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ABSTRACT 
 
 

ELECTRONIC SCAN WEATHER RADAR: SCAN STRATEGY AND SIGNAL 

PROCESSING FOR VOLUME TARGETS 

 

Following the success of the WSR-88D network, considerable effort has been directed 

toward searching for options for the next generation of weather radar technology. With its 

superior capability for rapidly scanning the atmosphere, electronically scanned phased array 

radar (PAR) is a potential candidate. A network of such radars has been recommended for 

consideration by the National Academies Committee on Weather Radar Technology beyond 

NEXRAD. While conventional weather radar uses a rotating parabolic antenna to form and 

direct the beam, a phased array radar superimposes outputs from an array of many similar 

radiating elements to yield a beam that is scanned electronically. An adaptive scan strategy and 

advanced signal designs and processing concepts are developed in this work to use PAR 

effectively for weather observation. 

An adaptive scan strategy for weather targets is developed based on the space-time 

variability of the storm under observation. Quickly evolving regions are scanned more often and 

spatial sampling resolution is matched to spatial scale. A model that includes the interaction 

between space and time is used to extract spatial and temporal scales of the medium and to 

define scanning regions. The temporal scale constrains the radar revisit time while the 

measurement accuracy controls the dwell time. These conditions are employed in a task 

scheduler that works on a ray-by-ray basis and is designed to balance task priority and radar 

resources. The scheduler algorithm also includes an optimization procedure for minimizing radar 

scan time. 
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In this research, a signal model for polarimetric phased array weather radar (PAWR) is 

presented and analyzed. The electronic scan mechanism creates a complex coupling of horizontal 

and vertical polarizations that produce the bias in the polarimetric variables retrieval. Methods 

for bias correction for simultaneous and alternating transmission modes are proposed. It is shown 

that the bias can be effectively removed; however, data quality degradation occurs at far off 

boresight directions. The effective range for the bias correction methods is suggested by using 

radar simulation. 

The pulsing scheme used in PAWR requires a new ground clutter filtering method. The filter 

is designed to work with a signal covariance matrix in the time domain. The matrix size is set to 

match the data block size. The filter’s design helps overcome limitations of spectral filtering 

methods and make efficient use of reducing ground clutter width in PAWR. Therefore, it works 

on modes with few samples. Additionally, the filter can be directly extended for staggered PRT 

waveforms. Filter implementation for polarimetric retrieval is also successfully developed and 

tested for simultaneous and alternating staggered PRT.  The performance of these methods is 

discussed in detail. 

It is important to achieve high sensitivity for PAWR. The use of low-power solid state 

transmitters to keep costs down requires pulse compression technique. Wide-band pulse 

compression filters will partly reduce the system sensitivity performance. A system for 

sensitivity enhancement (SES) for pulse compression weather radar is developed to mitigate this 

issue. SES uses a dual-waveform transmission scheme and an adaptive pulse compression filter 

that is based on the self-consistency between signals of the two waveforms. Using SES, the 

system sensitivity can be improved by 8 to 10 dB. 
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CHAPTER 1 
 
 

INTRODUCTION 

 

1.1 Introduction 

Weather radars, especially Doppler and dual polarization weather radars, have proven to be  

indispensable tools for many meteorological and hydrological applications. The applications can 

range from detection and warning of hazards such as severe storms, tornadoes, hail, winds, and 

flash floods to aviation safety surveillance. To obtain better measurements, weather radars have 

been developed and upgraded over time. For instance, the upgrade to dual polarization allows 

weather radars to estimate rainfall more accurately, classifying different types of hydrometeors 

and efficiently retrieving microphysics parameters of the medium or media. Advanced signal 

processing techniques such as pulse compression allow building more sensitive weather radar 

systems. Ongoing research at many laboratories, industries, and in academia are continually 

searching various innovative options for replacing/upgrading the current systems/technologies. 

One attractive choice is developing electronically scanned phased array weather radar. 

Phased array radars (PAR) have been widely used in the defense sector and recently they 

have been considered for meteorological application. The advantage of PAR compared to 

conventional weather radar systems is the capability of electronically steering the beam. 

Conventional weather radars scan the 3D-volume by rotating the antenna at some pre-defined 

elevation angles known as volume coverage patterns (VCP) and need an update time of 4 to 6 

minutes for a scan in order to provide estimated parameters within the required accuracy. 

However, fast updates are not always possible with those radar systems due to the inertia of 
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mechanically rotated antennas. In contrast, PAR can instantly steer the beam to a region of 

interest. This property of PAR provides faster update time without compromising data quality. 

Firstly, only precipitation regions will be scanned; regions with no echo will be skipped. 

Secondly, the electronic beam steering capability of PAR allows scanning and revisiting many 

regions in a sequence. This increases the number of independent samples within an integration 

cycle and, therefore, fewer samples are needed to maintain adequate data quality. Short update 

times are critical for better understanding storm structures as well as forecasting them, especially 

for fast-evolving systems. For example, Rasmussen et al. (2000) suggested that update times of 

20 to 30 seconds are necessary to resolve the evolutionary processes in tornado genesis. Also, it 

is shown that the lead time for microburst warning can increase from 2.2 to 5.2 minutes by 

reducing the update time from 3 to 1 minutes (Wolfson and Meuse, 1993).  

In addition, with PAR, the regions that evolve faster can be scanned more often. This feature 

is limited on mechanically scanning radar. Thus, PAR is a better platform for precisely capturing 

the features of storms system when compared to conventional weather radars. 

The benefit of PAR for weather observation is clear. Its capability opens a new era in scan 

strategy for weather radars while bringing more challenges to both hardware and software. For 

instance, scan strategies and signal processing techniques for phased array weather radars differ 

from those of hard-target radars in many aspects. Fundamentally, weather is a volume target 

consisting of a large number of precipitation particles spreading over a large space and evolving 

in both spatial and temporal dimensions. Moreover, weather radars do not only detect but also 

measure the volume target accurately. Each of the above aspects has specific requirements and 

needs a specific algorithm; they are the foci of this research. 
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1.2 Literature review 

1.2.1 Phased array weather radar 

The National Weather Radar Testbed (NWRT) is a phased array weather radar (PAWR) 

operating in S-band and has been available to research communities since September 2003. The 

NWRT uses a converted phased array antenna from a U.S. Navy AN/SPY-1A radar and a 

modified transmitter from a WSR-88D weather radar. The single-aperture antenna is mounted on 

a pedestal capable of rotating at a maximum rate of 18º per second. Azimuth scans are performed 

by combining electronic steering beam (within a 90º sector) and moving the pedestal. Elevation 

scans are achieved using electronic scanning. The radar is designed for use in studying and 

developing a multimission radar with the capability of performing aircraft tracking, wind 

profiling, and weather detection at the same time (Zrnic et al. 2007). 

1.2.2 Transmission scheme and signal processing 

Beam multiplexing (BMX) is proposed to maximize the use of radar resources. First, the 

radar transmits two consecutive pulses at the same beam location and estimates spectral 

moments from that pair of samples. Then, while waiting for the scatterers in the resolution 

volume to reshuffle into an independent state, the radar switches its beam to scan other directions 

and returns to the original direction after the signal is no longer correlated. Independent samples 

allow the NWRT to reduce scan time and achieve performance similar to that of WSD-88D 

radars. Both traditional and advanced signal processing techniques are being implemented and 

tested for the NWRT. However, ground clutter mitigation in BMX or any other mode with few 

sample returns cannot be done with current filter solutions. 
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1.2.3 Scan strategy 

The beam agility of phased array radar enables an adaptive scanning plan in which only 

precipitation regions are observed. A scheduling algorithm is developed to arrange scanning and 

surveillance tasks without significant delays (Rondinel et al. 2010). Targets are individual storm 

cells and update times are chosen based on the user’s experience. Dynamic evolution parameters 

of a storm are not automatically extracted and integrated into the scan strategy and therefore, 

update times are not optimized for fast update. 

1.3 Problem statement 

The primary objective of a phased array weather radar is to provide the ability to capture 

more features accurately from the weather system while minimizing the scan time. This research 

aims to address the unique and specific problems associated with phased array weather radar. In 

particular, it focuses on the adaptive scan strategy, advanced signal design, and processing 

algorithms. The question of how to steer the beam of phased array weather radar to the regions of 

interest to obtain the best measurements must be addressed. A scheme that allows the radar to 

transmit a few samples at each beam position and revisit as needed will reduce scan time 

significantly but also creates many challenges in signal design and filtering algorithm. 

1.4 Objectives of the research 

The following items summarize the objects of this dissertation: 

Adaptive scan strategy 

• Study governing factors for scanning precipitation 

• Develop a method for extracting spatial scale information from radar observations 
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• Develop a space-time characterization model for the precipitation system 

• Study the space-time variability feature of the precipitation system 

• Develop a measurement error model for a block pulsing transmission scheme 

• Establish requirements for a scheduler for phased array weather radar 

• Develop an adaptive scan strategy based on the space-time variability features of the 

precipitation system 

• Develop an algorithm for task scheduling 

Signal processing 

• Study a signal model for polarimetric phased array weather radar 

• Develop a signal simulation for polarimetric phased array weather radar 

• Investigate the inherent biases associated with polarimetric phased array weather radar 

and propose a bias correction method 

• Evaluate degradation of polarimetric measurement at off-axis directions 

• Develop a new ground clutter filtering algorithm for block sampled data with fewer 

samples 

• Extend the clutter filtering algorithm to non-uniform waveforms 

• Extend the clutter filtering algorithm for polarimetric variables retrieval for both uniform 

and non-uniform waveforms 

• Design an adaptive system to improve the system sensitivity for pulse compression 

weather radar 
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1.5 Dissertation outline 

This dissertation is organized as follows: 

In Chapter 2, a short description of the observed signals in dual-polarization weather radar, 

the transmission modes, and the method of parameter estimation is presented. An overview of 

phased array weather radar is also provided. 

In Chapter 3, the principle of adaptive scan strategy for beam agile phased array weather 

radar is presented. Important governing factors for scanning precipitation are studied and 

discussion of their effects on scan strategy is provided. The scan strategy is based on the space-

time variability features of the storm. The most challenging task is to characterize the space-time 

variability feature of a precipitation system. First, a method for extracting spatial scale 

information from weather observations is developed. Then we propose a space-time model that 

explicitly involves the interactions between space and time. Using the model, radar observation 

can be segmented into different scanning regions based on their spatial scale feature. Then, 

temporal scales associated with these regions are computed. The center of the proposed scan 

strategy, a task scheduler, is developed based on a time balance concept. The scheduler’s 

constraints and requirements are addressed and an optimization procedure is used to minimize 

the scan time. To make the scan strategy effective, advanced signal designs such as block pulsing 

scheme, adaptive waveforms, and other considerations are also introduced. The chapter ends 

with an example to demonstrate the advantages of beam agile phased array weather radar over 

conventional weather radar. 

In Chapter 4 we analyze a signal model for planar polarimetric phased array weather radar 

(polarimetric PAWR). The fundamental differences in the measured scattering matrix between 

electronically scanned polarimetric PAWR and the mechanically scanned weather radar are 
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presented. It is shown that the coupling effect of horizontal and vertical polarizations, if not 

removed properly, could result in large biases in the estimates. Based on the model, methods to 

mitigate these inherent biases and a radar signal simulation for polarimetric PAWR are 

developed. A study of the effect of noise on polarimetric products quality is also conducted. This 

is very helpful in the designing of PAWR. 

Chapter 5 introduces a new clutter filtering algorithm for the block pulsing scheme employed 

in PAWR. The new filtering method works with a signal covariance matrix in the time domain. 

The size of the covariance matrix can be varied; therefore, it can adapt to the block sampled data. 

In addition, the filter can be directly extended to work with the non-uniform waveforms (e.g., 

staggered PRT) used in range-velocity ambiguity mitigation problem. 

In Chapter 6 we extend the clutter filter algorithm for polarimetric variables retrieval. 

Algorithm modifications for simultaneous and alternating modes with staggered PRT waveform 

are made. In simultaneous mode, even with strong ground clutter contamination, results with the 

filter are as good as in the case of data without clutter. In the alternating mode the complexity of 

the waveform slightly degrades the estimate’s quality in extreme scenarios where the signal 

width is narrow and overlaps clutter. However, in most cases, statistical errors are acceptable for 

meteorological applications. 

In Chapter 7 we introduce a system for enhancing sensitivity (SES) of pulse compression 

weather radar. Better sensitivity increases working distance and provides a larger signal-to-noise 

ratio that helps reduce the errors of estimates. SES overcomes this issue by utilizing a dual-

waveform scheme and adaptive pulse compression filter. Waveforms transmission can be made 

in the frequency domain or the time domain. The adaptive filter is designed based on the self-
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consistency between signals of the two waveforms. Analysis shows that, with SES, the system 

sensitivity can be improved by 8 to 10 dB. 

In Chapter 8 the main results of this research  are summarized and the major contributions of 

the dissertation are reviewed. Recommendations for future studies are also given. 
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CHAPTER 2 
 
 

BACKGROUND 

 

2.1 Doppler weather radar 

In a Doppler radar system, a returned signal from a point target moving at a constant velocity 

is a scaled replica of the transmitted waveform with time shifted by range-time delay and 

frequency shifted by the Doppler shift. Volume scatterers such as precipitation are composed of 

a large number of point targets that have widely different scattering amplitudes and are moving 

with different velocities relative to the radar. For meteorological targets, the returned signal is the 

sum of the backscatter from individual hydrometeors extending over a large range. A pulse 

Doppler radar transmits a pulse train with pulse width oT  and a pulse repetition time (PRT) sT . 

All the backscatters between the leading edge and the trailing edge of the transmit pulse return a 

single-voltage sample at the receiver as seen in fig. 2.1 (Bringi and Chandrasekar 2001). For 

pulse width oT , the range resolution is given by 

2
ocT

r =∆           (2.1) 

For a single transmitted pulse the range time is defined as cr /2=τ , and the received voltage 

)(tVr  at τ=t  is due to signal scattered back from particles located in the resolution volume at 

range 2/τc . For a periodic pulse train, the received voltages at the same range-time (τ ) are 

given as )(),...,(),( srsrr nTtVTtVtV +=+== τττ  which form a sequence of temporal samples 

from the same resolution volume. At a given range–time τ , the voltage samples 

( ) ( )ssrsr mTtVmTtV ==+= ,ττ  can be observed as regularly spaced samples along a 
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continuous sample-time axis ( st ) (fig 2.2). Each observation of the received signal is one 

realization of the underlying complex stochastic process. The fluctuations of the received voltage 

in sample-time are determined by the time-varying properties of the particles located in the 

resolution volume. 
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Figure 2.1: (a) The incremental voltage ( )tVδ  due to scattering from particles located within a 
shell extending from ( )rrr ∆+, . (b) Range-time diagram for a shell of particles between r and 

rr ∆+  (Bringi and Chandrasekar 2001). 
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Figure 2.2: Illustrating the (continuous) range-time axis (τ ) and the (discrete) sample-time axis 
(ts).The pulse-repetition time (PRT) is sT (Bringi and Chandrasekar 2001). 

 

2.2 Signal covariance matrix and radar observables 

In dual-polarization radar systems, measurements are made at more than one polarization 

state (Bringi and Chandrasekar 2001). A dual-polarization radar system can be configured in 

different ways depending on the measurement goals and the choice of orthogonal polarization 

states. In this dissertation, the results and discussion are restricted to the linear h/v - basis. The 
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intrinsic backscattering properties of the hydrometeors relative to the two polarization states 

enable the measurement of characteristics such as size, shape, and spatial orientation of the 

precipitation particles in the radar resolution volume. These characteristics are described in terms 

of the backscattering matrix BSAS . When a uniform precipitation medium exists between the 

radar and the particle, the radar equation is given (Bringi and Chandrasekar, 2001) 
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where T is the transmission matrix of the uniform precipitation medium 
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and BSAS  is the back scattering matrix on the back scatter alignment convention 
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hM  and vM  are the transmitter excitation states in the horizontal and vertical ports of a dual-

polarized antenna with an antenna gain G, and transmit power tP . 0Z  is the intrinsic impedance 

in the empty space. From (2.2) the voltages at the ports of the antenna are derived as 
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The transmission matrix is assumed to be diagonal because the cross-coupling of the H and V 

fields is often negligible, 









=

vv

hh

T
T
0

0
T          (2.6) 

Therefore, the combined backscattering and transmission matrix is given by 
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The radar equation in (2.2) now can be written as 
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2.2.1 Doppler spectral moments 

Let ( )vS  be the probability density function (pdf) of the radial velocity. If ( )vS  is a Gaussian 

pdf with mean v  and standard deviation pσ , the sample autocorrelation coefficient (as given by 

Bringi and Chandrasekar, 2001) is 

( ) 
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
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and the corresponding Doppler velocity spectrum is 

( ) ( ) 2
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where P  is the power of the received signal and 2
Nσ  is the noise power. sT  and λ  are the pulse 

repetition and wavelength, respectively. The first three spectral moments, power, mean velocity, 

and spectrum width, are very important and have been widely used in meteorological 

applications. 

2.2.1.1 Reflectivity factor 

The back scattering cross-section per unit volume (η ) (Bringi and Chandrasekar, 2001) is 

normally referred to as radar reflectivity. It is conventional in radar meteorology to express 
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24 hhhh Sπη =  in terms of the equivalent reflectivity factor which is expressed in 16 −mmm  or 

dBZ  in decibel scale, 
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λ
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=          (2.11) 

where wK  is the dielectric factor of water. The mean received power from a resolution volume at 

range 0r  is related to the radar reflectivity at range 0r  (Bringi and Chandrasekar, 2001) as 
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From equations (2.8) and (2.9), a relationship between the equivalent reflectivity eZ  at range 0r  

and the mean received power is derived 

( ) ( )00 log20 rrPCZe ++=         (2.13) 

where C is the radar constant expressed in dB, 0r  is the range in km, and P  is expressed in dBm. 
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All the parameters in eq. (2.11) are expressed in SI units. 

2.2.1.2 Mean Doppler velocity 

In addition to the received power, Doppler weather radars have the ability to measure the 

relative phase shift between the signal from the scatterers in the resolution volume and the 

transmitted signal. This phase shift is used to estimate the mean radial velocity of the particles in 

the resolution volume. The mean Doppler velocity v  within the resolution volume can be 

obtained from lag-1 of the auto-correlation function estimate, 
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2.2.1.3 Doppler spectrum width 

The radar resolution volume consists of a large number of hydrometeors with widely varying 

velocities. Consequently, the received signal spectrum has Doppler spectral components 

spreading around the mean Doppler velocity. The spectrum width vσ  indicates the turbulence of 

the medium within the resolution volume; also, it presents the reflectivity-weighted velocity 

dispersion. If the signal spectrum is approximated Gaussian, the Doppler spectrum width can be 

estimated from multiple lags of lag 1 of the auto-correlation function. For example, if lag-0 and 

lag-1 are used, 
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2.2.2 Dual-polarized variables 

The back scattering properties of the hydrometeors change with the incident polarization 

state due to the shape and orientation of these particles. Polarimetric Doppler weather radar 

offers dual-polarization variables in addition to the spectral moments. Polarimetric variables 

provide additional information about the hydrometeors and are used to improve measurements of 

precipitation. 
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2.2.2.1 Differential reflectivity 

Differential reflectivity, or the reflectivity depolarization ratio in dB unit ( drZ ), is defined as 
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It is estimated from the co-polar mean power estimates, 
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drZ  measures the mean particles shape. For example, large rain drops are ablate in shape and 

result in positive drZ , while for light rain or hail, drZ  is close to zero. 

2.2.2.2 Co-polar correlation coefficient 

The estimate of the co-polar correlation coefficient is given in (2.12) with 0=n . 
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Estimates of the magnitude and phase of the co-polar correlation coefficient are given by 
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2.3 Phased array radar 

For a phased array antenna the complete radiation pattern of the antenna is the product of 

element pattern eG  and array pattern (or array factor) aG  

( ) ( ) ( )φθφθφθ ,,, ae GGG =         (2.23) 



17 
 

where  ( )φθ ,  defines angular direction in spherical coordinate. 

The array factor aG  depends on the array geometry of the array (i.e., distances between 

elements) and the relative phase between the antenna elements and is independent of the element 

pattern eG . 

To illustrate how an antenna pattern is formed and steered, we analyze the case of a linear 

array including N elements (fig. 2.3) that are assumed to be isotropic radiators. If each element is 

separated by distance s, summing the phase vector contributions from all elements, with element 

0 as phase reference, gives the field-intensity pattern (Skolnik 2001) as a function of incident 

angle (φ ), 
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An example of an array factor with 10=N  elements is given in fig. 2.4. 

 

 

Figure 2.3: Linear array with N elements uniformly spaced by s. 
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Figure 2.4: Array factor with 10 elements and 2/λ=s . 

The normalized radiation pattern of an array of isotropic elements is 
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When the radiating elements are not isotropic, the antenna radiation pattern has to be 

modified by the element pattern ( )φeG  so that 
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The pattern of the phased array can be steered to an angle 0φ  by changing the phases of elements 

so that the differential phase between adjacent elements is 0sin)/(2 φλπ s . Then the pattern is 
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This pattern has a peak at angle 0φ . Note that the element pattern ( ( )φeG ) is not steered. An 

example of a complete antenna pattern is shown in fig. 2.5. 
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Figure 2.5: Example of a 10 element linear array steered to 45 deg; element spacing 2/λ=s . 

In addition, at azimuth angle 0φ , the beamwidth increase by a factor of 0cos/1 φ  and the 

antenna gain changes as 

( ) 000 cosφφ GGant =          (2.28) 

where 0G  is the antenna gain at broadside ( 00 =φ ). 

Generally, for a planar array (MxN) (fig. 2.6) where the beam can be steered in two 

dimensions ( )φθ , , a radiation pattern is expressed by, 
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At angle ( )00 ,φθ  
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Figure 2.6: Diagram model of a planar phase array. 
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CHAPTER 3 
 
 

ELECTRONIC SCAN PRINCIPLE FOR PHASED ARRAY WEATHER RADAR 

 

3.1 Introduction 

For observing precipitation, three governing factors must be taken into account: spatial 

sampling, temporal updates, and accuracy of measurement. It is well known that storms exhibit a 

wide range of variability in both spatial distribution of intensity and in temporal evolution. For 

example, a tornado can touch down a highly localized swath at a few hundred meter width over a 

few minutes, while a hurricane can span a few hundred kilometer range and evolve over multiple 

days. To characterize the space-time variability features of a storm system, an integrated space-

time model is studied that explicitly includes the interaction between space and time. Then, 

regions within a storm with different spatial and evolution time scales can be determined from 

the model. The accuracy of precipitation measurements at each spatial location is a function of 

signal parameters at that position (Bringi and Chandrasekar, 2001). For a given level of 

accuracy, that relationship provides a constraint on the scanning time of PAWR at each beam 

location. 

In this work, a sequence of tasks including characterizing the space-time model for the 

precipitation system, estimating the model parameters, and optimizing the scheduler will be 

described in the context of phased array weather radar. The data model and the estimation of 

spatial scales present in the weather system are described in section 3.2. Section 3.3 will describe 

a proposed scheme of radar scanning regions for PAWR. A measurement error model for a block 

pulsing scheme is introduced in section 3.4. Next, in section 3.5, requirements and considerations 
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for adaptive scan strategy are addressed and discussed. This section also contains a scheduling 

algorithm for the PAWR, and an example of its implementation with comparison of results to 

mechanically steered beam weather radar is introduced. Lastly, a summary is provided in section 

3.5. 

3.2 Space-time characterization model for precipitation 

3.2.1 Spatial scales in precipitation systems 

It has been observed that a storm system includes regions exhibiting different spatial scales. 

Figure 3.1 is an example of an RHI measurement collected by CSU-CHILL radar during a 

thunderstorm event in summer 2008. In the convective region composed of a cluster of 

convective cells, small scales dominate over large scales. Those cells may evolve through 

various stages of their lifecycle during a few hours. In contrast, in the stratiform portion (top 

right corner), which involves weaker upward motion and less intense precipitation, large scales 

seem to dominate. Stratiform precipitation growth is slow and may last up to a few days. Figure 

3.2 presents a relative scale map for different high-impact weather phenomena. It reveals the 

relation between space scales and time scales. The figure shows that for precipitation, the 

temporal scale of a specific region generally increases with its spatial scale. 

3.2.1.1 An algorithm for spatial scale estimation 

Figure 3.2 suggests that knowing the spatial scales present in the storm system will provide 

information about its temporal scales. In general, a radar observation includes features over a 

wide range of spatial scales. According to the Nyquist theorem, the smallest resolvable scale in 

the observation is equal to twice the grid spacing while the largest scale can be as large as the 
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size of the storm. An intuitive way of tackling this problem is to consider all possible scales. 

However, it requires considerable extra time in processing and makes the algorithm complex. 

For the purpose of designing radar scanning regions, we focus on identifying a small set of 

significant scales that contains most of the spatial information of the storm. 

 

 

Figure 3.1: Example of regions with different spatial scales within a storm. 

stratiform region
convective region

stratiform region
convective region
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Figure 3.2: Time and space scales associated with “high-impact” weather phenomena. (Courtesy: 
“Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks”, 
the National Academies Press.) 

When applying a 2D averaging filter to a radar observation, filter size has effects on the 

scales present in the output field. A filter with a larger area removes more smaller spatial scale 

features while a filter with a smaller area retains the most scales. Thus, information about the 

scales can be extracted from filtered fields corresponding to different filter sizes. One way to do 

that is to compare the similarity measurement between the original field and the filtered fields. 

The similarity measurement essentially determines the similarity between the features of the 

original field and the features of the field after filtering. There are several ways to define the 

similarity measurement such as correlation coefficient, cosine distance, Chord distance, etc. 

Results from an initial study show that the correlation measurement yielded the best results in 

terms of accuracy and robustness for radar reflectivity observations. Thus, results presented in 
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this work will be based on this method. The 2D correlation coefficient between two sampled 

fields iZ  and jZ  (size of 21 NN × ) is defined as 
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And the similarity measurement based on correlation is given by 

( ) ( )jiji ZZRZZ ,1, −=δ         (3.2) 

The correlation coefficient is inversely proportional to the size of the filter because when 

increasing the filter size, more scales will be removed. In order to detect and estimate  significant 

scales, we generate the correlation coefficient between the original field and filtered fields as a 

function of filter sizes. It is noted that the difference between the two correlation coefficients will 

be at its local maximum when a significant scale is removed from either filtered field. More 

importantly, the value of the significant scale is located between the sizes of the two filters. If the 

spacing of the filter sizes is sufficiently small, the significant scale can be estimated. That means 

the derivative of the correlation coefficient function takes a local maximum at the location of a 

significant scale. This idea can be expanded to find all the significant spatial scales within a radar 

observation. 

The spatial scale estimation algorithm based on the 2D correlation coefficient is described by 

the following steps: 

1. A vector of spatial scale candidates is pre-set for each radar observation. Normally, we 

choose the minimum scale in the vector is to be equal to twice the data grid spacing and 
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the maximum scale is to be equal to the size of the minor axis of the storm. In addition, 

the scale’s step is equal to half of the grid spacing. 

2. An averaging filter with filter size equal to the first scale in the vector (step 1) is applied 

to the original observation and yields the first filtered image. This process is repeated to 

the other scales in the vector. 

3. Compute a sequence of the correlation coefficients between the original field and the 

filtered fields (correlation coefficient as a function of scale) 

4. Compute the derivative of the correlation coefficient function (from step 3). 

5. Find the first local maximum and its corresponding spatial scale. This scale is considered 

as a estimated significant spatial scale of the radar observation. 

6. Filter the original observation by a filter with the filter size equal to the significant spatial 

scale found in step 5 and replace the original observation with this filtered field. 

7. Step 2-6 are repeated until no significant scale is found. 

3.2.1.2 Performance evaluation 

We validate the performance of the scale estimation algorithm developed in the previous 

section by applying it to several synthesized images. The first image (fig. 3.3) is a tiled 

checkerboard. This image shows two major scales, the size of the smaller checkerboard squares 

at 25 pixels and the size of the larger checkerboard squares at 50 pixels. The initial scale vector 

is chosen as [2:1:50] pixels for this particular image. In this study, Gaussian averaging filters are 

used for scale estimation procedure. A 2D isotropic Gaussian filter has the form, 
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The width of a 2D Gaussian filter is specified by its standard deviation of the distribution s  ; for 

that reason, s  is also considered as the “scale” of the filter. Figure 3.4a shows the derivative of 

the correlation coefficients as a function of spatial scale for the first iteration of the algorithm. 

We find a local maximum at scale 10. The Gaussian filter with scale 10=s  is shown in fig. 3.4b 

and it corresponds very well with the smaller checkerboard tile. 

 

 

Figure 3.3: The checkerboard image. 
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Figure 3.4: Output of the scale estimation algorithm for image in fig. 3.3: (a) The derivative of 
the correlation coefficients at the first iteration shows a local maximum at scale 10 (pixels); (b) 
2D Gaussian filter with scale 10. 
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Figure 3.5: Output of the scale estimation algorithm for image in fig. 3.3: (a) The derivative of 
the correlation coefficients at the second iteration shows a local maximum at scale 21 (pixels); 
(b) 2D Gaussian filter with scale 21. 

The algorithm is continuously processed and one more scale is detected at 19 (fig. 3.5a) in the 

second iteration. The associated Gaussian filter is shown in fig. 3.5b. This estimated scale agrees 

with the larger checkerboard square. After this step, no further scale is found. 

The second image is a simulated radar reflectivity field of a storm in a region of 5050×  km 

(fig. 3.6) and the sampling interval is 0.5 km on both the x-axis and y-axis. This is a single 

simulated field that is used to study the scale estimation algorithm only; therefore, no motion or 

evolutionary process is associated with it. To generate the data, we start with a 1/f spatial noise 

with a normal error distribution. The noise data are passed through a bank of band pass filters. 

By varying the bandwidth of the filter we can control the range of the output image’s spatial 
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scales. Filtered images then are spatially weighted and added to produce the synthesized radar 

reflectivity. In this simulation, we used two scales of 0.75 km and 2.2 km for the band pass 

filters. In fig. 3.6, the ellipses indicate two regions representing larger and smaller scales. Similar 

to the previous example, we use the Gaussian averaging filter in the scale estimation algorithm. 

The algorithm starts with an initial scale vector [0.25:0.25:5] km. In the first iteration, the 

derivative of the correlation coefficients (fig. 3.7a) shows a local maximum at scale of 1.25 km. 

Correspondingly, it is the first estimated significant scale. The second scale is found at 2.5 km 

(fig. 3.8a) and in the following step no further scale is detected. Note that the second estimated 

scale is very close to its corresponding input whereas the first one is not. This is because even 

though the centers of band pass filters used to generate the field are set at two pre-defined scales, 

the resulting image contains a much wider range of scales. In this type of application, the goal is 

not to find absolutely accurate estimates but to specify the scales that represent important 

structures of the image.  Figure 3.7b and figure 3.8b depict the size of the Gaussian averaging 

filters corresponding to the estimated scales. Visually, they match well to the structure of the two 

regions within the ellipses in fig. 3.6.  

3.2.2 Data model 

Storms generally consist of many features at different spatial scales that are moving and 

evolving over time. Distinguishing between separating areas of convective and stratiform 

precipitations or, in general, between quickly and slowly evolving regions within a storm and 

estimating temporal scales of these regions are very important challenges in designing an 

efficient scan strategy. To overcome these challenges, a space-time characterization model that 

includes the interaction between space and time for precipitation system is proposed. 



31 
 

The weather radar observations ( )111 ,, tyxZ , ( )222 ,, tyxZ ,... are sampled from the underlying 

field Z(x,y,t) 

( ) ( ) ( )tyxetyxXtyxZ ,,,,,, +=        (3.4) 

where (x,y) is the location, t is the sampling time, ( )tyxX ,,  is the reflectivity field and ( )tyxe ,,  

is the measurement uncertainty. 

 

 

Figure 3.6: A synthesized radar reflectivity field for scale estimation study. 
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Figure 3.7: Output of the scale estimation algorithm for the image in fig. 3.6: (a) The derivative 
of the correlation coefficients at the first iteration shows a local maximum at scale 1.25 (km); (b) 
2D Gaussian filter with scale 1.25. 
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Figure 3.8: Output of the scale estimation algorithm for the image in fig. 3.6: (a) The derivative 
of the correlation coefficients at the second iteration shows a local maximum at scale 2.5 (km); 
(b) 2D Gaussian filter with scale 2.5. 
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A storm system is a complex physical process but it can be assumed to consist of two separate 

processes: motion process and evolution process. The motion process can be presented by a 

general flow system equation, 

( ) ( ) ( ) ( ) ( )
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    (3.5) 

where ( )yxU ,  is the x-axis motion velocity and ( )yxV ,  is the y-axis motion velocity over the 

spatial domain. ( )tyxS ,,  presents the growth-decay term. 

The motion field (U,V) of the storm system can be estimated by solving the system of equations 

(3.5) (Xu et al. 2005). Once the motion fields are obtained, they can be removed from the radar 

observations ( )tyxX ,,  by using an advection algorithm (Rood, 1987) to yield  the motion-

aligned fields denoted by ( )tyxY ,, . 

In this work, the evolution process is characterized by a Kernel dilation model (Wikle, 2002), 

( ) ( ) ( ) ( ) ( )∫ +−=
D

yx tyxdudvtvuYvuktyxY ;,1;,,;, , ηγ      (3.6) 

where D denotes the spatial domain, ( ) ( )vuk yx ,,  is the Kernel function at spatial location ( )yx, ; 

γ  is the evolution control factor, and ( )tyx ,,η  is the spatially independent colored/white noise. 

The dilation kernel can be approximated by summation of many isotropic Gaussian kernels at 

different scales si, 

( ) ( ) ( ) ( )∑=
i

iyxiyx svuGvuk ;,, ,, β        (3.7) 
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where iβ  is the weight corresponding to isotropic Gaussian kernel ( ) ( )iyx svuG ;,,  (eq. (3.3)). 

Assuming there are M spatial scales present in the observations, then equation (3.6) can be 

expressed as a linear model, 
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      (3.8) 

where N is the number of observations, n is the discrete sampling time stamp and ii γβα = . 

When the number of observations is no smaller than the number of spatial scales , i.e. MN ≥ , 

the equation (3.8) forms an over-determined linear system and can be solved by standard 

methods such as linear least-squares estimator (Lawson et al. 1987). 

It is noticed that the term inY ,  (eq. 3.8) is the convolution between a Gaussian kernel of scale 

is  with the observation ( )nvuY ;,  and for that reason, it only contains features with spatial scales 

equal to or larger than is .  From equation (3.8) one can interpret the weight iα  as an evolution 

indicator of the feature related to scale is  (hereafter called feature is ). 1>iα  indicates that the 

feature is  grows and 1<iα  indicates that the feature is  decays. Consequently, segmentation of  

the radar observations ( )nvuY ;,  ( Nn ...1= ) based on the distribution of iα  will define the 

quickly and slowly evolving regions and these regions are related to the spatial scale is  of the 

observations. The temporal scale of a region is simply calculated as the time when its auto-

correlation function (eq. 3.1) drops below 0.9. 
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3.2.3 Model illustration using simulation 

To illustrate the space-time characterization model described in the section above, we apply 

it to both simulated radar reflectivity sequences and actual radar observations. In this section, 

radar data from a simulation (Tripoli et al. 2012) demonstrating a tornado development is used. 

Figure 3.9 shows four consecutive radar reflectivity factor fields at height 1 km above the 

ground. The spatial sampling resolution is 120 m on both the x and y axes and the temporal 

spacing between each observation is 30 seconds. The images show that there is a fast 

development of the small features around the vortex of the tornado while the structures of the 

near by regions seem to change more slowly. 

 

Figure 3.9: Simulated reflectivity factor fields of a tornado. 
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The scale estimation algorithm (section 3.2.1.1) is applied to the sequence and two 

significant spatial scales, 0.48 km and 1.8 km, are found. Substituting these scales into equation 

3.8 we obtain a system of three linear equations and two unknowns that can be solved by the 

linear least-squares method. Regions corresponding to the two estimated spatial scales are 

separated by contours (fig. 3.10). It can be seen that the region of the main updraft and forward 

flank downdraft near the tornado vortex circulation and the region of rear flank downdraft where 

the smaller scale features are prominent are successfully localized (fig 3.10b). The evolution 

times of the two regions are shown in fig. 3.11. It is shown that the region near the tornado 

vortex (corresponding to the smaller scale, 0.48 km) evolves faster, with a decorrelation time of 

0.145 minutes, while the other region develops more slowly with a decorrelation time of 0.269 

minutes. 

 

 

Figure 3.10: Segmentation of the tornado based on its spatial scales: (a) region 1 with major 
spatial scale of 1.8 km and (b) region 2 with major spatial scale of 0.48 km. 



38 
 

 

Figure 3.11: Correlation functions of regions in the tornado simulated data. 

3.2.4 Model illustration using observed radar data 

To further illustrate the space-time characterization model, we have applied it to a set of 

observed radar reflectivities. The reflectivity data were collected and merged from four radars in 

the CASA IP1 network. The four radars of CASA IP1 are located at Chickasha (KSAO), Cyril 

(KCYR), Lawton (KLEWE) and Rush Springs (KRSP), Oklahoma. These are X-band radars, 

each with a beamwidth of 1.8 º and a scanning range of 30 km, so they are able to provide high 

spatial and temporal resolution data. The composite data at the height of 1 km above the ground 

are used for this study. The data were re-sampled in a 2D region of 140 x 140 km with a spatial 

resolution of 0.5 km on both the x-axis and the y-axis. The storm occurred on April 26, 2009, 

and spanned approximately 70 minutes. The temporal resolution is 1 minute; therefore, we have 

about 70 successive observations in total. The model is applied to each of nine consecutive 

observations that span 9 minutes. An example of the experimental data set is shown in fig. 3.12. 
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The reflectivity sequences indicate a storm motion in a north east direction. To apply the 

characterization model to the data, we need to remove the motion trend (section 3.2.2). A method 

similar to the DART algorithm (Gang, 2005) is implemented to estimate the motion field from 

this temporal sequence. The result is shown in fig 3.13. It is assumed that within a short time 

period, the motion at each observation time is the same. Using the estimated motion field, the 

image at time “t” is extrapolated to time “t+1” and the result is spatially aligned with the 

measurement at time “t+1”. In general, we can align all the radar precipitation fields with 

reference to a certain temporal point. Figure 3.14 show an example of a sequence of nine radar 

reflectivity images where all images are aligned with reference to the last image. 

 

 

 

 

Figure 3.12: Storm reflectivity sequences from CASA IP1 radar network on April 26, 2009. 
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Figure 3.13: Estimated motion field from observations in figure 3.12. 

 

Figure 3.14: Motion aligned data obtained from the observations in fig. 3.12. All images are 
aligned with reference to the last one. 
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Applying the scale estimation algorithm to the aligned sequence, we estimate two significant 

spatial scales, 1.27 km and 2.52 km, and feed them into the space-time characterization model. 

Then the storm is segmented into different regions as shown in fig. 3.15. It can be seen that the 

regions corresponding to the smaller scale are mostly located at the front edge of the storm. The 

evolution time associated with each region in fig. 3.15 is depicted in fig. 3.16. De-correlation 

time for the smaller-scale region is 0.23 minutes and for the larger-scale region is 0.45 minutes. 

This result is consistent with our hypothesis of the space-time variability of weather systems 

where small-scale features evolve more quickly than large-scale features. 

 

 

Figure 3.15: Spatial decomposition for the motion aligned sequence in fig. 3.14. 
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Figure 3.16: Correlation functions of the regions in fig. 3.15. 

3.3 Radar scanning regions 

The space-time characterization model provides a framework for segmenting a storm into 

different areas based on its space-time variability features. Each area is represented by a unique 

spatial and temporal scale. At this point, the model is only developed for 2D data. In practice, 

PAWR is designed to scan the precipitation volume in both azimuth and elevation dimensions. 

An adaptive scan strategy should be optimized for both dimensions. It requires the model be 

modified to work with 3D data, and that is beyond the scope of the present work. We therefore 

simplify the task by optimizing the scan strategy for each elevation angle. The outputs of the 

adaptive scheduler will be a sequence of azimuth angles where the radar beam will be located to 

obtain optimal measurements. 

Without the loss of generality, only a single-aperture PAWR is considered and we assume 

that the radar observation is limited to a 120° sector. The radar scanning region scheme within a 

storm varies constantly due to a storm’s evolution over time and it can be also very different 
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between storms but in general, it can be grouped into three categories: separated, partially 

overlapped and completely overlapped. In the first case, where scanning regions are separated 

(fig. 3.17a), no further processing is required before information is fed to the scheduler. A case 

of partial overlapping is shown in fig. 3.17b. The azimuthal boundaries of the overlapping region 

are indicated by dashed lines. The spatial scale and temporal scale of the overlapping region is 

defined as ( )21 ,min ss  and ( )21 ,min ττ  where ( )iis τ,  are denoted for spatial and temporal scales 

of region thi , respectively. If the spatial and temporal scales of the overlapping region are 

different from that of either existing region, then it is treated as a new scanning region. A similar 

approach is used for the case of the completely overlapped category (fig. 3.17c). If the space-

time scales of the smaller region are equal to or larger than that of the larger region (region 1), 

then we do not care about the smaller region and it can be removed from the scheme. Otherwise, 

it creates a new scanning region and the larger region is split into two separate regions (region 1a 

and region 1b) with the same space-time parameters. 

Once all the scanning regions are specified, their space-time diagram can be generated. In 

general, scanning regions may begin at different time stamps and have different evolution times. 

Figure 3.18 depicts this idea. Knowing the space-time diagram helps the radar scheduler 

optimize the scan with the goal of accurately capturing more features from the storm. 
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Figure 3.17: Radar scanning region scheme. 
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Figure 3.18: Space-time diagram of radar scanning regions. 

3.4 Measurement error model 

In a conventional weather radar system, a number of pulses is transmitted every pulse 

repetition time (PRT) and signal parameters are estimated from a sequence of uniformly spaced 

samples. For the autocovariance method (Bringi and Chandrasekar, 2001), signal power is 

estimated as the mean of instantaneous power samples. The number of samples determines the 

accuracy of measurement. In the ideal case where the samples are independent, the standard 

deviation of power estimate is computed as 

[ ] 







+=

m
Pstd 11log10ˆ

10         (3.9) 

where m is the number of samples. For example, we only need 15=m  independent samples to 

achieve 99.0]ˆ[ =Pstd  dB. However, if the precipitation signals are correlated, a larger number 

of samples is required to obtain the same statistical variance. Figure 3.19 shows the standard 



46 
 

deviation of signal power estimates as a function of number of samples with various spectrum 

widths. For a given number of samples, the variance of power estimates increases with 

decreasing spectrum width. This is because the signal de-correlation time is larger at smaller 

spectrum widths (fig. 3.20) and, therefore, the equivalent number of independent samples is 

smaller. In this work, the decorrelation time of the medium is defined as the time for the signal 

autocorrelation function to fall to 0.01: 

p
dT

πσ
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22
146.2

=          (3.10) 

 

 

Figure 3.19: Standard deviation of mean power estimate for S-band ( cm10=λ ) at PRT=1 ms 
with various spectrum widths. 
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Figure 3.20: Signal auto-correlation function with various spectrum widths. 
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Figure 3.21: Block pulsing scheme. 

As mentioned above, PAWR can instantly steer the beam to scan and revisit a region. This 

capability of PAWR enables a new pulsing scheme in order to reduce the scan time without 
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compromising the accuracy of the radar measurements. The pulsing scheme for PAWR is shown 

in fig. 3.21. In this scheme, PAWR transmits and receives a block of a small number of pulses, 

denoted by im  for regions thi  , and revisits that region after time iT . The revisit time (or update 

time) iT  is sufficiently large such that the signals from adjacent blocks are uncorrelated. During 

the revisit time, the radar beam of PAWR is steered within the other regions of interest to collect 

samples at many beam locations. Block size 2≥im  is required for the estimation of mean 

Doppler velocity and spectrum width. It is favorable to choose a block size ( im ) as small as 

possible to reduce the scan time. However, it needs to be sufficiently large to allow 

implementing a clutter filtering algorithm (Chapter 5). Next, we will examine the statistical 

errors of the power estimates for the block pulsing scheme. The variance of the mean power 

estimate from a block is given as 
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where [ ]lpρ  is the correlation coefficient of weather signal at lag l (Bringi and Chandrasekar, 

2001). 

When iM  blocks  are independent, then the variance of the mean power estimate is 
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(a) 

 

(b) 

Figure 3.22: The standard deviation of power estimates as a function of block size and number of 
independent blocks for S-band radar with spectrum width of 2 ms-1 (a) and 4 ms-1 (b). 
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Figure 3.22 shows the standard deviation in estimated powers using simulation for an S-band 

radar. In this example, block size varies from 4 to 32 and spectrum widths of 12 −ms  and 14 −ms  

are used. The parameters are estimated using the autocovariance method. White lines are 

theoretical curves derived from equation (3.12) for the standard deviation of power estimates 1 

and 2 dB. The analysis aids the design stage of selecting a combination of block size and number 

of independent blocks to achieve a desired measurement accuracy. For example, at spectrum 

width of 14 −ms  and a block size of 4, we need 10 blocks (i.e., 40 samples) to achieve a standard 

deviation of estimated mean power less than 1 dB, while for conventional weather radar, at least 

64 samples are needed to obtain a similar performance. 

3.5 Design of scan strategy for PAWR 

3.5.1 Adaptive scanning strategy 

In designing the scan strategy for PAWR, the space-time characterization model plays a key 

role. It handles the storm motion and provides position information for radar scanning regions as 

well as their space-time variability parameters. Quickly evolving regions need to be scanned 

more often than slowly evolving regions and the scan needs to be complete within the evolution 

time. In addition, regions with larger spatial scale can be sampled at coarse resolution while 

regions with smaller scales need to be scanned in finer resolution. Moreover, the measurement 

error model provides information about the number of independent samples that must be 

collected at each beam location to achieve good data. As a result, data quality and acquisition 

time can be optimized. This is a fundamental principle of an adaptive scan strategy as proposed 

in this work. However, the scan strategy will not be complete without addressing the following 

considerations.  
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3.5.1.1 Revisit time constraints 

First of all, the revisit time or update time is defined in fig. 3.21  to be specified for each 

scanning region during scheduling in order to minimize scan time. The requirements of 

independent samples and fast scan put constraints on the revisit time. While it is desirable to 

have a large revisit time to obtain independent samples, the scan has to be completed within the 

evolution time of the event. The revisit time may or may not satisfy both conditions. To examine 

this question, let us consider an extreme scenario where an S-band PAWR is scanning a fast-

evolving region such that the area around the tornado vortex (fig. 3.9) with an evolution time of 

0.145 minutes, or 8.7 seconds. Assuming the signal spectrum width is as small as 1 ms-1 at that 

region, the revisit time should be equal to or larger than 24.2 ms (eq. 3.10) to get independent 

samples. Thus, in this case, we are able to collect 270 independent blocks of 8 samples that 

provide an estimated power with standard deviation less than 1 dB (fig. 3.22). For most 

meteorological  applications, this level of accuracy is adequate (ROC 2007).  Therefore, it is 

assured that when we constrain the total scan time to be equal to the estimated evolution time, 

the average revisit time will be equal to or larger than the signal decorrelation time. Having said 

that, for each scanning region, we define the lower boundary of the revisit time as the signal 

decorrelation time, and the  following procedure provides the upper boundary: 1) given the block 

size and level of data accuracy, specify a number of independent blocks ( iM ) based on the 

measurement error model (section 3.4); 2) divide the evolution time by iM  to obtain the upper 

boundary of the revisit time. The revisit time will then be selected in this interval to produce an 

optimal scan. 
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3.5.1.2 Improved adaptive scanning with nowcasting 

Adaptive scanning strategies mean the radar is able to adjust the beam location to regions of 

weather phenomena as they are predicted to develop. Hence, short-term prediction (nowcasting) 

needs to be integrated into the scan strategy to improve radar observations. The predicted 

reflectivity field provides better information on the future position of a moving storm and then 

this information is used to adjust the scan strategy to observe the entire storm. This is very 

important, especially when tracking or scanning a fast-moving storm. The capability of this 

strategy is demonstrated in fig. 3.23.  Figure 3.23 depicts an image of a CASA MC&C display 

on May 17, 2009, comparing coverage afforded by radar node steering using previous 

observation versus steering using a five-minute prediction. In this case, the storm was moving 

toward the northeast. It can be seen that the leading edge is observed when prediction 

information is used in scan strategy and is missed when it is not used. 

3.5.1.3 Azimuthal sampling resolution 

The third consideration is the question of how PAWR adjusts azimuthal resolution to adapt to 

regions with different spatial scales. To address this issue, we suggest an approach of adaptively 

changing the antenna pattern of PAWR. At a location where smaller spatial scales are present, 

the antenna pattern is formed to have a narrow beamwidth. At a region with a  large spatial scale 

the antenna pattern is synthesized with a wider beamwidth. Because the radar beamwidth is 

wider at off boresight, to improve the angle resolution at these locations, oversampling (i.e., 

overlapped beams) can be used such as with super-resolution on the NEXRAD network (Brown 

et al. 2002, Torres et al. 2003). The number of beam positions in azimuth is determined by the 
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extent of coverage and the spatial scales present in the scanning regions. A detailed discussion of 

this topic is beyond the scope of this work and is not presented here. 

3.5.1.4 Waveform selection 

The waveform selection process is responsible for selecting adequate waveforms from a 

waveform database for each radar scanning region. Primarily, this ensures selecting the correct 

waveform and signal processing to match the requirements of maximum unambiguity range, 

maximum unambiguity velocity, range resolution, and measurement sensitivity. For surveillance 

tasks the radar may use a set of two pre-defined waveforms: one for longer range measurement  

and one for high Doppler velocity measurement. For the main tasks, the choice of waveform 

depends on the storm’s parameters at beam position as well as the goal of the measurement. 

Available waveforms are uniform PRT, batch PRT, and staggered PRT. 

In summary, the flow diagram of the adaptive scan strategy for PAWR is shown in fig. 3.24.  

 

 

Figure 3.23: Example demonstrating the importance of incorporating nowcasting with scan 
strategy. Images from the CASA MC&C display on May 17, 2009, comparing coverage obtained 
by radar nodes steering using previous observations (left) vs adaptive scanning using five-minute 
nowcasts (right) (Ruzanski et al. 2010).  
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Figure 3.24: Flowchart of PAWR adaptive scan strategy. 

3.5.2 Scheduler requirements 

In this study, the scan strategy algorithm for PAWR works on a ray-to-ray basis. Each ray is 

considered as a task and the dwell time of the task (or task time) is equal to the length of the 

block of pulses at that ray. All tasks are competing for radar resources (time and hardware) and 

therefore, effective resource management is required for a successful operation. The central part 

of resource management is a scheduler that arranges the tasks in a sequence without significant 

delays. The requirements for a real-time scheduler for PAWR can be summarized as follows: 

• Determine in real time a sequence of beam position in which the sampling time at each 

position is conditioned by the accuracy of measurement. 
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• Follow a priority structure for the revisit times according to the evolution of different storm 

regions.  

• Minimize the scan time to obtain high temporal resolution observation of the storm. 

• Allow implementation of adaptive waveform control according to different types of storms. 

• Maintain the angular separation between two consecutive beam positions to suppress high 

order (e.g., second) trip echo from the previous beam position. 

• Balance scan time and surveillance time. 

• Fully use the antenna/radar resource. 

3.5.3 An algorithm for task scheduling in PAWR 

In this section, we propose an algorithm that arranges a sequence of the tasks based on tasks’ 

priority and an approach to optimize the radar scan time. The algorithm works similar to the time 

balance scheme to control the scheduling of tasks as in the work of Stafford (1990). The time 

balance concept was first introduced for military applications and recently was extended for use 

in the application of phase array radar for tracking multiple storms (Reinoso-Rodinel et al. 2010). 

A scheduling algorithm using time balance scheme is summarized as following: 

1. Each task is associated with a time balance variable. 

2. A positive time balance means the task is late for execution. The task with the highest 

time balance value has the highest priority. 

3. When a task is finished, the time balance of all the tasks is increased by the task time. 

Then, the time balance variable associated to this task will be decreased by its revisit 

time. 
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4. Steps 1-3 are repeated. 

In addition to the main tasks, a surveillance task is included in the scan strategy. When a 

surveillance task is triggered, the radar will scan the non-precipitation regions at a rate that 

depends on the requirement of data quality. The number of non-precipitation regions defines the 

number of surveillance tasks. Surveillance task time is defined as the time needed by the radar to 

scan the entire surveillance area continuously. The update time of a surveillance task is provided 

by the user. For example, the user can assign a high surveillance update time to important and 

potentially hazardous storms and a low update time to other storms. Usually, surveillance task 

time and update time is much longer than the task time of scanning a ray. A surveillance task is 

executed when it is in the highest priority level or when the time balance of all the main tasks are 

negative. In other words, surveillance runs when it is requested or when radar resources are 

available. 

A flowchart of the scheduler algorithm proposed is shown in fig. 3.25. A description is given 

below. 

Starting from the highest priority level task: 

1. If there is any task with a positive time balance, then choose the task with highest time 

balance. Otherwise, schedule a surveillance task. 

2. Schedule the chosen task. 

3. Increase all the time balances by the task time of the chosen task. 

4. Decrease the executed task’s time balance by its update time. 

5. Steps 1-4 are repeated until the radar finishes scanning all regions (i.e., when a new 

reflectivity image is generated ). 
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Figure 3.25: Flowchart of the scheduler algorithm. 

As can be seen from the scheduler algorithm, changing the update times of tasks will produce 

different results. The question is how to choose the revisit times to obtain optimal results and to 

avoid an overloading problem for PAWR. In section 3.5.1.a, we have proposed a method for 

finding the constraints for revisit time at every scanning region. Each visit time is constrained in 

an specific interval. Apparently, there is no closed-form expression for this optimization problem 

since the conditions vary from case to case. Also, trying to change the update times while 

scheduling tasks will make the algorithm very complex. We approach this problem in a 
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traditional way: by considering all possible input combinations. To do this, each revisit time is 

scanned within its interval with the increment of radar PRT (normally in order of ms) and then 

the combination that provides the smallest scan time result will be chosen. Because the scheduler 

algorithm is fairly simple, this solution works quite well as demonstrated in the next section. 

3.5.4 The scheduler performance evaluation using simulation 

An example of scheduling scanning tasks for a storm consisting of two separate radar 

scanning regions is presented in this section. One region represents the fast-evolving (e.g., 

convective) part of the storm. The other represents the slower-developing region (e.g., stratiform) 

part of the storm. The regions’ locations are shown in fig. 3.17a. The space-time parameters of 

the two regions generated by the characterization model are given in table 3.1. The radar 

parameters are given in table 3.2. 

Table 3.1: Space-time parameters of scanning regions. 

 azimuthal 
range (deg) 

azimuthal 
resolution (deg) 

evolution 
time (min) 

spectrum 
width (m/s) 

region 1 31-65 1 0.15 4 
region 2 70-100 2 0.30 2 

 

Table 3.2: Radar parameters. 

λ (m) min. antenna 
beamwidth 

prt (ms) 

0.10 1° 1 
 

In addition, the requirement of minimum angular separation between two consecutive PAWR 

beam positions is 6º. The scan will complete when it achieves ( ) 1=Pstd  dB or better at all 
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azimuth locations. In order to compare PAWR with mechanically scanned radar on scanning 

speed, no surveillance task is scheduled in this example. 

Two pulsing schemes are studied: 

• Case 1: Block size of 1 for both regions 

Clearly, this pulsing scheme will provide the fastest scan speed but no Doppler velocity or 

spectrum width. Using the method proposed in section 3.5.1.a, we compute the revisit time 

intervals for regions 1 and 2, they are [ ]600,6   ms and [ ]1200,12  ms, respectively. We try all the 

combinations for the two revisit times (in this case the increment is 1 ms); the pair (10, 12) ms 

provides the smallest scan time. The final scheduled tasks (beam positions) are shown in fig. 

3.26 for the first 200 ms (just for visualization). As a result, PAWR is able to finish scanning the 

storm in only 0.835 seconds. In contrast, a conventional radar with a 1º beamwidth antenna 

requires 105 samples (fig. 3.19) at each azimuth location to obtain ( ) 1ˆ ≤Pstd  and therefore, 

takes 7.35 seconds ( raysms 70105 × ) to finish this sector (from azimuth 31° to 100°). 
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Figure 3.26: Schedule beam positions for the case of block size 1. 

• Case 2: Block size of 8 for both regions 

Increasing the block size will reduce the scan speed but it provides Doppler velocity and 

spectrum width estimates and more importantly, it allows the implementation of a ground clutter 

filtering algorithm (Chapter 5). Hence, this scheme is more practical for normal radar operation. 

From the measurement error model, we need to collect at least six independent blocks at each 

beam position for region 1 (spectrum width 14 −ms ) and 10 independent blocks at each beam 

position for region 2 (spectrum width 12 −ms ). In this case, the upper boundary for revisit times 

(in order to meet the requirement of evolution time) for the two regions are 1285 ms and 1800 

ms. The revisit time intervals for regions 1 and 2 are [ ]1285,6  ms and [ ]1800,12  ms, 



61 
 

respectively. Again, by scanning all the possible combinations for the revisit times, we come up 

with values of 20 ms and 12 ms that provide a minimum scan time of 2.96 seconds. Scheduled 

beam positions for the first 1000 ms are shown in fig. 3.27. 

In both simulation cases, besides the total scan time, scheduling parameters such as number 

of schedule tasks at each beam location, and total task time are included to assess the proposed 

scheduler algorithm. Simulation results are summarized in table 3.3.  

 

 

Fig 3.27: Schedule beam positions for the case of block size 8. 
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Table 3.3: Comparing simulation results 

 Block size of 1 Block size of 8 
 CWR PAWR CWR PAWR 
average number of schedule 
tasks region 1 

1 @ 105 
samples 

15 @ 1 
sample  

1 @ 105 
samples 

6 @ 8 
samples  

average number of schedule 
tasks region 2 

1 @ 105 
samples 

15 @ 1 
sample 

1 @ 105 
samples 

10 @ 8 
samples 

total task time (s) 5.35 0.765 5.35 2.96 
total scan time (s) 7.35 0.765 7.35 2.96 
std(P) region 1 (dB) 0.99 0.99 0.99 1.00 
std(P) region 2 (dB) 0.73 0.99 0.73 0.95 

* CWR: Conventional Weather Radar 

 

3.6 Summary 

There is no doubt that PAWR has the potential to provide fast updates and high data quality 

that help increase warning lead times and better understanding of quickly evolving weather 

phenomena. To make full use of radar resources and to achieve optimal observations, a scan 

strategy must be addressed. In this chapter, the principle of adaptive scan strategy for PAWR has 

been introduced for this purpose. The adaptive sensing framework is based on the space-time 

variability feature of the storm. It is suggested that regions with smaller spatial scales tend to 

evolve more quickly than regions with larger scales and therefore, need to be updated more 

often. To validate this hypothesis and to obtain qualitative measurements, a new space-time 

characterization system for precipitation system is developed. The space-time system includes an 

algorithm for scale detection and estimation, a characterization model, and a scheme for mapping 

space-time parameters into radar scanning regions. The scale estimation algorithm detects the 

significant changes in similarity measurements of the observation and its filtered outputs. Using 

simulation, it is demonstrated that the algorithm performs well even with images containing a 



63 
 

wide range of spatial scales. A space-time characterization model that explicitly includes the 

interaction between space and time has also been presented and assessed. The storm evolution 

process over time is characterized by a kernel dilation model after the storm motion pattern is 

removed. To preserve the signal spatial characteristic, each kernel is approximated by summation 

of many isotropic Gaussian kernels whose scales are extracted from all images in the sequence. 

The weight factors of the kernels then are thresholded and mapped into regions termed radar 

scanning regions. The model has been extensively tested on both simulated radar data and 

observed radar measurements from CASA IP1 network. Results are consistent with the space-

time variability hypothesis. 

Next, a new pulsing scheme solely developed for PAWR and an associated measurement 

error model are introduced. In this scheme, a radar beam will be rapidly steered within the 

scanning regions to collect blocks of a small number of samples and revisit after certain 

intervals. A block size from 2 to 8 is chosen depending on the clutter level at beam position. The 

measurement error model is used to determine if the data quality requirement is satisfied. 

 The last, but one of the most important, tasks proposed in this chapter is an adaptive scan 

strategy for PAWR. Within the strategy, many aspects have been considered and discussed such 

as calculation of revisit time constraints, incorporation with nowcasting to improve observation, 

spatial sampling adaptation, and waveform selection. All these considerations provide critical 

inputs for the scheduler that is responsible for scheduling all radar tasks. A scheduling algorithm 

based on the time balance concept is used in this work. Additionally, a procedure to optimize the 

selection of revisit times for scanning regions is also presented. The scheduler algorithm is 

demonstrated to be stable while the computation is very efficient. The occupancy is very high 

owing to the small task time (equal to block size). As a result, PAWR can significantly reduce 
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scan time while maintaining the data quality required by conventional weather radar. Moreover, 

the designed scan strategy allows PAWR to accurately capture storm features within their 

evolution times.  
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CHAPTER 4 
 
 

PARAMETER ESTIMATION FOR POLARIMETRIC PHASED ARRAY WEATHER 

RADAR 

 

4.1 Introduction 

In the previous chapter, features of phased-array weather radar that are important for sensing 

precipitation are described. It is shown that phased-array weather radar is a superior platform for 

observing weather compared to conventional weather radar. In particular, phased-array weather 

radar with polarimetric capability (polarimetric PAWR) should become a very powerful tool for 

meteorological applications. Since bias in dual-polarization parameters affects quantitative 

estimation, maintaining accurate polarimetric PAWR measurements is critical. Removing biases 

in polarimetric PAWR is more challenging than in the conventional polarimetric weather radar 

because of its electronic steering mechanism. To address this issue, a preliminary study of 

signals using this type of weather radar is done via modeling and simulating. 

In this chapter, a signal model for electronically scanned polarimetric PAWR is presented. 

The array element is modeled using the same method described in Zrnic et al. (2011). Due to the 

projection effect, received signals include cross-coupling between the horizontal and vertical 

polarizations. If the coupling effect is not removed, it can introduce biases into the estimates of 

fundamental spectral moments as well as dual-polarization variables. The biases are functions of 

the antenna’s beam position. The farther off the antenna axis the beam is steered, the larger the 

biases will be. It is shown that those biases can be larger then the intrinsic values of the 
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polarimetric parameters. Therefore, developing efficient methods for bias correction is critical 

for maintaining the accuracy of the estimates for quantitative meteorological applications. 

Bias correction methods are proposed for both simultaneous and alternating polarization 

transmission modes for polarimetric PAWR. The correction can be implemented on a pulse-by-

pulse basis or from the powers and correlations of the measured signals. They can be done at the 

receiver side without any adjustments to the transmitted fields, as shown in Zrnic et al. (2011). In 

addition to the bias correction, the effect of noise on the polarimetric PAWR data quality is also 

studied. Lastly, a signal simulation for polarimetric PAWR is developed to verify the 

performance of the proposed bias-correction methods. This turns out to be an excellent additional 

tool for designing polarimetric PAWR. 

4.2 Problem formulation 

An aperture of a planar phased-array antenna consists of many similar radiating elements and 

each element can be individually controlled in phase and amplitude. Similar to Peebles (1998), 

we assume that there is no coupling effect between the elements’ transmit fields. The complete 

radiation pattern of the phased array is a product of two independent components: the array 

pattern and the element pattern (eq. 2.23). The array pattern solely depends on the array’s 

physical layout and phase differences between the array elements. Therefore, the characterization 

of the transmit and receive signals of a polarimetric PAWR can be represented by the array 

element. 

4.2.1 Element pattern model 

It is assumed that an aperture of a planar phased-array antenna consists of NxM  elements 

where each element is modeled by a pair of crossed Hertzian dipoles (fig. 4.1). A Cartesian 
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coordinate with unit vectors ( zyx aaa  ,, ) is chosen so that the horizontal dipole is aligned with 

the y-axis and the vertical dipole is aligned with the z-axis. With this setup, the y-z plane is the 

antenna plane and x-axis is the antenna’s normal axis, or boresight. 
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Figure 4.1: Sketch of diagram for signal radiating by a pair of cross-dipoles with moments 1M


 
and 2M


. 

Let 1M


 and 2M


 be the moments of horizontal and vertical dipoles, respectively, 

( )111 exp φjAaM y


=          (4.1a) 

( )222 exp φjAaM z


=          (4.1b) 

where iA  is the dipole moment amplitude and iφ  is the phase ( 2,1=i ). Given a resolution 

volume filled with precipitation particles at range r  (fig. 2.1) and angular direction ( )φθ , , we 

form a local orthogonal coordinate at the volume with a set of unit vectors ( φθ aaar
 ,, ), where 
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ra is along r  direction, θa  is on θ plane, and Φa is parallel to x-y plane (fig. 4.1). Thus, the local 

horizontal and vertical directions are φaaH


≡  and θaaV


−≡ , respectively. The local base can be 

expressed in terms of the Cartesian unit vectors as 

φφ

θφθφθ
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If r is large enough, the electric far field radiated by a dipole at range r (Cheng, 1989) in vector 

notation is 
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Substituting (4.2) into (4.3), we have 

( )[ ] 1111 sinsincossinsincossin eEaaaaEE t
zyxy
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are the magnitude of electric fields radiated by moments 1M


 and 2M


 along the array boresight at 

range r, respectively. 

Projecting the electric fields in (4.4) onto the local horizontal ( Ha ) and vertical ( Va ) axes and 

using the relation in (4.2), we obtain the incident fields at the resolution volume 

ti
h EE 1cosφ=           (4.6a) 
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t
t

i
v EEE 21 sinsincos θφθ +−=         (4.6b) 

where the subscript h (v) is for horizontal (vertical) polarization and the superscript i denotes 

incident field. Using vector notation, (4.6) can be written as 
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vector when measured at boresight; then (4.7) can be expressed in matrix notation 

ti EE
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P=           (4.8) 

In summary, for an agile-beam polarimetric PAWR, the incident electric fields at angular 

direction ( )φθ ,  are the product of a projection matrix and the electric fields at boresight. This is 

the main difference between an electronically scanned polarimetric PAWR and a mechanically 

scanned weather radar. 

4.2.2 Scattering matrix 

The scattered electric fields from resolution volume at ( )φθ ,,r  are given by Bringi and 

Chandrasekar, 2001, 
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where SFAS  is the intrinsic scattering matrix of hydrometeors in the FSA convention. To obtain 

the received fields at the array element (assumed to be the same as the transmit array element), 

we project the scattered fields onto the corresponding dipole axes. A similar method as that used 

to achieve (4.7) is carried out and final results are 
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From equations (4.7), (4.9), and (4.10), the received fields at array element can be expressed as 
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If the differential phase shift and attenuation along the path are significant, the transmission 

matrix needs to be accounted for (Bringi and Chandrasekar, 2001) 
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where the transmission matrix T and scattering matrix BSAS′  are defined in (2.3) and (2.7).  

4.2.3 Voltage equation 

When the array element is used as a receiver, there will be open circuit voltages at its 

terminals due to the scatter fields rE


. Let [ ]Te
v

e
he GG=G  be the element gains. The voltage 

received at each array element can be written (Bringi and Chandrasekar, 2001) as 
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If the array is made up of NxM equal elements and is matched to accept the return power, then 

the overall gain from all elements is 
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where η  is the efficiency factor. 

The received voltages at the ports of the array are expressed as 
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Substituting (4.5) into (4.12), the received fields can be written as 
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From eqs. (4.15) and (4.16), we obtain the voltage equation for the phased array antenna 
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For an ideal antenna, GGG vh == , (4.17) is simplified to 
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The transmit powers are implicit in the input dipole moments. For agile-beam polarimetric 

PAWR, the scattering matrix is given by 
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(4.19) 

Compared to a mechanically scanned weather radar, the received scattering matrix by a 

polarimetric PAWR includes the effect of projection when the antenna is directed at off-

boresight. Note that when a single polarization is transmitted (say horizontal polarization, i.e., 

0,0 21 =≠ MM ), the received wave amplitudes are not proportional to the first column of the 

intrinsic scattering matrix ( BSAS′ ) as in the case of conventional weather radar. Hereafter, 
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assuming the receiver gains and another constant parameters are accounted for and removed 

from the voltage equation, (4.18) is simplified to 
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(4.20) 

4.3 Example of polarimetric PAWR inherent bias 

In this section, an example of the bias problem associated with agile-beam polarimetric 

PAWR is illustrated. In the alternating mode, we can measure a full polarimetric scattering 

matrix (4.19). If the standard processing method (Bringi and Chandrasekar, 2001) is applied to 

the received signals, the differential reflectivity from polarimetric PAWR is 
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where the superscript PPAWR indicates estimates obtained directly from the measured signals 

from polarimetric PAWR without bias removal. On the other hand, the differential reflectivity by 

definition is 
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Here, the propagation effects are not considered as polarimetric PAWR inherent biases. 

It can be shown that PPAWR
drZ  is related to drZ  via the following equation 
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where coρ  is the signal co-polar correlation coefficient (eq. 2.16). The second term in (4.23) is 

the drZ  bias associated with polarimetric PAWR. Note that this bias depends on the 

measurement direction ( )φθ , . Figure 4.2 depicts the drZ  bias as a function of measurement 

direction angles in the case of 2=drZ dB, 99.0=coρ  and o
dp 45=Φ . 

 

 

Figure 4.2: Example of inherent bias in drZ  estimates in simultaneous mode. 

From fig. 4.2, it can be observed that the drZ  bias in polarimetric PAWR can be as high as 10 

dB. Because the dynamic range of drZ  is within a few dBs, the bias is intolerable. Therefore, the 

estimates cannot be obtained directly from the measured fields. 
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4.4 Methods for parameter estimation and bias correction 

The received voltages with polarimetric PAWR are related to the elements of the intrinsic 

scattering matrix via linear equations (4.20). The method of parameter estimation depends on the 

transmission mode. In the simultaneous mode ( [ ] [ ]1121 ∝MM ) all the elements of the 

scattering matrix can be obtained at the same time, while in the alternating mode (

[ ] [ ]0121 ∝MM  and [ ] [ ]1021 ∝MM ), with no special coding (Bharadwaj et al. 2007), 

the matrix columns are available at alternating times. 

4.4.1 Simultaneous mode 

In this mode, it can be assumed that the intrinsic scattering matrix has a diagonal form 

(Bringi and Chandrasekar, 2001) 
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Equation (4.20) can be written as 
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The voltage equation can be expressed as 
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The variable vvS '  can be obtained directly from the second equation of the system (4.27). 

Substituting vvS '  into the first equation of (4.27) will produce hhS ' . The calculation is repeated 

for each pulse; therefore, it is termed a “pulse-to-pulse” correction method (Zrnic et al. 2011). 

Following this step, the signal parameters are estimated from ijS ′  sequences using conventional 

methods such as the pulse-pair method. This approach is simple but computationally heavy 

because it needs to be done at each pulse. On the other hand, the mean of sample powers and 

correlations of the received voltages form a system of linear equations with unknowns that are 

the signal covariances, 
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The covariances 2
hhS ′ , 2

vvS ′  and vvhh SS ′′*  are unknowns of a system of three linear 

equations (4.28). Solving this system of linear equations gives 
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where θφα 1tansin −= . 

Clearly, the approach requires fewer computational operations than the pulse-to-pulse method; it 

is named the “power and correlations” method. Differential reflectivity ( drZ ), co-polar 

correlation coefficient ( coρ ), and differential phase ( dpΦ ) can be obtained directly from (4.29). 

In addition, velocity and spectrum width are estimated from the received signal at either the 

horizontal or vertical channel. For example, from the vertical channel, 
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The autocorrelation at lag 1 of the vertical channel signal is 
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From (4.31), the mean velocity estimate based on the autocorrelation function at lag 1 is given as 
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and the estimate of spectrum width is 
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In equation (4.28c), besides the requirement of a precise calibration for receiver gains, the 

differential phase between the two receivers needs to be calculated and accounted for. 
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4.4.2 Alternating mode 

In this mode, an alternate polarization sequence of length N2  is transmitted and received. 

Without loss of generality, assume that the first pulse is horizontal polarization. The received 

voltages alternate as follows 

at time ( ) Nnn ,...,1,12 =−  we have [ ] [ ]0121 ∝MM , then 
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at time ( ) Nnn ,...,1,2 =  we have [ ] [ ]1021 ∝MM , then 
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( ) ( ) ( )( )nSnSMnV vvhvvh 2sinsincos2sincos2 2 ′−′= φθθθφ     (4.39a) 

( ) ( )nSMnV vvvv 2sin2 2
2 ′= θ         (4.39b) 

Figure 4.3 depict the alternating transmission mode for PAWR. 
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Figure 4.3: Alternating transmission mode for PAWR 

Unlike the case of simultaneous mode, not all intrinsic scattering matrix elements can be 

simply obtained from odd and even sequences due to the different sampling time. Signal 

parameters are estimated from the estimated powers and correlations at lag 0 and 1. First, from 

the even sequence (4.39) the power and covariances 2
vvS ′ , 2

hvS ′ , and hvvv SS ′′*  can be 

solved directly. The results are 
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with α  as defined in the above section. 

The estimations of other parameters are given below. 
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o Estimation of velocity: 
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where 

( ) ( ) ( )122ˆ
, +′′= nSnSTsR hhvvvvhh        (4.48) 

Using the approximation of the co-polar/cross-polar correlation coefficient at lag 1 (Bringi and 

Chandrasekar, 2001), 

( ) ( ) ( )shhvvshhvv TRTR ρ0,, =         (4.49) 

( ) ( ) ( )svvhhsvvhh TRTR ρ0,, =         (4.50) 

( ) ( ) ( )shvvvshvvv TRTR ρ0,, =         (4.51) 

( ) ( ) ( )svvhvsvvhv TRTR ρ0,, =         (4.52) 



80 
 

with ( )sTρ  the correlation coefficient between signal sample at sT . 

Then, equations (4.43) and (4.47) can be written as 
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Note that ( ) ( )00 *
,, hhvvvvhh RR =  and ( ) ( )00 *

,, vvhvhvvv RR =  it follows that the terms in the brackets of 

(4.53) and (4.54) are complex conjugate. Therefore, the phase of ( )sTρ  can be estimated as, 
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o Estimation of differential phase dpΦ : 

Due to the coupling of co-polar and cross-polar signals in (4.53) and (4.54), an estimation of 

dpΦ  cannot be done in a similar manner as in the conventional method for alternating mode (i.e., 

from the difference between the phases of ( )sTR12  and ( )sTR21 ). Indeed, we have to estimate 

( )0,vvhhR . To do that, we need to compute the correlation coefficient between co-polar samples at 

lag 1, ( )sTρ . From  (4.39b), 
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and by equation 6.88 in Bringi and Chandrasekar (2001), we obtain 

( ) ( ) 25.02ˆˆ ss TT ρρ =          (4.58) 
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From (4.53) 
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If we substitute v
coP̂  from (4.40) and ( )0ˆ

,hvvvR  from (4.41)  into (4.59) and simplify the result, we 

have 
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By definition, 

( )( )0ˆargˆ
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o Estimation of horizontal signal power, drZ   and coρ : 

Two power and covariance 2
hhS ′  and *

hhhv SS ′′  are retained as unknowna. For these, we 

start with the odd sequence. 
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Insertion of v
coP̂ , ( )0ˆ

,vvhvR , and cxP̂  from (4.40), (4.41), (4.42) and ( )0ˆ
,hhvvR  from (4.60) into 

(4.63) gives the estimate of ( )0ˆ
,hhhvR . 
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The co-polar power of the received H signal contains the 2
hhS ′  term, that is 
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Substitute v
coP̂ , cxP̂ , ( )0ˆ

,vvhvR , ( )0ˆ
,hhhvR , and ( )0ˆ

,hhvvR  in (4.64) and we obtain the estimate of h
coP̂

. Consequently, the differential reflectivity and co-polar correlation coefficient are given as 
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o Estimation of spectrum width: 

Signal spectrum width can be estimated from the V channel signal of the even sequence 

(4.39b) with the corresponding period of sT2 . 

4.5 Effect of noise 

The analysis thus far was done in the absence of noise. In practice, the effect of receiver 

noise must be considered. First, let us analyze the case of the simultaneous mode. We assume 
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that the horizontal and vertical transmit moments are identical 21 MM ≡ . In the presence of 

additive noise, equation (4.27) is re-written as 
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where hη  and hη  are receiver noise at corresponding channels with variances 2
hσ  and 2

vσ , 

respectively. When the received signals are adjusted to the same extent with a mechanically 

scanned weather radar, noise components are changed accordingly 
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where the superscript c denotes bias corrected. The resulting noise powers are 
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One of the important inferences from (4.70) is that receiver noise powers are increased after bias 

correction. Correspondingly, the signal-to-noise ratio (SNR) decreases. Figure 4.4 shows the 

SNR loss as a function of beam direction angles. It can be seen that after bias correction, loss in 

SNRs can be over 20 dB when the radar scans at elevation angles larger than 45°. A similar 

analysis is done for an even sequence in alternating mode. The noise powers after bias correction 

are 
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Figure 4.5 demonstrates the effect given in equation (4.71). It shows a similar trend as in fig. 

4.4: SNR drops drastically at high elevations. For the odd sequence in the alternating mode, the 

effect cannot be given in a closed-form expression. We will analyze it via radar simulation. 

Unquestionably, the problem of increasing noise leads to degradation in polarimetric data 

quality, especially at regions with weak signals. In order to maintain the accuracy of signal 

parameter estimation, this effect can be partly mitigated by subtracting noise powers from co-

polar and cross-polar powers before applying a bias correction algorithm. Further analysis of this 

topic will be presented in the next section using radar simulation. 

 



85 
 

 

Figure 4.4: SNR loss in simultaneous mode after bias correction at the horizontal channel (a) and 
at the vertical channel (b). 
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Figure 4.5: SNR loss in even sequence for alternating mode after bias correction at the horizontal 
channel (a) and at the vertical channel (b). 
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4.6 Evaluation of bias correction method using simulation 

In the absence of noise, the bias correction methods described in the above section would 

provide unbiased estimates at any beam direction. In practice, receiver noise degrades data 

quality, especially polarimetric measurements. In this section, the question of how far off 

boresight the radar can scan without significant loss in data quality is addressed using radar 

simulation. 

4.6.1 Signal simulation for polarimetric PAWR 

The received signals of a polarimetric PAWR are simulated based on a procedure described 

in Chandrasekar et al. (1986). Two sets of dual-polarization signals are created. The first set is 

for the co-polar horizontal and vertical signals. The second set is for the cross-polar signals. We 

assume that 

- Co-polar and cross-polar signals have the same Doppler mean velocity. 

- Two co-polar (or cross-polar) signals have the same spectrum width. 

- Spectrum width of cross-polar signals is slightly wider than that of co-polar signals 

(about 1.2 times larger). 

In the alternating mode, sequences of simultaneous H and V co-polar, cross-polar signals are 

generated first, then appropriate pulses are dropped to construct alternate sequences. Effects of 

projection at direction ( )φθ ,  are implemented based on equation (4.27) for simultaneous mode 

and equations (4.36) and (4.39) for alternating mode. In addition, random white noise is added at 

each channel. In this work, the simulation is done for an S-band radar. Simulation inputs are 

given in table 4.1. 
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Table 4.1: Input for polarimetric PAWR signal simulation. 

Parameters Values 
f, GHz 2.72 
SNR, dB 20 
LDR (V channel), dB -30 

pσ , ms-1 3 
v , ms-1 max5.0 v  

coρ  0.99 

cxρ  0.6 
dpΦ , deg 50 
2
Nσ , dB 14 

m, samples 64 
sT , ms 1.0 

 

4.6.2 Results for simultaneous mode 

Two sets of results, one the estimates of the first three spectral moments (mean power, mean 

Doppler, and spectrum width) and the other the estimates of dual-polarimetric variables 

(differential reflectivity drZ , copolar correlation coefficient coρ , and differential phase dpΦ ), 

are shown in figs. 4.6 and 4.7, respectively. In this analysis, the azimuth angle spans from 0° to 

60° and the elevation angle varies from 0° up to zenith. It is first noted that data quality degrades 

more rapidly in the elevation axis. Most of the measurement error plots follow a trend similar to 

that of the SNR loss functions, especially in the V channel (fig. 4.4). This is because V 

polarization is involved in the signals at both H and V channels (4.27) and its strength is 

proportional to the cosine of the elevation. However, in the range from -45° to 45° in both 

directions the bias correction method works fairly well. The estimates are unbiased and its 

standard deviations are acceptable for weather radar applications (ROC 2007). This observation 

is applied to the case where the SNR is equal to 20 dB. When the SNR is less, the effective range 



89 
 

for the bias correction method may be smaller. Therefore, in the design of polarimetric PAWR, 

the analysis needs to be done at various values of SNR. 

 

Figure 4.6: Bias and standard deviation of spectral moments estimates for polarimetric PAWR in 
simultaneous mode. The top row is for reflectivity, the middle row is for Doppler velocity, and 
the bottom one is for spectrum width.  
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Figure 4.7: Bias and standard deviation of dual-polarization variables estimates for polarimetric 
PAWR in simultaneous mode. The top row is for differential reflectivity drZ , the middle row is 
for copolar correlation coefficient coρ , and the bottom one is for differential phase dpΦ . 
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4.6.3 Results for alternating mode 

In this mode, the azimuth and elevation ranges are set similarly to the case of the 

simultaneous mode. The performance of the spectral moment estimation for the alternating mode 

is shown in fig. 4.8. At the lower left corner of fig. 4.8a and 4.8b, the errors in power estimates 

are better than in the simultaneous mode. This is because the spacing between copolar samples is 

twice that of the simultaneous mode (2Ts vs. Ts); therefore, the number of independent samples 

in the simultaneous mode is larger. However, due to the polarization coupling effect, the 

performance in power estimation degrades faster at higher azimuth and elevation angles. The 

velocity estimates, on the other hand, are surprisingly good. At all azimuths, unbiased velocity 

estimates can be achieved up to an elevation of 80º and the standard deviation is less than 0.6 ms-

1 (figs. 4c and 4d). It is noticed that the tendency in these measurement error plots matches with 

that in the SNR loss plot shown in fig. 4.5b. That means the V signal in the even sequence 

governs the accuracy of the velocity estimates. While the velocity estimates are good, the 

spectrum width estimates show large biases just above 20º elevation. This may be because of the 

lag 0 and 1 estimator of the spectrum width at a sampling period of 2Ts. 

Results from the analysis for the dual-polarization variable retrieval are shown in fig. 4.9. In 

general, they are comparable to the performance in the simultaneous mode except for the 

standard deviation in copolar correlation coefficient estimates, which is slightly higher. This is 

expected in the alternating mode as the correlation of copolar signals is not available at lag 0. In 

this mode, the effective range for the bias correction method is also from -45° to 45° at the 

SNR=20 dB. 
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Figure 4.8: Bias and standard deviation of spectral moments estimates for polarimetric PAWR in 
alternating mode. The top row is for reflectivity, the middle row is for Doppler velocity, and the 
bottom one is for spectrum width. 
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Figure 4.9: Bias and standard deviation of dual-polarization variables estimates for polarimetric 
PAWR in simultaneous mode. The first row is for differential reflectivity drZ , the middle row is 
for copolar correlation coefficient coρ , and the bottom one is for differential phase dpΦ . 
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4.7 Summary 

The polarimetric signals of an electronically scanned phased-array weather radar observing 

precipitation target have been studied. The array element is modeled by a pair of cross-dipoles, 

one for the horizontal polarization and the other for the vertical polarization. It is shown that the 

scattering matrix contains a complex cross-coupling between H and V polarizations due to the 

angular projection. As a result, the spectrum moment and dual-polarization estimates obtained by 

applying a standard method directly to the measured scattering matrix can produce large biases. 

Methods to remove inherent biases associated with polarimetric PAWR are introduced for 

the simultaneous and alternating transmission modes. The correction procedures are based on the 

fact that the powers and correlations of the measured signals form a system of linear equations 

with the unknown signal covariances. In the simultaneous mode, only powers and correlations at 

lag 0 are used. Estimates of power, drZ , coρ , and dpΦ  can be directly obtained by solving 

systems of linear equations. Mean Doppler velocity and spectrum width are directly estimated 

from either the H or V signal. In the alternating mode, correlations between the odd and even 

sequence relate the signal covariances but they also include the effect of Doppler shift at lag 1. 

An approximation assumption for the correlation at lag 1 is needed. It turns out that the mean 

Doppler velocity can be achieved in a similar way as in the case of conventional weather radar. 

Then, the estimated velocity is used to de-couple the Doppler shift effects. 

The bias correction procedure involves the amplitudes and phases of transmitting elements as 

well as those of the receivers. Therefore, precise calibration for polarimetric PAWR is 

mandatory to achieve unbiased polarimetric variables. In addition to the negative effect of beam 

broadening and increasing sidelobe levels at off-boresight directions, the quality of polarimetric 

estimates reduces considerably due to the loss in SNR. A signal simulation procedure for 
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polarimetric PAWR is developed to verify the performance of the proposed bias correction 

method. It is also used to investigate the effects of noise after bias correction. Using simulation, 

it is revealed that in the case of moderate SNR (SNR=20 dB), steering the beam by more than 

±45° at both directions should be avoided to maintain acceptable data quality. 
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CHAPTER 5 
 
 

CLUTTER FILTERING FOR BLOCK PULSING SCHEME 

 

5.1 Introduction 

Ground clutter suppression is critically important for improving the radar data quality of any 

weather radar system. If not removed, the clutter may produce strongly biased estimates of the 

fundamental spectral moments such as mean power, mean Doppler velocity, and spectrum width. 

For PAWR, the ground clutter issue is even more vital because the phased array antenna 

beamwidth and side lobe level performance are generally not as good as that of the parabolic 

antenna and it becomes even worse when the beam is directed off boresight. Therefore, PAWR 

demands a filter with a better clutter suppression ratio. Additionally, in the PAWR block pulsing 

transmission scheme (fig. 3.21), the received signal is not continuously sampled. In fact, it 

consists of many independent blocks with few samples so classical clutter filtering methods will 

not work on this type of data. Furthermore, to take full advantages of PAWR’s capability for 

precipitation sensing, an adaptive waveform needs to be considered. For example, at further 

regions with very high radial velocity a non-uniform waveform can be used for range-velocity 

ambiguity problems. All these challenges require a new design of a ground clutter filter 

algorithm, which will be addressed in this chapter. 

Conventionally, weather radar transmits and receives sequence of pulses with uniform 

spacing. Ground clutter can be filtered using infinite impulse response (IIR) or finite impulse 

response (FIR) filters. These are high-pass filters having sharp narrow notches characterized by 

their type, rejection depth, and the notch width. In many applications, these filters are sufficient. 
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However, when the signal and clutter overlap, as in the case of weather radar, the use of these 

filters removes clutter but also notches out a part of the signal and causes bias in the estimates. In 

order to mitigate this problem, advance filtering methods have been developed. Gaussian Model 

Adaptive Processing (GMAP) (Siggia and Passarelli, 2004) is a frequency domain method that 

not only filters out clutter points but also attempts to recover precipitation components that have 

been removed. However, the limitation of this or any spectral filtering method is the effect of 

spectral leakage caused by finite data length on the estimates of signal spectral moments. In the 

GMAP algorithm, when clutter is strong, an aggressive window (Hamming or Blackman) is 

applied to isolate weather echo from clutter echo. The drawback of using data windows in 

spectral filtering techniques is that they effectively reduce the number of samples that are 

processed because samples at the beginning and end are weighted less than those in the center 

portion of the window (Siggia and Passarelli, 2004). This results in a higher standard deviation 

of the signal parameter estimates. Therefore, in practice, GMAP only works well with moderate 

clutter-to-signal ratios (CSR). 

With the non-uniform pulsing techniques used for range-velocity ambiguity mitigation such 

as staggered pulse repetition time (PRT) (Skolnik, 2001), the clutter filtering problem becomes a 

challenge. Because of non-uniform sampling, standard clutter filters (IIR and FIR) cannot be 

applied directly to the staggered PRT sequences. Also, GMAP does not work directly with 

staggered PRT data since it requires a Fourier transform that cannot be used with a non-uniform 

sampling sequence. Cho and Chornoboy (2005) have defined a finite impulse response time-

varying filter that can be applied to staggered PRT sequences. Torres et al. (1998) proposed a 

family of regression filters that operate by applying the regression polynomials to the time series. 

In 2000, a spectral deconvolution algorithm (Sachidananda and Zrnic 2000) was introduced to 
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solve the problem of clutter mitigation for staggered PRT sequences. However, those techniques 

suffer from large velocity errors in certain Doppler frequency bands. Moisseev et al. (2008) have 

extended PTDM (Nguyen et al. 2008) to the staggered PRT sampling case. It is shown that 

PTDM is able to mitigate ground clutter as well as accurately estimate signal spectrum moments, 

even in the case of a very high CSR. The results are as good as the case of uniform sampling 

since the covariance matrix model in PTDM adapts to the sampling scheme. Again, the 

drawback of PTDM is its computational load, which limits real-time implementation in today’s 

general purpose processors. 

In this chapter, we present the Gaussian model adaptive processing in the time domain 

(GMAP-TD) method for clutter mitigation for PAWR. The proposed algorithm addresses three 

important things. Firstly, it overcomes the disadvantages of spectral filter, as described above. 

Secondly, GMAP-TD can be applied to the staggered PRT technique used for range-velocity 

ambiguity mitigation. More importantly, GMAP-TD can work in the block-pulsing mode 

specially designed for PAWR. The computational requirement of GMAP-TD is reasonable and it 

can be implemented for real-time application using current general purpose processors. 

5.2 Gaussian model adaptive processing – Time domain system 

5.2.1 Signal model 

For meteorological targets, the returned signal is the sum of the backscatter from individual 

hydrometeors in a radar pulse volume. Precipitation particles have widely different scattering 

amplitudes and move with different velocities relative to the radar. The distribution of the 

scatters’ radial velocity can be approximated by a Gaussian distribution with a mean velocity and 

spectrum width. The ground clutter Doppler spectrum is also approximated by a Gaussian shape 
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(Doviak and Zrnic, 1993). Using those assumptions, one can write the Doppler spectrum of the 

radar signal of weather and clutter as follows, 
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where ( )vS , ( )vS p , ( )vSc  are Doppler spectra of the received signal, precipitation and clutter 

respectively; η is noise signal; pP  is the precipitation power, v  is the precipitation mean velocity, 

pσ  is the precipitation spectrum width, cP  is the clutter power, and cσ  is the clutter width. Here 

we assume that the radar signal includes signals coming from clutter, precipitation, and white 

Gaussian noise. Given the Doppler spectral representation (5.1), the auto-covariance functions 

for each component of the radar signal can be calculated using the inverse Fourier transform 

(Bringi and Chandrasekar, 2001) as 
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where λ  is wavelength, sT  is sampling period and 2
Nσ  is the noise power. The subscripts p , c , 

N  denote precipitation, clutter, and noise, respectively. 

Let x  be the 1×m  complex time sample data; its auto-covariance matrix, xR , can be written 

as 

Npcx RRRR ++=           (5.3) 
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where cR , pR and NR  are auto-covariance matrices of ground clutter, precipitation, and noise, 

respectively. In the case of uniform sampling with sampling rate sT , the signal auto-covariance 

matrix is expressed (Bringi and Chandrasekar, 2001) as 
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For the staggered PRT transmission technique where the pulse repetition time alternates between 

two pulse spacings 1T  and 2T , the signal auto-covariance matrix is given by 
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Here, the generic subscript x can be c (for clutter) or p (for precipitation). 

Consider a filter A of dimension mm× ; the auto-covariance matrix of the filter output Axy =  

can be written as 
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where { }•E  is the expectation operator and superscript H denotes a complex conjugate transpose. 
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The first term in the sum (5.6) is the response of the filter to signal from ground clutter and 

noise. In the case of no weather echo in the received signal (i.e., 0R =p ) we want the output 

signal to have the auto-covariance matrix similar to that of a white noise process 

( ) mN
H

mNcy IAIRAR 22 σσ ≈+=        (5.7) 

In other words, the filter A  attenuates the clutter signal to a level comparable to the noise level, 

and does not whiten the clutter signal.  The result is that the noise level of the output signal is the 

same as that of the input signal. It is an important property of this filtering process and therefore, 

we do not have to re-estimate the noise power and do not have to re-design the filter matrix A for 

each step of the interpolation loop (see section 5.2.3). The equation (5.7) is termed the filter 

equation. 

5.2.2 Clutter transformation matrix 

Estimates of the first three signal spectral moments, i.e. the mean power, mean velocity, and 

spectrum width depend solely on the auto-covariance function of the filtered signal. It should 

also be noted that the auto-covariance function only depends on the signal power spectral density 

via the inverse Fourier transform. In other words, since the phase response of the filter is not 

involved in the transformation of the power spectral density of the signal, it has no effect on the 

auto-covariance function of the filter output and consequently, the phase response of the filter 

does not affect the signal spectral moment estimates. Therefore, in the design of the GMAP-TD 

filter, we can ignore the phase response of filter A. It is relatively easy to prove that for any 

choice of matrix A satisfying the filter equation (5.7), the power spectral density of the filter 

output is the same. For simplicity, in this work the clutter filter A is chosen as 

( ) 2/12/ −
+= mNc IRA σ         (5.8) 
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where, (-1/2) power denotes the matrix square root. The solution (5.8) always exists since the 

auto-covariance matrix cR  is a Hermitian positive semidefinite matrix as is the matrix 

mNc IR +2/σ . It is straightforward to verify that filter A satisfies the filter equation (5.7). 

The clutter filter A shown in (5.8) is an adaptive filter. It is a function of the clutter power, 

clutter spectrum width, and noise power at a given range gate that are generally unknown. In 

order to design filter A, these parameters must be estimated from the time series data. Methods to 

estimate clutter power ( cP ) and signal noise power ( 2
Nσ ) for uniform sampling data are fairly 

straightforward and are described in the literature (e.g., Siggia and Passarelli, 2004). The clutter 

spectrum width cσ  can be chosen from predetermined values based on the antenna beamwidth 

and scan rate (Zrnic et al. 1993). For instance, for CSU-CHILL S-band radar, the ground clutter 

width is approximate 0.2 m s-1 at a scan rate of 8 deg s-1.  

The frequency response of a time-invariant filter can be defined by the Fourier transform of 

its impulse response. This definition cannot be applied to a general linear filter such as filter A 

(5.8). However, a power frequency response at frequency w can be defined as the power of the 

output signal when a complex exponential signal jwte  is passed through the system. Figure 5.1 

demonstrates the power frequency response of filter A using (5.8) for the uniform sampling case. 

The depth of the notch at zero in fig. 5.1 depends on the relative ratio between the clutter power 

and noise power (in this case, 60 dB). Figure 5.2 shows an example of signal power spectrum 

before and after applying the clutter filter A to the time series data. When applying matrix A to 

the time series data, the ground clutter spectrum will be transformed to a “flat” spectrum. The 

width of this transformed spectrum depends on the clutter spectrum width ( cσ ) and the clutter 

power ( cP ) and is much narrower than the signal Doppler range. The amplitude of this 
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transformed spectrum depends on the ratio 2/ NcP σ  (eqs. (5.2) and (5.8)), and if the clutter and 

noise power are estimated correctly, it equals the received signal noise power. In practice, the 

variance in clutter and noise power estimates may cause this level to vary within a few dBs. 

However, the width of the clutter-transformed spectrum is relatively small (a few tenths of 1−ms ) 

and this error does not significantly affect the GMAP-TD performance. 

 

 

Figure 5.1: Power response of filter matrix A for the uniform sampling case with clutter-to-noise 
ratio dBCNR 50= , clutter spectrum width 13.0 −= mscσ . 
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Figure 5.2: Example of signal spectrum before and after applying the filter matrix A. 

5.2.3 Signal interpolation procedure 

In the second term of (5.6) one can see that the auto-covariance of the precipitation signal 

pR  is modified. This is because part of the precipitation echo overlapping the clutter is also 

transformed to noise. To mitigate this problem, an interpolation procedure is developed to 

recover the transformed part of the weather echo. The main goal of this procedure is to ensure 

that the signal auto-covariance matrix has a Gaussian form (as assumed in section 2.1). After 
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Gaussian-fitted model before and after filtering, then compensating for the transformed part of 

the covariance function via a loop, it is possible to recover the lost portion of the signal. Figure 

5.3 describes this concept. Firstly, the covariance matrix HH
y AAxxR =ˆ  is used as the initial 

input of the iteration, where yR̂  is the sample auto-correlation matrix of the signal where clutter 

has been transformed to noise. It is similar to the spectral coefficients of weather echo after 

discarding clutter and noise coefficients in GMAP. Secondly, signal spectral moments (mean 

power ( pP̂ ), mean velocity ( v̂ ) and spectrum width ( pσ̂ )) are estimated from the filtered 

covariance matrix yR̂ . It should be noted that the kth diagonal of the covariance matrix comes 

from samples of the auto-covariance function at lag k. As the signal parameters are estimated, a 

Gaussian model for precipitation is constructed using equations (5.2) and (5.4) (or (5) for the 

staggered PRT case). Next, the difference of the model before and after applying filter A is 

computed and used to update the filtered covariance matrix yR̂ . This procedure is repeated until 

the power difference and/or the velocity difference between two consecutive iterations is/are less 

than certain predetermined thresholds. This can be considered as a cost function optimization. 

Tests conducted on radar data showed that thresholds of 0.1 dB and 0.5% of the Nyquist velocity 

provide good performance and the interpolation procedure will converge after a few steps. The 

final result will yield a signal after mitigating ground clutter. 
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Figure 5.3: The architecture of the GMAP-TD system. 

5.3 GMAP-TD filter for staggered PRT 

The staggered PRT scheme (Skolnik, 2001) is used to resolve the range-velocity ambiguity 

problem and is described in fig. 5.3. For the fast-scanning strategy in PAWR, this scheme is 

preferred over other non-uniform sampling methods such as dual-PRF because it can achieve the 

same or better performance with a smaller dwell time (Nguyen et al. 2007). In the staggered PRT 

scheme, the pulse spacing alters between two pulse intervals, 1T  and 2T , and the maximum 

unambiguous velocity is defined by ( )[ ]12*4/ TTva −= λ  ( 12 TT > ) (Moisseev et al. 2008). 

Generally, 1T  and 2T , are chosen as multiples of a certain unit time, uT . It is shown that for the 

pulse pair estimator, the optimal PRT ratio T1/T2 is 2/3 (Zrnic and Mahapatra, 1985). 

Theoretically, GMAP-TD can be directly applied to staggered PRT data. However, there are 

some practical considerations that need to be addressed to make GMAP-TD work well in this 

scheme. In this section, the application of GMAP-TD to a 2/3 pulse ratio (staggered PRT 2/3) is 

studied. 



107 
 

The first consideration is clutter and dynamic noise power estimates for staggered PRT. In 

the uniform sampling case, GMAP-TD uses the method described in Siggia and Passarelli 

(2004). This method estimates clutter power and dynamic noise power from signal spectrum 

points. However, in the case of staggered PRT, a signal spectrum is not available or at least 

cannot be obtained directly from the time series data. Here, the staggered PRT time series is 

zero-interpolated to form a uniform sequence with a sampling rate of uT . The spectrum of this 

zero interpolated data includes some replicas of clutter and weather echoes at certain frequencies 

(Bringi and Chandrasekar, 2001). However, the clutter echo is still located at zero frequency and 

the method used by Siggia and Passarelli (2004) can be applied to this data to obtain clutter and 

noise power. It should be noted that GMAP-TD uses the signal power spectrum to calculate only 

clutter and dynamic noise powers. 

 

 

Figure 5.4: The staggered PRT transmission scheme. 

The second consideration is estimation accuracy. Clutter filters that have been designed for 

staggered PRT sequences (Cho and Chornoboy 2005) suffer from unwanted notches in certain 

Doppler frequency bands. These unwanted notches introduce errors in signal estimates that limit 

the application of these algorithms in practice. The top panel in fig. 5.5 shows the power 
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response of the GMAP-TD filter for the staggered PRT 2/3 waveform. It can be seen that there 

are unwanted notches center at velocities avv 4.0±=  and avv 8.0±= . When the weather echo is 

present in the unwanted notches regions, part of the signal will be affected and estimation errors 

will occur. Because part of the signal is removed by the unwanted notch, its power will be 

underestimated. In section 5.2.c, we have explained how the GMAP-TD interpolation procedure 

(fig. 5.2) recovers portion of the signal removed by the main notch of the filter. Similar 

discussion can be applied to the unwanted notches of the filter. Hence, this bias error can be 

mitigated by the interpolation loop in GMAP-TD. In addition to the power bias, GMAP-TD 

velocity estimates show an increase in standard deviation that is similar to the analysis in 

Sachidananda et al. (2000). As we observe in the case of staggered PRT 2/3,  at those specific 

cases, estimated velocities can be  off by  av4.0±  or av8.0±  which are equal to the spacings 

between unwanted notches. In general, it has the form of ( )21/2 nnkva +±  where 

( )( )2/Int,...,2,1 21 nnk +=  for staggered PRT 21 / nn . This error occurs because signal and its 

spectral replicas fall into unwanted notches with different depths and the estimator may pick up a 

replica signal instead of the correct one. To mitigate this problem, we modify filter A to modA  

such that filter modA  will have an equal notch depth at the frequencies avv 4.0±=  and 

avv 8.0±= . The modified filter modA is shown as follows: 

8.08.04.04.0mod −− ++++= AAAAAA        (5.9) 

where 4.0±A  and 8.0±A  are frequency-shifted versions of A . That is, the frequency response of 

4.0±A  has the main notch at avv 4.0±=  and the main notch of 8.0±A  is at avv 8.0±= . 

( )
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8.0,8.0

2/12
4.0,4.0

/

/
−

±±

−

±±
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σ

σ
        (5.10) 



109 
 

Matrices 4.0, ±cR  and 8.0, ±cR  are formed based on (5.5) and their elements are defined as, 
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      (5.11) 

The power frequency response of the resulting filter modA  is shown in fig. 5.5b. It should be 

noted that the depth of the notches in the modified filter modA  are greater than that of the filter 

A  at zero frequency because placing additional notches has an impact on the notch at zero 

frequency. The modified filter modA  is only used to remove the potential offset in the estimated 

velocity, while the rest of the algorithm uses the original filter A (eq. 5.8). The performance of 

this technique is shown in the next section using radar simulation. Beside these modifications, 

GMAP-TD processing for a staggered PRT sequence is similar to the case of uniform data and it 

would provide similar performance when applied to the uniform sample case. 
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Figure 5.5: (a) The power response of filter matrix A for staggered PRT 2/3 waveform with 
13.0,60 −== msdBCNR cσ . (b) The power response of modified filter matrix modA  for the 

velocity de-aliasing solution. 

5.4 Performance of GMAP-TD using signal simulation 

Extensive analysis of the performance of GMAP-TD has been carried out with radar signal 

simulation. The simulation procedure follows the work of Chandrasekar et al. (1986) with 

various input parameters. In order to evaluate GMAP-TD, results from a spectral filter (SF) that 

is implemented similarly to GMAP (Siggia and Passarelli 2004) are also presented for 

comparison. This SF is extensively tested and it is demonstrated that it can provide similar 

results to those reported in Ice et al. (2004). In the present work, where the clutter suppression 

performance is emphasized, attention is devoted to the cases of moderate CSR ( dBCSR 40= ) 
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and very high CSR ( dBCSR 55= ). In GMAP-TD and SF, dynamic noise power estimation is 

used. The simulation input parameters are given in Table 5.1. 

Table 5.1: Simulation input parameters. 

Parameters Values 
f, GHz 2.72 
CSR, dB 40, 50, 55 
SNR, dB 10, 20 

cσ , ms-1 0.25 
pσ , ms-1 2, 4 

v , ms-1 maxmaxmax ...1.0,05.0,0 vvv  
2
Nσ , dB 14 

m, samples 64 
sT , ms 1.0 
uT , ms 0.5 

21 /TT  2/3 
 

5.4.1 Uniform sampling case 

For a uniform pulsing scheme with pulse repetition time sT , the maximum unambiguous 

velocity is ( )sa Tv 4/λ=  (Bringi and Chandrasekar, 2001). In this case, GMAP-TD performance 

will be directly compared to GMAP. In the first scenario, where the clutter is moderate, (

dBCSR 40= ), both GMAP-TD and GMAP perform well. It is noted that in GMAP a Blackman 

window is used (Siggia and Passarelli 2004). Figure 5.6 summarizes the performance of GMAP-

TD and presents a comparison against GMAP. In fig. 5.6, GMAP-TD results are shown in solid 

lines while dashed lines represent GMAP. The first row in fig. 5 shows the errors for power 

estimates. For large velocity ( 3.0/ >avv ), GMAP-TD and GMAP perform equally in term of 

power biases. Both perform well as power biases are within 0.5 dB, even for this high CSR. 
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However, when the signal locates close to clutter ( 3.0/ <avv ), the difference in power bias is 

more obvious between the two methods. At small velocity, where clutter strongly overlaps 

precipitation echo in the GMAP method, the clutter spectrum was broadened due to the impact of 

the Blackman window used in GMAP; therefore, more signal will be removed compared to the 

GMAP-TD method. This explains why GMAP-TD has lower power biases compared to that of 

GMAP for small velocities. For velocity and spectrum width estimates, GMAP-TD biases are 

less than 0.5 ms-1 at all Doppler ranges for the case of CSR= 40 dB. 

The left column in fig. 5.6 shows a comparison in standard deviations of the three spectral 

moment estimates. Clearly, GMAP-TD shows an improvement over the GMAP in the standard 

deviation of the estimates in all parameters analyzed here. The higher standard deviation in the 

spectral-based method can be explained by the effect of the data window applied to the time 

series, in this case the Blackman window (Siggia and Passarelli 2004). On the other hand, 

GMAP-TD uses time domain processing and avoids the use of any data window. The standard 

deviations in power and velocity estimates of GMAP-TD are about 0.5 dB and 0.5 ms-1 less than 

that of GMAP, respectively.  

For the second scenario, both the GMAP-TD and GMAP methods are tested with simulated 

data with very strong clutter contamination and fairly weak precipitation echo strength (

dBCSR 55=  and dBSNR 10= ). The results are summarized in fig. 5.7. In GMAP, a Blackman 

window was applied to the data. Because the peak side-lobe level of a Blackman window is -57 

dB (Oppenheim, 2009), the clutter side lobe is only 2 dB below the clutter-to-signal level; thus, 

the spectral leakage from clutter is significantly strong when compared to the weather echo. 

Applying a Gaussian curve to fit three central components of clutter (step 3 in Siggia and 

Passarelli 2004) will not completely remove these leakage points because they are outside the 
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Gaussian curve. These clutter spectral leakage signals will add to the signal spectrum. This 

explains the overestimation in power estimate and the underestimation in velocity estimate by 

GMAP (fig. 5.7). The GMAP performance is compromised in such extreme scenarios. In 

contrast, GMAP-TD does not use a Blackman window; therefore, it does not suffer from its 

effect. The limitation of spectral filtering techniques caused by the effect of spectral leakage has 

been addressed with GMAP-TD. 

In summary, for uniform sampling, GMAP-TD biases were shown to be as good as or better 

than that of GMAP. In addition, by avoiding the use of data windows, GMAP-TD provides lower 

standard deviations in all signal parameter estimates. It performs well even in cases of very 

strong clutter contamination (e.g., CSR is as high as 55 dB) where GMAP does not perform 

favorably. 
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Figure 5.6: Error analysis for GMAP-TD filter and the GMAP filter in case of uniform sampling. 
Simulated data with dBCSRdBSNR 40,10 == , signal spectrum width pσ  of 2 and 4 m/s and 
number of samples of 64. The left column is for bias and the right column is for standard 
deviation. Solid lines are for GMAP-TD results and dashed lines for GMAP. 
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Figure 5.7: Same as in fig. 5 but dBCSR 55= . In this case, GMAP breaks in velocity and 
spectrum width estimates. 

5.4.2 Staggered PRT 2/3 sampling case 

The other major advantage of GMAP-TD over GMAP is that it can be directly extended to 

non-uniform sampling schemes such as the staggered PRT 2/3. For staggered PRT techniques, 

velocity estimate is the most challenging process (Sachidananda and Zrnic, 2000). For that 

reason, in this case simulation was carried on with a signal spectrum width of 4 m s-1. The input 

parameters are dBSNR 20= , dBCSR 50=  and the staggered PRT sequence has a length of 64 

samples. Figure 5.8 shows a scatter plot for velocity estimates using GMAP-TD. One hundred 

realizations comprise the simulations. It is shown that the estimated velocities are very close to 

the true values and there is almost no outlier. At the Doppler regions where the replicas of 
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ground clutter occur (Sachidananda and Zrnic, 2000), there is no increase in the estimation bias. 

More detailed analysis of GMAP-TD performance in this scenario is given in fig. 5.9. In addition 

to the GMAP-TD results, pulse pair (PP) estimates for simulated staggered PRT 2/3 data with the 

same input parameters but without clutter are also shown. These are considered to be the 

baselines and will be used to gauge GMAP-TD performance in this analysis. As shown in fig. 

5.9, in most cases, GMAP-TD power and velocity biases are very close to pulse pair 

performance in the non-clutter environment. Moreover, the standard deviations of velocity and 

spectrum width estimates are better with GMAP-TD (figs. 5.9e and 5.9f). This can be explained 

by the use of the interpolation loop in GMAP-TD (fig 5.2). Basically, the loop updates the 

Gaussian model of the signal at each step and GMAP-TD outputs are obtained when the loop 

converges (after several iterations). The convergence helps reduce the variation in the estimated 

values. On the other hand, the PP method computes signal velocity and spectrum width directly 

from lag 1 and 2 of the signal auto-covariance function. 
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Figure 5.8: A scatter plot for velocity estimates for staggered PRT 2/3 with 
dBSNRdBCSR 20,50 ==  and 14 −= mspσ  using GMAP-TD. The maximum unambiguous 

velocity in this case is 155 −ms . 
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Figure 5.9: Bias and standard deviation of power, mean velocity and spectrum width estimates 
for staggered PRT 2/3 using GMAP-TD (solid lines) with 14,20,50 −=== msdBSNRdBCSR σ  
and 64 samples. For comparison, pulse pair (PP) estimator’s results with the same parameters but 
without clutter are plotted (dashed lines). 

5.4.3 Application to block sampled data 

In designing the GMAP-TD algorithm, the size of the covariance matrix (m) is configurable. 

This is very important feature of GMAP-TD because it allows GMAP-TD to work in PAWR 

block-pulsing mode. A signal covariance matrix is generated from each block of length m and 

then is averaged over all blocks. Block data are independent, as is the covariance matrix. This 

helps to reduce the variance of the average covariance matrix and, therefore, improves GMAP-

TD performance. In fact, the three factors determining GMAP-TD performance are block size, 

number of independent blocks, and ground clutter level. For example, for a given CSR the same 
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performance can be achieved by either using a larger block size or increasing the number of 

blocks. These factors are trade-offs and need to be taken into account when designing waveform 

for PAWR. 

In this section, the performance of GMAP-TD is evaluated with different combinations of 

block size, number of blocks, and CSR. A uniform waveform is used within each block. A 

standard deviation of power estimate is used to gauge the GMAP-TD performance. The first 

analysis is done by fixing CSR and varying the other factors. Low CSR (20 dB) and moderate 

CSR (40 dB) are used and results are shown in fig. 5.10 and fig 5.11, respectively. White contour 

lines are superimposed at ( ) 1=Pstd  and ( ) 2=Pstd . It can be seen that GMAP-TD works pretty 

well even with a small block size. In most situations, 6 blocks of 8 samples would provide 

( ) 5.1≤Pstd dB. In an extreme case, where CSR=40 dB and spectrum width is as small as 12 −ms , 

a block size of 10 can be used to obtain ( ) 1≤Pstd  dB. This demonstrates that GMAP-TD is a 

very promising filtering algorithm for PAWR. 

In the second analysis, we study the performance of GMAP-TD at various CSR levels (fig. 

5.12). Block size is fixed at 8. Apparently, to retain the same performance, more blocks are 

required when CSR is increasing. If the accuracy requirement is ( ) 25.1 ≤≤ Pstd  dB, the method 

needs a relatively small number of blocks (e.g., 8 blocks at 12 −= mspσ  and 6 blocks at 

14 −= mspσ ). If a highly accurate measurement ( ( ) 1=Pstd ) is required at CSR=40 dB and small 

spectrum width ( 12 −= mspσ ), using a block size larger than 8 is recommended (fig. 5.12a). 
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(a) 

 
(b) 

Figure 5.10: Standard deviation of power estimate as a function of data block size and number of 
blocks. CSR is 20 dB and (a) spectrum width 12 −= mspσ ; (b) spectrum width 14 −= mspσ . 
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(a) 

 
(b) 

Figure 5.11: Same as figure 5.10 but for CSR=40 dB. 
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(a) 

 
(b) 

Figure 5.12: Standard deviation of power estimate at different values of CSR and number of 
blocks. Block size is 8 and (a) spectrum width 12 −= mspσ ; (b) spectrum width 14 −= mspσ . 
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5.5 Test on CSU-CHILL radar data 

At this time, observed block-sampled radar data are not available so we will verify the 

performance of GMAP-TD algorithm using CSU-CHILL radar measurements. Datasets with two 

sampling schemes were collected on December 20, 2006. The first dataset considered a 

staggered PRT 2/3 pulsing scheme taken at 23:58:19 UTC with msT 11 =  and msT 5.12 = . A 

minute later, a uniform sampling dataset was recorded at 23:59:20 UTC with msTs 1= . The 

small time difference between the two observations ensures a reasonable comparison of the 

results for the two schemes. With the data setup, the uniform sampling data has an unambiguous 

velocity of 15.27 −± ms  while the staggered PRT 2/3 would attain double the range; i.e., from 

155 −− ms  to 155 −ms . The data were collected during a snowstorm event where the signal-to-

noise ratio is often less than 20 dB and spectrum widths larger than 14 −ms  were observed in 

many regions. In addition, at 1.0 deg of elevation, observations came from the Rocky Mountain 

region west of the radar that showed a large amount of strong clutter. To gauge the GMAP-TD 

performance, GMAP was applied to the uniformly sampled dataset. Results are shown in fig. 

5.13. One can observe that GMAP-TD removed ground clutter fairly well in both the uniform 

sampled and staggered PRT 2/3 data sets, especially at ranges less than 20 km and at the Rocky 

Mountain regions. Differentiating between original and filtered power plots shows a clutter 

suppression ratio up to 50 dB for staggered PRT 2/3 data from the CHILL radar. Reflectivity 

estimates from GMAP-TD and GMAP are comparable (first column in fig. 5.13). At a range of 

60 km and an azimuth of 270° where strong clutter due to the mountains is present, GMAP-TD 

shows less variation in reflectivity estimates than does GMAP. At the ranges from 80 km to 100 

km and the azimuth angles from 240° to 270°, reflectivity estimates from the staggered PRT 2/3 

data by GMAP-TD show some clutter residues. This can be attributed to the power saturation of 
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the CHILL radar when working in staggered PRT 2/3 mode. The uniform pulsing data show 

velocity-folding at the northeastern quadrant (inside the highlighted ellipse). This means the 

precipitation mean velocity is over the maximum unambiguous velocity of the uniform sampling 

scheme (27.5 ms-1). The color scale was selected from -32 ms-1 to 32 ms-1 for both uniform and 

staggered sampling data for comparison while still showing the velocity fields in full detail. The 

middle PPI plot in the last row (fig. 5.13) shows that the velocity folding problem was solved by 

applying GMAP-TD to the staggered PRT 2/3 observations. In this case, GMAP-TD provides 

correct velocity estimates without any folded velocity points. 

The third column in fig. 5.13 shows the estimated signal spectrum width from uniform and 

staggered PRT modes. One can see that the results from uniform sampling data using GMAP and 

GMAP-TD and from staggered PRT 2/3 data using GMAP-TD are comparable. In this dataset, 

the signal spectrum width varied from 1 to 7 ms-1. Good results from GMAP-TD for both 

uniform and staggered PRT 2/3 data validate the performance of the GMAP-TD method. 

Although the estimated fields from uniform PRT observations obtained using GMAP-TD and 

GMAP appear to be similar, there are differences that can be shown by a quantitative 

comparison. In fig. 5.14, reflectivity and velocity profiles at the azimuth angles of 120° and 280° 

from fig. 5.9b and 5.9c are plotted. Figure 5.14 shows that GMAP-TD performs better than 

GMAP. The main improvement we expect is the smaller variance in the estimates of reflectivity 

and velocity. One way to see this is by observing the fluctuation of the profiles. At the azimuth 

angle of 120° (fig. 5.14b and 5.14d) where no ground clutter is present, GMAP-TD and GMAP 

results are almost the same. At the azimuth angle of 280° (fig. 5.14a and 5.14c) for the ranges 

from 40 km to 60 km, where strong ground clutter due to the mountains is present, GMAP-TD 
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estimates (gray lines) show less variation than GMAP estimates (black lines). It is consistent 

with the inference from simulation (fig. 5.6). 

5.6 Summary 

In this chapter, a new method for ground clutter filtering for beam-agile phased-array 

weather radar, GMAP-TD, was presented. GMAP-TD assumes that the radar signal consists of 

ground clutter and weather echoes whose spectral shapes are approximately Gaussian. GMAP-

TD adopts many advanced techniques used in the state-of-the-art spectral filter (GMAP) such as 

adaptive clutter and noise power estimates and interpolation procedure. With the adaptive clutter 

estimates, GMAP-TD does very little or nothing to the signal in cases of no clutter. This 

eliminates the requirement of applying a clutter map, which often requires regular updates. When 

the signal and clutter overlap, the interpolation loop enables GMAP-TD to recover the part of the 

signal that was filtered out.  

The most important feature of GMAP-TD is that it works with a signal covariance matrix in 

the time domain. It has several advantages over the current state-of-the-art spectral filtering 

method. Firstly, some limitations due to spectral leakage and data window effects present in 

GMAP are eliminated. Because there is no need for any data window in GMAP-TD, lower 

standard deviations in signal parameter estimates are observed. In addition to that, because 

GMAP-TD does not use the signal spectrum, it is not affected by spectral leakage due to ground 

clutter. GMAP-TD was shown to perform well for the cases where signal and clutter strongly 

overlap. This property allows GMAP-TD to work well in scenarios of very high clutter 

contamination ( dBCSR 55> ) and weak signal, where GMAP does not. Furthermore, GMAP-TD 

can be directly applied to staggered PRT data with some very simple modifications. GMAP-TD 
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performance for staggered PRT case was shown to be as good as in the case of uniform 

sampling. 

Secondly, by varying the size of the covariance matrix, GMAP-TD can adapt to block-

sampled data that are proposed for use in PAWR. For PAWR, the covariance matrix size is 

chosen to be equal to the block length and is averaged from all independent blocks. Although no 

actual PAWR block-sampled data are available, GMAP-TD performance for this type of data has 

been assessed intensively with various sets of parameters using means of simulation. Results 

show GMAP-TD algorithm to be stable and a promising performer. 

Based on the experience with CSU-CHILL implementation, GMAP-TD computational 

complexity is similar to that of GMAP. Normally, it converges after a few iteration loops. Our 

first attempt at implementing GMAP-TD for weather radars shows that we process a ray of 300 

range gates within a dwell time of 40 ms. The processing was split into many parallel threads and 

run in a server with two Intel Xeon Quad Core E5530 (2.4 GHz) processors and 16 GB RAM. 

In summary, GMAP-TD is  shown to be a promising method for ground clutter filtering for 

PAWR. It can be adapted for uniform sampling  as well as staggered PRT observations. 

Additionally, GMAP-TD is able to retrieve weak signal in severe clutter contamination. 
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Figure 5.10: PPI plots show performance of GMAP-TD filter and GMAP filter on CSU-CHILL 
measurements. The first column is for reflectivity, the middle column is for velocity and the third 
column is for spectrum width. First row is for PP method (no clutter filtering) applied to uniform 
data set collected at 23:59:20 UTC. The second and third rows are for GMAP and GMAP-TD 
applied to the same uniform data set. Figures in the last row are GMAP-TD results on staggered 
PRT 2/3 data collected at 23:58:19 UTC. The unambiguity velocity is 27.5 ms-1 for uniform case 
and 55ms-1 for staggered PRT 2/3. Except for the unfiltered data, others are threshold using 

dBSNR 3> . 
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Figure 5.14: Comparison of reflectivity and radial velocity profiles at azimuths of 120° ((b) and 
(d)) and 280° ((a) and (c)). Top panels are reflectivity profiles and bottom panels are 
corresponding velocity profiles. 
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CHAPTER 6 
 
 

POLARIMETRIC VARIABLES RETRIEVAL WITH CLUTTER SUPPRESSION FOR 

STAGGERED PRT SEQUENCES 

 

6.1 Introduction 

The polarimetric PAWR signal model (see chapter 4) highlights bias issues inherent in 

electronic steered beam planar phased array radar. The biases are significant and can be as large 

as the parameters themselves. However, these biases can be removed to produce unbiased 

estimates. Methods to mitigate the biases are introduced in chapter 4 and they open the 

possibility of using planar polarimetric PAWR for weather sensing. In chapter 5, a new clutter 

filtering method (GMAP-TD) for PAWR has been developed. The filter is designed to work with 

block-sampled data and to adapt to both uniform and non-uniform waveforms. It has been 

demonstrated to provide very good results on the spectral moment estimates. In this chapter, 

GMAP-TD is extended for polarimetric variables retrieval in the case of clutter contamination. 

We will focus on the case of the staggered PRT waveform because this is one of the most 

important waveforms for PAWR and it is always more challenging to perform clutter filtering on 

non-uniformly sampled data than on uniformly sampled data.  

In polarimetric PAWR, besides the first three conventional spectral moments (mean power, 

mean Doppler velocity, and spectrum width), there are parameters generated from dual-polarized 

radar signals. Polarimetric variables provide valuable information for hydrological and 

meteorological studies such as improved rainfall estimation, retrieval of drop size distribution 

(DSD) parameters, and hydrometeor classification (Bringi and Chandrasekar 2001, Gorgucci et 
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al. 2002). Among polarimetric variables, differential reflectivity ( drZ ), differential propagation 

phase ( dpΦ ), and co-polar correlation coefficient ( coρ ) are highly significant. They play a key 

role in most dual-polarization radar applications (Bringi and Chandrasekar, 2001). Several 

studies have proposed different estimators and investigated various factors that affect these 

parameters estimates from the simple uniformly sampled radar data (Liu et al. 1993, Illingworth 

and Caylor 1991, Doviak and Zrnic 1984). Golestani et al. (1995) presented an analysis of the 

accuracies of parameters estimates from dual-polarized staggered PRT measurements. However, 

all these studies have conducted analyses with radar signals that are free of ground clutter 

contamination. In reality, weather radars have difficulties in their ability to process data 

contaminated by ground clutter; especially with non-uniform pulsing schemes. Recently, 

Sachidananda et al. (2005) have proposed a method to tackle one of the most challenging tasks - 

clutter suppression for dual-polarized, staggered PRT sequences. The procedure processes 

complex spectra of the interpolated H and V staggered PRT sequences to remove clutter 

components and recover both the magnitude and phase of weather signals. However, that method 

is limited to staggered PRT dual-polarized data in simultaneous transmission and simultaneous 

reception mode (or hybrid mode; Bringi and Chandrasekar 2001). Besides, it requires further 

work to reduce the impact of the remaining clutter residues on dual-polarization parameter 

estimates after clutter filtering (Sachidananda et al. 2005). 

While many clutter-filtering methods for uniform sampling radar data have been reported in 

the literature, there is no effective filtering method for dual-polarized staggered PRT sequences, 

especially in alternating mode. In this work, a GMAP-TD algorithm for polarimetric variables 

retrieval is designed to work on both simultaneous and alternating dual-polarized transmission 

modes. The algorithm is also based on covariance processing in the time domain so it retains the 
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capability to work with PAWR block-sampled data. We will focus on analyzing the accuracies of 

the parameters estimates with clutter suppression in both transmission modes. Based on radar 

simulation, the error analysis is carried out for different scenarios, concentrating on the cases of 

received signals contaminated by large ground clutter. The method’s performance is also 

demonstrated with actual CSU-CHILL dual-polarized staggered PRT data. 

6.2 Dual-polarized staggered PRT scheme in simultaneous mode 

In simultaneous mode, horizontal and vertical signals are transmitted and received 

simultaneously. Dual-polarized staggered PRT sequences are shown in fig. 6.1. In this mode, 

both H and V channel signals follow identical staggered waveform PRT 21 /TT . Dual-polarized 

variables are estimated in a similar way as the case of uniform simultaneous mode (Bringi and 

Chandrasekar, 2001). 

 

 

Time 
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Figure 6.1: Dual-polarized staggered PRT pulsing scheme in simultaneous mode. 
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6.3 Dual-polarized staggered PRT scheme in alternating mode 

In conventional alternating mode, polarizations are transmitted in sequence ... hvhv... with 

equal spacing between alternating H and V pulses. Figure 6.24 (page 364 from Bringi and 

Chandrasekar (2001)) shows the sequence of the received signal in this waveform. Velocity can 

be estimated from pairs of alternating polarization pulses that are spaced sT  in time after 

correcting for the differential phase ( dpΦ ) between polarizations. In the staggered PRT 

alternating mode, the transmitted signal at one of the polarizations is a staggered waveform and 

the signal at the other polarization is transmitted in a uniform pattern, as shown in fig. 6.2. 

Similarly to the simultaneous mode, the stagger ratio 21 /TT  defines the structure of this pulsing 

scheme. 

 

 

Time 

Rvvhh[T1] 

Rhhvv[T1] 

Rvvhh[T2] 

Rhhvv[T2] 

H channel 

V channel 

2T1 2T2 

T1+T2 T1+T2  
 

Figure 6.2: Dual-polarized staggered PRT pulsing scheme in alternating mode. 

With no loss of generality, it can be assumed that the H polarization pulse is transmitted first. 

Let [ ] [ ] [ ] [ ] NnnVnVnVnV hvvvvhhh ,...,1...,2,2,12,12 =−−  be the samples of the received signals. N 
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is the total number of samples in H or V channel. The correlation estimates of adjacent co-polar 

samples can be computed by 
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In this mode, direct estimation of the co-polar correlation ( [ ]0hhvvR ) is not possible. However, the 

following approximation can be used (Sachidananda and Zrnic, 1985) 
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and, 
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Note that ( )*hhvvvvhh ρρ = . In this work, we assume that there is no instrument bias in phase shifts 

introduced in the hv and vh pairs at different time lags of the staggered PRT scheme (Golestani et 

al. 1995). It follows that the phase of hhvvρ  and vvhhρ  can be computed as 
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and, 
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where dpΨ  is the phase of [ ]0vvhhR . Bringi and Chandrasekar (2001) show that codpdp δ+Φ=Ψ , 

where dpΦ  is the differential propagation phase and coδ  is the differential phase upon scattering. 

If Rayleigh scattering is assumed, then 0=coδ  and dpsp Φ=Ψ . The dpΨ  can be estimated from 

(6.3) as 

( )211
212

1 TTT
dp Ψ−Ψ=Ψ


         (6.4a) 

( )222
432

1 TTT
dp Ψ−Ψ=Ψ


         (6.4b) 

The two estimates can be combined to reduce the estimation errors 

( )21

2
1 T

dp
T
dpdp Ψ+Ψ=Ψ


         (6.5) 

Also, from (6.2), the coρ  can be written as 

[ ]
[ ]1

11

T
TvvhhT

co ρ
ρ

ρ =          (6.6a) 

[ ]
[ ]2

22

T
TvvhhT

co ρ
ρ
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and by averaging 

( )21

2
1 T

co
T
coco ρρρ +=          (6.7) 

6.4 GMAP-TD implementation 

The estimation of differential reflectivity, drZ , is straightforward. It is given by 

vhdr PPZ ˆˆ −=


          (6.8) 
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where hP̂  and vP̂  are the estimated signal powers in the H and V channels using the GMAP-TD 

algorithm (chapter 5). When the ground clutter and weather spectra are located apart, the signal 

power is not affected by the clutter-filtering process. In the case where the ground clutter and the 

signal spectra overlap, the interpolation procedure in GMAP-TD efficiently recovers the portion 

of the signal that is filtered out (fig. 5.9). Hence, in most situations, GMAP-TD is able to provide 

an unbiased estimation of drZ . This will be demonstrated in the following sections. 

On the other hand, the use of an interpolation procedure does not always retain the 

correlation between the H and V polarization signals. In fact, it may create artificial biases in the 

coρ  and dpΦ  estimates. For these parameters, the estimates should be obtained directly from a 

clutter-transformed time series without the interpolation loop. This approach is similar to the 

conventional methods implemented in dual-polarized weather radar systems using IIR or FIR 

filters. In the following sections, we describe the implementation of the GMAP-TD filter to 

estimate coρ  and dpΦ  from dual-polarized staggered PRT radar time series with the two 

different transmission modes. 

6.4.1 Simultaneous mode 

In the simultaneous mode, both horizontal and vertical polarization states are simultaneously 

transmitted and received; therefore, their waveforms are identical. Note that the GMAP-TD 

clutter-filtering matrix (equation (5.8)) is designed for a single-polarization signal. Generally, 

ground clutter contaminates H and V signals at different levels; therefore, the clutter filter 

matrices for the H and V signals are not always identical. Applying two different filters to the 

strongly correlated received signals may introduce bias in their correlation coefficient estimate. 

To avoid this situation, we modify the GMAP-TD filter implementation so that a unique filter 



136 
 

can be used for both channels. Equations (5.7) and (5.8) show that the filter depth depends on the 

ratio between the clutter power and the noise power, while the pre-set clutter spectrum width will 

determine the filter width. It is simple to verify that if the clutter filter’s parameters are chosen as 
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v
c
h

c
poldual

vNhNpoldualN

c
v

c
h

c
poldual

www

PPP

,max

,min

,max
2

,
2

,
2

,

=

=

=

−

−

−
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then the resultant filter is able to efficiently remove ground clutter in both channels. With this 

modification, the filter equation is now written as  

( ) 2/12
,/ −

−−− += mpoldualN
c

poldualpoldual IRA σ       (6.10) 

where c
poldual−R  is constructed from (5.4) and its elements are defined as 

[ ] 









−= −

−− 2

22228
exp

λ
τπ

τ spoldualc
poldual

c
poldual

Tw
PR      (6.11) 

The signals after applying clutter filtering are 

hpoldual
f

h VAV −=          (6.12a) 

vpoldual
f

v VAV −=          (6.12b) 

where the superscript f indicates filtered data. Then, coρ  and dpΦ  can be estimated from the 

filtered time series (6.12) using the standard method (Bringi and Chandrasekar, 2001). 

6.4.2 Alternating mode 

In the alternating mode (fig. 6.2), the signal at the H channel follows a staggered PRT 

waveform with two time spacings, 12T  and 22T , while the signal at the V channel is a uniform 
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waveform with the period of ( )21 TT + . As discussed in chapter 5, we focus on the case of the 

staggered PRT waveform 2/3. We denote uT  to be the unit time, then uTT 21 =  and uTT 32 = .  

Similar to the simultaneous mode, in order to obtain accurate estimates of coρ  and dpΦ  we 

use a common clutter filter for both the H and V channels. Note that the GMAP-TD filter for the 

H channel (staggered PRT waveform) is derived from equations (5.5) and (5.8) in chapter 5 

while the filter for the V channel (uniform waveform) is derived from equations (5.4) and (5.8). 

In addition to the difference in clutter rejection levels, the two filters have different structures. 

The issue with different filter depths can be sorted out easily using the same technique described 

in section 6.4.1, while the difference in filters structures is more challenging to overcome. 

In the H channel, the Nyquist velocity obtained from the staggered PRT scheme is 

( ) ( )u
H
a TTTv 8/224/ 12 λλ =−=  and the GMAP-TD filter’s power response has additional 

notches at ( )u
H
a Tv 20/4.0 λ±=±  and ( )u

H
a Tv 20/28.0 λ±=±  besides the main notch at zero 

frequency (fig. 5.5a). The uniform waveform of the V channel provides a Nyquist velocity of 

( ) ( )u
V
a TTTv 20/4/ 21 λλ =+= , which is equal to 2/5 of H

av , and the corresponding filter has no 

additional notch. Figure 6.3 shows an example of the power frequency responses of the GMAP-

TD filters for the two channels with 15.27 −= msv H
a  and 111 −= msvV

a  . 
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Figure 6.3: The power frequency response of GMAP-TD filter for H channel (a) and V channel 
(b). 

In section 6.3, we have shown that when the phase shift between alternating polarization 

pulses is used, the alternating staggered PRT scheme provides a maximum unambiguous velocity 

of ( )ua Tv 4/λ=  that is much higher than that from the signal at each individual channel. When 

the signal velocity exceeds the maximum unambiguous velocity of either channel, velocity 

aliasing occurs. Therefore, the filter responses of the two channels with respect to Doppler range 

av  include the replicas of the responses with respect to Doppler ranges H
av  and V

av , respectively. 

Figures 6.4a and 6.4b illustrate those responses. 
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Figure 6.4: The power frequency response of GMAP-TD filter with respect to Doppler range 
155 −= msva  for the case presented in figure 6.3 for H channel (a) and V channel (b). 

It is noticed that the response in fig. 6.4b is similar to that of the modified filter modA  

introduced in chapter 5 (fig. 5.5b). This observation suggests a solution based on the technique to 

create filter modA . In detail, we modify GMAP-TD filters for H and V channels for polarimetric 

variables retrieval as follows: 

For H channel, 

poldualpoldualpoldualpoldualpoldualpoldualh −−−−−−−− ++++= ,8.0,8.0,4.0,4.0, AAAAAA  (6.13) 

where subscript h stands for horizontal polarization. poldual−A  is as in (6.9) and poldual−± ,4.0A  and 

poldual−± ,8.0A  are computed as in equation (5.10) but with c
poldual−R  instead of cR  ( 4.0±  and 

8.0±  in the superscripts are dropped). 
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For V channel, 

vvpoldualv ,0.1, AAA +=−         (6.14) 

where, 

( ) 2/12
,,0.1,0.1 / −

−− += mpoldualNpolldualv IRA σ  and elements of the clutter covariance matrix for V 

channel c
poldual−R  are 

[ ] ( )πτ
λ
τσπ

τ jTPR scc
poldualpoldual −








−= −− exp8exp 2

2222

,0.1     (6.15) 

The power responses of these filters are shown in fig. 6.5. When expanded to the entire Doppler 

range av , they will be identical (fig. 6.6). The filtered time series from the two channels are 

given as 

hpoldualh
f

h VAV −= ,          (6.16a) 

vpoldualv
f

v VAV −= ,          (6.16b) 

From filtered data, coρ  and dpΦ  can be obtained using the standard method (Bringi and 

Chandrasekar, 2001). 
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Figure 6.5: The power frequency response of the modified GMAP-TD filter for polarimetric 
variables retrievals for H channel (a) and for V channel (b). 

 

 

Figure 6.6: The power frequency responses of the modified GMAP-TD filters with respect to the 
Doppler range 155 −= msva  are identical for both channels. 
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The modified GMAP-TD filter for dual-polarization variables retrieval presents additional 

notches along the Doppler range (fig. 6.6). When the signal velocity is near those notches, a 

portion of the signal is removed by the filter and it reduces the SNR. The result is that the 

standard deviation in the coρ  and dpΦ  estimates increase at those Doppler ranges due to a lower 

SNR. The algorithm is evaluated in the next section using radar simulation. 

6.5 Method evaluation using signal simulation 

With the presence of ground clutter, the error analysis of the dual-polarization parameter 

estimation algorithm for staggered PRT waveforms is challenging. We approach this problem by 

means of simulations. In this section, simulated radar data with different sets of parameters are 

used to demonstrate the performance of GMAP-TD for dual-polarization parameter estimation. 

Dual-polarized uniform data with a PRT of uT  is created first (Chandrasekar, 1986) and 

appropriate samples are removed to generate the staggered PRT sequences.  Two time series are 

created, one for the weather echo plus noise and the other for the ground clutter only. The signal 

with ground clutter data are obtained from the sum of the two time series. In this experiment, to 

evaluate the performance of the GMAP-TD method, we compare the statistical errors of two set 

of drZ , coρ  and dpΦ  estimates. A reference set of parameters estimates is obtained from the 

weather-plus-noise time series (clutter-free time series) using a standard pulse pair method 

(section 6.3). The second set of parameter estimates is achieved by passing the clutter-

contaminated signal through the GMAP-TD filter. 

In every simulation case, a large ground clutter signal ( dBCSR 40= ) is used. Signal velocity 

is varied in the Doppler range av  with an increment of one-tenth of Nyquist velocity to examine 

the effect of additional notches on drZ , coρ  and dpΦ  estimates. The signal spectrum width is 
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chosen between two values representing narrow and wide signal spectra. Inputs of the simulation 

are summarized in table 6.1. 

Table 6.1: Simulation input parameters. 

Parameters Values 
f, GHz 2.72 
CSR, dB 40 
SNR, dB 30 

cσ , ms-1 0.25 
pσ , ms-1 1, 4 

v , ms-1 maxmaxmax ...1.0,05.0,0 vvv  
2
Nσ , dB 14 

m, samples 64 
uT , ms 0.5 

21 /TT  2/3 
 

6.5.1 Results for simultaneous mode 

With the waveform parameters given in table 6.1, the Nyquist velocity of the scheme is 55 

ms-1. Figure 6.7 shows the bias and standard deviation in the parameter estimates as a function of 

the mean velocity of the signal for a very narrow signal spectrum width ( 11 −= smpσ ). Dashed 

lines present results from a clutter-free time series using pulse-pair processing and solid lines 

present results from clutter-contaminated data using a GMAP-TD filter. The performance of the 

clutter filter is remarkable even for a CSR of 40 dB. At most velocity values, the performance of 

the GMAP-TD method matches the pulse pair processing for signals without ground clutter. 

Only in the extremely overlapping situation where the weather echo velocity is near zero (say 

less than av1.0 ) do the estimates by GMAP-TD show slightly higher biases and deviations. This 

is explained by the significant reduction in the SNR after applying the clutter filter. The co-polar 



144 
 

correlation coefficient HVρ  is more sensitive to the SNR (Bringi and Chandrasekar, 2001), and 

therefore shows the most obvious error in these cases. However, estimation biases and standard 

deviations are still within acceptable limits for weather radar applications. 

A similar analysis is shown in fig. 6.8 but for a wider spectrum signal ( 14 −= smpσ ). The 

results are better than those with a narrower spectrum width. Even in the strong overlapping 

situation, the estimates are as good as the case without clutter. With a wide spectrum signal, the 

portion of the signal filtered out in the overlapping situation is smaller compared to the case of 

the narrow signal. Hence, after the applying clutter filter the SNR is not greatly affected. The 

matching results demonstrate the effectiveness of the GMAP-TD algorithm. 
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Figure 6.7: Biases and standard deviations in the dual-polarization parameters estimates using 
the GMAP-TD method for staggered PRT sequences in simultaneous mode. Inputs parameters 
for the simulation program are 11,40 −== smdBCSR pσ . 
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Figure 6.8: Same as figure 6.7, but for 14 −= smpσ . 
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unambiguous velocity of  the H channel (staggered PRT) is 27.5 ms-1 and that of the V channel 

(uniform) is only 11 ms-1. When the Nyquist velocity is small, the signal spectrum becomes 

0 20 40 60
-0.1

-0.05

0

0.05

0.1

B
ia

s 
in

 Z
dr

 e
st

im
at

es
 (d

B
)

 

 

0 20 40 60
-0.01

-0.005

0

0.005

0.01

B
ia

s 
in

 ρ
H

V e
st

im
at

es

0 20 40 60
-1

-0.5

0

0.5

1

B
ia

s 
in

 Ψ
dp

 e
st

im
at

es
 (d

eg
)

Velocity (m/s)

0 20 40 60
0

0.1

0.2

S
td

 in
 Z

dr
 e

st
im

at
es

 (d
B

)

 

 

0 20 40 60
0

0.005

0.01

S
td

 in
 ρ

H
V e

st
im

at
es

0 20 40 60
0

0.5

1

1.5

2

S
td

 in
 Ψ

dp
 e

st
im

at
es

 (d
eg

)

Velocity (m/s)

PP, no clutter
GMAP-TD, clutter CSR=40dB

PP, no clutter
GMAP-TD, clutter CSR=40dB



147 
 

relatively “wider.” Consequently, in these scenarios, the likelihood of signal overlapping clutter 

increases.  

Again, evaluation of the GMAP-TD filter for polarimetric estimation with respect to the 

mean velocity is carried out. Figure 6.9 shows the biases and standard deviations of drZ , coρ  

and dpΦ  estimates with a signal spectrum width of 1 ms-1. It can be seen that there is an increase 

in the estimation errors at Doppler regions corresponding to the notches’ locations in the filter 

response (fig. 6.6). The reduction in SNR after filtering explains this effect. It is an inevitable 

situation because in this case, the signal spectrum is narrow and falls into the notch region of the 

filter. The increase in standard deviation is more obvious in the coρ  estimate than in the other 

two estimates. In fact, the drZ  and dpΦ  standard deviation increment is less than about 0.1 dB 

and 0.5 deg, respectively, at those regions while the biases are still close to the reference data. 

The biases and standard deviations in the estimates of drZ , coρ , and dpΦ  for a signal with a 

spectrum width of 4 ms-1 are shown in fig. 6.10. It can be seen that the difference in bias between 

the GMAP-TD results and the reference data is negligible. The increases in standard deviation of 

drZ  estimate (less than 0.1 dB) and dpΦ  estimate (less than 0.5º) with GMAP-TD filter are 

tolerable when considering the complexity of the waveform and strong clutter contamination 

situation. Similar to the case of the simultaneous mode, the GMAP-TD filter appears to perform 

better with wide spectrum signals.  

From this simulation-based study, we can conclude that the GMAP-TD filter can be extended 

for parameter retrieval from dual-polarized staggered PRT sequences in the presence of ground 

clutter. Different implementations are made for each transmission mode. The method 

performance is remarkable in the simultaneous mode, where the two polarization waveforms are 
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identical. Most of the time, there is no difference in performance when comparing results from 

data with and without ground clutter. In the alternating mode, where polarizations waveforms are 

very different, estimation statistical errors increase. However, in extreme scenarios when clutter 

is strong and the signal spectrum is very narrow, large errors appear only at certain Doppler 

bands. Otherwise, the errors are only slightly higher than those with clutter-free data. 

 

 

Figure 6.9: Biases and standard deviations in the dual-polarization parameter estimates using the 
GMAP-TD method for staggered PRT sequences in alternating mode. Inputs parameters for the 
simulation program are 11,40 −== smdBCSR pσ . 
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Figure 6.10: Same as figure 6.9, but for 14 −= smpσ . 

6.6 Test on CSU-CHILL radar data 

In this section, the clutter filter for dual-polarization variables is validated using actual radar 

data. Staggered PRT ( msT 11 =  and msT 5.12 = ) observations of a large snowstorm were 

recorded at 23:58:19 UTC on December 20, 2006, by the CSU-CHILL radar. Due to the setup of 

the radar at that time, only data in the simultaneous mode are available. Detailed data collection 

is described in section 5.5, chapter 5. 
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Results for polarimetric retrievals are shown in fig. 6.11. The top row are PPI plots of 

measured drZ , coρ , and dpΦ  fields. The ellipses indicate large ground clutter present in the 

areas near the radar (within 20 km range) and the Rocky Mountain regions that severely 

contaminates the polarimetric measurement. At those regions, drZ  biases can be as high as -2 

dB;  coρ  values drop from 0.99 to 0.94, and dpΦ  profiles are intermittent. Panels in the second 

row depict the estimates after applying the dual-polarization GMAP-TD algorithm to the data. A 

comparison between plots in the top and bottom rows shows a significant improvement: drZ  and 

coρ  biases are removed and dpΦ  profile discontinuity is mitigated. Over all, the data quality 

after filtering is much better than that of the original measurement, except we lose data at some 

points around the mountainous regions where the clutter signal is very strong. Again, this can be 

a problem of the power saturation of the CSU-CHILL radar when working in staggered PRT 2/3 

mode. 

6.7 Summary 

The main difficulty associated with the staggered PRT pulsing technique has been clutter 

filtering. In a transmission mode where staggered PRT combines with PAWR block pulsing, this 

task is even more challenging. In chapter 5, we have proposed a time domain method, GMAP-

TD, that allows effective filtering of ground clutter for spectral moments estimation. In this 

chapter, the GMAP-TD filter is implemented for polarimetric retrievals. Implementations for 

simultaneous and alternating modes are proposed. Both employ the same principle of using one 

filter for two channels to maintain the signal correlation after filtering. The GMAP-TD 

polarimetric filter is modified from the GMAP-TD filter. In the simultaneous mode, where the H 

and V polarization waveforms are identical, filter modification is minimal. In the alternating 
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mode, waveforms and Doppler intervals of the two polarizations are different and the procedure 

involves more advanced techniques. 

The radar simulation study described above indicates that the procedure is very effective in 

retrieving polarimetric variables even in cases of strong clutter contamination ( dBCSR 40= ). 

For the simultaneous transmission mode, the performance of the method is as good as in the case 

of signals without clutter. For the alternating mode, statistical errors in the estimates slightly 

increase due to the mismatch in polarization waveforms and the complexity of the filter. This can 

be considered as a trade-off in this mode: a technique that utilizes the depolarization 

characteristics of precipitation targets to suppress second-trip echoes and staggered PRT 

waveforms to increase unfolding velocity. However, the noticeable increment in errors occurs in 

rare situations where the signal spectrum width is narrow and located at certain Doppler bands. 

The effectiveness of the clutter-filtering process is also successfully demonstrated with actual 

CSU-CHILL dual-polarized staggered PRT time series.  

The GMAP-TD procedure for polarimetric retrievals does not include an interpolation loop 

so the computational load is not demanding. Thus, it is suitable for PAWR where the use of radar 

resources is critical. 
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Figure 6.11: PPI plots show performance of GMAP-TD for dual-polarized variable retrieval on 
CSU-CHILL measurements. Panels in the top row (a) are differential reflectivity ( )drZ , co-polar 
correlation coefficient ( )coρ  and differential phased ( )dpΦ  before clutter filtering. Panels in the 
bottom row (b) are the corresponding estimates with GMAP-TD. 
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CHAPTER 7 
 
 

SENSITIVITY ENHANCEMENT SYSTEM FOR PULSE COMPRESSION WEATHER 

RADAR 

 

7.1 Introduction 

Sensitivity is a critical aspect of any radar system.  It is especially critical for weather radar 

because the system is supposed to detect patterns as well as precisely measure relatively weak 

precipitation echoes. This aspect is even more imperative for PAWR because the system 

sensitivity decreases significantly at off-boresight directions (chapter 4). Modern active phased-

array antennas include many elements in which each has its own transmit and receive modules. 

To keep costs down, low-power, solid-state transmitters are used at each element. The primary 

drawback of these transmitters is low peak power. This is because the weather radar sensitivity is 

inversely proportional to the product of pulse width and peak power (Bringi and Chandrasekar, 

2001). However, solid-state transmitters have relaxed restrictions on the duty circle that allow 

implementation of pulse compression techniques in order to obtain acceptable sensitivity for 

weather observations.  

Pulse compression is a technique that allows a radar system to transmit a long coded 

waveform and compress the received echo to obtain a narrow pulse. The primary objective of the 

pulse compression technique is to improve range resolution and sensitivity while avoiding 

transmission of higher peak power. This technology has been widely used in military and air-

traffic control radar systems since early the 1950s and is reviewed in the literature (Skolnik, 

2001). However, the use of pulse compression in ground-based weather radar to study 
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precipitation targets is very limited. In the early 1970s, Fletter demonstrated a 7-bit Barker 

phase-coded pulse on the coherent FPS-18 radar at McGill University (Fetter, 1970). Bucci and 

Urkowitz (1993), Keeler (1995), and Mudukutore et al. (1998) have presented technical and 

engineering aspects of this application. Recently, frequency-diversity pulse compression 

waveforms have been implemented and demonstrated in the Ku-Ka band NASA Dual-Frequency 

Dual-Polarized Doppler Radar (D3R) (Chandrasekar et al. 2011). In this work, system 

sensitivity, a critical aspect of pulse compression technique for weather targets, has been studied. 

In a pulse compression weather radar, the transmitted pulse has a long duration and wide 

bandwidth. A long pulse width is needed to increase measurement sensitivity. For example, with 

the same peak/average transmitted power, a system using a 40 µs pulsewidth is nearly 15 dB 

more sensitive than one transmitting a pulse of 1 μs width. In order to get improved range 

resolution, the wideband signal is vital; however, it is accompanied by a major drawback. 

Because the receiver noise is proportional to the bandwidth, a wider band receiver would 

introduce more noise into the system, thereby decreasing system sensitivity. For instance, an 

operational system using a Taylor mismatch filter designed for a peak sidelobe level (PSL) of 

38.5 dB would require a time-bandwidth product (BT) of 400. Thus, if 40 µs pulses are used, the 

transmitted signal bandwidth has to be at least 10 MHz. When compared to a system using 

uncoded pulses of 1 MHz bandwidth, the system noise increases by 10dB. Consequently, the 

system sensitivity is held back by 10 dB. To overcome this problem, one might think of using a 

low-pass filter (LPF) to remove the noise at the receiver. However, due to inherent properties of 

the wideband signal and the white noise, employing any LPF at the receiver to reduce noise will 

also increase the filter loss. Hence, improving the system sensitivity using such standard 

techniques is not recommended. 
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In this chapter, a sensitivity enhancement system (SES) for pulse-compression weather radars 

is introduced. SES utilizes a transmission scheme with two different waveforms that is 

implemented to make sure that both waveforms will measure the same precipitation volume. At 

the receiver, an adaptive filter is designed based on the self-consistency between signals from the 

waveforms. The signal from the second waveform is estimated at each range gate using prior 

knowledge of the medium obtained from the first waveform. The SES processing is more 

complex than the conventional pulse compression techniques but it is able to improve the system 

sensitivity significantly and provide very good Doppler tolerance and PSL performance. 

7.2 Signal model 

Consider a pulse compression radar system with a chirp frequency of Fs. The corresponding 

sampling time is ss FT /1= . The range resolution corresponding to the sub-pulse is 2/scTr = , 

where c is the velocity of light in a vacuum. For example, a system with a 10 MHz chirp gives a 

sub-pulse range resolution of 15 m. Figure 7.1 shows a signal transmission model where both 

precipitation range profile and transmitted waveform are sampled at frequency Fs. The range 

profile is represented by a vector of contiguous samples [ ] ,,,, 10 Mxxx=x  where ix  is the 

signal from the ith range gate. 
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Figure 7.1: Discrete signal model. 

According to Bringi and Chandrasekar (2001), the received signal is a convolution of the 

medium and transmitted waveform. Denoting a N-length vector [ ]TNwww 110 ,,, −= w  as a 

transmit waveform, the received signal at the antenna port is expressed by 

ηwxy +∗=           (7.1) 

where ( )∗  denotes the convolution operator; η  is noise vector. 

The convolution (7.1) can be expressed in a matrix form, 
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For 1−≥ Nn  we define a processing window [n-N+1, n+N-1] as 
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or in a short notation 

nηwXy nn +=          (7.4) 

where nη  is an additive white noise vector within the processing window, ( )NNN Iηn
2,0~ σ , 

2
Nσ  is noise power, and IN is an identity matrix. 

7.3 Sensitivity enhancement system (SES) 

7.4.1 Sensitivity of pulse compression weather radar 

The reflectivity is estimated from the received power at the shifted reference plane (fig. 7.2). 

The reflectivity is given by 

refe PRCZ 2'=           (7.5) 

In equation (7.5), refP  is the received power at the reference port, R  is the radar range, and 'C  is 

a constant given by 
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The power at the reference plane is related to the power at the output of the receiver by 

0P
G
lP

r

r
ref 








= , where rl  is the filter loss and rG  is the receiver gain (Bringi and Chandrasekar, 

2001). Hence, the equivalent reflectivity can be computed from the receiver output power, 

0
2 PCRZe =            (7.7) 
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The unit of eZ  is 12 −mmm . In practice, this is expressed in decibel scale (dBZ). The radar 

equation can now be written as 

[ ] [ ] [ ] [ ]( )kmRdBCdBmPdBZZe log200 ++=       (7.9) 

The notations used in the above equations are explained in Bringi and Chandrasekar (2001). 

It is customary to define the minimum detectable reflectivity eZ  at a given range R when the 

signal-to-noise ratio is unity; i.e., kTBPP N ==0 , where B is the receiver-equivalent noise 

bandwidth. Equation (7.9) can be rewritten as 

[ ] ( ) [ ] [ ]( )kmRdBCkTBdBZZe log20log10)min( 10 ++=     (7.10) 

The radar sensitivity is studied in terms of the minimum reflectivity (Bringi and Chandrasekar, 

2001). 

 

Transmiter Duplexer 

Receiver Reference Plane 

Shifted Reference Plane 
Antenna 

refP  

0P  
(I,Q) 

 

Figure 7.2: Illustrating the shifted reference plane for reflectivity calculation (Bringi and 
Chandrasekar, 2001). 
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Equations (7.8) and (7.10) suggest several ways to improve system sensitivity. While the 

option of increasing the transmit peak power is limited by the use of low-power solid-state 

transmitters in PAWR, designing a better pulse compression filter for sensitivity enhancement is 

a potential solution. An intuitive way to do this is to narrow the receiver filter bandwidth to 

reduce the product kTB in (7.10). However, given the fact that a pulse compression waveform is 

a wideband signal, reducing filter bandwidth results in increasing the filter loss lr (Bringi and 

Chandrasekar, 2001) and therefore, it degrades the system sensitivity performance. In addition, a 

narrower filter bandwidth will lead to a larger output’s range resolution, which may be 

unacceptable for many meteorology applications. Hence, improving the system sensitivity using 

this approach is not recommended. 

It is known that the received radar returns ( ny ) include convolutional components involving 

samples of nX  prior to and after the nth gate. Conventional pulse compression filters such as 

matched filter or ISL filter do not account for this characterization. As a result, when a 

significantly large signal is present within the (N-1) range gates prior to or after sample nx , the 

performance of those filters can be deleteriously affected. In additional, a conventional pulse-

compression matched filter may not always provide an optimal SNR. Those shortcomings 

suggest that it is necessary to obtain an adaptive filter for the received signals of a pulse-

compression weather radar. The filter’s coefficients should be able to adapt to the distribution of 

signal density over the measurement range and also be able to account for the Doppler shift 

effect. The remainder of this chapter develops a novel system called a sensitivity enhancement 

system (SES) for pulse-compression weather radar that significantly improves system sensitivity 

while maintaining robust estimates of signal parameters. 
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7.4.2 Signal covariance matrix 

For precipitation targets, signals from different range gates are zero-mean and uncorrelated. 

The covariance matrix of the measured signal can be represented as 
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where the superscript H denotes Hermitian transpose and knp + is signal power at gate (n+k)th. 

HwwW =  and kW  is a shifted version of W by k elements and the remainder is zero-padded. 

We denote ( )kcirc ,WWk = . If k is positive, the values of W are shifted down and right. If k is 

negative, the values of W are shifted up and left. For example, 
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For 1−≤ Nm , denote [ ]Tmnmnmnmn xxxx +−++−−= ,,,, 11 mx  and its covariance matrix is expressed 

as 
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Note the signal covariance matrix is only defined by power samples of the medium. 

7.4.3 SES processing 

In this section, we derive the estimator of the unobserved vector mx  on the basic of observed 

vector ny . By definition, 

( ) ( )mXmnX|Y
x

m xxyx
m

ff |maxargˆ =        (7.14) 

where X|Yf  is the probability distribution of yn given xm and Xf  is the prior distribution of xm. 

The distributions of the weather radar signals are multivariate normal (Bringi and Chandrasekar, 

2001), and therefore 
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where xxR  is described in (7.13) and xxR  is the covariance matrix of mmn xSyz −= , 
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Substituting equations (7.15), (7.16), and (7.17) in (7.14), taking the derivative with respect to 

mx  and solving for minima, we obtain the estimator for mx  in a closed-form expression, 

( ) nzzmxxmzzmm yRSRSRSx 1111ˆ −−−− += HH       (7.18) 
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The solution (18) has a form nm Fyx =ˆ  where 

( ) 1111 −−−− += zzmxxmzzm RSRSRSF HH       (7.19) 

is termed the adaptive filter for SES. 

7.4.4 Doppler compensation 

The analysis described in the above section does not include the Doppler shift effects. It 

simply assumes that the Doppler shifts of the samples mx  are equal to zero. Although the 

gradient in radial Doppler shifts of weather targets is not as high as that in the case of military 

targets, it may still affect the filter performance, especially where a weather radar system is 

required to measure weather signals accurately. For example, a strong and fast-moving storm 

may heavily contaminate nearby weak cells due to the sidelobe problem. Therefore, in designing 

a pulse-compression filter for weather radar, the Doppler effect needs to be taken into account. 

Let fi be the Doppler frequency corresponding to a signal at sub-pulse gate ith, the Doppler 

phase shift over a period of Ts is isi fTπθ 2−= . At the receiver, the transmit waveform is 

modified to include this Doppler shift  

[ ] 1;,,, )1(
110 −== −
− jeweww ii Nj

N
ji θθ w      (7.20) 

and 

( )( )Hiii wwW =           (7.21) 

Accordingly, Wk needs to be replaced by its Doppler-modulated version, 

( )kcirc knD ,)( +=→ WWW kk        (7.22) 
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7.4 SES dual-waveform scheme 

SES processing requires a prior knowledge of the signal power and Doppler shifts, which are 

unknown. To tackle this problem, SES proposes a transmission scheme that utilizes two different 

waveforms. The two waveforms are transmitted separately either in time or in frequency but they 

both measure the same precipitation volume. Figure 7.3 depicts that scheme. 
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Figure 7.3: The SES transmission waveform scheme. 
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In the scenario where the two waveforms can be transmitted simultaneously at different 

frequencies, observed volume is perfectly matched. If the two waveforms are transmitted at 

different times, the time difference selected should be small enough to ensure that the 

precipitation volume can be assumed to be statistically stationary. For instance, the two 

waveforms can be transmitted in a sequence (fig. 7.3b); the difference in transmission time 

between the two waveforms is equal to the dwell time for the first waveform, which is normally 

on the order of ms. With the different time periods, precipitation targets can be assumed to be 

unchanged. 

The main idea of SES is that the first waveform is used to obtain initiative knowledge of the 

medium and the second waveform uses this information to deploy SES processing. In detail, the 

first waveform provides the density distribution and Doppler shift profile of the medium. Using 

power samples and Doppler samples from these profiles, we generate the adaptive filter (7.19) 

for the second waveform. The filter is specified at each range gate. It is noticed that the power 

samples from the first waveform are independent if the range spacing between them is equal to 

or greater than the range resolution. Therefore, in designing the second waveform, it is suggested 

to constraint the second waveform bandwidth to be equal to or smaller than the bandwidth of a 

rectangular pulse with the pulse width equal to the range resolution of the first waveform.  

7.4.1 Waveform design procedure 

Depending on system resources, the SES waveforms can be designed to be time diverse or 

frequency diverse. For a system with limited bandwidth, the two waveforms can be transmitted 

consecutively. In that way, both waveforms can use the entire system’s available bandwidth. In 

this scheme, the hardware requirement is minimal. Figure 7.3a illustrates this transmission 

technique. The major drawback of this method is that it requires a larger dwell time. Therefore, it 
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is not the best choice for fast-scanning systems like PAWR but is very useful for systems such as 

cloud radars where the targets do not move or evolve quickly while the sensitivity is more 

critical. In a system whose bandwidth is large enough, the two waveforms can be designed so 

that their bandwidths are fitted within that band (e.g., the NASA D3R system (Chandrasekar et. 

al., 2011)). Volume-matching in this case is perfect and dwell time is reduced by half compared 

to the previous scheme. Apparently, this scheme is more suitable for PAWR. However, the cost 

is that the system needs more hardware components and computation power. Each scheme has 

its own advantages and disadvantages, but SES implementation is flexible enough to fit the 

design space of most radar pulse compression systems. In general, SES waveform design 

includes the following steps: 

1. Assign the first waveform frequency and bandwidth given the available resources of the 

system. 

2. Determine the waveforms’ durations. The first waveform duration is chosen so that it is 

able to provide adequate PSL performance for weather targets (for example, -50 dB). 

Again, the selection depends on the system specifications (e.g., transmitter duty cycle), 

the design domain (time or frequency domain) and other factors such as the system’s 

blind range requirement. Note that the blind ranges of the waveforms will determine the 

region where SES processing can be applied. 

3. Design the first waveform and its pulse compression filter. At this step, the objective is to 

acquire a decent PSL and range resolution performance at the output of the first 

waveform. 

4. Compute the range resolution of the compressed pulse of the first waveform. 
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5. Determine the second waveform’s bandwidth. This depends on the desired range 

resolution of the final output. If possible, this bandwidth is chosen to be equal to or 

smaller the inverse of the range resolution of the first waveform. 

6. Design the second waveform with parameters specified in steps 2 and 5. 

7.4.2 Result combination 

In SES processing, there are products available from the two waveforms. Output from the 

second waveform has better sensitivity and it is able to measure weak signals more accurately. 

However, at regions with strong returns, both waveforms should be able to provide comparable 

measurements. The products are independent because they come from two different waveforms; 

therefore, they can be arithmetically averaged to generate final results that have lower standard 

deviations. 

7.5 Method evaluation using simulation 

7.5.1 Pulse compression weather radar data simulation 

To validate the performance of the sensitivity enhancement system developed in this chapter, 

pulse compression radar signals are simulated for a variety of observation scenarios. Input 

profiles for the simulation are either synthesized profiles or actual measurements by the 

Collaborative Adaptive Sensing of the Atmosphere Integrative Project 1 (CASA IP1) radars. The 

simulation method is done similarly to the procedure described in Mudukutore et al. (1998) 

except that the effect of the Doppler shift (section 7.4.4) is added. In order to evaluate the 

sensitivity improvement, we chose that the two waveforms have the same width, which is 40 µs. 

The first waveform’s bandwidth is set at 4 MHz to provide an acceptable peak sidelobe level 
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when using a conventional mismatched filter. The second waveform is computed using the 

procedure described in the above section. Input parameters for the simulation are given in table 

7.1. 

Table 7.1: Pulse compression simulation input parameters. 

Parameters Values 
peak transmit power, W 200 
sampling frequency ( sF ), MHz 5 
waveform 1 pulse width, μs 40 
waveform 2 pulse width, μs 40 
waveform 1 bandwidth, MHz 4 
waveform 2 bandwidth, MHz 0.83 
noise figure, dB 4.5 
spectrum width, 1−ms  2 
m, samples 64 

 

7.5.2 Minimum ISL filter 

The minimization of integrated sidelobe level (ISL) (Ackroyd and Ghani, 1973) is an 

efficient technique for designing a mismatched pulse compression filter. The ISL filter has been 

shown to be excellent for weather radar applications (Bharadwaj et al. 2012). In this work, an 

ISL filter (also called Lp-norm filter) is used for the first SES waveform. 

This technique is based on the observation that if the input signal is an impulse, then the 

compressed pulse is the convolution of the transmit waveform and the pulse compression filter. 

If the compressed pulse’s peaks are pre-defined and are removed from the output, the remainder 

coefficients are considered as sidelobe components. An optimization procedure is formed where 

the cost function is the integrated sidelobe. Solving the optimization problem provides the ISL 

filter’s coefficients. The solution has a closed-form expression; therefore, the design of the filter 

is very fast and effective. 
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7.5.3 SES range-sidelobe performance 

When SES is primarily designed to improve the system sensitivity of a pulse compression 

weather radar, it needs to perform well in other aspects. First, SES should provide a good range 

sidelobe performance because this property is very important for a pulse-compression weather 

radar system. Radar measurements often show strong and steep gradients in range-power profile. 

Strong echoes may contaminate the nearby range gates via their sidelobes, resulting in large 

measurement biases. In this experiment, the analysis is done with simulated radar range profiles 

that allow us to control the power gradient level. Along with SES, a standard system using 

matched filters (MF) for the two waveforms is also implemented for comparison. Estimates from 

the first waveform will be averaged in range and be downsampled to have a comparable range 

resolution to that from the second waveform. In fig. 7.4, a range profile of radar reflectivity is 

synthesized as the summation of two Gaussian-shaped echoes. The narrow echo with high power 

mimics the return signals from ground clutter and the other simulates a weather echo. The two 

echoes are located close together to study the sidelobe effect of the filtering process. In addition, 

Doppler velocity is set to 25 ms-1 at all range gates. 
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Figure 7.4: Simulated input profile (solid black line) and results from different pulse 
compression filters. 

In figure 7.4, the Lp-norm filter for the first waveform (solid green line) performs pretty well. 

Its sensitivity is matched to that of the matched filter (dashed green line) while its PSL 

performance is significantly improved. In this case, the PSL level of the Lp-norm filter for the 

first waveform approximates -60 dB. Among those conventional filters, the matched filter for the 

second waveform (red dashed line) has a better sensitivity. This is explained by its smaller 

bandwidth. In contrast, its PSL performance is by far the worst, which is expected for a 

waveform with a time bandwidth product (BT) of only 33. As can be seen in fig. 7.4, the 

simulated weather echo is heavily contaminated by the sidelobes from the ground clutter and 

cannot be detected by this filter. The MF system for the second waveform does not meet the 

requirements for pulse-compression weather radar and cannot be used in practice. On the other 
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hand, the SES output (solid red line) for the second waveform shows the best performance in 

term of PSL. Even at high Doppler velocity (25 1−ms ), SES can provide -70 dB PSL. This level 

of range sidelobe suppression exceeds the sidelobe level of a typical two-way antenna pattern 

and, therefore, is adequate for most weather radar measurement scenarios. 

7.5.4 SES power measurement accuracy 

The second consideration is power measurement accuracy. In this section, a qualitative 

analysis of bias and standard deviation of SES power estimates is presented. Instead of using a 

Gaussian-shaped echo profile, a trapezoid profile with a specific gradient of 40 dB/km is used. 

The power ratio between the signals on either side of the gradient is 50 dB. Within a distance 

equal to a pulse’s length, from 12 km to 18 km, the power level changes from -112 dBm to -62 

dBm. Estimating a weak signal will be very challenging because of the strong signal involved in 

the de-convolution process. This is an extreme case and is used to test the power estimation 

performance of any pulse compression filters. The simulation runs many realizations to generate 

statistical plots. Figure 7.5a shows the input (solid blue line) and SES estimates. It can be seen 

that the estimates match pretty well with the input. Details of the measurement errors are 

depicted in fig. 7.5b. The solid line is for biases and the dashed line is for standard deviations. At 

most locations, the SES power bias is less than 1 dB. A slightly degraded performance occurs at 

the low region before the leading edge of the trapezoid, where SES underestimates the signal 

power by -2 to -1 dB and the corresponding standard deviations are a bit over 2 dB. However, at 

other ranges, the standard deviation is less than 2 dB. Results from a preliminary study 

demonstrate that, in the case of a moderate power gradient, SES provides unbiased estimates. 
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Figure 7.5: A trapezoid-shaped profile with a specific gradient of 40 dB/km. (a) Range profiles 
of input powers and estimated powers; (b) bias and standard deviation of the power estimates. 

7.5.5 SES Doppler velocity measurement accuracy 

Another important aspect that needs to be considered is the accuracy of Doppler velocity 

estimates. As mentioned above, a high gradient in Doppler shifts would degrade the performance 

of a pulse-compression filter system. On the other hand, the filter itself needs to estimate these 

Doppler shifts correctly. To test this capability of SES, a step-function velocity profile is used. 

The simulated velocity jumps from -13 1−ms  to 13 1−ms  at a range of 22 km and spectrum 

widths at all range gates are set at 2 1−ms . The power range profile is created in a similar way as 

in fig. 7.4. Figure 7.6a shows the range profiles of the true power (black line), estimated power 

from first waveform of SES (blue line), and from SES (red line). Input Doppler velocity profile 
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and output of the SES filter (red line) are plotted in fig. 7.6b. Within the precipitation region 

(located between the two dashed black lines), the estimated velocity profile closely matches the 

input profile. 

 

 

Figure 7.6: Step-function Doppler velocity profile with a 26 1−ms  step. Range profiles of signal  
power (a) and Doppler velocity (b).  

7.5.6 SES sensitivity gain 

The main contribution of SES is to provide a better sensitivity performance than 

conventional filter systems. In this section, an extensive analysis is performed to evaluate SES in 

this aspect. To assess the improvement in sensitivity, we define the SES sensitivity gain as the 

difference in sensitivity between the outputs of SES and a matched filter for the first waveform. 



173 
 

Minimum detectable reflectivity of the system using a matched filter for the first waveform is 

computed based on equation 7.10. For SES, since the filter coefficients change at each range 

gate, we cannot apply equation 7.10 directly. Thus, the sensitivity curve is obtained by means of 

simulation. To do that, a profile containing only receiver noise signal is used as the input for 

SES. The output profile is the sensitivity curve for SES. 

The first experiment in fig. 7.4 clearly shows that SES achieves the best sensitivity 

performance. Besides the excellent PSL performance, the sensitivity curves of the filters for the 

first waveform (solid red) and the SES filter for the second waveform (green lines) implies an 

improvement of 8.9 dB in sensitivity for SES. 

The analysis of the performance of SES thus far was done using synthetic profiles for 

reflectivity, velocity, SNR, etc. These profiles show the performance of SES in extreme 

conditions and provide a worst-case analysis. It is interesting to observe the behavior of SES 

with real weather profiles. To do that we ran SES on pulse-compression simulated data where 

inputs were generated from data collected by CASA IP1 Cyril radar during a tornado event in 

Oklahoma on February 10, 2009. The only modification here is that the power profiles are 

lowered for the purpose of studying sensitivity. All another moment profiles were retained as in 

the original data. The profiles were sampled at azimuth 330°. In fig. 7.7, powers are 20 dB less 

compared to the measurements. The top panel shows input reflectivity profile (solid black line), 

results from SES (red line) and MF for the first waveform (green line). The bottom panel depicts 

statistical plots. At regions with strong echoes (for example, a range from 16 to 19 km), SES and 

MF performance are comparable. Both systems are capable of providing accurate measurements. 

However, when the signal strength decreases (e.g., at a range from 23 to 25 km), the matched 

filter starts showing large power biases due to its lower sensitivity while SES still performs well. 
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The minimum sensitivity curves for both systems are generated and superimposed in the plot for 

comparison. With the radar specifications given in table 7.1, the SES sensitivity gain is 8.9 dB. 

In the next experiment, we reduce the input powers further (by 30 dB) so that the input 

reflectivity profile is completely below the sensitivity curve of the MF system for the first 

waveform (fig. 7.8a). The result is that the MF system for the first waveform fails to estimate the 

signal. Its power estimates show large biases (from 3.5 to 15 dB) at all range gates. In contrast, 

SES still works fairly well (fig. 7.8b). Due to the lower SNR, the biases and standard deviations 

in the SES power estimates are slightly worse compared to those in fig. 7.7. However, at the 

regions where the signal is above the minimum reflectivity curve, SES is able to provide 

measurements with adequate data quality for weather radar. It is recalled that SES deploys 

information about the medium extracted from the first waveform outputs which, in this case, is 

off by a large margin. Therefore, this test demonstrates that SES is a very stable and robust 

method. 

The advantage in sensitivity leads to more accurate estimates for SES compared to the 

conventional matched filters. One may think about improving the SES performance further by 

introducing an additional iterative procedure. In the first iteration, the reference profiles are 

extracted from the first waveform, as is normal. In the second iteration, they are replaced by the 

SES outputs at the first iteration. Using this strategy, the system sensitivity may be improved 

further. However, that technique is beyond the scope of this work and is not discussed here. 
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Figure 7.7: Cyril radar reflectivity profile at azimuth 330° (lowered by 20 dB for sensitivity 
analysis). (a) Estimated reflectivity profiles for MF and SES; (b) bias and standard deviation of 
reflectivity estimates. 
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Figure 7.8: Same as in fig. 7 but the input reflectivity profile was lowered by 30 dB. 

7.6 Illustration with D3R Ku-Ka system observations 

The objective of the D3R system is to provide ground-based measurements for cross-

validation with the precipitation observations of the GPM (Global Precipitation Measurement) 

program (Chandrasekar et al. 2010). To enable measurements for light rain and snow, the radar 

employs frequencies in the Ku and Ka bands. For both of these highly attenuating frequencies, 

the required sensitivity of the D3R is pegged at -10 dBZ at 15 km for a single pulse measurement 

in clear air. The radar also has a requirement of measuring Doppler velocity up to 25 ms-1, to 

enable this it operates in the staggered PRT 2/3 mode. With such a premium placed on its 
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sensitivity, the D3R system is an appropriate platform for testing the efficacy of the SES 

waveform. 

In its normal operational mode, the D3R employs a novel frequency-diversity waveform 

(Bharadwaj et. al., 2009) consisting of three subpulses of durations 40 μs (long), 20 μs 

(medium), and 1 μs (short). The long and medium pulses are each coded with the signal 

bandwidth of 3.6 MHz. For transmission, this waveform is upconverted from a baseband sample 

rate of 50MHz. The digital receiver subsamples the received waveform at 200 MHz and then 

processes the downconverted data through a pulse compression filter that has an output sample 

rate of 10 MHz (Mishra et. al., 2011). The in-phase (I) and quadrature-phase (Q) outputs are 

finally made available at a downsampled rate of 1 MHz. 

For the SES experiment on the D3R system, the waveform scheme consisted of only the long 

and medium subpulses. The pulse durations for the two-pulse SES waveform were kept identical 

to those of the long and medium pulses of the normal three-pulse D3R waveform (fig. 7.9). 

Further, the measurements obtained by the medium pulse in the SES waveform were used as a 

reference (the first waveform in the SES scheme). Therefore, the signal bandwidth (= 3.6 MHz) 

of the SES medium pulse was also identical to that of the medium pulse in the regular three-

pulse waveform. However, the SES long pulse was designed for 1 MHz bandwidth, which is 

different than that of the regular long pulse. This is because even though the medium pulse is 

processed in the 10 MHz compression filter, these data are only available at a downsampled rate 

of 1 MHz in the current radar configuration. This setup enables a fair comparison between the 

data corresponding to the two waveforms and maximum compatibility with the normal 

processing mode of the radar. The SES experiment on the D3R system was carried out on 
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October 17, 2011, during a light rain event. The D3R radar was deployed at the CSU-CHILL 

radar facility at Greeley, Colorado, at the time of the experiment. 

 

 

Figure 7.9: Waveform scheme for SES experiment on D3R system. 

Figure 7.10 shows the Ku-band measurements obtained by the two waveforms during a 

sector PPI scan. It should also be noted that the total blind range for the long pulse is 

approximately 9 km when operated in multi-pulse mode. The first row in fig. 7.10 shows the 

estimates of the signal’s first three spectral moments (reflectivity, mean velocity, and spectrum 

width) from a matched filter for the medium pulse in the SES scheme. The second row shows the 

outputs of the SES processing. In the weak echo regions such as the 330-360° sector, it is 

obvious that the SES processing provides enhanced sensitivity when compared to the medium 

pulse. Further, the observations made by the SES long and medium pulses show a remarkable 

agreement in the reflectivity as well as the velocity for the stronger echo regions (region between 

azimuth of 300-345° and range of 10-20 km). 
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Figure 7.11 shows in detail the reflectivity and velocity profiles at an azimuth of 279° as 

observed for the processing modes depicted in fig. 7.10. For the range gates with stronger echoes 

(such as those present from 10-18 km), the outputs of the MF for the medium pulse and the SES 

algorithm closely agree. At the range gates where weaker signals are exhibited (from 19 to 25 

km range), SES performance is superior over the MF system. SES is able to pick up lower 

reflectivity and significantly improves velocity estimates in those range gates.  

 

 

Figure 7.10: Sector PPI images of reflectivity (H-polarization) (left column), velocity (middle 
column), and spectrum width (right column) during a light rain event observed by the D3R 
system. Data are masked using a threshold of SNR>0 dB. (a) Top row: 3.6 MHz bandwidth 
medium pulse output processed with a matched filter. (b) Bottom row: Output of the SES system 
- a 3.6 MHz bandwidth medium pulse processed with an ISL filter as the reference signal for 1 
MHz bandwidth long pulse, coded and processed using SES algorithm. 
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Figure 7.11: Sample profile at azimuth of 279° to show the reflectivity and velocity 
measurements from SES (red lines) and from second waveform of D3R (blue lines). 

7.7 Summary 

It is likely that final goal for phased-array weather radar technology will include the use of 

low-power solid-state transmitters at each element of an active array. To meet the requirement of 

sensitivity for weather observations, a pulse compression technique is required. The conventional 

matched or mismatched filters have some limitations that partly downgrade the sensitivity. The 

work in this chapter addresses this problem. 

A new pulse compression system, SES, is developed here to achieve a better sensitivity than 

the traditional matched filter system. SES deploys a dual-waveform scheme. The two waveforms 

are related and can be transmitted simultaneously in the frequency domain or consecutively in 

the time domain. Time spacing between the two waveforms transmission is kept small to ensure 

that the precipitation is statistically stationary. Using the knowledge of the medium extracted 

from the first waveform, an adaptive filter for the second waveform is designed. The new filter is 

capable of achieving better sensitivity than the conventional matched filter. As demonstrated by 
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radar simulation and actual observations from the D3R Ka/Ku radar, SES is able to enhance the 

system’s sensitivity by 8 to 10 dB. SES also provides better range sidelobe performance and 

Doppler tolerance. Additionally, in regions with strong echoes, the results from the two SES 

waveforms can be combined to reduce the measurement standard deviations. The solid 

performance and flexibility in waveform design of SES are very useful for any pulse 

compression weather radar. In particular, the use of SES compensates for the loss of sensitivity 

in planar phased array weather radar at off-boresight directions. 
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CHAPTER 8 
 
 

SUMMARY AND FUTURE WORK 

 

8.1 Introduction 

The motivation for this research is the need for adaptive scan strategies and advanced signal 

processing techniques for phased-array weather radars (PAWR). For any phased-array radar, the 

scan strategy is considered as one of the most important components of the system. It is designed 

to command the radar to scan, to track, and to perform surveillance. It makes sure the system is 

working at its best capability. A scan strategy of a phased-array radar is designed based on the 

features and properties of the radar target and the goal of the sensing. The target of PAWR is 

weather, a volume target, which is very different from a point target in many aspects. Scan 

strategies for point targets have been developed extensively (e.g., in military applications) but 

research on this topic for volume targets is limited. This research work focuses on developing an 

electronic scan principle for PAWR with the objective of increasing scan speed without giving 

up measurement quality. To achieve a significant increase in scan speed, advanced signal designs 

and processing are required. 

The space-time variability feature of a weather system is the key to developing a scan 

scheduler for PAWR. Observations of storms show that the temporal scale of weather 

phenomena is proportional to their spatial scale. A space-time characterization model was 

introduced to verify this hypothesis and to provide scanning conditions for the scheduler. The 

model assumes that a storm system is a combination of motion and evolution processes. A 

procedure was developed to separate the two processes and to estimate the spatial scales present 
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in the storm. By applying the characterization model to a sequence of radar observations, a storm 

can be segmented into different scanning regions corresponding to each estimated spatial scale. 

Next, evolution times (or temporal scales) of these regions can be derived from their 2D 

correlation function. Tests on simulated and actual radar data confirm that large-scale regions 

evolve more quickly than regions with smaller spatial scales. The adaptive scan strategy is based 

on the principle that quickly evolving regions are scanned more often and spatial sampling must 

be matched to the spatial scale. Other considerations such as nowcasting and adaptive waveforms 

are also addressed to improve radar observations. In order to make the best use of radar 

resources, a block-pulsing scheme is employed. The block size should be kept as small as 

possible but must be large enough for efficiently implementing a clutter-filtering algorithm. 

Along with the pulsing scheme, a measurement error model is introduced to provide information 

on the estimate’s accuracy. The final but most important component of the scan strategy is a 

task-scheduling algorithm. In this work, the scheduling algorithm was designed based on a time 

balance concept. The scheduler works on a ray-by-ray basis. It also includes a procedure 

optimizing revisit times to obtain the fastest scan. Simulation-based analysis shows that the 

proposed scan strategy can reduce the scan time by a large factor.  

Due to the electronic scanning mechanism of PAWR, the coupling of H and V polarizations 

is more complicated than that of mechanically scanned weather radar.  If not removed, this 

coupling results in large biases in the polarimetric variables retrieval. The bias issue has been 

addressed by using a signal model for polarimetric PAWR. Based on the signal model, methods 

for bias correction are suggested. The model is also used as a framework for developing a 

simulation procedure for polarimetric PAWR. Preliminary results indicate that if the radar is well 

calibrated, inherent biases associated with polarimetric PAWR can be mitigated effectively. 
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However, noise effects after bias correction degrade the measurements’ accuracy at off-boresight 

directions. The degradation level depends on how far off boresight the beam is directed and how 

strong the signal is. Given all these conditions, the simulation turns out to be an important tool in 

designing a polarimetric PAWR. 

A PAWR scans different parts of the storm in a sequence and revisits them. While this 

strategy allows PAWR to precisely capture a storm’s evolution and reduces scan time 

significantly, it generates non-continuously sampled data. The received signal samples are 

grouped into blocks that are temporally separated by the revisit times. This characteristic of 

PAWR received signals brings difficulties to signal processing techniques, especially in handling 

ground clutter. To overcome this problem, a new clutter-filtering method based on the signal 

covariance matrix was developed. The size of the covariance matrix can be varied to meet the 

requirement of the clutter suppression ratio. In the case of PAWR, the covariance matrix size is 

set to be equal to the block size. Since the filter works in the time domain, it avoids the 

limitations associated with any spectral-based processing methods such as the spectral leakage 

problem. In addition, the new algorithm can take advantage of the absence of beam smearing due 

to non-rotating antenna in PAWR, thus resulting in a better performance. It has been 

demonstrated that the new filter performs equal to or better than that of the current state-of-the-

art filtering method. Moreover, it can be directly extended to staggered PRT waveforms, which 

is critical for waveform selection in PAWR. 

In order to design a PAWR with dual-polarization capability, additional techniques are 

developed to allow the clutter filter to perform polarimetric variable retrieval. Solutions for  

staggered PRT waveforms in the simultaneous mode and the alternating mode are presented. A 

unique filter is used for both horizontal and vertical channels in order to maintain the signal’s 
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correlation. In the simultaneous mode, filter modification is minimal because the waveforms 

used at the two channels are identical. In the alternating mode, a more complex modification is 

required due to the difference between the transmit waveforms. The result is that the final filter 

has additional notches besides the main notch at zero Doppler frequency. However, extensive 

analyses show that the method’s performance in the alternating mode is comparable to that in the 

simultaneous mode except for some slight increase in the standard deviation of the estimates in 

specific cases where the signal’s spectrum is narrow and overlaps the notches. The algorithm 

was successfully tested on both radar-simulated data and experimental observations from CSU-

CHILL  radar. 

The system sensitivity of a PAWR is limited by the use of low-power solid-state transmitters 

at the array element. Further, the performance degrades significantly at off-axis directions. On 

the other hand, PAWR requires a large SNR to increase the scanning speed. Therefore, the quest 

for improving PAWR sensitivity is high. The solid-state transmitter has a high duty circle that 

allows the use of a pulse-compression technique to improve sensitivity. However, in order to 

obtain acceptable range resolution for weather observations, the signal’s bandwidth must be 

increased such that it partly degrades system sensitivity. To mitigate this issue, we developed a 

sensitivity enhancement system (SES). The system uses a dual-waveform transmission scheme. 

The waveforms are transmitted diversely in the time or frequency domain. They are related and 

can be obtained via a unique design procedure. At the receiver, an adaptive filter is determined 

based on the self-consistency between the signals from the waveforms. The SES filter employs 

the information of the precipitation medium; therefore, it can achieve a better SNR than a 

conventional matched filter. By using appropriate waveforms, SES can improve the sensitivity 

by 8 to 10 dB. Radar simulations have been carried out for different scenarios to evaluate the 



186 
 

performance of the method. Further, a set of waveforms was designed and implemented on the 

NASA D3R system. Observed data were analyzed and the results are consistent with the 

simulation analysis. 

8.2 Future work 

The following items are suggested for future work in this area of research: 

Scan strategy 

• Perform more extensive studies on space-time variability on radar observations 

• Extend the space-time characterization model to three-dimensional data 

• Update the task scheduler to sample the atmosphere in three dimensions 

• Study the question of how to match spatial sampling resolution to spatial scale 

Signal processing  

• Study the effect of calibration errors on the bias correction methods 

• Study the possibility of the second-trip echoes suppression and recovery methods on 

PAWR 

Implementation 

• Implement the advanced principles on a prototype phased array radar 
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