
THESIS 

 

CHARACTERIZATION OF THE VULNERABILITY OF URBAN STREAMS TO NUTRIENT POLLUTION 

UNDER VARYING FLOW REGIMES 

 

Submitted by 

Chelsey Heiden 

Department of Civil Engineering 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Summer 2019 

 

Master’s Committee: 

 Advisor: Mazdak Arabi 

 Sybil Sharvelle 

 Tim Covino 

 



 

Copyright by Chelsey Rose Heiden 2019 

All Rights Reserved



ii 

 

ABSTRACT 

 

 

 

CHARACTERIZATION OF THE VULNERABILITY OF URBAN STREAMS TO NUTRIENT POLLUTION 

UNDER VARYING FLOW REGIMES 

 

 

 Nutrient pollution is a primary cause of water quality impairment in streams in the United 

States and throughout the world. Regulatory approaches under the Clean Water Act, such as 

water quality standards and the Total Maximum Daily Load program, aim to improve water 

quality. In this study, novel probabilistic methods are developed to characterize vulnerability to 

nutrient pollution along urban streams and to assess risk of water quality impairment under 

varying hydrologic conditions. Vulnerability is defined as the probability that ambient conditions 

exceed desired water quality standards. Both EPA ecoregional and state-level targets are 

included in the analysis. Specifically, the study i) explores relationships between urban influences 

and risk to nutrient pollution; and ii) expands on the load duration curve framework to quantify 

vulnerability to nutrient pollution as a function of flow exceedance probability. The study 

objectives are examined at 20 stream locations in four ecohydrologically different regions across 

the United States, including Denver, CO; Phoenix, AZ; Portland, OR; and Baltimore, MD. Total 

phosphorus (TP) and total nitrogen (TN) water quality data collected between 1990 and 2018 

with daily discharge measurements are utilized in the analysis. Indicators of urban influence 

include wastewater treatment capacity, urban land cover, impervious surfaces, and population 

density. In general, study locations exhibit vulnerability (greater than 5%) to nutrient impairment 

across urban gradients, including some relatively undisturbed monitoring locations. Nearly 30% 
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of TP sites and 45% of TN sites are impaired under state level regulation. Results indicate that 

incorporation of more stringent EPA ecoregional targets lead to higher vulnerability estimates 

than those corresponding to the state-level targets. Over 70% of TP sites and 55% of TN sites with 

state level standards are characterized as vulnerable (greater than 5%) when EPA goals are 

considered. Patterns of impairment through urban gradients are more evident in arid regions 

with wastewater-dominated river flows, specifically in Denver and Phoenix, than humid regions. 

Multiple linear regressions between indicators of urban influence and vulnerability provide 

strong (R2 > 0.7) relationships for most monitoring locations. Inverse distance weighted annual 

wastewater treatment facility flow capacity and urban land cover are the most significant 

predictors. However, the most important nonpoint source exploratory variable differ from site 

to site. More monitoring locations are required to determine model significance. In addition, 

assessment of nutrient pollution vulnerability using the enhanced load duration approach show 

that higher vulnerability to impairment tends to occur under consistent hydrologic conditions 

within each city. For example, high vulnerability to TN and TP impairments are observed under 

low flow conditions at sites within and around the Denver incorporated area. Conversely, 

nutrient levels during high flow conditions are more likely to exceed the TN and TP standards in 

Phoenix, Baltimore, and Portland. Many locations are vulnerable to nutrient pollution (greater 

than 5%) under all possible flow scenarios, especially at downstream monitoring locations. 

Approximately 85% of TP sites and 70% of TN sites are vulnerable under all flow conditions 

assuming EPA water quality goals. The methodology developed in this study can be used to 

probabilistically quantify the vulnerability to water quality impairments in streams and to identify 

hydrologic conditions under which higher vulnerabilities prevail. 
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 BACKGROUND 

Water quality is affected when watersheds undergo alterations in land use (Wang et al., 

2004; Omernik et al., 2016; Meter and Basu, 2017; Tasdighi et al., 2017). Urbanization, 

industrialization, and conversion of natural land cover to agriculture have led to cultural 

eutrophication (anthropogenic inputs of additional nutrients into waterbodies), a primary factor 

that has resulted in water quality degradation in U.S. surface waters. Though nutrients are 

important in maintaining health and diversity in water systems, excessive amounts can result in 

overgrowth of plant life, reduction of biological integrity, and increase human health risks 

associated with harmful algal blooms (Fuhrer et al., 1999; Boesch et al., 2001; USEPA, 2001). 

Excess nutrient levels, mainly total phosphorus (TP) and total nitrogen (TN), are the primary cause 

of impairment in 40% of U.S. rivers (USEPA, 2000). 

 Impairments are identified when water quality fails to meet designated use criteria for 

water bodies. In an attempt to mitigate impaired waters, the Clean Water Act (CWA) was created 

to set a national level goal to achieve water quality, wherever attainable, that protects wildlife 

and recreation in and on the water through the implementation of water quality criteria and 

Total Maximum Daily Load (TMDL) development. States were given the responsibility of 

establishing standards within their boundaries and allocating point source pollutant loads for 

impaired waters that were achievable and met designated use criteria of the CWA. 

 While impairments are already being observed across the nation for various pollutants, 

people and their impact on water quality through land use changes is expected to become even 
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more problematic with population growth. For this reason, predicting risk to nutrient pollution is 

important. In this research, vulnerability to nutrient pollution is analyzed across four urban 

gradients and at all probable flow conditions to target conditions and potential sources of 

pollution leading to impairment. Key outcomes of this research show that, in general, monitoring 

locations exhibit high vulnerability to impairment across urban gradients and flow regime, 

especially when the Environmental Protection Agency’s (EPA) ecoregional criteria are utilized in 

the framework. While urban land cover and wastewater treatment facility capacity most often 

explain vulnerability with strong correlation, predictor variables are not consistent from city to 

city. In addition, the cities of interest exhibit the same flow condition in which impairment occurs 

through urban gradients. The methodology developed in this study can be used to 

probabilistically quantify vulnerability to water quality impairments in streams and to identify 

hydrologic conditions under which higher vulnerabilities prevail. This work contributes to existing 

literature in environmental risk analysis to help understand urban influences and flow conditions 

that lead to impairment to assist watershed managers in meeting the goals of the Clean Water 

Act. 

 

1.2 UNDERSTANDING WATER QUALITY 

 Approximately two-thirds of Americans reside within incorporated places (Cohen, 2015). 

As cities continue to grow, they will increasingly exert stress on nearby water bodies. Extensive 

efforts have been made to understand the current state of surface waters and anthropogenic 

influences on water quality degradation across the United States and around the world. Two 

common methods to link urban influences to vulnerability are expanded to include the 
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characterization of vulnerability. The first method links influences and ambient water quality 

degradation using multiple linear regression techniques. The second method builds on the 

conventional load duration curve framework to investigate impairment across all flow conditions 

by comparing pollutant loads to loading capacity defined by water quality targets.  

 

1.2.1 MULTIPLE LINEAR REGRESSION ANALYSES 

 Multiple linear regression analyses have been conducted to link anthropogenic activities 

with water quality degradation. Some studies conclude that strong and significant relationships 

exist between percentage of urban land use and nutrient concentrations in surface waters 

(Fuhrer et al., 1999; Wang et al., 2004; Omernik et al., 2016; Tasdighi et al., 2017), though 

anthropogenic effects may be disproportionately greater than the urban land cover within a 

watershed (Wickham et al., 2008). Others suggest that waste discharge is the most obvious 

pollutant in urban settings, where low flows are dominated by effluent (Duda et al., 1982; 

Williams et al., 2014). However, most studies agree that it is a combination of upstream 

influences, varying from city to city, that lead to water quality impairment at any given location 

(Klein, 1979; McMahon and Cuffney, 2000; McMahon, 2012). One study across nine metropolitan 

regions conducted by the United States Geological Survey demonstrated regional difference in 

urban effects on streams, suggesting that additional research is needed determine the causes for 

these differences (Brown et al., 2009). While these analyses are important in identifying primary 

factors that explain increased pollutant degradation, they do not incorporate risk of impairment 

into the framework.  Rather than relating indicators of urban intensity to ambient water quality, 

this study related vulnerability to nutrient impairment to urban influences.  
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1.2.2 LOAD DURATION CURVE FRAMEWORK 

 Current water quality standards and TMDLs generally focus on a single numeric water 

quality target in combination with a dominant discharge or design flow (Cleland, 2003). Load 

duration curves (LDC) are a popular method used by states to assess impairment across all flow 

conditions and develop TMDLs.  In the LDC approach, the frequency and magnitude of numeric 

target exceedances, allowable loadings, and size of loading reductions can be visually presented. 

Typically, flow exceedance probabilities are broken into five categories (low flow [90%-100% 

exceedance], dry [60%-90% exceedance], mid-range [40%-60% exceedance], moist [10%-40% 

exceedance], and high flows [0%-10% exceedance]), in which impairment is assessed (Cleland, 

2002, 2003; USEPA, 2007b; Strickland and Korleski, 2009). Patterns of impairment can be 

examined to determine potential sources of pollution. For example, exceedances observed under 

low flow conditions often indicate point source pollution, while impairments under high flow 

conditions often indicate non-point sources of pollution (Cleland, 2002, 2003; USEPA, 2007b; 

Strickland and Korleski, 2009). Given a pollutant of interest and potential sources of upstream 

pollution, this framework is useful to target specific point and non-point sources of pollution 

leading to impairment and remediation opportunities. Various charts are available through the 

EPA to link flow conditions in which impairment is occurring to pollution sources and 

implementation strategies. While this approach considers hydrologic condition, the research 

presented in this thesis aims to quantify vulnerability to nutrient impairment across all flow 

exceedances, rather than within flow categories. 
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1.3 RESEARCH OBJECTIVES 

 The thesis presented here is composed of four chapters. The first chapter provides 

literature review of previous methods used for linking water quality to urban influences and risk 

assessment of waters around the U.S. and around the world. The second chapter’s objectives 

include (i) developing a framework for calculating vulnerability to water quality impairment for 

TP and TN across four urban gradients, (ii) investigating differences in vulnerability to water 

quality impairment between EPA ecoregional criteria and state level regulation, and (iii) 

evaluating factors that influence pollutant concentrations and vulnerability in urban streams. 

Four properties of water quality standards are incorporated into this frame work: allowable 

excursion frequency, number of annual samples, and a numeric target that defined quantiles of 

measured data are compared. Multiple linear regression analyses are conducted to describe 

ambient nutrient concentrations and vulnerability as a function of urban influences, including 

cumulative wastewater treatment capacity, population density, urban land use percentage, and 

impervious percentage.  

 The third chapter expands on the load duration curve framework to quantify vulnerability 

to nutrient pollution as a function of flow exceedance probability. Specific objectives of the third 

chapter include (i) developing a methodology to characterize uncertainty in empirical LDCs, (ii) 

examining trends in vulnerability to nutrient pollution in four ecohydrologically different regions 

across the United States, and (iii) exploring hydrologic conditions which urban streams have a 

greater likelihood of exceeding nutrient standards. In addition to identifying vulnerability to 

nutrient impairment across all possible flow quantities, the load and concentration reduction 

required to achieve 95% reliability (5% vulnerability) es also computed as a function of flow 
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exceedance probability. The final chapter summarizes the key results of chapters two and three 

while providing a general synopsis of this research.  

 

1.4 CHARACTERIZING VULNERABILITY TO NUTRIENT POLLUTION 

 A statistical approach to the characterization of nutrient impairment was developed in 

this study to understand risk of surpassing water quality standards across urban gradients at 

under different flow regimes. In many cases, sufficient water quality data is lacking due to the 

expensive nature of water quality monitoring. For this reason, the methods developed in this 

study use available ambient water quality at 20 locations in four U.S. cities to estimate pollutant 

concentration and loading. Then, a student’s t distribution is applied to quanitfy the probability 

of expected values exceeding water quality targets.  

 In the first part of the research (Chapter 2), observed nutrient concentrations are fit to a 

lognormal distribution. Expected values based on the distribution are computed and compared 

with numeric targets. Typical properties of water quality standards are considered, including 

frequency of excursion, annual samples collected, a numeric target, and a quantile of ambient 

water quality that is compared to the numeric target. The likelihood of the quantile value 

exceeding the numeric target es determined using a student’s t distribution, incorporating annual 

number of samples in the degree of freedom. Then, a binomial distribution is assumed to 

integrate excursion frequency into the analysis.   Vulnerability is compared between EPA 

ecoregional targets and state level standards to assess the feasibility of meeting water quality 

goals. In addition, a multiple linear regression (MLR) analyses are applied between vulnerability 

and point and non-point sources of urban pollution to relate impairment to urban influences. 
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 The second part of this research (Chapter 3) utilizes simple linear regression techniques 

to estimate nutrient loading and vulnerability across all probable flow conditions. Assuming the 

errors of the linear regression are normally distributed, confidence or prediction intervals of 

interest are computed and uncertainty understood. Vulnerability to nutrient pollution is defined 

as the probability of the standard error for the predicted mean load exceeding the numeric target 

load using a student’s t distribution at any flow exceedance probability. Patterns in vulnerability 

are then analyzed as a function of flow exceedance probability across urban gradients in the four 

regions to determine which hydrologic conditions had a greater likelihood of surpassing nutrient 

standards and load reduction necessary to achieve 95% reliability (5% vulnerability). 
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CHAPTER 2: A NOVEL AND PROBABILISTIC APPROACH TO CHARACTERIZING VULNERABILITY TO 

NUTRIENT POLLUTION IN URBAN STREAMS 

 

 

2.1 BACKGROUND 

 Changes in land use have led to eutrophication of surface water in the United States and 

around the word. Addition of excess nutrients, primarily total phosphorus (TP) and total nitrogen 

(TN), from various anthropogenic activities have resulted in degradation of 40% of U.S. rivers 

(USEPA, 2000). The Clean Water Act (CWA) was established to improve water quality in U.S. 

surface waters through the development of Total Maximum Daily Loads (TMDL) and water quality 

standards. Ultimately, states were given the responsibility of creating, implementing, and 

maintaining TMDLs and water quality standards.  

The U.S. Environmental Protection Agency (EPA) established numeric guidelines for 

important pollutants, including TP and TN, within relatively homogeneous Level III ecoregions to 

assist States in developing water quality standards. According to this framework, targets were 

defined as the 25th percentile of a general population within each ecoregion, which are intended 

to characterize natural conditions (concentrations that would exist without human influences) 

regardless of feasible attainability (USEPA, 2001). Research has shown nutrient concentrations, 

even in relatively undisturbed watersheds, often exceed targets proposed by the EPA (Ice and 

Binkley, 2003; Herlihy and Sifneos, 2008). For this reason, states establish their own numeric 

targets to more accurately reflect background conditions and the watershed’s ability to feasibly 

attain standards given current technology and mitigation expenses. 
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 In many cases, four primary characteristics define state level water quality standards: 

annual sampling frequency, frequency of excursion, numeric target, and a quantile (usually 

median) of measured concentrations to represent annual conditions that is not to exceed the 

numeric target. Williams et al. showed that more samples are required as ambient 

concentrations approach water quality standards to achieve a high levels of significance (Williams 

et al., 2014), therefore, incorporating annual number of samples in the development of water 

quality is crucial in impaired locations. The EPA recommends specifying an allowable excursion 

frequency or using a measure of central tendency to account for extraordinary fluctuations in 

ambient water quality (USEPA, 2001), however, permissible frequencies should allow for aquatic 

ecosystems to recover from most exceedances (Stephen et al., 1985). Finally, the numeric target 

itself is developed to meet designated use criteria for surface waters, in which a given quantile 

of annual measurements cannot surpass. 

 Little research has been conducted to quantify risk to nutrient pollution. In an attempt to 

assess the condition of U.S. waters, previous research defined risk as the probability of equaling 

or exceeding various quantiles (such as median) of observations (Wickham et al., 2008). However, 

this procedure only identifies relative risk at each monitoring location without consideration for 

water quality standards that define impairments.   

 Multiple linear regression analyses have been utilized to relate various urban influences 

and water quality to better understand conditions that lead to degradation. Some studies 

conclude that strong and significant relationships exist between percentage of urban land use 

and nutrient concentrations in surface waters (Fuhrer et al., 1999; Wang et al., 2004; Omernik et 

al., 2016; Tasdighi et al., 2017), though anthropogenic effects may be disproportionately greater 
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than the urban land cover within a watershed (Wickham et al., 2008). Others suggest that waste 

discharge is the most obvious pollutant in urban settings, where low flows are dominated by 

effluent (Duda et al., 1982; Williams et al., 2014). However, most studies agree that it is a 

combination of upstream influences, varying from city to city, that lead to water quality 

impairment at any given location (Klein, 1979; McMahon and Cuffney, 2000; McMahon, 2012). 

These analyses are important in determining primary factors that can explain increased pollutant 

concentrations in order to meet the goals of the CWA as cities, and their influences, continue to 

grow. 

In this study, risk to nutrient pollution is characterized as a function of both ambient 

concentration and likelihood of exceeding water quality targets in various regions across the 

United States. Specific objectives include (i) developing a framework for calculating vulnerability 

to water quality impairment for TP and TN across four urban gradients, (ii) investigating 

differences in vulnerability to water quality impairment between EPA ecoregional criteria and 

state level regulation, and (iii) evaluating factors that influence pollutant concentrations and 

vulnerability in urban streams. Understanding the relationship between urban activities and risk 

of water quality impairment is essential in a time where cities are continuing to grow in order to 

meet and maintain the goals established by the Clean Water Act.  

While many previous studies have focused on relating urban intensity to ambient 

pollutant concentrations, none have developed a probabilistic model that incorporates ambient 

water quality and water quality standards to understand risk to impairment, applied in multiple 

ecohydrological regions around the United States. EPA ecoregional targets have been compared 

to true background conditions, but not incorporated in a probabilistic framework and compared 
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with implemented state level standards. Ultimately, this framework can be used to determine 

the likelihood of meeting water quality standards along urban gradients, implications of 

inappropriate numeric targets, reduction required to meet specific vulnerability goals, and urban 

influences most related to vulnerability. 

 

 

2.2 MATERIALS AND METHODS 

 In this research, vulnerability to nutrient pollution was defined as the probability of 

ambient water quality exceeding water quality targets in four regions across the United States. 

Total phosphorus and total nitrogen observations were fit to a lognormal distribution, where the 

expected quantile of the distribution, defined in water quality standards (EPA ecoregional targets 

and state level standards), was computed and compared with numeric targets. The likelihood of 

the quantile value exceeding the numeric target was determined using a student t distribution, 

incorporating annual number of samples in the degree of freedom. Then, a binomial distribution 

was assumed to integrate excursion frequency into the analysis.   Vulnerability was compared 

between EPA ecoregional targets and state level standards to assess the feasibility of meeting 

water quality goals. In addition, a multiple linear regression (MLR) analysis was conducted 

between vulnerability and point and non-point sources of urban pollution to relate impairment 

to urban influences.  

  

2.2.1 STUDY AREAS 

 Four study regions with various ecohydrologic conditions, shown in Figure 1, were 

selected for analysis. Each city provided unique urban influences, water quality standards, and 



12 

 

therefore, vulnerability to nutrient impairment. Figure 1 exhibits the four study regions located 

in Denver, Colorado; Portland, Oregon; Phoenix, Arizona; and Baltimore, Maryland with land use 

and wastewater treatment facility (WWTF) locations and capacities.  

 The South Platte River Basin has a drainage area of approximately 224,300 mi2, and 

extends into Colorado, Nebraska, and Wyoming. Headwaters of the South Platte River begin 

along the Continental Divide in the Rocky Mountains in central Colorado, where the river flows 

to its confluence with the North Platte River in Nebraska. Approximately three million people 

reside in the South Platte River basin, where the majority of the population is located in urban 

corridors along the front range of northern Colorado. This study selected a primarily semi-arid 

portion of the South Platte River that captures inputs from Denver, Colorado and upstream 

tributaries. The Colorado Department of Public Health and Environment (CDPHE) has established 

water quality standards for a variety of parameters, including TP and TN. According to Regulation 

31, annual median TP and TN are not to exceed 0.17 mg/L and 2.01 mg/L, respectively, with an 

allowable exceedance frequency of 1-in-5 years. 

 The Willamette River Basin is located in Oregon, stretching nearly 300 miles from its 

headwaters in Eugene to the confluence with the Columbia River near Portland. Approximately 

2.5 million people live within the Willamette River Basin’s 11, 500 mi2. Generally, this watershed 

experiences temperate oceanic climate. The 17 mile portion of the Willamette River that passes 

through Portland, Oregon focused on in this study serves the most urbanized portion of the 

watershed and is home to native salmon and steelhead fish that migrate between the ocean and 

spawning streams. Oregon does not have specific TP and TN water quality regulations in place 

for the Willamette River and tributaries. However, Oregon’s Department of Environmental 
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Figure 1. The study areas located in Portland, Oregon; Denver, Colorado; Phoenix, Arizona; and Baltimore, Maryland with sampling 

sites, land use, and annual wastewater treatment facility (WWTF) capacity. 
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Quality (DEQ) has numeric standards for chlorophyll-a, pH, and dissolved oxygen, which are 

intended to prevent eutrophication in rivers and lakes and protect native fishes.  

The Salt River Basin stretches 300 miles from mountainous headwaters above 11,000 ft 

in elevation to the desert just west of Phoenix, Arizona at 1,200 feet, supporting over 4.5 million 

people along the way. The lower portion of the Salt River is experiencing increasing competition 

for water resources, leaving little water and hydrologic connectivity for aquatic life. A series of 

dams and reservoirs regulate and divert flow to provide water and energy for Phoenix and 

surrounding urban areas. This study focuses on the portion of the Salt River that passes through 

Phoenix, along with one of its main tributaries, the Verde River. Arizona’s DEQ has established 

water quality standards for particular portions of the Salt and Verde Rivers for a variety of 

pollutants, including TP and TN. According to Arizona’s DEQ Chapter 11 regulation, 90% of annual 

measurements along the Verde River and upstream tributaries cannot exceed 0.3 and 1.5 mg/L 

for TP and TN, respectively. In addition, the Salt River below Stewart Mountain Dam to its 

confluence with the Verde River is to have annual mean TP and TN concentrations less than 0.05 

and 0.60 mg/L, respectively.  

Gwynns Falls Watershed, located in the southwestern portion of Baltimore County, is 

much smaller than the other cities included in this study. With an area of 61 mi2, nearly 350,000 

people live in this highly urbanized watershed. Anthropogenic stressors have made Gwynn Falls 

impaired for nutrients, sediments, and bacteria, impacting biological communities despite not 

have any wastewater treatment facility contributions. The climate is humid subtropical. While 

the focus of the study was to investigate Baltimore’s influences on Gwynn Falls, upstream urban 

influences within the watershed were also considered. Maryland does not have specific water 
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quality targets for Gwynn Falls, however, a TMDL was implemented to improve the health of 

Chesapeake Bay, located downstream of Gwynn Falls. Instead of pollutant concentrations being 

regulated, Maryland has given load allocation to major point sources to reduce pollution that 

travels to Chesapeake Bay.  

 

2.2.2 WATER QUALITY DATA 

 Since the establishment of the CWA and TMDL programs, many cities around the U.S. 

have implemented extensive monitoring of regulated water quality parameters. Publicly 

available water quality data collected between 1990 and 2018 were obtained from the United 

States Geological Survey (USGS), EPA’s Storage and Retrieval (STORET) database, and state and 

regional level water quality monitoring programs, shown in Table 1. Data collected between 1990 

and 2018 were selected to incorporate a wide range in climatic variability while reducing the 

effect of non-stationarity. Grab samples collected for TP and TN were in accordance with 

approved state or federal methods, allowing comparison between sites with data from different 

sources. Monitoring locations within HUC 8 watersheds that intersect U.S. Census incorporated 

areas for each city and with twelve or more samples were selected for analysis. This approach 

included upstream locations that were intended to indicate relatively undisturbed water quality 

conditions for each region. Water quality monitoring stations were selected to have 

corresponding flow data in order to calculate pollutant loading, as discussed in Chapter 2 of this 

report. A regression of order statistics was conducted for sites that had concentrations below the 

detection limit using ProUCL 5.1 (USEPA, 2013). 



16 

 

Table 1. Water quality data sources explored for each region of interest. Bolded sources were utilized to characterize 

vulnerability to nutrient pollution.  

City Water Quality Data Sources 

Denver, Colorado 

USGS 

STORET 

Colorado Department of Health and Environment 

Colorado Division of Water Resources 

Portland, Oregon 

USGS 

STORET 

Ambient Water Quality Monitoring System 

Baltimore, Maryland 

USGS 

STORET 

Long Term Ecological Research Program 

Chesapeake Bay Program 

Phoenix, Arizona 

USGS 

STORET 

Arizona Department of Environmental Quality 

Long Term Ecological Research Program 

 

2.2.3 EPA LEVEL III ECOREGIONAL TARGETS 

Under the Clean Water Act, States and Tribes have been given the responsibility of developing 

and implementing water quality standards. Various levels of progress have been made towards 

developing criteria around the U.S. Some states have numeric goals established and   

implemented for multiple parameters; other states remain in the monitoring and development 

phase (USEPA, 2018).  

The EPA has taken steps to guide authorized jurisdictions to establish numeric targets and 

protect U.S. surface waters. The EPA identified the 25th percentile of the develop distribution of 

all streams within homogeneous regions, level III ecoregions, to establish numeric nutrient goals 

that took regional variation and background nutrient conditions into consideration (Omernik and 

Griffith, 2014). This method for establishing nutrient criteria was selected for the purpose of 

maintaining consistency between states that lack water quality standards and to allow 
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comparison with established, state level standards in Denver, Colorado and Phoenix, Arizona. It 

was assumed that the quantile of interest was the median.  

The 25th percentile of the general population of sample concentrations is intended to 

represent naturally occurring conditions.  However, additional research has concluded that 

recommended concentrations do not accurately reflect reference conditions (Ice and Binkley, 

2003; Herlihy and Sifneos, 2008). Under an inappropriate assumption that the 25th percentile of 

all sites represents background conditions, the EPA numeric goals may not be feasibly attainable. 

Furthermore, the 25th percentile method to represent natural conditions does not incorporate 

economic feasibility that may hinder regions’ ability to meet EPA ecoregional targets.  

 In addition to the numeric target, it is important for states to identify duration, frequency, 

and magnitude of allowable exceedance to account for extraordinary conditions in which targets 

cannot be met (USEPA, 2001). According to the EPA, water quality impairments should not reach 

levels that harm aquatic species. Studies have shown that recovery from pollutant stress can 

occur anywhere from six weeks to ten years depending on the magnitude of the stressor. To 

account for variability in magnitude of exceedance, the EPA recommends an excursion frequency 

of 1-in-3 years, in which most aquatic systems can recover (Stephen et al., 1985). This excursion 

frequency was used in combination with EPA ecoregional numeric guidance to characterize 

vulnerability to nutrient pollution. Little information was available regarding the intended 

collection and excursion frequencies, therefore the average annual number of samples collected 

was used as the collection frequency.  

 

2.2.4 CHARACTERIZING VULNERABILITY 
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 A proper statistical distribution to describe nutrient concentrations was important in the 

characterization of vulnerability and relation of vulnerability to urban influences. Research has 

shown that nutrient concentrations are lognormally distributed (Kutner et al., 2005; Williams et 

al., 2014; Tasdighi et al., 2017). Probability plots and the correlation coefficient, R, in ProUCL 5.1 

were used to test if observations fit a lognormal distribution with 90% confidence for this 

analysis. In general, a lognormal distribution described measured TP and TN concentrations for 

the selected sites when non-detect values were accounted for using a lognormal linear regression 

of order statistics (R > 0.90 and R > 0.88 for TP and TN, respectively). 

Vulnerability to TP and TN was characterized as the probability of exceeding numeric 

targets (T), based on a given quantile (q) of measured ambient water quality, excursion frequency 

(𝜏), and number of annual samples (k) at each monitoring station. Measured pollutant 

concentrations (x) were assumed to be log-normally distributed such that 𝑦 = log⁡(𝑥) is normally 

distributed with sample mean (𝜃) and variance (𝜔) computed from a maximum likelihood 

estimation.  𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} [1] 𝑦⁡~⁡𝑁(𝜃, 𝜔) [2] 

In order to determine if a given quantile (q) of ambient water quality exceeds numeric 

targets, the expected value (𝑌̂𝑞) and standard deviation (𝜎̂𝑞) of the quantile for a normal 

distribution was calculated as 𝑌𝑞 = ⁡𝜃 + 𝑧𝑞𝜔 [3] 

𝜎𝑌𝑞 = 𝜔2𝑛 (1 + 12 𝑧𝑞2) [4] 
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where the standard normal variable (𝑧𝑞) for a given quantile can be obtained from the standard 

normal table based on the quantile of interest.  𝑧𝑞 =⁡𝜙−1(𝑞) [5] 

For a given set of n log-transformed water quality observations (y), the probability that 

the expected quantile value (𝑌𝑞) exceeds the log-transformed numeric target concentration (T) 

(either the EPA’s ecoregional targets or state level regulation), was computed as 𝑃 = 1 − 𝐹𝑌𝑞[log⁡(𝑇)] [6] 

where 𝐹𝑌𝑞[log(𝑇)] is the cumulative distribution of 𝑌𝑞. Applying a student’s t distribution, 

because some monitoring stations have less than 30 observations, with k-1 degrees of freedom, 

the probability of exceedance in any given year (P) was expressed as 

𝑃 = 1 − 𝜙 [log(𝑇) − 𝑌𝑞𝜎𝑞 ] [7] 

where 𝜙 is the non-exceedance probability for the student t distribution, T is the target 

concentration, and k is number of annual samples collected. Because the EPA recommends some 

allowable excursion frequency, and many state level regulations incorporate excursion 

frequencies into their water quality standards, a binomial distribution was utilized to calculate 

the probability of exceeding water quality targets 1-in-𝜏 years 

𝑉 = 1 −∑(𝜏𝑖) 𝑃𝑖(1 − 𝑃)𝜏−𝑖1
𝑖=0  [8] 

where V is the vulnerability to nutrient pollution. Table 2 shows the values used in the analysis 

for EPA and state level targets, where available.  
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Table 2. Properties of water quality standards used to characterize vulnerability, where T is the numeric target (mg/L), q is the 

quantile which is tested against the target, and 𝜏 is the frequency of excursion (1-in-𝜏 years). Annual number of samples 

collected, k, was assumed to be the average annual number of samples collected for each site.  

 City 
Total Phosphorus Total Nitrogen 

T q 𝜏 T q 𝜏 

EPA 

Denver 0.06 0.5 3 1.07 0.5 3 

Baltimore 0.04 0.5 3 2.225 0.5 3 

Portland 0.025 0.5 3 0.607 0.5 3 

Phoenix 0.04 0.5 3 0.32 0.5 3 

State 
Denver 0.17 0.5 5 2.01 0.5 5 

Phoenix 0.05/0.03 0.5/0.9 1 0.60/1.5 0.5/0.9 1 

 

Because vulnerability was expressed as a probability of impairment, vulnerability was 

limited to values between zero and one and does not indicate the magnitude of excursion for 

sites with V = 1. The required concentration reduction to achieve 95% reliability (V = 0.05) was 

calculated to indicate the magnitude of exceedance at each monitoring site. Assuming a constant 

coefficient of variation, the concentration associated with V = 0.05 was calculated using 

Equations 2 through 8. The required reduction was calculated as the difference between median 

(or other quantile of interest) ambient water quality concentrations and concentration necessary 

to achieve 95% reliability. Negative difference values were assumed to require zero reduction. 

 

2.2.5 GEOSPATIAL ANALYSIS 

 In addition to characterizing vulnerability to nutrient pollution, vulnerability was related 

to various factors of urban intensity within each subbasin. Because all upstream anthropogenic 

activities impact downstream water quality, where consecutive urban areas have cumulative 

effects on river quality, watershed delineations were performed to capture all upstream inputs 

that contribute to each monitoring station (Glińska-Lewczuk et al., 2016). ArcSWAT 2012 (USEPA, 

2014) was utilized to delineate drainage areas and estimate flow accumulation locations using 
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the USGS’s National Elevation Dataset one-third arc-second (10 m) Digital Elevation Model (DEM) 

images. Flow accumulations lines developed by ArcSWAT were used in combination with spatial 

analyst tools in ArcMap to calculate upstream river mile for selected monitoring stations. 

 

2.2.6 CHARACTERIZING URBAN INTENSITY 

 Various anthropogenic sources of pollution contribute to water quality degradation in 

urban settings, including wastewater treatment and industrial discharges and urban runoff. 

Indicators of these influences, such as impervious surfaces, urban land use, population density, 

and wastewater treatment capacity were used in this analysis to characterize urban intensity. 

Analyzing one point (WWTF capacity) and one non-point (impervious percentage, urban land use 

percentage, and population density) predictor variables allowed for a multiple linear regression 

with the least amount of multicolinearity.   

 National Pollutant Discharge Elimination data were collected to estimate WWTF 

contribution using inverse distance weighting (IDW). The total distance used for IDW was 

calculated as the sum of overland flow distance to the nearest stream segment and the distance 

from the nearest stream segment to downstream sampling locations along the river. Overland 

distances and river routing were conducted in ArcMap using spatial analyst tools. Incorporating 

IDW, which considers both WWTF capacity and distance to the monitoring station, allowed for 

increased data significance between a major point source of pollution and ambient water quality 

and vulnerability. 

Land use, imperviousness, and population density data that corresponded with mean 

sampling year for each site was gathered. Impervious surfaces and land use data from the 
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National Land Cover Database (NLCD) was obtained to calculate impervious percentage and 

urban land use percentage. Urban areas were defined as low, medium, and high intensity 

developed land and developed open space under the NLCD classification system. Tract level 

population data were obtained from the U.S. Census and utilized to calculate population density. 

ArcMap zonal statistics and geoprocessing tools were used to perform calculations within each 

drainage area. 

 

2.3 RESULTS 

 The framework developed to characterize vulnerability to nutrient pollution took the four 

characteristics of water quality standards into consideration. In general, EPA ecoregional targets 

were more stringent than state level targets, leading to greater vulnerability. Many sites 

exhibited 100% vulnerability, suggesting that either standards need to be modified to take 

current technology into consideration or watershed management practices need to be 

implemented to reduce the likelihood of impairment. Impairment was especially high at 

downstream monitoring locations. A threshold existed, causing vulnerability to be equal to either 

0% or 100% in most cases.  Due to this threshold, the relationship between vulnerability and 

urban influences was weak and insignificant. Instead, the concentration reduction to achieve 95% 

reliability was related to urban influences. In general, strong relationships existed, where 

nonpoint sources of pollution that best correlated with vulnerability differed from region to 

region. 

 

2.3.1 CHARACTERIZING VULNERABILITY 
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 Vulnerability to nutrient pollution was calculated as function of ambient water quality 

and four conventional properties of water quality standards. Table 3 shows the results of the 

vulnerability framework for Denver, CO; Baltimore, MD; Portland, OR; and Phoenix, AZ for each 

site where data was available. Note that Denver, CO and Phoenix, AZ were the only locations with 

state level water quality standards implemented.  

Table 3. Results of vulnerability analysis for TP and TN in Denver, CO; Baltimore, MD; Portland, OR; and Phoenix, AZ assuming 

EPA ecoregional criteria and state level regulation, where available.  

City Site 
Total Phosphorus Total Nitrogen 

EPA Vul State Vul EPA Vul State Vul 

Denver 

DEN1 1.000 1.000 1.000 1.000 

DEN2 1.000 1.000 1.000 1.000 

DEN3 -- -- 1.000 1.000 

DEN4 1.000 0.000 1.000 0.004 

DEN5 0.001 0.000 0.000 0.000 

DENBEAR -- -- 0.003 0.000 

DENPLUM -- -- 1.000 1.000 

Baltimore 

BAL1 0.000 -- 0.000 -- 

BAL2 1.000 -- 0.000 -- 

BAL3 0.717 -- 1.000 -- 

BAL4 0.000 -- 0.000 -- 

BAL5 0.000 -- 0.000 -- 

BALDEAD 0.000 -- 1.000 -- 

Portland 

POR1 1.000 -- 1.000 -- 

POR2 1.000 -- 1.000 -- 

PORPUDD 1.000 -- 1.000 -- 

PORCLAC 0.000 -- -- -- 

PORJOHN 1.000 -- 1.000 -- 

Phoenix 

PHO1 1.000 -- -- -- 

PHO2 1.000 -- 0.000 -- 

PHO3 0.998 0.021 0.000 0.005 

PHOSALT 0.744 0.003 0.000 0.000 

PHOEVER 0.001 0.009 -- -- 

 

 In arid regions, water quality decreased through urban gradients causing vulnerability to 

increase with distance downstream. Wastewater often dominated low flow conditions in arid 
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regions, causing water quality impairments with distance downstream. This was true for TP and 

TN in Denver, CO and TP in Phoenix, AZ.  Figure 2 provides a plot of TP and TN concentrations in 

Denver, CO as a function of river mile for all monitoring locations, where the red line represents 

Regulation 31 numeric targets. Vulnerability is symbolized by the color of the points. Locations 

with concentrations below the target are less vulnerable to nutrient pollution than sites with 

concentrations that exceed the target, validating the framework to characterize vulnerability. In 

addition, a bar plot of cumulative inverse distance weighted wastewater treatment facility 

capacity is provided, in which correlations between urban influence and water quality can be 

visualized. For all median concentrations, except TN and TP in Baltimore and TN in Phoenix, the 

downstream-most location, usually representing the most urbanized portion of the watershed, 

exceeded EPA targets and were highly vulnerable to nutrient pollution.   

 Only two cities, Denver, CO and Phoenix, AZ, had water quality standards implemented, 

in which vulnerability between EPA ecoregional standards and state level standards could be 

compared. In Denver, EPA ecoregional targets were 35% less for TP and 53% less for TN than 

Regulation 31 numeric targets. This resulted in average vulnerability values that were 50% 

greater for TP and 25% greater for TN. DEN4 had very little risk to surpassing Regulation 31 

standards (V = 0.004), however, was highly vulnerable (V = 1.000) under EPA ecoregional criteria. 

Figure 3 depicts a contour plot of vulnerability at various combinations of numeric targets and 

median concentrations at DEN4. EPA and Regulation 31 numeric targets and the actual median 

are displayed as the red polygons. DEN4 was not vulnerable under Regulation 31 and highly 

vulnerable under EPA recommendation. Similarly, Chapter 11 of the ADEQ had less stringent 

standards than the numeric goals of the EPA at most monitoring locations, resulting in smaller  
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Figure 2. Concentrations of nutrient variables and cumulative inverse distance weighted wastewater treatment capacity (IDW 

WWTF) as a function of river mile along the South Platte River through Denver, CO for TP and TN. Sites are ordered by river mile 

to the downstream confluence with the Cache La Poudre River. The color of points symbolized the vulnerability at that site and 

red line represents the numeric standard established by CDPHE’s Regulation 31. In addition, the number of samples collected is 

shown as the values in the blue shaded region. 

 

vulnerability at all locations except for PHO3 for TP and PHOEVER for TN. Numeric targets 

between the EPA and ADEQ could not be directly compared due to the fact that ADEQ water 

quality standards use q = 0.9 at PHO3 and PHOEVER rather than the median, such as in Denver, 

CO and EPA ecoregional targets. 

 In most cases, vulnerability was nearly zero or nearly one. BAL3 and PHOSALT were the 

only two locations that had 0.0 < V < 1.0 when EPA targets were utilized in the calculation of 

vulnerability. Minimal gradients in vulnerability resulted from insufficient spatial variability in 

monitoring locations and the existence of a threshold in which a very small window where 
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vulnerabilities less than one and greater than zero exist. Figure 3 shows vulnerability as a function 

of median TN concentration and target value for station DEN4, assuming the coefficient of 

variation remains constant and a one-in-five year excursion frequency defined in CDPHE’s 

Regulation 31. Few combinations of median concentration and numeric target values produce 

vulnerabilities less than one and greater than zero, especially when more stringent targets were 

assumed, shown by tighter contours in Figure 3. For example, the range in which vulnerabilities 

are less than one but greater than zero for a target of  2.01 mg/L (as defined by Regulation 31 for 

the South Platte River in Denver) was greater than a target of 1.07 mg/L (as defined by EPA 

recommendation). For this reason, more monitoring stations or larger numeric targets were 

needed to capture the gradients in vulnerability. 

 
Figure 3. Vulnerability at various combinations of median TN concentrations and numeric targets at DEN4 assuming a constant 

coefficient of variation and 1-in-5 year excursion frequency. The purple area represents combinations in which the site is not likely 

to be impaired, while the yellow area represent highly impaired combinations. The red circle and square symbolize the true 

combination of median TN concentration and the Regulation 31 or EPA ecoregional numeric targets, respectively.  

 

 The threshold that exists in the characterization of vulnerability to nutrient pollution 

makes a multiple linear regression between vulnerability and urban influences invalid. For this 
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reason, the concentration required to achieve V = 0.05 was calculated using the same procedure 

to calculate vulnerability, except in reverse and assuming the coefficient of variation remained 

constant. Required reduction reflected the magnitude and gradient of vulnerability, even when 

vulnerability was 0 and 100%. Figure 4 exhibits required reduction for each site assuming EPA 

ecoregional criteria where a clear gradient in reduction is shown. More reduction was needed in 

Denver for TP and TN, Portland for TN, and Phoenix for TP with distance downstream when EPA 

ecoregional criteria are assumed. This is also true when Regulation 31 TP and TN standards are 

applied to Denver monitoring sites, where less stringent standards are reflected with less 

reduction required. See Appendix A for required reduction for each site. 
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Figure 4. Required reduction at each monitoring site for TP (top) and TN (bottom) in Denver; CO; Portland, OR; Baltimore, MD; 

and Phoenix, AZ along with incorporated areas, National Hydrography Dataset flowlines, WWTF capacity and locations, and land 

cover within each watershed of interest. 

 

2.3.2 MULTIPLE LINEAR REGRESSION ANALYSIS 

 Table 3 shows various urban influences within each drainage area as a result of the 

geospatial analysis. In general, point and non-point sources of pollution increase with distance 

downstream through urban gradients, leading to water quality impairment. Some cities, such as 

Denver for TP and TN and Phoenix for TP experienced obvious reduction in water quality, which 
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may be related to the increased anthropogenic activities occurring with distance downstream. In 

addition, it is important to note that high vulnerability values resulted even in undisturbed 

watersheds when using EPA ecoregional criteria, such as at PHO3 and PHOSALT for TP.   

Table 4. Urban influences within each subbasin, including cumulative inverse distance weighted wastewater treatment facility 

capacity (IDW WWTF), urban land cover percentage (ULC), impervious surface percentage (IS), and population density (PD).  

City Site 
River Mile IDW WWTF ULC IS PD 

(MI) (MGD) (%) (%) (peo/mi2) 

Denver 

DEN1 37 8.17 13.35 5.13 502 

DEN2 57 21.42 12.30 4.37 476 

DEN3 69 6.88 9.43 3.44 359 

DEN4 82 3.77 5.45 1.76 170 

DEN5 91 3.69 2.32 0.60 41 

DENBEAR -- 1.00 10.48 3.93 435 

DENPLUM -- 2.91 12.87 3.35 263 

Baltimore 

BAL1 2 0.00 78.87 27.44 3372 

BAL2 11 0.00 69.75 17.17 2998 

BAL3 17 0.00 64.85 18.97 5048 

BAL4 22 0.00 81.60 20.12 4296 

BAL5 25 0.00 77.80 18.90 2849 

BALDEAD -- 0.00 95.94 40.36 3733 

Portland 

POR1 13 5.19 7.16 2.47 176 

POR2 91 3.27 4.40 1.31 76 

PORPUDD -- 1.33 5.85 1.79 95 

PORCLAC -- 1.00 3.39 0.91 69 

PORJOHN -- 1.00 67.91 31.18 3367 

Phoenix 

PHO1 11 10.8 3.61 3.93 93 

PHO2 118 1.48 1.97 0.54 30 

PHO3 149 1.51 2.07 0.57 31 

PHOSALT -- 1.00 0.57 0.19 8 

PHOEVER -- 2.00 1.87 0.54 22 

 

 

A MLR analysis for vulnerability using IDW WWTF capacity as a point source predictor 

variable and either urban land use percentage, impervious percentage, or population density as 

a non-point source predictior variable was performed for both EPA and state level criteria. In 

general, vulnerability was not strongly correlated with urban influences (R2 < 0.7) for EPA 
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standards, shown in Table 4. This is likely due to vulnerability being not only a function of ambient 

water quality concentrations, which are related to urban influences, but also numeric targets. 

The small window where vulnerability is greater than zero but less than one created a threshold, 

in which the gradient in vulnerability could not be captured by available data nor explained by a 

gradient in urban influences. Because thresholds are inherently non-linear, the existence of a 

threshold in the calculation of vulnerability explains why MLR models relating urban intensity 

variables to vulnerability are invalid. The probability of exceeding EPA criteria was 100% for over 

half of TP and TN sites, including some relatively undisturbed sites. 

Table 5. Multiple linear regression models for TP and TN vulnerability with point source (IDW wastewater treatment facility 

[WWTF] annual capacity) and non-point source (urban land cover [ULC], impervious surface percentage [IS]) that produced the 

best model results assuming EPA ecoregional targets (top) and CDPHE Regulation 31 standards in Denver, CO (bottom), R2 and 

Adjusted R2, P value for the appropriateness of the model, and variable inflation factor (VIF).  

City Nutrient Linear Model R2 Adj R2 P VIF 

Denver 
TP 0.190+0.002(PD)+0.0073(WWTF) 0.61 -0.18 0.628 1.3 

TN 0.128+0.047(ULC)+0.021(WWTF) 0.33 0.00 0.188 1.2 

Baltimore 
TP 2.714-0.031(ULC) 0.54 0.43 0.094 -- 

TN -0.373+0.030(IS) 0.26 0.07 0.303 -- 

Portland 
TP 0.334+1.55e-04(PD)+0.148(WWTF) 0.38 -0.23 0.615 1.2 

TN -- -- -- -- -- 

Phoenix 
TP 0.355+0.027(ULC)-0.177(WWTF) 0.34 -0.33 0.664 15.9 

TN -- -- -- -- -- 

 

 

 Vulnerability was strongly correlated (R2 > 0.7) for Denver when applying Regulation 31 

criteria, suggesting that there are situations where, if the standard is not too stringent, a gradient 

can be formed  and related to urban intensity measures, as depicted in Table 5. Because water 

quality standards for the South Platte River that runs through Denver, Colorado were less 

City Nutrient Linear Model R2 Adj R2 P VIF 

Denver 
TP -0.300+0.213(IS)+0.020(WWTF) 0.96 0.89 0.194 1.6 

TN -0.384+0.084(ULC)+0.024(WWTF) 0.66 0.50 0.113 1.2 
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stringent than EPA standards, a larger range in which vulnerabilities are not zero or one exist. 

Therefore, the gradient in vulnerability was calculated and related to urban influences. Though 

Phoenix had water quality standards in place for three monitoring sites, there was not enough 

data to conduct a multiple linear regression analysis.  

 MLR analyses were conducted on the concentration reduction required to achieve 95% 

confidence that the site will be unimpaired (V = 0.05). Required reduction produced stronger 

relationships between point and non-point sources of urban pollution than vulnerability alone 

because the reduction reflected the magnitude and gradient of vulnerability, even when 

vulnerability was 0 and 100%. Table 6 exhibits MLR required reduction statistics for ecoregional 

(top) and Regulation 31 (bottom) standards. In general, urban land cover and IDW WWTF 

capacity were the predominant predictor variables in the regression. However, IDW WWTF and 

impervious surface percentage for TN in Denver, CO and IDW WWTF and population density for 

TP in Phoenix, AZ produced the best results, suggesting that different cities, and even sub 

watersheds, have varying anthropogenic influences that dominate water quality.  

 The MLR analysis of the concentration reduction required to achieve 95% reliability 

showed strong correlations to point and non-point source pollution. Predictor variables were 

strongly correlated (R2 > 0.7) for the Denver, Portland, and Phoenix for TP and Denver for TN. In 

general, the MLR model for reduction to 95% reliability resulted in stronger correlations as 

compared to vulnerability alone.  However, more monitoring sites are required to validate the 

significance of the model in all cases except for Phoenix for TP and Denver for TN. Required 

reduction for TP and TN were strongly correlated and significantly correlated for TN in Denver 

when assuming Regulation 31 standards, as shown in the bottom portion of Table 6.  
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Table 6. Multiple linear regression models for TP and TN concentration reduction to achieve V = 0.05 with point source (IDW 

wastewater treatment facility [WWTF] annual capacity) and non-point source (urban land cover [ULC], impervious surface 

percentage [IS]) that produced the best model results assuming EPA ecoregional targets (top) and CDPHE Regulation 31 

standards in Denver, CO (bottom), R2 and Adjusted R2, P value for the appropriateness of the model, and variable inflation factor 

(VIF).  

City Nutrient Linear Model R2 Adj R2 P VIF 

Denver 
TP -0.364+0.072(ULC)+0.034(WWT) 0.98 0.95 0.133 1.7 

TN -1.752+0.757(IS)+0.284(WWTF) 0.90 0.85 0.025 1.2 

Baltimore 
TP 0.0658-0.001(ULC) 0.37 0.22 0.197 -- 

TN 9.642-0.123(ULC) 0.47 0.34 0.133  

Portland 
TP 0.018+0.001(ULC)+0.002 (WWTF) 0.15 -0.70 0.851 1.2 

TN 1.171+0.036(ULC)-0.374(WWTF) 0.95 0.86 0.216 1.5 

Phoenix 
TP -0.113+0.001(PD)+0.069(WWTF) 0.98 0.96 0.018 15.9 

TN -- -- -- -- -- 

 

City Nutrient Linear Model R2 Adj R2 P VIF 

Denver 
TP -0.472+0.072(ULC)+0.033(WWTF) 0.98 0.95 0.132 1.7 

TN -2.633+0.751(IS)+0.283(WWTF)) 0.90 0.85 0.010 1.2 

 

 

2.4 DISCUSSION 

 The framework developed to characterize vulnerability to nutrient pollution accounts for 

the four major components of water quality standards, accommodating most variation in water 

quality standards established by States. Typical characteristics of water quality standards include 

frequency of excursion, annual number of sampling events, and a quantile of ambient water 

quality that is compared with defined numeric targets. The methodology can be applied to other 

water quality constituents given a numeric target that is compared to a specified quantile, 

excursion frequency, and number of annual samples collected. One limitation of the approach 

was that sufficient data is required to fit ambient water quality to a lognormal distribution.  

Based on the results of this study, EPA recommendations are too stringent for most 

urbanized and some relatively undisturbed watersheds. In order to meet the current EPA 
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standards, significant reductions, potentially outside of reasonable ranges given current 

technology, are necessary. The results of this study highlight the importance of appropriate water 

quality standards. Given the demands on water bodies in urbanized watersheds, current 

technology, and data limitations, it does not seem feasible for many locations with urban 

influence to achieve EPA recommended targets.  When targets are too low, vulnerability to 

pollution becomes extremely high, especially through urban gradients in arid regions. More 

research utilizing the framework developed in this study is needed to determine if EPA goals are 

too stringent in other land use scenarios. The goal of the CWA is to restore surface waters to 

conditions that allow people and aquatic species to thrive, however, standards are intended to 

be attainable to account for technologic limitations and economic feasibility. 

The probabilistic approach for vulnerability was applied to four cities across the United 

States in an attempt to relate vulnerability to urban influences. Because of a threshold that exists 

causing minimal gradients in vulnerability, urban intensity factors such as WWTF contribution, 

urban land use percentage, impervious surface percentage, and population density, did not 

correlate with vulnerability when stringent targets were specified. However, the same 

framework for vulnerability can be used to calculate the concentration reduction necessary to 

achieve a desired level of reliability, which can then be related to urban influences in certain 

urban settings and under less stringent water quality standard enforcement. In general, strong 

relationships were seen between urban land cover and cumulative distance weighted 

wastewater capacity and required concentration reduction values, however, some locations 

produced better results using impervious surface percentage or population density as a non-
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point source predictor variable, suggesting that each watershed is unique in its anthropogenic 

influences on stream quality.  

Because the CWA was intended to improve water quality, wherever attainable, it is 

important for city planners to consider the development of water quality standards from a 

holistic perspective. While cities may not ever be able to achieve natural conditions given the 

demands on rivers that exist and will likely continue to grow into the future, steps can be taken 

to slow or reverse trends in water quality impairment with time, research, and technologic 

advances. Some states are beginning to regulate non-point sources from agricultural and urban 

runoff that have been shown to correlate with degradation, which could significantly improve 

the nation’s waters over time. 

As urban development continues to grow, attainment of water quality targets will 

become more challenging and costly for cities to remediate. In order to achieve the goals of the 

Clean Water Act, balancing urban development and health of streams is required. This challenge 

will increasingly require policymakers and watershed managers to adapt innovative solutions. 
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CHAPTER 3: AN APPROACH TO USING LOAD DURATION CURVES TO UNDERSTAND 

VULNERABILITY TO NUTRIENT POLLUTION AT VARYING FLOW REGIMES 

 

3.1 BACKGROUND 

Changes in land use have led to eutrophication of surface water in the United States and 

around the word. Addition of excess nutrients, primarily total phosphorus (TP) and total nitrogen 

(TN), from various anthropogenic activities have resulted in degradation of 40% of U.S. rivers 

(USEPA, 2000). The Clean Water Act (CWA) was established to improve water quality in U.S. 

surface waters through the development of Total Maximum Daily Loads (TMDL) and water quality 

standards.  

Conventional approaches for TMDL development focuses on a single numeric water 

quality target in combination with a dominant discharge or design flow (Cleland, 2002). This 

approach has been shown to be less effective for impairments resulting from point sources, such 

as municipal wastewater treatment facilities associated with urban areas (Stiles, 2001; Cleland, 

2003), and in conditions where variation in loading is highly weather-dependent (Stow and 

Borsuk, 2003). Under varying flow regimes, different sources of pollution and transport 

mechanisms dominate pollutant loading to streams, therefore, TMDLs should consider all ranges 

in flow conditions to ensure acceptable water quality at all times (Cleland, 2003; USEPA, 2007a; 

Kim et al., 2012).  

An approach supported by the USEPA that considers a full range of hydrologic conditions 

for TMDL development and maintenance uses load duration curves (LDC). LDCs visually compare 

instantaneous ambient pollutant loads and the loading capacity required to achieve desired 
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pollutant concentrations as a function of flow exceedance probability. Patterns of impairment 

across all hydrologic conditions can be depicted using this framework. In addition, the LDC 

structure can be utilized to quantify median percent load reduction required to meet the TMDL 

allocations within flow categories. Pollutant delivery mechanisms and contributing source areas 

that dominate impairments on receiving waters have been linked with duration curve flow 

categories (low flow [90%-100% exceedance], dry [60%-90% exceedance], mid-range [40%-60% 

exceedance], moist [10%-40% exceedance], and high flows [0%-10% exceedance]), which can be 

used for management purposes (Cleland, 2002; PCA, 2006; USEPA, 2007b).  

While this approach takes flow regime into consideration, sufficient water quality data is 

often not available to properly support analyses nor TDML decision making (Morrison and Bonta, 

2008). For example, flows and pollutant loads within flow categories can have significant 

variation, where median percent reduction estimates within each flow category may not reflect 

actual reduction loads necessary to meet water quality targets and TMDL goals (Morrison and 

Bonta, 2008). In addition, obtaining water quality grab samples during extreme flows (either high 

or low) are less likely to be captured, creating data limitations at these flows and potentially 

erroneous conclusions for average percent reduction required to meet water quality standards 

(Cassidy and Jordan, 2011).  

One problem that cities often face is funding for water quality monitoring to support 

meaningful analyses to capture water quality at all flows, including extremes (Park and Engel, 

2015). According to the Clean Water Act Section 305(b), states are to assess and report water 

quality within their boundaries. For example, the state of Colorado spent $56 million between 

2007 and 2011 on water pollution control efforts (CDPHE, 2012) and the Wisconsin Department 
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of Natural Resources planned to spend over $950,000 on Wisconsin’s Water Monitoring Strategy 

between 2015 and 2019 (Sylvester et al., 2015). One tool to reduce monitoring costs is to 

estimate loading using linear regression techniques, such as the United State Geological Surveys’ 

LOAD ESTimator (LOADEST), given a time series of discharge, pollutant concentration, and 

additional user-specified data variables.  

While LOADEST can be used to estimate loading at all flow conditions, the model is limited 

in a few important ways. For example, LOADEST is unable to run under scenarios with minimal 

ambient water quality, less than approximately 35 observations, and substantial discharge input 

(Morrison and Bonta, 2008). In this case, long term discharge data is omitted, potentially leaving 

out important extreme flow values that would affect percent flow exceedances in the load 

duration curve framework. In addition, proper use of many load estimation techniques requires 

a lack of multicollinearity between explanatory variables and expertise in statistics, multiple 

linear regression, and load estimation, making them more challenging to use (Runkel et al., 2004). 

Accurate estimation of nutrient loading is important despite limited knowledge of uncertainty in 

various estimation techniques (Rode and Suhr, 2007).  

Research has been conducted to assess the accuracy, precision, and bias of various load 

estimation algorithms and water quality constituents (Moatar and Meybeck, 2005; Stenback et 

al., 2011; Park and Engel, 2015). Uncertainty using confidence intervals for estimated loading has 

been applied to the load duration curve framework for the purposes of quantifying changes in 

water quality between pre and post-best management practice implementation (Morrison and 

Bonta, 2008). However, confidence intervals have not been used to quantify uncertainty in 

empirical LDC frameworks and risk analysis.  
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  In this study, we characterize nutrient pollution, specifically TP and TN, at varying flow 

regimes using the LDC framework in four urban regions across the United States.  Specific 

objectives included (i) developing a methodology to characterize uncertainty in empirical LDCs, 

(ii) examining trends in vulnerability to nutrient pollution in four ecohydrologically different 

regions across the United States, and (iii) exploring hydrologic conditions which urban streams 

have a greater likelihood of exceeding nutrient standards.  

 This simple method to estimate loading at all flow conditions can be applied in situations 

where there is limited water quality monitoring, reducing costs to states, and without 

considerable knowledge of statistics required with LOADEST. In addition, this method can be used 

in TMDL maintenance to identify flow conditions in which impairment is occurring, which can 

then be associated with activities that occur during those flow conditions and potential 

remediation measures implemented. Finally, it can be used to establish or assess the feasibility 

of numeric water quality targets. 

 

3.2 MATERIALS AND METHODS 

 Current water quality standards and TMDLs generally focus on a single numeric water 

quality target in combination with a dominant discharge or design flow (Cleland, 2003). Load 

duration curves have been shown to be useful in comparing existing conditions with water quality 

targets at all flow regimes to identify impaired flow categories. This study builds on the LDC 

framework to compute vulnerability to nutrient pollution (TP and TN) as a function of flow 

exceedance probability through urban gradients for four ecohydrologically different regions 

across the United States. Nutrient loading was estimated using a simple linear regression (SLR) 
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for all possible flow exceedance probabilities, in which confidence or prediction intervals were 

computed and uncertainty understood, even in conditions with limited water quality data and 

long-term flow data. Vulnerability to nutrient pollution was defined as the probability of the 

standard error for the predicted mean load exceeding the numeric target load using a student t 

distribution at any flow exceedance probability. Patterns in vulnerability were then analyzed as 

a function of flow exceedance probability across urban gradients in the four regions to determine 

which hydrologic conditions had a greater likelihood of surpassing nutrient standards and load 

reduction necessary to achieve 95% reliability (vulnerability = 0.05). 

 

3.2.1 STUDY AREAS 

Four study regions with various ecohydrologic conditions, shown in Figure 5, were 

selected for analysis. Each city provided unique urban influences, water quality targets, 

ecohydrologic conditions, and therefore, vulnerability to nutrient impairment. Figure 5 exhibits 

the four study regions located in Denver, Colorado; Portland, Oregon; Phoenix, Arizona; and 

Baltimore, Maryland with land use and wastewater treatment facility (WWTF) locations and 

capacities.  

The South Platte River Basin has a drainage area of approximately 224,300 mi2, and 

extends into Colorado, Nebraska, and Wyoming. Headwaters of the South Platte River are located 

at the Continental Divide in the Rocky Mountains in central Colorado, where the river flows to its 

confluence with the North Platte River in Nebraska. Approximately three million people reside in 

the South Platte River basin, where the majority of the population is located in urban corridors 

along the front range of northern Colorado. This study selected a primarily semi-arid portion of 
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the South Platte River that captures inputs from Denver, Colorado and upstream tributaries. The 

Colorado Department of Public Health and Environment (CDPHE) has established water quality 

standards for a variety of parameters, including TP and TN. According to Regulation 31, annual 

median TP and TN are not to exceed 0.17 mg/L and 2.01 mg/L, respectively, with an allowable 

exceedance frequency of 1-in-5 years. While these standards are implemented, the South Platte 

River does not have a TMDL in place for TP and TN.  

 The Willamette River Basin is located in Oregon, stretching nearly 300 miles from its 

headwaters in Eugene to the confluence with the Columbia River near Portland, Oregon. 

Approximately 2.5 million people live within the Willamette River Basin’s 11, 500 mi2. Generally, 

this watershed experiences temperate oceanic climate. The portion of the Willamette River that 

passes through Portland, Oregon was focused on in this study. The 17 miles that pass through 

Portland not only serves the most urbanized portion of the watershed, but is home to native 

salmon and steelhead fish that migrate between the ocean and spawning streams. Oregon does 

not have specific TP and TN water quality regulations in place for the Willamette River and 

tributaries. Instead, Oregon’s Department of Environmental Quality (DEQ) has numeric standards 

for chlorophyll-a, pH, and dissolved oxygen, which are intended to prevent eutrophication in 

rivers and lakes and protect native fishes. A TMDL has been developed and approved by the EPA 

for the portions of the Willamette River in this study.  

The Salt River Basin stretches 300 miles from mountainous headwaters above 11,000 ft 

in elevation to the desert just west of Phoenix, Arizona at 1,200 feet, supporting over 4.5 million 

people along the way. The lower portion of the Salt River is experiencing increasing competition 
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 Figure 5. The study areas located in Portland, Oregon; Denver, Colorado; Phoenix, Arizona; and Baltimore, Maryland with 

sampling sites, land use, and annual wastewater treatment facility (WWTF) capacity 
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for water resources, leaving little water and hydrologic connectivity for aquatic life. A series of 

dams and reservoirs regulate and divert flow to provide water and energy for Phoenix and 

surrounding urban areas. This study focuses on the portion of the Salt River that passes through 

Phoenix, along with the Verde River, a main tributary of the Salt River. Arizona’s DEQ has 

established water quality standards for some of the Salt and Verde Rivers for a variety of 

pollutants, including TP and TN. While a TMDL has been developed for the Salt River Basin, the 

reaches in this study were not concluded to be impaired.   

Gwynns Falls Watershed, located in the southwestern portion of Baltimore County, is 

much smaller than the other three cities included in this study. At 61 mi2, nearly 350,000 people 

live in this highly urbanized watershed. Anthropogenic stressors have made Gwynn Falls impaired 

for nutrients, sediments, and bacteria, influencing biological communities despite not have any 

wastewater treatment facility contributors. The climate is humid subtropical. While the focus of 

the study was to investigate Baltimore’s influences on Gwynn Falls, upstream urban influences 

were also considered. Maryland does not have specific water quality targets for Gwynn Falls, 

however, a TMDL was implemented to improve the health of Chesapeake Bay, located 

downstream of Gwynn Falls. Instead of pollutant concentrations being regulated, Maryland has 

given load allocations to major point sources within the watershed to reduce pollution in 

Chesapeake Bay. 

 

3.2.2 POLLUTANTS 

TP and TN were selected for this analysis due to their environmental impact and widespread 

use as water quality standard constituents. Nutrient loads, especially TP and TN, that exceed the 
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capacity of rivers can cause nuisances levels of algae growth (eutrophication) that can lead to 

reduced water clarity, cyanotoxins and microcystins, reduced recreation and tourism, 

impediments on irrigation, and reduced oxygen concentrations accompanied by aquatic species 

mortality (Kim et al., 2012; McMahon, 2012; Van Meter et al., 2016). Though TP is often a limiting 

nutrient that controls eutrophication, studies have shown that nitrogen may have greater 

influence as a limiting nutrient in streams (Smith et al., 1998; USEPA, 2001). For this reason, TP 

and TN are recommended criteria for the establishment of numeric water quality standards by 

the U.S. EPA (USEPA, 2001). In addition, current nutrient enrichment necessitates numeric 

criteria for TP and TN in order to meet the goals of the Clean Water Act. 

  One underlying assumption of the LDC framework is that there is a relationship between 

water quality and discharge, where fate and transport mechanisms are not considered (Bonta 

and Cleland, 2003; USEPA, 2007b; Morrison and Bonta, 2008). Nutrients such as TP and TN have 

been used in various LDC applications such as in the Ohio EPA TMDL for White Oak Creek 

Watershed (Strickland and Korleski, 2009) and for the EPA’s TMDL for Bear Creek in Missouri 

(USEPA, 2010). In addition, TP and TN often have consistent numeric targets across all flow 

conditions, where changes in vulnerability can be seen as a function of changes in discharge.    

 

3.2.3 WATER QUALITY AND FLOW DATA 

 Since the establishment of the CWA and TMDL program, many cities around the U.S. have 

implemented extensive monitoring of discharge and regulated water quality parameters. Long 

term (1950 to present), publicly available daily stream flow data was obtained primarily from the 

United States Geological Survey (USGS) within HUC 8 watersheds that intersect U.S. Census 
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incorporated areas for each city. This approach included upstream locations with relatively 

undisturbed water quality conditions for each region.  In some instances, such as in Colorado and 

Arizona, management of flow monitoring stations were transferred to state or local agencies, 

where measurements from the same station were combined from multiple monitoring agencies.    

Zero flow, ice conditions, and negative flow values in daily discharge data were omitted. 

Publicly available water quality data collected between 1990 and 2018 was obtained from 

the USGS, EPA’s Storage and Retrieval (STORET) database, and state and regional level water 

quality monitoring programs, as shown in Table 1. Data collected after 1990 were selected to 

incorporate a wide range in climatic variability while reducing the effect of non-stationarity that 

can occur rapid land use changes. Grab samples collected for TP and TN were in accordance with 

approved state or federal methods, allowing comparison between sites with data from different 

sources. In order to relate flow regime to water quality, water quality monitoring locations within 

2000 m of a flow station that were directly connected hydraulically, with negligible inflow or 

outflow between, and collected within overlapping time periods and twelve or more grab 

samples were selected for analysis.  A linear regression of order statistics was conducted for sites 

that had concentrations below the detection limit using ProUCL 5.1 (Barnett et al., 2015).   

 Urban development and land use change also effects flows in surrounding rivers and 

streams. For example, increased impervious areas can create more intense and flashier peak 

flows in hydrographs. Therefore, urban development can lead to nonstationarity in average daily 

flow. Fifteen years of flow data prior to the first water quality parameter reading and fifteen years 

after the last water quality parameter reading was included to create the flow and load duration 

curves and to reduce effects of nonstationarity caused by land use changes.  
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3.2.4 SIMPLE LINEAR REGRESSION 

 Before the use of modern load estimation techniques, traditional methods required 

nearly daily measurements over the course of many years, putting financial stress federal, state, 

and local governments (Porterfield, 1972). In an attempt to reduce sampling costs while 

providing high quality information to show compliance with water quality related regulations, 

several methods were developed for estimating nutrient loads in situations with limited data 

(Cohn et al., 1992; Cohn, 2004; Runkel et al., 2004). In 2004, LOADEST was developed and 

supported by the USGS. This FORTRAN program included twelve methods for load estimation for 

various applications and data availability. However, LOADEST requires extensive understanding 

of statistics, multiple linear regression, and load estimation (Runkel et al., 2004). In addition, 

LOADEST cannot run under conditions with long-term flow data and limited water quality 

measurements, therefore flow data must be omitted to allow the model to run, leaving out 

potentially important information with respect to nutrient loading. LOADEST models utilize 

simple linear regression techniques, in which a linear model is formed between the log of 

instantaneous concentration and one more explanatory variables, such as instantaneous 

discharge (Draper and Smith, 1981; Runkel et al., 2004).  

In this study, a simple log-linear regression model was utilized to estimate pollutant 

loading as a function of exceedance probability under all flow conditions for each water quality 

monitoring station. Similar to the simplest linear regression model in LOADEST, the log of the 

instantaneous load, rather than concentration, was related to the log of the daily discharge that 

occurred on the same day. The natural log of the load (𝑌̂) is computed as a power function from 

the simple linear regression as 
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𝑌̂ = ln(𝐿) = a ln(Q) + b [1] 

 

where 𝐿 is the instantaneous load, Q is the observed discharge, and a and b are model 

coefficients. Given this, loading can be estimated at any possible flow exceedance. 

 

3.2.5 VULNERABILITY TO NUTRIENT POLLUTION 

 Vulnerability to nutrient pollution was defined as the probability of exceeding nutrient 

standards. Given load as a function of all feasible flow ranges, in which prediction and confidence 

intervals are determined in order to understand uncertainty, vulnerability to surpassing the 

target load is computed as the probability of the standard error for the predicted mean exceeding 

the numeric target loading. This method assumes the residuals of the regression (𝜀) are normally 

distributed  𝜀~𝑁(0, 𝜎𝜀) [2] 

 

with sample mean equal to zero and variance (𝜎𝜀2) equal to 

𝜎𝜀2 =  
∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑛𝑖=1𝑛 − 2  [3] 

where 𝑌𝑖 is the natural log of the observed instantaneous load, 𝑌̂𝑖 is the natural log of the 

expected instantaneous load from the simple linear regression, and n is the number of 

observations. The standard error for the predicted mean (𝜎𝑌̂) was computed as  

𝜎𝑌̂ =  𝜎𝜀√1 + 1𝑛 + (𝑙𝑛𝑄̂ − 𝑙𝑛𝑄̅)2∑(𝑙𝑛𝑄𝑖 − 𝑙𝑛𝑄̅)2 [4] 
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where 𝑄̅ is the average flow, 𝑄𝑖 is the observed instantaneous discharge, and  𝑄̂ is any feasible 

discharge value. Therefore, nutrient loading at each instantaneous flow value is normally 

distributed as 𝑌̂|𝑄𝑞~ 𝑁(𝑌̂|𝑄𝑞 , 𝜎𝑌̂|𝑄𝑞) [5] 

 

Various levels of progress have been made towards developing water quality regulations 

around the U.S. While some states have numeric goals established and implemented for multiple 

parameters, other states are in the monitoring and development phase. The U.S. EPA identified 

the 25th percentile of the frequency distribution of all streams within a homogeneous region, 

level III ecoregions (Omernik and Griffith, 2014), to establish numeric nutrient goals that take 

background nutrient conditions due to regional variation into consideration. This method for 

establishing nutrient criteria was selected for the purpose of maintaining consistency between 

states that lack water quality standards (Baltimore, MD; Portland, OR; and Phoenix, AZ). Denver, 

CO has targets implemented under Regulation 31, in which the actual target was used in the 

vulnerability analysis.  Table 7 shows numeric targets used to calculate target loading.  

Table 7. TP and TN targets used for the characterization of vulnerability to nutrient pollution. 

City Total Phosphorus (mg/L) Total Nitrogen (mg/L) 

Denver, CO* 0.060/0.17 1.070/2.01 

Portland, OR 0.040 0.320 

Baltimore, MD 0.040 2.225 

Phoenix, AZ 0.025 0.607 
*Regulation 31 numeric targets for TP (0.17 mg/L) and TN (2.01 mg/L) set by the CDPHE were used for the 

characterization of vulnerability. However, level III ecoregional targets for TP (0.06 mg/L) and TN (1.070 mg/L) 

were included in contour figures discussed below. 

 

The target load (𝐿𝑇) can be determined using target concentrations (T) for each city and feasible 

qth quantile of discharge (Q𝑞) 
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𝐿𝑇 = 𝑇 × Q𝑞 × 𝑘 [6] 

 

where k is a conversion factor.  

 Similarly, the empirical load duration curve for any discharge quantile can be obtained by 𝐿𝑞 = exp(𝑏)𝑄𝑎. The 95% prediction interval (P.I.) for the estimated load at qth discharge 

quantiles can be obtained by  95%⁡𝑃. 𝐼. 𝑜𝑛⁡𝐿𝑞 = exp [𝑌𝑞 ± 𝜀𝑑.𝑜.𝑓=⁡𝑛−2;⁡𝛼=0.05⁡𝜎𝑌̂|𝑄𝑞] [7] 

 

 Then, a student’s t distribution was applied with n-2 degrees of freedom to predict 

vulnerability to nutrient pollution (V) by computing the probability of 𝑌𝑞̂ exceeding the natural 

log of the target load (𝐿𝑇) assuming a standard deviation of 𝜎𝑌̂ at each exceedance probability  

 𝑉 = 𝑃𝑟𝑜𝑏[𝑌𝑞 > ln(𝐿𝑇)] = 1 − 𝐹𝑌̂[ln(𝐿𝑇)] [8] 

 

where 𝐹𝑌̂(. ) is the student’s t cumulative distribution function. A student’s t distribution was 

selected for the characterization of vulnerability to allow for statistical rigor in situations where 

limited water quality data is available (n < 30). 

 The same approach was taken to calculate loading reduction required to achieve 

sufficient reliability. For this study, acceptable vulnerability was defined as V ≤ 0.05, or a reliability 

of 95% or more. The threshold defining impairment was selected to be stringent yet reasonable. 

The reduction required to achieve an acceptable level of vulnerability was calculated as the 

difference between loading associated with 95% reliability and the target loading across all flow 

exceedance probabilities.  
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3.2.6 LOADEST 

 The SLR method developed in this study was tested against the best performing model 

of the twelve models available in LOADEST assuming an adjusted maximum likelihood (AMLE) 

estimation to give an unbiased estimate of instantaneous load. In addition, flow measurements 

were reduced to years in which sampling occurred to allow the model to function. One drawback 

of this approach is that extreme discharge values needed to be omitted in order for LOADEST to 

function, which affects flow exceedance probabilities, especially at low and high flow conditions. 

LOADEST requires a minimum number of water quality samples per flow data in order to run with 

sufficient accuracy (Runkel et al., 2004; Morrison and Bonta, 2008). Also, it is important that one 

or more explanatory variables are not related to one or another for proper use of LOADEST. 

  

3.3 RESULTS 

 The simple linear regression model to estimate nutrient loading at all possible flow 

conditions provided strong and significant estimates for TP and TN loading at most monitoring 

locations. This simple model was validated by the best performing model in LOADEST, which had 

errors that were not significantly different than the SLR model developed in this study. Using the 

empirical loading, vulnerability to nutrient pollution was calculated as a function of exceedance 

probability, of which Denver, CO was more vulnerable under low flow conditions and Baltimore, 

MD; Portland, OR, and Phoenix, AZ were more vulnerable under high flow conditions. Some sites, 

especially those downstream of major urban areas, were unacceptably vulnerable under all flow 

conditions. The load reduction at each flow condition was also calculated to achieve an 
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acceptable level of vulnerability (V = 0.05), in which the greatest magnitude of reduction in 

nutrient loading was observed at lower flow exceedance conditions (high flow conditions). 

 

3.3.1 SIMPLE LINEAR REGRESSION 

The simple linear regression model yielded significant (p-value ≤ 0.05) relationships 

between the log of the instantaneous discharge and log of measured pollutant load for all 

monitoring sites and strong (R2 > 0.7) for 50% and 90% of TP and TN sites, respectively. Figure 6 

shows the SLR between ln(L) and ln(Q) (left), which was then used to estimate loading and 95% 

prediction intervals for all flow exceedance probabilities in the LDC (right) for PHO1 in Phoenix, 

AZ. PHO1 had n = 24 observations, which was sufficient to produce strong (R2 > 0.7) and 

significant (p-value ≤ 0.05) results. Note that PHO1 has limited observations during extreme flow 

conditions (flow exceedance probability ≥ 0.95 and ≤ 0.05), which can be estimated with the SLR 

method with sufficient confidence. In addition, uncertainty can be quantified using confidence 

or prediction intervals, shown as the grey band in Figure 6.  

 
Figure 6. SLR results (left) and fitted LDC (right) with 95% prediction interval for PHO1 in Phoenix, AZ. 
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Figure 7 shows a boxplot of R2 values for TP and TN for the simple linear regression model. 

The method provided stronger results for TN than TP based on the median R2 value (TN = 0.87, 

TP = 0.76), however, more significant p-value (TN = 3.0E-36, TP = 2.8E-48) for TP for the four cities 

of interest. In addition, the variance in R2 is smaller for TN than TP, shown as smaller boxes in 

Figure 7. In this research, the log-log relationship between flow and load is more suitable for TN 

than TP. There was slightly more TP monitoring points than TN monitoring points, explaining 

great model significance for TP.  

 
Figure 7. Boxplot of R2 results from SLR model in Denver, Co; Portland, OR; Phoenix, AZ; and Baltimore, MD. In addition, number 

of monitoring locations (n) is included for both parameters.  
 

The method developed in this study was tested against the best performing model of the 

twelve available in LOADEST to further validate the model used in this study. Figure 8 shows the 

input discharge values (left) and LOADEST results compared to the SLR method (right) at PHO1 in 

Phoenix, AZ, a site with n = 24 observations. This site had limited data relative to ideal observation 

quantities used in LOADEST. In order to allow LOADEST to function, flow data between 1983 and 

1997 and between 2005 and 2018 were omitted. This omission left out 316 instances of low flow 
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conditions (exceedance ≥ 0.90) and 980 instances of high flow conditions (exceedance ≤ 0.10), 

impacting flow exceedance probabilities, especially at extreme flow conditions. Figure 8 shows 

the discharge values used in LOADEST, collected between 1998 and 2004 within the blue shaded 

region, omitting extreme discharge events defined by the red dashed lines. This omission may 

explain discrepancies between the SLR models and LOADEST at extreme flow conditions. 

Consistent reduction in high flow over time may be a result of urban development and 

construction of water storage systems in the watershed encompassing Phoenix. 

 
Figure 8. Discharge values used in LOADEST (blue shaded region) (left) and LOADEST and SLR expected load estimation as a 

function of flow exceedance probability (right) with 95% prediction intervals at PHO1 in Phoenix, AZ. 

 

  Figure 9 shows the root mean squared error (RMSE) for the simple linear regression 

model (SLR) and best performing model in LOADEST, which compares error between model 

outputs and observed loads. While LOADEST generally produced smaller RMSE values, shown by 

smaller median RMSE for TP and TN, the error produced in LOADEST was not significantly 

different than the SLR model, validating the SLR model developed with more advanced modeling 

procedures.  



53 

 

 
Figure 9. RMSE for TP and TN using LOADEST and the SLR method developed in this study for the four regions of interest. 

 

3.3.2 VULNERABILITY TO NUTRIENT POLLUTION 

 Vulnerability to TP and TN pollution was calculated as a function of flow exceedance 

probability for the four study regions. This framework can be used to compare vulnerability at 

various urban gradients, analyze vulnerability under a range of numeric nutrient targets, identify 

dominant flow conditions in which impairment is occurring, and determine loading reduction 

necessary to meet an acceptable level of vulnerability.  

Patterns in vulnerability along urban gradients were analyzed across the fours study 

regions. Upstream sites in Denver, CO were much less vulnerable to nutrient pollution than 

downstream sites for both TP and TN, shown in Figure 10.  Downstream sites, DEN1 and DEN2, 

were vulnerable under most flow conditions, where upstream site, DEN5 was only vulnerable 

under low flow conditions for both nutrient constituents. DEN4 laid between, becoming more 

vulnerable with lower flows. Phoenix experienced a similar pattern in vulnerability along the 

urban gradient for TN. However, Baltimore, MD; Phoenix, AZ; and Portland, OR for TP and 
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Baltimore, MD and Portland, OR for TN had high levels of risk to nutrient impairment (V > 0.05) 

under all flow conditions for nearly all monitoring sites regardless of location along the urban 

gradient. One explanation for high vulnerabilities for Portland, OR; Phoenix, AZ; and Baltimore, 

MD is the use of EPA level III ecoregional standards which are often more stringent than state 

level standards (Ice and Binkley, 2003; Herlihy and Sifneos, 2008) resulting in elevated 

vulnerability values. See Appendix B for vulnerability as a function of flow exceedance probability 

for all locations of interest.  

 
Figure 10. Vulnerability to TP (left) and TN (right) pollution as a function of flow exceedance probability for Denver, CO. 

 

 Vulnerability was also accessed as a function of flow exceedance probability at various 

nutrient target concentrations. While cities exert significant time and effort into establishing 

feasible water quality standards, this study shows that numeric targets used in this study are 

either too stringent to feasibly attain or current mitigation practices are not sufficient to meet 

desired targets under all flow conditions. For example, DEN1 was vulnerable (V > 0.05) under all 

flow regimes for both TP and TN, as shown in Figure 11. If the target were increased from 0.17 
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to 0.25 mg/L for TP, this site would remain highly vulnerable to nutrient pollution. Similarly, if the 

TN target was increased from 2.01 to 3.0 mg/L, DEN1 would remain moderately susceptible to 

impairment under high flow conditions and highly susceptible under low flow conditions. This 

suggests that either extreme mitigation efforts at all flow conditions are needed or numeric 

targets need to increase in order achieve compliance at lower flows for both TP and TN. 

 
Figure 11. Characterization of vulnerability to TP (left) and TN (right) pollution as a function of flow exceedance probability with 

varying targets at DEN1 in Denver, CO. 

 

3.3.3 FLOW REGIME AND IMPAIRMENT 

 The EPA created guidelines for associating impairments occurring in particular flow 

categories to sources of pollution and potential mitigation efforts, therefore identifying flow 

ranges in which impairments were likely to occur can provide crucial information for watershed 

managers. Using the same framework to assess vulnerability to nutrient pollution, flow 

exceedance probabilities and associated discharge quantities with unacceptable risk to 

impairment (V > 0.05) could be determined. Figure 12 shows the ranges in which vulnerability to 

nutrient pollution exceeded 0.05 for TP (left) and TN (right). In many cases, sites were highly 
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vulnerable under all flow conditions given current water quality standards implemented by 

states, such as Regulation 31 in Colorado, and especially the EPA’s recommended level III 

ecoregional targets. Sites that used level III ecoregional targets tended to have higher quantities 

of vulnerability, likely because these targets are often more stringent than state level targets. 

 

 
Figure 12. Ranges of flow exceedance probabilities and discharges (cfs) in which V > 0.05 for TP and TN. 

 

 One important result of this study was that a given city often exhibits the same 

dominating flow condition that leads to impairment across urban gradients. Denver, CO had a 

positive correlation between flow exceedance probability and vulnerability, while Baltimore, MD; 

Phoenix, AZ; and Portland, OR generally had negative relationships. The South Platte River that 

runs through Denver is a wastewater dominated system, in which higher flows due to storm 

runoff dilute river water and improve water quality. However, Portland and Baltimore are in 

humid regions with naturally high quality baseflows dominating low flow conditions. Though 

Gwynns Falls watershed in Baltimore does not have wastewater effluent, the Willamette River in 
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Portland has wastewater contributions that are diluted by high quality baseflow. Gwynns Falls is 

completely urbanized throughout the entire watershed, where storm events introduce additional 

nutrient pollution via urban runoff. Phoenix is located is an arid region, however experiences 

impairment during high flows. One explanation is that Phoenix has superior wastewater 

treatment procedures due to more stringent state level targets, in which wastewater dominating 

low flows have better water quality than runoff being introduced during higher flows.  

 Conventional approaches to quantify load reduction involves calculating the median 

percent reduction within defined flow categories using observed loads. However, this approach 

does not reflect variation occurring within the flow category. For this reason, the same 

framework to calculate vulnerability to nutrient pollution was used to calculate the required load 

reduction to achieve an acceptable level of risk to surpassing numeric targets (V = 0.05) as a 

function of flow exceedance probability. In general, the magnitude of load reduction was greatest 

under high flow conditions. This was even true for most sites in Denver, CO which experience 

greater vulnerability at low flow conditions. Figure 13 shows required reduction for TP and TN in 

Denver, CO for each site. DEN2 is the only that required more TN reduction at low flow 

conditions. In addition, no reductions were necessary for downstream sites, DEN4 and DEN5, due 

to having very low vulnerability values. Significant reductions are necessary at high flow regimes 

at DEN1 and DEN2. See Appendix B for load reduction as a function of flow exceedance 

probability for all locations of interest. 
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Figure 13. Load reduction required to achieve V ≤ 0.05 for TP (left) and TN (right) in Denver, CO. 

 

 The shape of reduction curves appear to be related to the conditions in which 

vulnerability occurs. For example, Denver, CO experiences greater vulnerability at lower flows, 

which results in a concave downward curve in Figure 13. However, the other three locations, 

Portland, OR; Phoenix, AZ; and Baltimore, MD, experience more linear or slightly concave upward 

trends in reduction as a function of flow exceedance probability, as shown in Figure 14. This is 

likely due to low flows in Denver, CO needing significant reduction, where low flows in the other 

three locations are less relative to higher flow conditions.  
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Figure 14. Load reduction required to achieve V ≤ 0.05 for TP (left) and TN (right) in Portland, OR. 

 

 In addition to load reduction as a function of flow exceedance probability, the 

concentration reduction to achieve 95% reliability for each flow condition was also calculated. 

Similar in nature to the load reduction curves, Denver expressed different behavior than the 

other three study regions. Figure 15 shows TP and TN concentration reduction increasing with 

increased flow exceedance, suggesting that the lowest flow conditions require more reduction 

than mid to high range flows in Denver. One explanation for this trend is that wastewater 

dominates flow conditions in Denver, resulting in impaired waters at low flow conditions.  
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Figure 15. Concentration reduction required to achieve V ≤ 0.05 for TP (left) and TN (right) in Denver, CO. 

 

 However, concentration reductions are much more consistent for Phoenix, Portland, and 

Baltimore. Typically, a slightly downward trend in vulnerability occurred along the urban 

gradient, where high flow conditions required slightly more concentration reduction. For 

example, Figure 16 shows TP and TN concentration reduction at each flow condition in Baltimore. 

Note that the magnitude of concentration reduction is much smaller in Phoenix, Portland, and 

Baltimore than in Denver. Relatively consistent concentration reductions are seen in these 

locations as a result of more linear load reduction as a function of flow exceedance probability 

relative to the curved pattern observed in Denver’s load reduction plot. This suggests that Denver 

receives more pollutants with lower flows, where other cities’ pollution is diluted by either high 

quality baseflows or wastewater treatment effluent.  See Appendix B for concentration reduction 

as a function of flow exceedance probability for each city. 
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Figure 16. Concentration reduction required to achieve V ≤ 0.05 for TP (left) and TN (right) in Baltimore, MD. 

 

3.4 DISCUSSION 

  TMDL developers and watershed managers are being confronted with significant 

challenges when it comes to the condition of the United States water quality. This challenge 

necessitates methodologies and tools that can be used to quantify risk across all hydrologic 

conditions, even in scenarios with limited data. Load duration curve based frameworks in 

combination with simple statistical methods can inform and assist watershed managers in 

adjusting pollutant load allocations from point sources under variable flow conditions in order to 

comply with TMDLs and water quality standards. Conventional approaches for the LDC method 

uses a measure of central tendency to quantify percent reduction in load, leaving out significant 

variability that may occur and potential error in reduction values. In addition, an adequate 

number of samples, a minimum of approximately 35 samples, is required to achieve confidence 

in LOADEST regression analyses to estimate loading as a function of flow exceedance probability.  
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 The method developed in the study can be used to estimate uncertainty using confidence 

intervals for empirical load duration curves based on a limited number of data points with 

sufficient precision and accuracy. The load estimation technique provided strong (R2 > 0.7) and 

significant (p-value ≤ 0.05) results for most monitoring sites, in which confidence bounds could 

be computed and uncertainty in water quality considered. Applying the expected load, assuming 

the residuals of the regression are normally distributed, the probability of exceeding a numeric 

nutrient target, or vulnerability to nutrient pollution, at all possible flow quantities was 

calculated. Flow conditions with unacceptable levels of risk to surpassing nutrient standards (V > 

0.05) were then determined, as well as concentration reduction required to achieve acceptable 

levels of risk at all flow conditions.  

Quantifying uncertainty in an inherently variable environment and risk in highly 

vulnerable regions can provide valuable information for local, state, and federal jurisdictions for 

the purposes of developing, implementing, and managing TMDLs. The statistical method 

developed in this study, in combination with load duration curve methods, can be applied to 

determine flow conditions that lead to impairment, in which these flows can be related to 

sources of pollution and mitigation efforts. The EPA developed potential sources of pollution and 

solutions when impairment is observed within certain flow classifications (Cleland, 2002, 2003; 

USEPA, 2007b). Table 8 shows general relations between flow classifications and potential 

implementation opportunities. 
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Table 8. Implementation opportunities based on five flow categories (Cleland, 2002, 2003; USEPA, 2007b).  

  

For example, unacceptable vulnerability to nutrient pollution is observed only at dry to 

low flow conditions at upstream locations in Denver, such as at DEN5. This suggests that 

municipal wastewater treatment facilities may be the source of pollution, where wastewater 

dominates instream flows during low flow to dry conditions. However, sites that are experiencing 

high levels of vulnerability at all flow conditions, such as DEN1 and DEN2, multiple sources may 

be contributing to impairment, such as lack of best management practices and bank erosion 

during storm events, lack of riparian buffers, and wastewater treatment facilities. The 

combination of this simple linear regression model, characterization of vulnerability to nutrient 

pollution as a function of exceedance probability, and charts supported by the EPA relating flow 

classifications to implementation opportunities can be useful for cities that are experiencing 

water quality related impairments. Furthermore, using required reduction values at all flow 

exceedance probabilities can be utilized to achieve acceptable levels of risk to impairment. 

Greater magnitudes of load reduction is generally needed at high flow conditions in order to 

achieve an acceptable level of vulnerability to nutrient pollution.  

 
Flow Classification 

High Moist Mid-Range Dry Low 

Implementation 

Opportunity 

Post 

Development 

BMPs 

    

Streambank 

Stabilization 
    

Erosion Control Programs   

 Riparian Buffer Protection  

   Municipal WWTF 
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In addition to quantifying vulnerability as a function of flow exceedance probability, the 

concentration and load reduction required to achieve 95% reliability were quantified using the 

expanded load duration curve framework. Denver is a wastewater dominated system during low 

flow conditions, leading to greater concentration reductions at low flows. Conversely, Portland 

and Baltimore are humid regions, in which naturally high quality baseflows contribute to better 

quality during low flows. Phoenix is known for excellent wastewater treatment, and therefore 

baseflow conditions are dominated by high quality effluent due to highly stringent state level 

standards. Urban runoff may be contributing to impairments at higher flows in these locations. 

This results in less concentration reduction during low flow conditions and higher concentration 

reduction during high flow conditions.   

The framework is limited in two ways. Water quality standards typically encompass three 

properties – numeric target of which a given quantile is not to surpass, excursion frequency, and 

number of samples collected. This framework only takes numeric targets into consideration and 

assumes the quantile of interest is the expected value, or median. This is the case in Denver. 

However, the South Platte River’s water quality standard also includes a one-in-five year 

excursion frequency. Thus, this framework is limited in situations where the water quality 

standard includes more complex characteristics or water quality parameters are not defined. 

Another limitation of the required reduction is that TMDLs typically focus on annual loading to 

streams, where this study focuses on daily loading. However, if load reductions are achieved on 

a daily basis, annual loading should comply with TMDL goals.   

 The characterization of vulnerability to nutrient pollution developed in this study can 

provide useful information for TMDL development and maintenance. The methodology builds on 
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widely accepted LDC frameworks, in which risk to impairment can be quantified, dominating 

flows in which impairments occur identified, and required reduction computed.  
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CHAPTER 4: CONCLUSION 

 

 Probabilistic methods for quantifying vulnerability to water quality impairment are 

developed in this research. Vulnerability to nutrient impairment is defined as the probability of 

ambient concentrations exceeding water quality targets. In the second chapter of this paper, four 

conventional properties of water quality regulation are incorporated into the framework, 

including frequency of excursion, annual number of samples collected, a numeric target, and a 

quantile of ambient water quality data that is not to exceed the numeric target. The third chapter 

of this research explores vulnerability at varying flow regimes by expanding on conventional load 

duration curve approaches. 

 The vulnerability analyses developed are applied using both state level regulation and EPA 

ecoregional goals. In general, EPA targets are more stringent than state level targets, in which 

sites became more vulnerable to nutrient pollution. In addition, sites become impaired under 

larger ranges of flow conditions when EPA standards are implemented into the expanded load 

duration curve approach presented in Chapter 3. This suggests that EPA targets are too stringent 

to feasibly attain when economic and technologic limitations are considered. While the numeric 

targets developed for each ecoregion are to represent background conditions, they are often not 

attainable for urban cities. The method utilized to establish numeric targets assumes the 25th 

percentile of all data within each ecoregion. Inherently, 75% of locations are impaired under this 

framework which does not consider attainability. The goal of Clean Water Act, while to improve 

water around the US, was not intended to financially burden cities.  
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 In arid regions, a gradient in required concentration reduction to achieve 95% reliability 

is observed. Wastewater often dominates low flow conditions in arid regions, causing water 

quality impairments with more wastewater contribution and distance downstream. In order to 

achieve water quality goals in these regions, wastewater effluent should be treated to a high 

level in order to avoid impairment at downstream locations. Humid regions did not experience a 

noticeable trend in water quality degradation with distance downstream, likely due to the 

diluting effects of high baseflows.  

 A multiple linear regression model between vulnerability and urban influences is 

conducted. MLR analyses relating indicators of urban intensity and vulnerability values resulted 

in weak and insignificant results due to a threshold that exists in the calculation of vulnerability. 

However, when the concentration reduction required to achieve 95% reliability is incorporated 

into the MLR, rather than vulnerability, strong relationships are formed for most locations. In 

general, more monitoring locations are needed to determine statistical significance. Urban land 

cover and wastewater treatment facility capacity generally produce the best results with minimal 

multicolinearity between exploratory variables, however, non-point predictor variables are 

shown to vary between cities.  

 Hydrologic conditions in which impairment occurs is also assessed in the second part of 

this research. Flow conditions in which impairment occurred is typically the same throughout the 

urban gradient within each city. Climate and wastewater treatment seemed to play a significant 

role in dominating flow conditions where exceeding numeric targets is most likely. In Denver, 

wastewater dominates low flow conditions, leading to impairment under low flow conditions. 

Phoenix, Portland, and Baltimore all experience impairment during high flows. Portland and 
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Baltimore are located in humid regions, in which consistent high quality baseflows dominate low 

flow conditions. Urban runoff and erosion may be causing impairments during storm events at 

high flows. Phoenix, on the other hand, is in an arid region dominated by wastewater. However, 

Phoenix has much more stringent water quality standards, in which wastewater is cleaned more 

rigorously than in other locations.  

 Average concentration reduction and concentration reduction as a function of flow 

exceedance probability is determined for each site using the probabilistic methods developed in 

this research. On average, concentration reduction is greater at downstream locations compared 

to upstream locations in arid regions. In general, humid regions experience relatively consistent 

concentration reduction requirements as a function of flow exceedance probability due to 

diluting effects of high quality baseflows. Slightly more reduction is required during high flow 

conditions at most monitoring locations, in which urban runoff may be contributing to pollution. 

Conversely, arid regions requires greater pollutant concentration at lower flows to avoid 

impairment due to being a wastewater dominated stream. However, the stringency of water 

quality standards and integrity of wastewater treatment is an important consideration for the 

analysis. More stringent water quality standards generally motivates wastewater treatment 

facilities to treat effluent to better water quality, potentially resulting in impairment primarily 

during high flows rather than low flows. This is the case in Phoenix, where more reduction is 

necessary at high flow conditions. Quantifying concentration reduction necessary to achieve 95% 

reliability can be useful in watershed management practices and allocations for TMDL 

development.   
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 Furthermore, load reduction as a function of flow exceedance probability is quantified. 

Nearly all locations in this study require greater magnitude of load reduction at high flow 

conditions. Visually plotting load reduction for every flow possibility can also be used for TMDL 

development and maintenance to quantify load allocations for point and non-point sources at 

varying flow regimes to meet water quality standards. While establishing allocations that vary at 

each flow possibility is not feasible, defining categories of allocations based on flow categories 

can be used to reduce the likelihood of impairment to nutrient pollution. 

 Ultimately, these probabilistic models can be utilized to quantify vulnerability for a given 

location based on four properties of water quality standards or across all flow conditions. As city 

population in the United States and across the world continues to grow, it will become even more 

important to understand the condition of surface waters and how urban activities influence 

them. This research contributes to science by providing novel and probabilistic approaches to 

characterizing vulnerability to nutrient pollution. More monitoring locations are needed to 

determine statistical significance between concentration reduction to achieve 95% reliability and 

urban influences. Building on the load duration curve approach, flow conditions in which 

impairment is occurring can be identified and linked with pollution that occur during those flows. 

Load and concentration reductions can be calculated to achieve a desired level of risk to 

exceeding water quality standards, which can be used for TMDL development and watershed 

management purposes in order to meet the goals of the Clean Water Act.  
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City Site 
Total Phosphorus Total Nitrogen 

EPA Vul EPA Red State Vul State Red EPA Vul EPA Red State Vul State Red 

Denver 

DEN1 1.000 0.90 1.000 0.79 1.000 5.28 1.000 4.38 

DEN2 1.000 1.15 1.000 1.04 1.000 7.00 1.000 6.09 

DEN3 -- -- -- -- 1.000 3.97 1.000 3.01 

DEN4 1.000 0.05 0.000 0.00 1.000 0.90 0.004 0.00 

DEN5 0.001 0.00 0.000 0.00 0.000 0.00 0.000 0.00 

DENBEAR -- -- -- -- 0.003 0.00 0.000 0.00 

DENPLUM -- -- -- -- 1.000 1.66 1.000 0.77 

Baltimore 

BAL1 0.000 0.00 -- -- 0.000 0.00 -- -- 

BAL2 1.000 0.01 -- -- 0.000 0.00 -- -- 

BAL3 0.717 0.00 -- -- 1.000 3.89 -- -- 

BAL4 0.000 0.00 -- -- 0.000 0.00 -- -- 

BAL5 0.000 0.00 -- -- 0.000 0.00 -- -- 

BALDEAD 0.000 0.00 -- -- 1.000 0.00 -- -- 

Portland 

POR1 1.000 0.04 -- -- 1.000 0.28 -- -- 

POR2 1.000 0.01 -- -- 1.000 0.13 -- -- 

PORPUDD 1.000  -- -- 1.000 1.69 -- -- 

PORCLAC 0.000 0.00 -- -- -- -- -- -- 

PORJOHN 1.000 0.06 -- -- 1.000 3.77 -- -- 

Phoenix 

PHO1 1.000 0.70 -- -- -- -- -- -- 

PHO2 1.000 0.02 -- -- 0.000 0.00 -- -- 

PHO3 0.998 0.02 0.021 0.00 0.000 0.00 0.005 0.00 

PHOSALT 0.744 0.00 0.003 0.00 0.000 0.00 0.000 0.00 

PHOEVER 0.001 0.00 0.009 0.00 -- -- -- -- 
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