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Abstract.  The simulation of storm hyetographs is an important issue for various applications in 
hydrology and soil sciences. In this study we present a modification of the simple scaling model of  
Koutsoyiannis and Foufoula-Georgiou (1993), which assume a piecewise linear relationship be-
tween the logarithmic duration and logarithmic expected depth of an event. The expectation of the 
rainfall depth is estimated by local regression smoothing.  
. 
    1. Introduction 
 
Hyetographs (rainfall-intensity curves) picture the time distribution of point rainfall and 
are important for hydrologic and hydraulic design issues. In the study of soil erosion, spe-
cifically on movement of soil particles by raindrop impact, kinetic energy is a commonly 
suggested  indicator of the raindrop's ability to detach soil particles from the soil mass. The 
kinetic energy of raindrops can be estimated  from  rainfall intensity.  

 
Since only rainfall with sufficient intensity is effective, we focus on high-intense rain-

fall events. From historical rainfall records, we 
 
i.   separate events from rainfall time series (6-hours-criterion) 
ii.  use only events with total rain depth   15mm 
iii. use only events with maximum intensity   10mm/hr 
 
2. Summary of the Scaling Model of Storm Hydrograph 
 

The scaling model of storm hydrograph (Koutsoyiannis and  Foufoula-Geor-giou, 1993)  is  
a stochastic model that  describe the time distribution of rainfall intensity and incremental 
rainfall within a storm event, taking advantage of scaling properties revealed in rainfall 
data. 
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The main hypothesis of the model is that the process of instantaneous rainfall intensi-
ties within storms is a self-similar (simple scaling ) process with a scaling exponent  H. If  
D denotes the duration of the storm and   the rainfall intensity at time , 
then 

                         (1) 
where the symbol  denotes equality in distribution. A secondary hypothesis is the weak 
stationarity within the same storm event or within storm events of the same duration. 
 
     On the basis of these hypotheses, the moments of the rainfall intensity at any time t 
within a storm of any duration D can be deduced. The expectation value is 

                                     (2) 
and the product moment 

            (3) 
where  is a time lag,   and  is a function to be specified. In this pa-
per we specify this function as . 

                                       (4) 
where and  are parameters ( , ). 
 
       The total storm depth over duration D, 

                                     (5) 

has the mean 
                                       (6) 

and the variance 
                                (7) 

where  is the variance of  the depth of  a storm with duration  D = 1. 
 
       Moving from continuous time to discrete time we use the incremental storm depth at 
the interval  of length  : 

 

    i=1,2,…,k      (8) 

 
where   is assumed to be an integer. The expectation of  is 

                                   (9) 
its variance is 

      (10) 
where  .The covariance between two incremental depths within the same storm is 
given by 
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       (11) 

where  . The derivations of the above equa-
tions are given by  Koutsoyiannis and Foufoula-Georgiou (1993) . 
 
    The scaling model, in its simplest form, has four parameters: the scaling exponent H, the 
expectation parameter , the variance parameter  and the covariance decay parameter 

. Taking the logarithms in (6) we get 
.                          (12) 

By local regression smoothing we can estimate  in dependency of D.  Thus H and  
are directly estimated by least squares from  (12), and  from (7). The parameter  is es-
timated directly from the identity 

                          (13) 

which was derived from (9) and (11) in Koutsoyiannis and Pachakis (1996). 
 

     3. The Modified Scaling model 
In Koutsoyiannis and Foufoula-Georgiou (1993)  a global  validity of the linear relation-
ship of  and  is taken for granted. But scatterplots like Fig. 1 indicate a 
more or less significant deviation of the linear relationship. 

 
Figure 1.  Scatterplot and piecewise-linear model 
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In surprisingly many cases a single breakpoint is present and the scaling property is (ap-
proximatively) valid, above and below this breakpoint   with different scaling expo-
nents. Typically  is located in the range of 19 to 22 hours. Setting 

 and   we get from (12) 
                                                                   (14) 
                                          . 
A piecewise linear regression line has to satisfy the constraint   The pa-
rameters  in (14) are estimated by least squares method subject to the 
constraint   The procedures for least square estimation under constraints can 
be found in most textbooks on regression analysis, e.g. Draper and Smith (1998). 
 
     The modified scaling model has seven parameters: the expectation parameters and  

, the variance parameter and  ,  the scaling exponents  and   
and the covariance decay parameter . Since the r.h.s. of  (13) does not depend on D  is 

 a global parameter. 
 
     4. Case Studies 
As test cases for the modified scaling model, data sets from three rain gauges were used: a 
rain gauche at St. Pölten, Lower Austria, one at Steyr, Upper Austria, and a rain gauge at 
Baden, Lower Austria. The available time resolution is 5 min and the depth resolution is 
0.01  mm. 

 
Figure 2.  Scatterplot and  local regression curve 
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      Using the criterion stated in the introduction, a data set of 164 events were extracted. 
Fig. 2  shows a scatterplot where  against  was plotted. The solid line is a re-
gression curve obtained local regression smoothing. As a smoothing tool we used the rou-
tine loess.smooth of S-Plus (2001). The curve shown in Fig. 2 exhibits no distinct break-
point. So the original scaling model with a global scaling exponent can be used. The local 
regression function estimates for a given duration time D  the value of  E[Z]. This estima-
tion method seems to us more efficient than the rough grouping approach used in Koutsoy-
iannis and Foufoula-Georgiou (1993). The estimates of E[Z] were inserted in (12) to per-
form the parameter estimation procedures described in section 2. 
 
     For the data set St. Pölten the following estimates were obtained: 

                     (15) 

 
Figure 3.  Scatterplot and  local regression curve 

 
Fig. 3 depicts the scatterplot of the data set Steyr consisting of 220 storm ev-ents. The re-
gression curve exhibits a bend and a breakpoint near 20.8 h. The location of the breakpoint  
was estimated such that squared deviation of  the piece-wise linear model given by (14)  
from the regression curve is minimal (see Fig. 5). In the range below the breakpoint 

 the following estimates were obtained: 
                ,       (16) 

in the range above the breakpoint 
                  .      (17) 
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Figure 4.  Scatterplot and  local regression curve 

 
Fig. 4 depicts the scatterplot of the data set Baden consisting of 220 storm events. A 
breakpoint was found near 23.2 h. Again a piece-wise linear model was fitted with = 
7.24.  Below the breakpoint we obtained the estimates 

                  ,         (18) 
above we obtained 

               .     (19) 
Fig. 5 and 6 shows the local regression curves and the corresponding  piece-wise linear 
models for the data sets Steyr and  Baden, respectively. 
 

5. Simulation of storm hyetographs 
 
The scaling model can be used for simulating storm hyetographs at an incremental basis 
for any time step .  In our simulation studies we used the disaggregation  procedure  
where a given total storm depth Z with a duration D is disaggregated into incremental 
depths.     We  have  to  generate  a  random  vector X , where 

 is assumed to be an integer. The covariance structure of X is given by the scaling 
model, cf. formula (11).  Moreover we have to specify the marginal distribution. For rain-
fall depths the Gamma distribution is the first choice.   Let  Z  =  be a k-
vector of two-parameter Gamma distributed random variables  with 
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.  

Figure 5. Local regression curve and piecewise-linear model 
 
 

 
 

Figure 6.  Local regression curve and piecewise-linear model 



Konecny and Strauss 

 50 

 
 

identity covariance matrix.  Sim (1993) proposed a procedure  to generate X  by a linear 
transformation 
                                                X = B Z.                                                        (20) 
B is a lower triangular matrix of  Beta distributed random variables. Some details of Sim’s 
method are given in the appendix.  Different from the sequential process proposed  by   
Koutsoyiannis and Foufoula-Georgiou (1993),   Sim’s  procedure   results  always non-
negative   exactly  Gamma distributed output. 
 
Making use of the scale invariance the total storm is disaggregated by the following proc-
ess: 
 

i. Apply Sim’s procedure to obtain an initial sequence . 
ii. Determinate a normalize sequence 

 

                                                   .                                               (21)                                                                                 

     iii.         Calculate the final sequence   . 
 
A disadvantage of Sim’s procedure is that the given covariance matrix must 
have  positive entries, that is all the components of the random vector  X must be posi-
tively  correlated.  
 

6. Conclusions 
 
A modification of the simple scaling model has been presented, with different 
scaling exponents for small and large storm durations. The expected storm depth, as a 
function of storm duration, was estimated by local regression smoothing. A piecewise lin-
ear model was fitted by least squares estimation. So the scaling model can be used even in 
the case of nonlinear relationship of   and log D.  The presence of a single break-
point was observed in many data sets of storm events. 
 
     Koutsoyiannis and Mamassis (2001) compared the simple scaling model with the rec-
tangular pulse model of Rodriguez-Iturbe et al. (1987) applied to a single storm hye-
tograph. They found that the scaling model reproduces the structure of historical hye-
tograph better than the rectangular pulse model. Recently Cowpertwait et al. (2007) pro-
posed  a refined  rectangular pulse model with an appropriate fine-scale structure. A com-
parison of the modified scaling model with a refined  rectangular pulse model  will be the 
subject of  a further study. 
 

Error! Not a valid link.    
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    Appendix 
 
In this appendix we give a short description of  Sim’s generation process, specialized to 
our simulation   problem.   Let  Z =  be a  k-dim-ensional random vector 
with identity covariance matrix and Gamma( ) marginal distributions.  Let 

 be independent  Beta( ) 
random variables which are independent of , and  . The required gamma ran-

dom vector  X  which has given Gamma( ) marginal distributions 
and a given covariance matrix , where , can be obtained via the trans-
formation (20), with . The random variables   have Gamma( ) marginal 
distributions. The aim is to determine the coefficients  and parameters   given ,  
and  via the recursive formula 

                                                                          (22)               and 

      .                                            (23) 

Note we have to ensure, that  This conditions are required by the 
construction of  (20). It means that this simulation procedure will stop if any of these pa-
rameters goes beyond these intervals. 
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