the Generation Experiment for the GNN model with population parameters 

p=O.25, a! = 1.0 and a: = 1.0. The method of regression analysis estimation 

is used in which p is estimated using Eq. (4-34) where the number of lags (L) = 20,and 

a! and a: are estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.250 0.118 0.132 0.164 112 

100 0.250 0.105 0.145 0.150 100 

200 0.250 0.136 0.114 0.144 102 

500 0.250 0.156 0.094 0.118 101 

50 1.000 0.731 0.269 0.602 112 

100 1.000 0.723 0.277 0.471 100 

200 1.000 0.824 0.176 0.394 102 

500 1.000 0.886 0.114 0.266 101 

50 1.000 1.126 -0.126 0.380 112 

100 1.000 1.156 -0.156 0.302 100 

200 1.000 1.131 -0.131 0.238 102 

500 1.000 1.100 -0.100 0.181 101 
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Table 4-13 

Parameter 

p 

2 
am 

cr~ 

Results of the Generation Experiment for the GNN model with population paramet~rs 

p=0.25, a! = 1.0 and a~ = 1.0. The method of titting th~ autocorrelation 

function is used in which the number of lags used (L)=20, p is estimated using Eq. (4-

28) where i= 1, k=2, and cr~ and cr~ are estimated using Eqs. (4-29) and (4-30). 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.250 0.114 0.136 0.164 113 

100 0.250 0.103 0.147 0.159 109 

200 0.250 0.130 0.120 0.144 105 

500 0.250 0.152 0.098 0.119 103 

50 1.000 0.498 0.502 0.718 113 

100 1.000 0.454 0.546 0.646 109 

200 1.000 0.559 0.441 0.595 105 

500 1.000 0.597 0.403 0.507 103 

SO 1.000 1.347 -0.347 0.576 113 

100 1.000 1.418 -0.418 0.542 109 

200 1.000 1.382 -0.382 0.532 105 

500 1.000 1.383 -0.383 0.487 103 
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Table 4-14 

Parameter 

P 

2 
am 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=O.25, a! = 1.0 and a; = 1.0. The method of using the range properties 

estimation is used in which p is estimated using Eq. (4-40) where the number of lags (L) 

= 20, and a! and a; are estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(A) 

Samples 

50 0.250 0.234 0.016 0.105 103 

100 0.250 0.232 0.018 0.102 100 

200 0.250 0.245 0.005 0.084 100 

500 0.250 0.234 0.016 0.056 100 

50 1.000 0.798 0.202 0.592 103 

100 1.000 0.837 0.163 0.490 100 

200 1.000 0.938 0.062 0.384 100 

500 1.000 0.969 0.031 0.239 100 

50 1.000 1.043 -0.043 0.402 103 

100 1.000 1.023 -0.023 0.315 100 

200 1.000 1.021 -0.021 0.223 100 

500 1.000 0.964 0.036 0.093 100 
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Table 4-15 

Parameter 

P 

2 
Om 

2 
Oz 

Results of the Generation Experiment for the GNN model with population parameters 

p=0.25, a! = 1.0 and O~ = 1.0. The method of using the run properties 
2 2 

estimation is used in which p is estimated using Eq. (4-25). and om and Oz are 

estimated using Eqs. (4-29) and (4-30) where i= 1. 

Sample Population Generated Bias RMSE # 
Length e m(6) 

Samples 

50 0.250 0.062 0.188 0.193 102 

100 0.250 0.058 0.192 0.194 100 

200 0.250 0.048 0.202 0.203 100 

500 0.250 0.044 0.206 0.206 100 

50 1.000 0.619 0.381 0.557 102 

100 1.000 0.651 0.349 0.479 100 

200 1.000 0.726 0.274 0.382 100 

500 1.000 0.773 0.227 0.291 100 

50 1.000 1.234 -0.234 0.391 102 

100 1.000 1.209 -0.209 0.322 100 

200 1.000 1.232 -0.232 0.276 100 

500 1.000 1.213 -0.213 0.234 100 
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Table 4-16: Estimated GNN model parameters for the original and transformed data for Malakal. The estimation 
methods are: 
Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L = number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range poperties (L=number of lags used in approximating the infinite sum of Eq. (4-41), 
i=lag used in Eq. (4-29» 

Original data Transformed data 

p 0
2 2 P 2 2 

lit 
Oz 0", OZ 

METHOD 1 

(i=1,k=8) 0.199 5.376 0.941 0.144 0.546 0.228 

METHOD 1 

(i=1,k=9) 0.178 5.305 1.284 0.116 0.537 0.248 

METHOD 1 

(i=2,k=6) 0.277 5.268 1.427 0.221 0.518 0.286 

METHOD 2 

(i=l, L=30) 0.116 5.117 1.898 0.099 0.532 0.259 

METHOD 3 

( L=30) 0.116 3.606 4.097 0.099 0.411 0.426 

METHOD 4 

(i=1, L=30) 0.220 5.448 0.328 0.179 0.557 0.199 

o 
.-4 
.-4 



Table 4-17: Comparison of historical and generated mean in milliards of cubic meters (mcm), st.deviation (mcm),and 
skewness coefficient based on the GNN model fitted to the original data of annual flows at Malakal. 
Eestimation methods: 

HISTORICAL 

METHOD 1 

(i=l,k=8) 

METHOD 1 

(i=l,k=9) 

METHOD 1 

(i=l,k=10) 

METHOD 1 

(i=2,k=6) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

~i=l, L=3_~ __ 

Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L = number of lags used in approximating the infinite sum of Eq. (4-41), 
i = lag used in Eq. (4-29». Note that GEN means the average of generated values. 

MEAN (mcm) STANDARD DEVIATION (mcm) SKEWNESS COEF 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD sm 

29.81 5.46 1.41 

27.89 29.88 31.88 3.91 5.14 5.89 -0.51 -0.06 0.40 

27.94 29.96 31.98 3.73 4.94 6.15 -0.52 0.00 0.52 

28.13 29.91 31.68 3.93 5.07 6.21 -0.59 -0.05 0.49 

28.35 29.89 31.43 4.37 5.19 6.00 -0.50 -0.01 0.47 

27.70 29.64 31.59 3.50 4.66 5.83 -0.56 0.05 0.67 I 
I 

• 

28.31 29.72 31.14 4.39 5.09 5.80 -0.38 -0.04 0.30 

27.93 29.72 31.50 3.94 5.04 6.14 -0.57 0.04 0.65 

....... 

....... 

....... 



Table 4-18: Comparison of historical and generated lag-l autocorrelation coefficient and the partial sum of the 
autocorrelation function for lags 10 and 20 based on GNN model fitted to original data of annual flows at 
Malakal. Estimation methods: 

HISTORICAL 

METHOD 1 

(i=I,k=8) 

METHOD 1 

(i=l,k=9) 

METHOD 1 

(i=l,k=10) 

METHOD 1 

(i=2,k=6) 

METHOD 2 

(i=I,L=30) 

METHOD 3 

(L=30) 

METHOD 4 

(i=1.L=30) 

Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum of Eq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

10 20 

P l. (x) L Pj (x) L p. (x) 
1 

i ::: I i ::: 1 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

SID SID SID SID SID SID 

0.777 2.604 3.288 

0.625 0.721 0.817 0.916 2.411 3.906 -0.495 1.568 3.632 

0.599 0.703 0.807 0.685 2.359 4.032 -0.335 1.984 4.302 

0.604 0.7\0 0.815 0.945 2.511 4.078 -0.321 1.852 4.025 

0538 0.634 0.730 0.278 1.622 2.966 -0.695 1.013 2.722 I 

i 

0508 0.652 0.797 1.321 2.963 4.606 -0.162 2.497 5.157 

0122 0.276 0.430 0.132 1.180 2.228 -0.530 0.922 2.374 

0637 0.724 0.810 0.930 2.229 3.527 -0.5\0 1.407 3.324 

N --



Table 4-19: Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on GNN 
model fitted to original data of annual flows at Malakal. Estimation methods: 

HISTORICAL 

METHOD 1 

(i=1,k=8) 

METHOD 1 

(i=l,k=9) 

METHOD 1 

(i=1,k=10) 

METHOD 1 

(i=2,k=6) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=l, L=30) 

Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L = number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range prperties (L=number of lags used in approximating the infinite sum of Eq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

LONGEST DROUGHT (years) RESCALED RANGE HURST COEFICIENT 

GEN- GEN GEN+ GEN- GEN GEN+ GEN - GEN GEN+ 

STD STD STD STD STD STD 

14.00 24.42 0.872 

10.15 16.49 22.83 17.95 22.40 26.85 0.788 0.843 0.898 

9.23 15.89 22.55 16.94 22.26 27.58 0.771 0.839 0.907 

10.30 15.49 20.68 17.86 22.65 27.43 0.785 0.845 0.906 

8.05 12.59 17.13 14.91 19.32 23.74 0.739 0.801 0.864 

9.49 16.15 22.81 18.18 23.50 28.81 0.791 0.855 0.918 

5.45 8.43 1l.41 12.25 16.69 21.14 0.683 0.758 0.834 

10.47 17.38 24.29 16.96 21.36 25.75 0.774 0.830 0.886 
---

M --



Table 4-20: Estimated ARMA(p,q) model parameters for the original and transformed data for Malakal based on the 

method of moments and method of least squares(*). 

Original data Transformed data 

<1>1 <1>2 <1>3 61 62 
2 

<1>1 <1>2 <1>3 61 62 
2 

(JE (JE 

ARMA (1,0) 0.777 ------ ------ ------ ------ 11.814 0.729 ------ ------ ------ ------ 0.164 

ARMA (1,0)· 0.779 ------ ------ ------ ------ 11.580 0.734 ------ ------ ------ ------ 0.161 

ARMA (2,0) 1.006 -0.295 ------ -----... ------ 10.787 0.831 -0.140 ------ ------ ------ 0.161 

ARMA (2,0)· 1.000 -0.289 ------ ------ ------ 10.479 0.817 -0.126 ------ ------ ------ 0.152 

ARMA (1,1) 0.626 ------ ------ -0.423 ------ 10.590 0.639 ------ ------ -0.196 ------ 0.161 

ARMA (1,1)· 0.640 ------ ------ -0.401 ------ 10.552 0.660 ------ ------ -0.168 ------ 0.159 

ARMA (2,1) 0.716 -0.070 ------ -0.320 ------ 10.682 0.457 0.132 ------ -0.382 ------ 0.160 

ARMA (2,1)· 0.114 0.464 ------ -0.929 ------ 10.172 0.258 0.279 ------ -0.625 ------ 0.148 

ARMA (2,2)· 0.059 0.452 ------ -1.001 -0.116 10.114 0.289 0.277 ------ -0.584 0.038 0.148 

ARMA (3,0) 1.033 -0.389 0.093 ------ ------ 10.693 0.838 -0.184 0.053 ------ ------ 0.161 

ARMA (3,0)· 1.028 -0.369 0.077 ------ ------ 10.382 0.848 -0.162 0.027 ------ ------ 0.149 

ARMA (3,1) 0.397 0.251 -0.094 -0.646 ------ 10.627 0.255 0.261 0.025 -0.611 ------ 0.148 

..:::t 
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Table 4-21: Comparison of historical and generated mean in milliards of cubic meters (mcm), st.deviation (mcm), and 
skewness coefficient based on ARMA(p,q) model fitted to the original data of annual flows at Malakal. 
Estimation methods: method of moments and least squares (*). 

MEAN (mcm) STANDARD DEVIATION (mcm) SKEWNESS COEF 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

HISTORICAL 29.81 5.46 1.41 

ARMA (1.£) 28.05 29.92 31.78 4.44 5.11 5.78 -0.31 0.06 0.43 

ARMA (1.0)· 28.05 29.92 31.79 4.42 5.08 5.75 -0.31 0.06 0.43 

ARMA (2.0) 28.59 29.87 31.14 4.59 5.18 5.81 -0.34 0.00 0.33 

ARMA (2.0)· 28.61 29.87 31.12 4.47 5.08 5.70 -0.34 -0.01 0.33 

ARMA (1.1) 28.38 29.90 31.42 4.58 5.19 5.80 -0.36 0.06 0.43 

ARMA (1,1)· 28.35 29.90 31.45 4.58 5.20 5.81 -0.31 0.06 0.43 

ARMA (2,1) 28.52 29.88 31.23 4.53 5.16 5.79 -0.35 -0.01 0.32 

ARMA (2,1)· 28.29 29.89 31.50 4.52 5.21 5.89 -0.36 -0.02 0.32 

ARMA (2,2)· 28.36 29.89 31.41 4.54 5.21 5.88 -0.35 -0.02 0.32 

ARMA (3,0) 28.46 29.89 31.32 4.51 5.16 5.80 -0.32 0.02 0.35 

ARMA (3,0)· 28.49 29.89 31.29 4.46 5.09 5.73 -0.32 0.02 0.35 

ARMA (3,1) 28.51 29.90 31.28 4.51 5.17 5.82 -0.33 0.01 0.34 
-- -- ----
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Table 4-22: Comparison of historical and generated lag-1 autocorrelation coefficient and the partial sum of the 
autocorrelation function for lags 10 and 20 based on ARMA(p,q) model fitted to the annual flows at Malakal. 
Estimation methods: method of moments and least squares (*). 

PI (x ') 
'. / 

i 

GEN- GEN GEN+ GEN-

STD STD STD 

HISTORICAL 0.777 

ARMA (1,0) 0.659 0.733 0.806 1.151 

ARMA (1,0)· 0.662 0.735 0.808 1.173 

ARMA (2.0) 0.683 0.742 0.800 0.215 

ARMA (2,0)· 0.681 0.740 0.799 0.224 

ARMA (1,1) 0.691 0.746 0.802 0.548 

ARMA (1,1)· 0.695 0.750 0.806 0.592 

ARMA (2,1) 0.678 0.739 0.800 0.391 

ARMA (2,1)· 0.666 0.737 0.808 0.834 

ARMA (2,2) * 0.677 0.743 0.810 0.687 

ARMA (3,0) 0.681 0.740 0.798 0.386 

ARMA (3,0)· 0.685 0.743 0.801 0.370 

ARMA (3,1) 0.681 0.740 0.800 0.325 
- .. -~~---- -

10 

L Pi (x) 
I 

GEN GEN+ GEN-

STD STD 

2.604 

2.288 3.425 -0.244 

2.316 3.459 -0.235 

1.173 2.132 -0.484 

1.185 2.145 -0.481 

1.494 2.440 -0.460 

1.557 2.521 -0.450 

1.394 2.397 -0.426 

1.965 3.096 -0.264 

1.780 2.872 -0.325 

1.419 2.451 -0.472 

1.402 2.433 -0.478 

1.336 2.347 -0.468 

20 

L 
i ::= 1 

GEN 

3.288 

1.476 

1.501 

0.692 

0.700 

0.812 

0.857 

0.859 

1.331 

1.164 

0.858 

0.843 

0.810 

Pi (x) 

GEN+ 

STD 

3.196 

3.236 

1.867 

1.881 

2.083 

2.163 

2.144 

2.925 

2.653 

2.189 

2.164 

2.088 

! 

\0 
~ 

~ 



Table 4-23: Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on 
ARMA(p,q) model fitted to the original data of annual flows at Malakal. Estimation methods: method of 
moments and least squares (*). 

LONGEST DROUGHT (years) RESCALED RANGE HURST COEFICIENT 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

HISTORICAL 14.00 24.42 0.872 

ARMA (1,0) 9.04 13.40 17.76 17.21 20.97 24.73 0.775 0.826 0.877 

ARMA (l,O)'" 9.12 13.46 17.80 17.27 21.04 24.82 0.776 0.827 0.878 

ARMA (2,0) 8.34 11.86 15.38 14.53 18.22 21.90 0.728 0.786 0.845 

ARMA (2,0)'" 8.39 11.90 15.41 14.55 18.25 21.94 0.728 0.787 0.845 

ARMA (1,1) 8.37 11.80 15.39 15.45 18.84 22.23 0.746 0.797 0.848 

ARMA (1,1)'" 8.23 12.19 16.15 15.61 19.04 22.46 0.749 0.800 0.851 

ARMA (2,1) 8.25 11.97 15.69 14.96 18.82 22.68 0.736 0.795 0.854 

ARMA (2,1)'" 9.02 13.14 17.26 16.24 20.41 24.59 0.759 0.817 0.875 

ARMA (2,2) * 8.78 12.84 16.90 15.81 19.92 24.03 0.752 0.811 0.869 

ARMA (3,0) 8.59 12.21 15.83 15.04 18.95 22.85 0.739 0.797 0.855 i 

ARMA (3,0)'" 8.65 12.21 15.77 15.03 18.92 22.81 0.739 0.797 0.855 

ARMA (3,1) 8.64 12.18 15.72 14.93 18.78 22.62 0.736 0.794 0.853 
--~--
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Table 4-24: Comparison of historical and generated mean in milliards of cubic meters (mcm), st.deviation (mcm), and 
skewness coefficient based on the GNN model fitted to the transformed data of annual flows at Malakal. 
Estimation methods: 

HISTORICAL 

METHODl 

(i=1,k=8) 

METHOD 1 

(i=l,k=9) 

METHODl 

(i=1,k=10) 

METHOD 1 

(i=2,k=6) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

(L=30) 

METHOD 4 

(i=l, L=30) 

Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum of Eq. (4-41), 
i = lag used in Eq. (4-29». Note that GEN means the average of generated values. 

MEAN (mem) STANDARD DEVIATION (mem) SKEWNESS COEF 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

29.81 5.46 1.41 

27.76 29.96 32.16 2.87 5.03 7.19 0.40 1.13 1.87 

27.67 29.56 31.44 2.45 4.64 6.83 0.45 U8 1.93 

27.70 29.87 32.03 2.97 4.90 6.83 0.45 1.21 1.96 

28.12 29.77 31.43 3.45 5.20 
I 

6.95 0.84 1.39 1.93 

27.41 29.69 31.97 2.74 4.62 6.50 0.43 U5 1.87 

27.99 29.76 31.54 3.62 5.09 6.57 0.79 1.50 2.22 

27.82 29.68 31.53 3.03 4.83 6.63 0.51 1.32 2.12 

00 --



Table 4-25: 

I 

HISTORICAL 

METHOD I 

(i=l,k=8) 

METHOD I 

(i=I,k=9) 

METHOD I 

(i=I,k=IO) 

METHOD I 

(i=2,k=6) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=l, L=30) 

Comparison of historical and generated lag-l autocorrelation coefficient and the partial sum of the autocorrelation function for lags 
10 and 20 based on the GNN model fitted to the transformed data of annual flows at Malakal. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number oflags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number oflags used in approximating the infinite sum ofEq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

10 20 

PI. (x) L Pj (X) L Pi (x) 
i ::: 1 i I 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

0.777 2.604 3.288 

0.499 0.611 0.723 1.103 2.508 3.913 0.183 2.205 4.227 

0.395 0.555 0.715 0.968 2.492 4.016 -0.225 2.079 4.382 

0.484 0.595 0.706 1.017 2.358 3.699 -0.079 1.866 3.811 

0.358 0.490 0.622 0.378 1.434 2.489 -0.638 0.815 2.269 

0.417 0.558 0.699 1.227 2.552 3.877 0.257 2.360 4.463 

0.128 0.285 0.441 0.278 1.204 2.130 -0.217 1.047 2.311 

0.469 0.599 0.728 0.596 1.942 3.289 -0.356 1.472 3.301 
--

0'\ --

I 
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Table 4-26: Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on the 
GNN model fitted to the transformed data of annual flows at Malakal.Estimation methods: 

HISTORICAL 

METHOD 1 

(i=l,k=8) 

METHOD 1 

(i=l,k=9) 

METHOD 1 

(i=l,k=10) 

METHOD 1 

(i=2,k=6) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=l, L=30) 

Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range prperties (L=number of lags used in approximating the infinite sum of Eq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

LONGEST DROUGHT (years) RESCALED RANGE HURST COEFICIENT 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

14.00 24.42 0.872 

10.82 18.34 25.87 17.58 22.56 27.54 0.778 0.843 0.908 

9.65 18.96 28.27 16.56 21.87 27.18 0.762 0.833 0.905 

11.12 17.82 24.52 17.00 21.90 26.79 0.771 0.835 0.899 

9.61 15.54 21.48 14.02 18.21 22.41 0.720 0.785 0.849 

12.11 19.85 27.59 17.94 22.70 27.46 0.788 0.846 0.904 

7.33 13.04 18.75 13.58 17.50 21.42 0.712 0.774 0.836 

10.41 17.86 25.31 15.65 20.46 25.27 0.751 0.816 0.882 
----
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Table 4-27: Comparison of historical and generated mean in milliards of cubic meters (mcm), st.deviation (mcm), and 
skewness coefficient based on ARMA(p,q) model fitted to the transformed data of annual flows at Malakal. 
Estimation methods: method of moments and least squares (*). 

MEAN (mcm) STANDARD DEVIATION (mcm) SKEWNESS COEF 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

HISTORICAL 29.81 5.46 1.41 

ARMA (1,0) 28.32 29.92 31.52 3.96 5.37 6.78 0.84 1.53 2.21 

ARMA (1,0)'" 28.30 29.92 31.54 3.95 5.36 6.77 0.84 1.52 2.20 

ARMA (2,0) 28.51 29.84 31.18 3.84 5.29 6.75 0.76 1.43 2.10 

ARMA (2,0)'" 28.46 29.74 31.01 3.69 5.03 6.36 0.74 1.38 2.02 

ARMA (1,1) 28.47 29.90 31.33 4.06 5.43 6.80 0.85 1.58 2.30 

ARMA (1,1)'" 28.44 29.91 31.39 4.05 5.44 6.82 0.85 1.57 2.28 

ARMA (2,1) 28.48 29.85 31.28 3.81 5.28 6.74 0.76 1.42 2.09 

ARMA (2,1)'" 28.44 29.79 31.15 3.71 5.12 6.54 0.75 1.39 2.04 

ARMA (2,2) * 28.42 29.79 31.16 3.69 5.10 6.51 0.73 1.38 2.03 

ARMA (3,0) 28.45 29.88 31.31 3.80 5.32 6.85 0.79 1.46 2.13 

ARMA (3,0)'" 28.42 29.82 31.22 3.71 5.18 6.65 0.77 1.42 2.07 

ARMA (3,1) 28.39 29.80 31.22 3.63 5.11 6.58 0.74 1.39 2.05 
I 

~ 
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Table 4-28: Comparison of historical and generated lag-l autocorrelation coefficient and the partial sum of the 
autocorrelation function for lags 10 and 20 based on ARMA(p,q) model fitted to the transformed data of 
annual flows at Malakal. Estimation methods: method of moments and least squares (*). 

10 20 

Pl (x") L Pj (x) L Pi (x) 
i 1 i ;;; I 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

HISTORICAL 0.777 2.604 3.288 

ARMA (1,0) 0.569 0.649 0.729 0.727 1.624 2.522 -0.275 0.991 2.256 

ARMA (1,0)'" 0.575 0.654 0.734 0.755 1.665 2.575 -0.266 1.023 2.312 

ARMA (2,0) 0.562 0.644 0.727 0.322 1.142 1.962 -0.438 0.671 1.780 

ARMA (2,0)'" 0.559 0.642 0.726 0.341 1.171 2.001 -0.434 0.693 1.819 

ARMA (1.1) 0.588 0.657 0.727 0.477 1.277 2.078 -0.349 0.718 1.784 

ARMA (1,1)'" 0.593 0.663 0.733 0.536 1.363 2.189 -0.333 0.781 1.895 

ARMA (2,1) 0.559 0.642 0.725 0.407 1.249 2.091 -0.407 0.755 1.917 

ARMA (2,1)'" 0.571 0.652 0.733 0.452 1.313 2.174 -0.392 0.805 2.002 

ARMA (2,2) * 0.567 0.649 0.732 0.491 1.362 2.233 -0.377 0.846 2.068 

ARMA (3,0) 0.560 0.643 0.725 0.384 1.247 2.109 -0.438 0.748 1.935 

ARMA (3,0)'" 0.578 0.658 0.738 0.395 1.273 2.152 -0.442 0.762 1.967 

ARMA (3,1) 0.562 0.645 0.729 0.441 1.320 2.199 -0.401 0.819 2.039 I 

----------
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Table 4-29: Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on 
ARMA(p,q) model fitted to the transformed data of annual flows at Malakal. Estimation methods: method of 
moments and least squares (*). 

LONGEST DROUGHT (years) RESCALED RANGE 

GEN- GEN GEN+ GEN- GEN 

STD STD STD 

HISTORICAL 14.00 24.42 

ARMA (1,0) 10.42 15.42 20.42 15.36 18.91 

ARMA (1,0)· 10.44 15.43 20.43 15.46 19.04 

ARMA (2,0) 10.06 14.59 19.12 14.18 17.77 

ARMA (2,0)· 9.97 14.46 18.95 14.25 17.87 

ARMA (1,1) 9.57 14.39 19.21 14.59 17.88 

ARMA (1,1)· 9.72 14.68 19.64 14.81 18.17 

ARMA (2,1) 9.92 14.69 19.46 14.44 18.10 

ARMA (2,1)· 10.13 15.14 20.15 14.60 18.32 

ARMA (2,2) * 10.29 15.20 20.11 14.70 18.46 

ARMA (3,0) 9.90 14.94 19.98 14.43 18.11 

ARMA (3,0)· 10.26 15.14 20.03 14.57 18.27 

ARMA (3,1) 10.24 15.13 20.02 14.67 18.39 

GEN+ GEN-

STD STD 

22.46 0.744 

22.61 0.746 

21.36 0.720 

21.48 0.721 

21.17 0.731 

21.52 0.735 

21.78 0.726 

22.04 0.729 

22.22 0.731 

21.79 0.727 

21.97 0.729 

22.11 0.731 

HURST COEFICIENT 

GEN 

0.872 

0.797 

0.799 

0.779 

0.781 

0.782 

0.787 

0.784 

0.788 

0.790 

0.785 

0.787 

0.789 

GEN+ 

STD 

0.850 

0.852 

0.839 

0.840 

0.834 

0.839 

0.843 

0.847 

0.849 

0.843 

0.845 

0.847 

• 

M 
N 
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Table 4-30: 

HISTORICAL 

METHOD 1 

(i=I,k=2) 

METHOD 1 

(i=I,k=4) 

METHOD 1 

(i=2,k=3) 

METHOD 1 

(i=3,k=6) 

METHOD 1 

(i=4,k=8) 

METHOD 1 

(i=4,k=9) 

METHOD 2 

(i=I, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=I, L=30) 

Comparison of historical and generated mean, st.deviation, and skewness coefficient based on the GNN model fitted to original data 
of annual NBS at Lake St.Clair. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum ofEq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

MEAN (thousands efs) ST ANDARD DEVIATION (thousands efs) SKEWNESS COEF 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN 

STO STD STO STO STD 

51.71 26.87 0.31 

46.96 51.14 56.52 22.90 26.12 29.34 -0.37 0.03 

43.43 51.40 59.47 21.160 24.57 28.54 -0.32 -0.03 

46.96 52.31 57.66 2319 26.13 29.08 -0.31 -0.04 

45.99 52.10 58.20 22.66 26.08 29.51 -0.24 0.02 

44.70 52.95 61.19 2(134 24.76 29.17 -0.57 -0.05 

43.55 51.93 60.37 21 36 24.69 28.02 -0.37 -0.04 

42.79 52.84 62.89 1994 24.15 28.36 -0.33 -0.01 

45.77 52.52 59.27 2333 25.77 28.21 -0.27 -0.02 

44.60 52.25 59.90 21 78 25.41 29.03 -0.33 -0.02 

GEN+ 

STO 

0.42 

0.26 

0.24 

0.28 

0.48 

0.30 

031 

0.23 

029 

I 

I 

~ 

""'" N -



Table 4-31: 

HISTORICAL 

METHOD I 

(i=I,k=2) 

METHOD I 

(i=I,k=4) 

METHOD I 

(i=2,k=3) 

METHOD I 

(i=3,k=6) 

METHOD I 

(i=4,k=8) 

METHOD I 

(i=4,k=9) 

METHOD 2 

(i=I, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=I, L=30) 

Comparison of historical and generated lag-l autocorrelation coefficient and the partial sum of the autocorrelation function for lags 
10 and 20 based on the GNN model fitted to original data of annual NBS at Lake St.Clair. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-28) and (4-29)" 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum ofEq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

10 20 

PI (x) L Pi (x) L Pj (x) 
t 1. i ::: 1 

GEN- SID GEN GEN+ GEN- GEN GEN+ GEN- GEN 

STD STD SID SID 

0.S03 2.411 2.616 

0.370 0.467 0.565 0.035 0.784 1.533 -0.456 0.471 

0.232 0.374 0.516 0.581 1.714 2.848 -0.143 1.581 

0.163 0.302 0.440 0.240 1.036 1.831 -0.246 0.741 

0.254 0.376 0.498 0.02!! 0.998 1.968 -0.566 0.728 

0.576 0.668 0.761 0.971 2.142 3.313 -0.269 1.405 

0.200 0.357 0.514 0.501 1.722 2.942 -0.014 1.711 

0.\64 0.339 0.514 0.682 2.111 3539 O.lS9 2.438 

0.005 0.127 0.249 -0.039 0.760 1.5S9 -0.395 0.819 

0.272 0.424 0.576 0815 1.982 3.149 0.124 1.805 
-

GEN+ 

SID 

1.399 

1305 

1.728 

2.022 

3.078 

3.436 

4.7\7 

2034 

3.486 

tr) 

N 
~ 



Table 4-32: 

HISTORICAL 

METHOD 1 

(i=l,k=2) 

METHOD 1 

(i=l,k=4) 

METHOD 1 

(i=2,k=3) 

METHOD 1 

(i=3,k=6) 

METHOD 1 

(i=4,k=8) 

METHOD I 

(i=4.k=9) 

METHOD 2 

(i=1. L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=I.L=30) 

Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on GNN model fitted to 
original data of annual NBS at Lake St. Clair. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum ofEq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

LONGEST DROUGHT (years) RESCALED RANGE HURST COEFICIENT 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN 

STO STO STD STO STO 

9.00 25.04 0.846 

6.81 10.03 13.25 13.73 17.37 21.01 0.688 0.744 

6.44 10.96 15.49 1593 21.20 26.46 0.727 0.794 

5.79 9.03 12.27 13.96 18.39 22.81 0.690 0.757 

6.50 9.78 13.06 13.52 17.80 22.09 0.685 0.749 

9.14 14.65 20.16 17.93 22.67 27.40 0.759 0.814 

5.41 10.57 15.73 15.83 21.28 26.73 0.727 0.795 

6.34 10.99 15.64 17.12 23.13 29.14 0.743 0.816 

5.00 7.23 9.46 12.52 16.79 21.06 0.665 0.732 

6.45 1l.60 16.74 16.94 22.28 27.62 0.743 0.808 

GEN+ 

STO 

0.800 

0.861 

0.824 

0.813 

0.869 

0.862 

0.889 

0.800 

0.872 

\0 
C'l 
~ 



Table 4-33: Comparison of historical and generated mean, st.deviation, and skewness coefficient based on ARMA(p,q) 
model fitted to the original data of annual NBS at Lake St.Clair. Estimation methods: method of moments and 
least squares (*). 

MEAN (thousands efs) 

GEN- GEN GEN+ 

STO STO 

HISTORICAL 51.71 

ARMA 

(1,0) 46.71 51.56 56.42 

ARM A 

(2,0) 45.83 51.26 56.68 

ARM A 

(1,1) 46.42 51.55 56.68 

• 
ARMA 

(2,1) 44.96 5U8 57.41 

• 
ARMA 

(2,2) 44.34 51.15 57.96 

ARMA 

(3,0) 45.21 51.25 57.30 

ARMA 

(3,1) 43.47 51.25 59.03 

STANDARD DEVIATION (thousands efs) 

GEN- GEN GEN+ 

STO STO 

26.87 

23.76 26.32 28.88 

23.29 25.19 28.35 

23.67 26.29 28.92 

22.79 25.38 27.98 

22.66 25.30 27.94 

23.12 25.69 28.25 

22.57 25.26 27.96 

SKEWNESS COEF 

GEN- OEN 

STO 

0.31 

-0.27 0.03 

-0.26 0.02 

-0.27 0.03 

-0.26 0.01 

-0.26 0.01 

-0.25 0.02 

-0.25 0.00 

OEN+ 

STO 

0.32 

0.30 

0.32 

0.28 

0.27 

0.29 

0.25 

, 

I 

t­
N 
.....-4 



Table 4-34: Comparison of historical and generated lag-l autocorrelation coefficient and the partial sum of the 
autocorrelation function for lags 10 and 20 based on ARMA(p,q) model fitted to the original data of annual 
NBS at Lake St. Clair. Estimation methods: method of moments and least squares (*). 

10 20 

PI. (x) L Pi (x) L Pi (x) 
i ::: ] j ::: 1 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

HISTORICAL 0.503 2.411 2.616 

ARMA 

(1,0) 0.374 0.472 0.569 0.080 0.735 1.390 -0.508 0.418 1.345 

ARM A 

(2,0) 0.336 0.447 0.558 0.134 0.789 1.443 -0.434 0.414 1.262 

ARMA 
I 

(1,1) 0.366 0.469 0.572 0.164 0.868 1.571 -0.488 0.517 1.523 
I 

• 
ARMA 

(2,1) 0.305 0.427 0.549 0.372 1.136 1.901 -0.324 0.726 1.776 

• 
ARMA 

(2,2) 0.306 0.428 0.551 0.484 1.307 2.130 -0.234 0.935 2.104 

ARMA 

(3,0) 0.327 0.443 0.559 0.284 1.019 1.753 -0.376 0.613 1.601 

ARMA 

(3,1) 0.309 0.430 0.552 0.632 1.531 2.429 -0.079 1.245 2.569 

00 
N 
..-4 



Table 4-35: Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on 
ARMA(p,q) model fitted to the original data of annual NBS at Lake St.Clair. Estimation methods: method of 
moments and least squares (*). 

LONGEST DROUGHT (years) 

GEN- GEN GEN+ GEN-

STD STD STD 

HISTORICAL 9.00 

ARMA 

(1,0) 6.29 9.41 12.53 12.76 

ARMA 

(2,0) 6.60 9.58 12.56 13.66 

ARMA 

(1,1) 6.47 9.81 13.15 13.20 

• 
ARM A 

(2,1) 6.83 10.02 13.21 14.66 

• 
ARMA 

(2,2) 7.00 10.22 13.47 15.10 

ARMA 

(3,0) 7.15 10.07 12.99 14.31 

ARMA 

(3,1) 7.06 10.61 14.16 15.57 
-- -- ------ ---------- ~---~~--

RESCALED RANGE 

GEN GEN+ GEN-

STD STD 

25.04 

16.64 20.52 0.669 

17.11 20.56 0.688 

17.19 21.19 0.678 

18.46 22.25 0.706 

19.07 23.05 0.714 

18.04 21.78 0.700 

19.91 24.26 0.721 
---

HURST COEFICIENT 

GEN 

0.846 

0.731 

0.741 

0.740 

0.760 

0.769 

0.754 

0.779 

GEN+ 

SID 

0.794 

0.794 

0.802 

0.814 

0.824 

0.809 

0.838 

I 

I 

I 

0'\ 
N 
......-4 



Table 4-36: Comparison of historical and generated mean, sLdeviation, and skewness coefficient based on the GNN model 
fitted to transformed data of annual NBS at Lake St. Clair. Estimation methods: 

HISTORICAL 

METHOD 1 

(i=l.k=2) 

METHOD 1 

(i=l.k=4) 

METHOD 1 

(i=2.k=3) 

METHOD 1 

(i=3.k=6) 

METHOD 1 

(i=4.k=9) 

METHOD 2 

(i=1. L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=1. L=30) 

Method 1: Using MOM (i and k of Eq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L = number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum of Eq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

MEAN (thousands cfs) STANDARD DEVIATION (thousands cfs) SKEWNESS COEF 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

STD STD STD STD STD STD 

51.11 26.87 0.31 

46.22 51.40 56.58 22.73 26.62 30.52 0.07 0.46 0.85 

42.81 51.14 59.46 20.52 25.32 30.13 0.09 0.46 0.83 

46.30 52.55 58.80 23.12 26.30 29.49 0.09 0.43 O.TI 

45.82 52.22 58.63 22.96 26.22 29.47 0.16 0.47 0.78 

42.67 51.08 59.48 20.59 25.38 30.17 0.06 0.43 0.80 

41.48 52.31 63.15 19.06 24.45 29.85 0.03 0.36 0.69 

45.05 52.18 59.32 22.88 26.10 29.31 0.12 0.42 0.71 

44.19 51.97 59.75 21.49 25.36 29.23 0.09 0.44 0.79 
-------- --------

o 
M 
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Table 4-37: 

HISTORICAL 

METHOD 1 

(i=I,k=2) 

METHOD 1 

(i=I,k=4) 

METHOD 1 

(i=2,k=3) 

METHOD 1 

(i=3,k=6) 

METHOD I 

(i=4,k=9) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

( L=3O) 

METHOD 4 

(i=l, L=30) 

Comparison of historical and generated lag-l autocorrelation coefficient and the partial sum of the autocorrelation function for lags 
10 and 20 based onthe GNN model fitted to the transformed data of annual NBS at Lake St.Clair. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number oflags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum ofEq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

10 20 

Pl (X) L Pj (X) L Pi 
j ! i ::: 1 

GEN- SID GEN GEN+ GEN- GEN GEN+ GEN· GEN 

SID SID SID SID 

0.S03 2.411 2.616 

0.330 0.449 0.S67 -0.031 0.734 I.SOO -0.613 0.433 

0.206 0.387 0.S69 0.S67 1.926 3.285 -0.108 1.9SO 

0.\S6 0.284 0.412 0.267 1.080 1.893 -0.323 0.827 

0.213 0.346 0.479 0.143 1.001 1.860 -0.538 0.606 

0.226 0.393 0.560 0.593 1.920 3.248 -0.115 1.891 

0.\35 0.326 0.516 0.627 2.053 3.479 0.076 2.344 

-0.030 0.114 0.259 -0.\ 19 0.684 1.486 -0.525 0.709 

0.228 0.391 0.5S4 0.511 1.654 2.798 -0.217 1.480 

(X) 

GEN+ 

SID 

1.480 

4.009 

1.977 

1.7SO 

3.898 

4.611 

1.944 

3.237 

-("r') -



Table 4-38: 

i HISTORICAL 

METHOD 1 

(i=l,k=2) 

METHOD I 

(i=1,k=4) 

METHOD I 

(i=2,k=3) 

METHOD 1 

(i=3,k=6) 

METHOD 1 

(i=4,k=9) 

METHOD 2 

(i=l, L=30) 

METHOD 3 

( L=30) 

METHOD 4 

(i=l, L=30) 

Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on GNN model fitted to 
transformed data of annual NBS at Lake St. Clair. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-28) and (4-29» 
Method 2: Using Regression analysis (L=number of lags used in regression, i=lag used in Eq. (4-29» 
Method 3: Using fitted autocorrelation function (L=number of lags used in fitting the autocorrelation 
function) 
Method 4: Using range properties (L=number of lags used in approximating the infinite sum ofEq. (4-41), 
i=lag used in Eq. (4-29». Note that GEN means the average of generated values. 

LONGEST DROUGHT (years) RESCALED RANGE HURST COEFICIENT 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN 

STD STD STD STD STD 

9.00 25.04 0.846 

6.86 10.S4 14.22 13.13 16.83 20.53 0.680 0.736 

6.02 12.48 18.94 15.99 21.86 27.72 0.729 0.801 

6.25 9.87 13.49 13.71 18.14 22.57 0.687 0.7S3 

6.83 10.67 14.S1 13.82 17.92 22.02 0.692 0.7S1 

6.33 12.80 19.27 16.48 22.06 27.65 0.737 0.804 

5.59 11.97 18.3S 16.08 22.60 29.11 0.723 0.805 

4.93 7.65 10.37 11.16 15.93 20.71 0.636 0.715 

6.84 12.35 17.86 15.90 20.90 2S.89 0.725 0.791 

GEN+ 

STD 

0.792 

0.873 

0.820 

0.811 I 

0.872 

0.891 

0.795 

0.856 

N 
M 
.-4 



Table 4-39: Comparison of historical and generated mean and st. deviation based on 
GNN-l model fitted to the original data of annual NBS at Lake St.Clair. 
Estimation methods: 
Method 1: Using MOM (i and k of Eq. (4-46 and Eq. (4-47)) 
Method 2: Using Regression Analysis (L=Number of lags used in 
regression, i=lag used in Eq.(4-50)) 
Method 3: Using range poperties (L = number of lags used in 
approximating the infinite sum of Eq. (4-41), i=lag used in Eq. (4-51». 
Note that GEN means the average of generated values. 

MEAN STANDARD DEVIATION 

GEN- GEN GEN+ GEN- GEN GEN+ 

SID SID SID SID 

HISTORICAL 51.71 26.87 

METHOD 1 

(i=2, k=3) 46.77 52.35 57.93 23.02 26.11 29.20 

METHOD 1 

(i=3, k=6) 45.90 52.12 58.34 22.54 26.05 29.56 

METHOD 1 

(i=4,k=9) 43.54 51.94 60.33 21.33 24.69 28.04 

METHOD 2 

(i=4,L=30) 41.82 52.01 62.21 20.80 24.48 28.15 

METHOD 2 

(i=5,L=30) 41.67 52.01 62.35 20.63 24.39 28.15 

METHOD 3 

(i=2,L=30) 45.98 52.05 58.12 22.91 26.10 29.30 
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Table 4-40: Comparison of historical and generated longest drought, rescaled range, and Hurst coefficient based on GNN-l model 
fitted to the original data of annual NBS at Lake St.Clair. Estimation methods: 
Method 1: Using MOM (i and k ofEq. (4-46 and Eq. (4-47» 
Method 2: Using Regression Analysis (L=Number of lags used in regression, i=lag used in Eq.(4-50» 
Method 3: Using range properties (L=number of lags used in approximating the infinite sum ofEq. (4-41), i=lag 
used in Eq. (4-51». Note that GEN means the average of generated values. 

LONGEST DROUGHT RESCALED RANGE HURST COEFICIENT 
(years) 

GEN- GEN GEN+ GEN- GEN GEN+ GEN- GEN GEN+ 

SID SID SID STD SID SID 

HISTORICAL 9.00 25.04 0.846 

METIIOD 1 

(i=2, k=3) 6.17 9.38 12.59 14.61 19.13 23.66 0.702 0.767 0.833 

METIIOD 1 

(i=3, k=6) 6.92 10.10 13.26 13.90 18.20 22.49 0.693 0.755 0.817 

METIIOD 1 I 

(i=4,k=9) 5.54 10.65 15.76 15.94 2l.37 26.79 0.729 0.7% 0.863 

METIIOD 2 

(i=4,L=30) 5.15 9.74 14.33 14.78 2l.29 27.81 0.701 0.790 0.878 

METIlOD2 

(i=5,L=30) 5.26 9.93 14.60 14.90 2l.53 28.16 0.703 0.792 0.882 

METIIOD 3 

(~~~L=3~L ___ "---. 6.50 10.28 14.00 15.44 20.28 25.13 0.7_~8_. 0.783 0.848 

.q­
("f) 
....-4 



Table 4-41: Comparison of historical and generated statistics based on the GNN model 

fitted to the original data of annual NBS at Lake Ontario. Estimation 

method: Using Regression Analysis (i= 1, L=30). Note that GEN means 

the average of generated values. 

Historical GEN-STD GENERATED GEN+STD 

Mean 432.56 396.15 431.68 467.22 

Standard 97.22 80.57 89.87 99.16 

Deviation 

Longest 10.00 4.64 7.93 1l.22 

Drought 

Rescaled 17.49 11.33 17.20 23.08 

Range 

Hurst 0.752 0.639 0.732 0.824 

Coefficient 

Surplus 1700.00 787.61 1478.87 2170.13 

Maximum 777.56 365.63 733.63 1101.44 

Deficit 
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Table 4-42: Comparison of historical and generated statistics based on the GNN-l model 

fitted to the original data of annual NBS at Lake Ontario. Estimation 

method: Using Regression Analysis (i=2, L=30). Note that GEN means 

the average of generated values. 

Historical GEN-STD GENERATED GEN+STD 

Mean 432.56 396.85 432.49 468.12 

Standard 97.22 80.28 89.15 98.02 

Deviation 

Longest 10.00 4.64 7.06 9.48 

Drought 

Rescaled 17.49 10.90 15.60 20.31 

Range 

Hurst 0.752 0.626 0.709 0.792 

Coefficient 

Surplus 1700.00 820.14 1338.92 1857.71 

Maximum 777.56 391.92 636.89 881.87 

Deficit 
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Fig 4-1 Historical and fitted autocorrelation function (ACF) 
for the annual flows of the white Nile River at Malakal 
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Fig 4-2 Historical and fitted autocorrelation function (ACF) 
for the annual net basin supplies for lake St.Clair 
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Fig 4-3 Historical annual flows for the white Nile River 
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Fig 4-4 Historical annual NBS for Lake St.Clair (1900 - 1989) 
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Fig 4-5 Historic and generated autocorrelogram for Malakal based on 
GNN model and MOM estimation method with i=1, k=8. 
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Fig 4-6 Historic and generated autocorrelogram for Malakal based on 
GNN model and MOM estimation method with i=1, k=9. 
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Fig 4-7 Historic and generated autocorrelogram for Malakal based on 
GNN model and MOM estimation method with i=1, k=10. 
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Fig 4-8 Historic and generated autocorrelogram for Malakal based on 
GNN model and MOM estimation method with i=2, k=6. 
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Fig 4-9 Historic and generated autocorrelogram for Malakal based on 
GNN model and regression analysis estimation method with 
i=1, L=30. 
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Fig 4-10 Historic and generated autocorrelogram for Malakal based on 
GNN model and fitting the ACF estimation method with L=30. 
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Fig 4-11 Historic and generated autocorrelogram for Malakal based on 
GNN model and using the range properties estimation method with 
i=1, L=30. 
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Fig 4-12 Historic and generated autocorrelogram for Malakal based on 
AR(1) model and least squares estimation method. 
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Fig 4-13 Historic and generated autocorrelogram for Malakal based on 
AR(2) model and least squares estimation method. 
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Fig 4-14 Historic and generated autocorrelogram for Malakal based on 
ARMA(1,1) model and least squares estimation method. 
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Fig 4-15 Historic and generated autocorrelogram for Malakal based on 
ARMA(2,1) model and least squares estimation method. 
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Fig 4-16 Historic and generated autocorrelogram for Malakal based on 
ARMA(2,2) model and least squares estimation method. 
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Fig 4-17 Historic and generated autocorrelogram for Malakal based on 
AR(3) model and least squares estimation method. 
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Fig 4-18 Historic and generated autocorrelogram for Malakal based on 
ARMA(3,1) model and method of moments estimation method. 
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Fig 4-19 Historical and Generated Flows for Malakal based on GNN model 
and regression analysis estimation method. 
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Fig 4-20 Historical and Generated Flows for Malakal based on AR(1) model 
and least squares estimation method. 
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Fig 4-21 Historical and Generated Flows for Malakal based on ARMA(1, 1) model 
and least squares estimation method. 

149 



30 ~------------------------------~ 

Q) 
0) 

5i 20 
0:: 
'U 
Q) 

co 
~ 10 
Q) 

a:: 

o +---r-~---+---+--~--4---+---~-4--~ 
30 40 50 60 

Data Length 
70 

- - & + STD -e- HISTORICAL ~ GENERATED 

80 

Fig 4-22 Historic and generated rescaled range for different data lengths for 
Malakal based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-23 Historic and generated rescaled range for different data lengths for 
Malakal based on AR(1) Model and least squares estimation method. 
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Fig 4-24 Historic and generated rescaled range for different data lengths for 
Malakal based on ARMA(1, 1) Model and least squares estimation 

method. 

30 ~------------------------------~ 

Q) 
C) 

~ 20 
a:: 
"0 
Q) 

~ 10 
Q) 

a:: 

30 40 50 60 70 80 
Data Length 

- - & + STD -B- HISTORICAL -0- GENERATED 

Fig 4-25 Historic and generated rescaled range for different data lengths for 
Malakal based on ARMA(2,1) Model and least squares estimation 

method. 
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Fig 4-26 Historic and generated longest drought for different data lengths for 
Malakal based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-27 Historic and generated longest drought for different data lengths for 
Malakal based on AR(1) Model and least squares estimation method. 
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Fig 4-28 Historic and generated longest drought for different data lengths for 
Malakal based on ARMA(1, 1) Model and least squares estimation method 
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Fig 4-29 Historic and generated longest drought for different data lengths for 
Malakal based on ARMA(2,1) Model and least squares estimation method 
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Fig 4-30 Historic and generated maximum deficit for different data lengths for 
Malakal based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-31 Historic and generated maximum deficit for different data lengths for 
Malakal based on AR(1) Model and least squares estimation method. 
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Fig 4-32 Historic and generated maximum deficit for different data lengths for 
Malakal based on ARMA(1, 1) Model and least squares estimation method 
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Fig 4-33 Historic and generated maximum deficit for different data lengths for 
Malakal based on ARMA(2,1) Model and least squares estimation method 
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Fig 4-34 Historic and generated surplus for different data lengths for 
Malakal based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-35 Historic and generated surplus for different data lengths for 
Malakal based on AR(1) Model and least squares estimation method. 
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Fig 4-36 Historic and generated surplus for different data lengths for Malakal 
based on ARMA(1,1) Model and least squares estimation method. 
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Fig 4-37 Historic and generated surplus for different data lengths for Malakal 
based on ARMA(2,1) Model and least squares estimation method. 
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Fig 4-38 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and MOM estimation method with i=1,k=2. 
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Fig 4-39 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and MOM estimation method with i=1,k=4. 
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Fig 4-40 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and MOM estimation method with i=2,k=3. 

u. 
UJ 

1 ~----------------------. 

0.8 ------------------------ ... -_ .. -----.---------------_.-_.---------.--------------------.--.------- ... --------._-.--- .. _----------

0.6 -- ._-----.... --.- .. --.------.-------------------.--.-----.---.---.---.-----------------... ~ ... ~-- ... -........................ . 

o 0.4 
(.) 

0:: 
0:: 0.2 o 
(.) 

o +-------~~--~~~~~~-s~P=~~~~ 
-0.2 -.. ---------------------------------------------------------------------------.--.------------------------------.----------------

-0.4 +--+--+---+--I---+--f---t--r-_+_-+-__+--I--+--+--+----1 

o 2 4 6 8 10 12 14 16 
LAG 

-*- HISTORICAL -e- GENERATED - +&-STD 

Fig 4-41 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and MOM estimation method with i=3,k=6. 
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Fig 4-42 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and MOM estimation method with i=4,k=8. 
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Fig 4-43 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and MOM estimation method with i=4,k=9. 
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Fig 4-44 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and regression analysis estimation method with 
i=1, L=30. 
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Fig 4-45 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and fitting the ACF estimation method with L=30. 
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Fig 4-46 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN model and using range properties estimation method with 
i=1, L=30. 
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Fig 4-47 Historic and generated autocorrelogram for Lake St.Clair based on 
the AR(1) model and MOM estimation method. 
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Fig 4-48 Historic and generated autocorrelogram for Lake St.Clair based on 
the AR(2) model and MOM estimation method. 
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Fig 4-49 Historic and generated autocorrelogram for Lake St.Clair based on 
the ARMA(1 ,1) model and MOM estimation method. 
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Fig 4-50 Historic and generated autocorrelogram for Lake St.Clair based on 
the ARMA(2, 1) model and least squares estimation method. 
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Fig 4-51 Historic and generated autocorrelogram for Lake St.Clair based on 
the ARMA(2,2) model and least squares estimation method. 
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Fig 4-52 Historic and generated autocorrelogram for Lake St.Clair based on 
the AR(3) model and MOM estimation method. 
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Fig 4-53 Historic and generated autocorrelogram for Lake St.Clair based on 
the ARMA(3,1) model and MOM estimation method. 
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Fig 4-54 Historical and Generated NBS for lake St.Clair based on GNN model 
and regression analysis estimation method. 
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Fig 4-55 Historical and Generated NBS for lake St.Clair based on ARMA(1 ,1) model 
and MOM estimation method. 
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Fig 4-56 Historical and Generated NBS for lake St.Clair based on ARMA(2,2) model 
and least squares estimation method. 
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Fig 4-57 Historical and Generated NBS for lake St.Clair based on ARMA(3,1) model 
and MOM estimation method. 
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Fig 4-58 Historic and generated rescaled range for different data lengths for 
lake St.Clair based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-59 Historic and generated rescaled range for different data lengths for 
lake St.Clair based on AR(1) Model and MOM estimation method. 
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Fig 4-60 Historic and generated rescaled range for different data lengths for 
lake St.Clair based on ARMA(1, 1) Model and MOM estimation method. 
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Fig 4-61 Historic and generated rescaled range for different data lengths for 
lake St.Clair based on ARMA(2,1) Model and least squares estimation 

method. 
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Fig 4-62 Historic and generated longest drought for different data lengths for 
lake St.Clair based on GNN Model and regression analysis estimation 
method with i=1, L=30. 

_20 .,--------------------, 
~ 
«J 

~ -.... 
~ 
C) 

5 10 
L-

o .... 
en 
Q) 
C) 
c 
o 
~ 0 +-~--~--r__+--~~r__r--+_~---r--~~ 

30 40 50 60 70 
Data Length 

80 

- - & + STD -B- HISTORICAL -0- GENERATED 

90 

Fig 4-63 Historic and generated longest drought for different data lengths for 
lake St.Clair based on AR(1) Model and MOM estimation method. 
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Fig 4-64 Historic and generated longest drought for different data lengths for 
lake St.Clair based on ARMA(1,1) Model and MOM estimation method. 
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Fig 4-65 Historic and generated longest drought for different data lengths for 
lake St.Clair based on ARMA(2,1) Model and least squares estimation 

method. 
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Fig 4-66 Historic and generated maximum deficit for different data lengths for 
lake St.Clair based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-67 Historic and generated maximum deficit for different data lengths for 
lake St.Clair based on AR(1) Model and MOM estimation method. 
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Fig 4-68 Historic and generated maximum deficit for different data lengths for 
lake St.Clair based on ARMA(1, 1) Model and MOM estimation method. 
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Fig 4-69 Historic and generated smaximum deficit for different data lengths 
for lake St.Clair based on ARMA(2,1) Model and least squares 
estimation method. 
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Fig 4-70 Historic and generated surplus for different data lengths for lake 
St.Clair based on GNN Model and regression analysis estimation 
method with i=1, L=30. 
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Fig 4-71 Historic and generated surplus for different data lengths for lake 
St.Clair based on AR(1) Model and MOM estimation method. 
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Fig 4-72 Historic and generated surplus for different data lengths for lake 
St.Clair based on ARMA(1,1) Model and MOM estimation method. 
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Fig 4-73 Historic and generated surplus for different data lengths for lake 
St.Clair based on ARMA(2,1) Model and least squares estimation 

method. 
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Fig 4-74 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN-1 model and MOM estimation method with i=2,k=3. 
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Fig 4-75 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN-1 model and MOM estimation method with i=3,k=6. 
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Fig 4-76 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN-1 model and MOM estimation method with i=4,k=9. 
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Fig 4-77 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN-1 model and regression analysis estimation method with 
i=4, L=30. 
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Fig 4-78 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN-1 model and regression analysis estimation method with 
i=5, L=30. 
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Fig 4-79 Historic and generated autocorrelogram for Lake St.Clair based on 
the GNN-1 model and using range properties estimation method with 
i=2, L=30. 
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Fig 4-80 Historic and generated rescaled range for Lake St.Clair based on 
the GNN-1 model and regression analysis estimation method with 
i=4, L=30. 
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Fig 4-81 Historic and generated longest drought for Lake St.Clair based on 
the GNN-1 model and regression analysis estimation method with 
i=4, L=30. 
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5.1 General 

CHAPTER V 

MULTIVARIATE SHIFwl1NG MEAN PROCESS 

Planning and management of water resources systems generally require the analysis 

of many of hydrological processes such as streamflows at several sites in a given region. 

Multivariate analysis and modeling has been developed to be applied in such cases. In 

single site modeling, the purpose of the model is to simulate the temporal dependance for 

that site. On the other hand, multivariate models are designed to simulate both the 

temporal (within each site) dependance as well as the spatial (between sites) dependance. 

Although the concepts to develop a multivariate model are the same as for the univariate 

models, the mathematics is more complex in the multivariate case especially for full vector 

multivariate models. This difficulty motivated the use of simpler models known as 

contemporaneous model. In contemporaneous models, the parameter matrices are assumed 

to be diagonal and as such the mathematics involved in such models is simpler. In this 

chapter a contemporaneous GNN model will be developed and tested to check whether the 

model is capable of simulating the temporal and spatial dependance that exists in water 

resources systems. 

5.2 The Contemporaneous GNN model (CGNN) 

5.2.1 General 

A contemporaneous model that can be used to simulate processes that exhibit shifts 

in their mean will be developed in this section. Although this model can be used for 
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multisites, the developed equations will be presented for the bivariate case for illustration 

purposes. 

5.2.2 CGNN Model Formulation and Moment Equations 

The contemporaneous GNN process can be written as: 

(5-1) 

where XI is an (n xl) vector with elements X/ ,i = 1, ... n , n is the number of sites 

and each element represent the observed process for site i ; MI is an (n x 1) vector of 

iid normally distributed variables; U; is an (n x 1) vector with elements M;(j) ,each 

element is defined for each site i in the same manner as for the univariate case discussed 

in chapter 3; ZI is an (n x 1) vector ofiid normally distributed variables representing the 

noise terms. Further, the assumptions for this model are: 

1. M is spatially dependent only at lag-zero, that is: 
-I 

cov (M(i) M V» = 0 
I ' I-k 

for k1=O 

(') VA .. .. 
cov (M1 I ,Mt - k ) = p~ (0) o~ dm for k =0 

2. ZI process is also dependent only at lag-zero, that is: 

cov (Z(i) ZU») = 0 
1 ' I-k 

cov (z(i) ZU~ = pij(O) 0(1) oW 
I 'I-k) z z z 
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where p~ (0) and p;" (0) are the lag-zero cross correlations for the {M} series and the 

{Z} series for sites i and j, respectively. Also define the following terms: 

where S. is the lag-O variance-covariance matrix of the XI process, c.* is the lag-O 

variance-covariance matrix of the U; process, C is the lag-O variance-covariance 

matrix of the M process, and Q. is the lag-O variance-covariance matrix of 
I 

the Z.I process. The ij elements of the above matrices can be written as: 

S ij = lag-O covariance between sites i and j of the XI process. 

C *ii = lag-O covariance between sites i and j of the M; process. 

C ij = lag-O covariance between sites i and j of the MI process. 
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G ij = lag-O covariance between sites i and j of the Z.I process. 

Notice that in chapter 3, it was shown that for each site 

var (MI* ) = var (Mt ) = O'~ • 

As a result the ii element of the c.: matrix can be written as 

C*ii = C ii 

In the bivariate case, for example, one can write the above matrices as: 

COV (X( 1) X(2) 
I ' I 

s. = 

cov (X(l) X 2)) 
t ' t 

c..: = 
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COV (M(l) M(2'h 
I , I) 

c. = 

G = 

The model in Eq. (5-1) can be decoupled into univariate models for each site. For 

example, for the bivariate case 

(1) *(1) (1) 
X =M +Z/ t t (5-2) 

X (2) = M *(2) Z (2) 
t t + t (5-3) 

Without loss of generality, let us assume that the mean of the process {X} is set to zero 

at each site, that is 

Multiplying both sides of Eq. (5-1) by X~ 
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(5-4) 

and taking expectation 

E ( X t X~ )= E ( u; U;T )+ E ( U; Z~ )+ E ( Zt U;T )+ E ( Zt Z~ ) 

(5-5) 

and because of the independence of {M} and {Z} it may be shown that 

(5-6) 

As a result, Eq. (5-5) gives 

(5-7) 

or 

s. = C* + G (5-8) 

Then the ij element of matrix S can be written as: 

(5-9) 
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Based on the assumptions of the model, two types of the model are identified: 

(1) A model where the lengths of the shifts are not the same at all stations (i.e. different 

geometric distribution parameter p for each station). 

(2) A model where the lengths of the shifts are the same at all stations (i.e. same parameter 

p). 

It can be shown that the first model is not stationary and thus will not be considered here. 

The proof of the non-stationarity of this model is shown in Appendix B. Further, for the 

stationary model, it can be shown that: 

cov (M *(i) M *(f») = cov (M(i) M(J)) = pij(O) aU) a(;) 
I ' I-k I '/-k m m m k=O (5-10) 

As a result, Eq. (5-9) gives 

(5-11) 

or 

(5-12) 

(5-13) 
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For the bivariate model, Eq. (5-11) gives 

2(1) 
12(0) (1) (2) 

2(1) 12(0) (1) (2) ax Px ax ax am Pm am am 

= 

12(0) (1) (2) 
2(2) 12(0) (1) (2) 

2(2) 
Px ax ax ax Pm am am am 

(5-14) 

2(1) 12(0) (1) (2) az Pz az az 

+ 

12(0) (1) (2) 
2(2) 

pz az az az 

The spatially correlated {Z} process can be modeled as 

(5-15) 

where ~t is an (n x 1) vector of standardized normal variables independent in both time 

and space and B is an (n x n) parameter matrix. Also, the spatially correlated {M} 

process can be modeled as 

M = Fr 
-I - ~I (5-16) 

where 't is an (n xl) vector of standardized normal variables independent in both time 
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and space and F is an (n x n) parameter matrix. Also in this case, it can be shown 

that: 

(5-17) 

where p is the average of the estimated parameter p for all sites. 

Based on the assumptions of this model, two special cases are identified here: 

Case 1: 

1. M
t 

is spatially independent, that is: 

cov (MU) M(})) = 0 flor k ~ 0 
t ' t-k 

As a result, it can be shown that 

2. Zt is spatially dependent only at lag-zero, that is: 

cov (Z(i) Z(j») = 0 
t ' t-k 

for k~O 

cov (Z (i) Z (j).. = pij(O) cr(l) crW 
t 't-k) z z z for k=O 

and as a result Eq. (5-9) gives 

(5-18) 

for i 'I: j (5-19) 
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and for the bivariate model 

2(1) 12(0) (1) (2) 
2(1) 

0 O'x Px O'x O'x O'm 

= 

12(0) (1) (2) 
2(2) 

0 
i 2) 

Px O'x O'x O'x O'm 

(5-20) 

it) 12(0) (1) (2) 
O'z Pz O'z O'z 

+ 

12(0) (1) (2) 
2(2) 

Pz O'z O'z O'z 

Case 2 

1. M t is spatially dependent only at lag-zero, that is: 

cov (M( i) M(J») = 0 
t ' t-k 

for k1=O 

for k=O 

2. Zt is spatially independent, that is: 

cov (Z(i) Z(j)) = 0 fior k ~ 0 
t ' t-k 

As a result, Eq. (5-9) gives 

(5-21) 
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for j =I: j (5-22) 

and for the bivariate model 

12(0) (1) (2) Px ax ax 
12 (1) (2) 

Pm (0) am am 

= 

12(0) (1) (2) Px ax ax 12(0) (1) (2) Pm am am 
(5-23) 

+ 

o 

5.2.3 Parameter Estimation of the CGNN Model 

The parameter p at each station can be estimated using the univariate model at each 

station. Note that for this case the assumption is that all stations have the same parameter 

p. It is clear that we might obtain different estimated values of p at each station, hence 

an average value p can be found as: 

1 n 
p = - L fJ(O 

n i=1 

(5-24) 
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( ") 2(i) 
where p I is the estimated parameter based on the univariate model at station (i). am 

and 
2(i) 

az can be estimated from the univariate model at each site. The 

parameters p~ (0) and p; (0) can be estimated as follows: Multiplying both sides of 

Eq. (5-1) by ~~ 1 and taking expectation and using Eq. (5-17), it can be shown that : 

(5-25) 

and using Eq. (5-25), p~(O) can be estimated as: 

p~(O) = (5-26) 

Also, Eq. (5-13) can be used to estimate p;(O) as follows: 

(5-27) 

It remains to estimate the parameter matrix B . In the bivariate model, Eq. (5-15) 

can be written as: 

z(l) 
I 

Z(2) 
I 

= (5-28) 
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where e~l) and e~2) are spatially uncorrelated white noise series with mean =0 and 

variances 

2(1) i 1) 

Of: = Of: = 1.0 and bij = Coefficients to be estimated. 

Multiplying both sides of Eq. (5-15) by ZT and taking expectation 
t 

E (Zt Z~ = E (11 ft. t Z~ 

= E (B c c T B1\ - ~t ~t -,) 

(5-29) 

The above equation can be used to estimate the parameter matrix B. If matrix G is 

positive definite then, the B matrix can be assumed to be lower triangular (i.e. b 12 =0 

in Eq. (5-28)). In this case the coefficients of the matrix B can be found directly. For 

example for the bivariate case 

bn = p:-Oz 

12(0) (1) (2) 

b21 = 
Pz Oz Oz 

bll 

b22 = 
/ 2(2) 

Oz - (b
21 

)2 

If matrix G is positive or semi positive definite, the Singular Value Decomposition (SYD) 

method can be used to estimate B . In this method, matrix B is assumed to be full 
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(Le. b12 * 0 for the bivariate case). The matrix F ofEq. (5-16) can be estimated in the 

same manner as was done for matrix B. For the special cases mentioned in the above 

section, the parameters are estimated as follows: 

Case 1: 

The parameters p, (J~ and (J~ at each site can be estimated by one of the 

methods mentioned before based on the univariate model for each site. p; (0) can be 

estimated from 

Eq. (5-13 ) as 

(5-30) 

Case 2 

In this case, the parameter p at each station can be estimated using the univariate 

model at each station. Parameter ji can be estimated from Eq.(5-24). P~, (0) can be 

estimated using Eq. (5-13) as: 

(5-31) 

5.2.4 Application of the CGNN Model to Observed Hydrologic Data 

Nile River Basin 

The CGNN model was used to model the annual streamflows for A swan , 

Khartoum, Roseires, and Malakal based on the data for the period 1914-1983. The model 
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(i) 2(;) 2(;) 

parameters at each site namely p' , am ,and az were estimated by using the 

regression method. The parameters p!(O) and p;(O) were estimated by using Eqs. (5-

26) and (5-27) respectively. The estimated parameters are: 

2 2 
For Aswan: p = 0.105, am = 24.55, az = 78.94 

2 
= 12.15, 

2 
= 69.13 For Khartoum: p = 0.065, am az 

For Roseires: p = 0.068, a! = 12.86, 
2 

= 54.28 az 

For Malakal: p = 0.084, 
2 

= 27.03, 
2 = 4.67 am az 

MATRIX-G _._} 
(b) 

( 

78.936 69.091 61.445 2.993 

69.091 69.129 58.412 1.066 

61.445 58.412 54.280 1.117 

2.993 1.066 1.117 4.668 

For generating annual flows, the following procedure was followed: 

1. Two vectors of standard normal numbers e~) and 'GO , i = 1, ... ,n were 

generated where n is the number of sites (four in this case). Then Eq. (5-15) was 

(i) 
used to generate a vector of cross correlated normal random numbers Z, ' 

i=l, ... ,n. In a similar manner Eq. (5-16) was used for generating a vector of 

cross correlated normal random numbers M?), i = I , ... ,n. 

2. Based on the estimated parameters p (i) at each site i, the average 

parameter p was obtained by using Eq. (5-24). Consequently, a vector of 

geometric random numbers was generated. These numbers represent the random 

lengths of common means { N/ }, 1= 1,2,3,4, ... 

197 



3. Using the generated numbers M?) , i = 1 , ... , n and the lengths { N, }, 

1=1,2,3,4,... a vector of autocorrelated and cross correlated normal 

*(i) 

numbers M t , i= 1, ... ,n were generated. 

4. Subsequently, Eq.(5-1) was used for generating the vector of autocorrelated and 

cross- correlated numbers Xt(Ij • 

100 multivariate samples of length equal to the historical samples were generated 

using the above procedure. The generated statistics were compared to the observed ones 

to check weather the CGNN model was capable of preserving some important and basic 

statistics of the observed data. The results of the generation experimen t are shown in 

Tables 5-1 and 5-2. It is shown in these tables that the mean and the standard deviation are 

well preserved for all the four stations. In general, the CGNN model was also capable of 

preserving the longest drought except for Aswan as shown in Table 5-1. The rescaled 

range and Hurst coefficient are also well preserved for each site as shown in Table 5-1. 

The Maximum deficit was relatively well preserved for Aswan, Khartoum, and Roseires. 

However, there was relatively significant bias in Malakal case. The Surplus was relatively 

well preserved for Aswan and Roseires and some bias exists for Khartoum and Malakal. 

Table 5-2 show the historic and the generated lag-O cross correlation between the stations 

which shows that the CGNN model was able to preserve the spatial correlation structure 

that exists between the studied stations. Figures 5-1 through 5-4 show the generated 

autocorrelograms for the CGNN model. These figures suggest that the CG NN performed 

well in preserving the correlogram. From the above discussion, one can conclude that the 

CGNN is doing a relatively good job in preserving the basic short term and long term 
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statistics on the univariate level as well as preserving the spatial correlation structure that 

exists between the stations. It should be mentioned here that simulation experiments were 

also done based on cases 1 and 2 of CGNN model mentioned in section 5.2.2. The 

performance in preserving the short and long term statistics was similar to the CGNN 

model above. However, the lag-O cross correlations were not preserved well in both cases 

especially the high cross correlations such as the ones between Khartoum and Aswan, 

Roseires and Aswan, and Roseires and Khartoum. 

Similar generation experiments where done with contemporaneous multivariate 

CARMA(1,1) and CARMA(2,1) models. The parameters of the models were estimated 

using the least squares (LS) method. These models performed well in preserving the 

mean, standard deviation, and the lag-O cross correlations between the stations as shown 

in Tables 5-3 through 5-6. The models performed well in preserving the longest drought 

for all station except for Aswan. The rescaled range for Malakal was not well preserved 

by the CARMA models as shown in Tables 5-3 and 5-5. The CGNN model did a better 

job than CARMA models in this case. For the maximum deficit the CGNN model 

performed relatively better than CARMA models for Khartoum and Roseires. The 

opposite is true for Aswan and Malakal. Regarding the surplus, the biases were smaller 

for the CGNN model than the CARMA models as shown in Tables 5-1, 5-3, and 5-5. 

Great Lakes System 

The CGNN model was fitted to the annual (NBS) for lakes Superior, Michigan­

Huron, St. Clair, Erie and Ontario. The data used was for the period 1900 - 1989. The 
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parameters of the fitted model were estimated at each site using the regression method. 

The estimated parameters were as follows: 

For Superior: p = 0.050, a! = 7689.69, a; = 33477.49 

2 2 
For Mich-Huron: p = 0.015, am = 20293.69, az = 7645.66 

For St.Clair: p = 0.141, O'! = 412.75, 0'; = 309.35 

For Erie: p = 0.146, O'! = 2692.07, a~ = 9095.68 

For Ontario: p = 0.244, 
2 2 = 6336.37 am = 3114.85, az 

MATRIX-G 

33477.500 25080.900 486.393 4167.745 1839.909 

25080.900 76045.660 2688.940 11738.520 12877.730 

486.393 2688.940 309.346 692.805 781.848 

4167.745 11738.520 692.805 9095.684 4075.028 

1839.909 12877.730 781.848 4075.028 6336.374 

Following the same procedure as for the Nile River System 100 multivariate samples of 

length equal to the historical samples were generated by CGNN model. The results are 

shown in Tables 5-7 and 5-8. The CGNN model performed well in preserving the mean 

and the standard deviation for all lakes. The longest drought was relati vel y well preserved 

for all sites. Similarly, the rescaled range and Hurst coefficient were also well preserved. 

The surplus was also relatively well preserved although there was some significant bias for 

lakes Superior and Erie. Also, the CGNN was also able to preserve the spatial correlation 

structure that exists in the Great Lakes system as shown in Table 5-8. The CGNN model 

also performed well in preserving the autocorrelograms for each site as shown in Figs. 5-
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13 through 5-17. 

As was done for the Nile basin, simulation experiments where done with 

CARMA(l, 1) and CARMA(2, 1) models. The parameters of these models were estimated 

using the least squares method. It should be noted here that for lake Erie an ARMA(l,O) 

was used to estimate the univarite model parameters. The use of a univariate ARMA(l, 1) 

and ARMA(2,1) resulted in unreasonable estimates of the variance-covariance matrix of 

the residuals G which caused the CARMA models to be unable to preserve the historical 

statistics upon generation. The CARMA models performed well in preserving the mean, 

standard deviation, and the lag-O cross correlations between the stations as shown in Tables 

5-9 through 5-12. The longest drought was well preserved for all lakes. However, the 

rescaled range was not preserved for lakes St.Clair and Erie and was significantly 

underestimated. Remember that the CGNN model did preserve the rescaled range at these 

sites as discussed above. The performance of the CARMA models was relatively better 

than the CGNN model in preserving the maximum deficit except for lake Superior. The 

opposite is completely true for the surplus as shown in Tables 5-7, 5-9, and 5-11. 

From the results of the generation experiments one can conclude that there is no 

clear winner between CGNN model and CARMA models. In some aspects, the CGNN 

model performed better than the CARMA models and in others CARMA performed better. 

This raises the question which is can we somehow combine the two models (Le. CARMA 

and CGNN) and use CARMA for those sites that are best modeled by it and CONN for 

those sites in which CGNN performed better than CARMA. The answer is yes and the 

model is GNN-CARMA. 
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5.3 The GNN-CARMA Model 

5.3.1 General 

In the CGNN model, the assumption was made that each site be modeled by a 

GNN model univariatly and then these models can be combined to form the CGNN. In 

the model to be developed here, the sites will be modeled by using a combination of GNN 

and ARMA models. This model can be used in a region for which some sites exhibit shifts 

and the other sites do not appear to have the shifting phenomenon. The univariate models 

for each site will be combined to form the contemporaneous multivariate model which will 

be called GNN-CARMA(p,q) model. In this section, the GNN-CARMA (p,q) model will 

be developed and its moment equations will be derived. For illustration purposes, the 

derivation will be done for the GNN-CARMA(l,l) model. Finally, the equations 

developed will be generalized to the GNN-CARMA(P,q) model. 

5.3.2 Model Formulation and Moment Equations of the GNN-CARMA Model 

The GNN-CARMA(p,q) model can be written as: 

<I>(B) ~ = 'P U; + ~(B) Zt (5-32) 

where X
t 

is an (n x 1) column vector with elements X/ ,i=I, ... n, n is the number of 

sites and each element represent the observed process for site i; M is an (n x 1) vector 
I 

ofiid normally distributed variables; U; is an (n x 1) vector with elements M;(i) , each 

element is defined for each site i in the same manner as for the univariate case discussed 
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in chapter 3; Z I is an (n xl) vector of iid normally distributed variables representing the 

noise terms; <D(B) and S(B) are square matrices of polynomials in B which are 

respectively defined as 

<DCB) = 1 - <D B - <D B 2 -
- -=..!-=..! 

- <D BP 
-Il 

8(B) = 1 - 8 B - 8 B2 -
- .:::l.:::l 

in which I is an (nxn) identity matrix; <D., j = 1, ... ,p , ~., j = 1, ... ,q , and 'P are 
J J 

(nxn) appropriate matrices. For example, for the bivariate model, if site 1 is modeled by 

an ARMA (1,1) model and site 2 is modeled by a GNN model, the parameter 

matrices <D , 8 , and 'P can be written as: 

q> 0 

<D = (5-33) 

o 0 

and 

e 0 

a = (5-34) 

o 0 
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o 0 

(5-35) 

o 1 

Bj is a scaler difference operator such that B j XI = ~ _ 1 • 

The model in Eq. (5-32) can be decoupled into univariate models for each site. For 

example, for the bivariate case if site 1 is modeled by an ARMA(1, 1) and site with a GNN 

model then Eq. (5-32) can be written for site 1 as follows 

XCI) = X(l) + Z(I) - ez(l) 
I <p 1-1 I I-I (5-36) 

and for site 2 

X(2) = M *(2) + Z (2) 
I I I 

(5-37) 

As a result, the bivariate model can be written as : 

*(1) Z(I) Z(l) 
<p 0 0 0 t e 0 1-1 

= + + 
(5-38) 

(2) 0 0 0 1 *(2) Z(2) 0 0 Z(2) 
t /-1 

In deriving the moment equations for the GNN-CARMA{p,q) we will show the 
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derivation for the GNN-CARMA(l,l) model and then generalize the results for other 

ARMA(P,q) models. 

Multiplying both sides of Eq. (5-32) with X~ and taking expectation 

In terms of matrices S, C, and G defmed in section 5.2.2. the right hand side of the above 

equation are 

E(Z.t_l X~ = G <l>T - G 0..T 

As a result Eq. (5-39) gives 

s = <I> S <l>T - <I> G aT + q,s C q,sT + G - a G <I>T + a G aT 

The ij element in the S matrix can be written as; 
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Note that the above equation applies for all sites in the model. For example for our 

bivariate model above, the above equation reduces to (keeping in mind that ",I = 0 

and <p2 = 0, 92 = 0, and ",2 = 1 ). Then 

For the GNN-CARMA(l,O) model it can be shown that the moment equation is 

s ij = <pi <pi S ij + 'll \jI C ij + G ij (5-41) 

Again considering our bivariate model and assuming that site 1 is modeled by an 

ARMA(l,O) and site 2 is modeled by a GNN model, then 
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S 12 = G 12 

Remember that Eq. (5-40) works for any number of sites in which each site is modeled 

univariately by an ARMA(I,I) or a GNN model and Eq. (5-41) works for the ARMA(1,O) 

case. Lets look at a more complicated example and see the corresponding equations. If 

5 sites are modeled by the GNN-CARMA (1,1) where the first three sites are modeled by 

CARMA( 1, 1) and the last two are modeled by CGNN, the elements of the S matrix can 

be written as 

S 14 = G 14 
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From the above discussion, it can be concluded that the lag-O variance-covariance 

matrix S of the GNN-CARMA (p,q) model is similar to the one obtained for the CARMA 

(p,q) model. The difference is only in the elements which correspond to the sites modeled 

univariately by the GNN model. The elements of the S matrix which correspond to the 

sites modeled univariately by ARMA (p,q) are the same for both the CARMA (p,q) model 

and the GNN-CARMA (p,q) models. The elements of the S matrix which correspond to 

the sites modeled by the CGNN model (Le. univariately modeled by GNN) can be 

obtained by using the developed equations for the CGNN model. 

Finally, the spatially correlated {Z} process can be modeled by 

Z = B c 
-I - ~I (5-42) 

where ~I is an (n x 1) vector of standardized normal variables independent in both time 

and space and B is an (n x n) parameter matrix. 

5.3.3 Parameter Fm:imation of the GNN-CARMA Model 

The parameters for the GNN-CARMA (p,q) model can be estimated as follows: 

1. For the sites modeled univariately by the ARMA (p,q) model, the parameters 

<pi and ei can be estimated using the univarite models at each site L 

2. For the sites modeled by CGNN model, the parameters are estimated using the 

procedures presented in section 5.2.3. 

3. The elements of the G matrix can be estimated by the moment equations of the 

model such as the one derived in Eq. (5-40) for the GNN-CARMA(l, 1) model. 
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5.3.4 Application of the GNN-CARMA model to Observed Hydrologic Data 

Nile River Basin 

The GNN-CARMA (1,1) model was used to model the annual stream flows for 

Aswan, Khartoum, Roseires, and Malakal based on the data for the period 1914-1983. 

Malakal record shows a significant shift in its record which suggests that a G NN model 

may be useful in this case. Also it was shown in section 5.2.4 that the CARMA(l, 1) and 

CARMA(2,1) did not perform well in preserving the rescaled range and Hurst coefficient 

for Malakal whereas GNN results were relatively better. As a result the GNN-

CARMA(I,I) was used in which Aswan, Roseires, Khartoum flows were modeled by a 

CARMA (1,1) and the Malakal flows were modeled by GNN. The parameters of the 

CARMA(I,I) model were estimated by the I.S Method and the parameters of GNN model 

for Malakal were estimated by using the regression estimation method. The estimated 

parameters are: 

For Aswan: <PI = -0.26, 91 = -0.467 

For Khartoum: <PI = -0.466, 81 = -0.675 

For Roseires: <PI = -0.425, 81 = -0.686 

2 2 
For Malakal: p = 0.084, am = 27.13, az = 4.56 

MATRIX-G 

96.62 85.69 79.11 22.55 

62.10 76.98 62.63 -2.06 

60.60 66.82 62.01 -0.35 

22.55 -2.06 -0.35 4.59 
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For generating annual flows for the sites, the following procedure was followed: 

1. A vector of standard normal numbers e~) , i=1,4 were generated. Then Eq. 

(5-42) was used to generate a vector of cross correlated normal random 

numbers Zr") , i=1,4. 

2. Based on the estimated parameters Eq. (5-32) was used to generate a vector of 

autocorrelated and cross-correlated numbers Xt(l) , i = 1,4. 

100 multivariate samples of length equal to the historical samples were generated 

using the above procedure. The results of the generation experiment are shown in Tables 

5-13 and 5-14. The mean and the standard deviation are well preserved for all the four 

stations. In general, the GNN-CARMA (1,1) model was also capable of preserving the 

longest drought for all stations except for Aswan. The model also performed well in 

preserving the rescaled range and Hurst coefficient and did a better job than CARMA 

models in preserving the rescaled range for Malakal. Similar to CARMA(l,l) and 

CARMA(2,1) models, the GNN-CARMA (1,1) did perform well in preserving the 

maximum deficit except may be for Roseires. The GNN-CARMA(l,l) also performed 

relatively better than CARMA in preserving the Surplus as shown in Tables 5-3, 5-5, and 

5-13. Table 5-14 show the historic and the generated lag-O cross correlation between the 

sites studied which shows that the GNN-CARMA (1,1) model is able, in general, to 

preserve the spatial correlation structure that exists between the stations. Also, Figs. 5-28 

through 5-31 show the generated Autocorrelograms for the GNN-CARMA(l,l) model. 

These figures suggest that the model performed well in preserving the correlogram. In 

summary, one can argue that the GNN-CARMA (1,1) is doing a good job in preserving 
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the basic short term statistics and the long term statistics on the univariate level as well as 

preserving the spatial correlation structure that exists between the studied stations. 

By comparing the results of the GNN-CARMA(I,I) and CARMA(1,I) and 

CARMA(2,1), one can conclude that the GNN-CARMA model did a better job than the 

CARMA models in preserving the short and long term observed statistics for the studied 

sites. The strongest evidence of that is the ability of the GNN-CARMA model to preserve 

the rescaled range for St. Clair compared with the poor performance of the CARMA 

models in this regard. Remember that the GNN-CARMA(I,I) model has the same 

number of parameters as the CARMA( 1, 1) model and one less parameter than 

CARMA(2,1). 

Great Lakes System 

The GNN-CARMA (1, 1) model was fitted to the annual (NBS) for the great lakes 

system for the period of 1900 - 1990. CARMA(I, I) model was used in modeling the data 

for lakes Superior, Michigan, Erie, and Ontario. St.Clair was modeled by a GNN model 

because lake St. Clair record shows a significant shift in its record which suggests that a 

GNN model may be useful. Also it was shown in section 5.2.4 that CARMA(I, 1) and 

CARMA(2, I) did not perform well in preserving the rescaled range and Hurst coefficient 

for lake St.Clair and may be a GNN model will do a better job. The parameters of the 

CARMA (1, 1) model were estimated by using the LS method and the parameters of the 

GNN model for St.Clair were estimated by using the regression method. The estimated 

parameters are: 
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For Superior: <PI = 0.312, 91 = 0.144 

For Mich-Huron: <PI = 0.238, 91 = 0.049 

For Erie: <PI = 0.201 

For Ontario: <PI = 0.794, 91 = 0.559 

For St. Clair: p = 0.053, 
2 2 am = 383.81, az = 338.30 

MATRIX-G 

39926.80 32991.14 6615.02 7603.88 1355.48 

33487.98 92816.79 16281.19 28031.06 3783.39 

6725.51 16310.86 11309.09 10550.12 1607.92 

4607.82 17289.59 6609.04 8223.74 1492.57 

1355.48 3783.39 1607.92 1492.57 338.30 

Following the same procedure as for the Nile River System 100 multivariate samples of 

length equal to the historical samples were generated. Tables 5-15 and 5-16 show the 

results of the generation experiment. As in the Nile example, the GNN-CARMA (1,1) 

model performed very well in preserving the mean and the standard deviation for each site. 

The Model did a good job in preserving the rescaled range at each site except may be for 

lake Erie. The GNN-CARMA (1,1) model did also perform well in preserving the longest 

drought at each site as shown in Table 5-15. Also, the GNN-CARMA (1,1) was also able 

to preserve the spatial correlation structure that exists in the Great Lakes system as shown 

in Table 5-28. 

As mentioned above, the results for the rescaled range for lake Erie were not as 

good as other lakes. Alternatively a GNN-CARMA(1,1) was used to model the lakes 
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system in which lakes St.Clair and lake Erie are modeled by a CGNN model and lakes 

Superior, Michigan, and Ontario are modeled by CARMA(I, 1) model. Tables 5-17 and 

5-18 show the results of the generation experiment and Figs. 5-32 through 5-36 show the 

generated Autocorrelograms. The model performance is very good. The model was able 

to preserve the rescaled range for Lake Erie as well as performing well in preserving the 

other statistics. This confirms the finding in the Nile example which suggests that the 

GNN-CARMA should be the model to use instead of CARMA( 1,1) or CARMA(2, 1) in 

the Nile and the Great Lakes basins. 
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Table 5-1 : Results of generation experiment for the Nile River System based on 
CGNN model. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MEAN (milliards of cubic meters) 

ASWAN 84.95 82.10 84.98 87.86 

KHARTOUM 52.16 50.25 52.21 54.18 

ROSEIRES 49.92 47.93 50.00 51.99 

MALAKAL 30.01 27.32 30.09 32.86 

STANDARD DEVIATION (milliards of cubic meters) 

ASWAN 10.17 8.83 9.90 10.97 

KHARTOUM 9.02 7.97 8.86 9.75 

ROSEIRES 8.19 7.21 8.03 8.85 

MALAKAL 5.63 3.37 4.87 6.38 

LONGEST DROUGHT (Yeras) 

ASWAN 11.00 4.88 7.64 10.40 

KHARTOUM 7.00 4.43 6.52 8.61 

ROSEIRES 6.00 4.68 6.69 8.70 

MALAKAL 14.00 8.28 15.75 23.22 

RESCALED RANGE 

ASWAN 11.70 9.97 13.97 17.97 

KHARTOUM 13.26 9.07 12.35 15.64 

ROSEIRES 12.53 9.70 13.13 16.57 

MALAKAL 25.21 17.61 22.93 28.25 

HURST COEFICIENT 

ASWAN 0.692 0.645 0.730 0.813 

KHARTOUM 0.727 0.619 0.697 0.774 

ROSEIRES 0.711 0.636 0.714 0.792 

MALAKAL 0.908 0.801 0.873 0.944 
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Table 5-1 : Cont' d. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (milliards of cubic meters) 

ASWAN 65.19 37.39 74.70 112.02 

KHARTOUM 52.75 36.30 54.59 72.88 

ROSEIRES 61.98 33.08 52.74 72.40 

MALAKAL 55.96 28.08 87.47 146.87 

SURPLUS (milliards of cubic meters) 

AS WAN 118.99 79.07 128.87 178.66 

KHARTOUM 119.58 64.43 100.16 135.89 

ROSEIRES 102.64 61.97 96.26 130.56 

MALAKAL 124.05 54.97 108.53 162.09 
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Table 5-2: Historical and generated lag-O cross correlation coeficients for the Nile River System based on CGNN model. Note 
that Values in paranthesis are the generated ones. 

ASWAN KHARTOUM ROSEIRS MALAKAL 

ASWAN 1.000 0.809 0.863 0.394 

( 1.000) (0.841) (0.876) (0.328) 

KHARTOUM 1.000 0.935 -0.041 

( 1.000) (0.939) (-0.027) 

ROSEIRES 1.000 -0.008 

( 1.000) (0.004) 

MALAKAL 1.000 

(1.000) 

\0 
........ 
N 



Table 5-3 : Results of generation experiment for the Nile River System based on 
CARMA(l,l) model. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MEAN (milliards of cubic meters) 

ASWAN 84.95 83.32 84.88 86.44 

KHARTOUM 52.16 50.99 52.10 53.22 

ROSEIRES 49.92 48.77 49.86 50.95 

MALAKAL 30.01 28.22 29.97 31.72 

STANDARD DEVIATION (milliards of cubic meters) 

ASWAN 10.17 9.98 10.89 11.79 

KHARTOUM 9.02 7.72 8.52 9.33 

ROSEIRES 8.19 7.27 8.01 8.75 

MALAKAL 5.63 5.21 6.02 6.83 

LONGEST DROUGHT (Yeras) 

AS WAN 11.00 4.45 6.42 8.39 

KHARTOUM 7.00 4.18 6.04 7.90 

ROSEIRES 6.00 4.12 6.12 8.12 

MALAKAL 14.00 7.99 12.16 16.33 

RESCALED RANGE 

ASWAN 11.70 8.42 10.79 13.17 

KHARTOUM 13.26 7.87 10.17 12.48 

ROSEIRES 12.53 7.83 10.23 12.63 

MALAKAL 25.21 13.19 17.49 21.79 

HURST COEFICIENT 

ASWAN 0.692 0.600 0.662 0.725 

KHARTOUM 0.727 0.583 0.645 0.708 

ROSEIRES 0.711 0.580 0.646 0.712 

MALAKAL 0.908 0.727 0.796 0.866 
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Table 5-3 : Cont'd. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (milliards of cubic meters) 

ASWAN 65.19 46.09 65.87 85.66 

KHARTOUM 52.75 32.49 47.21 61.94 

ROSEIRES 61.98 31.74 47.05 62.36 

MALAKAL 55.96 44.84 76.23 107.61 

SURPLUS (milliards of cubic meters) 

ASWAN 118.99 76.84 106.25 135.67 

KHARTOUM 119.58 57.59 78.84 100.08 

ROSEIRES 102.64 54.75 75.62 96.50 

MALAKAL 124.05 60.66 93.71 126.75 
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Table 5-4: Historical and generated lag-O cross correlation coeficients for the Nile River System based on CARMA(I, 1) model. Note 
that Values in paranthesis are the generated ones. 

ASWAN KHARTOUM ROSEIRS MALAKAL 

ASWAN 1.000 0.809 0.863 0.394 

( 1.000) (0.829) (0.843) (0.267) 

KHARTOUM 1.000 0.935 -0.041 

( 1.000) (0.931) (-0.012) 

ROSEIRES 1.000 -0.008 

( 1.000) (0.014) 

MALAKAL 1.000 

(1.000) 

~ 

0"1 -N 



Table 5-5: Results of generation experiment for the Nile River System based on 
CARMA(2, 1) model. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MEAN (milliards of cubic meters) 

ASWAN 84.95 83.37 84.87 86.37 

KHARTOUM 52.16 51.04 52.11 53.21 

ROSEIRES 49.92 48.85 49.87 50.89 

MALAKAL 30.01 28.18 29.98 31.78 

STANDARD DEVIATION (milliards of cubic meters) 

ASWAN 10.17 9.29 10.21 11.13 

KHARTOUM 9.02 7.94 8.75 9.56 

ROSEIRES 8.19 7.46 8.25 9.03 

MALAKAL 5.63 4.89 5.70 6.52 

LONGEST DROUGHT (Yeras) 

ASWAN 11.00 4.14 6.05 7.97 

KHARTOUM 7.00 4.18 5.84 7.50 

ROSEIRES 6.00 4.23 5.97 7.71 

MALAKAL 14.00 7.85 12.07 16.29 

RESCALED RANGE 

ASWAN 11.70 8.45 10.65 12.85 

KHARTOUM 13.26 7.63 9.88 12.14 

ROSEIRES 12.53 7.74 10.01 12.27 

MALAKAL 25.21 13.57 1798 22.40 

HURST COEFICIENT 

ASWAN 0.692 0.601 0.659 0.718 

KHARTOUM 0.727 0.575 0.637 0.700 

ROSEIRES 0.711 0.577 0.641 0.704 

MALAKAL 0.908 0.736 0.804 0.873 
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Table 5-5 : Cont'd. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (milliards of cubic meters) 

ASWAN 65.19 42.91 61.74 80.57 

KHARTOUM 52.75 34.32 47.86 61.40 

ROSEIRES 61.98 32.00 45.00 57.99 

MALAKAL 55.96 40.56 74.20 107.84 

SURPLUS (milliards of cubic meters) 

ASWAN 118.99 71.48 98.68 125.88 

KHARTOUM 119.58 57.98 79.18 100.39 

ROSEIRES 102.64 54.25 74.31 94.36 

MALAKAL 124.05 58.31 91.94 125.57 
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Table 5-6: Historical and generated lag-O cross correlation coeficients for the Nile River System based on CARMA(2, 1) model. Note 
that Values in paranthesis are the generated ones. 

ASWAN KHARTOUM ROSEIRS MALAKAL 

ASWAN 1.000 0.809 0.863 0.394 

( 1.000) (0.801) (0.834) (0.318) 

KHARTOUM 1.000 0.935 -0.041 

( 1.000) (0.934) (-0.053) 

ROSEIRES 1.000 -0.008 

( 1.000) (-0.005) 

MALAKAL 1.000 

(1.000) 

N 
N 
N 



Table 5-7: Results of generation experiment for the Great Lakes System based on CGNN model. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MEAN (thousands cfs) 

SUPERIOR 870.14 855.43 871.71 907.99 

MICH-HURON 1344.26 1278.61 1338.81 1399.01 

ST. CLAIR 51.71 49.94 52.97 59.99 

ERIE 241.77 221.81 243.06 264.31 

ONTARIO 432.56 412.57 434.82 457.06 

STANDARD DEVIATION (thousands cfs) 

SUPERIOR 202.90 181.17 195.92 210.67 

MICH-HURON 310.38 276.66 302.55 328.43 

ST. CLAIR 26.87 20.53 24.62 28.72 

ERIE 108.57 97.49 106.61 115.73 

ONTARIO 97.22 85.12 95.50 105.88 

LONGEST DROUGHT (Years) 

SUPERIOR 5.00 4.32 7.34 10.36 

MICH-HURON 8.00 4.86 7.30 9.74 

ST. CLAIR 9.00 6.98 11.29 15.60 

ERIE 8.00 4.52 7.27 10.02 

ONTARIO 10.00 4.92 8.37 11.82 

RESCALED RANGE 

SUPERIOR 11.75 11.24 15.29 19.34 

MICH-HURON 16.14 11.07 15.12 19.18 

ST. CLAIR 25.04 15.93 21.49 27.05 

ERIE 18.30 12.05 16.26 20.48 

ONTARIO 17.49 13.08 18.00 22.92 

HURST COEFICIENT 

SUPERIOR 0.647 0.634 0.707 0.779 

MICH-HURON 0.731 0.629 0.704 0.778 

ST. CLAIR 0.846 0.724 0.796 0.869 

ERIE 0.764 0.653 0.723 0.794 

ONTARIO 0.752 0.676 0.749 0.823 
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Table 5-7: Cont'd. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (thousands cfs) 

SUPERIOR 1653.72 759.20 1426.63 2094.06 

MICH-HURON 2540.05 1350.72 2215.99 3081.27 

ST. CLAIR 279.40 134.96 313.99 493.03 

ERIE 681.07 428.56 786.15 1143.74 

ONTARIO 777.56 439.12 853.08 1267.03 

SURPLUS (thousands cfs) 

SUPERIOR 2283.72 1848.96 2800.33 3751.69 

MICH-HURON 3950.38 2842.44 4169.62 5469.80 

ST. CLAIR 672.84 299.44 489.75 680.06 

ERIE 1986.67 1072.62 1574.45 2076.28 

ONTARIO 1700.00 985.77 1565.79 2145.82 
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Table 5-8: Historical and generated lag-O cross correlation coeficients for the Great Lakes System based on CGNN model. Note 
that Values in paranthesis are the generated ones. 

SUPERIOR MICH-HURON ST.CLAIR ERIE ONTARIO 

SUPERIOR 1.000 0.544 0.249 0.311 0.267 

( 1.000) (0.523) (0.232) (0.312) (0.249) 

MICH-HURON 1.000 0.454 0.502 0.624 

( 1.000) (0.454) (0.485) (0.623) 

ST.CLAIR 1.000 0.551 0.571 

( 1.000) (0.496) ( 0.564) 

ERIE 1.000 0.661 

( 1.000) ( 0.614) 

ONTARIO 1.000 

( 1.000) 

tr) 

N 
N 



Table 5-9: Results of generation experiment for the Great Lakes System based on CARMA(I,I) model. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MEAN (thousands cfs) 

SUPERIOR 870.14 843.06 868.56 894.05 

MICH-HURON 1344.26 1292.55 1338.71 1384.87 

ST. CLAIR 51.71 46.12 52.44 58.77 

ERIE 241.77 226.14 241.13 256.12 

ONTARIO 432.56 412.62 431.13 449.65 

STANDARD DEVIATION (thousands cfs) 

SUPERIOR 202.90 185.52 201.95 218.39 

MICH-HURON 310.38 302.02 328.20 354.38 

ST. CLAIR 26.87 22.93 25.47 28.01 

ERIE 108.57 104.48 114.47 124.45 

ONTARIO 97.22 78.12 86.11 94.10 

LONGEST DROUGHT (Years) 

SUPERIOR 5.00 4.60 6.20 7.80 

MICH-HURON 8.00 5.10 7.10 9.10 

ST. CLAIR 9.00 6.82 9.84 12.86 

ERIE 8.00 4.79 6.87 8.95 

ONTARIO 10.00 6.00 8.71 11.42 

RESCALED RANGE 

SUPERIOR 11.75 9.75 12.50 15.25 

MICH-HURON 16.14 9.39 12.09 14.79 

ST. CLAIR 25.04 14.53 18.69 22.85 

ERIE 18.30 9.84 12.73 15.62 

ONTARIO 17.49 12.52 16.52 20.52 

HURST COEFICIENT 

SUPERIOR 0.647 0.601 0.658 0.714 

MICH-HURON 0.731 0.591 0.648 0.706 

ST. CLAIR 0.846 0.704 0.763 0.821 

ERIE 0.764 0.600 0.661 0.723 

ONTARIO 0.752 0.663 0.729 0.795 
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Table 5-9: Cont'd. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (thousands cfs) 

SUPERIOR 1653.72 903.75 1240.20 1576.65 

MICH-HURON 2540.05 1545.72 2306.98 3068.47 

ST. CLAIR 279.40 169.54 263.60 357.66 

ERIE 681.07 473.10 752.18 1031.26 

ONTARIO 777.56 460.34 773.25 1086.16 

SURPLUS (thousands crs) 

SUPERIOR 2283.72 1644.75 2278.40 2912.06 

MICH-HURON 3950.38 2686.87 3561.71 4436.56 

ST. CLAIR 672.84 285.15 427.18 569.22 

ERIE 1986.67 914.36 1307.56 1700.75 

ONTARIO 1700.00 906.57 1282.29 1658.01 
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Table 5-10: Historical and generated lag-O cross correlation coeficients for the Great Lakes System based on CARMA( 1,1) model. Note 
that Values in paranthesis are the generated ones. 

SUPERIOR MICH-HURON ST.CLAIR ERIE ONTARIO 

SUPERIOR 1.000 0.544 0.249 0.311 0.267 

( 1.000) (0.552) (0.239) (0.309) (0.307) 

MICH-HURON 1.000 0.454 0.502 0.624 

( 1.000) (0.477) (0.553) (0.768) 
I 

J 
i 

ST.CLAIR 1.000 0.551 0.571 

( 1.000) (0.615) ( 0.535) 

ERIE 1.000 0.661 

( 1.000) ( 0.822) 

ONTARIO 1.000 

( 1.000) 

-- - _ ... _----

00 
N 
N 



Table 5-11: Results of generation experiment for the Great Lakes System based on CARMA(2, 1) model. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MEAN (thousands cfs) 

SUPERIOR 870.14 840.72 868.59 896.42 

MICH-HURON 1344.26 1294.27 1338.12 1381.98 

ST. CLAIR 51.71 46.13 51.94 57.76 

ERIE 241.77 226.38 242.03 257.68 

ONTARIO 432.56 4l1.15 431.27 451.39 

STANDARD DEVIATION (thousands cfs) 

SUPERIOR 202.90 186.65 203.00 219.34 

MICH-HURON 310.38 295.73 323.44 351.14 

ST. CLAIR 26.87 22.25 25.02 27.78 

ERIE 108.57 108.32 117.87 127.43 

ONTARIO 97.22 78.61 86.87 95.14 

LONGEST DROUGHT (Years) 

SUPERIOR 5.00 4.64 6.56 8.49 

MICH-HURON 8.00 4.95 6.98 9.01 

ST. CLAIR 9.00 6.38 9.82 13.26 

ERIE 8.00 4.65 6.49 8.33 

ONTARIO 10.00 5.51 8.25 10.99 

RESCALED RANGE 

SUPERIOR 11.75 10.02 12.80 15.59 

MICH-HURON 16.14 9.73 12.60 15.48 

ST. CLAIR 25.04 13.80 18.04 22.28 

ERIE 18.30 9.09 12.26 15.43 

ONTARIO 17.49 12.47 16.62 20.77 

HURST COEFICIENT 

SUPERIOR 0.647 0.607 0.664 0.720 

MICH-HURON 0.731 0.599 0.659 0.719 

ST. CLAIR 0.846 0.689 0.752 0.816 

ERIE 0.764 0.582 0.650 0.717 

ONTARIO 0.752 0.664 0.730 0.796 
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Table 5-11: Cont'd. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (thousands efs) 

SUPERIOR 1653.72 947.38 1372.35 1797.32 

MICH-HURON 2540.05 1458.28 2162.17 2866.06 

ST. CLAIR 279.40 140.22 259.29 378.36 

ERIE 681.07 547.14 773.00 998.86 

ONTARIO 777.56 470.58 761.55 1052.52 

SURPLUS (thousands efs) 

SUPERIOR 2283.72 1712.29 2344.14 2976.00 

MICH-HURON 3950.38 2565.87 3638.38 4711.45 

ST. CLAIR 672.84 273.58 404.49 535.41 

ERIE 1986.67 889.80 1288.50 1687.21 

ONTARIO 1700.00 866.10 1310.76 1755.41 
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Table 5-12: Historical and generated lag-O cross correlation coeficients for the Great Lakes System based on CARMA(2, 1) model. Note 
that Values in paranthesis are the generated ones. 

SUPERIOR MICH-HURON ST. CLAIR ERIE ONTARIO 

SUPERIOR 1.000 0.544 0.249 0.311 0.267 
I 

( 1.000) (0.545) (0.334) (0.318) (0.350) 

MICH-HURON 1.000 0.454 0.502 0.624 

( 1.000) (0.544) (0.567) (0.819) 

ST. CLAIR 1.000 0.551 0.571 

( 1.000) (0.636) ( 0.509) 

ERIE 1.000 0.661 

( 1.000) ( 0.819) 

ONTARIO 1.000 

( 1.000) 

----

,........t 

('() 

C'l 



Table 5-13: Results of generation experiment for the Nile River System based on 
GNN-CARMA(l,l) model. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MEAN (milliards of cubic meters) 

ASWAN 84.95 83.08 84.88 86.69 

KHARTOUM 52.16 50.93 52.10 53.28 

ROSEIRES 49.92 48.75 49.86 50.97 

MALAKAL 30.01 27.47 30.09 32.71 

ST ANDARD DEVIATION (milliards of cubic meters) 

ASWAN 10.17 11.59 12.58 13.57 

KHARTOUM 9.02 8.11 8.95 9.78 

ROSEIRES 8.19 7.50 8.25 9.00 

MALAKAL 5.63 3.43 4.67 5.92 

LONGEST DROUGHT (Yeras) 

ASWAN 11.00 4.32 6.05 7.78 

KHARTOUM 7.00 4.45 6.05 7.65 

ROSEIRES 6.00 4.38 6.15 7.92 

MALAKAL 14.00 8.43 14.49 20.86 

RESCALED RANGE 

ASWAN 11.70 8.44 10.83 13.22 

KHARTOUM 13.26 7.70 10.05 12.41 

ROSEIRES 12.53 7.67 10.19 12.70 

MALAKAL 25.21 17.49 22.17 26.86 

HURST COEFICIENT 

ASWAN 0.692 0.600 0.663 0.726 

KHARTOUM 0.727 0.577 0.642 0.706 

ROSEIRES 0.711 0.576 0.644 0.713 

MALAKAL 0.908 0.800 0.865 0.929 

232 



Table 5-13: Cont'd. 

SITE mSTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (milliards of cubic meters) 

ASWAN 65.19 52.27 72.99 93.72 

KHARTOUM 52.75 36.21 49.12 62.02 

ROSEIRES 61.98 33.52 46.99 60.46 

MALAKAL 55.96 32.02 75.85 119.68 

SURPLUS (milliards of cubic meters) 

ASWAN 118.99 90.50 123.32 156.14 

KHARTOUM 119.58 59.94 82.56 105.17 

ROSEIRES 102.64 55.72 77.78 99,84 

MALAKAL 124.05 57.63 101. 54 145.44 
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Table 5-14: Historical and generated lag-O cross correlation coeficients for the Nile River System based on GNN-CARMA(I,I) model. 
Note that Values in paranthesis are the generated ones. 

ASWAN KHARTOUM ROSEIRS MALAKAL 

ASWAN 1.000 0.809 0.863 0.394 

( 1.000) (0.540) (0.596) (0.228) 

KHARTOUM 1.000 0.935 -0.041 

( 1.000) (0.935) (-0.027) 

ROSEIRES 1.000 -0.008 

( 1.000) (0.008) 

MALAKAL 1.000 

(1.000) 

-

"o::t 
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Table 5-15: 

SITE 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

Results of generation experiment for the Great Lakes System based on GNN-CARMAO,I) 
model in which Lakes Superior, Michigan-Huron, and Ontario are modeled univariately by 
ARMA(I,I), lake Erie by ARMA(I,O), and lake St. Clair by GNN. 

HISTORICAL GEN-STD GENERATED GEN+STD 

MEAN (thousands cfs) 

870.14 842.48 868.84 896.20 

1344.26 1292.08 1336.99 1381.80 

51.71 42.29 52.76 63.24 

241.77 226.36 241.29 256.22 

432.56 412.27 432.50 452.74 

STANDARD DEVIATION (thousands cfs) 

202.90 188.36 203.93 219.49 

310.38 295.57 321.99 348.41 

26.87 19.86 24.07 28.28 

108.57 104.83 114.29 123.74 

97.22 80.98 89.37 97.76 

LONGEST DROUGHT (Years) 

5.00 4.75 6.88 9.01 

8.00 4.95 6.98 9.01 

9.00 5.90 10.81 15.72 

8.00 5.27 6.92 8.57 

10.00 5.24 8.14 11.04 

RESCALED RANGE 

11.75 9.28 12.32 15.35 

16.14 9.73 12.60 15.48 

25.04 15.97 22.59 29.20 

18.30 9.48 12.49 15.51 

17.49 12.25 16.36 20.46 

HURST COEFICIENT 

0.647 0.603 0.660 0.717 

0.731 0.588 0.652 0.716 

0.846 0.721 0.806 0.891 

0.764 0.594 0.656 0.718 

0.752 0.659 0.726 0.792 
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Table 5-16: Historical and generated lag-O cross correlation coeficients for the Great Lakes System based on GNN-CARMA(I, I) model 
in which Lakes Superior, Michigan-Huron, and Ontario are modeled univariately by ARMA(I, I), lake Erie by ARMA(I,O), 
and lake St. Clair by GNN. Note that Values in paranthesis are the generated ones. 

SUPERIOR MICH-HURON ST. CLAIR ERIE ONTARIO 

I 

I SUPERIOR 1.000 0.544 0.249 0.311 0.267 

( 1.000) (0.532) (0.297) (0.315) (0.279) 

MICH-HURON 1.000 0.454 0.502 0.624 

( 1.000) (0.492) (0.549) (0.697) 

ST.CLAIR 1.000 0.551 0.571 

( 1.000) (0.610) ( 0.621) 

ERIE 1.000 0.661 

( 1.000) ( 0.772) 

ONTARIO 1.000 

( 1.000) 

1.0 
('f') 

N 



Table 5-17: 

SITE 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

SUPERIOR 

MICH-HURON 

ST. CLAIR 

ERIE 

ONTARIO 

Results of generation experiment for the Great Lakes System based on GNN-CARMA(l,l) 
model in which Lakes Superior, Michigan-Huron, and Ontario are modeled univariately by 
ARMA(1 ,1), lakes Erie and and St. Clair by GNN. 

HISTORICAL GEN-STD GENERATED GEN+STD 

MEAN (thousands cfs) 

870.14 840.59 868.74 892.89 

1344.26 1299.24 1343.76 1388.27 

51.71 40.85 53.16 65.47 

241.77 215.68 249.10 282.52 

432.56 411.16 431.60 452.04 

STANDARD DEVIATION (thousands cfs) 

202.90 185.23 201.98 218.73 

310.38 304.02 329.81 355.59 

26.87 18.94 23.72 28.50 

108.57 92.81 103.47 114.13 

97.22 84.96 94.41 103.86 

LONGEST DROUGHT (Years) 

5.00 4.77 6.73 8.68 

8.00 4.81 6.73 8.65 

9.00 5.06 10.88 16.71 

8.00 4.44 7.71 10.98 

10.00 4.87 8.62 12.37 

RESCALED RANGE 

11.75 9.50 12.34 15.17 

16.14 9.77 12.63 15.49 

25.04 15.11 22.27 29.43 

18.30 10.81 16.19 21.57 

17.49 12.43 16.76 21.08 

HURST COEFICIENT 

0.647 0.598 0.654 0.710 

0.731 0.599 0.659 0.720 

0.846 0.705 0.800 0.894 

0.764 0.633 0.718 0.802 

0.752 0.662 0.732 0.801 
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Table 5-17: Cont'd. 

SITE HISTORICAL GEN-STD GENERATED GEN+STD 

MAXIMUM DEFICIT (thousands efs) 

SUPERIOR 1653.72 861.26 1334.60 1807.94 

MICH-HURON 2540.05 1439.85 2217.12 2994.39 

ST. CLAIR 279.40 64.21 289.09 513.97 

ERIE 681.07 305.46 757.99 1210.52 

ONTARIO 777.56 450.71 843.01 1235.32 

SURPLUS (thousands efs) 

SUPERIOR 2283.72 1641.56 2265.98 2890.40 

MICH-HURON 3950.38 2724.90 3638.67 4642.44 

ST. CLAIR 672.84 262.38 524.20 786.02 

ERIE 1986.67 868.76 1599.96 2331.16 

ONTARIO 1700.00 931.83 1437.74 1943.65 
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Table 5-18: Historical and generated lag-O cross correlation coeficients for the Great Lakes System based on GNN-CARMA( 1,1) model 
in which Lakes Superior, Michigan-Huron, and Ontario are modeled univariately by ARMA(l, 1), lakes Erie and and St. 
Clair by GNN. Note that Values in paranthesis are the generated ones. 

SUPERIOR MICH-HURON ST.CLAIR ERIE ONTARIO 

SUPERIOR 1.000 0.544 0.249 0.311 0.267 

( 1.000) (0.519) (0.310) (0.324) (0.257) 

MICH-HURON 1.000 0.454 0.502 0.624 

( 1.000) (0.565) (0.552) (0.667) 

ST.CLAIR 1.000 0.551 0.571 
I 

! 

( 1.000) (0.511) ( 0.622) 

ERIE 1.000 0.661 

( 1.000) ( 0.659) 

ONTARIO 1.000 

( 1.000) 

0'\ 
M 
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Model. 
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Fig 5-3 Historic and generated autocorrelogram for Roseires based on CGNN 
Model. 
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Fig 5-4 Historic and generated autocorrelogram for Malakal based on CGNN 
Model. 
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Fig 5-5 Historic and generated autocorrelogram for Aswan based on 
CARMA(1,1) Model. 
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Fig 5-6 Historic and generated autocorrelogram for Khartoum based on 
CARMA(1 ,1) Model. 
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Fig 5-7 Historic and generated autocorreJogram for Roseires based on 
CARMA(1, 1) Model. 
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Fig 5-8 Historic and generated autocorreJogram for MaJakaJ based on 
CARMA(1,1) Model. 
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Fig 5-9 Historic and generated autocorrelogram for Aswan based on 
CARMA(2, 1) Model. 
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Fig 5-10 Historic and generated autocorrelogram for Khartoum based on 
CARMA(2, 1) Model. 
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Fig 5-11 Historic and generated autocorreJogram for Roseires based on 
CARMA(2, 1) ModeJ. 
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Fig 5-12 Historic and generated autocorreJogram for MaJakaJ based on 
CARMA(2, 1) ModeJ. 
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Fig 5-13 Historic and generated autocorrelogram for lake Superior based 
on CGNN model. 
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Fig 5-14 Historic and generated autocorrelogram for lake Michigan-Huron 
based on CGNN model. 
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Fig 5-15 Historic and generated autocorrelogram for lake St.Clair based 
on CGNN model. 
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Fig 5-16 Historic and generated autocorrelogram for lake Erie based 
on CGNN model. 
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Fig 5-17 Historic and generated autocorrelogram for lake Ontario based 
on CGNN model. 
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Fig 5-18 Historic and generated autocorrelogram for lake Superior based 
on CARMA(1, 1) model. 
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Fig 5-19 Historic and generated autocorrelogram for lake Michigan-Huron 
based on CARMA(1,1) model. 
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Fig 5-20 Historic and generated autocorrelogram for lake St.Clair based 
on CARMA(1, 1) model. 
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Fig 5-21 Historic and generated autocorrelogram for lake Erie based 
on CARMA(1,1) model. 
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Fig 5-22 Historic and generated autocorrelogram for lake Ontario based 
on CARMA(1, 1) model. 
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Fig 5-23 Historic and generated autocorrelogram for lake Superior based 
on CARMA(2, 1) model. 
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Fig 5-24 Historic and generated autocorrelogram for lake Michigan-Huron 
based on CARMA(2,1) model. 
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Fig 5-25 Historic and generated autocorrelogram for lake St.Clair based 
on CARMA(2, 1) model. 
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Fig 5-26 Historic and generated autocorrelogram for lake Erie based 
on CARMA(2,1) model. 

253 



LL 
UJ 

0.8 ...... ----.-.-.--.----.-.. -------.--------------.----.--------------------.-.--------------------.----_.-----.----------.-----.-

0.6 -. -----._---------.--------_.-------.--.----------------.----------------------------------------------------------------------

8 0.4 
a:: 
~ 0.2 o 
u 
O~--~--~~~~~~~~~B=~ 

-0.2 

-0.4 -I---+--f---+-t---+--+----+-I----+--+--+----l'---+--+--+---l 

o 2 4 6 8 10 12 14 16 
LAG 

-'X'- HISTORICAL -e- GENERATED - +&-STD 

Fig 5-27 Historic and generated autocorrelogram for lake Ontario based 
on CARMA(2,1) model. 
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Fig 5-28 Historic and generated autocorrelogram for Aswan based on 
GNN-CARMA(1,1) Model. 
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Fig 5-29 Historic and generated autocorrelogram for Khartoum based on 
GNN-CARMA(1, 1) Model. 
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Fig 5-30 Historic and generated autocorrelogram for Roseires based on 
GNN-CARMA(1,1) Model. 
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Fig 5-31 Historic and generated autocorrelogram for Malakal based on 
GNN-CARMA(1,1) Model. 
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Fig 5-32 Historic and generated autocorrelogram for lake Superior based 
on GNN-CARMA(1, 1) model. 
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Fig 5-33 Historic and generated autocorrelogram for lake Michigan-Huron 
based on GNN-CARMA(1, 1) model. 
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Fig 5-34 Historic and generated autocorrelogram for lake St.Clair based 
on GNN-CARMA(1,1) model. 
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Fig 5-35 Historic and generated autocorrelogram for lake Erie based 
on GNN-CARMA(1, 1) model. 
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Fig 5-36 Historic and generated autocorrelogram for lake Ontario based 
on GNN-CARMA(1,1) model. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The general objective of this study was to develop certain types of shifting level 

models that can be used in modelling and simulation of processes that exhibit changes. 

Specific objectives were: to compare alternative methods for estimating the parameters of 

such models, to develop multivariate models which can be used to model hydrologic 

processes at more than one site. Chapter IV of this dissertation addressed the parameter 

estimation of the GNN model. The MOM was analyzed as a potential method to be used in 

parameter estimation. In this study the general moment equations of the GNN model were 

derived for any lag-k autocorrelation. As such these equations can be used to estimate the 

model parameters without the restrictions of using only the lag-l and lag-2 autocorrelation 

coefficients. Other methods to estimate the parameters were also suggested. These methods 

include regression analysis, fitting the autocorrelation function (ACF), using the range 

properties, and using the run properties. The performance of these methods to preserve the 

statistical characteristics of the shifting mean model was tested by using simulation 

experiments. Data was generated from GNN with different population parameters. Then 

these estimations methods were used to estimate the GNN model parameters. The bias and 

RMSE were calculated to test the performance of the methods. The regression analysis and 

range methods, in general, performs better than the other methods. 

The GNN model was then applied to Malakal annual flows and lake St. Clair annual 

NBS. Simulation experiments were conducted to test the ability of the GNN model to 

preserve important observed statistics such as the mean, standard deviation, skewness, 
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rescaled range, Hurst coefficient, longest drought, maximum deficit, and surplus. Results 

show that the GNN model, in general, performs well in preserving these statistics. The 

performance of the GNN model was also compared with different ARMA models that were 

also used to model the obseIVed data for Malakal and St.Clair. Results indicate that the GNN 

has some advantages over ARMA models especially in preserving the rescaled range and 

Hurst coefficient. 

An extended version of the GNN model called GNN-l was also derived and analyzed 

in this study. Different methods of estimation were suggested to estimate the model 

parameters. Results indicate that this model is an alternative for modeling observed 

hydrologic time series which exhibit changes. However, in comparing this model with the 

simpler GNN model, it does not give a better performance. 

In chapter V a contemporaneous multivariate version of the GNN model called 

CGNN was formulated. The covariance structure of the model was derived and different 

methods to estimate the model parameters were suggested. The CGNN model can be used 

in situations were the sites to be analyzed have apparent shifts in the mean for all sites. The 

model was used to simulate annual streamflow records at several sites in the Nile River basin. 

The model was also used to model the NBS records of the Great Lakes System. In both 

cases, the CGNN model performed well in preserving both basic and long term statistics for 

these sites. 

Another contemporaneous multivariate model called as GNN-CARMA(p,q) was 

developed. This model is a combination of the CGNN and CARMA models that can be used 

to model multisite systems. This model can be applied to systems in which some stations 
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exhibit shifts and other stations in the same system do not appear to exhibit shifts. A good 

example is the Great Lakes system were the observed annual NBS for lakes St. Clair and Erie 

strongly suggest the use of a shifting level model. On the other hand the observed record for 

lakes Superior, Michigan, and Ontario do not indicate a need to use a shifting level model and 

a classical CARMA model is suitable for them. As such the GNN-CARMA model may be 

useful in this case. Results indicate that this model performed quite well. The model was able 

to preserve the short and long term basic statistics such as the mean, standard deviation, 

rescaled range, and Hurst coefficient. 

In summary, the study of GNN models in general reveals that such models are 

powerful models that can be used to model hydrologic processes that exhibit changes. One 

advantage of using such models is the fact that such models are easy to use and operationally 

simple. Another advantage lies in the fact that this model can be argued to be physically 

sound to be used to model hydrologic processes. In other words, the GNN model is not only 

an operational model but also have some physical justification to be used in modeling 

hydrologic processes which exhibit changes. 

Finally, further research of the GNN class models is needed. One of the obvious 

research areas is to develop a periodic or seasonal version of the model that can be used to 

model seasonal observed data. 
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APPENDIX A 

Proof of Equation 4-45: 

From Eq. (4-22) (see Obeysekera ,1980): 

00 

~2 = 1 + 2:E Px (k) 
k=l 00 

~2 = 1 + 2 Px (1) + 2 :E Px (k) 
k=2 

and we have shown that (see section 4.1.2): 

2 a 
P (k) = ~ (l-p)k 

x 2 
ax 

for k > 1 

subtituting Eq. (A-2) into Eq. (A-I) gives 

2 

(A-I) 

(A-2) 

~2 = 1 + 2 P.., (1) + 2 a; [(I-p)2 + (I-p)3 + (I-p)4 + ......... ] (A-3) 

ax 

Since 

I-p = 3 [(1 - p) + (1 _p)2 + (1 -p) + (1 _p)4 + ......... ] (A-4) 
P 

Eq (A-3) becomes: 

~2 = 1 + 2 P (1) + 2 a~ ( 1 - P)2] 
x 2 P 

ax 
(A-5) 
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Also, for k=2 Eq.(A-2) gives 

then, Eq.(A-5) can be written 

2 Px (2) 
~2 = 1 + 2 Px (1) + ---

P 

or 

2 Px (2) 
p =------

~2 - 1 - 2 Px (1) 

(A-6) 

(A-7) 

(A-8) 
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APPENDIXB 

Proof that the CGNN model mentioned in section 5.2.2 is not stationary. The proofwill be 

done for the bivariate case. 

*(1) /2) _ (1) (1) (2) (2) 
E(MI MI ) - E {[MI I{ 1,2,3, ... } (NI )] [M1 I{ 1,2,3, ... } (NI )]} 

= E[M~I) M I(2)] E[I{ I,2,3, ... } (N1(1»)] E[I{ I,2,3, ... } (N{2))] 

= E[M?) M
1
(2)] (B-1) 

where I is the indicator function 

E(M
2
*(1) M

2
*(2») = E{ [M(1) I (N(I») + M(I) I (N(I»)] 

1 { 2,3, ... } 1 2 { I} 1 

[M(2) I (N(2») + M(2) I (N(2»)]} 
I { 2,3, ... } 1 2 { I} I 

(B-2) 

= E { [M(I) I (NO») ] [M(2) I (N(2»)} I { 2,3, ... } 1 I { 2,3, ... } I 
+ E { [M(I) I (N(l») ] [M(2) I (N(2»)} 

1 { 2,3, ... } I 2 { I} 1 

+ E { [M(I) I (N(I»)] [M(2) I (N(2»)} 
2 {I} 1 I {2,3, ... } I 

(B-3) 

+ E{ [M(l) I (N(I») ] [M(2) I (N(2»)} 
2 {I} 1 2 {I} 1 

and since the M process is spatially correlated only at lag zero, the second and third terms will 

drop from Eq. (B-3). Therefore, Eq. (B-3) will simplify to : 

(B-4) 

The four terms in the RHS ofEq. (B-4) can be written as: 

E[ I (N(I») ] = (1 - p(l») 
{ 2,3, ... } 1 

E[ I (N(2») ] = (1 - p(2») 
{2,3, ... } I 
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E[ I{ I} (N?») ] = p(l) 

E[ i{1}(N1(2»)] = p(2) 

Then equation (B-4) becomes: 

Then from Eqs. (B-1) and (B-4), one can find that 

which means that the CGNN model is not stationary in this case. 
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