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Page 113: Second Boundary Condition (IA) is 
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On the right figure , the ''datum plane" should be the base of the 
aquifer. 
Second Boundary Condition is h(x, y, o) = h 
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The title of Case A-20 should be : Fluctuations of water levels 
in response to flood waves . 
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PREFACE 

The non-equilibrium equation, introduced by C . V . Theis in 1935, sparked the beginning of the capa-

bility to ad equately describe the dynamics of a ground-water system mathematically . In the ensuing years a 

wealth of literature has been develop<!d to meet many geohydrologic conditions. This literature is scattered 

throughout many scientific Journals , bulletins, and reports. Uns t eady state, or transient, ground -water hy-

draulics has developed into an imp ortant but somewhat uncoordinated field of endeavor . Several disciplines, 

including soil physics , soil engineering, drainage engineering , ground-water hydrology , and petroleum engin-

eering have produced significant contributions. 

Because of the scattered literature, and the rare opportunity for individuals of various disciplines 

working in the field of porous med ia hydraulics to meet to discuss their common interests a nd problems , it was 

decided to hold the "Symposium on Transient Ground-Water Hydraulic s . " The Symposium was planned by a 

committee composed of R, H. Brooks , Agricultural Researc h Service, R. E. Glover, U. S . Bureau of Recla -

mation, R . W. Stallman , U. S . Geological Survey , and the undersigned, The panel discuss ion approach was 

decided upon in order to stimulate t he exchange of ideas . Those contacted to serve on panels and act as moder -

ators responded enthusiastically. The attendance of over 150 individuals and the active discussions during the 

Symposium further assured the planning committee and the sponsor s that their efforts served a worthwhile purpose . 

Tr.e fir st three one-half day sessions of t he Symposium (July 25-26) were devoted to mathematical de -

velopments . An admittedly rather arbitrary differentiation was made for these sessions in order to limit the 

extent of each. The first session dealt with cases generally described by a rectangular c oordinate system , 

whereas ,the second session included cases desc ribed by a cylindrica l coordinate system . Disc ussion of leaky 

aquifer conditions was reserved for the third one- half day. The fourt h and final session (July 27) was devoted 

to discussions of t he use of models , analogs and computers in the field of transient ground-water hydraulics. 

All sessions of the Symposium were recorded on tape . Those participating in the Symposium kindly 

reviewed t he transcribed material and furni s hed illustrations for the Proceedings . The first four parts of the 

Proceedings include the dis c ussio ns held during the four one-half day session s . These are followed by a talk 

presented the evening of Ju ly 25 by Dr . H. K. Van P oollen of t he Marathon Oil Company. Appendicies A, B, 

and C inc lude summaries of mathematical developments , largely prepared by t he participants . These served 

as reference material during the Symposium . Two papers pertinent to the subject , submitted after the Sympo-

sium , are included in the Proceedings as Appendices D and E . Appendices F and G are lists of selected 

references . The first, on ground-water mod els , was prepared by A. I. J ohnson of the U. S . Geologic al Survey. 

The second , Appendix G , lists mainly publications in whic h transient ground-water hydraulic equations are 

developed . 

Many individuals and agencies contr ibuted to the success of the Symposium. Thanks are due to the 

planning c ommittee and the part ic ipants , a s well as to the agencies , institutions , and firms which were repre-

sented . Colorado State University personnel helping with l ocal arrangements included R . A , L ongenbaugh, 

M . M . Skinner , George Palos , Ali Eshett , E. Bruce J ones , and Wayne Stafford , 

Financial help to defray the cost of preparing the P roceedings was supplied by a grant from the National 

Science Foundation . The sponsoring institution a nd the editors gratefully acknowledge this s upport. 

D. E. L. Maasland 

Morton W . Bittinger 
Editors 



SYMPOSIUM BANQUET, JULY 26, 1963 

Dr. and Mrs. C. V. Theis and Stan Lohman. 

Mrs. Theis receives a gift from Master of Ceremonies Lohman -

- then C. V. receives tools no ground -water hydrologist should be without, a willow 

stick and an electronic black box with an abundance of dials, buttons, flashing lights 

and buzzers. Finally, the principal gift from the U.S.G.S . colleagues, a desk pen 

set inscribed with the following: 

To Dr. Charles V. Theis 
for his many contributions to the science of ground-water hydrology 

from admiring colleagues 
Fort Collins, Colorado, July 26, 1963 

It is in the same spirit that these Proceedings 

of the Symposium of Transient Ground Water Hydraulics 

are dedicated to Dr. Theis. 
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SESSION 1 

MATHEMATICAL DEVELOPMENTS IN TRANSIENT GROUND WATER HYDRAULICS 

USING A RECTANGULAR COORDINATE SYSTEM 

MR. BITTINGER: I would like to introduce Dr . M. 
L. Albertson to give you a word of welcome . He 
has made the printed program obsolete by cha nging 
jobs . He is now Director of the Office of Interna-
t iunal Programs here at CSU. Dr . Alberts on is 
also a Professor of Civil Engineering with a g reat 
deal of experience and interest in hydraulics and 
ground water. 

DR . ALBE RTSON: It is a real pleasure f or me to 
represent t he University, and to speak not only for 
the University but also for myself in welcoming y ou 
to this meeting . It is very seld om that you get as 
distinguished a group of individua ls in the field of 
ground water together, as we have here. 

Actually we have here a very large proportion 
of the individuals who have been making t he major 
contributions in recent years , and even dating back 
a couple or three decades in the field of ground 
water hydrology and hydraulics , especially when 
you are dealing with the unsteady state aspect of 
this. It is a field that has been of great interest to 
us here at CSU. As an institution we have been 
chartered with responsibility of doing research and 
having the programs necessary , to serve the State 
of Colorado in particular and the region and even 
beyond that, in gene r al,with r e s pect to ground water. 
Consequently, we have quite a history here of inter -
est in ground water problems. As you well know, 
Mort Bittinger has been taking leader ship in recent 
years with respect to ground water pr oblems and t he 
applied aspects of it but we can go back to the tu r n 
of the century and even befor e· that with respect t o 
studies that have been carried on here with L . G. 
Carpenter and then in more recent years, Ralph 
Parshall and Carl Row her and Bill Code, all men 
that I am sure you are all familiar with and also 
D. F. Peterson and Art Corey, who is on the panel 
up here and also Bob Longenbaugh who is going to 
help t o keep things moving during this conference . 

You are all aware of the vast quantities of water 
that are available underground and the potential this 
holds for the future. Some of us have struggled 
with the problems of evaporation with surface stor-
age and yet I think we have not taken full advantage 
of the opportunit i es that a re available to us in under-
ground storage , where the problem of evaporation 
is of little or no cons equence. The problem that has 
been hard to get our fingers on is the unsteady st ate 
situation in underground flow. Underground storage 
and the whole concept of underground dynamic s tor-
age reservoirs is something that we are only begin -
ning to have the analysis for. We s hould be able to 
develop t he kind of management of these reservoirs 
and water supplies that we have to do if we really 

z 

carry out a proper conservation and utilizati on of 
our water r esources . This certainly accentuates 
t he need for a conference as t his where thos e indi-
viduals who are right at t he forefront of the know-
ledge can exchange ideas with each other and other s 
of y ou that are interested in t his type of thing can 
t ake part in t his sort of exc hange . I think it is 
interest ing that you are also going to have a special 
s ession on models, both mathematical and physical 
m odels. There has been progress in recent years 
her e that opens up completely new possibilities for 
t he s olution of pr oble m s . 

Again I want to welcom e all of y ou to CSU. I 
hope t hat this me et ing pr oves beneficial t o all of you 
a s y ou anticipated. Thank you. 

MR . BITTINGER: I would like to turn the meeting 
over t o Ar t Corey , Professor of Agricultural Engi -
neering at Colorado State Univ ersity, who will be 
moderator t his after n oon. I s hould menti on that 
Professor Harr, who we originally had on the pro-
gr am was not able to come. Also, Profes sor Han-
tush,listed a s a panel member has had to c hange his 
plans and will not be able to attend. 

DR. CORE Y: First, I would like to introduce the 
mem bers of our panel for this afternoon. Dr. 
Spi egel is a Wat er Resourc e Engineer fr om the New 
Mexic o State Engineer Office, Santa Fe. Next t o 
him is Professor Jan van Sc hilfgaarde from the 
Agricultural Engineering Department at NorthCaro-
lina Stat e College. Then we have one of our former 
s tudents, Mr. R. W. Nelson. He is working forthe 
General Electr ic Cor poration in the Hanford Labor-
ator ie s at R ichland, Washington. On my left is Mr. 
J ohn G. Ferris. He works for the Ground Water 
Br anch of t he U. S . Geological Survey at Tucson, 
Arizona . Next to him is Mr. Robert E. Glover, 
U. S. Bureau of Reclamati on and on his left is Pro-
fe s sor Kra ij enhoff van de Leur, visiting s c ientist 
from Wageningen in the Netherlands. On the extreme 
left is Professor DeWiest. He is now teacrung at a 
NSF Sum mer Institute on Hydrology at Colorado 
State Univers ity, but his normal base is Princeton 
University. 

T he s ubject of this part icular panel di scussion 
is , of course , unsteady flow. We are going to talk 
this after noon, however , about suc h unsteady flow 
gr ound water pr oblems as we would normally des -
cribe using a rectangular coordinate syst em . We 
will reserve for t om or row' s panel m eeting discus -
sion of all t hos e uns teady pr oblems t hat we would 
describe either with a polar or a cylindrical coordi-
nate system. I am going to ask the several panel 
members here to tell us about the work that is being 



done in this particular area in their organization or 
institution, and I am going to start with Dr. Zane 
Spiegel. 

DR. SPIEGEL: The State Engineer Office at Santa 
Fe, New Mexico has been involved quite closely in 
using non-steady solutions for determination of the 
effect of changing or adding appropriations of water 
by wells on the other wells in the region or on 
streams and drains. There are other problems 
which come up, such as new surface water develop-
ment in one part of the basin that releases water, or 
may release water in the future for additional sup-
plementary surface water irrigation in other parts 
of the basin. This means that the recharge to a 
fairly large area will be changed and this increase 
in recharge caused by a new surface water develop-
ment will increase the supplies for the existing de-
velopments downstream by increasing the base flow, 
or the drain flow resulting from the surface water 
projects. The rectangular aquifer solutions pre-
sented in the Appendix represent some of the work 
done on this phase. The nonsteady applications 
come by the method of superposition of steady state 
solutions given by Jacob many years ago and by other 
problems presented in this collection. The steady 
state solution is also quite useful in itself because 
we can measure the water levels and draw contours 
for existing conditions and use the steady state so-
lutions to verify the coefficients of the aquifer we 
need to use in the nonsteady state in order to predict 
what will happen when we change the present condi-
tions. 

DR. COREY: Professor van Schilfgaarde, would 
you like to tell us what you are doing in North Caro-
lina? 

DR. VAN SCHILFGAARDE: Maybe I can tell you a 
little bit about what we are doing. I am going to do 
this in chronological order. For the last couple of 
years we have done some work on the theory of tran-
sient saturated flow and some of you may not be fa-
miliar with these references. One, with senior-
author Herman Bouwer, has been submitted to ASAE 
but is not out yet. It deals with a very simple little 
gimmick for adapting the steady state solutions to a 
transient solution of a drainage problem. Every-
thing I am talking about just now has to do with agri-
cultural drainage. 

Let us look at the problem which Hooghoudt, for 
example, and Donnan and many others have consi-
dered in the past, of steady rainfall being removed 
by tile drains . . We may modify this--put this in a 
nonsteady state--by considering that at a given time 
the rainfall rate P is stopped. The water table 
starts to drop, and, at least instantaneously, the 
discharge rate will stay the same. Well, if you do 
that you arrive at a simple differential equation sta-
ting that the equivalent drainage rate P is propor-
tional to the rate of change of the height of the water 
table. If f is the porosity and C is a factor which 
has to do with the change of the shape of the water 
table, then we can write 
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p - fC dm 
dt 

We can int egrate this equation if we have a relation-
ship between m and P , and dozens of these rela-
tionships are available in literature .. We can take 
Hooghoudt' s original equation, for example, putting 
in the ellipse equation. We can take a graphic solu-
tion such as the one presented by Ernst and Boumans 
s orne years ago, obtained from relaxation solutions. 
We can do this analytically or we can do it graphi-
cally. Graphically, you may plot the relationship 
between precipitation and the height of the water 
table for different spacings and then we can obtain 
an average precipitation rate P by assigning a spe-
cified rate of drawdown, t:.m/t;t. 

p/~ 

Desired 

~----------------------~~~~,.M m,td m/d 

Figure 1 

Let us say we want to drop the water table from a 
certain level to another certain level in a given time 
increment . This also fixes for us an average preci-
pitation rate. After you have plotted (figure 1) the 
dimensionless plot of P/K versus m/d for dif-
ferent values of S/d, by simply reading the center 
point off this graph you can get the spacing which is 
required to get the prescribed rate of drawdown of 
the water table, given the specified depth of the im-
pervious layer and the specified conductivity of the 
soil, and the porosity. The thing that is appealing 
to us is the fact that it is extremely simple and as 
such it can be adapted for field use. 

As another development, we take a problem 
that Mr. Glover worked out a number of years ago, 
and which I noticed in the Appendix A, where he con-
sidered the rate of drop of the water table by look-
ing at the differential equation: 

~X (yk~) 



This is the standard heat-flow equation which Mr. 
Glover integrated by assuming that y was constant. 
He also solved it for the case where the value of d 
(depth of impervious layer below drain axis) was 
zero. Now, the only modification that I have made 
is that I have integrated this equation where y is a 
variable. This gives us a solution to the falling 
water table problem, which is valid for any relative 
depth of the impervious layer, except for the con-
vergence correction, which has to be brought into 
any one of these problems. This can be done using 
Hooghoudt 1 s tables or the graphic equivalent of those. 
I want to point out however, that Mr. Brooks recent-
ly published a similar paper using somewhat differ-
ent initial conditions, and his solution and mine are 
not identical; as far as I know they are both correct 
if you accept the assumption on which they are based . 
I'll make a sketch (figure 2) of the initial conditions 
used by Mr. Brooks and myself. 

~Brooks 

Figure 2 
We are working right now on something which 

falls also within the scope of this topic, i.e., on a 
different method for measuring the saturated con-
ductivity in the field using very large samples. We 
have finished the theoretical work and t he laboratory 
work and are quite happy with it. A paper submitted 
to ASAE describes this work. Our field work tends 
to bog down during this first season. This is a clas-
sical example of difficulties in the field, but I think 
we can overcome them. 

I want to say a few words about what we would 
like to do in the future. In the first place, let me 
put this in a philosophical framework. I am inter-
ested in agricultural drainage primarily. I feel that 
logically, the first question to be asked in agricul-
tural drainage is, what are the requirements of the 
crop. The second question that comes up is what is 
the physics of moisture and air movement through 
the soil. And the third question is, in an engineer-
ing sense, how can we combine what we know about 
the botanical aspects and the physical situation to do 
a little better job of engineering design. Solutions 
such as published by Mr. K.raijenhoff, Mr. Brooks, 
Mr. Glover and others are examples of design tools. 
But t here is one thing that, at least in humid regions, 
we need very badly. That 1s, we do not have to fol-
low the water table down after one irrigation, or af-
ter a series of i rrigat ions at regular intervals . We 
are concerned with what will happen when we have 
erratic, variable rainfall during the growing season. 
So it seems to me that the next step that we would 
like to take is to take the type of mathematical solu-
tion I described, or a solution such as that of K.rai-
Jenhoff, and use it in combination with a probability 
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s tatement of the rainfall distribution over the season, 
and from that determine the distribution of the water 
table height over the season, on apr obability basis. 
This is what our thinking is for our next line of att ack , 
but I must admit that I have done some talking about 
it and not much more. 

DR. COREY: Our next speaker is Mr. Bill Nelson. 

MR. NELSON: Many of the fundamental principles 
that all of us are concerned with find their applica-
tion in a wide variety of practical situations. We 
have had discussions on drainage, water supply and 
replenishment. The general area of work and in-
terest at Hanford is that of the disposal of industri-
al effluents to the ground. Of course, in particular, 
our concern is that of radioactive wastes. I should 
also emphasize here that the radioactive materials 
that I will be talking about are low-level wastes. 
Since this area of application is a little different 
from the others, I have prepared slides that I would 
like to use as background, pointing out the type of 
questions that are asked of one who is going to ana-
lyze flow systems in order to help predict how nu-
clides will move through the soil. Often the questions 
center around the time involved in travel to potable 
supplies in order to allow decay. The first slide is 
a schematic diagram (figure 3) to illustrate a typi-
cal problem requiring analysis. The figure shows a 
pond;at some distance further downstream the natu-
ral ground water flow is into a surface water river. 
The classical equipotential lines and streamlines 
are shown. The streamlines in particular become 
a very vital part of the solution that is needed. In 
other words, the distribut ion of arrival time is de-
pendent on two things (1) the length of the flow path, 
and (2), the velocity, or more precisely the flow 
time which is an integral of the velocity along the 
various flow paths. Consider the next slide (figure 
4). The shortest streamline is from the pond dir-
ectly towards the river. On this graph the shortest 
arrival is represented by q/Q = 0. The material 
first reaches the river 11 days after the waste was 
put into the pond. At 20 days, approximately 15 per-
cent ( q /Q = 0. 1 5) of the original material has ar-
rived. A convenient way to think about the curve is: 
At zero time all of the water which instantaneously 
left the pond was colored blue ; then by the end of 20 
days about 15 percent of the blue water will have ar-
rived at the river, entered the river, and been swept 
away. Similarly, at 97 days 50 percent of the water 
which left the pond at zero time has entered the river. 

The curve in figure 4 is the result needed from 
the flow system analysis for contamination analysis. 
All of the concern about the heterogeneity of soil 
permeability, the boundary conditions, and the other 
flow effects combine to give a curve of this type 
(figure 4). It is paramount then that the streamlines 
are obtained in order to get the all-important time 
distribution. 

In the next slide (figure 5) is s hown a compari -
son of mathematical formulations for transient flow. 
Both the classical equations for transient flow and 
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MATHEMATICAL MODELS FOR TRANSIENT SATURATED 
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the Dupuit-Forchheimer approximate equations are 
shown. We notice in the Dupuit-Forchheimer ex-
pressions the transient enters the flow system as 
the partial derivative of h with respect to t , or 
in other words, time dependence enters through the 
partial differential equation. In contrast, in the 
classical potential analysis, time enters through the 
boundary conditions being time dependent. 

Often in unconfined systems, the water table 
shape is a function of time, and this is the manner 
in which time dependence enters the analysis. When 
analyzing contamination we use the classical equa-
tions on the right. The next slide (figure 6) indicates 
the reason why we used the exact formulation. The 
slide (figure 6) compares the two formulations ofthe 
solution for the pond in the original schematic dia-
gram. A waste solution was discharged into the 
pond for a week. That is a longer period than one 
usually finds in practice; yet it is used in order to 
illustrate the effect shown. From the figure for the 
exact equations, at 40 days from the time the waste 
entered the pond, the vertical difference between 
these two curves will be the amount of activity that 
is being bled into the river. The advantage for dis-
posal lies in the flow system spreading and diluting 
effect as well as allowing time for radioactive decay. 
In contrast , if the Dupuit-Forchheimer approximate 
method is used there is a single pulse, and that 
pulse predicts a peak which reaches 1 at 160 days. 
At first this might appear to be a very conservative 
estimate; in other words, the predicted activity from 
the Dupuit-Forchheimer assumptions may be high. 
If this were truly the case, the Dupuit- Forchheimer 
results could be used, but the next slide (figure 7) 
contrasts the results and shows the error. 

COMPARISON OF ACTIVITY ESTIMATES BASED 
ON DUPUIT AND CLASSICAL METHODS OF FLOW ANALYSIS 

0.09,...----------------------, 
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Figure 7 

The Dupuit-Forchheimer method does not offer the 
conservative estimate that we would like. Two iso-
topes, p32 and cr51 are shown. Notice that the 
classical analysis gives a peak early in both cases 
and then it drops off. However, in contrast, the 
predictions utilizing the Dupuit-Forchheimer as-
sumptions give very low peaks and they arrive much 
too late . 
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The reason for this is that the approximate 
theory predicts some 140 days in which decay occurs, 
whereas, in the actual case and in the classical 
analysis it has really decayed only 11 days. Per-
haps this indicates some of the reasons why, as far 
as disposal analysis, the classical formulations 
rather than those with the Dupuit-Forchheimer are 
required. This leads us then to the work summar-
ized in Appendix A, A great deal of our work has 
been associated with taking care of heterogeneity of 
soil permeability and being able to measure the per-
meability distribution, in place, for natural flow 
systems, This is a major part of the work we are 
engaged in at the present time. The work on stream 
and path functions for flow in heterogen·eous porous 
media is part of the overall measurement research 
effort. 

Stream functions have been available in classi-
cal hydrodynamics for many years, particularly the 
singularly elegant methods of complex variables and 
Stokes stream function for axisymmetricalproblems. 
More recently, in 1957, Yih presented stream func-
tions for inviscid hydrodynamics in terms of three-
dimensional stream and path functions. These 
stream functions can be carried across directly for 
flow in a homogeneous porous medium, so long as it 
is saturated flow. As one moves to a heterogeneous 
medium, changes are required; the permeability 
falls out of the equations for streamlines. However, 
it has to be reintroduced in terms of a boundary con-
dition. Considering transient path functions, which 
are covered here, the permeability distribution it-
self is inside the equation. The three classical 
characteristics of a stream function are found: ( 1) 
The paths of fluid flow are determined by settingthe 
adjunct functions, f, g and TJ equal to constants; ( 2) 
the velocity components are described in terms of 
these three stream function groups, and I 3) through 
very careful handling of the boundary condition the 
material distribution is obtained, 

There is a very worthwile field yet to be exam-
ined through studying the path functions and their 
relationship to the potential function for flow in he-
terogeneous media. A few results found to date may 
be of interest. We have been able to show that the 
kinetic energy distribution is not a conservative sys-
tem, i.e., the curl of the velocity is not zero. The 
practical implication of this result is that homogen-
eous systems are very, very special cases in nature. 
Very special in the sense that for the amount of ener-
gy that one has in the flow system, you get more 
flow in the homogeneous system than you can in any 
heterogeneous flow system than can exist. We are 
just getting into some of these phases, but I think 
there are important things and implications that 
need further study. 

Let me mention briefly some of the other work 
that we have underway. We have done quite a bit of 
work on partially-saturated flow by developing com-
puter programs to take care of solutions through 



numerical means. We have one program called 
"Steady Darcian Flow" which has exceeded our ori-
ginal expectations for usefulness in solving steady, 
partially-saturated flow problems and their reduced 
forms. It will also solve heter ogeneous saturated 
flow systems and homogeneous saturated flow sys -
terns, since they are all rec'.uced forms of the gen-
eral partially-saturated case. The program can 
solve for up to 8000 grid points very nicely. 

We have another computer program which can 
solve one -dimensional, transient, partially- satur-
a ted flow problems very nicely. When one uses the 
program for two-dimensions and axisymmetrical 
cases, instabilities develop. There is a great 
deal of development left to be done in the higher di-
mensionality problems. A visitin~ summer pro-
fessor from the Mathematics Department of Wash-
ington State University has been studying the insta-
bility characteristics. It is hoped that before too 
long we will be in a position to solve multiple dim en-
sional, partially-saturated, transient problems. 
As for work in the future , we are working toward 
measurement in place of the permeability distribu-
tion. In the session on models and computers I will 
talk about a series of programs and steps designed 
to accomplish the measurement and ultimately en-
able us to build an electrical analog model of the 
Hanford ground water system . 

DR. COREY: Mr. Ferris, it is your turn to tell us 
what is going on in the Ground Water Branch of the 
USGS. 

MR. FERRIS: Although Slichter' s ( l) treatise of 
1898 did not include the nonsteady state, it is of in-
terest to note that he presented solutions for anum-
ber of boundary-value problems which involved the 
flow to trenches or drains. Further, he set forth 

at this early date a lucid exposition of the role of po-
tential theory as applied to ground-water flow sys-
tems and the methods of c onformal mapping for reso-
lut ion of c omplex boundary problems. In subsequent 
work( 2) he developed field methodology and instru-
mentation for measuring ground-water velocity with 
the aid initially of fluorescein dye as the tracer, but 
later the use of an electrolyte when he developed his 
under - flow c onductivity meter. In a study of filtra-
tion through sands of the Fort Caswell area, Stearns(3) 
measured rates of underflow from upstream trenches 
to positions downstream using dye, electrolytes 1 

and biologic tracers. 

A mathematical model for the movement of 
water toward a plane sink was developed by Theis( 4) 
in his study of the influence of drains on the water 
resources of the Middle Rio Grande Valley, New 
Mexico. In a study of the ground -water resources 
of the High Plains, Theis( 5J developed a piezometric 
parabola model for a flow system which is recharged 
at a steady rate over a region bounded by parallel 
sinks . With the aid of this model he made the first 
quantitative determinations of recharge to the High 
Plains. The piezometric parabola model for system 
analysis was treated later in more detail by Jacob(6) 
who developed the form of the recession equation 
which describes the decay of the piezometric pro-
file when recharge ceases. He illustrated the appli-
cability of the profile recession model to correla-
tion with long-term records of rainfall on Long 
Island and with a high degree of success developed 
the functional relation between rainfall trends and 
ground -water stages from the turn of the century to 
date. In the closing statement of his report Jacob 
pointed out the applicability of these methods to pro-
blems of land drainage and to the analysis of the 
base flow component of the stream flow. 

(1) Slichter 1 C. S., 1898, Theoretical investigations of the motion of ground waters: U. S. Geol.Survey 19th 
Ann. Rept. 1 pt. 2, p. 295 - 384 . 

(2) Slichter, C. S., 1905, Field measurements of the rate of movement of underground waters: U.S. Geol. 
Survey Water -Supply Paper 153. 

(3) Stearns, N. D., 1927, The geology and ground-water hydrology of the experimental area of the United 
States Public Health Service at Fort Caswell, N. C.: U. S. Pub. Health Service, Hygienic Lab. Bul. 147, 
p. 137-168. 

(4) Theis, C. V., 1938, GroundwaterinthemiddleRioGrande Valley, N .Mex. : Nat. ResourcesComm. 
R egional Planning, Part 6, Upper Rio Grande, vol. 1, part 2 1 Ground-Water Resources, p. 277-285. 

(5) Theis, C. V., 1935, Amount of ground-water recharge in the southern High Plains: Am. Geophys. Union 
Trans. , 18th Ann. Meeting, pt. II, p. 564-568. 

(6) Jacob , C. E . , 1945, Correlation of ground-water levels and precipitation on Long Island, N.Y.: New 
York Dept. Conserv. , Water Power and Control Comm. Bul. GW -14. 
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The work of Cooper(7), Glover( B), and Henry( 9) 
developed mathematical models for flow systems 
which involve a fresh water-salt water interfacial 
boundary. Their work has contributed much to clar-
ifying certain aspects of this complex problem with 
its moving boundary plus diffusion-dispersionforces. 
A paper( 10) on the subject of the cyclic fluctuation 
of streams illustrated a method for determining the 
hydraulic diffusivity of the ground-water reservoir 
and information on its locus of submarine discharge. 
A recent report by Cooper and Rorabaugh( 11) sum-
marizes their progress in developing mathematical 
models to evaluate bank storage and the diffusivity 
characteristic of the ground water reservoir in its 
modulation of cyclic pulses from the stream. They 
have applied these models to determine the ground-
water portion of the stream flow hydrograph. 

DR. COREY: Now, we are going to hear from Mr. 
Glover of the U. S. Bureau of Reclamation. 

MR. GLOVER: Irrigation constitutes a major part 
of the work at the Bureau of Reclamation. Experi-
ence indicates that irrigation can not ordinarily be 
practiced without becoming involved with ground 
water. The first type of involvement to be met is 
often that of the need for drainage. When irrigation 
is practiced without provision for drainage, the 
water table is apt to rise until the land is water-
logged and the productivity of the area brought to an 
end. It is natural, then, that the Bureau will be-
come concerned with the problem of drainage, with 
open drains, tile drains, or parallel drains. This 
involvement comes from many sources. A canal 
leaks and contributes to the ground water, and that 
may have effect upon the ground water levels, so 
that a line-source function becomes useful for in-
vestigating the effect of canal seepage on ground 
water. The development of parallel drains was at-
tacked first by a first approximation procedure, 
which involved a restriction that the drainable depth 
would be small compared with the depth of the aqui-
fer below the drains. In order to get some idea of 
the effect of having the drains near the bottom ofthe 

aquifer another development was made as explained 
in Appendix A. It has been brought to my attention 
by Marinus Maasland that this problem was also at-
tacked by Boussinesq in 1904. I hope you people's 
French will enable you to pursue this elegant treat-
ment somewhat better than mine does. He did treat 
this particular case and in an elegant way. In the 
case where drains are placed along the slope and 
there is a gradient transverse to the drains it then 
becomes of some importance to investigate what 
happens due to this transverse slope. This case has 
been investigated and there is a summary in Appen-
dix A. It also became certain that we would have to 
deal with a layered aquifer and this has been given 
some treatment. The problem of the return flow is 
of importance. Other factors had to be treated also. 
These cases came up and were handled individually, 
in the beginning, and the solutions, recommendations, 
etc . were placed in informal memos which took 
care of the problem at the time. Later a number of 
these were collected together and assembled into 
Technical Memorandum 657. This will soon be fol-
lowed by a Technical Monograph in which the mater-
ial will be organized in a somewhat better fashion 
and will be supplemented by some machine-computed 
tables which will facilitate computations for cases 
of transient ground water movement. 

DR. COREY: Mr. Kraijenhoff will you report on 
your work? 

MR. KRAIJENHOFF: At the State Agricultural Uni-
versity at Wageningen, the Netherlands, we have 
done work that is more or less similar to the work 
Professor van Schilfgaarde has preseuted here. 
That is, we have studied the unsteady flow to drains 
as a consequence of a certain succession of applica-
tion rates of seepage into the saturated zone. I say 
seepage into the saturated zone because I am very 
much convinced of the importance of the unsaturated 
zone which effectively transforms the rainfall dis-
tribution diagram into a time diagram of the inflow 
into the saturated zone. 

(7) Cooper, H. H., 1959, A hypothesis concerning the dynamic balance of fresh water and salt water in a 
coastal aquifer: Jour. of Geophysical Research, vol. 64, no, 4, p. 461-467, 

(8) Glover, R. E., 1959, The pattern of fresh-water flow in a coastal aquifer: Journal of Geophysical Re-
search, vol. 64, no,4, p. 457-459. 

(9) Henry, Harold R., 1961, Salt intrusion into coastal aquifers: International Association of Scientific Hy-
drology, Commission of Subterranean Waters, publication no. 52, p. 478-487. 

(10) Ferris, John G., 1951, Cyclic fluctuations of water level as a basis for determining aquifer transmissi-
bility: Union Geodesique et Geophysique Internationale, Association Internationale d' Hydrologie Scienti-
fique Assemblee Generale de Bruxelles--Tome II, p. 148-155. 

(11) Cooper, H. H., and Rorabaugh, M. I., 1963, Changes in ground-water movement and bank storage 
caused by flood waves in surface streams: U. S. Geol. Survey Prof. Paper 475-B, Article 53, p. B192-
B195, 
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We started with this inflow into the saturated 
z one and used an equation as given by Mr . Glover 
for a recession period after an instantaneous addi-
tion of water to a drainage situation typified by two 
parallel channels with a constant level (figure 8). 

Figure 8 

This two-dimensional Dupuit-Forchheimer model 
was used for an instantaneous application to t he 
saturated zone of t:13 per unit surface at zero time. 
This inflow causes the water table to rise instan-
taneously over !:13/!J. , where J.t stands for the 
active porosity. 

The shape of the water table after zero time is given 
by: 

4 (X) 

- ~ exp ( -n2 t/j) sin 
7rn=1,3,5, .. ~ 

n?rX 

L 

The reservoir coefficient j , which incorporates 
all hydrologic properties of the drainage situation 
is given by 

. -1 ~ 
J - -;;:2 K D 

where L is the distance between drains, 1-1 the 
active porosity , which equals the real porosity 
minus the enclosed air in the drainable zone, K 
the permeability and D the equivalent mean depth 
of horizontal flow according to the Dupuit assump-
tion. This is called equivalent depth because radial 
resistance and horizontal components of flow above 
the water table are to be accounted for. 

By application of Darey' s Law we obtain for ~: 

~ =8KD LIS 
ax X = 0 1-1 L 

(X) 

~ exp ( -n2 t/j) 
n=1,3,5, .•. 

We introduce now the instantaneous unit-hydrograph, 
which is the reaction of outflow to an instantaneous ' 
inflow of a unit volume into the system . Therefore, 
substituting unity for .6SL we obtain: 
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8 1 (X) 
u (t ) = - 2 -:- ~ exp ( -n2 t/j) 

7r J n = 1,3,5, ••• 

This expression for the instantaneous unit hydro-
graph is then used in a convolution integral in order 
to find the outflow rate as caused by a steady inflow 
at a rate p into the saturated zone, starting at zero 
time. Thus we find: 

(X) 

~ = ~2 P ~ fi2 [1 - exp ( -n2 t/j l] = 
n=l,3,5, .•• 

~2 p tl -exp ( -t/j )J+ -§- ~2 p [ 1 -exp ( -9 t/j ~ + 

+ ... = <It+ <It* 

For the computation of the outflow rate ~ a 

simple tabular computation was developed. First, 
we approximate the time distribution of inflow by a 
block diagram of equal time intervals and during 
each interval the value of the inflow rate p is con-
sidered a constant . We then write the series in its 
separate terms qf , q{* , etc. We observe that 

these terms are similar to the outflow rate of alin-
ear storage system (figure 9) and therefore succes-
sive values of each term can be easily computed . 
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Fortunately the number of terms to be computed 
can be restricted. This is shown in figure 10. The 
left half pictures the growth of q/p where p is the 
rate of addition to the saturated zone, so that q/p 
is a dimensionless expression for the outflow rate. 
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On the horizontal axis you find t/j which is a di-
mensionless expression for time. Here j is again 
the reservoir coefficient expressed in the same 
time unit s as the interval t during which the inflow 
rate p is considered to be a constant. 
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Table 1. Simultaneous Computation of ~ and yt 

j = 16,7 intervals : 

,. = 0,10 : j = 167 int. 

1 intervals 

mm 
P• interval 

I' 
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One can approximate the real solution of q/p 
by just taking the first term of the series 1 which is 
the line marked 1 T 1 and adding a constant factor 
times the rate of inflow p . The resulting line 
marked 1 T + r 1 only approximates the real value 

after a relatively long time. We could 1 however 1 

take two terms and the appropriate rest term to ob-
tain a quicker approximation and finally the figure 
shows that the line which represents three terms 
and the appropriate rest term very soon merges in-
to the real line, 

It is this ratio t/j 1 or 1/j if the durat ion of 
one interval is the time unit 1 which determines how 
many separate terms of the series should be com-
puted in order to obtain a chosen accuracy . This is 
shown on the right half of the figure. 

Table 1 s hows this computation in tabular form. 
We c:an leave the lower half of this table out of con-
sideration because it applies to the water table ele-
vations which can be computed in a similar way. 

To start any computation we must first know the 
reservoir coefficient which typifies the drainage sit -
uation. In this example j equals 16 intervals so 
1/j = 0. 06 and the exponential functions can be found 
in tables. The preceding diagram (figure 1 0) shows 
that at this value of 1 /j only two terms should be 
computed separately in order to keep the errors 
well below l percent. It follows that we must first 
find the four constants as computed above the table 
and these constants are used for determining suc-
cessive values of the firs t term <It and the second 

term qf* . Then we compute the rest term r 2 and 

add them all together and thus find the successive 
values of the outflow rate ~ . 
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The reservoir coefficient j for a certain situ-
ation follows from the recession curve when there 
is no inflow into the saturated zone (figure 11). 
These recession curves must merge into straight 
lines if we plot the log of the outflow rates against 
time and then their s lope determines the reservoir 
coefficient. There are other ways of determining 
the reservoir coefficient: If the hydrologic proper-
ties of the drain;'lge situation are known I 
j = 1/7r2 .J.JL2 /kD can be computed. One can also 
try to find t he time lag bet;ween the centers of area 
of the inflow diagram and the resulting wave of out-
flow. 

Figure 12 shows the result of an experiment 
with a granular model. We could run a series of 
"rainfall" rates and gage the successive outflow 
rates . By repeating the wave twice we got an idea 
of the accuracy. 
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There is a good agreement of observed and com-
puted hydrographs of outflow. The latter have been 
obtained by the comp'\tation method which I have pre-
sented here. Figure 13 shows how the reservoir 
coefficient was derived from the log Cit plottings of 
the recession curves. 

We did not find the same agreement for the hy-
drographs of ground water level (figure 14) and I 
think that we must ascribe that to the influence of 
the unsaturated zone which has been completely dis-
regarded in the computation. There is not only a 

Aotc 01 tlo• ..• ·-cc ,,r lfltcrql 
,., 10 

0.51-,1 

transformation and delay of the downward flow of 
moisture in the unsaturated zone but there is also 
the fact that the rising water table swallows mois-
ture and the falling water table leaves moisture be-
hind creating some kind of Doppler effect which amp-
lifies the vertical motion of the water table. 

We are investigating the influence of the unsatu-
rated zone and I hope to show you some of the re-
sults when we will be discussing model research 
later on in this symposium, 
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DR. COREY: Now we are going to hear from Dr. 
Roger De Wiest from Princeton University. 

DR. DE WIEST: Thank you , Dr. Corey. Gentle-
men, two years ago I came here as an uninvited ob-
server to the Conference on Water Resources. I 
found since then that Colorado State University is a 
very hospitable place and I am very glad to be here 
and I can say the efforts that have been made here to 
further the progress in water resources in general 
and in hydrology and ground water hydrology in par-
ticular are very significant. Now I consider myself 
a neophyte in this field of ground water since I have 
been working only four years in it . I was not so for-
tunate as to have instructors like C. V. Theis or C. 
E. Jacob, or other distinguished teachers in the au-
dience, I had to teach myself. My own work started 
really as a Doctoral Thesis at Stanford . The idea 
was to study the unsteady state flow that takes place 
when a reservoir is filled. This is a practical pro-
blem, as described in a recent article in the French 
Journal "La Houille Blanche, " about the filling of a 
reservoir in Grevelingen (Holland) . The mathema-
tics underlying the solution were borrowed from an 
article by N . Curle in the Proceedings of the Royal 
Societyof London(SeriesA), Vol. 235,1956, in 
which the unsteady flow of a jet through an orifice 
was investigated. In our case the flow through an 
embankment or a levee with horizontal underdrain 
was examined. The mathematics involved were 
much more complicated as it turned out to be than 
those of the jet problem. The essential idea used in 
the analysis was the consideration of the unsteady 
flow as a time-dependent perturbation of the final 
steady flow . The unsteady potential function was ex-
panded in a power series of e- Xt of the form . 

-xt { -2 xt) tjJ (x,y ,t) = ¢
0 

(x,y) + ¢1 (x,y) e + 0 \e 

in which tjJ (x,y) was the known steady-state po-
D 

tential, ¢1 (x,y) was the perturbation potential, 

and 

o (e -7.. xt} -2 At -3 Xt = ¢2 (x,y) e + ¢3 (x,y) e + •.• 
-n Xt Each of the terms ¢ (x,y) e can be thought of 

n 
as a perturbation term of its precursor in the series, 
and the approach of my study was limited to the com-
putation of the first perturbation term ¢ 1 (x,y) e -Xt. 

It was s hown that ¢ , satisfied Laplace 1 s equa-
tion \j z ¢1 = 0 in a dimensionless hodograph plane. 

The free-boundary condition was linear but compli-
cated, especially in the case of rapid level rises. 
This boundary condition contained the eigenvalue X , 
which was found by the solution of a determinantal 
equation . This equation, by coincidence , was simi-
lar to one developed by the English astronomer, Hill, 
in his Lunar Theory. A paper extracted from my 
Doctoral Dissertation was published in the Journal 
of Fluid Mechanics, May 1960, vol. 8, p. 1-9. 
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At Princeton University, I completed the above 
analysis by means of model tests with a Hele-Shaw 
apparatus. In particular we tested whether it would 
be worthwhile to go through the more complicated 
analysis resulting from the boundary condition for 
rapid water rise behind the dam, or whether we 
could limit our efforts to examining slow water rises, 
as a first approximation. The experiments con-
firmed rather well the hypothesis that for practical 
purposes the study of slow water rises was suffi-
cient . Another interesting feature was revealed as 
a result of the construction of the Hele-Shaw model. 
Previous experimentors with this kind of model re-
ported very good agreement between model tests 
and analytical computations in which Dupuit 1 s sim-
plifying assumptions about the free surface were 
made. It was found that this agreement was due to 
incorrect scaling of the model. A paper on these 
investigations was made available in the transactions 
of the American Society of Civil Engineers, vol. 127, 
1962, part I, p. 1045-1089, 

Another paper that deals with a problem in rec-
tangular coordinates, on aquifers intersected by 
streams, will appear in the Journal of the Hydrau-
lics Division of the ASCE, November 1963. In this 
paper we had to estimate analytically the yield of a 
bank storage project, in the vicinity of Princeton , 
New Jersey, as predicted by a consultant hydrologist. 
The mathematical tool used in this paper was made 
available to engineers in 19 56, when Bernard Fried-
man published his book "Principles and Techniques 
in Applied Mathematics . " (John Wiley and Son, 
New York, . Y.). It shows us how to construct the 
Green 1 s function for some differential equations and 
boundary conditions , and how to expand the delta-
function in its Fourier series, by integration of the 
Green's function in the complex plane . 

Finally, a few words could be said about the 
English translation which I made from the Russian 
classic "The Theory 'lf Ground -Water Movement," 
by P. Ya. Polubarinova-Kochina. (Princeton Uni-
versity Press, 1962 , 613 pp.). The book contains 
a vast amount of material that has become classic 
and sometimes may be found in a better form in the 
works of Morris Muskat. Nevertheless it has some 
very original and elegant methods which make it 
worthwhile as a tool for researchers and for ad-
vanced course work. Among these methods I would 
like to quote the so-called method of the "small para-
meter, " as used also, I believe, in a paper by Roy 
Brooks. Would Mr. Brooks like to comment on this 
method? 

DR. COREY: Roy, would you like to say something 
about that? 

MR. BROOKS: This method of small parameters 
which as was indicated by Roger De Wiest is found 
in Madame Po!Ubarinova-Kochina' s book, is also 
found in Advances in Applied Mechanics, Vol. IV, 
1956, p . 281, called the Poincare-Lighthill-Kuo 



method. Also, Mr. Glover suggested the method of 
Emile Picard in "Memoire sur la theorie des equa-
tions aux derives partielles et la methode des ap-
proximations successives." This is from a French 
Journal published in 1890. Picard discusses a 
method similar to the method of small parameters 
discussed by Polubarinova-Kochina. These refer-
ences are in the paper, "Unsteady Flow of Ground 
Water into Drain Tile," by R. H. Brooks, ASCE 
Journal of Irrigation and Drainage, vol. 87, no. IR 2, 
June 1961. 

DR. COREY: I would like members from t he audi-
ence to ask questions or make comments. 

MR. BROOKS: I am not s ure to whom this question 
should be directed on the panel. I would like to talk 
about the parallel drain problem which consists of a 
system of horizontal parallel drains above an imper-
meable boundary. Glover first solved this problem, 
by assuming that the drainable depth was quite large 
with respect to the distance of the tile above the bar-
rier. 

If we make an inspectional analysis of the non-
linear partial differential equation which makes no 
such assumption, we find that a dimensionless con-
stant appears from the analysis which I call H /D, 

0 
where H is the initial height of the water table above 

0 
the drain, and D is related to the depth of the drain 
above the barrier. Because of the fact that we are 
using the Dupuit-Forchheimer horizontal flow as-
sumptions, this is the only geometry factor that ap-
pears in the equation. In another paper published 
by Ham mad , a solution was developed using the La 
Place equation. Hammad 1 s solution involved only 
the geometry factor L/D , the ratio of the length 
of the spacing to the depth of the tile above the bar-
rier. This factor L/D is also an important para-
meter in a general solution a s well as H /D. Be-
cause of the Dupuit-Forchheimer assump~ions, L/D 
obviously does not appear in the approximations by 
Brooks, Glover and van Schilfgaarde. Obviously, 
if the drains are close together the L/D parameter 
is very important. Should we c ome up with some 
computer solutions or some exact two-dimensional 
solutions which would indicate when the factor L/D 
is important in these Dupuit- Forchheimer solutions? 
Are we satisfied with the equations that we presently 
use in design with their assumptions and limitations, 
or do we need some exact solutions to indicate the 
useful limits of the easy to use approximate solutions? 

Maybe Bill Nelson or Jan van Schilfgaarde 
would like to comment on this. 

DR. VAN SCHILFGAARDE: To begin with , I would 
say that the Dupuit-Forchheimer theory as it stands 
will never give a solution that will take into account 
this convergence effect into the drain that you refer-
red to. From a pragmatic viewpoint, we can cir-
cumvent this problem for the time bemg by the use 
of an equivalent depth as was proposed by Hooghoudt 
in 1946. It was used in the same form by Professor 
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Kraijenhoff in his paper in "De Ingenieur" and was used 
by Herman B ouwer and myself in a couple of papers we 
have written. This is not an answer to Brooks 1 

question, because theoretically we still have not ac-
counted for convergence . For those of you who have 
not seen this correction , let me just mention the 
origin of Houghoudt 1 s development. The original 
idea was essentially this: If we have a drain which 
is close to an impervious layer so that this ratio 
L/d is large, then the Dupuit-Forchheimer assump-
tion is relatively good. The ellipse equation for 
steady state as given by Hooghoudt, or the Donnan 
equation, which is essentially the same thing, is 
based on this kind of situation. Now, if we go to the 
other extreme, when the impervious layer is way 
down, in that case the horizontal flow assumption is 
very poor, but a good approximation can be made if 
we assume an aquiclude through the center of the 
drain , which is the other extreme. In this case we 
get radial flow into the drain with only half of a 
circle acting as a sink. In intermediate cases we 
get some mixture of the two, and Hooghoudt in his 
original work combined these two in a rather ingen-
ious fashion, which I do not want to describe now, 
and calculated the so called true relationship be-
tween Q and m . m is the height of the water 
table at the midpoint above the drain axis, Q is the 
discharge, or the precipitation rate, whichever you 
want to use. And then, he went back to the ellipse 
equation , which is valid when the Dupuit assumption 
holds, and said, if we calculated a correction factor 
for the ellipse equation always used the ellipse equa· 
tion with this correction factor, we would get the 
right answer, whether the ellipse equation per se 
holds or not. This correction factor was obtained, 
then, in terms of a substitution de of an equivalent 

depth which had to be used in the place of the depth 
d in the equation, and d , you will remember, is 
the depth t o the impervious layer. This resulted in 
a tabulation of some 50 or 75 pages in metric units 
and was published in Dutch, and not very useful to 
an Arne ric an audience. In my recent paper in the 
ASCE Proceedings, I have taken these tables of 
Hooghoudt for one special case, a 5-inch diameter 
drain, and plotted them in English units so that you 
get a series of curves of de plotted against d , 

spacing as the parameter on the curves . 

....__ _____________ d 

Figure 15 



So for any given depth at a given spacing the equiva-
lent depth that has to be plugged into the equation, 
can be read off directly. This method of correcting 
for the convergence is a practical way out of the dif-
ficulty that Brooks mentioned, but it is not a very 
sophisticated way. And the only method, in the con-
ventional sense , is to avoid the Dupuit-Forchheime.c 
Theory, 

DR. COREY: Would you like to say something about 
that, Mr. Nelson? 

MR. NELSON: The Dupuit - Forchheimer equations 
are not used very often in our work, and we are 
moving even further away from them. We are going 
in this direction because, for our particular appli-
cation , these approximations do not give results that 
are of value and use, Perhaps I did not make it clear 
that the Dupuit-Forchheimer assumptions, when used 
to predict concentrations of wastes, do two things . 
First, they predict that the arrival of waste will be 
a good deal later than it is in actuality; and secondly, 
they predict that when it does arrive, the activities 
are far lower than the true condition , From an en-
gineering point of view we must be on the conserva-
tive side . For this reason, our research group is 
moving away from the Dupuit-Forchheimer-type 
analysis to the classical potential analysis where 
transients enter as the time dependents of a boundary 
condition . For me to say that this is the way one 
should go in drainage design or ground water supply 
would be extremely unwise, since these applications 
represent a different set of circumstances . 

In analyzing heterogeneous systems, the number 
of analytical solutions we can find is extremely limi-
ted; this naturally forces the use of computer and 
model solutions . If you are going to use such meth-
ods you will do better, in our experience to use 
classical methods of physics. The next step is to 
look at how the time dependence enters the boundary 
value problem. In the majority of the field situa-
tions further analysis shows the upper boundary, or 
water table , should be analyzed as a partially-satu-
rated system, I would expect ultimately to solve 
partially-saturated flow systems with heterogeneous 
media. When this is done there is no longer any 
worry about the arbitrary boundary, the water table, 
which is more a figment of our imagination--arising 
from analytical complexities- -than a reality in nature . 

DR. COREY: Thank you, Mr. Nelson . Mr . Glover, 
would you like to add something to this? 

MR. GLOVER: Mr. Brooks' question concerned ap-
plications in drainage. We have drains as indicated 
in figure 16. 

We call the drainable depth H the distance be-
t ween drains L and the depth below the drains D. 
The question as I understand it was this; whether in 
a complete solution we would not have to have apara-
meter depending upon L/D , another one on H/D . 
I t hink the ans we r wou ld be yes . 
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Figure 16 

I would like to discuss here a development re-
cently used at the Bureau, which is a partial solution. 
Mr . Moody of the Bureau has developed a solution 
which represents a flow coming along a strip which 
then goes out of a circular 'ctrain. The convergence 
loss can be separated out from that due to the flow 
which would pass through the strip if this conver-
gence were not present . 

In the American Concrete Institute Journal, in 
an article by Tuthill, Glover, Spencer and Bierce, 
there was a heat flow case described that concerned 
the winter curing of concrete, by the use of insulation 
applied to the forms, There is a very similar mathe-
matical situation in the drainage case and in the heat 
case . In the heat case there is a certain amount of 
heat generated between the insulated forms. It raises 
the temperature and produces a gradient with respect 
to the exterior. Here we have a resistance to the flow 
of heat caused by the insulation. In the present case 
the resistance to flow of water, which takes the place 
of heat, is due to the convergence. By a modification 
of the formulas, which were originally used for the 
flow of heat, we can use the charts which are pre-
sented in the Journal to solve the case of the drain, 
taking into ace ount the effect of convergence . It 
happens, that the notations are almost identical. 
The term which takes care of the emissivity in the 
heat flow case is given in Moody's development by 
the expression 

E 7rK 
1ra + 2 D \!:) · 

where a is the radius of the drain , D is the satu-
rated depth below the drain and K is the permea-
bility of the material. If this value of E is intro-
duced into the charts, then it is possible to take 
account of the local drain resistance by using this 
previous development . It is a partial solution to the 
question you just asked . 

MR. BEAN: I would like to speak to Mr. Nelson's 
statement that he is much interested in future work 
in the unsatura t ed zone. I would just like to let him 
know, and the others of you too, that we in Calif or-
nia have actually two programs in progress that are 
concerned with this zone . One is a cooperative pro-
gram with Ivan Johnson of the U. S. Geological 



Survey, who is here today. This program has to do 
mainly with unsaturated permeability in the vadose 
zone. The other is a cooperative program with the 
Agricultural Research Service on artificial recharge. 
Bill Bianchi, a representative of ARS in that program, 
is also here. In the ARS program we are concerned 
with infiltration of water and its downward movement 
in the vadose zone. This zone is not a shallow zone 
at all in much of our State. We have several hun-
dred feet to the water table in parts of the San Joa-
quin Valley. So we have a deep zone to consider, 
and it takes a significantly long period of time for 
water to move through; so we have quite a problem. 

MR. NELSON: Near the separations plants at Han-
ford the depth to the water table is in the order of 
200 feet. For this reason the partially-saturated 
zone is of vital interest to us. Mr. Reisenauer of 
our group has collaborated with some or your people 
regarding our partially-saturated flow studies. 

MR. MOODY: I would be interested in hearing a 
little bit more from Mr. Nelson with regard to his 
computer program. He spoke of being able to handle 
up to 8000 grid points. Do I understand correctly, 
is this a nonlinear solution and is this a relaxation 
method? 

MR. NELSON: Yes, it is the nonlinear equation 
where the permeability is a function of the ground 
water potential. I don't want to become bogged down 
in belaboring semantics; however, everybody seems 
to have their own name for a particular type of iter-
ative solution technique. Relaxation, which South-
well introduced, sought out and reduced the nodes of 
greatest change in potential. Southwell's relaxation 
is rather inefficient computerwise, s1nce the search 
is time-consuming. We use the classical Gauss-
Seidel method which sequentially improves the poten-
tial estimat e at the nodes. We further use over-re-
laxation to obtain the solution rapidly. 

What we do is set up a grid work covering the 
problem. We replace the partial differential equa-
tion with the -finite difference equivalent and seek the 
potential at a given set of node points. This gives a 
set of simultaneous equations for solution rather than 
solving the partial nonlinear equation. However, the 
simultaneous equations are not linear since the par-
tial differential equation is nonlinear. Three con-
ditions have to be satisfied simultaneously at each 
node, namely: (1) the finite difference equation, (2} 
the relationship between capillary pressure and the 
potential, and ( 3) the relationship between capillary 
pressure and relative capillary conductivity. 

Computational instabilities occur in many prob-
lems but experience has provided a series of methods 
which enable overcoming the instabilities. They are 
controlled by using an average of capillary conduct-
ivity as the estimate at the central node point instead 
of the true one. There is a rational basis for analyz-
ing instability for the steady flow problems. You say 
that there exists an electrical network which itself 
has characteristics analogous to the nonlinear equa-
tions being used. Then go to the theory for stability 
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in electrical networks, which has been rather well 
worked out, to get the general criteria. Utilizing 
these criteria (when combined with moving through 
the improvement procedure in an optimum way) we 
have been able to handle any instabilities that have 
arisen for steady, partially-saturated flow systems. 
In summary, we can solve one, two, axisymmetri-
cal and three-dimensional problems, although the 
cube root of 8000 is only 20 which indicates restric-
tions in three dimensional problems. 

DR. BOUWER: I am very much interested in this. 
A few years ago I published a paper showing how 
solutions of unsaturated phases may be obtained 
with a resistance network analog. Are you using 
any new principles or is your technique basically the 
same as the network analog procedure? 

MR. NELSON: There is very little difference in the 
methods. We are solving the node equations digital-
ly and you are using an analog. You iterate with the 
resistance values in the network in order to satisfy 
the three conditions mentioned earlier. The latter 
iteration can be eliminated by approximating the 
capillary conductivity as a step function. For our 
soils there is difficulty in justifying the step function 
apt-' roximation. 

DR. SPIEGEL: I would like to add another practi-
cal note to what Mr. van Schilfgaarde said. First, 
we must realize that we approach this problem of 
ground water with at least three different viewpoints. 
Perhaps we could call one the agricultural viewpoint. 
This viewpoint considers fairly small drain spacing. 
Second, the geological viewpoint is a very broad-
scaled one, and third, we have been talking about a 
geochemical viewpoint which requires that we con-
sider first and foremost the heterogeneities in aqui-
fers. For the first viewpoints we don't have to con-
sider the micro-heterogeneity very carefully, but 
we do have to considP.r macro-heterogeneity. I think 
we should differentiate the two relative scales used 
in the geologic and the agncultural aspects of hydro-
logy. Let me illustrate . In the agricultural view-
point the ratio between vertical and horizontal scales 
is relatively large. However, for most geological 
problems we can relax our equations and boundary 
conditions quite a bit because most aquifers are 
actually very thin in comparison with their extent. 

Thus, in most aquifers the Dupuit-Forchheimer 
assumpti·:lns certainly can be shown to hold every-
where. And furthermore you can generalize the 
Dupuit-Forchheimer assumptions for the case of 
partial penetration and it will still hold in most of 
the aquifer whether the aquifer is penetrated to the 
bottom, to two-thirds or half, or even the drain 
problem with almost zero penetration. Another 
geological point of interest is that streams don't 
usually fully penetrate an aquifer. The stream may 
penetrate only a shallow portion of the aquifer and 
so near the stream convergence of flow lines toward 
the stream might be expected to give some trouble 
if we analyze the problem using theoretical equation!:' 
based on the Dupuit-Forchheimer approximation. 



However, if we realize that most streams, because 
of the Pleistocene geological history of the stream, 
more nearly approximate the fully penetrated situ-
ation, because the streams actually run on a gravel 
fill, which if it doesn't penetrate fully to the base of 
the aquifer may penetrate half way. Therefore, we 
should keep in mind not only the limitations of a 
physical system in using our mathematical methods 
or analogs, but we should always keep in mind some 
of the general relations that we can make, to relax 
the assumptions and reduce the complexity of the 
equations. 

DR. VAN SCHILFGAARDE: I would like to make 
two comments. In the first place, I am very much 
in agreement with what my partner here just said. 
I also want to say in relation to Brooks 1 earlier ques-
tion that we've got to be a little careful as to the type 
of degree of sophistication that we are interested in. 
From an agricultural viewpoint we are interested in 
studying in detail what actually happens. We are 
kidding ourselves if we use a transient , saturated 
solution or any kind of a saturated solution, and as 
soon as we are using anything different, then the 
Dupuit-Forchheimer theory of course, is out the 
window. This comes back then to what Bill Nelson 
was saying earlier. To the extent that we can make 
use of the Dupuit-Forchheimer solution it is a mat-
ter of arriving at a first approximation of what might 
happen in the field . In that case the type of correc-
tion shown here by Mr. Glover, or as I indicated 
earlier, is plenty good enough. We are fooling our-
selves if we ask for higher accuracy. Probably the 
biggest problem here is to identify or to measure the 
characteristics of the soil or the aquifer in geologi-
cal terms. If you can only measure the conductivity 
within 500 percent, and we can get an approximate 
theory that is within 10 percent, then we should be 
least concerned with the theory. The difference be-
tween geological and agricultural interpretation is 
fairly obvious if it is presented as it was just now, 
but it can also get us into some serious trouble, be-
cause of our different backgrounds as we tackle some 
of these problems. One problem which is a rather 
simple example of this type of thing, but is not a 
simple or a small problem, involves the present 
work on the Arkansas River. The U. S. Geological 
Survey did a beautiful job in a rather sophisticated 
manner of predicting the annual changes in the water 
table height through the basin a:s a result of proposed 
structures. It was a beautiful piece of work assum-
ing the type of thing we are talking about here in an 
unconfined aquifer, but now agriculturalists must 
take the data from the USGS and interpret them in 
terms of what the proposed program does to the plant ; 
and if we are talking about the plant, we are inter-
ested in what is happening in the top 4 feet. And if 
the geologist tells you that on the average the water 
table will change from 10 ft below the surface to 4 
feet below the surface on an annual basis, we still 
know nothing about what it will do to the plant that 
the farmer wants to grow commercially. This is a 
good example of an instance where geological tech-
niques can give very good answers to geological 
questions, but cannot give answers that are useful 
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in answering questions of interest to agriculture . 

DR. COREY: Do we have a question from the 
audience? 

MR. PAPADOPULOS: Tcharnyi in 1951 and Hantush 
recently have independently proved the validity ofthe 
Dupuit-Forchheimer well-discharge formula. They 
report that although the Dupuit-Forchheimer theory 
might give erroneous results for the head in the vi-
cinity of the well, it gives accurate results for the 
discharge of the well and the head at large distances 
from the well. Isn't this also true for drain prob~ 
!ems? 

DR, VAN SCHILFGAARDE: Yes, the same thing is 
true for drain problems. As a matter of fact, Kirk-
ham published a paper in 1958 (Am. Geophys. Union 
Trans, v. 39: p. 892-908) on this particular prob-
len. and showed under what circumstances the Du-
puit-Forchheimer theory will predict the proper 
shape of the water table and when it will not. 

MR. PAPADOPULOS: Does the Dupuit-Forchheimer 
theory give an incorrect answer for the position of 
the water table at the midpoint between drains? 

DR. VAN SCHILFGAARDE: No, I could be wrong, 
but as an off-hand answer, I do not believe the Du-
puit - Forchheimer theory gives an incorrect answer 
for the pos ition of the phreatic surface at the mid-
point between drains if we consider y as a variable 
in the differential equation as was done by Brooks 
and by myl"elf. It probably will result in an error 
in the vicinity of the drain but since the critical 
point for agricultural drainage is the midpoint, we 
don't care how far we are off close to the drain. 

DR. COREY: I think we should allow some time for 
discussion of the direction we should go in future 
research. 

DR. DE WIEST: My point in the field of future re-
search concerns a valid expression of Darcy's Law 
in the zone of dispersion. I've been lecturing on 
ground water here at the NSF Hydrology Institute and 
I have pointed out that in a dispersed medium, under 
the heading single phase-flow, we use an expression 
of Darcy's Law which has been questioned by Pro-
fessor Scheidegger particularly in the case of un-
steady flow. The question arises is this expression 
that we now have and that we now use for Darcy's 
Law, is it valid in steady flow? I could derive the 
expression on the blackboard if you are interested. 

DR. VAN SCHILFGAARDE: Will you define the 
region of dispersion? 

DR. DE WIEST: Yes, let me illustrate this by the 
problem of salt water intrusion, in which, consider-
ing as a first approximation that salt water and fresh 
water are immiscible, we first tried to locate the 
position of t he interface between salt water and fresh 
water. This of course, was the first step, made by 
K. Hubbert, in analogy with the interface between a 



hydrocarbon and its water environment in the rock 
strata. Recently we have had a number of interest-
ing studies of diffusion and dispersion in porous 
media, by researchers at the University of Califor-
nia in Berkeley and Davis, at MIT,and at the Technion 
in Haifa. A very important contribution, in my opin -
ion at l east , has been made by the late N. Lusczyn-
ski in his paper published by the Journal of Geophysi-
cal Research, Dec. 1961, pp. 4247-4256. There-
sults of this paper are extremely interesting, pro-
vided the expression used for Darcy's law is still 
valid in the region of dispersion, i.e. the region 
where fresh water and salt water mix. This paper 
shows that we can obtain a three-dimensional flow 
picture in the zone of dispersion by making some 
observations in test wells and by applying some 
rather elementary vector calculus. Let me write 
Darcy 1 s equation as it is used in the paper: 
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v = - - grad q, * g 

Hubbert potential __ 
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This is the equation that we derive from the force 
potential q, * and we know that this is a good equa-
tion in the salt water zone and in the fresh water 
zone. We use this equation also in the zone of dis-
persion, where there is no force potential q, * be-
cause p is a function of position there. The valid-
ity of the equation, at least for unsteady state flow, 
has been questioned by Scheidigger in his book 
"The physics of flow through porous media," 
1960, The MacMillan Co., New York, N. Y., pp. 
256 -258 . My question is the following. Is this a 
valid expression of Darcy's Law in t he zone of 
dispersion? 

MR. JACOB: Yes, it is . Now , for unsteady flow 
the variation of density in space and in time enters 
the equation of flow through the continuity equation. 
I am on the defensive, but I am in agreement with 
Scheidigger . Nobody has yet solved satisfactorily 
an exact three-dimensional equation for unsteady 
flow in a compressible aquifer. From an engineer-
ing standpoint this is not necessary. The storage 
coefficient, or storativity , is empiri-:ally determined 
and reflects the variation of fluid density with pres-
sure and also of porosity with fluid pressure as 
closely as we are capable of measuring them . 

DR. DE WIEST: I have come to the conclusion 
that we should do research about the validity of this 
formula either starting from the basic principles or 
as a second approach that we should try to come up 
with an experiment in which we could then prove or 
disapprove the validity of the formula. May I ask 
for the opinion of Mr. Nelson? 
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MR. NELSON: I have considered this in some de-
tail in connection with the transient stream functions. 
There are some interesting complications which show 
up in the functions when the density varies. The 
complications do not show up with the steady cases . 
Presently I do not k..11ow how to interpret this obser-
vat ion. It certainly deserves careful study. 

If we ask how valid Darcy' s Law is I think we 
need to differentiate between clays, which may ha,ve 
high surface charge densities and the essentially 
inert sands and gravels. There is little doubt in my 
mind that as we go further in very careful studies 
that in clays alterations in Darcy's Law probably 
will be needed. The very complicated nature of 
water along with the work on the double layer points 
in this direction. There have been some good papers 
recently published that have pointed out such altera-
tions . The information is not all in, and I certainly 
discourage panic or suggestions to throw away what 
is presently available. 

MR . JACOB: Perhaps you all know of the Muskat-
Hubbert discussions. Mus kat was charged with an 
awkward formulation of the equations of flow in com-
pressible systems . The petroleum engineers have 
thus inherited imprecise equations using either pres-
ized theories of compressible flow in three dimensions. 

DR. COREY: Whether or not this equation will be 
valid for a steady situation depends on how the dif-
ference in density arises and how the density grad-
ients are oriented with respect to the body forces 
that are acting on the fluid . You are thinking about 
a system in which there is some kind of relationship 
between the density and the body forces. The ques-
tion that Dr. De Wiest orginally posed was a situa-
tion in which the density gradient had nothing what-
ever to do with the body forces that are acting. In 
other words they were not due to the weight of the 
fluid . Now this particular problem was presented 
to me once as a consultant. The problem concerned 
a huge brine aquifer, extending over many square 
miles, in fact hundreds of square miles, in a huge 
basin. The density of that fluid varied from point 
to point in a heterogeneous manner . They had 
measurements, of the bottom hole pressure at 
points within this aquifer and they were trying to 
relate the movement of fluid in the aquifer to the 
equal potential lines which they could plot. But 
there was no correlation between the movement of 
the fluid and the equipotential lines and in fact I 
think you can show that there is no reason why 
there should be in that situation. There is no poten-
tial in that problem. You cannot define it and that 
is the basic problem. I think the theory is this. 
You can define a potential provided that the density 
gradients that exist are in the same direction as the 
resultant of all body forces. But if they are not 
then there is no way that you can define one. And 
so it becomes useless and not meaningful to talk 
about the gradient of any kind of potent ial if you can 
not define any. You can perhaps combine a velocity 
potential with an energy potential and get an answer, 
I think there are techniques to get an answer. 



MR. JACOB: You don't think this equation is invalid 
in a variable density situation? 

DR. COREY: It depends on how the density varia-
tion occurs. In general I would have to say yes 
there would be cases where it would be invalid. 

MR. JACOB: Irrespective of how the density varies, 
the gradient of the density contributes no driving 
force and should be omitted from Darcy's law, 
should it not? 

DR. COREY: The particular case that was presen-
ted to me, was a steady flow case and there was no 
way to correlate the flow with the potential gradient 
because I suppose that there is no such thing as a 
potential in that case. 

DR. DE WIEST: There is of course no potential here 
and still we use an equation which is exactly the 
same, at least in letter form as the one derived for 
potential. The introduction of "environmental poten-
tial" by Lusczynski to study the flow in the zone of 
dispersion was ingenious and realistic as the poten-
tial indeed turns out to be multivalued and therefore 
not compatible with the meaning of the classical po-
tential concept . 

DR. COREY: I think Dr. De Wiest has pointed out 
a very interesting problem that deserves attention. 
It seems that most o~ the people here have been 
interested in making assumptions and getting solu-
tions for the problems that have been presented to 
them. My own field of endeavor has been investi-
gating assumptions and seeing whether or not they 
are valid. I find that as long as the system is a 
Hele-Shaw model or a sand model, assumptions that 
have been made are very good, but if they are soils 
in the field or rock formations that occur in nature 
then assumptions are not so good. Working in the 
laboratory it is rather difficult to determine to what 
extent the fact that some particular assumption is 
not valid is going to effect the results that we get 
from our solutions as they apply to field situations. 
It seems to me that we can argue forever about the 
relative merits of two different ways to determine 
what tile spacing ought to be, but if we don 1 t get out 
into the field and make some measurements and see 
what has happened in places where tiles have even-
tually been installed we will never be able to resolve 
the questions we are always asking. I wonder how 
many are actually doing research along the lines of 
investigating what is the performance of installa-
tions in the field and if you don't think that some 
additional work along t hose lines would be very use-
ful? 

DR. DE WIEST: I think I would like to a sk Mr. Wal-
ton to say something here on that subject. I think 
that Mr. Walton is well qualified because he is very 
familiar with well drilling and he is as you know the 
editor of the Ground Water Journal of the National 
Water Well Association. 

MR. WALTON: Case histories of heavy ground-
water. development in nine areas in illinois have 
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been studied by the Illinois State Water Survey. 
These case histories suggest that it is often possible 
to evaluate ground -water resources with available 
analytical expressions by devising approximate 
methods of analysis based on idealized models of 
aquifer situations. By checking t he performance of 
wells and aquifers computed with transient ground-
water formulas against records of past pumpage and 
water levels, the validity of analytical expressions 
when applied with professional judgement to field 
conditions has been established. 

MR . TAPP: I am from the Bureau of Reclamation, 
Office of Chief Engineer, Denver. I am glad Dr. 
Corey brought up this subject . I have been working 
in the Office of Drainage and Groundwater Engi-
neering for the past 12 years. I am closely associa-
ted with Mr. Glover, Mr. Moody, Mr. Dumm, and 
Mr. Winger. We are doing exactly the thing that 
you mentioned. Messrs . Glover and Moody started 
in about 1951 or 1952 developing transient drain-
spacing equations. The Bureau used them because 
we had to have practical drainage answers to give 
to our administrative officers regarding overall 
drainage requirements and costs for planning 
reports and for planning and designing drainage 
systems on operating projects. Over the years, 
the original equations have been improved. We have 
gathered field measurements from drainage instal-
lations over the world and used them to check the 
equations against tank experiments . We find , in 
almost every instanc e , that there is good agreement 
of water-table behavior predicted by the equations 
and the field and tank data. Our data come from 
Canada , from Australia, and from projects in the 
United States. We believe that, for practical field 
work, we should not stop at the development of 
s uitable equations. Such equations should be check-
ed against field data. We would appreciate receiv-
ing field data relat ive to drain operation from any of 
you. 

MR. MYERS: I would like to point out also that we 
in the Agricultural Research Service are making a 
number of these field checks that you mentioned, 
Dr. Corey, and we find , as Mr . Tapp mentioned, 
that this is an extremely important facet of verifica-
tion of equations and spacing formulas that would be 
used by design engineers in the field. I believe it is 
particularly important that we work with non-homo-
geneous soils in analog and mathematical studies for 
drainage solutions . These techniques can be applied 
to actual non-homogeneous soils , with drainage in-
stallations in the field, to help us perfect prediction 
equations. As you know, most theoretical studies 
deal with idealized situations that seldon occur in the 
field . 
MR. CROMWELL: I would like to know in regard 
to what the last two gentlemen have said if they 
have found some way of eliminating these 500 per-
cent variations in permeability measurements which 
Dr. van Schilfgaarde talked about? 

MR. TAPP : Frankly , we have not. I came here 
with the intention of reminding you that much 
must be done to improve present techniques of 



collecting field data. We have not, by any means, 
perfected our techniques for determining such 
things as permeability. I think that some of the 
talent here could be directed profitably toward im-
proving the field methods of obtaining the constants 
needed to solve the drain-spacing equations. I 
feel very strongly about it. 

Another thing about which I feel very strongly 
is that we do not have satisfactory tools for sampling 
a deep, cohesionless aquifer . Just before I came here, 
our Information Retrieval Service sent me a notice 
of a new tool developed in Holland to get samples 
from deep aquifers . If it will retrieve samples from 
depth, as stated, the Bureau will use it. 

MR . NELSON: As practical engineers we must ask 
ourselves how much effort and how much money are 
we willing t o spend in order to get the type of num-
bers that are required. I suggest that this may be 
particularly important in connection with drainage. 
There has been a tendency to restrict the develop-
ment of permeability measurement methods. All of 
the methods that we are finding to handle heterogen-
eity perhaps cannot be justified on an economic basis 
for agricultural drainage . More elaborate methods 
can be justified and are required in the disposal 
field . 

DR. COREY: This brings us to the end of this ses-
sion. I would like to thank all of you present. 
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SESSION 2 

MATHEMATICAL DEVELOPMENTS IN TRANSIENT GROUND WATER HYDRAULICS 

USING A CYLINDRICAL COORDINATE SYSTEM 

DR. SCOTT: I would like to make a few introductory 
comments. First, in connection with the re:r;nark 
that Dr. Albertson made in his introduction concern-
ing the importance of this meeting. It is a significant 
milestone, since it appears that ground water is 
coming into its own. In the past only a few people 
have been involved in ground water work. Now, how-
ever, there are an increasing number of people being 
involved. I believe there is a growing interest on be-
half of the lay people and this is coming on as part of 
the concern for and understanding of ground water 
problems which is resulting in increasing support for 
ground water work. I think this is encouraging. Now, 
I know that those of us who are involved in research 
think this support is slow in coming, but this is some-
thing we all have to endure. It is encouraging to 
note that there are so many people who are interested 
in ground water and its importance. We found out 
yesterday in connection with the disposal of radio-
active wastes and also in the disposal of irrigation 
water that the whole system of ground water has be-
come increasingly important. 

We find a growing number of ground water 
activities in the professional societies: American 
Society of Civil Engineers, American Society of 
Agricultural Engineers, American Geophysical Unioq 
American Waterworks Association, National Water 
Well Association. All of these are devoting increas-
ing amounts of time in their technical sessions to 
ground water . This is coming about because of the 
growing number of people in this field of work. 

In the line of coming meetings some of you 
are aware of the session devoted to ground water in 
the ASCE Hydraulics Division Meeting in Pennsyl-
vania in August. The IUGG has some interesting 
papers on ground water in its sessions the latter part 
of August in Berkeley. From September 30th to Oct-
ober 3rd in San Francisco, the National Water Well 
Association will have technical sessions on ground 
water . The American Society of Agricultural Engi -
neers will also have a session in Chicago at their 
winter meeting, so there are certainly enough meet-
ings taking place and I think this is an encouraging 
sign. 

Also, in publications we find an increasing 
number of outlets for information on ground water. 
I understand that the American Geophysical Union is 
adapting a new format which will include hydrology, 
and of course ground water will be an important part. 
There is a new publication, The Journal of Hydro -
logy, which has come out recently. In ground water, 
we have a new publication called the "Ground Water 
Journal, " which is making a significant mark 
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in the area of publications since it is devoted exclu-
sively to ground water problems. Bill Walton, with 
the illinois Water Survey, is doing an excellent job 
in editing that Journal. So I think all these things 
point encouragingly to the importance of ground 
watP.r and the developments that are being made. We 
learned from the discussions yesterday that there 
are a multitude of problems and as we go through 
this day, I am sure that there will be further com-
plexities called to our attention. 

This morning's session will deal with problems 
and solutions of radial-flow ground water systems 
and we have a knowledgable panel of experts includ-
ing: Dr. Herman Bouwer, Research Agricultural 
Engineer, Agricultural Research Service, Water 
Conservation Laboratory, Tempe, Arizona. A na-
tive of Holland, he received his education over there 
and at Cornell; Dr. DeWiest who is on the faculty 
at Princeton, and an authority in this field, having 
many years of experience; Mr. John Ferris, Re-
search Engineer, Ground Water Branch, U.S. G. S. 
He is also on the faculty of the University of Ari-
zona in their program of hydrology. He has also 
had a lot of ground water experience in a number of 
states - Michigan, Indiana, and New York, as well 
as in Arizona; Robert Glover, who has had a num-
ber of years experience with the Bureau of Reel am-
ation and the U.S. G. S. in a variety of problems, 
not only in ground water but in engineering mech-
anics ; C. E. Jacob, who had many years of ex-
perience with the U.S. G. S . and on the faculty at 
Utah University. He is now a ground water consul-
tant in California; Dr. Kashef, who comes from 
Egypt. He was on the faculty at Cairo University, 
American University in Lebanon, and more recently 
in the Civil Engineering Department, North Caro-
lina State College at Raleigh; Dr. Theis, whom I 
know all of you know - considered one of the Deans, 
if not the Dean, of modern ground water analytical 
methods, and we are certainly pleased to have him 
participate; William Moody, Chief of the Technical 
Engineering Bra11ch, U.S. B. R., Denver, having 
had a number of years of experience in a variety of 
engineering activities with the Bureau. 

I would like to point out that the success of this 
program depends on the participation of not only 
the panel, but of all of you, and I hope that you will 
engage in discussion , questions and debate, and 
contribute ideas and information you may have . Cer-
tainly the success of this meeting will depend on an 
exchange of information. 

We will hear from Dr. Bouwer first. 



DR. BOUWER: Thank you Verne, I would like to take 
up where we left off yesterday, namely on the impor-
tance of hydraulic conductivity m easurements. Of 
course the hydraulic conductivity is a critical factor 
when it comes to predicting rates of flow in porous 
media. We can divide the methods for measuring hy-
draulic conductivity into two groups. For the first 
group, we are dealing below the water table and there 
we can use the various pumped-well techniques. The 
second group is the less fortunate case where we 
want to know the saturated hydraulic conductivity but 
where we do not have a water table . Several methods 
have been developed to measure conductivity in the 
absence of a water table . One of the activities of my 
institution has been the development of another field 
method for measuring this saturated hydraulic con-
ductivity in dry holes. This method is called the 
double-tube method. We have two concentric tubes 
in an auger hole (figure 1). We fill these tubes with 
water to create in a few hours a zone of positive 
pressures in the soil below the hole. For purposes 
of simplicity we will call this the zone of saturation, 
although we may always have some entrapped air,of 
course . 

s--W or. H 
ITS 

Auxiliary R~s~rvoil' 

Figure 1-Sketcb of double-tube installation with top plate 
and standpipes (ITS for inner-tube standpipe and OTS 
for outer-tube standpipe). 

If the two levels in the tube are the same, the outflow 
from the inner tube is due to infiltration alone. If we 
let the water level in the inner tube be a distance H 
below that in the outer tube , the original outflow due 
to infiltration is diminished by an inflow component 
QH due to the water level difference H . 

The field measurements are aimed at evaluating the 
inflow component QH as a function of water level 

difference H • We do that by having standpipes on 
both tubes and by carrying out various falling water-
level measurements in t he standpipe on the inner 
tube. The hydraulic conductivity calculation utilizes 
a dimensionless factor which describes the flow sys -
tern below the augerhole due to different water levels 
in t he concentric tubes . These factors have been 
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evaluated with a resistance network analog and they 
have been presented in the form of a graph. 

The field procedure with the double tube method 
takes a few hours in most soils and we think of the 
method as a rather useful tool in measuring conduc-
tivity for, say, recharge systems, disposal systems, 
drainage aspects of newly irrigated projects, seep-
age from projected canals, etc. The method has 
been field tested and is now being used or tested by 
several groups in this country. Our current program 
consists of efforts to use the double tube principle to 
measure both vertical and horizontal conductivity in 
case of anisotropic soils. 

The resistance network analog at our Laboratory 
has a capacity of 736 nodes. The resistors are con-
structed as calib rated, variable resistance, plug-in 
units. Thus, desired resistance values can be di-
rectly dialed on the analog, which saves a lot of time 
in setting up and solving flow systems. With the 
plug -in units, flow sys t ems can be quickly assembled 
and disassembled and the units can be used over and 
over again. In addition to potential problems, flow 
problems involving free boundary development, 
steady unsaturated flow, or moving water tables can 
be analyzed. Use of variable resistors also permits 
solution of axially symmetrical systems. 

We have used the analog, among others. in an 
analysis of ground wat er mounds in connection with 
artificial recharge. If the distance between the ori-
ginal water t able and the impermeable layer is quite 
small compared with the width of the recharge sys-
tem, then the streamlines are essentially horizon-
tal. However in a flow system where we have a 
mound above an unconfined aquifer of large or even 
infinite vertical extent, the stream lines are much 
more vertical. This shows the limitation of using 
the Dupuit-Forchheimer theory in flow systems 
where we do have vertical components. The limita-
tions of the Dupuit-Forchheimer theory are discuss-
ed in Appendix E. Because the Dupuit-Forchheimer 
theory forms the foundation of so many of our theo-
retical analyses, it might be of interest to again 
examine its validity, particularly in connection with 
theoretical analyses of recharge systems. Since the 
results of our electrical resistance studies are free 
from major simplifying assumptions, comparison 
will give us some idea of the limitations of the Du-
puit - Forchheimer theory. 

With ground water recharge, we have a flow sys-
tem whereby the stream lines originate and termin-
ate at a water table. We might call such a system 
an "upper-region" flow system, because only the 
upper region of the aquifer contributes actively to 
the flow. A similar flow system occurs in artificial 
drainage, where the stream lines originate at the 
water table and terminate at the parallel drains. 
This also might be called an upper region flow. 
Pavlowsky has called the upper and lower part of 
such flow systems active and passive, respectively. 
We might also define these as flowing regions and 
stagnant regions. Now what is the consequence of 



this type flow system in applying the Dupuit-Forch-
heimer assumption? If we start with a shallow im-
permeable layer, we limit the extent of the zone of 
active flow by the presence of this impermeable 
boundary. If we lower the impermeable boundary, 
the region of active flow can further expand until we 
finally reach a level whereby the active flow region 
has fully developed. Further lowering of the imper-
meable boundary will only add more passive region 
to the flow system without affecting the active region 
any more. The total flow will then also remain 
essentially unaffected. 

If, for the case of drainage, we plot the flow Q 
against the depth D of impermeable material below 
the drains, we see that first we get a linear increase 
in Q as we increase D . Soon, however, the rate 
of increase starts to diminish and finally becomes 
zero when increasing D does not affect Q any 
more. In case of drainage, the point whereby Q 
is no longer affected by increases in D occurs when 
D has reached about 2/10 spacing of the drains. 
How does a s"imilar plot look for a recharge system? 
From the analog results, although not directly appli-
cable to this case, I could at least postulate that the 
following relations would exist for a mound above a 
water table of an unconfined aquifer. 

Let W define the width of the mound or the width 
of the percolation zone for two-dimensional mounds, 
2R the diameter of a circular mound, and D the c 
distance of the impermeable layer below the original 
water table. If we plot the total flow Q below the 
mound against D, we see again that Q first in-
creases linearly with D . The rate of increase in 
Q soon diminishes and the point where Q is no 
longer affected by increasing D is reached when D 
has become equal to approximately 1 . 5 R for the 

c 
circular mounds, and equal to W for the two-dimen-
sional mounds. How would these curves look if we 
would apply the Dupuit- Forchheimer assumptions to 
relate Q and D ? They would be straight lines 
and they would continue to be straight up to infinity. 
The vertical difference between the curve and the 
straight line is the error we would incur if we apply 
the Dupuit-Forchheimer assumptions to the type flow 
systems where we have active and passive regions. 
Unless D is relatively small, this error can be 
quite large. The philosophy underlying the indiscri-
minate application of the Dupuit-Forchheimer theory 

to systems of this type could well be the expediency 
of getting solutions, rather than the validity of the 
concept. Thank you. 

DR. SCOTT: Very good, Herman. Next will be 
Roger DeWiest. 

DR. DE WIEST: My work in radial flow has been 
limited. The one paper I have considered in radial 
flow is included in the session on the theory of 
leaky aquifers. The other two are for eccentric or 
non-radial conditions. I may add some comments 
to Herman's expose'. He pointed out the work of 
Pavlowsky. In the book by Polubarinova-Kochina 
we have some considerations on this problem. Act-
ually, when we talk about the Dupuit-Forchheimer 
assumptions, we are starting from Boussinesq's 
equation for the free surface and it is pointed out 
under which conditions this equation is derived and 
which are the limitations. Then, there are various 
ways of linearization, one way being the Dupuit-
Forchheimer way of attack. But there are other 
ways of linearizing the free surface equation, and it 
might be worthwhile to take a look at the work done 
by some of these Russian authors as summarized in 
the book. 

MR . FERRIS: There follows a brief resume of the 
principal work that has been done on radial flow 
regimes by the U. S, Geological Survey and some of 
the work in progress. Omitted from the present 
discussion are those radial flow models which will 
be covered this afternoon under the subject of flow 
in l eaky aquifers. Although M limited his attention 
to the steady state, Slichter, (l}in 1898, developed in 
some detail several mathematical models for radial 
flow systems and identified the analogy between fluid 
permea(¥}n and other fields of potential flow. In 1931 
Wenzel made an intensive study near Grand Island, 
Nebraska, to evaluate the applicability of the Thiem 
equation under field conditions and to evaluate the 
use of a method suggested by Meinzer for determin-
ing specific yield. 

The first mathematical analysis of non-steady 
flow was Theis'( 3) contribution in 1935 of the non-
equilibrium formula. In clarifying the analogy be-
tween heat conduction and fluid permeation he pointed 
the way to a wealth of mathematical developments 
which could be translated to ground water hydrology. 

( 1) Slichter, C. S., 1898, Theoretical investigations of the motion of ground waters: U. S. Geol. Survey 19th 
Ann. Rept., pt. 2, p. 295-384. 

(2) Wenzel, L. K., 1936, The Thiem method for determining permeability of water-bearing materials and 
its application to the determination of specific yield, results of investigations in the Platte River Valley, 
Nebr.: U.S. Geol. Survey Water-Supply Paper 679-A, p. 1-57. 

{3) Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and dura-
tion of discharge of a well using ground-water storage: Am. Geophys. Union Trans., 16th Ann. Meeting, 
pt. II, p. 522 . 
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There followed in 1940 Jacob's (4 ) work on the elas-
tic artesian aquifer wherein he developed Theis 
equation from fluid mechanics and thereby elucidated 
the physical significance of the storage coefficient. 
Jacob also clarified the nature of Thiem's equation 
and identified its relation to the storage coefficient. 
He also developed several very useful asymptotic 
solutions of the Theis equation and with Cooper (5) 
published an exposition of the applicability of these 
asymptote models to field problems. Jacob contri-
buted the first mathematical analysis for radial flow 
to a well of constant drawdown and with Lohman (6) 
described the first field application of the model. 

In Theis' ( 7 ) study of the effect of a well on a 
nearby stream he introduced the image-well method 
as an aid to the solution of boundary-value problems. 
Within a few years applications of the image-well 
method were extended over a wide range of field 
problems which involved gee-hydrologic boundaries 
of diverse form. A study by Guyton \B) in the 
Houston area, in 1941, provided the first quantative 
field tests of an artesian aquifer of great areal ex-
tent. These tests marked also the first application 
of Theis' equation to a regional complex of many 
individual well stations which pumped simultaneously 
at widely different rates and operated on diverse 
schedules . In 1945, Jacob analyzed the problem of 
flow toward a partially penetrating well and pointed 
out the effects of flow convergence on head distri-
bution near the pumped well. In 1947 (9) he deve-
loped the mathematical models and a method of 
step-drawdown tests for evaluating entrance losses 
in wells. Amplification and extension of the method 
for evaluating entrance losses was made by 

Rorabaugh ( 10 ) 

Recent studies reported by Stallman( 11 ) on flow 
toward a well in a water-table aquifer identify the 
relative magnitude of certain energy losses that were 
not included in Theis 1 analysis of radial flow. Follow-
ing Boulton's development, Stallman prepared a 
series of type curves which identify head losses by 
vertical flow components that accompany cross-bed 
movement of streamlines as they flow toward a well 
in a water-table aquifer. Use of this series of type 
curves requires a knowledge of the space coordinates 
of the point of head measurement relative to the 
point of withdrawal. Using the field data for Wenzel's 
test at Grand Island, Nebraska, Stallman found that 
after accounting for the vertical flow components 
there remained significant departures of the field 
data from the Boulton type curves and thus estab-
lished that other physical aspects of the problem yet 
to be resolved are of considerable importance. 

Work in progress on the physics of drainage and 
unsaturated flow as related to the problem of flow 
toward a well in a water table aquifer was reported 
by Smith( 12 ) . Studies in progress, by Stallman( 13) 
on the use of earth temperature as an index of water 
movement in the unsaturated phase will contribute 
to studies of the free surface problem in the water-
table aquifer. 

MR. SCOTT: We are glad to h ave you mention 
recent work and I hope others will take advantage 
of this opportunity to convey any information on work 
that has been completed, or will be completed in the 
near future so that we will all have a chance to know 

(4) Jacob, C. E., 1940, On the flow of water in an elastic artesian aquifer: Am. Geophys. Union Trans., 
21st Ann. Meeting, p. 574-586. 

(5) Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation 
constants and summarizing well-field history: Am. Geophys. Union Trans., vol. 27, p . 526-534. 

(6) Jacob, C. E., and Lohman, S. W., 1952, Nonsteady flow to a well of constant drawdown in an extensive 
aquifer: Am. Geophys. Union Trans., vol. 33, no. 4, p. 559-569. 

(7) Theis, C. V., 1941, The effect of a well on the flow of a nearby stream: Am. Geophys. Union Trans., 
22nd Ann. Meeting, pt. 3, p. 734-738. 

(8) Guyton, W. V., 1941, Applications of coefficients of transmissibility and storage to regional problems in 
the Houston district, Texas: Am. Geophys. Union Trans., 21st Ann. Meeting, pt. 3, p. 756-772. 

(9) Jacob, C. E., 1947, Drawdown test to determine effective radius of artesian well: Am. Soc. Civil Eng . 
Trans ., vol. 112, p . 1049. 

( 10) Rorabaugh, M. I., 1953, Graphical and theoretical analysis of step drawdown test of artesian well: Am. 
Soc. Civil Eng. Proc., vol. 79, Separate no. 362. 

( 11) Stallman, R. W., 1960, Notes on the use of temperature data for computing ground-water velocity: U.S. 
Geol. Survey open-file report, 17 p. 

( 12) Smith, W. 0., 1961, Mechanism of gravity drainage and its relation to specific yield of uniform sands: 
U. S. Geol. Survey Prof. Paper 402-A. 

(13) Stallman, R. W. , 1961, Boulton's integral for pumping-test analysis: U. S. Geol. Survey Prof. Paper 
424-C, p. 24-29. 
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about it. Mr. Glover, Will be next. 

MR. GWVER: Inasmuch as Mr. Moody and I are in 
the same organization, I would be pleased if Mr. 
Moody will take care of this when his turn comes. 

MR. SCOTT: Alright. We will call on Mr. C. E. 
Jacob next. 

MR. JACOB: It is very stimulating to be here, and 
I congratulate CSU on the Symposium. I think it has 
been long needed. Being a consultant, you do not 
have much time to do research, if you behave as 
most consulting firms do. You may have your own 
handbook or may use one you used twenty years ago. 
You do not have much time for reflection and study 
of the literature as you do when you are employed by 
someone who can backstop you. However, it has its 
advantag~s; I gained an appreciation for engineering, 
which I did not have when I worked for the Govern-
ment, and which, I am sure, most Civil Service 
people do not have. In other words, what is engineer-
ing? 

I think, rather than talk about details, I would 
like to talk about keeping your feet on the ground, 
keeping a little perspective about water. A lot of 
money is spent for research on water now. It is true 
we are trying to get more money, but more than ten-
times as much money is now spent on ground water 
as was spent when I joined the U.S. Geological Survey 
about 25 years ago. Water can be got for a fraction 
of a cent a barrel, some of the best water in some of 
the poorest places. Petroleum is worth about $ 2. 00 
a barrel. We heard last night a very excellent lect-
ure on the difference between the science and the art 
of petroleum engineering. There is a tremendous 
gap. There will always be a tremendous gap in water, 
and it will last much longer. And I think that we in 
this business should increase our efficiency. I think 
a great deal of irrelevant data are collected - field 
data, collected in groundwater research. And I 
think that there should be a great deal of sharpening 
up of thinking and of techniques, and particularly of 
resources that are now available for research, to 
greatly sharpen what we are doing. 

Now, we talked about being in the ballpark; 
someone from the Netherlands brought it up. Lots of 
times we talk about someone being "way out in left 
field." Is that so bad after all? You have a left-
fielder, don't you? Of course, if he is out there 
swinging a bat, then something is wrong. We should 
try to do the batting at home plate. Now, a great 
deal of engineering work is just getting yourself in-
side the ballpark. Very often in consulting practice 
you are asked to give an answer next Thursday. 
Would it be possible to put a large industrial plant 
here? How long will ground water last? What will 
it cost us? What are the objections? What are the 
legal angles? These problems require answers. You 
do not have time to send it back to your district or 
your region or have it edited, you have to have the 
answer now. So a great deal of rule-of-thumb work 
is done in engineering practice, it is valid, and it is 

26 

admissable. It can be done. 

Now, a little bit about the hydraulics of wells. We 
had a recital of the history of ground-water hydrau -
lics, and now we are talking about radial flow. But 
you cannot separate radial flow from what we called 
yesterday "uni-directional flow ". In fact, we were 
not talking about uni-directional flow yesterday. We 
were talking mostly about unconfined flow in a two-
dimensional system in a vertical plane, which is not 
a circuit. That is, it is not a uni-directional ground-
water circuit. So you cannot unscramble these 
things . Yesterday we talked mostly about unconfined 
flow because we realize that in confined flow, where 
the geometry is constant, it is very easy to describe 
the flow by the mathematics of heat conduction, which 
is an old science that goes back to the early 19th 
century. So we have borrowed a great many solutions 
and so has the petroleum industry. And we have in-
terchange with each other, unfortunately not as much 
as there should be. 

There is still a lot of work being done, and a 
great renewed interest in heat conduction today. 
Some of the greatest applied mathematicians are 
working today on heat conduction and diffusion be-
cause suddenly they become interested in this be-
cause of rocket engines and reactors, neutron diffus-
ion, etc. So.attention the last ten years has been 
focused very sharply by mathematicians upon these 
problems and unfortunately we do not have - except 
for a few outstanding examples that you see here -
we do not have people in applied mathematics field 
working on this as there should be. I think that 
every university should have close correlation be-
tween the civil engineering and geology departments 
and the people in applied mathematics so that the 
best talent is put to bear on these things. Now, edu-
cational institutions and some government bureaus 
can afford to do this, consulting engineering firms 
cannot. 

Still there is a great deal of work that needs to be 
done, and is being done because of the invention of 
digital computers. Very high-speed memory re-
covery and computational facilities, have revolu-
tionized the computation industry. I think this has 
had a bad effect on engineering offices. A lot of 
engineers have forgotten there is such a thing as a 
desk calculator. Now, when our clients have been 
able to afford it - we have programmed problems on 
digital and analog computation machineB. But most 
of our work is done in numerical integration. We 
have tricks, known and unknown, which enable a 
person, by certain techniques, very rapidly with a 
desk calculator to do numerical integration for what-
ever configuration you may have, whether it is uni-
directional or radial or three-dimensional or what-
ever it may be. 

In the hydraulics of wells a great number of mixed 
boundary value problems are solved. For example, 
if you have a well that has large internal storage, 
let us say a "silo" such as a missile silo, or such as 
an excavation that has radial flow, you have an 



internal boundary condition of the third kind, which 
involves not only the gradient, but the rate of change 
of head on that boundary, and these are related to 
the rate at which you take the water out of that exca-
vation. In fact, you may have to analyze it while the 
excavation is being constructed. These problems 
can be solved very nicely on desk calculators using 
numerical techniques. 

As to the hydraulics of wells, there are unlimited 
combinations. Of course we have specific examples. 
Then there are attempts made which are logical, I 
think, to get a generalized theory, for example of 
the gravity well. This has never been successfully 
done. I don't think it will ever be successfully done 
in closed form until some mathematicians set forth 
with new ways of handling boundary value problems 
with moving boundaries. Now, great advances are 
being made in hydrodynamics, which ground water 
people are not aware of and are not able to capital-
ize on. 

Now, just a little about the hydraulics of wells, 
because we had something to do with the earlier 
thinking about this. If you statistically study a great 
m:rmoer of wells in similar geological environments 
with similar design, you find out a very interesting 
thing which every well driller should know, and that 
is, wells differ more than the transmissivity of the 
aquifer differs from place to place. This is because 
of the difficulty of developing the well and uniformily 
cleaning up the bore of the well and opening up the 
formation. Now, we have statistically studied hun-
dreds of wells in the world, for example in West 
Pakistan, in the coastal plain of Formosa and in the 
coastal plain of Israel, and other places where we 
have great groups of identically designed wells. At 
one place in Venezuela (Calabozo) we had one hun-
dred pressure-relief wells on an earth dam. These 
can be studied by statistical approaches. Just think 
of a simple relationship, that the drawdown in a well 
is some constant of proportionality A times the dis-
charge Q over the transmissivity T plus some 
other constant C times Q z. Thus: 

A{r , t) Q 
s w + CQZ 

w T 

Now, this is where pipe hydraulics was in 1850 when 
Darcy was making filter beds and discovered his 
well-known law of flow. This leads to a specific-
capacity diagram. The specific capacity, of course, 
is a function of time. So if you were to plot draw-
down versus discharge of the well, you get a para-
bola for each time: for each successive time you get 
a lower parabola. This is a specific-capacity dia-
gram. Most well drillers still think that there is 
JUSt one line on this diagram. This is a handicap. 
This is the difference between the art and the science. 
Most pump salesmen, and a lot of civil engineers 
also, still think ther·e is only one straight line, and 
this is not true. 

Now, if you want to you can compare a great 
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number of wells in the same geologic formation, that 
is, in similar rock. The transmissivity, of course, 
has been separated out for that purpose. We can 
plot this in a very interesting way, for example draw-
down divided by the square of the discharge, giving 
an equation: 

s w w c + 
A{r , t) 

. w 
TQ 

and if I wanted to take the variation of that ratio with 
{ 1 / TQ ) for a uniform period of time, we would have 
something like in Figure 2, if the A-factor is the 
same for all the wells. However, you know that this 

Figure 2 

_I_ 
TQ 

A factor is not only a function of time but also of 
what we call the "effective radius" of the well r w 
I can make this artificial division of the resistance 
formula. When this is done statistically with a great 
number of wells, the points are very scattered, which 
indicates to you the thing I pointed out, that the wells 
vary much more {from well to well) than the forma-
tion does. Always this is true. I have never seen a 
well conducted drilling campaign - where there have 
been very rigid specifications and very close control 
on well development and pumping and testing - I have 
never seen a place yet where the drillers have been 
able to drill wells that are as uniform as the forma-
tion. 

DR. SCOTT: Thank you Mr. Jacob, we appreciate 
your philosophical views on the problems of wells. 

DR. KASHEF: I am going to discuss a summary of 
two publications which were made some time ago. 
One of them was published in 1952. When I was at 
Purdue, a group of people including myself were in-
terested in solving some of the problems of ground 
water flow by the numerical methods or the finite 
difference methods. At that time only the steady 
state problems had been solved by the relaxation 
methods. The well-known problems were those of 
Southwell and his associates in Britain. They solved 
the problem of the seepage through a dam with a free 
surface and then Van Deemter in the Netherlands 
solved the problem of tile drains and in 1950 Yang 
at Harvard solved the problem of seepage through 
earth dams. These are all two-dimensional problems 
and they involve what is called "the line of seepage", 
and are more complex than straight-forward two-
dimensional problems witt, known boundaries. 

ln 1952 we published the solution of the steady-
state flow and the nonsteady-state flow of both arte -
sian and water table wells. We have in the Appendix 



B, only the s ummary that concerns the nonsteady-
state flow. The finite difference equation was based 
on the general mathematical solution that governs the 
flow towards the well. Both problems of the artesian 
and water table wells were solved. In the water table 
wells, the Dupuit-Forchheimer assumptions again 
were assumed, and we compared these results with 
Theis' equations. They compared very well except 
in the very vicinity of the well bore, and we attribu-
ted that, to the fact that in the Theis solution, a line 
source or line sink was assumed and in our solution 
it was the actual well diameter that was considered. 
Naturally, as in all numerical methods, some diffi-
culties are involved in applying these methods. The 
main drawbacks were, in the first place, they are 
very laborious and you cannot reach a certain draw-
down curve at a certain time until you work out all 
the previous time intervals . In the second place, to 
start this solution we have to make an assumption. 
So if you will refer back to the figure in Appendix B 
( B 12) the aquifer was divided into concentric shells 
-- it starts with W, 1, 2, 3, etc., and the general 
shells L, 0 and R. Now to start the solution we 
have to make: an assumption, that the head in the 
first shell, W , was assumed to be constant during 
the first time interval. So if these shells are chosen 
to be of a very small thickness, or very small base 
area, and the intervals were selected too small, then 
this assumption would not be severe . That was the 
only assumption made here. But we were confident 
that the results are fairly correct. 

Now, in order to improve this, in 1961, I thought 
about including the finite difference method in a 
graphical solution . That was published in the Inter-
national Conference of Soil Mechanics (Paris, 1961) . 
I made a semi-graphical solution based on the finite 
difference method. If you can graph the drawdown 
for a certain time interval, for a transient case , you 
can determine any other drawdown after any other 
time interval. This is done simply by shortening or 
delongating the radii and measuring the corresponding 
drawdowns as s hown in the original paper. This is 
proved in this paper mathematically. I have here the 
drawdown after six hours and then I constructed the 
drawdown after twelve hours, eighteen hours and 
twenty-four hours by this simple construction on the 
graph. So it is very simple to plot the drawdown 
curve once and for all, and then you can determine 
all other drawdowns by making this simple projection. 

This, of course, was not done just for the sake 
of one well, but it was going to be extended for a 
group of wells - wells near a stream and other com-
plex problems. I am working in this area now and I 
hope I can finish it in the near future. I am also con-
sidering the study of the coefficient of storage which 
is not so well accepted to be considered as a constant. 
The solution may be coi'ollated to the principle of 
effective pressures in the soil mechanics field. I 
hope to succeed in determining the variation with 
pressures and to arrive at a simple solution. 

DR. SCOTT: May we hear from you next, Dr. Theis? 
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DR. THEIS: We have been talking about applications 
of equations and new types of equations, and I thought 
I would go back to the time we developed the first 
transient flow equation. The original transient case 
e quation was developed from a geological standpoint. 
We have not talked here very much about the geology 
to which these equations must be applied. In the days 
when this equation was being worked out, which was 
before publication of Muskat's book or King Hubbert's 
paper on ground-water flow, I was faced with the pro-
position of how to think about pumping from the High 
Plains, particularly from the Llano Estacado, or 
Staked Plain of Texas. Here, very evidently, we 
could not think of a small withdrawal of water from a 
water body,which had several times the capacity of 
Lake Mead,in equilibrium terms, which had been the 
practice up to that time. So I was driven to find a 
new way to think about the problem and, of course, 
as any of you who have read the paper will know, I 
ended up with a mathematician friend who helped me 
in my quest to find the new way. Mr. Jacob was not 
on the Geological Survey, or at least I did not know 
him, at that time. But when we first proposed this, 
the main adverse comment about it in the Geological 
Survey was that everyone knows aquifers are not 
homogeneous, which irritated me at the time because 
the only thing I could say was that we might hope that 
there may be some sort of statistical homogeneity 
sufficient for the problem. Well, I did not know I 
was going to open up a Pandora's box of new equa-
tions in such numbers that it would be necessary to 
have a conference like this to try to bring some order 
into them. But the criticism that was made original-
ly is still valid, it seems to me. Everyone knows 
that an aquifer is not homogeneous, so I began say-
ing fifteen or twenty years ago that I would spend the 
first half of my career arguing that there was enough 
homogeneity that such equations could be used in 
solving problems about an aquifer and spending the 
last half of it warning against putting too much faith 
in this homogenei ty. 

One of the groundwater phenomena which has only 
lately been studied and that emphasizes the fact that 
aquifers are not homogeneous is that of dispersion 
on the field scale. The study of these phenomena has 
been made particularly necessary by the use of in-
put wells for waste disposal and the consequent ne-
cessity for knowing the course of a possible contami-
nant; but the knowledge gained has application also 
to the interpretation of data concerned with discharg-
ing wells. 

The first studies of these phenomona, notably at 
Harvard and Berkeley, were made in the laboratory 
on homogeneous materials and resulted in showing a 
rather surprising amount of dispersion. However, it 
soon became apparent that the amount of dispersion 
varied only with the square root of the distance tra -
veled . Therefore, such dispersion loses importance 
when extrapolated to field dimensions. 

However, when experiments in the field were per-
formed at Berkeley and elsewhere the dispersion ob-



served was orders of magnitude greater than that 
predicted from studies on homogeneous materials 
in the laboratory. In an experiment at Hanford about 
one hundrecj pounds of fluorescein was placed in an 
unused well over a period of about one day. Labora-
tory experience indicates that the angle of spread of 
a tracer would be about 6 degrees, but the dye at 
Hanford was observed in two unused wells about two 
miles down-gradient making an angle of about 30 de-
grees with the input well and was observed in both 
wells over a period extending from about sixty days 
to about two-hundred fifty days after input, peaking at 
about one-hundred ten days . The angle of spread 
was probably much greater than the 30 degrees ob-
served; however, no other wells were available for 
sampling. The aquifer tested was unusual in that it 
consisted of gravelly glacial outwash with an exceed-
ingly high permeability. 

Such dispersion must be due to non-homogeneity 
in the aquifer - to the many different velocities that 
may be characteristic of various available flow tubes 
through lenses of various permeabilities and to the 
refraction of flow lines in passing from lens to lens . 
The course of ground-water is much more compli-
cated than the simple flow lines we are compelled to 
assume assume for most mathematical treatment. 

I have sometimes referred to the "ghastly" as -
sumption of homogeneity that we must make in at 
least most quantitative ground-water studies. This 
is perhaps an overstatement because the assumption 
has proved very fruitful and resulted in increasing 
greatly our knowledge of the hydraulics of aquifers. 
Bill Nelson has indicated how complex and costly is 
a program to actually take into account movement 
through a heterogeneous medium. However, the 
more knowledge we gain of the actual movement of 
ground -water the more we are reminded that we are 
generally using greatly simplified mathematical 
or other models as a criteria to judge the actual flow 
and our only safeguard is in very complete data on 
the actual system, both areally and in time. 

DR . SCOTT: Thank you, Dr. Theis. Next, we 
have Mr. Moody. 

MR . MOODY: Following as I do, after these illus-
trious gentlemen, I feel like anything that I will say 
will be anti-climactic. 

Mr . Glover, you will remember, passed the 
buck to me, as it were. If you will look on the list 
of papers that are included here, you will see that he 
is not a buck-passer as far as it comes to putting out 
work. Many of these solutions have his name on 
them. He pointed out earlier the primary interest of 
the Reclamation Bureau is in the field of irrigation. 
There are two aspects of that field in areas where we 
use solutions of these types; one in the field of drain-
age and the second in the production of water from 
underground aquifers. The linear cases we discussed 
yesterday have, for the most part, applications to 
the area of drainage. The radial cases which we are 
discussing today can be used to apply both to produc-
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tion and drainage applications . All I intend to do 
here is to discuss a group of the papers containing 
solutions which are included in Appendix B. 

The first paper is a parallel to the work of Jacob 
and Lohman in some respects. It is a solution to the 
flowing artesian well. However, the chart which 
accompanies this paper does enable us to determine 
the drawdown at any given radius from the well at 
any time. The table which also accompanies the sol-
ution is a function very similar to the one which 
Jacob and Lohman gave, in fact, if you take into ac-
count the fact that the parameter in this case is di-
rectly related to the square root of their parameter, 
you can check some of these values directly. And 
they do check out to three significant figures for 
every case in which the argument parameters are 
comparable. 

The second paper here is again a parallel of Dr. 
Theis's solution in which we have found it useful on 
occasion to use a parameter which is the square root 
of his. This makes a slightly more compact table, a 
copy of which is included along with the solution. 

Our third contribution is found useful in estimat-
ing the effect where we have a condition of distributed 
pumping over a large area. We wish to estimate the 
effect of that generalized pumping at the center of the 
area. This solution, including a dimensionless 
curve, provides a means of making such an es timate . 

A fourth contribution represents a similar situa-
tion in which again we are interested in the minimum 
drawdown which may be accomplished by pumping, 
this time by a small group, such as square array, of 
wells. In general the chart shows minimum draw-
down at the center of arrays of 4n 2 wells -say 4, 
16, 64, 100 - on up to an infinite number. In this 
respect these last two cases are similar except that 
the latter one can be used for small, finite numbers 
of wells, whereas the other one is more applicable 
to a general distributed pumping over an entire area. 

The next case is one which is derived in order to 
evaluate the portion of a well's production which 
might be coming from a bounding river, the river in 
the neighborhood. This solution, again is by Mr. 
Glover, and has a chart in dimensionless parameters 
which gives the results. 

We have one more case. This case gives the 
drawdown within a circular region when the water 
table is maintained constant at a given radius. That 
one is a more recent development. Thank you. 

DR. SCOTT: Mr. Glover, would you like to make 
any comments ? 

MR. GLOVER: The chart used to determine a piece-
wise depletion of a stream by an adjacent well, was 
not prepared by me, but was due to Mr. Florey of 
the Bureau staff. 

DR. SCOTT: Are there any other comments, Mr . 



Glover? 

MR. GLOVER: Your question concerns the relation 
of this development to the work of Dr. Theis. The 
boundary conditions are different. This one is ar-
ranged so that you can study the depletion of the 
stream piece-meal. I believe Dr. Theis took the 
entire amount. 

DR. SCOTT: He took the entire amount to a given 
time and you are taking the variations. Is that right? 

MR. GLOVER: Perhaps Dr. Theis can give me some 
help on this. In your case, and in the paper you pre-
pared concerning the depletion of the stream, if I re-
call, you had an integral such as the one we have 
here, but you integrated from minus infinity to plus 
infinity and this one is arranged so that the depletion 
from the stream can be taken piece-meal. That is, 
I think, the only difference. 

DR. SCOTT: Now, do we have any discussion, com-
ments, etc., on any of the topics that were raised 
here? 

MR. GLOVER: I would like to comment on a matter 
that has given me some concern. You have seen a 
number of cases where people have attempted to as -
sess the validity of the Dupuit-Forchheimer approach 
by comparing the idealization with what they consider-
ed to be the reality and then making some decisions. 
I don't wish to say that that should should not be done, 
it should be done, However, I am pretty thoroughly 
convinced of one thing, and that is that the simple 
formulas that we derive by the use of the Dupuit-
Forchheimer idealization are going to be the work 
horses we are going to have to use to solve most of 
our ground· water problems. It seems to me that we 
could here return to some well accepted engineering 
principles. We have in our engineering work, from 

its beginning, had to deal with approximations. I 
believe if you review all of your engineering develop -
ments you will find most of them are of that nature. 
It has come to be conceded that the engineer must 
understand the nature of those formulas. He must 
be perfectly well aware of their limitations . He must 
use them with judgement and discretion and in cases 
of doubt, he must put the formula to actual test. It 
seems to me that this should be our philosophy here. 

I have a slide, figure 3, which I think would be a 
case in point. This shows a test made to compare 
experimental data witil the results of an analysis of 
the growth of a moundP4) This analysis is worked 
out by using the Dupuit-Forchheimer principles. The 
test was made on a glass bead model by Professor 
Marmion of Texas Tech. You will notice the close 
approximation in the extreme case of a mound built 
up from the dry on an impermeable layer. I wonder 
if Professor Marmion would care to comment on the 
way this test was conducted ? 

DR. MARMION: The test was conducted with a model 
constructed of two parallel plates of plexiglass spaced 
about fifteen millimeters apart. The region between 
the plates was filled with 3 mm. glass beads to serve 
as the porous medium and a mineral oil, chosen to 
have the same index of refraction as the glass beads, 
was used as the fluid. With this combination of fluid 
and porous medium, the model becomes transparent 
in zones of complete saturation. A dark background 
was placeti behind the model and a flood light illumi-
nated the front of the model. Where the beads were 
saturated with oil, the light passed through and was 
absorbed by the black background while unsaturated 
zones refracted and reflected the light . Zones of 
complete saturation, including the growing mound, 
were well defined and were recorded photographical-
ly. I would be glad to answer any questions about the 
test set-up. 
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( 14) Marmion, Keith R., 1962, Hydraulics of ground water mounds in artificial recharge. Paper presented at 
the winter meeting A. S. A. E. at Chicago. 
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MR. JACOB: I agree very heartily with what Dr. 
Theis has said about inhomogeneity. It is true we 
try to describe nature and we make some kind of a 
mathematical abstraction or over-simplification of 
what nature really looks like. But isn't homogenity, 
after all, a matter of scale? I think this leads to a 
favorite theme of mine, and that is, sometimes we 
get lost in details. In waste-disposal and dispersion 
problems, of course, you have to look at the details, 
but very often you get lost in the details where they 
are not involved. For example, in a whole irrigation 
project, it has to be appraised and the water balance 
obtained and its drainability determined, and some-
times we get lost in the details. There are techniques, 
not including pumping tests, for getting regional 
values of the transmissivity of an aquifer, for exam-
ple. 

I would like to recite two or three very pointed 
experiences that I have had in my career. We get 
an idea, as for example the exponential-integral sol-
ution of the heat-flow equation, which has become 
very useful in using one single equation that describes 
the hydraulics of wells best because wells are usual-
ly pumping at a steady rate, or nearly so. So we get 
carried away with the problems of determining per-
meabilities in the field by certain techniques that have 
been elaborated almost ad infinitum. We get these 
values of coefficients that we put in an equation and 
try to predict what the aquifers will behave like. Now, 
I have had examples where permeabilities so deter-
mined have been several times higher than the effect-
ive average permeability of the aquifer. We had a 
closed syncline, where we were attempting to get a 
water balance. When you look at the historic be-
havior of the water levels and the response to rain-
fall variations you get a certain parameter for the 
aquifer which is a small fraction of that which 3.ppears 
to be got by interference alone. 

Just another example. This would be in the 
coastal plain of Israel where the successful wells hit 
a Pleistocene limestone called "Kurkar", which is 
very porous, and the well drillers know how to find it 
and finish a well in it. It has a very high transmis-
sivity. You want to get the average transmissivity 
of the coastal plain as a whole, that is above the 
Saqiya Marl bed which forms the base of the aquifer. 
The wedge of sediments is several hundred feet 
thick at the coast. If you want to get the transmis-
sivity of the whole series of beds, it comes to be a 
small fraction of what some of the well transmis -
sivities are shown to be. And how do you get this 
transmissivity? Well, you get it again by analyzing 
the historical behavior of the aquifer. 

So, I maintain that very often we get lost in the 
details. Just like we were trying to describe a table 
top. Somebody gets down and looks at it with a 
microscope, and really we just want to buy the top 
for its utility. It is a matter of scale. I think if we 
stay with the scale, sometimes inhomogeneities are 
not too troublesome. 
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DR. SCOTT: Mr. Bittinger, would you like to make 
a comment on the work that you and Mr. Glover did? 

MR. BITTINGER: The small amount of theoretical 
work we have done here at Colorado State University 
has actually also been largely due to Mr. Glover. As 
many of you may not know, Mr. Glover has for sev-
eral years taught some courses here. Dr. Scott is 
one of his students. Bill Nelson, I think, also took 
his course when he was here. I will just draw your 
attention to the two papers in Appendix B which are, 
from CSU. One has to do with the drawdown around 
a well in a thin, unconfined aquifer. In the second, 
which does not include Mr. Glover's name as an au-
thor, but I assure you that he was in the background 
on it, is a development for the effect of a circular 
recharge basin over an unconfined aquifer. Like 
many others have done, this cievelopment was adapted 
from Carslaw and Jaeger's work in heat conduction. 

DR. SCOTT: How about some questions from the 
audience? 

MR. LAWRENCE BEER: I would like to direct a 
question to Mr. Jacob concerning bridging the gap 
between Geology and Civil Engineering in the techni-
cal hydrology field. 

MR. JACOB: I do not know. I was trained as a 
Civil Engineer and therefore, I suppose, I am irre-
trievably lost to the scientist. But I have done grad-
uate work in physics and in geology, and I became 
the head of a geophysics department, never having 
studied geophysics in any university, as many geo-
physicsts of this generation have had to do. We taught 
ground water in the University of Utah, at that time 
in the Geophysics Department, and we taught hydro-
logy also. I think changes have been made since 
because of changes in personnel and so on. I know 
that quite a contest has been going on in the Earth 
Sciences between what some people call geohydro-
logists and what others call hydrogeologists. 

The trouble with disciplines in the universities is 
that there is an overlap. I personally think that the 
study of ground water involves many disciplines and 
won't apologize if I write a paper and someone in 
soil mechanics takes me to task because I may have 
changed the notation, or someone in theoretical 
geology takes me to task because I may have made a 
few irresponsive remarks, or somebody in fluid 
mechanics, or in other fields. There are dozens 
interested in the subject of water. 

Too often we shingle the roof from the crest down, 
and we have a lot of disciplines and a lot of jurisdic-
tional disputes . We have people trying to decide 
whether we should call ourselves geohydrologists or 
hydrogeologists. And as long as we have these juris-
dictional rivalries the roof does not get covered. 
Every part of a roof is covered with three shingles, 
and so if you cover the ground-water roof, you cover 
it that way. And so you have the field of Geological 



Engineering. There is no such profession. There 
are a few schools like Princeton, University of Utah, 
and others which do have a curriculum, but there is 
no such profession. Tnere is no journal, no society. 
Someday there may be. If there is, I hope they learn 
how to shingle the roof from the bottom up. 

DR. SCOTT: This reminds me that among the list 
of societies I did miss one, The Association of En-
gineering Geologists. Mr. Robert Bean, do you wish 
to comment? 

MR. BEAN: This is a little national pitch for AEG. 
We in California felt a while back there was a real 
need for an association of eng:bneering geologists, and 
about five years ago we organized such an associa-
tion. If you look in your list of organizations in Geo 
Times, you will find the geology teachers, the AAPG, 
the seismologists , the economic geologists, and 
other specialized groups, but you do not find engin-
eering geologists . Let me say right now that as en-
gineering geologists we include geologists who are 
working with civil engineers, in the overlap, Mr. 
Jacob, on civil engineering projects, dams, canals, 
highways, etc. , and geologists who are working in 
ground water, with engineers, also in the overlap 
zone. So, I do want to let you know this: that after 
considerable internal discussion and some articles 
which have appeared in Geo Times, we have reincor-
porated under a new name, dropping California, and 
we are now the Association of Engineering Geologists. 

This meeting here contains a lot of people who 
we would like very much to consider membership. I 
think you will recognize the desirability of a profess-
ional and technical association in the overlap zone 
between geology and civil engineering. 

Our publications include the papers presented at 
our annual meeting, a brochure describing the or-
ganization, and a newsletter appearing every other 
month. We feel we have real group feeling, and also 
I think, we help each other both professionally and 
scientifically. You are eligible for associate mem-
bership if you are working in engineering geology, in-
cluding ground water. For full membership, you 
need five years of experience in geology in some 
form, three of which have to be in engineering geo-
logy, including ground water. Interested engineers 
are encouraged to join as affiliates if they are not 
working in geology. Our membership requirements 
are definitely patterned after the ASCE membership 
requirements. We will send you on request a little 
brochure and also an application blank. For con-
tacts after the meeting, our address is P. 0. Box 
21-4164, Sacramento, California. 

DR. SCOTT: For all of that, we ought to get a 
free membership here. Are there any questions 
from those of you in the audience? 

MR. DOMENICO: I have a question directed to Dr. 
Kashef. I would like to have him expand a little bit 
on some of the applications in soil mechanics that he 
is applying toward the coefficient of storage. 
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DR. KASHEF: You know the principle of effective 
pressures in soil mechanics and especially in the 
artesian aquifers. You know that the storage comes 
from the compressibility of the aquifer itself and this 
is the result of the change in the neutral pressure 
itself; so if you would study the effective pressure 
further, probably, I am not sure, you can get a very 
simple answer for the variation or the modes of var-
iation of the coefficient of storage within the aquifer, 
especially in the artesian aquifer. I am not talking 
about the water table case. In the artesian aquifer 
the total pressure is constant at any time. The neu-
tral pressure decreases, therefore the effective 
pressure increases, that is, the grain-to-grain 
pressure increases, and that is how we get the water 
out of the storage. 

DR. THEIS: I would like to ask if you have consid-
ered the contribution of the confining beds. When 
you get compaction, you must be getting a whole lot 
of water from the confining beds. 

DR. KASHEF: I will study that too, Dr. Theis, but 
after completing the idealized problem. 

DR. VANPOOLLEN: I would like to elaborate a little 
more on this inhomogeneity. I agree that we should 
not always be disturbed about inhomogeneity in re-
servoirs if we are looking for the overall transmis-
sibility or permeability. However, I would like to 
point out that in the petroleum industry we are par-
ticularly interested in this from the standpoint of 
secondary recovery. In many cases we are injecting 
water and pumping out oil, which is an old technique, 
but we are also injecting miscible fluids. In that in-
stance we will get considerable differences in mixing 
zones and slug sizes required. We will have an oil 
reservoir and we will inject gas, but in between we 
will put a slug of material which is miscible with the 
oil and miscible with the gas. To determine the size 
of this slug, we have to know the mixing zone, and 
there inhomogeneity is very important. Also, we 
inject air and burn part of the oil, which is a rela-
tively new technique, and, again we have to know 
much about inhomogeneity. To me the overall, the 
gross inhomogeneity of the reservoir is more impor-
tant than are the microscopic forms. For example, 
one of the larger fields in the Sahara is called the 
Hassi Messaoud, or Happy Oil Field. It is about 30 
miles in diameter, about 10, 000 feet deep and it has 
very high pressure oil and we find that there is no 
communication from one well to the other in many 
instances. Consideration is given to a secondary 
recovery project by injecting gas. Here we have 
gross inhomogeneity and I feel that transient behavior, 
transient methods, are very helpful in determining 
the gross inhomogeneities. I might also say that 
some of the oil companies have been going out in the 
Four Corners and they drill surface rock samples to 
study the overall picture of homogeneity or inhomo-
geneity, of the formations. 

DR. SCOTT: That is a very interesting comment. 

DR. YEVDJEVICH: As the input of water into a 



ground-water formation and the evaporation from 
soils are stochastic variables, and as the permeabil-
ity and other characteristics of any naturally formed 
water-bearing formations are also stochastic vari-
ables (permeability of a formation is changing from 
place to place and from direction to direction in a 
place according to probability laws), the output of 
any ground-water formation must be also a stochastic 
variable. Therefore, the probability approach and 
the stochastic variable concept appears to be a feas-
ible way of describing either a ground-water forma-
tion or its general response to water input. 

Any study of sedimentation problems in deltas, 
reservoirs, and lakes shows that no homogeneity 
exists either in composition or in permeability of the 
deposited materials. The nonisotropic water-bearing 
formations are rather rule than exception . 

There is a need for a suitable bridge between the 
classical (or deterministic) approach and the stoch-
astic approach for the study of ground-water prob -
lems. 

The usual classical way in approaching a problem 
of ground water is: (a) to approximate boundary con-
ditions of ground-water formations by more or less 
simplified geometric shapes; (b) to assume that ground-
water formations have either constant or simply 
varying characteristics; (c) to analyze boundary and 
initial conditions of a particular case; (d) to develop 
differential equations, ordinary or partial, or the 
mathematical models of ground-water response; and 
finally (e) to look for solutions of these equations. 

Due to the fact that solutions of differential equa-
tions are well systematized, it is usually a good ap-
proach to look through these systematic solutions and 
see how differential equations of a given type and of 
given boundary and initial condit i ons can be solved 
If there is no solution in closed form, the use of 
.inite difference methods and digital computers, or 
use of analog computers give the solution in an ap-
proximate form. This is the applied mathematics ap-
proach to ground-water problems. This approach, 
however, does not incorporate easily the stochastic 
characteristics of ground-water formations. 

Looking from both a deterministic and a probab-
listic approach, the greatest problem of ground-water 
hydraulics and hydrology is in finding a bridge be -
tween stochastic characteristics of random input, 
random output, and properties of ground water form-
ations, on one side, and the deterministic approach 
through the use of fluid mechanics laws as well as 
dynamic aspects in changes of the underground, on 
the other side. It seems that there is a research 
need to fill the bridge between the two lines of thought. 

MR . JACOB: I think there are two things here . One 
is the randomness of the parameters - let us say, the 
permeability and the storage coefficient. A great 
deal of work has been done, as you may know, on the 
mathematics of elliptic equations and also parabolic 
equations that we use respectively in steady state 
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problems and in nonsteady problems in ground-water. 
They are classified this way by mathematicians. You 
read a great deal of work in the mathematical litera-
ture on this, which arises again in diffusion problems. 

Now, with regard to the stochastic nature of the 
input of the ground-water systems. This is an ap-
proach which needs to be worked on because very of-
ten our meteorological data does not go back far 
enough, does not go back much beyond our hydrolo-
gical data. So to know what our input was, before 
the first epoch of our study, is extremely important. 
However, for historical records, we do take a deter-
ministic approach on what the input to an aquifer is, 
that is, assuming that we can measure it. I think 
that there is a great need for work in this field - in 
the field of non-linear mechanics, which unconfined 
ground water actually is, and if I might, I would like 
to refer to the work of Boussinesq, which was refer-
red to yesterday . What the problem is, is basically 
this. Boussinesq was basically a mathematical phy-
sicist. He was not trained in hydraulics, particularly, 
but he did some very interesting things in the theory 
of turbulence, and toward the close of his career, in 
ground water, more or less as a challenge to a math-
ematical physicist. He wrote two or three very in-
teresting papers, and his work was put to good use by 
a French engineer by the name of Edmond Maillet, 
who was a contemporary of his and who made statis-
tical studies of the flow of certain springs in the Paris 
Basin and elsewhere in France in limestone terrains, 
based upon these concepts . Now, fortunately, most 
of our ground water systems, even though in moun-
tainous terrain, can be linearized very closely. But 
there are exceptions, and we see very many so-called 
ground-water hydrographs and the tail-end of the 
stream hydrographs plotted on a semi-log plot. En-
gineers are l ed to believe that somehow or other 
ground-water outflow of the basin has to be exponen-
tial, so you have all sorts of peculiar paradoxes aris-
ing when they try to apply these ideas to separate out 
surface and ground water run-off. 

I am not going into detail, but merely point out 
that there is a lot of work to be done. Now, taking a 
very simple abstract case of an aquifer that is re-
charged continuously, we can draw a picture. 
(figure 4). We have what we call in German, the 
eigenwerte of a differential equation, or its character-
istic numbers {n). Those of you who had elementary 
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ordinary differential equations learned that you could 
find general solutions, and that you could combine 
particular solutions to get general solutions of a dif-
ferential equation. In partial differential equations 
this generally is not possible. The theory of linear 
partial differential equations is in a very rudimentary 
state even today. The theory of nonlinear partial dif-
ferential equations is virtually nonexistent in our 
field . There are very few solutions available. One 
of them is the solution that Mr. Glover showed of 
filling at a point source when we initially have zero 
depth of flow. That has been solved analytically. One 
of them is this beautiful solution by Boussinesq, which 
in our office in our spare time we have studied in 
great detail on the computer. You know that you can 
have an equation like Laplace's equation or Poisson's 
equation. There are certain numbers you can get 
from the geometry for which that will give you solu-
tions. Now, in a case of a system that is bounded by 
two parallel boundaries at which the head is maintain-
ed constant, this will be the cosine. We have a great 
number of harmonics; the n would be the successive 
harmonic numbers. This, of course, would be an 
aquifer of great depth. The "denivellation" would be 
small compared to the depth of flow. 

Now consider an unconfined aquifer with zero 
head on the boundaries ( figure 5). There would be 
a paradox on the outflow boundary if we look at it too 
close. We would get some kind of elliptic integral 
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Figure 5 
to get the shape of it. There is only one kind of 
characteristic solution to this state for this equation, 
and that, Boussinesq found by the separation of vari-
ables. Now, we say in this confined system (figure 
4 ), that solutions are superposable, that is, there 
are all kinds of tricks that can be performed with the 
boundary conditions and with the solutions obtained, 
ad infinitum within the capacity of the system. Now 
there are certain limitations on the capacity of bound-
aries to deliver the water. But, whatever they may 
be, within those limitations there is linear superpos-
ability, linear solutions are added. Now, we hear 
many people say that there is no law of superposition 
in the unconfined, nonlinear case, but it is just that 
it is not linear and we have not discovered it, except 
for very simpl e states. 

The decay of the profile in the thick aquifer is 
exponential in time. In handlin~ these parabolic dif-
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ferential equations in one, two or three dimensions 
in bounded systems you come to a separation of vari-
ables, With the separation of variables, you always 

come out with e-at for the time variable, for 
the decay of any initial state that is put into the sys-
tem. What is the decay law in the thin unconfined 
aquifer? Well, of course, it is hyperbolic in time. 
The law of decay is 1/ ( 1 + at). 

There are other solutions for this total differential 
dh 1 

equation dt ,...._ - tT that one gets upon separ-

ation of variables. One is the hyperbolic cotangent 
of the time and the other is the hyperbolic tangent of 
the time. There are ways of putting a deterministic 
input, or stochastic input if you like, into a system 
of this kind. This, of course, is very idealized and 
does not look like any ground -water basin that I know 
of. But if I understand this idealized system, I will 
hope to understand the one in nature better than he 
who does not even understand this one . That is the 
value of long-haired approaches. 

There is a law of superposition . Someday some-
body in the field of mathematics is going to make a 
breakthrough. A whole new vista will be opened up. 

Now, it would be extremely useful to engineers, if 

you could only solve the equation ~ \ (h 2 ) = S: . 

You separate the variables and you get the two ordi-
nary differential equations and the equation 

dh 1 
- l""''tJt--
dt t 2 is one of them, and the solution to 

the other one gives the profile. A whole field is a -
waiting to be moved into by our applied mathemati-
cians who learn the key to the superposability of sol-
utions. But, first of all, we have to start finding 
some particular solutions and then, having mastered 
the law of superposability, we will move forward. 
There is such a law because water knows it, and el-
astic beam knows it. 

DR. YEVDJEVICH: A question can be legitimately 
raised: What are the chances that an engineer or a 
scientist working in the ground-water field would be 
able to discover solutions of some of the partial dif-
ferential equations or nonlinear ordinary differential 
equations, which solutions do not exist in the field of 
differential equations and use full time to study these 
equations? 

I still believe that the role of the physicist and 
other scientists and engineers in the ground-water 
research is more to apply the existing solutions or 
the procedures for approximate solutions of differen-
tial equations, than to try to compete with the spe-
cialized mathematicians in theoretical work for sol-
ution. of differential equations. 

MR. JACOB: I would like to reiterate what I said 
earlier. I really think that there needs to be coop-
eration, and there has not been enough cooperation. 
Universities such as this and others that are repre-
sented here can do a great deal, and are doing a 



great deal. I can name several institutions where 
they have very strong staffs in applied mathematics, 
and they are working on civil engineering and geolo-
gical problems and vibration problems. Of course, 
most of the research is in missile and space technol-
ogy and atomic energy. But there is a lot of work 
being done. There are a lot of books on calculation, 
just on the numerical solution of differential equa-
tions. You see, the engineers stepped out. Of 
course, the suggestion we had was made by the math-
ematician, John von Neuman. But, I mean, the en-
gineers built these things to solve engineering prob-
lems, and physicists working in applied physics 
solved these problems and developed these techniques. 
The mathematician has come along a little bit bela· 
tedly and has taken up the chase and tried to verify 
and set the limits upon what has been done. In other 
words, he has tried to refine the techniques that have 
been used in numerical computation. The harmonic 
analyzer is not a new th~ng. Numerical integration, 
as has been mentioned here, was known to Newton, 
who had a "calculus of divided differences" before he 
discovered the infinitesimal calculus. So this is not 
a new thing. It is a matter of timing; it is a matter 
of what historical incidents have brought these things 
forth. And I think there is a tremendous gap, if you 
get into literature - and I am not qualified to read all 
of it - but if you get into the literature of mathematics 
you see a tremendous number of theorems that are 
established. But the mathematician's interest is gone 
as soon as he has done his mathematical work, be-
cause he is not interested in applications. There 
needs to be a bridging of this gap between the mind 
that is working upon the mathematical principle and 
the fellow that has to apply it. Now, I think that the 
engineers and the physicist and applied scientists can 
help the mathematicians a great deal in telling them 
what things are relevant, because this is what en-
gineering is about. Engineering is about that that is 
relevant, timely, and economical. It used to be, but 
it is becoming less and less so. I have had mathema · 
tics professors, and you have had them, who could 
help you a great deal on techniques. But when it 
came to trying to make the decision, who could make 
the decision of what is relevant? How is he guided in 
making that decision? This is where field experience 
comes in, and this is where Dr. Theis mentions 
about what nature is really like. It needs to be stud-
ied in detail. But there is a time when you have to 
cut off the detail, and I think in ground water - and I 
will say it again: I spent too much time looking at the 
fabric rather than the whole cloth. 

MR. GLOVER: I would like to comment very briefly 
on Dr. Yevdjevich's original ques tion. One of the 
difficulties we have in dealing with ground water is 
that it runs below the surface and we cannot see it as 
we can see surface water. We cannot, for example, 
talk about points of diversion, we cannot measure 
flow with a current meter and do other things we are 
used to, and have always practiced with surface 
water. We know also, as Professor Yevdjevich 
pointed out, that these aquifers were laid down by 
erratic natural processes and there is very little 
chance that they will be uniform. We have neverthe-

35 

less, for the sake of simplicity, idealized them as 
being uniform. The question comes then as to how 
to bring theory and practice together. It seems to 
me that, in the field, the best thing we can do is to 
assess the aquifer properties on the basis of tests 
made on the aquifer itself in some manner. Now, 
when we do that we get some constants which in a 
sense are not right. We put them in an equation, 
which is not right, but the situation is such that our 
answer is pretty good. There seem to be some cases 
also where we might say we are fortunate. We have, 
for example, layered aquifers where nature laid one 
bed down right on top of another. They are not of the 
same permeability and we worry about the effect of 
the components on the vertical permeability . In many 
cases it is unimportant for the reason that the areas 
available for vertical flow, and the vertical permea-
bility can be much l ess than the horizontal permea-
bility without causing the aquifer to behave as an 
actual many layered -aquifer . We get that relieffrom 
some of the difficulties that might otherwise afflict 
us. Another fortunate thing that we seem to find is 
that the solutions we get from the Dupuit-Forchheimer 
formulation seem to be strongly determined. They 
will give us closely the same answer even though we 
vary the quantities we put into them quite a little bit. 
Again, it is fortunate it just happens that way. But 
those things are in our favor and I think they will 
help us through some of our difficulties. 

DR. SPIEGEL: I want to add to several points that 
Dr. Theis mentioned. The principal point is that 
there is a time-honored method of drawing water 
level contour maps. Water-level contour maps tell 
you, if you know a little bit about distribution of re-
charge, how the transmissivity is distributed through 
the aquifer. I think that we should perhaps do a little 
more work in the quantitative interpretation of water 
level contour maps to determine the degree of homo-
geneity of the aquifer. Another tool that we could 
use in the same general field is that of additional de-
tailed analysis of base-flow recession curves. Be-
cause, if we know something about the general geo-
metry of the aquifer which is producing base-flow re-
cession curves, we can then compute the theoretical 
curve (which may or may not be an exponential one), 
and use the curve for the appropriate boundary con-
dition to determine the transmissivity, storage co-
efficient, or the recharge rate from the aquifer. 
This can be done in a manner similar to that which 
we use for well pumping tests, either constant head 
or constant discharge. 

MR. SCOTT : Further comments? 

MR . JACOB: This is a footnote. Following the sug-
gestions of Boussinesq's work and the work by Mail-
let, in Israel in 1954 we analyzed all of the springs 
that issued from the limestone in Judeah. That coun-
try now relies upon the flow of those springs . When 
I first went there the question was , how long will 
these springs last if it ceases raining? And by stat-
istical analysis of th e outflow data, which was fairly 
good but not too good and not too long, knowing some -
thing about the geology and the structure and the 



origin of the water, and something about the solution 
phenomena in the limestone, we were able to arrive 
at a prediction of the volume of aquifer tributary to 
each spring above the threshold of the spring, and 
what the life of the spring would be. Most of them 
had an exponential decay. A very practical question, 
but the question had been solved way back in 1910 by 
the French. There are outflows on steep slopes , that 
can never become exponential,that will hyperbolic, 
and there is a bigger difference between hyperbolic 
and exponential outflow at infinity than there is in the 
beginning. You realize that they are two different 
orders of infinity. There is a great deal of work to 
be done that is not being done in the field of applied 
hydrology, and this requires correlation. Unfortun-
ately, there are jurisdictional rivalries that prevent 
full correlation. But there needs to be a correlation 
so that hydrology is studied as hydrology and is not 
studied as ground water and surface water. 

DR. YEVDJEVICH: If the volume of surface storage 
in a lake is expressed as the function of lake eleva-
tion and is approximated by a power function, and if 
the outflow rating curve (outflow discharge as function 
of the lake elevation) is also approximated by a power 
function, then free outflow of the lake under conditions 
of zero inflow gives die-away functions of different 
types. If the ratio of the exponent of two powers is 
less than a given value (unity), then the recession 
outflow curves are exponential functions; for other 
values of the ratio of exponents the functions are 
more complicated. Only in one case, when ratios of 
power functions is unity, the outflow recession curve 
is merely a simple exponential function. If inflow 
into the lake is constant, the functions are similar 
but more complex. 

It can be also proved that the same is valid for 
ground-water formations. If the storage function of 
ground water in relation to ground-water elevation is 
approximated by '1. power function, and if outflow rat-
ing curve of this ground-water formation is also ap -
proximated by a power function, then the recession 
curve of this ground-water formation may be any 
function mentioned above, simple or more complex, 
depending upon the ratio of two powers. 

MR. SCOTT: I would like to say that Dr. Abu-Zied 
and I worked on a decreasing discharge problem and 
this work is reported in a paper published in the last 
issue of the Journal of the Hydraulics Division ASCE. 
It includes values of a variable well function. These 
have been determined for a range of value& and copies 
of the tables are available uopn written request. 
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SESSION 3 

MATHEMATICAL DEVELOPMENTS IN 

TRANSIENT GROUND WATER HYDRAULICS 

(LEAKY AQUIFER SYSTEMS) 

DR. EVANS: Before I introduce the panel and while 
people are still coming in to take seats, I would like 
to make a few remarks . I heard a bit of information 
last night while attending a snow surveyors conference 
that is going on here on the Campus at the present 
time, and it goes something like this: What is the 
value of water? An analysis is that there are roughly 
325, 000 gallons in an acre -foot of water and an aver-
age farm of 160 acres will use 520 million quarts of 
water in a year. If that 520 million quarts were 
lined up they would make a row 45 feet wide stretch-
ing from San Francisco to New York. If those 
quarts were full of milk at 25 cents a quart, they 
would cost $130 million dollars. This is equivalent 
to what one farm would use in a year. If it were 
bourbon, it would be worth 2. 6 billion dollars. Per-
haps this points out that the cost of water is not in 
direct proportion to its worth. 

We now have the panel which I want to introduce. 
On the far end Roger De Wiest, Princeton University; 
next to him Mr. Bill Tapp, Ground Water and Drain-
age Section, Chief Engineers Office, Bureau of Rec-
lamation, Denver; C. E. Jacob, Consulting Engineer, 
Los Angeles; and Dr . Zane Spiegel, New Mexico 
State Engineer's Office. 

The panel topic is given as: the Transient 
State Mathematical Developments for Leaky Aquifer 
Ground Water Systems. I will first call on the mem-
bers of the panel individually in turn to give a quick 
ten minute review of their current work on recent 
developments, based on their backgrounds in this 
type of problem , then we will· allow the panel mem -
bers themselves to interchange questions, if there 
are any; and following that, we will ask the audience 
to participate with their questions. 

Now, I would like to first introduce Dr. 
De Wiest. 

DR. DE WIEST: Thank you, Dr. Evans. 

Recently I worked as a consultant for the 
Elizabethtown Water Company which is responsible 
for the water supply of Princeton, New Jersey. In 
this capacity I examined a project of ground-water 
storage presented a few years ago b y the late Homer 
Sanford, a consulting hydrologist. In his project, 
Sanford proposed to construct low earth dams on two 
rivers in the vicinity of P rinceton , N. J. which drain 
ground water from a deep belt of alluvial deposits 
stretching between the Rariton Estuary and the 
Delaware in Trenton, N . J. By raising the water 
level in the rivers, the hydraulic gradient from the 
ground-water basin to the rivers would be decreased 
and hence the outflow of ground water would be 
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retarded. Simultaneously the alluvial deposits 
should be decreased by intercepting trenches located 
parallel to the rivers and at some distance from the 
rivers. Sanford estimated that under certain condi -
tions it would be possible to withdraw S million gal-
lons per day from a given trench. 

We analyzed the problem using the same techni-
ques as described in the Geofisica paper (Vol. 54, 
1963-I) to which I referred previously. The results 
of the analysis were published in the November bul-
letin of the .Journal of the Hydraulics Division ASCE . 
They showed that Sanford's estimate could be over-
optimistic because of lack of substantial data on the 
hydraulic conductivity of the aquifer. 

MR. TAPP: Frankly, I was flattered when asked to 
take a place on this panel of distinguished experts . 
I am concerned with a different problem than most 
of these gentlemen; namely, engineering design. My 
function is to trap the problem and proceed with the 
design of engineering works. During the design 
studies, use is made of the equations discussed here . 

My colleagues, Mr . Glover and Mr. Moody, have 
asked me to present two of our equations dealing with 
the leaky roof aquifer. You will find them in the 
Appendix C . The first is for the case of an aquifer 
overlain by a slowly permeable bed. For this case, 
the solution in dimensionless parameters is on the 
attached chart. We have the same solution in dif-
ferent form which we use primarily to recover the 
aquifer coefficients from field pumping tests . The 
solution shown here was redrawn to obtain a family 
of curves and a curve-fitting procedure worked out 
whereby we could plot the time-drawdown pattern 
from all of the observation wells on a graph and 
match all of them at the same time. 

The other development is similar to that which 
Mr. Glover and Mr . Moody spoke of this morning. 
It applies to the drawdown at the center of a circular 
area. Again, the aquifer is assumed to be overlain 
by a slowly permeable bed . The equation yields a 
steady-state solution. It is used for estimating the 
drawdown at the center of the pumping area. 

Now, I want to expand on my earlier remarks 
and point out to you that to sit and talk or read a 
manual about pumping tests is one thing; to go into 
the field and make a pumping test and recover the 
aquifer coefficients is something vastly different . 
I think of it this way: The equations are used in a 
backward solution starting from the field pumping 
test data to estimate the aquifer coefficients; namely, 
T and S and the vertical permeability k'/m' . 
With the coefficients and the same equations, we 



make a forward computation to predict what will 
happen to the ground-water regime in any particular 
area . 

Before accepting the forward computations as a 
basis for design, we must make a judgment appraisal 
of the coefficients. In other words, how trustworthy 
are they. With this settled, we can proceed with the 
design . The forward computations are then used for 
theoretical operation studies to predict the ground-
water behavior. 

We always have to keep in mind that field tests 
come equipped with a price tag . There is a cost 
which we cannot exceed to collect field data. We 
must never collect field data just for the sake of the 
data. When we start to collect data, we must know 
how we are going to use them. The end product is 
an estimate to get an amount of money in an appro-
priation that will insure that we c an build the facility 
when it is needed and stay within our cost ceiling. 

Now, as an example of some of the things we 
have done with these backward and forward solutions, 
I recall eight water supply wells for a trial pump 
irrigation investigation. We drilled eight test wells 
at the sites with three or four observation wells and 
made pumping tests. We also reviewed all of the 
data for the area. We concluded the aquifer coef-
ficients were of the right order of magnitude and 
represented actual conditions . Without any further 
ado, we started the forward computations for the 
wells. We designed the wells and made a theoretical 
operation study of what we could get out of them and 
of the drawdown. We let contracts for the wells, 
bought the pumps, and specified the pump settings. 
Perhaps we were lucky, every well was within the 
limits calculated. Of course, in such studies a 
great deal of judgment must be used in choosing the 
aquifer coefficients. I sometimes sum up this way: 
It is unfortunate that the equations used to a tta ck 
pumping problems will always give .an answer, re-
gardless of the accuracy of the field data. 

In our haste, we have overlooked two other 
Bureau developments. One has to do with pipe drains 
in which a fourth-degree parabola is used to repre-
sent the initial shape of the water table between the 
drains . It will be included in the Proceedings. The 
other development is by Mr . Glover for pipe drain-
age in a layered aquifer. It is a form of the leaky 
roof aquifer case under discussion this afternoon. 
It will also be included in the Proceedings. 

DR. EVANS: Thanks, Mr . Tapp. Next we will hear 
from Mr. Tacob . 

MR. JACOB: A little background, perhaps, on this 
leaky-aquifer theory might be in point. The people 
in the Netherlands, having to reclaim land from the 
sea - and having fought a winning battle, incidently-
pioneered in this work, as you can imagine . And in 
the polders that had been drained and reclaimed 
there first arose the problem to describe this flow. 
We have an aquifer which is fairly transmissive and 
uniform in thickness overlain by one which is less 
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transmissive, which in turn may be overlain by 
ponded water, or again o.verlain by a second trans-
missive aquifer . The first work that I know of was 
done by Steggewentz and Van Nes in the Netherlands -
one steady-state problem and one nonsteady-state 
problem. And from there we began to work on radial 
flows to wells in cases where we had concentric 
boundaries. A paper was written on this with the idea 
of trying to describe what happens to a well or to a 
well field when there is some supply from above or 
from beneath coming from another aquifer. Now, 
this is just another model and, like all models, has 
its limitations . And since, of course, it has been 
greatly modified and elaborated upon, and will con-
tinue to be, but it is a useful concept. 

Now, I might just say something about the 
velocity of flow. I think you realize that in art infin-
ite two-dimensional space, finite potentials are not 
possible. It is fortunate that we live in a three-
dimensional space. Thus the gravitational potential 
is bounded; electric and magnetic potentials and 
other potentials you can conceive of are all bounded. 
Logarithmic potentials in infinite two-dimensional 
space, are exceptional; they are unbounded. This 
leads of course, to the erroneous conclusion, which 
is a common conclusion, that you could have a steady 
flow in an isolated infinite aquifer. You get a cer-
tain degree of stability, but you never get absolute 
stability if you maintain a constant flux across the 
inner boundary. Now there are a lot of people in the 
art of engineering who do not believe this . All kinds 
of explanations are given why this is not true, but 
this is so. We always have aquifers with boundaries, 
and there are usually sources of inflow on those 
boundaries. 

If the capacity of the boundaries to pass water 
into the aquifer is not exceeded, then conditions of 
steadiness of flow can be reached within that limit, 
and are reached in the neighborhood, for example, 
of an infiltrating stream . Moreover, if you have an 
aquifer that is overlain by ponded water and some-
how you can maintain constant potential in the ponded 
water, then of course you can reach stability. The 
theoretical solution to this problem is a modified 
Bessel function of second kind of zero order which is 
called K0 in most Bessel terminology, which, of 
course, goes asymptotically to zero at infinity. In 
other words, theoretically you do have an infinite 
area of influence , but you have a bounded influence. 
Of course, we never realize any of these conditions 
exactly in nature. In the first place we usually do 
not have wells that are controlled to pump at cons-
tant rates . They all pump at variable rates , which 
is due to the fact that turbine pumps have to adjust 
themselves to the declining water level. Nobody that 
I know of - somebody may have tried it, in fact we 
tried it once and it was not very successful - regu-
lates the flow of the turbine pump, mechanically, so 
that it will be constant . This is not done . So you 
very rarely have these ideal situations on the inter -
nal boundary. Nor do you have ideal conditions on 
the outside boundaries or on the top and bottom sur-
faces. Now, some people may say, "What is it 
worth then, if you always have t hese limitations 



and then throw in on top of that anisotropy and in-
homogeneity. 11 Well, it is a useful model to be used 
as a guide, it can be used in many ways . 

Many pract ical problems arise, as Mr. Tapp 
pointed out, in which the questions arise ; can a pro-
ject be drained or not, and what is the most feasible 
way of draining it? This came up in the Punjab, in 
that part of the former Punjab province in West 
Pakistan, and the question arose , how can water-
16gged land, which was waterlogged over 60 years by 
leakage from earthen canals, be drained? The land 
slopes one foot to the mile downstream and slopes, 
on the average, much less cross-stream. The high 
ground between tributaries of the Indus River is in 
some places only ZO or 30 feet above the stream 
level. So it is very flat country. The problem as to 
how this could be done might be solved by a study of 
the geology and of the subsoil and classifications of 
the soil. But a study of the actual mechanics of the 
flow, to see how the water table is going to be lower-
ed can be accomplished very simply by means of 
pumping tests. This has been done in several places. 
When a pump begins pumping, if initially the system 
is confined at all, it behaves as an elastic system, 
and as far as the water is concerned in the vicinity 
of the well, it can not tell if there is any leakage 
taking place or any contribution from outside that 
aquifer . So the aquifer will go through a period of 
response in which it behaves as a confined, elastic 
aquifer. 

With the onset of the leakage - or if we do not 
want t o think of leakage, think of the compaction of 
the confining beds, or it could be interbedded clay 
beds that are being compacted, or beds beneath -
you can withdraw from storage within the clay much 
more water, volume-wise, than you can within the 
sand because the clay is obviously much more com-
pactable. And so you will have , t hen, in the begin-
ning an added contribution, which you might think of 
as a distributed inflow. For simplification this 
seems to be proportional to the head drop which 
occurs , and this, of course , is just a first approxi-
mation, because obviously if it comes from the com-
paction of clay it would not be a linear phenomenon 
at all . Still you can make some sort of approxima-
tion . If you have a thin diaphragm that is a confin-
ing layer or an aquiclude that is thin, across which 
you can impose a change or gradient very quickly, 
then t he model is very good. If, on the contrary, 
you have thick confining beds, which themselves 
might have interbedded sands that are fairly con-
tinuous, then, of course, you have departures from 
this model. There is no such thing as a completely 
tight confining bed. Consider a flow regimen set up, 
as in t he appended sketch, (figure 1) with the cases, 
(a) having ponded water maintained at constant poten-
tial, or as an alternative, (b) having another aquifer 
that is highly transmissive and unconfined, which can 
be replenished. Then you can set up this model of 
the flow . This was done by the Dutch merely as an 
approximation. The contrast in hydraulic conduc-
tivity (k/k') in this bed is high . The refraction is 
virtually complete , and we t reat it mat hematically 
as though water t hat passes through the aquiclude 
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is added to the horizont al flow. The equation then 
becomes s ah K'(hO-h) 

\f h='Tar- b'T • 
Now this is a mathematical idealization as all mathe-
matical models are. 

-K 
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F igure 1 
Another solution which has been worked out is 

heat conduction in a semi-infinite space with a slab 
under it and a line sink in the slab . Now , I began to 
tell you of the several phases of this regimen of flow. 
If you plot log t versus s , the drawdown (figure Z) 
you have the classical problem of a confined aquifer 
with a steady well . 

s 

Figure Z 

You have a solution that comes in asymptotically 
from zero time, which would make it infinity on the 
logarithmic scale . Then you have a straight line for 
awhile, and t he slope of the straight line is inversely 
proportional to the transmissivity of the bed. From 
t he coordinat es of a point you can get the storage 
c oefficient or 11storativity. 11 This, then, is the way 
the aquifer would behave during the initial phase, 
when water is being drawn from confined storage. 
Maybe a few minutes, or a few hours later, depend-
ing on the relative size of these paramet ers, there 
will be a departure . If head is maintained at con-
stant level, by controlling the head, or recharging 
or whatever way, you can reach a steady state of 
flow in this bounded aquifer, if the capacity of the 
infiltration matches the capacity of the well. Now, 
the cross-section of this diagram, of course, is the 
K

0 
, which is a function of a times the radius. 

This has a asymptotic expression which involves the 
logarithm of the distance. 

By pumping tests on single wells, you can deter-
mine the transmis'sivity, and if you know something 
about the characteristics of the well you can esti-
mate the well loss from experience. With several 
wells of similar design in the same kind of formation, 



you can get yourself into the ball park and even some-
place in the infield without having any observation 
wells, and enable yourself to estimate what we call 
the "leakance" by analogy to electrical circuits. Now, 
of course, this does not measure the average hydrau-
lic conductivity of the shallow subsoil and so may be 
of little use to a drainage engineer, but on the other 
hand, in some cases it will effectively estimate the 
average hydraulic conductivity of the path of flow 
along which water will pass to a horizontal drainage 
system that may be built in that environment, and 
will be very useful. With a few observation wells 
this can be narrowed down very sharply in cases 
where the transmissive thickness of the aquifer is 
uniform and make possible, as Mr. Tapp has pointed 
out, the design of the wells and the prediction of 
their characteristics. 

Thank you very much. 

DR. EVANS: The last panel member is Dr. Zane 
Spiegel. 

DR. SPIEGEL: I think before I discuss an extension 
of the theory of leaky aquifers, I would like to state 
that there are three of us here from the New Mexico 
State Engineer Office in Santa Fe, and we are part of 
a group of people who, like Mr. Tapp, use formulas 
and methods that have been devised by various people . 
I would like to make a short statement of the way in 
which we use these methods because I think we are 
probably the only state which does so. Several 
people here have asked me some questions, and per-
haps others would like to hear some of it too. New 
Mexico's ground water law permits the State Engin-
eer to declare, without any local knowledge or agree-
ment by local groups beforehand, to declare certain 
areas of the state as being basins which are under 
his administrative control. He may continue to per-
mit further drilling of wells and new appropriations 
of water within these basins, or he may not, in which 
case the areas are called closed basins. Now, in 
many areas there are already surface water appro-
priations for irrigation, municipal and industrial 
uses. In other areas there are existing ground water 
appropriations, but no surface water appropriations, 
because there are no streams from which surface 
water could be appropriated. In the former case the 
State Engineer has expressly recognized, and the 
statutes have implicitly recognized, that surface 
water and ground water are one and the same, and 
the pumping of the ground water will deplete the flow 
of the stream. In other basins where streams are a 
long distance from the pumping areas the areas are 
considered essentially as mining areas, and a dif-
ferent philosophy is used. In the areas in which 
there are no streams nearby, calculations have been 
made using Theis' equation, taking into account by 
image methods the boundaries that are present, to 
calculate the rate at which the mining will occur. 
The basic philosophy used in trying to determine at 
what level development should be stopped in the basin 
is that the water should las t for 40 or 50 years, and 
when I say 'should last" I mean the time that water 
can be withdrawn at what we now consider economi-
cal pumping lift for this period. Of course, it is 
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recognized that economic conditions might change in 
the future, but decisions are made on present econ-
omic conditions. However, in t he basins where 
streams are present which have surface water appro-
priations, then the effect of a well on the stream is 
computed and if a well owner wants to move a well, 
for instance, closer to a stream so that his well will 
affect the stream faster than the old one did, then it 
may be necessary for him to reduce the amount of 
this pumping to reduce the amount of effect on the 
stream. The main point is that in order for the State 
Engineer t o administer the basins, he must be able 
to calculate what the effects will be to make deci-
sions . 

We have these two diagrams (figures 3 and 4) 
which I would like to use to show what happens in a 
long-range program of pumping from artesian aqui -
fers. 

I 
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Figure 3 

If we pump from a drain, or a line of wells, there is 
more or less unidirectional flow within the aquifer. 
Eventually we do affect the water level in the upper 
aquifer (referring to the upper aquifer by Roman 
numeral I and the lower aquifer by Roman numeral 
II). We find that we may have in the long run the 
simple result shown by Mr. Jacob's diagram. You 
may find that if you continue pumping long enough, 
the water level does not continue at a steady level 
because the water level in the upper aquifer has been 
lowered. Therefore the water level in the well must 
go down after a period of time . To take t his into ac-
count, we have what we can call a mutually leaky 
aquifer system and this system can be drawn very 
generally as a prismatic block (figure 4} ; not an in-
finitesimally small block but just any block; and we 
consider that this block is divided into two parts, an 
upper aquifer I and a lower aquifer II by a leaky 
layer, and there is a water table in the upper one and 
a potentiometric surface in the lower one which we 
will call h 1 and h2 respectively. We have the 
same kind of differential equation for each aquifer 
which we have to write for each of the aquifers sepa-
rately. Each equation is going to have a form very 
much like the one written by Mr. Jacob 

ri s aht K' v h2 = T at - Tb I ( h 1 - h2) 

Then we can also generalize this equation to the case 
where you have recharge to the upper aquifer by ad-
ding a term - (W/T 1) h1 on the right. This gives 
us a general system of equations which will take into 



Figure 4 
account mutual leakage between two aquifers . I 

might also add that, for this equation or for simpler 
ones , W does not necessarily have to be a constant; 
it can be a function of time or distance and many so-
lutions are g!ven in the area of heat conduction for 
different kinds of functions. Then in connection with 
the questions about physical applications in hydrology, 
we can make the recharge function some stochastic 
variable or statistical variable generated by any pro-
cess that the statistician wants to generate. A way 
of doing this is to consider the recharge as a function 
of time, that is, a sequence of individual impulses, 
in rectangular form, (figure 5) could be rain on any 
number of days , or recharge; it does not have to be 
regular, it can be any time you want. In other words, 
you can approximate any function by a step function 
(jump function) using the Laplace transform. A. solu-
tion of this equation can be obtained taking into ac-
count this arbitrary recharge. Hydrologists and sta-
tisticians thus have at least a starting point to relate 
their work in ground water hydrology. 

W(t) 

Figure 5 
Now, to go back to the mutual leaky system, we 

could use the simpler methods (the ordinary leaky 
methods) for determining the coefficients as des-
cribed by Jacob. But if we use these methods , we 
must be careful that it is valid to use the approxima-
tion that the water level in one aquifer is constant. 
If, for example, the upper aquifer is not recharged 
by additional water in order to maintain a constant 
water table when withdrawals are made from the 
lowe r aquifer, the potentiometric surface of the low-
er aquifer will not reach a stable l evel. Instead, it 
will decline at a rate dependent upon (a) the trans-
missivities of both the aquifers (b) the storage coef-
ficient of the upper aquifer, and (c) the leakage coef-
ficient . The drawdown curve may appear as in fig-
ure 6, where the solid portion represents the simp-
ler case described by Jacob. 
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Figure 6 
DR. EVANS: Now, I am going to give the membe rs 
of the panel an opportunity to discuss with one another 
the questions that may have arisen in the course of 
these proceedings. 

MR . .JACOB: I would like to commend the contribu-
tions that are made here and apologize for not having 
any in written form. These elaborations that Dr . 
Spiegel has made are all practical. Probably in the 
end they may be very useful, so they are not just ex -
ercises. If you keep pumping an aquifer and if you 
have a well capacity that is large enough to permit 
this, you can start at a certain rate and maintain it, 
then you can dewater part of the formation. This is 
something that occurs in the petroleum business, so 
that you have mixed conditions of flow with a moving 
boundary between the confined flow and the unconfined 
flow . You get a fourth regimen of flow where the 
drawdown tends again towards a straight line, at 
about the same slope. In other words, you are still 
producing water with the same transmissivity. The 
horizontal capacity for flow is unchanged except in 
the immediate vicinity of the well. Out beyond,there 
is largely still the same transmissivity driving the 
flow, so you will get a parallel line that gives again 
the reciprocal of the transmissivity. One intercept 
will give you the storitivity of the bed when it was 
confined, the other will give you the storitivity when 
it began to be drained. In these cases where you 
have drainable land, or rather you want to know whe-
ther you can drain it or not, if you can run the pump-
ing test long enough to begin to dewater the confining 
bed, then you can determine the storitivity of the un-
derlying bed and you can make some calculations as 
to what is going to be feasible with any useful drain-
age well spacing. Now, sometimes this has to be a 
week, depending of course, whether your observa-
tions are made just in the pumping well itself. This 
is the technique. There is no other way of doing it; 
you have to wait until you can dewater. 

DR. DEWIEST: Dr . Spiegel, may I ask :·ou, what 
happens to the mathematic solution when you put 
wells in these aquifers? Do you still use the Laplace 
transform? 

DR . SPIEGEL: I have not done any solutions for a 
well, however, I do not see why it can not be done. 

DR. DEWIEST : I don't think the Laplace transform 
would work in the case where there are wells tapping 



the aquifer . 

DR. SPIEGEL: Incidentally, I have said that many 
well fields can be approximated as a line sink and 
various linear one-dimensional solutions would ap-
ply in such cases. 

MR. JACOB: You might be able to approximate the 
well field, that is the vicinity of the well field as a 
strip, with a more-or-less stationary state of flow 
within the whole field. 

DR. EVANS: I think we are ready for audience par-
ticipation at this time. 

MR . NUZMAN: I would like to direct this question 
to Mr. Jacob. In your illustration you show the 
initial values as could be obtained by a short term 
pumping test. Could you give us a method we could 
use in the field to predict the length of time neces-
sary during a pumping test to dissipate artesian 
pressures and begin dewatering under water table 
conditions? 

MR . JACOB: The time that the dewatering will be-
gin? Yes, I think you could. You would have to 
assume some value of the leakage coefficient, how-
ever. Then you would write an equation for the 
drawdown in the well itself, knowing that you start -
ed at a certain rate. One is going to get the draw-
down equal to the distance of the static level from 
the top of the formation, You will have to have a 
preliminary estimate of the leakage factor and also 
knowledge of the internal resistance of the well it-
self, that is, what we call "well-loss coefficient." 
I think you realize that in most wells operating at 
what appears to be their optimum or design capa-
city, about half of the self-drawdown in the well is 
internal resistance, which approaches turbulent re-
sistance. It does not establish full turbulence until 
it gets into the pipe, the casing itself, and flows 
upward, then of course, it becomes quite rough. It 
is still smooth flow through most casing perforations 
if the well is well constructed. Now, generally 
speaking, the wells I have seen will operate so that 
about half of the self-drawdown is well loss and the 
other half is formation loss, from a great distance 
to the well. This is just a rule of thumb. 

MR. BEAN: I would like to ask Mr. Tapp if he will 
tell me if the Bureau has a Memorandum 657 and 
what the name is. 

MR. TAPP: Technical Memorandum 657, "Studies 
of Ground Water Movement," is in print, as far as 
I know, and available from the Bureau's Publication ] 
Sales Office. It was issued at the Commissioner's v 
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Office at Denver, March 1960. At the moment, it 
is in the process of being reissued. There will be 
some additions and it will become a part of the 
Bureau's Engineering Monograph Series. I cannot 
tell you the Monograph number at this time. 0 /0 

MR. GLOVER: I wish to speak in regard to the re-
lationships obtained from the solution described by 

Mr. Tapp: The elegant solution produced by Jacob 
and Hantush for the case of a well pumped at a con-
stant rate, drawing the supply from an aquifer over-
lain by a semi-permeable bed is well known. They 
found a solution in the form of an integral. The 
chart described here (Appendix C ) was not produced 
by the procedure used by Jac ob and Hantush. The 
procedure employed here may be of interest because 
some of you may wish to use it at some time. The 
series solution for a finite outer boundary came from 
an earlier paper by Mr. Jacob, and we use it this way. 
We choose a ratio of the radii of the outer bo undary 
and the inner boundary as for example 10 to 1. We 
then compute with the series until t he disturbance 
reaches the outer boundary. When that happens we 
choose another ratio such as 100 to 1 and compute 
with it again until the disturbance reaches the new 
boundary. A new ratio, such as 1000 to 1 is then 
taken and the process continued. In this way the outer 
boundary can be made as remote as we desire. The 
advantage of t his method is that only a few terms of 
the series is ever needed. In this way the solution 
for a finite boundary can be extended to cover the 
case of a very remote outer boundary. I have checked 
this solution against the one by Jacob and Hantush 
and 1 f ind them identical. 1 might say that I have also 
c he cked the solution of Jacob and Hantush independently . 

DR. EVANS: Thank you very much, Mr. Glover. 
We welcome now further questions or comments 
from the floor. 

MR. JENKINS: I would like to refer to the draw-
down curve shown in figure 7. I have tried to ana-
lyze the "S" shape of the curve where A-A' has a 
slope in the general magnitude of B-B' which would 
result in a similar coefficient of transmissibility. 
However, a computed coefficient of storage for 
B-B' is considerably larger than for A-A'; but 
some tests are not run long enough to obtain the 
B-B' portion of the curve, which then causes com-
plications in trying to obtain the correct value for 
the coefficient of storage. I feel that the A '-B por -
tion of the curve is the result of slow drainage of an 
unconfined aquifer, leakage from an overlying aqui-
fer, or a change in leakage in a semiconfined aquifer. 
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Ramsahoye and Lang (1961, Water- Supply Paper 
1536-C) discuss a method of computing the coeffi-
cient of storage of a water-table aquifer by volume ; 
I have also computed the approximate volume of the 
cone of depression for use in determining the coef-
ficie nt of storage b y dividing the volume of water 
pumpe d by the volume of the cone of depression. 

I think this is a practical way of computing the 
coeffic ient of storage , and I wonder if any one on 
the panel has used this too. 

DR. SPIEGEL: I think this method has been used in 
New Mexico by the U. S. Geological Survey Office 
for the Deming area in a closed drainage basin in 
southweste rn New Mexico a few years ago. 

MR. JENKINS: Do y ou think this has potential for 
getting a good storage value ? 

DR. SPIEGEL : The value obtained was close to 
what would have been guessed at anyway. 

MR. TAPP : Mr. Jenkins, we us ed such calculations 
to check a storage value of some fine-grain mater-
ials ove rlying a coarse and highly transmissive 
aquife r. Mr. Glover did it as a check against some 
value s for the storage that had been derived from 
shallow pumping tests and laboratory tests. The 
value s in the laboratory tests and the other work 
ranged from about 10 to 18 percent. Mr. Glover 
computed on the basis of the dewatered cone of de-
pression and obtained 15 percent; this, we believe, 
is a r e asonable check. 

MR. J ACOB: This is in further answer to Mr. Jen-
kins' que stion. There is a Water Supply Paper 
{WSP 679a) by Wenzel, dated about 1934 or 35 in 
which he use d this technique. And this technique is 
applied on t e sts that were run at that time. As you 
know, in those days, when the Thiem method was 
firs t introduced in this country, it was found neces-
sary to use a great number of observation wells, 
and it was good that it was thought so, because great 
amounts of data were obtained by a number of per-
sons ; by Wenzel, by Lohman and others. All these 
t est s were analyzed in detail in the U. S. Geologi-
cal Surve y, and cross checks were made between 
the different methods of looking at them. It involved 
estimates of actual dewatering in different annular 
areas concentric with the well. All of that has not 
been published, and I think it is some place in the 
U. S. Geological Survey. 

MR. COOPER: Are we to believe that the coeffi-
cient one would obtain from the flat portion of the 
curve would be representative of the storage capa-
city of the aquifer? A coefficient obtained in this 
way would depend on time and on capture of water 
from sources other than storage. It could be much 
larger than the storage coefficient or specific yield 
of the aquifer. 

MR . J ACOB : That is true in a sense, Mr. Cooper, 
but that is an apparent coefficient. I can show you 
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mixed cases of flow where you can get very high 
apparent specific yields. But, in turn, if you want 
to put it back into the equation that predicts what 
will happen, it is useful. Now, to change the condi-
tions radically, it is no good. I think we should talk 
a little about specific yield. Dr. Meinzer had a use-
ful, practical idea when he defined specific yield. 
Now, what do we mean by specific yield? Although 
this is not explicit in its definition, specific yield is 
for infinite time of drainage . In other words, we 
would get it if we had a homogeneous sand with an 
equilibrium moisture profile, and then slowly low-
e red it to a new position and allowed it to come to 
equilibrium again. Of course, he was talking about 
a field concept not a lab concept. You want to rea-
lize this in the laboratory. You maintain steady con-
ditions before and after. You isolate the thing or 
you keep it in a thermostat. Then, of course, spe-
cific yield is a fixed quantity, if this is the concept. 
Now, we rarely can measure that. What we meas-
ure is a coefficient. 

I use the term "storativity" merely because it 
allows you to use an adjective "storative." I coined 
this word. I went down to Venezuela and they had a 
hard time translating this into Spanish --
estauratividad . Storativity -- this is a good word --
is Theis's storage coefficient. Only I do not know 
how to make an adjective out of storage coefficient. 
We have the word "restorative," in the English 
language which is an adjective, and we have restora-
tivity, and so I thought I would just throw the "re" 
away and speak of storativity and storative. So, 
one aquifer may be more storative than another. So 
what is storativity? It depends upon the geometry. 
You can define this mathematically like so many co-
efficients in engineering and physics. It is defined 

ah by Q = A at S {t, h). The rate of removal from 

storage is equal to some area times some rate of 
decline of head times some coefficient (S). It is a 
function of rate and of the history of the thing. It 
has variability, but it is no more variable than mag-
netic permeability, or many other coefficients in 
physics that are very useful, if you understand what 
you are doing with them. So, this is an instantan-
e ous apparent value, it is the apparent rate at which 
water is coming out of storage per unit area per 
unit head decline with a certain given model and a 
certain geometry . ~ow, that should not trouble y ou-
be cause it is useful. It is true that you can sharpen 
it up, and you can relate it to simpler geometries 
so that you can turn around and, having got this var-
iation in t i me, you can explain it by the actual phe-
nomena taking place. But from the practical con-
sideration of an engineer trying to design a gravity-
well field, or testing gravity wells, he may want to 
drain some area or he may want to get a water 
supply in some situation. As a practical matter, 
he, of course, is inte r e sted in the ultimate value of 
the thing. This S ultimately approaches Meinzer's 
specific yield. The concept of specific yield is use-
ful if you realize again how you are going to obtain 
it or how you are going t o measure it. Now you do 
not measure it directly . You probably calculate 



instantaneous local values, but this S can tempor-
arily exceed the specific yield. The S may have 
some initial value and go over and approach the spe-
cific yield from above. If you draw down most of 
your profile fast enough, you may have the moisture 
coming into the water table later on at a rate faster 
than it does in the beginning. The S for a particu-
lar situation is defined by the mathematical equation. 
And it is an apparent value if you are in a compli-
cated geometry. And the more complicated the geo-
metry the more this velocity ah I at determines 
really what it is . 

MR. BEAN: We have a cooperative program with 
Ivan Johnson of the Geological Survey on s pecific yield 
that has been going on for about five years, so I want 
to make a comment or two with respect to what Mr. 
Jacob said in this regard. Our first concept was the 
thought that you just presented, that specific yield 
is the ultimate term only. Later, we had the thought 
of looking at Mr. Meinzer's original definition, and 
this concept does not appear there; in other words, 
Meinzer says the specific yield is the percent of the 
volume of a unit of material that is occupied by water 
which is drained by the force of gravity, and he does 
not say ultimate. So Mr. Johnson and the rest of us 
went along with your concept, Mr . Jacob, until with-
in just the last year, and now we are beginning to 
think that specific yield is the same as your stora-
tivity, at any stage -- and the conditions at that 
stage not only should be, but have to be, defined. 
In other words, specific yield is dependent on a num-
ber of factors, one of which very definitely is time. 
Everyone knows that drainage is greater with time. 
Another is thickness of the bed. A third is the situ-
ation at the bottom of the bed, which is very impor-
tant. For instance, is the bottom of the bed above 
clay or is it above sand? 

Let me illustrate. (figure 8) During our co-
operative investigation we took some samples in a 
field area. The water table there has dropped, and 
the materials have drained continuously without any 
vertical infiltration, as nearly as we can tell, for 
about 30-35 years. Suppose we have a silt bed with 
sand underlying it, as shown in the diagram. Mois-
ture content by volume is shown on the abscissa, 
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and the ordinate is depth. Now, after a long period 
of drainage the silt in the upper part of the bed 
drains to a moisture content of about 15-20 percent. 
Farther down, in a sample that is just above the 
sand bed, you find a much higher moisture content 
in that silt. Specific yield is shown as Sy , the 
difference between the porosity and moisture content. 
The specific yield of the silt in the upper part of the 
bed is maybe about 20 percent. The specific yield 
near the bottom of the bed is only about 10 percent. 
The reason for the difference, as I think you can 
see, is because of the much larger inter-granular 
openings in the sand. There is no capillary attrac-
tion to drain the lower part of the silt, while in the 
upper part of the silt the water will drain into the 
lower part of the stratum where it hangs up for 
years and years and years. 

We have discovered a number of very interest-
ing things of this type regarding specific yield . 
Most of this information is not yet published, al-
though Mr. Johnson has put out a few preliminary 
or open file papers. But there is a lot to this 
specific yield, and Mr. Johnson and his crew are 
continuing to get more answers for us. 

MR. JACOB: Although the writings of Meinzer will 
leave this unanswered, I think you can find corres-
pondence in the files and memoranda of the USGS to 
show that this was the intention. Maybe C. V. Theis 
can comment on this. But before his death, speak-
ing of Mr. Meinzer, he answered to my satisfaction 
that his intention was for it (specific yield) to be the 
ultimate value. Because, I can show you some early 
work on this thing you are working on out in Cali-
fornia, in the very early stage when we talked about 
the drainage problem. Is this right, Dr. Theis? 

DR. THEIS: I think you are right, Mr. Jacob, and 
I think Mr. Bean is wrong about the application of 
the concept. The definition was that it was the 
amount of water that could be drained from a porous 
medium by gravity, with an implication of long and 
indefinite time. 

MR. BEAN: We we nt back to Meinzer 's original 
published definition for our usage of the term 
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"specific yield. " I have not read your secret cor-
respondence on the subject! 

MR. LOHMAN: I think the safest thing to do is to 
use the specific yield value qualified with the time 
in which it is determined, then you are on the safe 
side. 

MR. JACOB: I think it takes more than time, Mr. 
Lohman. I think it takes a lot of boundary condi-
tions, and there are some of them right here that 
you mentioned, in other words, you are looking at 
this as a practical profile. In the case of California, 
it is really not specific yield that they are interested 
in at all, it is the reverse of that. How much water 
are you going to be able to put in there on the first 
fill? The first cycle is going to be the fill-up, so 
there are papers in the literature that make a dis-
tinction between the "coefficient of drainage" and 
"coefficient of storage." There is a difference be -
cause there is hysteresis. 

MR. NELSON: This phenomenon called "Specific 
Yield" is the result of a variety of boundary value 
problems of partially saturated flow. All of the 
factors which have been mentioned already enter the 
boundary value problem plus the interactions between 
soil characteristics i.e., different capillary con-
ductivities, capillary pressures, and moisture con-
tents. You are faced with the decision either to 
treat it as a partially-saturated flow system and 
analyze it that way, or you have to back off, as Mr. 
Jacob has so capably indicated and recognize that 
the coefficient is a composite of a wide variety of 
conditions, hence, incapable of precise definition. 

MR. DOMENICO: I have had some experience along 
these lines in Canada, and know some people up 
there working on low permeability Upper Cretaceous 
sediments. In these formations, the ground water 
has definite characteristics of occurring under water 
table conditions, or unconfined, in that there is an 
unmistakable piezometric surface - surface topo-
graphy confirmation, among other things. Recently, 
an article by Joe Toth and a reply by Mr. Stan Davis 
in the Journal of Geophysical Research described the 
flow system in these sediments. I have pumped a 
few wells finished in these formations and have al-
ways come up with an artesian, or confined, coef-
ficient of storage --point four zeros and something. 
Speaking again of Mr. Toth, he is of the opinion that 
the coefficient of storage in these sediments is con-
trolled more or less by the position of the flow lines 
in the interbedded shales during pumping. Upon con-
tinued pumping, we could obtain a coefficient of stor-
age representative of the water table, or unconfined 
system only when we bend these upper flow lines --
when we get vertical movement of water to our wells, 
and thereby violate one of the assumptions of the 
Theis equation. In this type of sediment, this sel-
dom occurs. Further, in my limited experience in 
pumping limestone and basalt formations, as long 
as they are deeply buried, the result is always an 
artesian, or confined type of storage coefficient. 
To me it appears that we have a relationship be-
tween the vertical permeability of whatever is over-
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lying the formation and the horizontal permeability 
of the material we are pumping. In other words, the 
value is more or less controlled by the geology, and 
may not reflect the confined or unconfined behavior 
of the system as a whole. The Canadian situation 
exemplifies this. The system has been recognized 
as unconfined, but the storage coefficient indicates 
confinement. Getting back to the basic question, 
how do we handle this coefficient? Can it be identi-
fied at all? Is it identified with our 24-hour pump-
ing test? 

MR. JACOB: Under certain idealized conditions, 
S is calculable from the mechanical properties of 
the rock, its porosity, etc. Now, was this upper-
Cretaceous sandstone very deep? 

MR. DOMENICO: The wells are up to 1000 ft deep. 
Some of the wells yield 1 0 gallons per minute, most 
yield less. 

MR. JACOB: Well, you say you have a water table, 
but do you really have a water table? 

MR. DOMENICO: I think so. 

MR. JACOB : The water table is in Pleistocene 
deposits, is that not right? 

MR. DOMENICO: It is. Both in the Pleistocene de-
posits and the Cretaceous sediments. If all points 
were plotted on one piezometric surface, they would 
be compatible. 

DR. SPIEGEL: What are the depths of the sediments? 

MR. DOMENICO: The depth of these sediments are 
deeper than the depth of the wells; well over 2000 ft. 
They are practically horizontal. As a matter of 
fact, the slight dip has no control on the piezometric 
surface or direction of movement, as indicated by 
the piezometric surface -- surface topography con-
firmation. Let me draw a diagram {figure 9). 

The North Saskatchewan River is a line sink. 
The Pleistocene deposits average about 50 feet in 
thickness. The only outcrop areas for the Creta-
ceous sediments are in the river banks, and are 
discharge areas, not areas of recharge. The water 
levels in wells finished in Pleistocene deposits, or 
shallow and deep sandstone lenses, more or less 
conform with one another, and with the surface to-
pography. The theoretical work by Toth described 
the flow system in these sediments, essentially an 
extension of the theoretical work of Hubbert, in 
1941. 

MR. JACOB: I would say you have a confined sys-
tern if you get storativities that intimate confine-
ment. 

MR. DOMENICO: The feeling is that it is essen-
tially an unconfined syste m. 

MR. JACOB: How do you know? 
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MR. DOMENICO: The diagram shows most of the 
factors. The most significant is the piezometric sur-
face-surface topography confirmation. The outcrop 
areas functioning as discharge areas preclude the 
entrance of water there, and assures us that recharge 
occurs by downward movement of water from the 
Pleistocene deposits. The complete lack of control 
that the dip of the sediments plays on the direction of 
ground water movement is another factor. As this 
formation is barely pumped, the potential we measure 
at least approximates the pre -development potential. 

MR. JACOB: It may be a semi-confined situation. 

DR. SPIEGEL: I think the problem that is involved is 
this. The water table you talked about is the aver-
age potentiometric surface for each of the wells. 
There is a section penetrated by the wells which may 
be different for different wells, and therefore, this 
water table is not a water table, but a number of water 
levels which are related by the various sands that are 
penetrating it. 

MR. JACOB: I think the explanation lies in this: 
That you have a very delicate balance between the 
supply of water and the evapotranspiration in the na-
tural state and in the artificially cultivated state 
through consumptive use of water in the area. There 
is farming; it is wheat country. So you have a balance 
set up. Recharge occurs during the summertime from 
thunder showers and again when the frost melts in the 
spring . These are probably the two times when re-
charge occurs, I don't know whether Toth has made 
a water balance or not. We are involved in the po-
tash mining operation in Saskatchewan, which is the 
same topography. It is not a leaky aquifer in the con-
ventional sense, but is a semiconfined aquifer. There 
are gravel deposits in old channels, some in the 
buried Cretaceous landscape, some in Pleistocene 
channels. We have a gravel that is very extensive in 
the Boulder Lake area. We have begun to explore the 
lake beds also. These gravels are fairly continuous 
and very transmissive. Now, undoubtedly in the till 
ground to the west there are enough interbedded sands 
to provide quite a bit of continuity. There are Creta-
ceous sands under there, all of which have not been 
mapped, which have, I think, a slight dip to the west, 
very slight. I am not sure whether any flow has been 
contributed in this immediate area by the Cretaceous 
sands . We have not answered that yet, but, it suffices 
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to say that we do have sands in the till, so that in the 
high ground, where you have till, when you get re-
charge the water table will then be conformable with 
the topography. And in the low lands, where you have 
some water-loving vegetation, there is waste from 
the area. You have some pastures also which use 
water. You have a very delicate balance, so you can 
get a water table that conforms to this glaciated land-
scape. 

MR. DOMENICO: You are talking about the potential 
in the rocks? 

MR. JACOB: Well, the potential in the Cretaceous 
rocks probably corresponds closely with the depth of 
burial, even in the shale. The whole thing has been 
standing there a long t ime, and I suppose the distri-
bution of head obtained before cultivation reflected the 
weight of the overburden. I would imagine there 
would be in the Pleistocene beds some differences of 
head, however, between the areas immediately under-
lain by till (because of some of the high interbedded 
sands in the till where the water supply comes from} 
and the areas underlain by lake beds. You get high 
water levels when you get into these lenticular sands. 
In general you have a subdued replica ofthe landscape. 

MR. DOMENICO: I suspect if we were to measure 
good control points, we would certainly find a differ-
ence between potentials. I was referring to a gross 
scale. Actually, the potential of the water in the rock 
depends upon the point of measurement in the flow 
system, high water levels in discharge areas, and 
low water levels in recharge areas, but always in the 
vicinity of the water levels in wells finished in Pleis-
tocene deposits. 

MR. JACOB: The thing breaks down to something 
like this: You have a balance between inflow and out-
flow plus storage. You try to get a water balance for 
a particular area, and the inflow depends upon the re-
charge rate (W} , which will vary with time and also 
vary in its distribution. The outflow will depend upon 
some hydraulic conductivity (K) or transmissivity. 
The storage c hange will depend on some average 
storativity ( S). Now, if you want to take a look at 
this thing, t h1ak of the ratios. Which ones of these 
are important? Let's divide the equation* by the 

*-------~--~---------Inflow ( '"" W} = Outflow ("-' K) + Storage ("-S) 



outflow. Then you will get the ratio of the recharge 
rate to the hydraulic conductivity ( W /K) , and the 
ratio of the storativity to the hydraulic conductivity 
{S/K). What is the recharge rate compared to the 
vertical hydraulic conductivity on the average? You 
have a very large area and a relatively thin aquifer. 
Some attempts are being made using meteorological 
calculations of potential evaporation, and this is being 
studied in this case. Incidentally, a very fine sympo-
sium on groundwater hydrology was held in Calgary, 
sponsored by the National Research Council of Canada. 
This will be available in a few months and has a very 
interesting discussion of the hydrology of this kind of 
terrain, and a forerunner to the paper by Dr. Toth is 
in there. 

I do not say we know the answer; it is a puzzling 
problem. You have a semiarid climate and you have 
most of your opportunity for recharge in the summer 
with the thunder showers, so W may be extremely 
low. It may be possible to set up a flow system --
and we tried to do it in a very highly idealized form --
in which you have basically an underlying transmissive 
layer with some kind of a till layer over it. Within 
the till are beds of sand, and you have an equilibrium 
with the atmosphere and with the plants that waste 
water in the lowlands which entails a different kind of 
surface boundary condition. We have set this up to 
treat it by numerical integration. The only thing is, 
we do not have enough data to plug in. There need, I 
think, to be more data on exactly what happens when 
it rains. How much recharge occurs? And what hap-
pens when the spring thaw occurs? In other words, 
what is the annual hydrological cycle? 

DR. EVANS: Are there any other comments? 

DR. SPIEGEL: Dr. Hantush asked me to mention a 
couple of points if they did not come up in other ways. 
The first point, related to !he leaky aquifer problem, 
is the question whether the lateral boundary is leaky or 
not. This becomes important in relating the discharge 
of wells to the effect of the well on the stream. We 
start with a well in a simple aquifer with a stream 
nearby. This stream, let us say, has a constant 
water level. The stream has no impermeable lining 
in other words it has direct access to the aquifer. I 
will call this an unlined boundary condition. A well 
nearby can take water from the stream, as has been 
shown by Theis or Glover and Balmer in published 
papers. If however, the stream has a silt layer under 
the bed, or, for some reason there is a semi-per-
meable layer between the stream and the main aquifer, 
then there will be a difference in head or potential 
between stream level and the well after the well ef-
fects have reached out that far. Depending upon the 
size of the value of permeability of this leaky layer, 
we can generalize the stream bed as a vertical bound-
ary for regions a short distance away. Then, the 
value of this boundary permeability, which we can 
call ~ becomes very important. I think that Han-

tush has made computations for a particular case in 
which it reduced the amount of water taken from the 
stream by a factor of 1/3. So, this is another appli-
cation of leaky boundary problems. Now, many 
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problems of this type have already been solved and if 
there is such a boundary condition in the field area in 
which you are working, it might be useful to you to 
refer to heat conduction literature for this problem 
(the radiation boundary problem). I think we might 
call it the leaky boundary condition. The next prob-
lem was equally presented by myself and Dr. Hantush 
involving the theoretical foundation for the concept of 
safe yield. I think this is a very important concept. 
It has not been mentioned so far and I do not want to 
expound on it but want anybody in the audience or 
panel to comment upon what safe yield really is. 

DR. EVANS: Does anyone want to make a comment? 

MR. JACOB: I think we ought to refer that to Mr. 
Raphael Kazmann, and he is not here. 

MR. BEAN: I want to see if I can remember what 
was taught to me in ground water school, eight years 
ago. Safe yield is the largest amount of yield that 
you can get from a ground water basin, without some-
thing undesirable happening. 

MR. JACOB: There was a paper in the Proceedings 
of the ASCE, {vol. 82, 1956) by Mr. Kazmann. You 
may have read it, but we had kicked it around about 
ten years ago, and I guess it still is being kicked 
around back in the USGS. There are so many criteria, 
such as encroachment of water, sea water, etc., in 
so many places, and also the allowability of mining 
water, which, in the days of the conventional safe-
yield concept, were not quite contemplated, if you 
think of the economic's of the 1920's. So we have dif-
ferent ideas now, but there is still the concept of safe 
yield. There are methods of determining it, and as 
you know, Raymond Hill devised a new method for 
what we call the safe yield of a basin , based on out-
flow. 

DR. EVANS: I would like to request that discussion 
on safe yield be deferred, if you do not mind. 

DR. DE WIEST: The first point mentioned by Dr. 
Spiegel is what the Russians refer to as the clog-
ged river bed, and it has been treated analytically by 
Zhukovsky and is mentioned in the book by P. Ya. 
Polubarinova-Kochina in several places. {For ex-
ample there is an approximate solution when the river 
bed is clogged on page 142.) At several different 
places in the book a reference to it and to the author 
of the original paper may be found because this book 
is like every other book, a compilation of research 
papers. The other point about the so-called radial 
boundary condition, is one that crops up naturally, 
as the one presented on figure 2 of the paper published 
in the November 1963 Journal of the Hydraulics Di-
vision, ASCE. {Replenishment of aquifers intersected 
by streams). If the continuity equation is applied 
here at the boundary where the discontinuity exists, 
then it is found that the head is indeed proportional 
to the derivative of the head, times a constant. A 
constant as a first approximation, actually a function 
of distance and other characteristics of the aquifer, 
and in the simplest case then, this may be called a 
radial boundary condition. So it crops up naturally. 



DR . EVANS: Thank you, Dr. De Wiest. I know that 
Mr. Bittinger has some things to add from other sour-
ces. 

MR. BITTINGER: I might add another reference on 
the subject of "safe yield, " which I feel is a fairly good 
discussion, although quite general. This is the ASCE 
Handbook on Ground Water Management. Principally 
for the record, I wanted to mention a few other loca-
tions in which there is work going on in the transient 
ground water field. We have a good many of the peo-
ple in the field assembled here, however, there are 
some who were not able to attend. I went through a 
recent issue of "Hydraulic Research in the U. S. " 
which is published by the National Bureau of Standards, 
and I am just going to run through these briefly --
there are some you will be familiar with, and others 
that you may not be. At the University of Arkansas 
there is a project entitled Turbulent Flow in Porous 
Media, Professor John C. Ward in charge. At UCLA, 
Dynamics of Soil-Water Flow Towards and Into Sub-
surface Drainage Facilities, A. F. Pillsbury in charge . 
Some of these might or might not apply, since titles 
do not tell us everything. Pillsbury also has a pro-
ject entitled Flow Through Anisotropic Porous Media. 
Professor Howe at the University of Iowa has a pro-
ject entitled Mechanics of Bank Seepage in Natural 
Streams during Flood Flows. At the University of 
Michigan, Professor Streeter is in charge of a pro-
ject called Unsteady Gravity Flow of Liquids Through 
Porous Media. Dr. Browzin at Ohio State University: 
Transient Flow Through Porous Incompressible Media 
with Various Boundary Conditions. Dale Swartzend-
ruber at Purdue University, Department of Agronomy 
has projects entitled Analysis of the Dynamics of 
Moisture Flow in Soils, and Dynamics of Water Flow 
in Tile Drained Land. Dr. Toebes at Purdue is in 
charge of Hydromechanics of F luid Collector Systems 
in Porous Media. Dr. Harr of Purdue, who had plan-
ned to be here, is working on Transient Development 
of the Free Surface in a Homogeneous Earth Dam. I 
think that catches most of those which appear appli-
cable to the subject of this meeting. If there are any 
further comments on these, maybe you would like to 
discuss them. 

MR. PAPADOPULOS: I would like to make a com-
ment on the s ubJect of collector wells. Some work 
on the subject has been also done at the New Mexico 
Institute of Mining and Technology. Dr. Hantush and 
I have reported our theoretical work on flow to col-
lector wells in the September 196 1 issue of the Jour-
nal of Hydraulics of the ASCE. Also , De Br ine , a 
graduate student at N. M. I. M . T. , is presently making 
some model studies of c ollector systems. However, 
there is still much to be done on the rather compli -
cated mechanics of flow to collector systems and I 
would s uggest that further work is encouraged . 

DR. EVANS: Thank you for that suggestion. Any 
other comments? Mr. Jacob has been asked tore-
view an item, and he said it would take him a very 
short time, let us turn this over to him. 
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MR. JACOB: Several have asked for the algorithm 
for calculating the law of superposition of states of 
flow in the example that I gave of a very thick uncon-
fined aquifer with zero head on the boundaries. 
(Boussinesq's problem.) I thought it would be of in-
terest. There is a law of superposition, and it is not 
linear. It turns out, if you have a certain average 

rate of recharge W0 
, initially, and, if you have a 

certain variation of recharge ~ in time ti . Then 

if you normalize W0 to 1 and call the successive 

steps 1::::. Wi , this becomes input. The problem is to 
get the output . What is the law of superposition? 
How does the water-table aquifer behave on the aver-
age? There is a simpler way of doing it; you can in-
tegrate by finite differences if you wish. This is a 
total differential equation. Let us say T is that part 
of the variation of the average depth of flow in time. 
You have an equation like this 

dT(t) = _ Tz 
a dt 

Now, in the linear case, of course, the T is to the 
first power, and that is why you get the exponential of 
( -aT). But in a nonlinear case this is Tz, giving 
hyperbolic variation. As I say, this can be integrated 
piecewise if you want to do it that way. But this does 
not throw any light on what the actual mathematics of 
the thing is. You merely get a numerical solution. 
Here is the actual analytical result. If I want to know 
what the shape of the curve is going to be during the 
first step, 

- 1/2 r 1/2 -1 -1/21 T 1 - w 1 tanh w 1 ( r 2 - r 1) + tanh w 1 J 
Before you have been through that once it looks like a 
lot of work. Actually, it needs to be set up in a table, 
and it goes very fast . Now, to go on to the next step 
all you do is to divide this through by w2 1 /2 or, if 

you want to look at it from this end, all you do is to 
multiply by w2 -

1/2 and start all over again. And 

you take the arc hyperbolic tangent, or if it is des-
cending, you take the arc hype rbolic cotangent. This 
is the law of superposition of states. 

DR. EVANS: Thank you, Mr. Jacob. This will wind 
up the sess ion. 

Congratulations to this panel for an excellent re-
view of the present status of knowledge and practice 
relative to the mathematical treatment of leaky aquifer 
systems. 
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SESSION 4 

USE OF MODELS, ANALOGS, AND COMPUTERS 

MR. WALTON: We have a very interesting and 
timely topic this morning called "Extension of Mathe-
matical Developments in Transient Ground Water 
Hydraulics with Computers and Models . " As you see, 
we have four speakers. Unfortunately Herb Skibitzke, 
who was to have discussed passive element electric 
analog computers, was unable to make it, and I think 
we are going to greatly miss his presence. Because 
of his absence I think during the discussion period I 
am going to call upon someone in the audience to per-
haps help fill his boots. During the past several 
years there has been a great deal of progress made in 
applying electri c analog computers and digital corn-
puters in solving ground water problems. Of course 
we all know sand tank models have aided us for a great 
number of years . I am going to call on the individual 
speakers for their comments first, and then at the 
end we will have a general dis cussion period. Our 
first speaker is Professor Kraijenhoff van de L eur 
who you have already met and know from the Nether-
lands whose s ubject will pertain to a sand tank model. 

MR. KRAIJENHOFF: I have been asked to discuss 
some of the features of a sand tank, or granular 
model, that we are using for the study of non-steady 
groundwater flow to parallel drains . We apply certain 
time distributions of rainfall and measure the outflow 
rates. These outflow graphs can be compared with 
computed hydrographs such as I have already presen-
ted here. The idea was to test the range of applic-
ability of the assumptions on which the computation 
method has been based . The main assumptions were: 

(a) Hooghoudt introduced the concept of the 
equivalent depth of horizontal flow in which 

f')'4~«~ t:nrd 
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the radial resistance near the drain has 
been accounted for. This concept was 
developed for steady flow and it has been 
assumed without further proof that it would 
also apply to the case of unsteady flow . 

(b) The mean equ ivalent depth can be consid-
ered as a constant. 

(c) The effect of the unsaturated zone has not 
been taken into account. In other words, as 
a first approximation, the rate of inflow into 
the saturated zone was assumed to be equal 
to the rate of rainfall on the soil surface. 

Obviously only a granular model offers the op-
portunity to investigate the results of the assumption 
under (c) . But in that case both the saturated and the 
unsaturated zone should be studied on the same scale 
and here we get involved with the effects of surface 
tension. Fortunately the soil scientists Miller and 
Miller have published a fundamental study on scale 
laws for unsaturated flow and these laws have been 
verified experimentally by Wilkinson and Klute. As 
the moisture content is no limiting factor thest: laws 
must also apply to saturated flow and they are conse -
quently valid for the whole model. 

Figure 1 shows a simplified explanation of the 
scale rules . The pore system in the granular 
medium is represented by a c apillary tube with a 
diameter d and in this connection d is considered 
to be a representative dimension of the granular 
medium . 

L E NGTH SCALE : '" " ~-= ..,e., 

1 e 

Figure 
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The length scale is the ratio of the equilibrium 
capillary heights in the model and in the prototype. 
It follows that the length scale is determined by the 
surface tensions and densities of model-liquid and 
ground water and also by the ratio of the typical dim-
ensions of the granular medium in the model and the 
granular soil in the prototype. 

The velocity scale follows from Poiseuille 1 s 
law and here we find that the viscosities play a role. 

Finally the time scale can be directly derived 
from the length scale and the velocity scale. 

A 50 percent ethanol-water mixture was used. 
This liquid has a low surface tension combined with 
a high viscosity. The high viscosity enables us to 
choose a coarse grained medium and this causes a 
reduction of the capillary rise. Since it is further 
reduced by a low surface tens ion we arrive at a small 
length scale . 

Figure 2 shows the model. As usual it only rep-
resents half the drain spacing because the vertical 
mid way between drains is a line of symmetry. The 
idea of using thermopane, a building material, was 
pic ked up at the Shell Laboratories at Amsterdam. 

Figure 2 

The price was less than 20 dollars. The half inch 
s pace between the glass sheets was partly filled with 
screen ed sand. On one side outlets were made to 
simulate drains or ditches and capillary tubes were 
inserted along the top to feed "rain" onto the s urface. 
The rate of rainfall can be regulated by moving a 
reservoir,from whic h the capillary tubes are fed, up 
and down. As soon as the liquid has infiltrated it 
causes a flow of moisture to move downs from the sur-
face to the s aturated zone. This flow is like a wave 
that causes both changing storage and delay in the un-
saturated zone. 

Figure 3 shows the s uccessive shapes of these 
waves, or moisture profiles, a s c omputed for a 
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medium of screened sand that was used by Childs. 
I am not going into great detail here, you can find 
all further particulars in the Journal of Geophysical 
Research, v. 67, no. 11 1 p. 4347-62, 1962. 
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Figure 3 

The line marked "I" represents the moisture 
profile when there is no flow 1 so when there is 
equilibrium . Profile No. II is moving down during a 
recession period. After rainfall has set in, profile 
No. III starts moving down the unsaturated zone un-
til it overtakes.No. nand merges with it. Only at 
this time the rain can begin to change the potential 
distribution in the saturated zone and cause outflow 
into the drains. After this moment profile No. IV 
is moving upwards against the downward moisture 
flow. When finally the rainfall stops,or its rate de-
creases 1 another moisture profile will move down 
the unsaturated zone and merge with profile No. IV. 

This highly schematized picture is meant to 
show how changing storage and delay in the unsatura-
ted zone will transform the time distribution of rain-
fall before it actually becomes inflow into the satura-
ted zone. We must therefore expect that our third 
assumption of equality of rates of rainfall and inflow 
into the saturated zone may cause deviations between 
observed and computed hydrographs. 

We have s tudied the relation between rainfall and 
groundwater runoff in our model (figure 4). Here 
the model s imulates flow to a drain tube which is 
shown a s a half circular dent on the right hand side 
of the model. Please note that there is a consider -
able convergence of flow that must be a cc ounted for 
in the equivalent depth of horizontal flow . A "hyeto-
graph" of three rainfall intensities was applied four 
times and the resulting outflow was both measured 



Figure 4 

and computed. The experiment was started with a 
horizontal water table and an "empty" unsaturated 
zone. This explains the lag between the observed 
full line and the computed dashed line right at the 
beginning. For the three following waves the devia-
tions are only slight but systematic. This good agree-
ment also indicates that Hooghoudt' s concept of an 
equivalent depth of horizontal flow, which he deri"9'ed 
for steady flow, did not cause any appreciable devia-
tion in this non-steady case. 

suggest that we may stretch the presented computation 
method to a certain extent and ~xpect not too inaccur-
ate results even when the variation of the horizontal 
depth of flow is marked. 

In the third experiment (figure 6) the position of 
the drain was almost at the bottom of the model and 
even then there was no excessive disagreement be-
tween eomputed and observed hydrographs in situation 
4. 
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Figure 5 

By the following experiments we tried to get an 
insight into the degree in which the unsaturated zone 
affects the hydrograph of outflow (figure 5). 

In the schematic diagram of the model the curve 
marked 1 represents the highest position of the 
phreatic level and it indicates that the assumption of 
a constant depth of horizontal flow is not very close 
to reality. The computed and observed hydrographs 
for situation 3 are not too far apart. This seems to 
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These preliminary experiments clearly show 
that the unsaturated zone affects the rainfall-runoff 
relations and they illustrate the necessity of including 
the unsaturated zone in the study of transient ground-
water flow. 

Finally I want to make a few remarks about the 
computation of hydrographs. It is simple in its tabu-
lar form and as such practicable for the man on the 
job, nevertheless for long periods of many intervals 



it is tedious work. Moreover any local mistake will 
affect a subsequent series of computed values. We 
therefore mechanized the computation and used a very 
simple electrical device which is shown in figure 7. 
I already mentioned that the outflow rate could be 
computed as the sum of 1, 2, or 3 terms and a rest 
term. Now the successive values of each of these 
terms were computed separately using circuits with 
a. resistor and a capacitor. In the first circuit the RC-
time stands for the reservoir coefficient and in the 
second and third circuits the RC-times are respec-
tively 1/9 and 1/25 of the first. The inflow rates are 
simulated with the potentiometer and the successive 
values of the first, second or third term are read at 
the galvanometer on appropriate scales. For each 
interval these values for ~ * , <4 ** and if neces-
sary also ~ *** are entered in a table where finally 
the rest term is added. 

.. - [ 

... 
~ l 

succeed however in realizing this in our "slow" 
model and we had to resort again to the concept of 
an instantaneous unit eydrograph. This appeared to 
help us out because, under the assumption of a cons-
tant depth of horizontal flow, an instantaneous change 
of the ditch level will affect flow in the same way as 
an instantaneous change of the phreatic level in the 
opposite direction. By use of the convolution inte-
gral the outflow can then be obtained by integration 
of the flow rates between the network and the poten-
tiometer. This analog is under construction and we 
hope that it will soon enable us to convert lengtey 
series of inflow data into directly recorded hydro-
graphs of outflow. 

Coming to the end of my remarks, I would like 
to state, that I believe that the study of transient free 
surface groundwater flow is operating in the border-

Figure 6 

Figure 8 shows our latest effort. Here we have 
simulated half of the drain spacing by a network of re-
sistors and capacitors. The resistors stand for the 
horizontal resistance against flow and the capacitors 
simulate the storage in the homogeneous medium. 
The ditch level is determined by the potentiometer. 
In order to simulate rainfall we have to insert cur-
rents at the network' s nodal points at rates indepen-
dent of the potentials at these points. We did not 

Figure 7 
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land of groundwater hydraulics and soil science. We 
should therefore cooperate with soil peysicists who 
are interested and prepared to join us in our efforts. 

In a general way I have tried to make clear how 
we are concerned with transforming the interesting 
and important results of mathematics into forms 
that can be used by the practical man in the field and 
shape them into tools for further research. Thank 
you. 

NETWORK ANALOGUE 
FOR TWO- DIMENSIONAL 
FLOW TO DRAINS 

l1 ~·-r..·~ • I !! II I I 11 
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Figure 8 



MR. WALTON: Our next speaker is Patrick Hurley, 
Engineer with the U.S. Bureau of Reclamation, 
Region 7, Denver Development Office. He is going to 
tell us what they have been doing with digital compu-
ters. 

MR. HURLEY: The Denver Development Office is 
charged with making the investigation studies of large 
areas where ground water studies are a part of the 
over-all studies. We are trying to approach these 
studies on a statistical basis utilizing the digital com-
puter to assist us in handling the data and makeing the 
numerous computations required. Previous to work-
ing in the Denver Development Office, I worked in the 
Office of the Chief Engineer where I had the opportun-
ity to apply some of Mr. R. E. Glover 1 s extensions 
of the Dupuit-Forchheimer Theory. 

One of the current projects we have in the Den-
ver Development Office is trying to set up a mathe-
matical model of the entire South Platte River for all 
associated surface water and ground water develop-
ments. For those of you who are not familiar with 
this area, I will include a sketch {figure 9) of the 
geography of the basin. 

Figure 9 

The South Platte River comes out of the Rocky 
Mountains south of Denver. It flows northerly to 
Greeley, some 30 miles east of here, then eastward 
towards the Plains. The reach we are studying is 
essentially from Denver to the Colorado-Nebraska 
state line, about 200 miles. In this reach of the 
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South Platte there are approximately 3 50, 000 acres of 
irrigated land served by some 60 canals. There is 
extensive well irrigation in some areas adjoining this 
reach of river. 

We are going to study the historical records (31 
years) to come up with a statistical analysis for the 
entire reach of river. This ambitious undertaking 
would be almost impossible if we did not have use of 
automatic data processing equipment to handle the 
data and make the computations. If we did not have 
the computer we would have to revert to shortcut 
approximations and reduced scope, The monthly 
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historical irrigation operation of 350,000 acres for 
the 31 years will be studied, but that is only part of 
our anticipated study. 

An interesting aspect of the problem is the in-
creasing water supply to this area in the future due 
to the increasing imports of water through the Con-
tinental Divide by the large metropolitan area of 
Denver and surrounding communities to meet their 
expanding requirements. The future return flow 
from the City of Denver and surrounding communi-
ties will mean additional flow in the South Platte 
River, This raises interesting problems as to how 
the increased water supply can best be utilized, It 
is these problems we are attempting to solve in our 
investigations of the South Platte River. 

I also want to make a point for studying histori-
cal re<.;ords for such a long period of time by the 
Bureau of Reclamation. You might say that our 
clients are the farmers living in this valley. The 
questions which may be asked are generally based 
on past experiences. For example, some farmer 
might raise the point that back in 1934 he was dras-
tically short of water and no crop was harvested. In 
the future, with the increasing water supply, if a 
similar year occurred again, what might he expect 
in terms of water supply? Our studies are geared to 
answer inquiries of this type, 

One of the capabilities of the digital computer is 
data handling, Our studies utilize this capability. 
The historic diversions of the 60 canals throughout 
the 31 years amount to some 20,000 quantities, a 
mass of data that is far less formidable when punch-
ed into a stack of cards, We also have the effective 
rainfall and evapotranspiration calculated and on 
cards for the entire period, Mr. Earl Glen wright of 
our office has programmed the computation of con-
sumptive use by the Lowry-Johnson method. The 
computation is not complicated but rather tedious, 
especially the determination of the beginning and 
ending dates of the growing season for 31 years at 
several points. A subroutine deducts the effective 
precipitation from the consumptive use to determine 
the irrigation requirement. Meteorological data for 
several stations were available from the Weather 
Bureau already punched on cards and were used in 
these programs. 

The main part of our study of the South Platte 
River and of our computer application is essentially 
a ground water analysis. A canal seepage loss will 
be determined for each of the canals. As well as 
reducing the historic diversions to the amount effec-
tive in meeting the irrigation requirement for the 
shortage analysis, the canal seepage loss is one of 
the quantities recharging the ground water. The deep 
percolation losses from the irrigation applications 
are also a major source of ground water recharge. 
The return flows from these recharges to the ground 
water into the river will be approximated using the 
extensions presented by Mr. Glover earlier in this 
symposium. There are also a number of large 
reservoirs located off the river channel in this study 
area which contribute through seepage losses to the 



ground water recharge. The total recharge will also 
be determined through the computer program. The 
many pumps throughout this area represent a large 
withdrawal from the ground water. Our studies will 
include an analys is of the historical pumping through-
out the 31 years period , Using these separate items, 
the main portion of the program will be to determine 
the gains to the river . 

To determine the historical river gain, the pre-
cipitation upon the non-irrigated area and the resul-
ting runoff , which is unmeasured, must be assumed. 
Our initial assumption is the rainfall on the non-
irrigated area is consumptively used by the area. The 
rainfall is on the order of 14 inches per year while 
the evapotranspiration is some 26 inches per year so 
none can be assumed to enter the ground water reser-
voir and thereby contribute to the river gain, Of 
course large rainstorms result in runoff. This runoff 
contribution to the river gains will be found through 
trial and error as the "unexplained gain." This is the 
beauty of a computer . Innumerable solutions can be 
readily run by just changing a few cards for revised 
assumptions . 

If through the statistical analysis, and a trial 
and error process, we can essentially duplicate the 
historic conditions mathematically, we can begin 
studies of how the future water may be best utilized, 
Our basic premise is that the higher in the basin the 
water can be used, the better use it is because more 
opportunity exists for reuse of the return flow or more 
simply "Highest use is the best use," 

Once the studies of future conditions begin, the 
computer application will really start paying big 
dividends. With the basic program written and input 
data all ready , the many possible schemes for regula-
tion and use of the future flows can be readily analyzed. 

While I was in the Office of the Chief Engineer I 
applied s orne of Mr. Glover 1 s work on return flow 
from irrigation, The graph included in the Appendix 
B entitled "Return Flow from Deep Percolations" is 
the basis for the application I will discuss. The digi-
tal computer was used to do the computations of re-
turn flow in the application. 

The first s tep was to program the curve into a 
form the digital computer can rapidly handle. We 
approximated the curve by a 5th degree equation, the 
fit being made on the computer. Mr. Robert Main of 
the Office of the Chief Engineer did all the program-
ming for this problem using an IBM 650. Although the 
curve on the referred graph is asymptotic in nature we 

-.j4at . zeroed the curve at --L-- = 1. 40. This allowed an 

accounting for all the water entering the ground water 
table and s implified the result s . The error introduced 
is only 0. 6 of a percent . 

We used the computer to analyze 13 years of his -
torical operations of the Mesilla Valley in New Mexico. 
This valley lent itself ideally to a mathematical model. 
The records of diversions, land irrigated, and of the 
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drain discharge are good. The drain discharge is a 
very good representation of the actual return flow 
that occurred historically. The deep percolation was 
determined from the precipitation and diversions. 
The flow of this quantity of water into the drains was 
then computed using the timing indicated on the curve. 
A comparison of the historic return flow as measured 
and the computed return flow showed a remarkably 
close correlation, This study of the Mesilla Valley 
and a write-up of the :methods used are contained in 
Technical Memorandum Number 660 entitled "Pre-
dicting Return Flows from Irrigation" printed by the 
Office of the Assistant Commissioner and Chief Engi-
neer, Bureau of Reclamation, Denver, Colorado , 
August, 1961. All the facts and figures are in it, 
including a brief description of the computer pro-
gram used. 

I hope to present in the near future a paper to 
the ASCE that will summarize the Technical Memo-
randum and explain in greater detail the application 
of this specific Dupuit-Forchheimer method of com-
puting return flows. 

MR. WALTON: Thank you Mr. Hurley. Our next 
speaker needs no further introduction - Mr. C. E. 
Jacob, Ground Water Consultant, Los Angeles, who 
will speak on active element electric analogs. 

MR. JACOB: I am sorry that Mr. Herbert Skibitzke 
is not here, and I hope that the members of the USGS 
staff will forgive me if I overlap a little in what I shall 
say about analog computers . There are differences 
in terminology, but in the computer industry gener-
ally wua.t is meant by an analog computer is an elec-
tronic device that has a number of very high-gain 
DC amplifiers and capacitors and resistances, fixed 
capacitors and variable resistances and also some 
fixed resistances , so wired together that it can 
simultaneously and continuously solve what we would 
call a system of difference -differential equations 
which approximates the differential equation of mathe-
matical physics, whether it be for ground-water flow, 
heat conduction, diffusion , or elasticity . 

Now, simulators of various kinds, have been 
used for many decades, and also resistance-
capacitance networks, which in your outline here 
are distinguished as passive -element analogs . I 
think you realize that there is an analogy between the 
flow of electricity and the flow of other fluids such as 
water, heat, diffusion of molecules. This analogy 
holds for non-steady flow as well as steady flow be-
cause we have storage features in all these phe-
nomena. That is, we can store electricity in a capac-
itor , we can store ground water in a compressible 
aquifer, we can store dissolved matter in a solvent, 
and we can store heat in a conductor. I think it 
would perhaps be well to briefly set up the basis and 
then to perhaps illustrate the use of an analog com-
puter in the sense in which I defined an analog com-
puter. I might say that historically, to my knowledge, 
the first resistance-capacitance network that was 
used in this country was used by Paschkis at Colum-
bia University when I was a student there. You will 



find reference to this in the Transactions of ASME. 
(See Trans . ASME, 64, 105 (1942).) 

Beginning in the early 1940's, culminating, I 
believe, in 1945 , the first real serious attempt to 
simulate an underground flow system was made by 
Bruce of Carter Oil Co. in Tulsa, Oklahoma. (See 
AIME, Trans, 151, 112 ( 1943).) You will find a 
paper by him which goes into some detail, not into 
detail about the design, but into detail of the applica-
tion of this device to petroleum reservoir problems, 
and this was done, I believe, in 1945. Many oil 
companies today have tl:ese simulators, in which 
there is a direct analogy between the fluid flow and 
flow of electricity. Many accessory circuits use con-
trol devices and electronic features. 

Now, you are all familiar with what a Link 
trainer is. A Link trainer is a device which simul-
ates the behavior of an airplane in response to mani-
pulating the controls. It is used to train instrument 
pilots. This is a simulator which operates in what 
we call "real time." In other words, the time of the 
device is equal to the time in the control equipment. 
Computers are also used to control various pro-
cesses, both in real time and in accelerated time (by 
computing ahead). Now, whether we use a resis-
tance-capacitance network to solve unsteady flow 
problems or whether we use an analog computer, we 
first have to formulate or model our fluid-flow prob-
lem in electricity . Then, if we are going to use an 
analog computer we have to translate this, so to 
speak, into computer language, or rather into com-
puter circuitry, and we have to draw a wiring dia-
gram for the circuits that are going to be used. I 
would like to give you, as an illustration, an example 
that we have carried through on an analog computer 
which comes under the heading of semiconfined flow, 
which we talked about yesterday, and this is a radial 
case. However, two-dimensional or so-called uni-
directional flow cases could be treated. In fact, we 
treated them first on a desk calculator before we 
ever did the radial problems on a computer. There 
are two very closely related and practical problems 
which, I see in the literature, others have tackled 
using different techniques, by using the Dupuit-
Forchheimer approximation, etc . But here is a very 
interesting and practical problem in drainage engi-
neering that has to do with this . Let us say we have 
an aquifer (figure 1 0) that is transmissive, for ex-
ample a gravel bed (a) that is fairly deep . Overlying 
that we have, as we do in many irrigated valleys in the 
West, a series of sands and silts (b) in which very 
often the sand is the continuous matrix and the silts 
are usually lenticular. You might have a very high 
permeability in the bottom bed, relatively speaking, 
and a very low horizontal permeability in the top bed 
and an even lower vertical permeability. This is 
quite markedly anisotropic in the bulk. You can get 
an equivalent anisotropy. Let us say you want to 
see how the drains or wells behave in this set up. 

This is not the leaky aquifer problem but is of 
different geomet:t>-y. If we pump water out of the well 
(c), what is going to happen? Now let us say we have 
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a "step well" and postulate that we have a level water 
table (d) and we have a potentiometric surface for the 
lower bed that coincides with it. In other words, 
neither upflow nor downflow in nature and with no ir-
rigation yet . We begin pumping the well. 

-------J fc 
d-------1 W.T. 

----

a -
Figure 10 

When you begin pumping, of course, you will begin to 
produce a cone of depression (e), and you will also 
produce a depression (f), in the water table in the 
top bed, and the water table will of course be horizon-
tal at the well. That is one problem; now another 
problem that is related to it as far as computer cir-
cuitry is concerned. 

This is a problem with the same structure, but 
now, instead of pumping, we have irrigating of the 
land or recharging it artifically, or by some means 
inducing infiltration at a high rate over a localized 
area. Let us say that we take a circular area, and 
we want to find out what happens in this circular area 
and beyond . We are going to recharge at a uniform 
rate, starting at a certain time. Actual~y. we can 
handle all kinds of inputs. But let us say we want to 
look at this simple problem, where suddenly some-
body starts irrigating. What is going to happen now? 
These problems can be solved by other techniques, 
but we will put this on the computer and draw a set of 
curves that I think will be very useful. We produce 
a mound on the water table and we also produce a 
rising of the head in the lower bed. There would be 
a tendency for water just outside the circle to flow 
back up into the upper bed, whereas inside the circle 
it is descending into the more permeable formation. 
Now, this can be set up in circuitry, and I would be 
very glad, if we have the time and the permission of 
those who organized this symposium, to post some 
of these illustrations so that any of you who wish to 
see them can see them during the intermission. But, 
we have the computer circuitry here, and I have 
several curves that were actually recorder charts 
that were taken from the computer. I just reproduced 
the blue line prints. What will the circuitry be here? 
Well, here is where your engineering judgme nt 
comes in. What is important? You cannot model 
this thing literally. There is no point in going in and 
finding all the details of structure. You just take a 
general overall view of the thing as you are going to 
predict how it will behave in the bulk, not how it is 
going to behave in detail. So, knowing that the per -
meability of the upper bed is very low compared to 
that of the lower, everybody will agree that we can 
neglect vertical flows in the bottom bed except, per -
haps, in the vicinity of a margin of the mound. We 



can also neglect horizontal flows in the top system. 
So we just describe these components of flow: hori-
zontal flow in the bottom layer and vertical flow in 
the top layer. Now, the analog of the bottom bed is, 
of course, a rather small resistance. If we break 
this up into blocks- annular blocks - we think of the 
center of each block as a node in an electrical cir-
cuit, and we set up an analog of this type . You have 
already seen circuitry of this type shown by Mr. 
Kraijenhoff. Now, the effective resistance of the top 
bed is going to be variable. That is, the path of flow 
from the water table to the bottom of that bed is going 
to decrease as the head drops. The resistance will 
depend upon the potential difference or the head dif-
ference between those two points. We will have no 
horizontal resistance in the top layer. The coupling 
between the flows in the top and the bottom layers is 
through the variable resistors. We have storage only 
in the top layer . Now, just a remark about that. 

The bottom layer is much less storative than the 
top one, certainly 1, 000 -fold. All the storage is ef-
fectively in the top layer. We have a capacitor which 
simulates the storage in the top layer, and that is 
grounded. Somebody may have a question why that is 
so, but let us just pass it for the moment. Each one 
of our annular blocks will be a replication of this cir -
cuitry. I will write a little r for small resistance 
and a big R for large resistance. The time constant 
in an electrical circuit, I think you realize, in are -
sistance -capacitance network, is RC . Let us take 
a scale so you can control the time of operation. You 
can make something take place in a few seconds, say 
in a minute, that in nature would take decades to tran-
spire over distances of a few miles. This is a tre-
mendous advantage in electrical models over any kind 
of hydraulic models. You have greater flexibility in 
scaling. 

It should be emphasized that this device r equires 
appropriate circuits to control currents. For example, 
I have to put in a current at each upper node to main-
tain a steady current, even though the voltages are 
dropping, which represents a recharge. Or if it were 
a well I would have a single current going out the 
other way, which represents a draft upon the reser-
voir. It suffices to say that this electrical circuitry 
provides an analog, an electrical analog with elec-
tronic subsidiary circuits. This device does not 
solve the differential equations. Neither does it 
solve the difference equations. It solves the simul-
taneous equations we call difference-differential equa-
tions. I do not know if you are aware of it, but there 
is a rapidly developing field in mathematics in the 
theory of difference-differential equations. In other 
words, you see, we have modeled the flow system 
dis cretely in space, but continuously in time. If each 
capacitor gives up its stored electricity continuously 
when you lower the voltageq then this is a continuous 
process. 

Let us look at the differential equation that we 

are dealing with: \J 2h = _§_ ah Talking about 
T at 

unidirectional flow, the Laplacian may be replaced by 
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a second difference t:. 2 h/ t:.x 2 

at which the slope changes . 

s ah 
T at 

, that is, the rate 

Leads are taken out and voltages read at the nodal 
points. I am solving a difference-differential equa-
tion. Now, a digital computer does not solve this. 

A digital computer solves a second-order partial 
difference equation. The technique of putting very 
high-order difference equations into the digital com-
puter will permit us, if we wish, to approach very 
closely the original differential equation. This is not 
ordinarily done in industry, because of the speed, the 
size, and the memory storage that are available. 
Most people prefer to use a great number of small 
steps, and the r efore compute with the second-order 
difference equation. But there is a technique, using 
a desk c alculator , where you can us e a larger area 
of influence on a given node and go to higher and high-
e r orders of difference equations. 

The basis of an analog computer is the perfection 
of a very precise direct-current vacuum-tube ampli-
fier that has a very high gain . But a very high-gain 
DC amplifier can do many things to an electrical cir-
cuit. Now there are ways of integrating just using an 
electrical circuit. With very high-gain amplifiers it 
can be done with extra precision. The gain, the ratio 
of the output voltage to the input voltage, runs up to 
108 , or even higher. Successfully, you can run am-
plifiers to 10 4 . Now, we have a computer that has 
60 operational amplifiers which was built by a com -
pany that went out of business because the competition 
became so keen. Today there are very few companies 
manufacturing analog equipment. There were five 
times as many fifte en y ears ago, so equipment is 
available. You can get all the precision you need 
with the type of hydrological data available from the 
U.S.G.S. and the U.S.B.R. 

Now, you need not only high gain, but also linear-
ity. You need precision. The precision that is attain-

-4 -5 able is 10 to 10 . That means, that looking at 
the voltage, that you can reproduce it to four signi-
ficant figures, or five, over the range of the voltage, 
which is usually 100 volts . So this is the range of 
prec1s10n. Now that is not like a digital computer, 

-20 
where you can get down to the 10 . We are not 
interested in this precision yet in ground water . I do 
not know when we will be. 

I want to show you a number of circuits and show 
you what each does basically. The high-gain ampli -
fier can integrate. It c an differentiate. It can sum, 
and summing is the s ame thing as integrating in space . 
Differencing is the same thing as differentiating in 
space. Now, let us say we have an amplifier (figure 
11) and we have an input resistor going into one of these 
very high-gain amplifiers where the gain is -A. That 
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Figure 11 
is, it is also an inverter. We have what we call the 
feedback resistance, R

0 
, e

0 
being the the voltage 

of the output, e a being the voltage on the first grid, 

on the first tube, and e. the input voltage. Now, l et 
1 

us call R . the input resistance. I think this is enough 
1 

for you to see why you have these high-gain ampli-
fiers -- wh<J.t this thing really does. This will be the 
device that will be a scale changer and inverter, it 
will invert the voltage and change the scale in propor-
tion to these two resistances (R and R. ) . Normal-

o 1 

ly, a vacuum-tube grid draws negligible current, and 
most of the current will go through these two resistors 
and on around the amplifier. The current going 
through the resistances will merely be the inverse ratio 
of each resistance to its voltage drop. 

e. - e 
1 a 

R . 
1 

e - e a o 
R 

0 

This grid is very near to ground potential and e 
0 

will be negative, and ei will be positive. Because of 

the extremely high gain in the amplifier, the output 
voltage is equal to gain (-A}, times the input voltage. 

4 
This gain is so very high, even if only 10 , that you 
can neglect e a by comparison to e 

0 
So we get 

merely: e = 
0 

R 
0 

R. 
1 

e. 
1 

So what have we done? We have a multiplier, so 
we can change scale . But we have to multiply for 
other reasons than just changing scale . And we have 
an inverter. 

If we want to integrate, we will merely have an 
input resistor and a feedback capacitor, and we have 
the amplifier. This has several vacuum tubes in its 
circuit. This is a package that you plug into the top 
of the device . By having a constant resistance R 
we can integrate, and if we put a step input in here, 
it will give out a response e 

0 
, which will look 

something like the curve in figure 12-- strictly expo-
nential. I think you realize that we are just charging 
up a condenser . From this step input you get an ex-
ponential output, but you work only on the straight -
line part of this curve. This is where the gain is 
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Figure 12 
important, because you are working with a limited 
capacitance C • The effective capacitance (figure 
13), here is not C , but A times C • The c apa-
citance has been multiplied effectively by the gain. 
A unit step-input gives you a response that is : 

A [ 1 - exp (- _t- fl 
RCA'J 

Figure 13 

AC 

This is the same thing you have in ground water. If 
I put a step input into a linear groundwater system, 
I get an exponential output. Integrating in space with 
this device is done by feeding in several resistors, 
R 1, R 2, R 3, with different input voltages, which 

might represent feed-backs from different nodes in 
this system. This device merely sums these inputs 
and then they are integrated. So I can get the i ntegral, 

1 r e1 
for example, of C f ( - + . . . . ) dt 

.J r1 

If I want to differentiate I just interchange the capaci-
tor and the resistor. 

These are the basic circuits of a computer. The 
results of the analysis enable us to demonstrate, for 
example, how a certain project can best be drained 
by means of deep drainage wells. We know the char-
acteristics of the drainage wells in this situation, in 
the two- l ayer system with a declining water table in 
the top layer. 

MR. WALTON: Thank you, Mr. Jacob. I think you 
have some references. 

MR. JACOB: Several people asked me yesterday 
about difference equations. Numeric al methods of 
computations were practiced long before the First 
Wor ld War and there is a lot of literature. It was 
done more or less by an empirical approach, with-
out too much evaluation of what was being done. 



Recently very good papers on ordinary difference dif-
ferential equations have come out, but in what we call 
unidirectional flows, that \!imulate a circuit. 

Here is a useful reference: Fox, Oxford Press, 
1957, "The numerical solution of two-point boundary 
problems. " There is a book by Milne, who was pro-
fessor of mathematics at Oregon State University: 
"Numer-ical solutions of differential equations", Wiley, 
1953. A more recent book by Pinney, who is at 
Stanford: "Ordinary difference-differential equations". 
This is published by the University of California at 
Berkeley, 1958. Another book is Forsythe and Wasow: 
"Finite difference methods for partial differential 
equations", Wiley, 1960. And there are many others. 
These are just a sample of the literature that is 
written for the physicist and engineer. There is a 
great deal of other literature that is written primarily 
for the mathematician . 

MR. WALTON: Our next speaker is R. W. Nelson, 
Engineer at the General Electric Company, Richland, 
Washington. His subject is "Combination of digital 
computers and passive element electric analogs". 

MR. NELSON: I will try to summarize some of the 
work we are doing and to give an overall picture of 
what our purpose is rather than spending a lot of 
time on detail studies that are underway. We might 
start from a comment made two days ago; namely, 
"it may be desirable to spend more effort on methods 
for determining permeability distributions in the field 
for use as inputs to any mathematical or analog mo-
del". Then, yesterday, Dr. Spiegel mentioned that 
more work is needed on techniques for obtaining 
field permeability distributions from water table con-
tour maps. I would like to extend the latter idea 
somewhat and replace the water table map with the 
map of equal potentials, where the potential now con-
tains two components, an elevation or body force 
component and a pressure component. It is in this 
area of obtaining permeability from field potential 
distributions that much of our research effort has 
been and is devoted. 

Let us assume that the permeabili'ty is a contin-
uous function of space, its first derivative is also 
differentiable, and let us see whether we can deduce 
a way of measuring the spatial distribution of per-
meability. As far as a theory along these lines, 
earlier work published in 1960 sets forth a general 
theory for steady flow. I might add that I think there 
is a tremendous area for extending this work to tran-
sient flow systems. 

The method we are looking at for measuring the 
permeability in-place briefly stated is: Go to an ex-
isting field flow system and measure the present 
potential distribution. Study that potential distribu-
tion, i.e. the way in which that potential energy is 
dissipated, and deduce the spatial variation of per-
meability. The partial differential equations des-
cribing flow in heterogeneous soils lead the way and 
provide the requirements for a valid result. The 
existence and uniqueness conditions for the solution 
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of the equations set some rather special conditions on 
the boundary condition in permeability. This bound-
ary condition is very subtle and in one or two instances 
it has been overlooked. For example, in a paper in 
Petroleum Technology about a year ago the subtle 
nature of the boundary condition eluded consideration. 
The boundary condition requires a knowledge of the 
permeability distribution along one surface which in-
tercepts every stream filament making up the flow 
system of interest. What are some of the problems 
one faces? The first problem is associated with the 
data from the field being tabular data rather than an 
analytic function. The potential data are taken from 
wells or piezometers at an irregular spacing, and 
from this we must deduce a permeability distribution. 
This turns out to be a rather challenging undertaking. 

I will outline briefly some of these steps and indi-
cate some of the problems. At the top of figure 14 

DEYELOPNENI' SlEPS IN OBTAINING PERNEAIILilY Dlsnt IIUTIOII 

Field Data 

Slip 1: DMiapmtnt IIIII Testing IJII 
Basic Theory llfln-91a MMsur-.t 
Ill Permelblllty In ~s Soils 

Figure 14 
we have indicated the development of a basic theory 
for the in-place measurement of permeability, and 
as indicated, this has been completed with a very nice 
consistent theory at our disposal. The second step, 
moving downward, is to provide some experimental 
data and test solution methods to enable careful ana-
lysis for the degree of accuracy for any computation 
scheme. Initially a finite difference method was ex-
amined but an error of some 36 percent in resistance 



was found. The experimental data used were from 
inexpensive conductance paper analogs. Arbitrary 
patterns of punched holes were made in the conducting 
paper with no particular selections in pattern. The 
potential variation was observed on this surface. 
Later the analog was cut into small pieces and the 
resistance measured for each small square, From 
the previously measured potential the resistance dis-
tribution was computed and compared with the meas-
ured resistance data. 

More recently we have left the resistance paper 
analogs and have been able to get analytic s olutions 
for several boundary conditions for what we call the 
"Shoe Box Model." It is a shoe box in shape and con-
tains soil with a permeability distribution of the form 

(ax+ by + cz) . . e , wh1ch can be solved m closed mathe-
matical form. This enables us to use the potential 
function in any computational method to compute the 
permeability distribution for comparison ·Nith the 
known permeability. The newer analytical solution 
provides a very accurate means of testing any compu-
tational scheme. 

To the left of the second step in figtlre 14 is shown 
the successive improvement method. Inltially, this 
method seemed to hold promise in that it did reduce 
the error down to 22 percent, but it was not as success-
ful as desired. Something might be said aoout the 
accuracy that is being sought. Some time was spent 
looking at this question. An empirical relationship 
based upon several test cases showed that if you went 
to a single location in a flow system and imposed an 
err or in permeability on the order of 7 to 10 percent, 
then the error in observed potential would be on the 
order of one percent. 

The variable usually needed in predicting new flow 
systems is the potential relationship. Therefore, if 
we are willing to stay within engineering accuracy in 
the potential (on the order of 10 percent), then as much 
as 70 or 80 percent error can be tolerated in the per-
meability factor. For our particular uses we are not 
satisfied with this large e:rror since, even though the 
potential error is low, the permeability error comes 
back into travel time directly when integrating along 
the travel path. Our goal, then, is to find a method 
for deducing the permeability distribution to within a 
10 percent error. When we get to 10 percent -- and 
we believe this can be done -- then we will likely not 
seek further refinement. 

Referring again to figure 14, included in Step 2A 
is a procedure for moving around the computational 
problem, We return from the field with numerical 
data at irregular locations in three dimensions and 
have to deduce the permeability distribution. Step 2A 
involves finding an optimum-fitted function. Contin-
uing downward in figure 14, the next step is to ana-
lytically deduce the stream functions from the poten-
tial fitting. There are two possibilities : An analytic 
solution was planned, if one could be found, or if not 
a second route numerically will be used. Incidentally, 
this figure was prepared for an outline of the work 
made about a year ago and this is why we have 
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alternatives. I may mention that 6 months after the 
figure was made we arrived at the streamfunction 
step only to realize that the stream function for heter-
ogeneous soils was not to be found in the literature. 
The stream function that had been talked about was the 
stream function from classical hydrodynamics, in 
which there is nothing similar to heterogeneity consi-
dered. Some time was required to come up with the 
stream function for heterogeneous media which I re-
ported on in the first session. 

One other thing in connection with the stream 
function, I was talking to Dr. van Schilfgaarde last 
night; two or three years ago he had raised the ques-
tion of the orthogonality condition between equipoten-
tial and stream surfaces for partially-saturated flow. 
He mentioned that after he found the right approach 
he had shown orthogonality in about two steps. The 
streamlines and methods for partially-saturated flow 
are indicated in the paper. After looking at this brief 
outline, we examine what we are doing digitally in 
some cases and through analog networks in others. 

In the upper righthand corner of figure 15 are 
shown the field data which include the field location, 
an x , y and z coordinate, time, t , and a poten-
tial observation, 4J , for each piezometer. Let us 
take those field data and go into what we call the Com-
puter Program, "Genoro." This is an adoption of 
some of the methods used by the Upper Atmospheric 
and Plasma Physics Unit of the Bureau of Standards 
at Boulder in connection with numerical mapping of 
the ionosphere. It has a very nice feature in that a 
set of ortho-normal fitting functions are generated, 
with the functions being orthogonal with respect to the 
irregular locations of the potential data. This special 
class of functions in effect uncouples the coefficient 
matrix of the linearly independent fitting functions. 
Accordingly, one can calculate the coefficients in a 
step-wise manner, rather than having to invert an ex-
tremely large matrix. It also has the advantage that 
you can add one more term without going back and re-
computing the previous coefficient. 

This outlines the fitting method; let us see what 
the program does. In figure 15,"Genoro," enables 
reduction of data on an irregular tabulated interval to 
functional form. The inputs needed are the tabular 
field data and the desirable fitting function . I would 
not want to minimize the importance of desirable 
function forms. 

We are spending quite a bit of time getting func-
tional forms that perform satisfactorily for us. From 
classical theory the potential function can have 
saddle points, in the geometrical sense; however, it 
cannot have maxima and minima, This helps in set-
ting up certain classes of functions to accomplish fit-
ting . 

The computer program is written in such a man-
ner that essentially as many dimensions or indepen-
dent variables as desired can be used with the upper 
limit only being on the combined number of fitting 
functions and independent variables . 



DATA AND COMPUTER OPERATIONS REQUIRED FOR DETERMINING THE 
IN-PLACE PERMEABILITY DISTRIBUTION FOR HETEROGENEOUS SOILS 

GENORO !DIGITAL COMPUTER PROGRAM! 

The progralll h a generalized orthogonal regression 
scht•e. which enables reduction of dati , having 
Irregular hbuln ln ttrnls , to functional forms. 

1. fibular tltld data. I. t . the values of the 
dependent v~rhblt , +• and the associated 
Independent nrlables 1 , y, z. t. 

2. Dtslnblt llnnrly lndt,tndenl filling 
!unctions . •••· y. z.ll 

GENPATH ID IGITAL COMPUTER PROGRAM! 
With Permnblllty Ot termlnetlon Option 

DESCR I PilON, 
(f) The paths of fluid llow (strnmllnul art generated from 

the potential lunctloM1l)Tht spatial per11nblllty dlstrl · 
butlon Is then obtained by evaluating appropriate 
Integrals along the stru111fnu . 

INPUT , 
l. The ground water potenthl equation. 
2. Starting coordinates for nch strum lint 1 0, y0, z0. 
l . Boundary condition In permublllty, K0. 

OUTPUT , 
Tht spatial dh trlbu~lon of ptrntublllly, Kh , y, z,. 

Figure 15 
The output of the Genoro Computer Program is 

an equation for the potential. This may be a horren-
dous-looking equation; however, it does boil down to 
a very nice list of coefficients which are efficiently 
handled by the computer. Usually these coefficients 
are used only internally, or are stored on magnetic 
tape and do not have to be used on the outside of the 
machine. 

The output from 11Genoro 11 goes to a second com-
puter program entitled 11Genpath. 11 The formulation 
0f this program is completed at present and program-
ming is underway. Some preliminary work done in 
checking '•he numerical methods showed excellent ac-
curacy in the method for determining the flow paths. 

The computer program 11Genpath 11 us es the poten-
tial function to deduce the paths of fluid flow or the 
streamlines. The input is illustrated in figure 15. 
The output from the program gives the spatial d istri-
bution of permeability in tabular form. 

Figure 16 shows the preparatory steps for simu-
lation and use of electrical analog techniques . The 
program 11Reperm 11 utilizes the permeability distri-
bution and boundary conditions to give the size of re-
sistors needed for an electrical analog . The resis-
tance values required for analog simulation are cal-
culated from two inputs -- the permeability distribu-
tion and the geometrical configuration of the flow 
system. In figure 16 is indicated an input c hart of 
field data . It is de scriptive of the Hanford 
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Project where we are c oncerned with the configura-
tions of the Columbia River and Yakima River, the 
basalt boundaries beneath the project, elevations of 
the water table, and other geometrical boundary ef-
fects that are of concern. The digital computer pro-
gram 11Reperm 11 is nearing completion . The outputs 
of the program are the resistor purchase list, an 
analog wiring diagram, and a decoding list to enable 
conversion from the analog read-out scanner numbers. 
The components for an analog model can be ordered 
and assembled using the output of the program • . 

The analog is described in figure 16. Preliminary 
work on equipment is underway at the present time: 
It will be a small analog of some 1800 elements and 
will be used to test and develop equipment and tech-
niques. 

Now I let us take a look ahead at what we will do 
with the output potential results from the final analog; 
in this case some of the same programs will be uti-
lized that were already described. 

In figure 17, the results from the analog are 
shown in the upper left-hand corner; these are the 
three coordinates of location and the new predicted 
potential at that point . The predicted potential in 
tabular for m can be inputted to 11Genor o, 11 which is 
the same program used earlier 1 only this time we are 
going t~ get a fitted expression for the potential as the 
answer to the problem solved by the electrical model. 
The output then goes to a more c omprehensive version 



PREPARATORY STEPS FOR SIMULATION AND U~E OF 
ELECTRICAL ANALOG 

REPERM ID IGITAL COMPUTER PROGRAM) 

DESCRIPTION, 

Tht discrete resistors required for an1log sln~ulatlon 
ol heterogeneous soils ere Cllcuhted from the ptrlltlbillty 
distribution 1nd physlul boundar ies of the flow system. 

The spoll1l permnblllly distribution. 

The physful boundar ies of the flow system. 

l. Resistor purchase list. 
2. Analog wiring dilgr1m. 
3. Decoding list and t1pe to 

convert analog rudout 
sunner numbers to co-
ordiute loutlons. 

Figure 16 

DESCRIPTION, 

ELECTRICAL ANALOG 
fPuslve Network) 

The three dimensional network of some 40, 000 elements 
solves the boundary nlue problem by providing the 
volt1ge I. e. ground water pottnthl 11 every node poin t. 
Potentl•l rud ou t Is by automatic crossbu sc•nnlng. 

l. Rulshnct values through out the 1nalog. 
2. Boundary conditions In potentl1l. 

OUTPUT, 
The voltage I. e. ground water potential fhbulu values) 
at all node points . 

OPERATIONS ON ANALOG RESULTS TO ENABLE WASTE 
DISPOSAL ANALYSIS 

GENPATH !DIGITAL CO MP UTER PROGRAM! 
With Flow Time Option 

D£S CR IPTION , 
The paths of fluid flow tstrumllnesl are generated 
lrom the potential function , and the permeability 
distr ibution along the streamline Is obtained. The 
tim e of trne l along the path h obtained through 
Integration of the quotient of path length and 
velocity llong the streamline. 

INPUT , 
1. The ground potential equation. Fh. y, zl 
2. Starting coo rdin ates for nch s trumllne, x0. y0, z0 and the per mublllty at that point , K0. 

OUTPUT, 
The tlmt for trn el along uch slrumllne considered. 

Figure 17 
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G£NORO !DIGITAL COMPUTER PROGRAM! 

DESCRIPTION, 
The progr~m Is a generalized orthogona l regress ion 
scheme wh ich enables reduction of data . hnlng 
Irregular t1bullr in terv als , to func.tionll forms . 

INPUT , 
1. Ta bular analog data , I. e. the values of the 

dependent nrlable , t/> . and the Independent 
nrlablu 1. y, z. 

2. Des irable linearly In dependent fitting functions. 
<f>l •. y, zl. 

tht ground w1ter pottnthl I. e. 



of the program "Genpath" which now will tell what the 
paths of fluid flow are and the time of travel along 
each path. These are the results which are vital to 
the analysis of the complete ground water flow system. 

MR. WALTON: Before we get into a discussion period, 
R . E. Glover, Engineer with the U.S. Bureau of 
Reclamation in Denver has consented to give us about 
10 minutes on the passive element electric analog 
computer. 

MR. GLOVER: First, let us see what we are talking 
about -- first slide, please. This is a passive ele-
ment analog. It was built by the Bureau of Reclama-
tion for studying the effect of pumping for drainage in 
a valley. This valley is about 40 miles long. The 
width across the valley itself is about 4 miles and this, 
where you see the different colored elements is a 
mesa area which is also irrigated . The red dots re-
present the existing wells. Here is the conduit that 
comes down through the valley and the wells are con-
nected to it. The yellow elements represent the mesa 
area which has a different permeability as it is of dif-
ferent geologic age. These elements are actually 
plugs in which a connection can be made with a jack. 
This is the read -out equipment, in this case a Brush 
oscillograph, and here are the input units --these 
with the red pilot lights are input units. These will 
put a given current into a node point regardless of the 
voltage change in the analog network. As to the nature 
of this analog, figure 18 is a drawing showing the 
detail -- with node points, conductances, capacitances 
and electrical condensers. The relationships between 
the hydraulic and the electrical quantities are : ( 1) The 
flow of water is represented by a flow of current, 
( 2) the water table elevation is represented by a vol-
tage, (3) the transmissivity is represented by a con-
ductance and ( 4) storage of water due to a rise of the 
ground water table is represented by a capacitance. 
Time is represented by time in the analog, but to a 
different scale. In this particular analog, the ratio of 
times is such as that one second of analog time repre-
sents 1 00 days of prototype time. 

Corrluc~nces 

18 
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MR. WALTON: I also understand that you have 2 or 
3 slides showing some other models that you've been 
working on. 

MR. GLOVER.: Yes - those are sand tanks - (shown 
schematically on figure 19). 

MR. WALTON: Will you identify the area you have 
modeled? 

MR. GLOVER: It is on the border - along the Colo-
rado River. In size this analog panel is 8ft by 4ft. 

This is a sand-model type of experiment and it is 
of somewhat different nature from the other things 
described here. This is an aquifer sweetening inves-
tigation. As we more nearly completely encumber our 
water supplies we find that the salt load of the rivers 
is becoming increased. For example, if you find an 
area where salt has been allowed to accumulate, say, 
because of bad drainage practices, and then the time 
comes when something must be done to drain it they 
then must put in drains and the water has to be dis-
posed of generally into a stream. It may already be 
carrying a heavy salt load so that this is a matter 
which is becoming of importance and I think will be-
come more important as time goes on. The slide 
shows a terminal state. The saline water has been 
dyed blue so that you can see what happens to it. This 
experiment represented a two-part aquifer, with an 
upper sand and a lower gravel where the ratio of per-
meability was about 50 to 1. The two parts were of 
equal depth. The salt water occupied the lower bed at 
the beginning of the test . The fresh water came in 
from the top as by irrigation. Notice the line of sep-
aration; it separates the flow in the upper bed from the 
flow which comes through the lower bed. The behavior 
is that the water comes down, gets into the lower bed, 
flows to the vicinity of the drain and then breaks di-
rectly up through to it. The water which came through 
the lower bed, comes through inside this line . The 
fresh water applied at the surface goes to the drain by 
two routes. A small part, applied near the drain goes 
directly to the drain, but if it comes in a little farther 
back, it goes under the line of separation and comes 
up. The first model represented an aquifer 80ft deep 
with a distance between drains of 1320 ft or thereabouts, 
and this amount of salt water remains in permanent 
storage. The situation is similar to what happens 
near the sea coast . There is an interface between the 
stagnant sea water in the aquifer and the moving fresh 
water. 

A later experiment was made to test the behavior 
under the condition of a drain spacing of 640ft. In the 
first case there was no drain in one end of the tank . 
The bulkhead at the undrained end of the tank then re-
presented a line of symmetry across which there was 
no flow. Again, we see the residual salt remaining --
this is the terminal state. The stored salt volume 
extends clear to the center. There is a small amount 
down below the frame of the tank which cannot be seen 
but in this case, the salt storage does come across 
the full span. 
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MR. NELSON: Is there a difference in density in the 
two materials? 

MR. GLOVER: The saline water has about 6, 000 
parts per million of salt. The fresh water is Denver 
city water. 

In another case an additional drain has been placed 
at the middle of the tank so that we now have a drain 
spacing representing about 3ZO ft. Here again, an 
almost steady state is reached and this amount of salt 
water remains in almost permanent storage. Thank 
you. 

MR. WALTON: Thank you, Mr. Glover. If you will 
just join our panel here, I' rn sure there will be some 
questions. 

I understand Dr. DeWiest has about 3 or 4 slides 
describing a model he has been working with at Prince-
ton. 

DR. DE WIEST: These are close-up photographs of 
the model (Hele-Shaw apparatus or parallel plate 
model) that was built to test the results of the ana-
lytical study described in ASCE Transactions, Paper 
No. 336Z, (vol 1Z7, 196Z, I). They are also repro-
duced in that paper. 

Two 1/Z-inch thick plexiglass plates resting on a 
sump are kept at a constant distance of 0. 484 ern by 
means of aluminum strips at top and bottom and by 
spacers whose interference in the flow picture is neg-
ligible. The aqueous glycerol solution is circulated 
ln a closed cycle from the sump by a gear pump. It 
is pumped to a storage tank suspended at the ceiling of 
the air conditioned room, and flows by gravity into the 
entrance reservoir attached to the plates. This flow is 
controlled by a fine regulating valve. 

A movable overflow in the entrance reservoir is 
raised or lowered by a variable-speed motor capable 
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of continuous speed control in a z. 3:1 range. With 
the fine regulating valve, the flow into the entrance 
reservoir can be easily adjusted so that the level in 
this reservoir rises at the same speed as the funnel 
of the overflow. The discharge through the plates is 
drained into a tank. This tank is supplied with a var-
iable overflow which can be adjusted accordingly to 
the discharge through the plates, so that the boundary 
conditions of the underdrain can be exactly simulated 
at all times. From the drainage tank, the liquid flows 
back to the pump. 

The photographs show free surfaces developed for 
high and low waterlevels. Computed free surfaces 
for different conditions of water level rise are drawn 
in pencil on the plates. 

MR. WALTON: Now, we have come to the discussion 
period. 

MR. HURLEY: There was one point I forgot to men-
tion in my talk which relates to a point that was men-
tioned yesterday. What is the effect of the sensitivity 
of the aquifer characteristic that you put into the for-
mulas on the Mesilla Valley problem that we ran. The 
general return flow to the river had a pattern as indi-
cated in figure ZO, increasing during the irrigation 
season and reaching a maximum in August or so. 

Jon Jon 

F igure ZO 



If we would have maybe a 25 percent error in the de-
termination of the average permeability it would have 
made about an 8 percent difference at the high point 
as indicated in figure 20, A little lower than at the 
peak and a little higher for larger return flow before 
the irrigation season began again, So 25 percent re-
duction gave about an 8 percent reduction in the peak 
amount at the height of the irrigation season. 

MR. KRAIJENHOFF: May I ask Dr. De Wiest a ques-
tion in relation to his Hele-Shaw model? I think he 
is familiar with the work of Luthin and Day on the 
lateral flow above a sloping watertable in dune sand. 
They found that the transport above the phreatic level 
may contribute significantly, especially when the depth 
of horizontal flow below the water table is small . I 
remember in his last slide, Dr. DeWiest had one line 
very low down. I think in this case a Hele-Shaw model 
does not give you the possibility to judge accurately the 
total flow. There is another thing that I should like to 
add: Especially in a nonsteady situation the moisture 
distribution in the unsaturated zone will influence the 
movement of the watertable, The Hele-Shaw model 
has no unsaturated zone and this may also influence 
the results . 

DR. DE WIEST: What you say, Mr. Kraijenhoff, is 
quite correct, If you recall the figure, we only studied 
the unsteady state flow with a very steep advancing 
front of the free surface, in other words, when we had 
a very high head behind the dam. The low head that I 
have shown was just the steady state picture. We com-
puted the actual discharge there and compared it with 
the discharge from the mathematical formula for the 
same height to length ratio of the dam and found close 
agreement between the two discharges. But I know 
that for very low flow rates, if you make a small error, 
the relative error becomes very important and this 
could be indeed because of the fact that the unsaturated 
flow had been neglected. We did not study the contri-
bution of flow in the unsaturated zone, A model can be 
representative of different prototypes at different 
scales and it is clear that problems in agricultural 
drainage apply to smaller prototypes than those in 
civil engineering, as for example seepage through 
dams. Flow in the unsaturated zone lS more impor-
tant for the former than for the latter prototypes. 

MR. KRAIJENHOFF: May I use this opportunity to 
stress the necessity for cooperating with the soil phy-
sicists . 

DR . MARMION: I have two questions -- one for Mr. 
Kraijenhoff and one for Mr. Hurley. The first on this 
ethanol-water mixture that you used in your model, 
can you tell me something about the height of the capil-
lary fringe , in that particular model? My other ques-
tion to Mr. Hurley is: What kind of computer was used 
and what was its storage capacity? 

MR. KRAIJENHOFF: May I answer the first question. 
I must c onfess that my presentation was a little bit 
casual at that point but the diagram giving t.he conduc-
tivity as a function of soil moisture content was de-
rived from a publication by Childs, and does not relate 
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to the actual sand I used, The sand I used for the 
model had a mean grain diameter between 1 mm and 
1-1/2 mm, The actual height of the capillary fringe 
in equilibrium was about 2-1/2 centimeters . That is 
one inch but since it is a fringe this is only an approx-
imate measure. I may add to this answer that in 
cases where we try to use this model for comparing 
it with structured soil, we use this 2-1/2 centimeters, 
the equilibrium capillary rise if you like, to compare 
it with equilibrium capillary rise in a structured soil. 
That determines the length scale. And then we have 
a velocity scale, which is the ratio of the permeability 
in the field and the one found in the model by using 
Kirkham 1 s ponded water case. Finally, the time 
scale is determined by a combination of the length 
scale and the velocity scale, 

MR. HURLEY: The computer used for the return flow 
studies in the Mesilla Valley, following Mr. Glover 1 s 
work, was the IBM 650 which has a maximum storage 
I think, of 2000, Earl Glenwright could tell us exactly 
what machine we were using for the South Platte 
studies. 

MR. GLENWRIGHT: The IBM 7090, 

MR. WALTON: Yes. 

MR. AKIN: I would like to ask Mr. Hurley why the 
operation study on the South Platte River was done on 
the computer, rather than on an analog model, and 
what would be the advantage of this? 

MR . HURLEY: The very mass of the data we thought 
would require a digital computer. The diversion 
records, the stream now records, the pumping re-
cords, the farm requirements, the farm canal losses, 
just t o handle all these data would require a computer 
even though the calculations are simply adding and sub-
tracting. To handle this tremendous mass and to go 
through it again and again would require the digital 
computer . However, after we get a mathematical 
model and more-or-less convince ourselves what the 
average permeability within a whole reach of river 
may be, then we might think about making an analog of 
this entire area. We have to know more about the 
actual facts first, it is a very complex area. 

MR. GLOVER: I have an additional answer to add to 
that . It would be possible to put that thing on an ana-
log, but it would require input devices which are not 
available at the present time. 

MR. AKIN: The U. S. Geological Survey is working 
at the present time to make a model of the Roswell 
artesian basin. We hope to be able to us all this 
model constantly, day by day and our hope is to get an 
analog model as the final result. However, I am not 
sure now but what we might start with the computer, 
using mathematical models and eventually work into 
a final analog model. 

MR. HURLEY: Maybe Mr. Glover could enlighten me 
on this , but after we had a pretty good idea from using 
the digital computer we could use the analog computer 



to give us such answers as the rise and fall in the 
water table, 

MR . GLOVER: I think you might find an advantage in 
doing it the other way around, use the analog first and 
apply the digital computer afterwards. The reason is 
that from the analog you can get an influence function, 
that you can put into a digital machine and add up. 
The alternative requires an input device, which is not 
available at the present time. 

DR. BRUTSAERT: Having authorities on electrical 
analogs in the audience, such as Dr. Bouwer, maybe 
I should not make these comments; but in connection 
with the brief discussion between Mr. Kraijenhoff and 
Dr. De Wiest, I would like to add that at the University 
of California with Dr. Luthin and Dr. Taylor, we de-
veloped an electrical analog, to solve nonsteady state 
flow problems , such as a falling water table. Now, 
the method was essentially to reduce the nonsteady 
problem to a succession of steady states . The analog 
was only used to determine then the potential distribu-
tion for the solution of Laplace 1 s equation of each 
steady state. The unsteady state aspect of the prob-
lem came into the picture through the boundary condi-
tions. That is, in the calculation of the next step. 
The unsaturated aspect of the flow came also in through 
the boundary conditions. The agreement between the 
data of Luthin and Worstell which Mr. Kraijenhoff 
mentioned and our results of the analog study was per-
fect, but only when we considered the unsaturated flow. 
In other words, we tried both methods, and by intro-
ducing the unsaturated flow only could we get the 
agreement, 

DR. DE WIEST: How did you take care of the free 
surface boundary condition with the electric analog? 
You can do it with the Hele-Shaw model because a free 
surface boundary is developed, 

DR. BRUTSAERT: We had to make some approxima-
tions, of course. The main thing we did, though, was 
to consider that drainage water was contributed also 
by the unsaturated zone, i.e., the zone above theca-
pillary fringe. 

DR . DE WIEST: Did you assume Dupuit-Forchheimer 
simplifications? 

DR. BRUTSAERT: No, this is why we went to the 
electrical resistance network, in order to determine 
a potential distribution. 

DR. DE WIEST: In the case of the electric analog 
model, you solve a difference equation, In the Hele-
Shaw model, we try to test solutions of a differential 
equation, There are advantages and shortcomings to 
both techniques. 

MR. JACOB: I am not familiar with the work, but I 
think this problem would be to model with a fine mesh 
in a vertical plane, then handle your water table by 
successive approximation. You probably have a con-
tinuous succession of steady states, and then your 
storage is taken up by the difference between the steady 
states. 
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DR. DE WIEST: But that is not quite accurate enough. 

MR. JACOB: The gentleman states that it fitted the 
data if they took some allowance for the flow in the un-
saturated zone above it, which is mostly parallel to 
the water table, and which can be done by approxima-
tion . I have seen some work on this, but I am not up-
to-date on it. 

MR. NELSON: What is the boundary condition you are 
imposing, are you imposing the condition that the free 
surface is a surface at atmospheric pressure? 

DR. DE WIEST: Yes. 

MR. NELSON: I do not see the problem, if there are 
two conditions to meet at that surface, what is the pro-
blem? Assume a geometrical surface for the network; 
obtain the voltage along the surface and see whether 
that agrees with the second condition, which is that 
the potential is equal to the elevation. 

This is rigorous to within the limits of the finite 
difference. 

DR. DE WIEST: However, we want a continuous solu-
tion here, not the finite difference solution. 

MR. NELSON: I have the impression that the discus-
sion hinges on the fact of whether you do or do not 
want to go to a finite mesh. 

DR. VAN SCHILFGAARDE: The question here seems 
to be whether or not you like a finite mesh, on the 
other side you would like a continuous distribution, 
but you are satisfied to accept the poor differential 
equation to get a continuous distribution. I think one 
would be better off to accept the discontinuity that 
comes from a good theoretical model that comes from 
a finite mesh, than we are to accept a poor continuous 
approximation. 

DR. DE WIEST: I do not agree here. The differential 
equation is not a poor one, since you transform it into 
a difference equation. We constructed this model with-
out distorting the scale because we did not want to 
make the Dupuit-Forchheimer simplification. We 
were interested in the unsteady displacement of the 
free surface front in the vicinity of the drain . I admit 
that we had to make an approximation in regard to the 
final free boundary condition when we were trying to 
find the perturbation potential, but now the error in-
troduced was of a smaller order. 

DR. VAN SCHILFGAARDE: The additional approxima-
tion you have made is that the free surface is a rigor-
ous boundary between the flow region and the region 
where there is no flows which is a very serious ap-
proximation from the physical point of view. 

DR. DE WIEST: This could be a serious approxima-
tion only if the contribution of flow rate due to the 
capillary fringe were a significant fraction of the flow 
rate in the saturated zone. 

DR . VAN SCHILFGAARDE: I think it goes far beyond 



that. You are trying to use the model as a model of a 
prototype which is made of geologic material, soil 
material, whichever is your background. And in this 
case we do not have a simple capillary fringe, as such, 
we have a continuous distribution of pressure and 
moisture content and potential. 

DR. DE WIEST: Unless we accept uniform conditions 
of capillarity along the free surface, the problem 
would not be treatable in the method that we used. We 
did not feel that capillarity would be important in the 
study of dams. 

DR. BRUTSAERT: Perhaps with dams that are 30 or 
40 feet high, this is all right, but in agricultural drain-
age where you have a drain at a depth of 3 feet, the 
unsaturated zone is often the main region of flow. 

DR. DE WIEST: This is not a problem of drainage, 
this is a problem of stability of a dam. Neglecting the 
unsaturated zone is an error here, yes, I agree with 
that. But this seems to be general practice in civil 
engineering design of dams and I would like to hear the 
opinion of the delegates of the U.S. B. R. 

MR. GLOVER: In our case we are seeking for engin-
eering answers. In the case of an earth dam we would 
be concerned, I think primarily with stability. And 
when we come to the water table, there we have the 
zone of c omplete saturation and below it a zone of in-
creased pressure. I think we would solve it simply 
without consideration of the capillary fringe. 

DR. DE WIEST: That is what I did. 

MR. KRAIJENHOFF: I do not think you can draw a 
line between drainage problems and stability problems. 
You are probably familiar with the work being d.Dne 
with the Deltadienst in the Netherlands on the pressure 
behind asphalt facings of sand-cored dikes caused by 
tidal movement on the outside. This is definitely a 
stability problem, but here, if you do not include the 
capillary zone or the unsaturated zone you get the 
wrong answer, or at best you get an approximate 
answer. Comparison of computed answers and mea-
surements on the site have caused them to include the 
unsaturated zone in their studies. 

MR. BLATCHLEY: I would like to ask Mr. Hurley 
when he simulated the precipitation versus the con-
sumptive use do you take into account excess precipi-
tation- that is, runoff by the surface, if so, how? 

MR. HURLEY: The precipitation we take into account 
is what we call the effective precipitation, which is 
worked out on the idea that if you get one inch of rain-
fall, it is nearly all effective. If you get two inches of 
rainfall it is proportionately less effective. If you get 
up to say six inches of rainfall, you figure only 3-1/2 
inches of the six are effective for meeting the evapor-
ation. The effective precipitation is that which can go 
towards meeting the evaporation. We have not con-
sidered in our model this other precipitation we call 
the non - effective precipitation. Our first assumption 
is that this non -effective precipitation is going to be 
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used by plants other than those on the irrigated area . 

MR. BLATCHLEY: You account for some running off 
over land? 

MR. HURLEY: Yes, this is what we call the non-ef-
fective precipitation runoff and we make the assump-
tion that this will be taken up through the consumptive 
use by let us say cottonwood trees down along the river 
bottom and other areas that are not irrigated. 

DR;VAN SCHILFGAARDE: My question is directed 
toward Mr. Nelson. In the program you described , 
how did you obtain the input information on conducti-
vity you needed to arrive at your answer? 

MR. NELSON: We do not have all the information at 
present, but we have a field program underway . We 
are using a combination of pumping tests, a packer 
device which is packed in wells and then measured. 
The latt er method is essentially the same as Kirkham 's 
piezometer method but with appropriate geometry fac-
tors. This problem of the boundary condition in per-
meability is probably the greatest area of difficulty in 
the proposed method, This is the reason I suggested 
that time matching may be an extremely important 
feature in the future. I am sorry today I cannot tell 
you whether we can by t ime matching analytically de -
termine the relative conductance for the boundary con-
dition; I think there are chances. The transient sys-
tem needs to have more study. I think there is a pos-
sibility that time matching can enable us to reduce and 
essentially eliminate this problem. I apologize for the 
vagueness. That vagueness is based on lack of know-
ledge of the system . It is an area, I think, where 
more study needs to be done, because it is a tremen-
dously promising area, 

MR. JACOB: You say you can handle no extreme 
points, only saddle points. Does this have to do with 
the parameters or does this have to do with the varia-
bles in the problem? 

MR. NELSON: Neither. The velocity that is the gra-
dient of a potential function can have stagnation points 
or points of zero velocity, hence, the potential func-
tion can have only saddle points. 

MR. JACOB: You cannot handle distributed sources 
or sinks, in other words, unless you make a new 
boundary out of it. Right ? 

MR. NELSON: Yes, you have to have a continuous 
region, and we do just what is done analytically. We 
use a branch out and then 3-dimensional analogs to 
remove singularities from the interior of a flow prob-
lem. 

MR. JACOB: Is this planned to be done literally in 
three dimensions or in two dimensions? 

MR . NELSON: It is liter ally going to be three dim en-
sional, 

MR. JACOB: How many nodal points can you handle? 



MR. NELSON: Right now our read-out equipment is 
shooting at 13,600 nodes. 

MR. JACOB: This is a little more than 23 cubed. 

MR. NELSON: Right. There is a problem here and 
it goes back to the distortion of vertical and horizontal 
dimensions in practical flow systems. In practice you 
cannot take the cube root because nom. of our flow 
systems are that deep, they are not cubical. 

MR. JACOB : How about handling discontinuities of 
permeability on the boundary? How are these going to 
be treated? 

MR. NELSON: I maintain that permeability is a con-
tinuous functional of location. 

MR. JACOB: I take it you are going to draw a plane 
through space, and this is going to be the so-called 
output boundary of the system? In other words, you 
are not going to have a bank of a stream where you 
have a seepage face or something like that, but you are 
going to draw an arbitrary boundary within the medium. 

MR. NELSON: No, we are going to actually try to 
model a bank . 

MR . JACOB: You are going to actually take sampl es 
out of the bank? 

MR. NELSON: This is an interesting pos s ibility and 
maybe a practical one. One problem occurs to me 
since often when flow comes out of the bank you would 
need to measure 10 miles; if you pick an optimum path 
back to your sources of flow, you may be able to mea-
sure along a s maller distance. That is a good point. 

MR. WALTON: I wish Mr. Skibitzke were here to 
discus s a passive element electr ic analog computer. 
I have had a little bit of experience with it and on a 
practical basis, it is really something. The few 
models that we have in Illinois , we have checked with 
field conditions, and we are able now to go ahead in a 
very complex aquifer s ituation and try to tell people 
what the effects of future development will be. To me, 
this pas s ive element electric analog computer, is t he 
first thing I have ever had in my possession to insert 
geology on a practical bas is. I am not an electrical 
engineer, but I can understand this gimmic k that Herb 
Skibitzke has introduced. It is a wonderful educational 
tool because you are manipulat ing electrical compon-
ents to s imulate geology, you feel it, you s ee it. We 
have made checks on its accuracy with cheap compon-
ents, and rather inexpensive excitation response ap-
paratus, and you really get your money's worth. It 
is not as difficult to understand as I think many people 
are led to believe. I spent about a week with Herb 
Skibitzke and came back, later he sent up Robbie to 
construct a analog model and we went through the math-
ematics that Bermes has in an unpublished report, and 
believe . me, it is understandable, you can get your 
teeth into it. I do want to suggest that you look into the 
literature and that you consider passive element elec-
tric analog models. 
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MR. AKIN: I was wondering if you have any particular 
trouble with these analog models. 

MR. WALTON: We have no trouble whatsoever with 
our excitation response apparatus. We use a DuMont 
Type 304A oscilloscope -- it only has about a dozen 
knobs and I can play around with about three of them 
and actually understand the oscilloscope trace. We 
have Tektronix wave form and pulse generators - -
they have never konked-out except on the first probe 
when all went off, so we were quite wise, when one 
thing stopped, we took all of our apparatus over to our 
Electrical Engineering Department, and they replaced 
every tube and I think every component. I might quali-
fy these statements by saying that we got all of our 
apparatus on surplus, the State of illinois has had to 
date but a few hundred dollars to invest in the compu-
ter. Talking about an investment, and we are in 
pretty deeply, in several large models involving as 
many as 10,000 resistors and capacitors, we have in-
vested less than $1500 total . As I stated earlier, with 
this equipment, all the lights went from green to red, 
then blue and faded off. We replaced all the tubes and 
have had no trouble whatsoever since then, and we run 
the equipment day in and day out because we only have 
a one -step function generator, we do not have an arbi-
trary function generator. 

MR. J ACOB: I might mention that it is generally 
known that function generators can be built mechani-
cally, that is, electromechanical generators with suf-
ficient accuracy for most hydrological work. I am 
talking about field hydrological studies. I am not talk-
ing about trying to model something you are trying to 
explain analytically, but modeling something with the 
precision and the accuracy of data we have from hy-
drology. There are very simple ways of generating 
functions, so this should not limit anybody working 
with passive-network analysis, that they have no func-
tion generators. There are all kinds available on sur-
plus, all kinds of potentiometers that can be driven by 
cams or by templates, etc. This is very easy to do, 
with sufficient accuracy, 

MR . GLOVER : Do you think that you could take 31 
years by months with the canal demands, the river 
flows and the ground water pumping and put it all on 
one of those things? 

MR. JACOB: Yes, you could do it on a long template. 
It c ould be done, but you would lose precision . It can 
be done accurately on a potentiometer. This is a 
simple way of doing it. The cost of good high -quality 
function generators in the analog business is extremely 
high. This is one of the biggest drawbacks in going to 
analog computers -- the cost of generating the function. 
It is much eas ier done digitally. 

MR. WALTON: I might menti on one of my experiences. 
I went to Penn State as a guest lecturer and met a phy-
sicist - electrical engineer there. I did not have all 
of my equipment with me, I was missing a particular 
pulse generator and I asked if he could perhaps look 
around the University and come up with the required 
component and put a computer together for me. He 



said he would rather perhaps make his own equipment, 
so within an hour and a half I went down to his labor-
atory and he had a little metal black box with batteries 
and transistors which functioned as a pulse generator. 
He was apologetic for the fact that he had spent $25.00 
on a combination power s ource, wave form generator 
and pulse generator . This experience leads me to be-
lieve that perhaps we could in the future develop equip-
ment specifically for our ground water field . Surely 
there must be overlap in all of the components that we 
buy from Tektronix and other companies , and if he 
could put together excitation response equipment in a 
s mall black box by using trans istors and batteries, we 
s hould be able to come up with some very compact 
equipment in the future . 

I think our panel has done a marvelous job on a 
very technical subject , and they deserve a round of 
applause . 

Thank you for being so attentive. 
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TRANSIENT TESTING IN THE OIL INDUSTRY 

By H. K. Van Poollen 

For a number of years scientists in both the water 
industry and the petroleum industry have studied flu id 
flow. In many instances these studies are made in -
dependent of one another and frequently the two dis-
ciplines are unaware of mutual developments . Al-
though the problems are similar, certain differences 
exist. For one, the petroleum industry deals with 
depths r anging from as little as 500 feet to over 
20, 000 feet. Very high pressures are encountered . 
Sometimes as many as seven production strings occur 
in one hole. These multiple completions call for dif-
ficult inst rumentation . The purpose of my talk is 
essentially to point out some correlation between the 
two disciplines and to point out to you some of the 
difficulties and developments we have had over the 
last few years. 

In general, all flow problems in the petroleum in-
dustry are of artesian nature. We do not have prob-
lems you have been discussing, where the water table 
is falling and consequently the transmissibility re-
duces with time. We do have the same problem of 
saturated or unsatur ated media where differences in 
relative permeability effects are important. 

When studying single phase oil or water reser-
voirs we can use simple heat flow equations . In gas 
reservoirs we have a different problem. The com-
pressibility of the system is not independent of pres-
sure. As a matter of fact the compressibility of the 
gases is, roughly speaking, inversely proportional 
to the pressure. A somewhat modified continuity 
equation is used which has its limitations . We have 
to work with semi- empirical relationships rather than 
strictly mathematical ones when gas reservoirs are 
involved. 

There are reservoirs which contain both oil and 
free gas, which may show saturation differences with 
time and pressure. For example, if a reservoircon-
tains undersaturated oil at reservoir pressures, gas 
may come out of solution near the well bore due to the 
pressure reduction while producing the well; conse-
quently, close to the well bore we may have different 
relative permeabilities than further in the reservoir 
and this ring of free gas may grow with time or may 
grow with increased rate of production. Nevertheles s , 
the usual assumption is that oil and gas saturations 
are constant throughout the reservoir and this as-
sumption seemingly renders reasonable answers. 
Even in this situation simple heat conductivity equa-
tions are used. 

Figure .! shows a production well and an obser-
vation well in a reservoir. The production well is 
being pumped at a constant rate and pressure profiles 
occur surrounding the production well as indicated for 
times t 1, t 2, and t 3 . The pressure behavior 
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at the producing well and the observation well are 
given in this figure . We are assuming presently 
that we are dealing with an infinite reservoir. In the 
observation well the relationship would be that of the 
exponential integral which ground water hydrologists 
refer to as the Theis equation. For longer times in 
the observation well and at the producing well the 
relationship becomes essentially logarithmic. This 
logarithmic behavior will occur within a matter of a 
few minutes at the producing well . Already I men-
tioned to you that we frequently deal with very deep 
wells therefore we will not have observation wells to 
deal with. Consequently, we have to work entirely 
with transient presure observations at the production 
well . 

With the information available at the producing 
wells only, we can readily determine permeability 
which is unrelated to well bore size . From informa-
tion available at the producing well only we cannot 
determine the ¢ c product in which ¢ is the poro-
sity and c the compressibility of the reservoir, 
because we do not know the exact valu e for the well 
bore radius. We can measure it with a caliper but 
we do not know the effective well bore radius so we 
are rather limited in what we can learn under most 
circumstances as compared to what you might be 
able to learn from your observation wells. However, 
if one is dealing with a finite reservoir there is a 
way around this. Then, the method advanced by the 
late Park Jones is used. He was a follower of your 
work and has put it to practice in the petroleum in-
dustry . 

In addition to the lack of observation wells we have 
the problem of discontinuities within the reservoir. 
Undoubtedly you also have many discontinuities in the 
reservoir itself . In the petroleum industry we have 
additional discontinuities of oil-water tables and 



gas -oil contact. One type of discontinuity is of par-
ticular interest. Figure 2 shows normal drawdown 
behavior and also the drawdown behavior observed on 
a few wells. This problem is definitely not common 
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but very interesting. We are sure of a constant flow 
rate, nevertheless, a sudden pressure rise may be 
observed. This behavior occurs mainly on gas wells 
and was observed in the Gulf Coast area. This curve 
should mean that sudden injection of fluids or injec -
tion of energy occurs in the reservoir. 

To explain the anomalous drawdown behavior as 
shown in figure 2 we have an explanation which in-
eludes a capillary pressure phenomenon. Figure 3 
s hows a well connected to a main reservoir surround-
ed by a water bearing strata which contains lenses 
with hydrocarbon. When producing from this reser-
voir we will get a pressu re reduction in the major re-
servoir. It is assumed that the reservoir will contain 
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water as the wetting phase. The surrounding material 
is of lower permeability and is also wetted by water. 
Following the pressure drop in the main reservoir, a 
pressure gradient is establish ed between the lenses 
and the main reservoir . As soon as the pressure 
gradient between the lenses and the water bearing 
strata becomes s u ch that the entry pressure is over-
come, the gas from the l enses may enter the main re-
servoir. Now communication exists between the 
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lenses and the main reservoir and we suddenly have 
additional energy due to expansion available or we 
might consider this as a sudden influx of fluid into the 
reservoir, which will result in the increase of pres-
sure on the drawdown curve. We have carried this 
explanation further than merely a postulation. Various 
laboratory tests have been performed and a publication 
on this matter is forthcoming. 

Next I would like to show you some reasons why 
petroleum engineers perform transient tests. First of 
all, there is the determination of well bore efficiency. 
This type of test is rather simple and of short dura-
tion. We merely like to know how efficient the well 
bore could have been under ideal situations . We may 
have an area of reduced permeabilities surrounding 
the well bor e due to drilling mud or scales or some-
times the perforations are not sufficient or at erron-
eous intervals. Another possibility is that the well 
has not fully p enetrated the reservoir. For these 
calculations we m e rely calculate the permeability 
from drawdown or buildup curves and next calculate 
the permeability from deliverability observations as-
suming a certain radius of drainage. The ratio of thE 
two permeabilities calculated is indicative of the well 
bore damage or the well bore efficiency. 

Figure 4 shows a different application of transient 
testing. Various States set different rules for well 
spacing. These rules frequently consider reservoir 
continuity considerations. For example, the initial 
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ruling calls for 40 acre spacing as indicated by the dots 
in figure 4 . However, if one can prove that good 
reservoi r continuity exists up to the large circle, one 
may have a better possibility to go to a larger spacing 
which means fewer wells and consequently may mean 
the difference between a profitable or a marginal 
operation. 

Transient testing is also used to calculate distances 
to possible barri ers which might be faults or pinch-
outs or they might be oil-water contacts, gas-oil-con-
tacts or the like. We are fully aware that we will 



only get an approximate number but this is something 
exploration people are used to. 

One instance may be cited where a company 
drilled a number of gas wells in an area assuming 
that original discoveries were connected. A large 
drilling program was started, only to find that the 
formation was barren between the wells. A similar 
instance arose, transient testing was performed on 
wells and these tests indicated to a certain accuracy 
that at least a square mile of oil was connected to 
each well. Consequently, one can say that instead of 
getting point information, we are getting "square 
mile" information and one is somewhat more certain 
that no discontinuities existed between these wells. 
Consequently, transient testing was of help in such a 
probability game . 

Figure 5 shows a problem of mutual interest to 
the oil industry and the water industry. The upper 
left sketch shows a formation containing vugs whic h 
are coated with a low permeability liner. The upper 
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right shows a formation of relatively low permeability 
intersected by fractures of higher permeability . 
Mathematically, one can show that these two problems 
are essentially identical. They may be represented 
by the lowermost sketch where vugs are connected to 
a matrix. No flow will occur through the vugs, how-
ever, only flow will be out of the vugs during produc-
tion of the well. The liner is represented by small 
connections from the vug to the matrix. To make 
thi s analogous to a fracture system, one would look 
at the vug and liner combination as being the matrix 
blocks and the l arge matrix as being the fracture 
system. To evaluate this type of a problem, one can 
use the us ual continuity equation for the main flow 
channels and add additional source functions to be re-
presentative of either the matrix blocks in a fractured 
formation or the vugs in a regular formation . Figure 
6 shows the result of this type of an analysis. 
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Figure 7 shows the equations which are applicable 
in an infinite reservoir (I) and in a finite reservoir 
(III). In between a transition (II) is shown . P ark 
Jones differentiated these equations which in the in -
finite reservoir I during the ln approximation ) would 

y = ~If {B = 7 0. 6 1-1 1 ql tkh 

give: 

Rearrangement of th is equation renders: 

kh 70.6 

in which 

y is in psi I bbl 

dp is in psi/ day dt 

q is in bbl/ day 

k is in md 

h is in ft 

1-1 is in cp 

is in days 

t y 

Examination of the above equat ions indicates that 
a plot of log Y versus log t should result in a 
straight line with a slope of 45°. Such a plot has 
been prepared in Figure 8. 

To obtain data to make plots as indicated in figure 
8 , one first plots observed pressure versus time on 
rectangular coordinate pa per. Measuring slopes of 

dp lines tangent to this plot renders values for dt . 
These data are divided by the rate in reservoir bar-
rels and plotted as log Y versus log t . 
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Differentiation of the finite equation in Figure 7 
{with the series sum equal to zero) and using practi-
cal field units, renders 

it/ Y= i qB 

in which 

eN 

t is in psi/ day 

q is in bbl/ day 

B is formation volume factor 
-1 c is in psi , compressibility 

N is the conne cted pore volume, bbls 

Consequently, one should be able to calculate connect-
ed reserves by the use of this method. Had the pres-
sure been maint ained at the outer radius, the change 
in pressure would also have been constant, but in 
addition, it would have been zero. When no change 
in pressure occurs, the differential of pressure with 



respect to time would go to zero as indicated in fig-
ure 9. 

= ~Y finite resevoir 

, pressure maintenance 
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Figure 9 

The drawdown will be reduced if larger volumes 
of vugs become connected. From this study it has 
been learned that during the early transient period 
one may be able to calculate the transmissibility of 
the main flow system. The total pore volume may be 
determined from the late production history. This 
work was originally started by Irving Fatt of the Cal-
ifornia Company and his students when he later went 
to teach at Berkeley. Additional work was shown by 
Pan American Oil Company. 

Next I would like to discus s w1th you the Jones 
method of reservoir testing. Already it was mention-
ed that an infinite reservoir would exhibit an essen-
tially logarithmic function when pressur es are obser-
ved at the well bore. Jones took the time der ivative 
of this function. 

Figure 10 

Figure 10 shows an example of a well located 
near intersecting faults. This well had been drilled 
for approximately $490, 000. 00 at a depth of 15, 000 
feet and two more wells had been planned. During 
the testing period it was found that even this well 
could not pay for itself. Consequently, additional 
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drilling was stopped and approximately $ 1, 000, 000 
was saved due to the performance of this test. This 
test cost less than $ 5, 000 which included all expense!:l, 
such as evaluation, service companies, etc. 

Figure 11 shows one interpretation of this par-
ticular test. The distance to the first fault was esti-
mated to be 142 feet, to the second 282 feet, and a 
third at approximately 424 feet. By planimetering 
this area or by calculating the reserve due to the con-
stant Y- value, or by using a material balance calcu-
lation following depletion of this well similar answers 
were obtained. 

GEOLOGICAL 
INTERPRETATION 

FROM DRAWDOWN 
TESTING 

Figure 11 

In many instances wells are placed on production 
to determine their productivity index. This index is 
the ratio of the amount of production divided by the 
drawdown. If wells were allowed to stabilize or if 
these measurements were performed at constant time 
increments since initiation of production one should 
always obtain a straight line relationship when plot-
ting pressure drawdown versus oil production. How-
ever, if rates are randomly changed, and one conse-
quently randomly obtains productivity index values 
one may obtain erratic numbers such as given in 
figure 12. The conclusion from this erratic test in-
dicates that at zero oil production one would have a 
pressure drawdown. Or, the test would indicate that 
the higher the rate of production the better the pro-
ductivity of the well. Consequently, it is recommend-
ed that prior to testing a well at a different rate the 
reservoir should be allowed to return to equilibrium. 

Whereas, the deliverability of an oil well can be 
expressed by the ratio of rate divided by drawdown, 
the deliverability of a gas well may be expressed by 

the equation Q = C(p
1 

z - p2 z )n Q is the flow 

rate, C is the deliverability constant, p 
1 

is the reser-

voir pressure, p2 the well bore pressure and n an 

exponent. To get this type of information, one pro-
duces a well at a known constant rate of flow for a 
predetermined length of time, and observes the pres-
sure. Then the well is again shut in and produced at 
a different rate with pressure observation, etc . In 
this way one may obtain the data necessary to con-
struct figure 13. Figure 13 will then give us the 
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deliverability of a well at any pressure which is con-
trolled by pipeline requirement. The exponent n 
is the result of one type of nondarcian flow. Explana-
tions have m et with much controversy. Apparently, 
a mixture of flow types occurs. There is turbulent 
and laminar flow within each little segment of the re-
servoir . If that is ture, n ought to be a function of 
rate and n has not necessarily been proven to be a 
function of rate. The relationship shown is empiri-
cal at best. 

The following equations show how the perform-
ance coefficient C is related to time 

[ 

C 1/n l 
C 1 =[-ln___:i::.._t_:~:,.../2-l 
c2 _ln ~ t1/2 

a 1 

n 

and ~ 
a 

2( C 1/n ~ C 1/n) 
t 1 2 

2 
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This relationship is a curve fitting technique which 
is again empirical. 

If the performance coefficient is a function of time, 
different back pressure curves should be necessary 
at different times. This is shown in Figure 14 . . ~ I I I 
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Figure 14 shows back pressure curves for times 
of 1/2, 1, 2, 3, 10, and 20 hours. To obtain these 
data, one should produce a well at a constant rate 
q

1 
and pressures should be observed. Then the well 

should be shut in for a considerable time such that 
the pressure will return to the original reservoir 
pressure. Next a new rate shold be established and 
the pressures observed . Thereafter, the pressure 
measurements and rate measurements at 1 hour 
following initiation of the test should be measured and 
these data are used to calculate the 1 hour back 
pressure isochronal curve. This is repeated for 
different times. Thereafter, the relationship for c 
given above should be used to extrapolate the perfor-
mance coeffi cients for stabilization time. The stab-
ilization time is that moment where pressure change 
with respect to time becomes constant. Figure 15 



shows the performance coefficient with respect to 
time. Figure 16 shows the pressure drawdown and 
buildup behavior from which the data were obtained. 
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A - 1. BANK STORAGE 

• Yo . • 

to oo -

REFERENCE : 

Glover, R. E . , 1953, Methods of computation of quantity and monthly distribution of return-flow-
Kanopolis Unit - Missouri River Bas in Project, Memorandum to Regional Director, in U. S. Bureau of 
Reclamation Technical Memorandum 65 7, 1960, Section N, p. 136-46. 

SUMMARIZED BY: 

R. E . Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION : 

BOUNDARY CONDITIONS: 

y y 
0 

for x > 0 when t = 0 . 

y 0 for x = 0 when t > 0. 

SOLUTION: 

X v4 fi2 t 

L 2 J - /3 2 
e 

Yo -J1T 0 

SYMBOLS: (Consistent units). 

KD 
v 

t = time 

COMMENTS: 

d/3 

Typical use : Bank storage . 

(y « D) 

Tabulations : Widely distributed as "Probability Integral". 
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A - 2. LINE SOURCE 

q 
Ground Surface , 

OriQinal Water Tobie 

K Permeabili ty 

Vo ids 
v . . · f-x · · · o . 

; 7 7.7 7 7 7 7 J 7~ 7.>7;7;.7;77~·77~7;.~/l · 7777777>77 

REFERENCES: ' 

Glover, R. E., 1932, Methods of estimating the depletion of flood flows in Ladder Creek resulting from 
well pumping, in U. S. Bureau of Reclamation Technical Memorandum 657, 1960, Section G, pp 73-80; 
and Moody, W.T., 1952, Drawdown in a one-dimensionally infinite aquifer, in U. S. Bureau of Reclama-
tion fechnical Memorandum 657, 1960, Section P, p . 147-152. -

SUN'JV ARIZED BY: 

R. E. Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

Z = 0 when t = 0 for x > 0. 

-KD az ax 
SOLUTION: 

q1 
2 when x 

SYMBOLS: (Consistent units). 

hz = KD 
v 

t = time. 

COJVIJVIENTS: 

0 for t > 0. 

2 -u 
_e ___ du 

uz 

Typical use: canal seepage. 

Integral has been tabulated by M. W. Bittinger at Colorado State University, Fort Collins . 
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r-u' Line Source Integral: I =-y; ~z: du X 

X 

J4 h20 t 

x/J4 h 2 t I x/J4 h2 t I x/J4 h2 t I 
X X X 

0.0000 VC· o. 34 2.6628 0.78 0. 38848 
0.0005 3541.8 0.35 2.5306 0.79 0.37294 0.001 1769.3 0.36 2.4065 0.80 0.35804 0.002 883.07 0.37 2.2901 
0.003 587.68 0.38 2.1805 0.81 0.34373 0.004 439.98 0.39 2.0774 0.82 0.33000 
0.005 3 51.36 0.40 1.9802 0.83 0.31681 
0.006 292.28 0.84 0.30415 
0.007 250.08 0.41 1.8885 0.85 0.29199 0.008 218.43 0.42 1. 8018 0.86 0.23032 
0.009 193.81 0.43 1.7199 0.87 0.26911 
0.01 174.12 0.44 1.6424 0.88 o. 25834 

0.45 1. 5689 0.89 0.24800 
0.02 85.516 0.46 1.4993 0.90 o. 23807 
0.03 55.993 0.47 1.4333 
0.04 41.241 0.48 1.3706 0.91 o. 22853 
0.05 32.396 0.49 1.3110 0.92 0.21936 
0.06 26.506 0.50 1.2544 0.93 0.21056 
0.07 22.303 0.94 0.20210 
0.08 19.156 0.51 1.2005 0. 95 0.19397 
0.09 16.712 0.52 1.1493 0. 96 0.18616 
0.10 14.760 o. 53 1.1004 0.97 0.17866 

0.54 1.0539 0.98 0.17146 
0.11 13.166 0.55 1.0096 0.99 0.16453 
0.12 11.841 0.56 0.96728 1.00 0.15788 
0.13 10.722 0.57 0.92692 
0.14 9.7661 0.58 o. 8·1840 1.1 0.10414 
0.15 3. 9397 0.59 0.85162 1.2 0.06820 
0.16 8. 2186 0.60 0.81647 1.3 0.04426 
0.17 7. 5845 1.4 0.02843 
0.18 7.0227 0.61 0.78289 1.5 0.01806 
0.19 6.5219 0.62 0.75078 1.6 0.01133 
0.20 6.0728 0.63 0.72008 1.7 0.00702 

0.64 0.69070 1.8 0.00429 
0. 21 5.6682 0.65 0.66260 1.9 0.00259 
0.22 5.3018 0.66 0.63570 2.0 0.00154 
0.23 4.9688 0.67 0.60994 
0. 24 4.6650 0.68 0.5 q527 2.1 0.00090 
0. 25 4.3868 0.69 0.56164 2.2 0.00052 
0. 26 4.1313 0.70 0.53900 2.3 0.00029 
0.27 3.3959 2.4 0.00016 
0.28 3.6785 0.71 0.51730 2.5 0.00009 
0.29 3.4772 0.72 0.49651 2.6 0.00005 
0.30 3.2905 0.73 0.47657 2.7 0.00003 

0.74 0.45745 2.8 0.00001 
0.31 3.1168 0.75 0.43912 2.9 0.00001 
0.32 2.9550 0.76 0.42153 3.0 0.00000 
0.33 2. 30L~O 0.77 0.40466 

Computed from National Bureau of Standards, Tables of Probability 
Functions, Vo1.I, MT8, U.S. Government Printing Office, 1941. 
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A - 3. PARALLEL DRA INS ABOVE IMP ERMEABLE BOUNDA RY 

Ground surface--, 

.. . · · · · <:-·_. :_· <·:·wate·r ·ta ti le -:_; ."<·: ·_':> 
. . ' .. .... . ... . 

. ..... . . : . . . · .. _., : : .. :,. . 
- : ~ ora 1 n · · ... '·.· ··•· 

~--~ :~- ~-:_~ -~--~~~>~ - ~~ :- :>: .. ): :_ Dr_ainage. coef f ic-ient v ·· 

. · . ·PEir.miwbility K ·. · 
~- ·: ·. -:::. Impermeable .' boundary : · 
: - 0 
I I 

}<- ---- -- ---- --------- -- L------- ---- - ------- -- -- - - -~ 

REFERENCE: 

Glover , R . E., 1953, Formulas for move ment of ground water , Oahe Unit Missouri River Basin Project, 
in Bureau of Reclamation Memor a ndum No. 657 , Section D, p. 35 - 46 . 

SUMMARIZED BY: 

R . E. Glover, U. S. Bureau of Recl amation 

DIFFERENTIAL E QUATION : 

BOUNDARY CONDITIONS: 

y y when t 
0 

0 for 0 < x < L 

y 0 when x 0 and x = L for t > 0 

SOLUTION: 

4 
y 

7r 

e 
n 

n= 1, 3, 5, etc. 

SYMBOLS: (Consistent units). 

2 KD 
h = v 
t = time . 

COMMENTS: 

T ypical use: Tile drainage . 

Graph - see next sheet. 

. n 1rx 
.sm-y:- (y « D ) 

0 
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0 .1 
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+-
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ids 
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Note: This figure vas origina.l.ly published as Figure 4 of "Cooling 
of Concrete Dams," Bulletin 3, Part VII, Boulder Caeyon Project Final 
Reports. 
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A - 4. DRAINS ON THE IMPERMEABLE BOUNDARY 

·. lnitioi po~ition of (}_r~und. wdter. 
-:--o---;;-:-..::o.._.:,.....,.--

L 

REFERENCE : 

. H . . • . . 
. P~r~eob~lity X . · .. · ·. · 
S?ecifi_c yield V : . 

Impermeable 

Glover, R. E., 1954, Well pumping and drainage formulas, in Bureau of Reclamation Technical Memoran-
dum No. 657, Section A, p . 2-27, Case 8 (Nonlinear) p 23. -

SUMMARIZED BY: 

R. E . Glover, U. S. Bureau of Reclamation. 

DIFFERENTIAL EQUATION : 

v az 
at or 

BOUNDARY CONDITIONS: 

z 
z 

0 for x = 0 and x = L, for t > 0. 

H at x = ..!=._ when t = 0. 
2 

SOLUTION: (approximate. See Boussinesq, 1904). 

w 

u WY where r w dW 

)~ 
0 

SYMBOLS: (Consistent units). 

a = KH 
v u = z 

H 

L drain spacing 

X 

L 

and y 
9 

T (-fz-) + 1 

x = distance measured from one drain towards the other 

H drainable depth midway between drains when t = 0. 

t = time 

COMMENTS: 

For drains on the barrier, the drain spacing is given by 

Here Z c represents the drainable depth at L 
X=-

2 
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L =-v--=---2 ( ~ - 1) 
c 

at the time t . 



CXJ co 

z 
H 
1. 0 

0.9 

0 . 8 

0 . 7 

0.6 

0 . 5 

0.4 

0.3 

0.2 

0.1 

X 
L 



A - 5. PARALLEL DRAINS IN SLOPING AQill.FER 

Drain 

REFERENCE: 
Glover , R . E., 1959-60, Effect of slope on drainage rates, Bureau of Reclamation Informal Memorandums 
to Chief, Office of Drainage and Groundwater Engineering. 

SUMMARIZED BY: 

R . E. Glover , U. S. Bureau of Recl amation 

DIFFERENTIAL EQUATION: 

K ah 
ax 

BOUNDARY CONDITIONS: 

ah _ s ) ax 

h H when t = 0, for 0 < x < L 

h 0 when x = 0 and x = L, for t > 0 

SOLUTION: 

Three approximate solutions obtained: 

v ah 
at 

( 1) From a simplified form of the diffe rential equation. 

( 2) By the method of P. W. Werner. 

( 3) By the method of E. Picard. 

SYMBOLS: 

See figure. 

COMMENTS: 

Computed values compared for ~ 0. 6, s 0. 05 in the memo of Aug . 12, 1960. 
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A - 6. DRAINAGE OF A STRATIFIED AQUIFER 

. . . Ground surfoce-, 
:-::.·.:·-:::.· .. ·.:·"::· ·:: ~.co·~.igi~ai .· ~~·s·;{;~·ri of ·t,;~ 'wate.~ :table ~·. :· : · :·.- · . ..... .. . .. . . : . . ~__._.,...,... 

<':: z ~ 0 

~--- - -- ------------ -- - L- ---- - --~~~~~~=~~------ ---------~ 
REFERENCE: 

Glover, R. E., 1953, Limitations of drainage formulas, in Bureau of Reclamation Technical Memorandum 
No. 657, Section E, p. 47-67. 

SUMMARIZED BY: 

R. E . Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

Parametric form. 

BOUNDARY CONDITIONS: 

Uniform drainable depth at time zero . 

SOLUTION: 

Exponential-trigonometric . 

SYMBOLS: ( Consistent units ) . 

See figure. 

COMMENTS: 
Applies to drainage of a three part aquifer. Approximate criteria : 

If pL >> 4K,Dz both beds act together . If pL :< 4
K,D, , upper bed acts alone . 

2m L ' 2m L 

If quantities are nearly equal special treatment is needed. 
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A - 7. RETURN FLOWS FROM AN IRRIGATED STRIP 

Case I Case ll 

REFERENCE: 

Glover, R. E . , 1962, Return flow from an irrigated strip, from Bureau of Reclamation Informal Memo-
randum to Head, Water Resources and Utilization Section. 

SUMMARIZED BY: 

R. E. Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

See figures 

SOLUTION: 

Exponential-trigonometric and probability integral types. 

SYMBOLS: (Consistent units) . 

COMMENTS: 

Typical use: Estimates of return flows. 
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A- 8. UNSTEADY FLOW THROUGH EARTH DAM 

X 

REFERENCE: 

De Wiest, R. J. M., 1960, Unsteady flow through an underdrained earth dam: Jour. Fluid Mech., v. 8, 
pt. I, p. 1-9. 

SUMMARIZED BY: 

Roger J. M. DeWiest, Princeton University 

DESCRIPTION OF CASE TREATED: 

The damping of the unsteady flow through a dam or levee of uniform hydraulic conductivity and with hori-
zontal underdrain is examined. A slow rise from low level to final full level is considered. The essential 
idea used in the analysis is consideration of the unsteady flow as a time -dependent perturbation of the 
final steady flow. The unsteady potential ¢ (x, y, t) is expanded in a power series of e-At , of the form 

-:u -z At ¢(x, y, t) = ¢0~x. y) + ¢ 1 (x, y) e + 0 (e ) 

in which ¢ 0(x, y) is the known steady state potential and ¢ 1 (x, y) is t he unknown perturbation potential. 
A is an eigen value which is found by the solution of a detP.rminantal equation. 

The differential equation to solve in the hodograph plane is 

':t ¢1 = 0 

with the boundary conditions as indicated on the sketch. 
A numerical example is given. 

= (a:\)Z 

(3 I ClO,I) 1-====---____jt----_.....,-::::::::::ll'la' ---:-----
......-- '-Unsteady ¢,=0 

F o' 
~----~------------------~--·~ 

""- a¢,=o 
tJP' 
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SOLUTIONS: 

See original paper. 

SYMBOLS: 

1/J{x, y, t) = potential 

a 

€ 

steady state potential 

perturbation potential 

eigenvalue 

€ QH 
0 

~ 

porosity 

~ 
0 

steady flow rate for maximum pool level 

K hydraulic conductivity 
Ku z Kv 
~ ; {3 = ~ Hydrographs coordinates 
qo qo 

v 
0

, q
0 

steady state velocities 

a 

95 

Dimensions 

L 

L 

L 

T 

dimensionless 
Lz 

---;y;-
L 
T 

dimensionless 
L 

T 



A- 9. UNSTEADY FLOW THROUGH EARTH DAM 

REFERENCE: 

De Wiest, R. J. M., 1961, Free surface flow in homogeneous porous medium: Am. Soc. Civil Engineers 
Trans., v. 127, pt. I, p. 1045-89. 

SUMMARIZED BY: 
Roger J . M. De Wiest, Princeton University 

DESCRIPTION OF CASE TREATED: 

This paper consists of an analytical and experimental extension of previous paper by the author. Rapid 
rises from low level to fixed full level behind an earth embankment are treated. The analytical results 
are tested in a Hele-Shaw viscous flow model. Numerical examples are included. The analytical and 
experimental results compare reasonably well. 

DIFFERENTIAL EQUATION IN HODOGRAPH PLANE: 

where q, 1 is a perturbation potential. 

BOUNDARY CONDITIONS: 

See sketch. 

C(O,I) 

/ ¢,=o "-.::::Unsteady 

\12 ¢.-= 0 
I 

o' F ~----~----------------~~--•~ 

\~=0 
ofl 

Hodograph with Boundary conditions 

SOLUTIONS: 

See original paper . 

SYMBOLS: 

See A-8. 
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A - 10. BANK STORAGE DUE TO FLOOD WAVES 

_LC~st stage ,--Land surface 

..- Stream --z-
_.. channel 

~------------------.- X 

REFERENCE: 

{
Nh0 e- 81 (1-cosw tl, 0~ t ~T 

IJI (j)o 0. t ~T 

Function .p(t ) opproximotino 
flood-wove hydrogroph 

Cooper, H. H. , Jr., .and Rorabaugh, M. I., 1963, Ground-water movements and bank storage due to 
flood stages in surface streams: U. S. Geol. Survey Water-Supply Paper 1536, in press. 

SUMMARIZED BY: 

H. H. Cooper, Jr. 

DESCRIPTION OF CASE TREATED: 

Solutions are derived for the changes in ground-water head, ground water flow, and bank storage caused 
by flood waves in surface streams, assuming that the stage hydrographs of the streams can be approxi-
mated by damped sinusoidal curves. 

DIFFERENTIAL EQUATION : 

a 2 h s ah 
ax 2 T at 0 

BOUNDARY CONDITIONS: 

h(x, 0 ) = 0 ; 0 ~ x ~ .e 

ah(.e,t) 
ax = 0; t > 0 

h(O,t) 1/; (t) 
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SOLUTION: 

For change in ground-water head: 

h --Nh{e-rrt..•t [cos((.e-x)7r-,{ri/2 £) ] -A cos ( Wt + 8) 
t< 7' 0 cos [ 1f --JYi /2 1 

4 f sin ( ( 2 n - 1) 1r x I 2£ ] 
( 2n -1 ) e- ( 2n -1 ) z /3wt } 

( 11 - ( 2n -1 ) 2 
] + ( 11- ( 2n -1) 2 ]3 J3 2 

+-

n = 1 

00 4Nh 
0 I (2n- 1)[l-e-( 11-(2n-1) 2 ]27r/3]e-(2n-1)jl.lt_ 

sin ( ( 2n-1) 1r x/2 £] - -

n = 1 
[ 11- (2n-1) 2

] + (11 -(2n-1) 2 J3 /3 2 

A A (x,f,, 6, w• T, S) 7rTT 
J3 = 8S.f2 

e 8 ( x, £, 6, w, T, S) 11 
46S£' 
~ 

For ground-water flow into stream: 

Q = T ah( o, t) = flow into stream per unit length 
ax 

Nho ~TS { e-11 /3wt [ /3 t 1r .,fJ B ( t -~.)] -v w ~..., 11 an 2 + cos (/JI + ., 

00 

+ 4 ---[{[ 
1f L ( 2 n~l)' e-(2n-1)

2 
/3wt } 

[ 11-(2n -1) 2 ]+ ( 11-(2n-1) 2 ]3 /3 2 

n = 1 

00 

Nh 
0 L (2n- 1 )z [ 1_e-(11-(2n-1) 2 ]27r/3] e-(2n-1) 2 J3wt 

[ 11-(2n-1) '] + [ 11- (2n-1) 2 J 3 /3 2 

B = B (.£,6, w, T, S) 

For bank storage: 
t 

n = 

¢(£, 6, w, T, S) 

v = -J Qdt = Bank storage per unit length. 

0 

v t< T 
Nh 

0 

Nh 
0 

-Vff- { e -11 J3wt 

00 

4-../73 L + 
1f 

n = 1 

~tan 1f -Jn B 
sin ( •' ' +I - aretan " MJ 2 

-.J11 2 J3 2 + 1 

-( 2n-1) 2 J3 wt } e 

[11 - (2n-1)']!3+ [11 -(2n-1)'] 3 /33 

00 

\. [ e- [ 11- ( 2n -1 ) 2 
] 2 1r /3 _ 1 ] e- ( 2n -1 ) 2 /3wt 

~~~[11---(2-n--1-)2~)-13--+~[11---(2n---1)~2]~3-J3-3 ---
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(\j 
........ 

(' 
..c. 

/Semi- infinite 
(_ aquifer 

Ground-w ter inflo due to sin soidal flo d wave 

-Semi- infimle aquifer 

t 
T 

t/r=wt/27T 



-o> 
0 

~20 

N 
'-

0 ..c. 

Stoge hyqrogroph 

0~----------L---------~ 
0 0 .5 1.0 

1/r =wt/2-,-

ue to sinu oidal fl.oo wave 

/ -- Semt- infinite aquifer 

= wt 
T 27r 



LIMITATIONS: Assumes ( 1 ) stream channel fully penetrates the aquifer and has vertical banks, (2) changes 
in ground-water head are small in relation to thickness of the saturated zone, so that transmissibility re-
mains practically constant in space and time, and (3} stream does not overflow its banks. 

SYMBOLS WITH UNITS: 

h 

h 
0 

£ 

N 

Q 
s 
T 

t 

t c 

v 
X 

a 

li 

T) 

e 

CT 

T 

¢ 

r/1( t) 

w 

Change in ground-water head at time t and distance x ,(L) 

Maximum rise of stream stage, ( L) 

Distance from bank of stream to valley wall (L) 

1/ [ e -.Stc (1 -cos wtc }] , (Dimensionless} 

Ground-water flow into stream per unit length at timet, (LaT - 1 ) 

Coefficient of storage of aquifer,(Dimensionless) 

Transmissibility of aquifer,(LzT- 1} 

Time since beginning of stage oscillation.(T) 

Time of flood crest, ( T} 

Bank storage per unit length of stream at time t, (La) 

Distance from bank of stream,(L) 
'TraCT/ 4 _e2, (T - 1 ) 

alw = 7rTT/ 8£ zs, (Dimensionless} 

w cot (wt /2} Constant determining degree of asymmetry of cu rves, r/J, (T- 1 ) c 
61 f3w (Dimensionless} 

Function defined in reference, (Radians) . 

( J, - x) I £ (Dimensionless) 

T /S Hydraulic diffusivity of aquifer, (L zT- 1 ) 

Period or duration of stage oscillation,(T) 

Constant defined in reference, ( Radians) 

Function representing stage hydrograph of stream,(L} 

27r /T Frequency of stage oscillation, ( T-1 ) 
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A - 11. EFFECT OF LOCAL DRAIN RESISTANCE 

REFERENCE: 

Initial position of ground water 
Intermediate position of ground water 
/Ground surface 

· Specific yield s 

Glover, R. E., 1953, Formulas for movement of groundwater- Oahe Unit- Missouri River Basin Project, 
in Bureau of Reclamation Technical Memorandum no. 657, Section D, p 41., Tuthill, L. H., Glover, 
R. E., Spencer, G . H., and Bierce, W. B., 1951, Insulation for protection of new concrete in winter, 
.Journal of the American Concrete Institute, vol 23, no. 3, p. 262-264. 

SUMMARIZED BY: 

R . E. Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

dp 
dr 

-2q 
1rKr ( R. E. Glover) 

BOUNDARY CONDITIONS: 

0 ( W. T. Moody) 

0. 0 < x <a 
p = 0 when r = D. 

SOLUTION: 

2q loge ( !?r) p = 7rK 

SYMBOLS: (Consistent units). 

p = 0 when x = ex> 

(~ = 0 
alc.Jx = o. no. 

[ xS p =~ ~ K D 

q [ a 
Pa K D + 

1. a< x 

7T 
{ loge (Cosh '; 

2 D )] 
7r 

log(-e 1ra 

r = radius, t = time, a = drain radius, u 

q flow to unit length of drain from one side 

p pressure decrease causing flow toward the drain 

pa = value of p at r = a 

102 

(ap) = 0 
ay Y =-D. 

Cos';;') + log e 2 f] 



L distance between drains 

E D 2D log ( - ) e a 

COMMENTS: 

(Glover) E D n + ZD log (-) e ra 

(Moody) 

The notation given here adapts the A. C. I. charts for computation of drainable depths y when the local 

resistance to flow to the drain is to be accounted for. E = pq D 
a 

The flow to the drain is q EDY x = o 
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A - 12 . WATER TABLE BETWEEN PARALLEL DRAINS 
Ground surface 

/, • ..;"~ • • : • •• • •• : 0 ••• : • • · . :: :. •• 0 •••• : 

/ 
Initial water table 

I - -..;:: I 
1 I 

REFERENCE: }-<-- --- --- - ------------- L-- ----- ------------- -----~ 

Moody, W. T., and Tapp, W. N., Unpublished development presented by L. D. Dumm at 1960 Winter 
Meeting, American Society of Agricultural Engineers, Memphis, Tenn. 

SUMMARIZED BY: 

W. T. Moody, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

t = 0, 0 < X < L ,· y x,o 

t > 0, x = 0 or L; Yo, t 

SOLUTION: 
00 

s 
7f L 192y c,o 

m = 0 

SYMBOLS: 

KD 
a=-v 

0 and yL t 
' 

0 

( 2m + 1) z •z - 8 

{2mt-1) 5 

See sketch for other symbols. 

COMMENTS: 

exp (- (2m+ 1) z 
L 

. (2mt-1)1rX 
Sln L 

Initial condition using a 4th degree parabola has been found to check field and experimental results 
closely. 
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A- 13. PATH FUNCTIONS FOR TRANSIENT FLOW THROUGH HETEROGENEOUS POROUS MEDIA 

REFERENCE : 

Nelson, R. W., 1963, Stream functions for three-dimensional flow in heterogeneous porous media: Inter-
nat. Union Geodesy and Geophys., 13th Gen. Cong. Proc . 

SUMMARIZED BY: 

R. William Nelson, General Electric Company 

CASE TREATED: 

Path functions are derived for transient flow in three-dimensions of nondiffusive fluids through hetero-
geneous porous media. 

DIFFERENTIAL EQUATION: 

Notation: Whenever a lower case subscript appears twice in the same monomial, this monomial stands 
for the sum of four terms obtained by assigning the values of 1, 2, 3 and 4. The three Cartesian space 
coordinates and time are designated as x 1, x 2, x 3, and x4, respectively, or x 1, i = 1, 2, 3, 4. Where 

less than 4 integers values of the subscript are needed, the range will be explicitly given. Partial dif-
ferentiation with respect to x. will be indicated by the operator a. 

1 1 

Basic equation 

where: 

v 

v . 
1 

0 i 1, 2, 3 

is the convective derivative operator, 

designates the path function, and 

is velocity in the x . coordinate direction 
1 

BOUNDARY CONDITION: 

( 1) 

Consider some surface which is time dependent and intercepts every path filament in the flow system of 
interest. (An equipotential surface which is itself moving through space in tirne is a convenient surface). 
Let such a surface be: 

r{x . ) = c 
1 

The appropriate boundary condition specifies the flux distribution across the above surface, i.e. 

where: 

Q is the flux or flow rate, 

F is the function describing Q along the surface r ( x.) 
1 

105 

( 2 ) 

( 3) 



RESULTS: 

I. The general equation of a path line is: 

f (x.) 
l at 

g (x . ) 
l a2 

TJ (x.) 
l a3 

( 4) 

( 5) 

( 6) 

where f, g, and TJ are respectively set equal to constants a , a 2, a 3, and are independent integrals of the 
systems of differential equations : 1 

K dx4 

where: 

r/J = p fy + x 3 is the hydraulic potential head or potential function. ( L ) 

p/y is the pressure head. 

is the coordinate direction oriented parallel with the gravitational 
vector. 

K = K ( x 1, x2, x 3) is the spatial distribution of permeability for the 

heterogeneous soil. 

II. The velocity expressed in terms of the path functions - f, g, and TJ is: 

v . 
l 

a 3 [F(I1] 
af ag aTJ ( € .. k a .f a kg a TJ ). i = 1, z, 3 

1 J m J m 

where : € i j k m is the epsilon permutation symbol. 

Ill. The material distribution v ( analogus to flux in steady flow) is: 

f g TJ 

Ir ~ ~ 
0 0 0 

v 

1/ 

a3 [F( r) ] 
ar ag aTJ 

df dg dT)u 

( L) 

( 7) 

( 8) 

( 9) 

Alternate simpler forms of equations 8 and 9 can be obtained through using the works of Schouten and 
the translation from Russian of Goluber's lectures on integrability and post multiplier, as shown in 
complete manuscript. 
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A- 14. FALL OF WATER TABLE BETWEEN PARALLEL DRAINS 

~-·------ S -----m~i------------~ 
d • 7 7 7 77777 7777777777777 >77 >>7777 

REFERENCE: 
Bouwe r , Herman, and Van Schilfgaarde, Jan, 1962, Simplified prediction method for the fall of the water 
table in drained land: Presented at Am. Soc. Agricultural Engineers, Dec. 1962, (no . 62 -728). 

SUMMARIZED BY: 

Jan van Schilfgaarde, North Carolina State College 

DIFFERENTIAL EQUATION: dm 
p = -f c dt 

Method: Combine with any P- m relation for steady state conditions, be it in the form of equations, 
tables, graphs or nomographs. 

Examples: Hooghoudt's ellipse equation reads 

P = 4 K m (Zd + m)/ sz. e 
and integration yields 

Similarly, from Toksoz and Kirkham, 

F(r/S, d/S). 

Graphically, from Ernst's relaxation solution nomographs: 

M< Parameter : S 

~· 'l!?f2 ~'"''00 
mid 

m/d m,ld 

Choose m
0

, mt and ll.t. Then 

P = C f ll.m/ ll.t. Mark lines 

Limitations: The major advantages of this technique are its simplicity and general applicability . 
Through the introduction of C, it loses sophistication and some accuracy. The transient results can 
never be better than the steady-state starting point. The graphic procedure lends itself to field operations . 

SYMBOLS: 

d 

d e 
f 

K 

c 
m 

0 

depth of impervious layer below drain ( L) 

"equivalent depth", per Hooghoudt's convergence correction ( L) 

drainable pore space, fraction (Dimensionless) 

hydraulic conductivity ( L/ T) 

correction for change in shape of water table; generally 0. s<c <t. 0 (Dimensionless) 

initial midpoint height of water table above drains ( L) 

water table height at time t ( L) 

ir.stantaneous drainage rate, corresponding to steady state rainfall ( L/ T) 
drain spacing ( L) 
time ( T) 
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A - 15. DESIGN OF TILE DRAINAGE FOR FALLING WATER TABLES 

y 

REFERENCE: 

Van Schilfgaarde, Jan, 1963, Design of tile drainage for falling water tables: Am. Soc. Civil Engineers 
Proc., v. 89, no. IR2. 

SUMMARIZED BY: 

Jan van Schilfgaarde, North Carolina State College 

DIFFERENTIAL EQUATION: 

a 
fay/at = ax (K yay/ax) 

BOUNDARY CONDITIONS: 

y 

y 

dy /dx 

SOLUTION: 

0 

m 
0 

at x 

at x 

at x 

S/2 

o. s 
S/2 

S = 3 A [ 
K( d + m) ( d + m 0 ) t ] 

2f ( m - m) 
0 

for t 0 

for t > 0 

for > 0 

1/2 

where A is related to the incomplete beta function. A 

Within 3 percent error, 
A = [ 1 - ( d/ y ) a 1 1 I 2 

0 
Limitations: 

A [ d/( d+ m ) 1 , given graphically. 
0 

Based on DF assumptions: hence requires convergence correction for greater d. Although simple in 
form, the Hooghoudt type of "equivalent depth" correction requires trial and error. Caution is needed in 
interpreting initial condition: It is not equivalent to Brooks' flooded (or at least horizontal water table ) 
initial condition. --

SYMBOLS: 

A a function involving the incomplete beta (Dimensionless) 

d depth of impervious layer below drains ( L) 

f drainable pore space. fraction ( Dimensionless) 

K hydraulic conductivity ( L/T) 

m midpoint water table height above drains ( L) 

S drain spacing ( L) 

time ( T) 

x, y coordinates with or!«in a t impervious layer immediately below drain center. 
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A- 16. FLOW OF GROUND WATER IN SANDS OF NONUNIFORM TffiCKNESS (Part 1) 

REFERENCE: 

Hantush, M. S., 1962, Flow of ground water in sands of nonuniform thickness, 1, Flow in a wedge-shaped 
aquifer: Jour. Geophys. Research, v. 67, no. 2, p. 703-709. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

CASE I. FLOW IN A SEMI-INFINITE WEDGE-SHAPED AQUIFER 

BOUNDARY CONDITIONS AND SOLUTIONS: 

(a) Sudden change in channel water level, 
Boundary Conditions 

h(x,z,O) = 0 

Solutions: 

and h ( r 0 , t) = h 1 , 0 < t 

h (X' z' t) = h1 A ( p '-r) 
For -r <0. 01 : 

q = K 6 h 1 G ( -r) 

h = ~ [ erfc ( ;~) + 

For -r> 500: 

p-1 IT 4P -v· ierfc (:~)] ( _1_ ) q "' K 6 h1 0. 5 + -f1iT 

q = (0.87K6h1)flog10 (2.25-r) 

(b) Intermittent sudden changes in channel water level 
Boundary Conditions 

h 1 for 0 < t < t 1 

h2 for t 1 < t < t 2 

hn for tn_ 1 < t < oo 

h(x,z,t) = f 1 

(c) Sinusoidal fluctuation in channel water level 
Boundary Conditions : 

h( r , t) = h sin (2 rt./t ) for 0 < t 
0 0 0 

= f1+ fz 

= f1+ ft . . +fn 
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Solutions 

=F 1+ F 2 t 1 < t < t 2 

=F 1+ F 2+ ... +Fn tn_ 1 < t <OO 



Solution: 

h( X, Z, t) = h 
0 

where 

N (ap) 
0 

N (a) 
0 

(X) 

4 ., 
0 J 

0 

sin 2?rt 
-t- + 

0 
¢ (a p) - ¢ (a) 

0 0 

J (up ) Y ( u) Y ( up) J ( u) 
0 0 - 0 0 

u du 

The function A1 ( p,-r,., 
0

) should be tabulated before the above equation for h( x, z, t) is used. 

Of interest is the steady periodic head distribution which is given by the above equation 
with A 1 ( p, ., , ., 

0
) = 0 . 

CASE II. FLOW IN A FINITE WEDGE-SHAPED AQUIFER 

SOLUTIONS: 

(a) Sudden change in channel water level 

h = h1 A I ( p,T) 

( b) Intermittent sudden changes in channel water level 

Solution same as in the case of semi-infinite wedge-shaped aquifer with f and F replaced by 
n n 

f' and F' n n 

(c) Channel water level varying linearly with time, 

h = 

q 

cr 2 S 
0 s 
K 

m= 1 

(d) Sinusoidal fluctuation in channel water, 

--r{3 2 ] e rr. 

{3 2 
m 

i. e. h ( r 0 , t) = ct 

--r{3 z] e m 

The steady periodic solution can b~ obtained by neglecting the series. 

SYMBOLS: 

a 

0 

-.J 2 11"/T 
0 

The m th zero of J 
0 

The central angle of the wedge-shaped aquifer. 
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8 ( y) 
0 

p 

41 ( y) 

A ( p, 'T) 

A'(p,'T) 

c 

erfc( x) 

ierfc ( x) 

f 
n 

F 
n 

f' n 

F' n 

G( 'T) 

G'('T) 

h(x,z,t) 

h n 

h 
0 

K 

K 
0 

M (y) 
0 

N ( y) 
0 

q 

r 
0 

s s 
t 

tn-1 
W(x) 

The argument of the complex number J ( y i 312 ) 
0 

( 1/r ) (xa + za) 1/2 
0 

Kt/ r aS 
0 s 

Kt /r aS 
0 0 s 

The argument of the complex number K ( y -Jf. ) 
0 

The flowing well function for nonleaky aquifers. (See Jaeger, J. C. - "Numerical 
values for the temperature in radial heat flow" J. Math. Phys., 34, 1956) 

['- ,'!_. ::~:rn~l .-T~m' J 
m= 1 

The function defined in Case I ( c) 

A constant of proportionality. 

The complementary error function. 

The first repeated integral of the error function. (See Carslaw and Jaeger - "Heat 
Conduction in Solids", Oxf. Univ. Press, 1947). 

(h -h 
1

) A(p,'T -'T 
1

) 
n n- n-

(hn-hn-1) G('T-'Tn-1) 

(hn-hn-1) A'(p,'T-'Tn-1) 

(hn- hn-1) G'('T -'Tn-1) 

The flowing well discharge function for nonleaky aquifers (see Jacob and Lohman -
"Non-steady flow to a well of constant drawdown in extensive aquifers", Trans. AGU, 
33, 1952). 

2 r.. e -'T f3am 
m= 1 

The hydraulic head at any point ( x, z) and any time t . 

The channel water level during the period following the nth sudden change. ( n :t: 0) . 

One-half amplitude of the sinusoidal fluctuation of channel water level. 

Bessel functions of the first kind,( zero and first order) and second kind(zero order). 

The hydraulic conductivity of the aquifer. 

The zero-order modified Bessel function of the second kind. 

The moaulus of the complex number J ( y i 3/ 2 ) .(see McLachlan - "Bessel Functions 
0 

for Engineers", Oxf. Univ. Press, 1955) . 

The modulus of the complex number K (y-[i). (see McLachlan, 1955). 
0 

Rate of seepage per unit length of channel. 

Radius of cylindrical face of aquifer in contact with channel bed. 

Specific storage of aquifer. 

Time since flow is set in motion. 

Time at which the nth sudden change in channel water level takes place. 

The well function for nonleaky aquifers available in tabular form. 
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A - 17 . FLOW OF GROUND WATER IN SANDS OF NONUNIFORM THICKNESS (Part Z) 

CASE I CASE II CASE III 

REFERENCE: 

Hantush, M.S., 196Z, Flow of ground water in sands of nonuniform thickness, Z, Approximate theory: 
Jour. Geophys. Research, v. 67, no. Z, p. 711-7ZO. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

CASE I. FLOW IN WEDGE-SHAPED AQUIFERS BETWEEN TWO PARALLEL RESERVOIRS 

DIFFERENTIAL EQUATION : 

BOUNDARY CONDITIONS: 

1 ah v-TI 

I A. Sudden change of water level in Reservoir I 

h( X, 0) 

h( 0, t) 

h( 1 ' t) 

SOLUTIONS { IA) : 

h 

where 

hs 

hs\ o) + oh1 = h 1 oh1 
hs (1 ) = hz 

ln [ ( b 1 + m x) I b 1 ] h = h - ( h - h ) --;--...,...-,--;-----;-,......-,,.---, 
s 1 1 Z ln ( ( b 1 + m 1) I b 1 ] 

SOLUTIONS { IB): 

I B. Water level in Reservoir I varying linearly 
with time 

h (X, 0) = h s 

h ( 0, t) 

h ( 1, t) h
2 

+ 
kz{yz-1)ln{ky -1)lnk + (kz-1) lny 

( Z ln k) z 

+ 70 n 
c ( /3 k, 'T) v ( /3 k y) } n o n 

n = 1 

c 1 t { 'T k z ( k z -1 ) + Z k z ( ln k -1 ) ln k 
q1 = qs-Km'Tkz lnk+ (Zlnk)Z 
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(kz-1)- (kz+ 1) lnk 
(2lnk)Z 

CASE II. FLOW IN A WEDGE-SHAPED CLOSED AQUIFER 

DIFFERENTIAL EQUATION: 

azh m ah 
ax2 + b1 + mx ax 

BOUNDARY CONDITIONS: 

IIA. Sudden change in channel water level 

h( X, 0) h. 
1 

h( 0, t) h.+ oh1 1 

ah( 1, t) 0 ax 

SOLUTIONS ( II A) : 
(X) 

ah 
v at 

h =hi+ oh1+ 1rc5h1 L E(€nR' 7') vo (Eny) 

q 1 = 2 Km c5\ 

SOLUTIONS ( II B) : 
r 
n=1 

E(€ R, T) 
n 

h = h ct { [ (yz-1)- 2Rz lny] i+-:;:- 7'+ 4 -11' 

q = 1 
K met 
z-:;:-

II B. Water level in channel varying linearly with time 

h ( x, 0) = h . 
1 

h( 0, t) = h.+ c t 
1 

ah (1, t) 
ax 0 

E( € R, T) V ( € y) } 
n o n 

CASE III. FLOW IN SEMI-INFINITE SAND BECOMING EXPONENTIALLY THIN 

DIFFERENTIAL EQUATION: (For b = b1 exp ( -2x/a) 

2 ah 
axz - a ax 

BOUNDARY CONDITIONS: 

III-A. Sudden change in channel water level III-B. Channel water level varying linearly with time. 

h(x,O) 

h( 0, t) 

h ((X), t) 

SOLUTIONS t III-A) : 

1 
h = hi+ 2 c5h1 

= h. 
1 

= h. + c5h1 1 

= h. 
1 

+ e 2 xfa erfc 
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h( x, 0) 

h(O,t) 

h((X), t) 

h. 
1 

h . + 
1 

h . 
1 

(
_x + ......{;t)] 
--{4;t a 

ct 



SOLUTIONS{ III-B): 

ct h =hi+-----
2( 1/vi/a) 

q = 1 

SYMBOLS: 

Kb 1ct 

a 

A( x,y} 

a 

C (f3 k, T) n 

E ( € R, T) 
n 

erfc 

h(x,y,t} 

hi, h2 

h. 
1 

h s 
Jo,J1 
k 

K 

m 

m1,m2 

q1' q2 

qs 
R 

s s 
t 

y 

€ n 

v 

T 

[ 
[ ( _x + -{;t. ) . e 2X/ a erfc ( _x + -v;t_ ) - ( _x - -y;t ) erfc (-+.. -~)] 

l{4;t a -J4vt a l/4:t. a v4vt a 

exp ( - vtf a 2 ) 

--{7rVf. /a 
erfc ( \[';tf a} J + 2 vt/ a 2 - erfc ( Ftfa) 

The flowing well function available in tabular form. 

A geometric parameter defining the exponential variation of aquifer thickness. 

The aquifer thickness at x, at x = 0, and at x = 1, respectively. 

Constants defining linear variation of water levels with time at some boundary . 

{ J ( f3 ) J ( f3 k) I [ J 2( f3 ) - J 2 ( f3 k} ] } . exp ( - ,. k 2 f3 2 ) • onon on on n 

= { J 1 2 ( € n R) I [ J o 2 ( € n) - J 1 2 ( € n R)) } exp ( - T € n 2) • 

The complementary error function. 

The average piezometric head in a vertical column of the aquifer at any point ( x, y) 
and any time t. 

Constant water levels in Reservoir I and Reservoir II, respectively. 

Initial head in a flow system . 

The average head during the initial steady state flow. 

Bessel functions of the first kind, zero and first order, respecitively . 

b 1/( b
1 
+ ml) . 

The hydraulic conductivity of the aquifer. 

Horizontal distance between Reservoir I and II. 

m2- m1 

The slopes of the upper and lower confining beds of a wedge-shaped aquifer . 

Rate of seepage from or into Reservoir I and II respectively. 

The rate of seepage during initial stead -state flow. 

1/k 

Specific storage. 

Time since an initial flow condition. 

y (13) J (f3 ky} -J (f3) y (f3 ky} onon on on 

y (€ )J (~:: y} -J(~:: )Y (€ y ) on on on on 

(b 1 + mx}/b 1 

Bessel functions of the second kind, zero and first order, respectively . 

The nth zero of J ( f3 ) Y ( f3 k) - Y ( f3 ) J ( f3 k} = 0 onon onon 

Amount of sudden change in water level of Reservoir I. 

The nth zerc of J ( € ) Y1( € R) - Y ( € ) J 1 ( € R ) = 0 o n n o n n 
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A - 18. BANK STORAGE IN AN AQUIFER BETWEEN TWO PERPENDICULAR STREAMS 

REFERENCE: 

Hantush, M. S., Bank storage in an aquifer between two perpendicular streams, Unpublished lecture notes. 

SUMMARIZED BY: 

M. A. Marino, New Mexico Institute of Mining and Technology 

STATEMENT OF THE PROBLEM: 

To determine water level fluctuation and the rate and total volume of seepage into or out of the aquifer in 
response to a sudden change in water levels in the streams. 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

h = ( O,y,t) h( X, 0, t) hi 
h{x,y,t) = 0 

ah 
ax {oo, y, t) 

ah 
ay ( x, oo • t) 0 

SOLUTION: 

{a) Equation for water table 

hz- h
0

z =(h1z-h0 z ) [ -erf~) erf(-k-)] 

(b) Equation for rate of bank storage along the y-axis 

q 
K(h z_h z) 

1 0 
erf (-y ) 

--J4;t 
Note: For that along the x-axis, replace y with x . 

(c) Equation for total volume of bank storage in a stretch of stream along the y-axis between 11 and 

Note: 

12 during a period t from the start. 
0 

2K t { ( 1 - 1 ) Q 0 

~ + ---
...,J1r 

0 

ierfc (-
12 

) - ierfc 
~ 0 

[ l z w('::,o ) 'l z w ( 'i,J 2 1 
+ --- 4Vt 4vt 2 ~ 0 0 

+ exp ( - 1 z ) 
4~t0 - exp (-~:J ]] 

The same applies if the stretch is along the x-axis. 
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SYMBOLS: 

b 

erf( x) 

erfc ( x) 

n i erfc(x) 

Q 

q 

t 
0 

W( u) 

v 

"' 
h + h 

0 ----2 X 

2 ! ----.J7r 

h + hi 0 
2 

exp ( -(3z) d(3 the error function of x, tabular values of which 
are available( Dwight, 1961; Carslaw and Jaeger, 
1959). 

1 - erf( x) the complement of the error function, tabular values of which are 
are available (Carslaw and Jaeger, 1959). 

height of the water table above the base of the aquifer. 

initial height of the water table above the base of the aquifer. 

elevation of water level in streams for t > 0. 
00 

jin-i erfc ((3) d{3, withn=1,2, ..... , and i 0 erfc(x) = erfc(x) =the nth 

r€peated integral of the error function, which is available in tabular form (Kaye, 
1955; Carslaw and Jaeger, 1959) . 

hydraulic conductivity of the aquifer 

see figure 

total volume of bank storage in a stretch of stream between 11 and 12 during a 

period t from the start. 
0 

rate of bank storage at any distance along the stream and at any time t since the 
start. 

time since change of water level in the stream. 

length of period of continuous flow since the start. 
00 

J -y T dy = · well function for non-leaky aquifers; tabular values are avaliable. 

u 
specific yield of the aquifer. 

Kb 
€ 
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A- 19. GROWTH OF GROUND WATER RIDGE IN RESPONSE TO DEEP PERCOLATION 

w/unit area 

. (2) . 

-.=r..ir." _·-~-----~ :- tn: 
. ---- ----

• • • • •• 0 • • 

. . . . . . 
K,£ 

X 

REFERENCE: 

Hantush, M. S., Growth of ground water ridge in response to deep percolation,~ Unpublished lecture notes. 

SUMMARIZED BY: 

M. A. Marmo, New Mexico Institute of Mining and Technology 

STATEMENT OF THE PROBLEM: 

The problem is to determine the growth of a ground -water ridge in response to a uniform rate of deep 
percolation over a limited area. The aquifer extends indefinitely in the x- direction. 

DIFFERENTIAL EQUATIONS: 

+ 
2W 
K 

BOUNDARY CONDITIONS: 

h
1
(x,O) h

0 

a hi 
ax ( o, t) = o 

a\ 
K h 1 8X" ( 1, t) 

SOLUTION: 

hi(l,t) 

h 
0 

h z + W~t [ 4 i z erfc ( ~ ) - 4 i z erfc ( x+ 1 ) 
0 ---.J4Vt ---..j4vt 

h
1

z( x,t) 

SYMBOLS: 

erfc ( x) 

h 
0 

in erfc ( x ) 

h0 z + 
2~vt { 1 - ~ [ 4 i 2 erfc( ~ ) + 4 iz erfc ( ~)]} 

1-erf ( x) = the complement of the 
error function, tabular values of 
which are available (Carslaw and 
Jaeger, 1959). 

original height of the water table 
above the base of the water-table 
aquifer. 

height of the water table above the 
base of the water-table aquifer after 
percolation has started in sections 
1 agg 2 respectively. 

Jin-ierfc(f3)df3, withn=1,2, . . . , 

and i 0elf-fc ( x) = erfc ( x) the nth repeated 
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1 

w 
€ 

v 

integral of the error function, which is 
available in tabular form (Kaye, 1955; 
Carslaw and Jaeger, 1959). 

hydraulic conductivity of the aquifer in 
sections 1 and 2 respectively. 

horizontal length from the origin ( x, z) 
to x = 1. 

ti me since the initial condition of flow. 

uniform rate of percolation per unit area . 

specific yield of the aquifer. 



A - 20 AN EQUATION FOR ESTIMATING TRANSMISSIBILITY AND COEFFICIENT OF STORAGE FROM 
RIVER-LEVEL FLUCTUATIONS 

REFERENCE: 

New level 

f{t) 
Datum plane 

Original lever-==-
::---, __ · __ . __ · OriginqL_W . ..L_ 

Hantush, M.S. , 1961, Discussion of - An equation for estimating transmissibility and coefficient of stor-
agefromriver-ievelfluctuations, byP. P. Rowe: Jour. Geophys. Research, v . 66, no. 4,1310-11. 

SUMMARIZED BY: 

M . A. Mariiio, New Mexico Institute of Mining and Technology 

STATEMENT OF THE PROBLEM: 

The problem is to find solutions for the fluctuation of ground water levels in response to water level 
fluctuations in streams that cut through the water-bearing materials. The stream is assumed to flow in 
fairly straight and effectively long course. 

DIFFERENTIAL EQUATION: 

v = T /r:: 

BOUNDARY CONDITIONS: 

h(x, 0} 0 

h(oo,t) o 
h(O,t} f(t) 

SOLUTION: 

For h( 0, t) = f( t) = ct, 

h(x,t) = ct [ 4iz erfc ( U) 1 

ct{(1+ 2Uz)erfc(U}- (2/-J1f)Uexp (-Uz)} 

For h( o, t) = f( t) = c 1-Jt , 
h( x, t) = ( c 1 ,frl /2) [ 2i erfc ( U) ] 

= c 1 --Jt { exp ( - uz) ---.[if U erfc ( U)} 

For h ( 0, t) = f ( t) = c 2 t ( t 1 - t). 

h(x,t) = c 2t { t 1 (4iz erfc (U) 1 - 4t [8i4 erfc (U)lJ 
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SYMBOLS: 

c 

erfc 

h 

K 

T Kh0 

t 

u 
X 

€ 

v 

Constant. 

Complementary error function; tabular values are available (Dwight, 1961; Car slaw and 
Jaeger, 1959). 

Water level at any time t and any distance x from the stream. 

The nth repeated integral of the error function; tabular values are available ( Carslaw 
and Jaeger, 1959; Kaye, 1955). 

Hydraulic conductivity. 

Transmissivity of the aquifer. 

Time since pumping started. 

X I ___,f4;t 
Distance of the point of observation from the intersection of the aquifer with the stream. 

Specific yield. 

T/€ 
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A - 21 PARALLEL DRAINS ABOVE IMPERMEABLE BOUNDARY 

SOIL SURFACE 

0 

MPEANEA8LE BOUNDARY 

L 

REFERENCE: 

Brooks, R. H., 1961, Unsteady flow of ground-water into drain tile: Am. Soc. Civil Engineers Proc., 
v . 87, no. IR 2, p, 27-37, 

SUMMARIZED BY: 

R. H. Brooks, Agricultural Research Service 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

L h(± 21 t) : - !!.o_ 
2 (t 2:0) 

h(x , O) 

SOLUTIONS: 

( 1 ) h( x , t) 
H H 

( 1+ _ o_) ( h + _o ) 
2D o 2 

t 

L 
2 

a 
2D 

2D J H 
:~ ( H

0 
- G )dT - ~ 

where 

F 

h = 
0 

8 H z 
0 

~ 

4H 
0 

0 

(-1)(n-1)/2..;- exp(-an~:zt )cos ~'If x-

n=l,3,5 .. 

ex> ex> 

~ ~ 2 exp [ - _,_(...;;.;m;:_z....,~...Yn'-'z )'-=a..;:,.'lf_z T.=.. ] 

n=l,3,5 .. m=1,3,5 .. 

H 
0 

2 

( 1 ) 

The term, G, under the time integral is equal to ( h + 
0 

H 
0 

2 ) that in turn is a function of [ ( t-T) , x ] 

in which T is a time variable that takes on the range of value s t > T > 0. The particular integral 
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( 2) 

2D 

ah 
0 

ax J ( h
0 

+ ~0 
) dx 

did not satisfy the boundary condition, hence, the time integral in Eq. l, that was evaluated numerically, 
was introduced to permit restoration of the boundary condition. 

-D+ + 2 D h 
0 

H 
+ ( _o_ )~ 

2 
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h 
Ho 

0 .4 

0 .3 

0 .2 

0.1 

0 
0.05 0 .30 Clt 

L2'" 
-0.1 

-0.2 

-0.3 

-0.4 

-0 .5~------------------------------------~ 

-THEORETICAL CURVES OF RELATIV E WATER TABLE HEIGHT, h/Ho, AS 
A FUNCTION OF THE TIME PARAMETER'ett / L2 FOR TILE AT VARIOUS 
RELATIVE DISTANCES H0 /D ABOVE THE IMPERMEABLE BOUNDARY AND 
FOR x = 0 
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A- 22 FLOW OF GROUND WAT ER INTO A SURFACE RESERVOih 

REFERENCE: 

Haushild, W. L. and Kruse, E. G., 1960, Transient flows through an infinite saturated aquifer of zero 
slope: Am. Soc. Civil Engineers Proc., v. 86, no. HY 7, p. 13-20. 

SUMMARIZED BY: 

D.E . L. Maasland, Colorado State University 

Reservi or 

SOLUTION I : 

for d >> H 

Differential Equation: 

Boundary Conditions: 

h ( 0, t) - H/2 

h(oo,t) H/2 

h( x, 0) H/2 

Solution : (See Carslaw and Jaeger ) 

H 
2 

2H + ---.r;-

2 
where 1/J = --

.....[;" 
SOLUTION II: 

By applying the method of Picard. 

- ..!..._( - _!!.._ + H 1/J )Z - 1!_( H 
h2 2D 2 2 2D 

xz 
H H 2 X - 4at "' ) 

+- -- e 2 D ._.,f;- -./4at 

H 

d 

x/__,f4;;t 

j e -u~ du 

0 

x/ --./4-at 

H 
2 

f -uz 
e du is the error function 

0 

xz 2x2 

2 X 4at H 2 4at --- e +- e 
._.J;- --!47rt D 1T 

[ H 2 H 
) ] +1!. [ 1 - "' ] 1- (-+ -

D 2 4D 1r 
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Land surface 
Water table at t=O 

H 
h 

Reservior d 

SOLUTION III: 

Identical to Solution I, but referenc e level changed (see sketch) 

SOLUTION IV: 

By integration of K(d+h)ah ax 

h 4 -JZDh3 + dZ -d 

dh3 
KD--ax 
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APPENDIX B 

SUMMARIES OF SOLVED CASES IN CYLINDRICAL COORDINATES 

TABLE OF CONTENTS 

B-1. Well Pumped at Constant Rate Q (Theis Equation) 

B-2. Well Drawing Water from an Aquifer 
B-3. Flowing Artesian Well ...... . 

B-4. Drawdown at the Center of a Circular Area Due to Distributed 
Pumping Within the Area . . . . 

B-5. Drawdown in a Square Array of Wells 

B-6. River Depletion Due to Pumping ... 

B-7. Drawdown Due to Pumping From an Unconfined Aquifer 

B-8. Circular Recharge Basin Over an Unconfined Aquifer 

B-9. Nonsteady Flow for Wells with Decreasing Discharge 

Page 

127 

128 

131 

135 

137 

139 

141 

142 

144 

B-10. Modified Nonsteady Solutions for Decreasing Discharge Wells 146 

B-11. Nonsteady Flow to a Well of Constant Drawdown in an Extensive 
Aquifer . . . . . . . . . . . • . . . . . . . . . 148 

B-12. Numerical Solutions of Steady-State and Transient Flow Problems -
Artesian and Water Table Wells 150 

B-13. Artesian Well, Semi-Graphical Solutions . . • . . . . . . . . . .152 

B-14. Drawdown Around a Well with Constant Water Level Maintained 
at Radius b 

B-15. Drawdown Around a Partially Penetrating Well 

B-16. Flow of Ground Water in Sands of Nonuniform Thickness 

B-1 7. Hydraulics of Gravity Wells in Sloping Sands 

B-18. Discharge of Interfering Wells .•.... 

B-19. Flow of Ground Water to Collector Wells 
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B - 1. WELL PUMPED AT CONSTANT RATE Q ( THEIS EQUATION) 

Q Ground surface 
--------------~1-----------------

T= Transmissibility 

V= Drainoble porosity 

REFERENCE: 

Theis, C. V., 1935, The relation between the lowering of the p iezometric surface and the rate and dura-
tion of discharge of a well us b g ground water storage: Am. Geophys. Union Trans., v . 16, p. 519-524. 

SUMMARIZED BY: 

D. E. L. Maasland, Colorado State University 

DIFFERENTIAL EQUATION: 

1 ah +- --r ar 

BOUNDARY CONDITIONS: 

h ( r ,0) 

h(co,t) 

SOLUTION: 

y = _!L 
41fl' 

h 
0 

h 
0 

(X) 

J 
u 

-u 
e du 
u 

v ah 
T at 

where 

uz u3 
du = W(u)= 0.577216 -lnu+u-- +-2· 2! 3. 3! 

u 
COMMENTS: 

4 
u 

4·4! + ..•••• 

Theoretically, the equation applies rigidly only to water bodies 

( 1 ) whic h are contained in entirely homogeneous sediments 

( 2) which have infinite areal extent 

( 3) in which the well penetrates the entire thickness of the water body 

( 4) in which the transmissibility is constant at all times and in all places 

( 5) in which the well has an infinitesimal diameter 

( 6) (applicable only to unconfined water-bodies) - in which the water in the volume of. sediments through 
which the water table has fallen is discharged instantaneously with the fall of the water table. 
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B- 2. WELL DRAWING WATER FROM AN AQUIFER 

to 

Permeability · · K 

Voids . v 0 

REFERENCE: 

Glove r, R. E., Well pumping and drainage formulas, in Bureau of Reclamation Technical Memorandum, 
No . 657, Section A, p 2- Case 4page 7. 

SUMMARIZED BY: 

R. E. Glover, U. S. Bureau of Reclamation. 

DIFFERENTIAL EQUATION : 

BOUNDARY CONDITIONS: 

s = 0 when t = 0 for r > 0 

s -> 0 when r -;.. ex> 

SOLUTION: 

- Q 
s - 21rKD 

00 

J 
r 

-uz 
_e __ du 

u 

SYMBOLS ( Consistent units): 

KD a = -v 
Q = the flow of the well. 

COMMENTS: 

( s « D) 

Integral is tabulated in T. M . 65 7., pages 9 and 10, which are reproduced on the following pages. 

Typical use: Pumped well. 
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r 
. ../4at 

0 
0.010 
0.011 
0.012 
0.013 
0.014 
0.015 
0.016 
0.017 
0.018 
0.019 
0.020 
0.021 
0.022 
0.023 
0.024 
0.025 
0.026 
0.027 
0.028 
0.029 
0.030 
0.031 
0.032 
0.033 
0.034 
0.035 
0.036 
0.037 
0.038 
0.039 
0.040 
0.041 
0.042 
0.043 
0.044 
0.045 
o.o46 
0.047 
0.048 
0.049 

co 

4.3166 
4.2213 
4.1343 
4.0543 
3.9802 
3.9112 
3.8467 
3.7861 
3.7289 
3.6749 
3.6236 
3·5748 
3.5284 
3.4839 
3.4414 
3.4006 
3.3614 
3-3237 
3.2873 
3-2523 
3.2184 
3.1856 
3-1539 
3.1232 
3·0934 
3.0644 
3-0363 
3.0089 
2.9823 
2.9563 
2.9311 
2.9<)64 
2.8824 
2.8589 
2.8359 
2.8135 
2.7916 
2.7701 
2.7491 
2.7285 

Tabulation of pumped well integral, 
from p. 9 and 1 0 of reference . 

r 
.J4at 

0.050 
0.051 
0.052 
0.053 
0.054 
0.055 
0.056 
0.057 
0.058 
0.059 
o.o6o 
0.061 
0.062 
0.063 
0.064 
0.065 
o.o66 
0.067 
0.068 
0.069 
0.070 
0.071 
0.072 
0.073 
0.074 
0.075 
0.076 
0.077 
0.078 
0.079 
o.o80 
0.081 
0.082 
0.083 
0.084 
0.085 
0.086 
0.087 
o.o88 
0.089 
0.090 

2.7084 
2.6886 
2.6692 
2.6502 
2.6316 
2.6133 
2.5953 
2.5777 
2.56o4 
2.5434 
2.5266 
2.5101 
2.4939 
2.4780 
2.4623 
2.4469 
2.4317 
2.4167 
2.4020 
2.3874 
2.3731 
2.3590 
2.3451 
2.3313 
2.3178 
2.3045 
2.2913 
2.2783 
2.2655 
2.2528 
2.2403 
2.2280 
2.2158 
2.2037 
2.1919 
2.1801 
2.1685 
2.1570 
2.1457 
2.1345 
2.1234 
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r 
.J4at 

0.091 
0.092 
0.093 
0.094 
0.095 
0.096 
0.097 
0.098 
0.099 
0.100 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0-35 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 

2.1124 
2.1016 
2.0909 
2.o803 
2.0698 
2.0594 
2.0491 
2.0390 
2.0289 
2.0190 
1.9247 
1.8388 
1.76oo 
1.6873 
1.6197 
1.5567 
1.4977 
1.4423 
1.3900 
1.3406 
1.2938 
1.2494 
1.2072 
1.1669 
1.1285 
1.0917 
1.0565 
1.0228 
0.9904 
0.9594 
0.9295 
0.9007 
0.8731 
0.8464 
0.8206 
0.7958 
0.7718 
o. 7486 
0.7262 
0.7046 
0.6836 

0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 
0.51 
0.52 
0.53 
0.54 
0.55 
0.56 
0.57 
0.58 
0.59 
o.6o 
0.61 
0.62 
0.63 
0.64 
0.65 
0.66 
0.67 
0.68 
0.69 
0.70 
0.71 
0.72 
0.73 
0.74 
0.75 
0.76 
0.77 
0.78 
0.79 
0.80 
0.81 
0.82 

0.6634 
0.6437 
0.6247 
o.6o62 
0.5884 
0.5710 
0.5542 
0.5380 
0.5221 
0.5068 
0.4919 
0.4774 
0.4634 
0.4498 
0.4365 
0.4237 
0.4112 
0.3990 
0.3872 
0.3758 
0.3646 
0.3538 
0.3433 
0.3330 
0.)231 
0.3134 
0.3040 
0.2949 
0.2860 
0.2774 
0.2690 
0.26o9 
0.2529 
0.2452 
0.2377 
0.2305 
0.2234 
0.2165 
0.2098 
0.2033 
0.1970 



r 
.J4o:t 

0.83 
0.84 
0.85 
0.86 
0.87 
0.88 
0.89 
0.90 
0.91 
0.92 
0.93 
0.94 
0. 95 
0.96 
0.97 
0. 98 
0. 99 
l.OO 
l.Ol 
1.02 
1.03 
1.04 
1.05 
1.06 
1.07 
1.08 
1.09 
1.10 
l.ll 
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 
1.20 
1.21 
1.22 
1.23 

0.1909 
0.1849 
0.1791 
0.1735 
0.168o 
0.1627 
0.1575 
0.1525 
0.1476 
0.1429 
0.1383 
0.1339 
0.1295 
0.1253 
0.1212 
0.1173 
0.1134 
0.10969 
O.l06o7 
0.10255 
0.09914 
0.09583 
0.09262 
0.08950 
0.08648 
0.08355 
o.o8o71 
0.07796 
0.07529 
0.07270 
0.07020 
0.06777 
0.06541 
0.06313 
0.06o92 
0.05878 
0.05671 
0.05470 
0.05276 
O.Q5o88 
0.04906 

r 
.J4o:t 

1.24 
1.25 
1.26 
1.27 
1.28 
1.29 
1.30 
1.31 
1.32 
1.33 
1.34 
1.35 
1.36 
1.37 
1.38 
1.39 
1.40 
1.41 
1.42 
1.43 
1.44 
1.45 
1.46 
1.47 
1.48 
1.49 
1.50 
1.51 
1.52 
1.53 
1.54 
1.55 
1.56 
1.57 
1.58 
1.59 
L6o 
1.61 
1.62 
1.63 
1.64 

Table ·-Continued 

0.04730 
0.04559 
0.04394 
0.04235 
o.o4o80 
0.03931 
0.03787 
0.03647 
0.03512 
0.03382 
0.03256 
0.03134 
0.03016 
0.02903 
0.02793 
0.02687 
0.02584 
0.02486 
0.02390 
0.02298 
0.02209 
0.02123 
0.02041 
0.01961 
0.01884 
0.01810 
0.01738 
0.01669 
0.01603 
0.01538 
0.01477 
0.01417 
0.01360 
0.01305 
0.01252 
0.01200 
0.01151 
0.01104 
0.01058 
0.01014 
0.00972 

r 
.J4o:t 

1.65 
1.66 
1.67 
1.68 
1.69 
1.70 
1.71 
1.72 
1.73 
1.74 
1.75 
1.76 
1.77 
1.78 
1.79 
1.80 
1.81 
1.82 
1.83 
1.84 
1.85 
1.86 
1.87 
1.88 
1.89 
1.90 
1.91 
1.92 
1.93 
1.94 
1.95 
1.96 
1.97 
1.98 
1.99 
2.00 
2.1 
2.2 
2.3 
2.4 
2.5 
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f co -u2 
e __ du 

r u 
.JTiit 

0.00932 
o.oo892 
o.oo855 
o.oo819 
0.00784 
0.00751 
0.00719 
0.00688 
0.00658 
0.00630 
o.oo6o3 
0.00576 
0.00551 
0.00527 
0.00504 
0.00482 
0.00460 
o.oo44o 
0.00420 
0.00402 
0.00384 
0.00366 
0.00350 
0.00334 
0.00319 
0.00304 
0.00290 
0.00277 
0.00264 
0.00252 
0.0024o 
0.00229 
0.00218 
0.00208 
0.00198 
0.00189 
0.00115 
0.00069 
0.00041 
0.00024 
0.00014 

r 
.J4o:t 

2.6 
2.7 
2.8 
2.9 
3.0 

o.ooooa 
0.00004 
0.00002 
0.00001 
0.00001 



B - 3 . FLOWING ARTESIAN WELL 

Permeability 
· . Yield · . Y 

7 j 7 I Ill l,7j ;i I >u._l ·l.;~;; >;~>/ll;ll .ll>i· ;;~;;/1>~ ·· 
REFERENCE: 

Glover, R. E . , Well pumping and drainage formulas, in Bureau of Reclamation Technical Memorandum 
No. 657, Section A, p. 13 -case 5. 

SUMMARIZED BY: 

R. E. Glover, U. S. Bureau of Reclamation. 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

s = 0 when t = 0 for r > a 

~ = 0 when r = b ar 

SOLUTION: 

s = s 
0 

A n 

n =® 

~ 
-CY B zt 

A U (13 r) e n n o n 
n=1 

a U' (,B a) 
/3 n o n 

SYMBOLS ( Consistent units): 
KD 

a =y-

U (13 r) o n J (13 r) y o n o ( 13 a) - J (13 a) Y (13 r) n o n o n 

U I (,B b) : 0 
o n 

y = the yield of the aquifer per unit horizontal area per unit of drawdown (Dimensionless ) . 
-y:;-;;t 

Q = 2 7T KDs G ( --o a 

COMMENTS: 

Typical use: Flowing artesian well . 
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Tabulations of G ---{4C(f a , from p. 15 and 16 of reference. 

.J4ctt G(~) .J4at G( .j1~t ) .J4at G(~) .J4ctt G(~~ a a a a 

0.001 1,128.88 0.042 27.37 0.083 14.09 0.34 3-798 
0.002 564.69 0.043 26.74 0.084 13.93 0.35 3.703 
0.003 376.63 0.044 26.14 0.085 13.77 0.36 3.613 
0.004 282.60 0.045 25.58 0.086 13.61 0.37 3-528 
0.005 226.18 0.046 25.03 0.087 13.46 0.38 3.447 
o.oo6 188.56 0.047 24.51 o.o88 13.31 0.39 3-370 
0.007 161.70 0.048 24.01 o.o89 13.17 0.40 3-293 
0.008 141.55 0.049 23.53 0.090 13.03 0.41 3.227 
0.009 125.88 0.050 23.07 0.091 12.89 0.42 3.161 
0.010 113.34 0.051 22.63 0.092 12.76 0.43 3-098 
0.011 103.o8 0.052 22.20 0.093 12.62 0.44 3-038 
0.012 94. 53 0.053 21.79 0.094 12.49 0.45 2.980 
0.013 87.30 0.054 21.40 0.095 12.37 0.46 2.926 
0.014 81.10 0.055 21.02 0.096 12.24 0.47 2.873 
0.015 75-n 0.056 20.65 0.097 12.12 0.48 2.822 
0.016 71.02 0.057 20.30 0.098 12.00 0.49 2.774 
0.017 66.88 0.058 19.95 0.099 11.89 0.50 2.728 
0.018 63.19 0.059 19.62 0.100 11.78 0.51 2.683 
0.019 59.88 0.060 19.30 0.11 10.751 0.52 2.64o 
0.020 56.92 0.061 18.99 0.12 9-895 0.53 2.599 
0.021 54.23 0.062 18.70 0.13 9-171 0.54 2.559 
0.022 51.79 0.063 18 .41 0.14 8.551 0.55 2.520 
0.023 49.56 0.064 18.13 0.15 8.013 0.56 2.483 
0.024 47.52 0.065 17.86 0.16 7.542 0.57 2.447 
0.025 45.64 o.o66 17.59 0.17 7.126 0.58 2.412 
0.026 43.90 o.o67 17.3h 0.18 6.757 0.59 2.379 
0.027 42.29 0.068 17.U) 0.19 6.427 o.6o 2.346 
0.028 4o.8o 0.069 16.05 0.20 6.129 0.61 2.316 
0.029 39.41 0.070 16.61 0.21 5.86o 0.62 2.285 
0.030 ;8.11 0.071 16.39 0.22 5.615 0.63 2.256 
0.031 36.90 0.072 16.17 0.23 5-?91 0.64 2.227 
0.032 35-76 0.073 15.95 0.24 5.186 0.65 2.200 
0.033 34.69 0.074 15.74 0.25 4.998 0.66 2.173 
0.034 33.69 0.075 15.54 0.26 4.824 0.67 2.147 
0.035 32.74 0.076 15.34 0.27 4.662 0.68 2.122 
o.o36 31.84 0.077 15.14 0.28 4.513 0.69 2.09(3 
0.037 31.00 0.078 14.96 0.29 4.373 0.70 2.073 
0.038 30.19 0.079 14.78 0.30 4.243 0.71 2.050 
0.039 29.43 0.080 14.6o 0.31 4.121 0.72 2.028 
0.040 28.71 0.081 14.42 0.32 4.007 0.73 2.006 
0.0411 28.02 0.082 14.25 0.33 3.899 0.74 1.984 
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G(~ .J l.;{).t 
a 

0.75 1.964 
0.76 1.944 
0.77 1.924 
0.78 1.905 
0.79 1.886 
o.Bo 1.868 
0.81 1.850 
0.82 1.833 
0.83 1.816 
0.84 1.799 
0.85 1.783 
0.86 1.767 
0.87 1.752 
0.88 1.736 
0.89 1.722 
0.90 1.707 
0.91 1.693 
0.92 1.679 
0.93 1.665 
0.94 1.652 
0.95 1.639 
0.96 1.626 
0.97 1.614 
0.98 l.6o2 
0.99 1.590 
1.00 1.578 
1.01 1.566 
1.02 1.555 
1.03 1.544 
1.04 1.533 
1.05 1.523 
1.06 1.512 
1.07 1.502 
1.08 1.492 
1.09 1.482 
L1Q 1.472 
1.20 1.383 
1.30 1.307 
1.40 1.242 
1.50 1.185 
l.6o 1.136 



Table --Continued 

.J4at a(Ji;Xt~ .J4at a(~~ .J4at a(~) .J4at G( ../4o.t \ .J4at a(~) a \ a a a a \ a / a 

1.70 1.091 5-90 0.551 11 0.428 8o 0.239 ~ 0.167 
1.8o 1.052 6.00 0.547 12 0.416 90 0.232 0.162 
1.90 1.016 6.1 0.543 13 0.404 100 0.226 700 0.158 
2.00 0.984 6.2 0.539 14 0.394 110 0.221 Boo 0.155 
2.10 0.954 6.3 0.535 15 0.384 120 0.217 900 0.152 
2.20 0.928 6.4 0.531 16 0.375 130 0.213 11000 0.150 
2.30 0.903 6.5 0.528 17 0.367 140 0.210 2,000 0.136 
2.40 o.aao 6.6 0.524 18 0.359 150 0.207 3,000 0.129 
2.50 o.86o 6.7 0.521 19 0.352 16o 0.204 4,ooo 0.124 
2.6o 0.840 6.8 0.517 20 0.346 170 0.202 5,000 0.121 
2.70 0.822 6.9 0.514 21 0.34o 18o 0.200 6,000 0.118 
2.80 0.805 7.0 0.511 22 0.335 190 0.198 1,000 0.116 
2.90 0.800 7·1 0.5o8 23 0.330 200 0.196 a,ooo 0.114 
3.00 0.775 7.2 0.505 24 0.326 210 0.194 9,000 0.113 
3.10 0.762 7-3 0.502 25 0.322 220 0.192 10 1000 0.112 
3.20 0.748 7.4 0.499 26 0.318 230 0.191 20,000 0.104 
3-30 0.735 7-5 0.496 27 0.314 240 0.189 30,000 0.099 
3.40 0.723 7.6 0.493 28 0.311 250 0.188 4o,ooo 0.097 
3-50 0.712 7-7 0.491 29 0.3o8 26o 0.187 50,000 0.095 
3.6o 0.701 7.8 0.488 30 0.306 270 0.185 6o,ooo 0.093 
3.70 0.691 7-9 0.486 31 0.303 28o 0.184 10,000 0.092 
3.80 0.681 8.0 0.483 32 0.300 290 0.183 Bo,ooo 0.091 
3.90 0.672 8.1 0.480 33 0.297 300 0.182 90,000 0.090 
4.00 0.664 8.2 0.478 34 0.295 310 0.181 100.000 o.o89 
4.10 0.656 8.3 0.476 35 0.292 320 0.180 200,000 o.o84 
4.20 0.648 8.4 0.473 36 0.290 330 0.179 300,000 o.o81 
4.30 o.64o 8.5 0.471 37 0.288 340 0.178 400,000 o.oao 
4.40 0.633 8.6 0.469 38 0.286 350 0.177 500,000 0.078 
4.50 0.626 8.7 0.466 39 0.284 36o 0.176 6oo,ooo 0.077 
4.6o 0.619 8.8 0.464 40 0.282 370 0.175 100,000 0.076 
4.70 0.613 8.9 0.462 41 0.28o 380 0.174 Boo,ooo 0.075 
4.80 o.6o7 9.0 0.460 42 0.278 390 0.174 900,000 0.074 
4. 90 o.6o2 9.1 0.458 43 0.277 4oO 0.173 106 0.074 
5.00 0.596 9.2 0.456 44 0.275 410 0.172 
5.10 0.590 9-3 0.454 45 0.274 420 0.172 
5.20 0.585 9.4 0.452 46 0.272 430 0.171 
5.30 0.580 9-5 0.450 47 0.270 440 0.171 
5.40 0.574 9.6 0.448 48 0.269 450 0.170 
5.50 0.570 9.7 0.446 49 0.267 46o 0.169 
5.6o 0.565 9.8 0.444 ~ 

0.266 470 0.169 
5.70 0.56o 9-9 0.443 0.256 480 0.168 
5.80 0.556 10.0 0. 441 70 0.247 490 0.168 
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REFERENCE: 

TYPICAL WELL ARRAY 

LEGEND 
o Well 
X Point for wh ich drawdowna 

ore given . 

Moody, W. T., 1955, Determination of minimum drawdown in a square array of wells, in Bureau of 
Reclamation Technical Memorandum No. 657, Section R, p 159. 

SUMMARIZED BY: 

W. T. Moody, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

as 
Tt 

as 
+ r ar 

BOUNDARY CONDITIONS: 

s = 0 when t = 0 for r > 0. 

SOLUTION: 

Based on the Theis equation 

SYMBOLS (Consistent units) : 

See attached graph. 

r 

t 

T 

Q 
b 

s 

Radius measured from the well to a point at which the drawdown s is to be computed . 

Time. 

Transmissibility. 

Discharge from each well. 

Well spacing. 

Storage coefficient. 
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B - 6. RIVER DEPLETION DUE TO PUMPING 

y,----t 

Well pumped at the rote F 

REFERENCE: 

x, 

1 

River 

For values of (~)=I 
see accompanying 
chart 

Glover, R. E., 1952, Methods of estimating possible depletion of flows in the Smoky Hill and North 
Solomon Rive rs in Kansas resulting from well pumping, in Bureau of Reclamation Technical Memorandum 
No. 657, Section I. p. 88 - 97. -

SUMMARIZED BY: 

R. E. Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

Yz 

J aP - KD- dy ax where 

Yt 

BOUNDARY CONDITIONS: 

Pumping begins at t = 0. 

SOLUTION: 

a1 

SYMBOLS ( Consistent units) : 

a l. 
Xi 

a1 Z1 
Xt 

az l.2.. 
x1 

Time 

p = _F __ 
41TKD 

h2 . 

p 

r 

r 

ql 
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KD 
v 

Drawdown. 

Radius. 

-,} x 2 + yz 

Flow to the well between Y1 and Yz 
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B - 7. DRAWDOWN DUE TO PUMPING FROM AN UNCONFINED AQUIFER 

REFERENCE: 

-------,t-

Permeability 

Voids 

K 

v 

Ground surface 

0 

Glover, R. E., and Bittinger, M. W., 1960, Drawdown due to pumping from an unconfined aquifer: Am. 
Soc. Civil Engineers Proc., v. 86, no. IR 3, p. 63-70. 

SUMMARIZED BY: 

D. E. L. Maasland, Colorado State University . 
DIFFERENTIAL EQUATIONS: 

ay F= -Z1rr(D-y) K-8r 

BOUNDARY CONDITIONS: 

y4 0 when u4 ex> 

SOLUTION: 

( 1) F 

00 1 Z1rr 
r 

dr v oy 
at ( 2) 

An iteration procedure provides an effective means for obtaining the second and successive improved 
approximations. An excellent starting point for the procedure can be obtained by substituting a value 

8 co -13 z 
of 8~ obtained from y _ Q J ..:__!3 df3 

- Z1rKD 
u 

into equation ( 1.) with the quantity ( D -y) replaced by D 

F -u 2 

This yields Q - e Substituting this in 

1 
1/1 =-

(T 
1 - 1 - Za-

gives a second approximation for r/J of the form: 

du 
u 

1 
1/1 = -

(T 

, f 00 -u 2 

1 - V 1 - Za- 1 ~ du 
U1 

A third approximation may be obtained by graphical integration based on equation ( 4) and 

SYMBOLS( Consistent units): 

(T = Q r 

F 
Q 

l/1 = Z1ryKD 
Q 
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B- 8. CIRCULAR RECHARGE BASIN OVER AN UNCONFINED AQUIFER 

.. . · .... . : .·. ·<r-~-· .· ... ·_. I.-.·.:: _.1?f.~~~-e-~ -~i~~ - .·b:~-s:n . 
. _·. ·.· · I I I Idealized "disk" 

.· : ·.· . . . I a ---1/ of ground water 
. . . . h . .. 

Permeability K 
Specific yield V 

(:( = KD D 
. . .. 

. v I ~ - : . . . . '. 

~ 7 7 7 7 7 7 7 7 7 7 7 I 7) 7 7 7 > 7 7 7 7 7 7 I II I I 7 7 7 7 7 I i I.~ :~ ·i···; ·~: 7 

REFERENCE: 

Bittinger, M. W., and Trelease, F. J., 1960, The development and dissipation of a ground water mound 
beneath a spreading basin: Presented at Am. Soc. Agricultural Engineers, Dec. 1960, 

SUMMARIZED BY: 

M. W. Bittinger, Cplorado State University 

DIFFERENTIAL EQUATION: 

8h 
at + 

BOUNDARY CONDITIONS: 

r 
8h ) 
or 

h H, when t = 0 and 0 _::: r _::: a, 

h 0, whent = 0 and r> a. 

h ~ 0 when t -> oo and r -> oo 

SOLUTION: 

h 
H 2 a t 

at r : 0 ~ 
I H 

e 

= 1 

Tables of Solutions: 

I - r'a 
:r;;-t 

rr' I (--) r'dr' o 2 a t 

Germond, H. H., The Circular Coverage Function, The Rand Corporation, RM330, January 26, 1950, 
Masters, J. I., Some Applications in Physics of the P-Function, The Journal of Chemical Physics, V23, 
N10, October 1955, 1865-1874. 

LIMITATIONS: 
(1) h«D 

( 2) Top of ground water mound not in contact with bottom of spreading basin. 

COMMENTS: 

Solution as presented gives change of h in time and space after an instantaneous release of water at time 
zero. Summation of periodic instantaneous releases may be used to simulate continuous recharge. 
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B- 9. NONSTEADY FLOW FOR WELLS WITH DECREASING DISCHARGE 

R.EFERENCE: 

Abu-Zied, Mahmoud A., and Scott, Verne H., 1963, Nonsteady flow for wells with decreasing discharge: 
Am. Soc. Civil Engineers Proc., v. 89, no. HY3, p. 119-132. 

SUMMARIZED BY: 

Mahmoud A. Abu-Zied, University of California, Davis, California 

STATEMENT OF THE PROBLEM: 

In general, the analytical solutions for nonsteady confined flow to a well available for determination of 
drawdown or aquifer characteristics assume that the discharge of the well is essentially constant over the 
period of pumping. In many cases, however, some change takes place. This is particularly true during 
short-term pumping tests. 

The decrease in the discharge of a completely penetrating well pumping from a homogeneous, isotropic, 
elastic, artesian aquifer was considered in developing an analytical solution for the drop in the piezometric 
head caused by the well . 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

1. h = 0 fort< 0 

2. Limb= 0 for t > 0 
r--> 0 

{ ah ) Q ( t) 
3. Lim r ar = - Z1r T 

r --» 0 
4. Q(t) = Q (a +l3e-at) 

0 

SOLUTIONS: 

for t > 0 

h(t) Qo [ aW(B) + l3e-A f(A,B)J 
- 47T T 

Values of f (A, B) were computed and tabulated for the following ranges of A and B: 

o. 0001 < A < 900 

10 -B < B < 90 

This equation may also be expressed as follows: 

h(t) = -~~T Ei(-B)[a +13exp(-A)J
0
(2Vc)] 

BQO 
+ 4 7T T exp (-A-B) 

(-1)m (n-m-1)! An 
(n!·)z. B-m 

Graphical Solution for the Transmissibility and Storage Coefficients 

A type curve solution was suggested for the determination of S and T . For any value of A as A 
0 

rz. 
the drawdown data around the well may be plotted against T on log-log graph paper (Field data curve). 

0 
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A type curve for A can be constructed also using the same scale of the field data curve for t/J (B) vs B, 
0 

where 

t/1( B) -Ao a W ( B) + f3e f ( A , B) 
0 

By a method of superposition a matching position may be found from which values can be determined 
to calculate t he aquifer characteristic s. 

SYMBOLS: 

h 

r 

s 
T 

a,{3,a 

A 

B 

W( B) 

f(A, B) 

c 

Change in head. 

Radial distance. 

Storage coefficient. 

Transmissibility . 

T ime. 

Pumping rate at any time . 

Maximum discharge of well. 

Discharge parameters. 

at 

r 2 S 
4Tt 

CX> J e:x dx 

B 
CX> c 1 B 

= J~ 
-x + 

=! 
Ay--

X . y 
dx e 

y 
B 0 
AB ( independent of time) 

dy 
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B- 10. MODIFIED NONSTEADY SOLUTIONS FOR DECREASING DISCHARGE WELLS 

REFERENCE: 

Abu-Zied, Mahmoud A., and Scott, Verne H., 1963, Modified non-steady solutions for decreasing dis-
charge wells: Submitted for publication in Am. Soc. Civil Engineers Proc. (no. HY). 

SUMMARIZED BY: 

Mahmoud A. Abu-Zied, University of California, Davis, California 

STATEMENT OF PROBLEM: 

Modified solutions are proposed for the problem of nonsteady flow to a decreasing discharge well complete-
ly penetrating an extensive artesian aquifer. 

Field data, obtained from an experimental well with a decreasing discharge, were used to test the validity 
of the general and modified solutions. A controlled constant discharge test was conducted on the same well 
for comparison purposes. 

Modifications were developed for specific ranges of the parameters A and B (see previous summary). 

SOLUTIONS: 

Case 1. B < 0. 01 and A < 0. 1 --- -
For this range of A and B it was found that the general drawdown equation can be approximated by 

h [ 
A -0.57] 

( cr + f3 e- ) ln ~ 

For a time, drawdown data ( r constant), Eq. 1 plots as a straight line for h 
-A cr + f3e 

( 1 ) 

vs log t. The 

transmissibility of the aquifer and the storage coefficient can be calculated from the slope of the straight 
line and its intercept with the time axis respectively. 

In case of a distance drawdown data ( t constant}, Eq. 1 plots as a straight line for h vs log r . T 

and S can be calculated as before. 

Case 2. B > 1 and c < 1 

In this range, the general solution may be approximated by 

h [ W(B)(cr + f3exp (-A) J
0 

(2-yc)) + f3Aexp(-A-B)] 

For a distance-drawdown data a type curve solution is possible for the determination of T and S. 

Type curve: 1/J (A , B) vs B 
0 

Field data curve: 
rz 

h vs -t-
o 

Case 3. f3 is very small compared to cr 

+ f3 A exp ( -A -B)] 
0 0 

For this case it is shown that the general solution reduces to the Theis Non-equilibrium formula for h . 

Case 4. After a long period of pumping 

The general drawdown expression reduces to the equilibrium solution for a steady discharge after a long 
period of pumping. 

Accordingly the choice of the method to be used in calculating the drawdown and the aquifer characteristics 
is dictated by criteria given in the following table. 
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Range of Band A 

1. B < 0. 01, A< 0.1 

2. B > 1 , c < 
3. A< B>B 

4. All values not included in 1, 2 or 3 

Applications on field data showed the following : 

Solution to be used 

Modified solution Case 

Modified solution Case 2 

Theis nonequilibrium solution 

General solution 

1. The decreasing discharge time data confirmed the validity of the exponential relationship that 
was used in developing the general solution 

2. The general and modified solutions gave satisfactory values for the drawdown and aquifer 
characteristics. 

3. The modified solutions proposed simplify the computations and are appropriate within the 
ranges indicated. 
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B- 11. NONSTEADY FLOW TO A WELL OF CONSTANT DRAWDOWN IN AN EXTENSIVE AQUIFER 

REFERENCE : 

Jacob, C. E. and Lohman, S. W. , 1952, Non-steady flow to a well of constant drawdown in an extensive 
aquifer: Am. Geophys. Union Trans., v. 33, no . 4, p. 559-69. 

SUMMARIZED BY: 

S. W. Lohman, U. S. Geological Survey 

DESCRIPTION OF CASE TREATED: 

This is a method of determining T and S from discharge test of a single flowing artesian well, during 
which drawdown is constant but discharge (flow) diminishes with time. Based upon analogous heat flow 
equation developed by L. P . Smith in 1937, 

DIFFERENTIAL EQUATION: 

+ 
8h 

r ar 
s ah 
Tat 

INITIAL AND BOUNDARY CONDITIONS: 

h = h for t = 0 and for all values of r . 
0 

h ---> h as r ----,;:. oo , for t > 0 
0 

h = h - s for r = r and for t > 0 
0 w w 

SOLUTION: 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Q= 21TT(h -h)G(a) 
0 

where 

Tt a = --Sr z 
w 

, and G(a) 

2 1fl's G (a) 
w 

-1 + tan 

( 1) 

( 2) 

where J (X) and Y (X) are Bessel functions of zero order of the first and second kinds, respectively. 
0 0 

This integral is not tractable by integration, so was solved for the values given below by a series of 
summations. 

Table of solutions : 

Table -- Values of G( a) for values of a between 10 -4 and 1012 

10 -4 10- 3 10-2 10- 1 10 10z 103 

56.9 18.34 6. 13 2.249 0.985 0.534 0.346 0.251 
40.4 13. 11 4,47 1. 716 • 803 . 461 . 311 . 232 
33. 1 10.79 3. 74 1. 477 . 719 . 427 .294 . 222 
28. 7 9.41 3.30 1. 333 . 667 . 405 .283 . 215 
25. 7 8.47 3.00 1. 234 .630 . 389 . 274 .210 
23.5 7. 77 2. 78 1. 160 . 602 . 377 .268 . 206 
21. 8 7.2 3 2. 60 1. 103 .580 . 367 . 263 . 203 
20.4 6. 79 2.46 1. 057 . 562 . 359 .258 .200 
19. 3 6 , 43 2. 35 1. 018 .547 . 352 .254 .198 
18. 3 6. 13 2.25 . 985 .534 . 346 . 251 .196 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

10 10 106 10 7 108 109 1010 1011 

0. 1964 0.1608 0,1360 0. 1177 0,1037 0.0927 0,0838 0.0764 
. 1841 ,1524 .1299 . 1131 . 1002 . 0899 . 0814 . 0744 
. 1777 . 1479 . 1266 . 1106 . 0982 . 0883 . 0801 . 0733 
. 1733 .1449 .1244 .1089 . 0968 . 0872 . 0792 . 0726 
. 1701 .1426 . 1227 . 1076 . 0958 . 0864 . 0785 . 0720 
. 1675 . 1408 .1213 . 1066 . 0950 . 0857 . 0779 . 0716 
.1654 . 1393 . 1202 . 1057 . 0943 . 0851 . 0774 . 0712 
. 1636 . 1380 . 1192 . 1049 . 0937 . 0846 . 0770 . 0709 
. 1621 . 1369 .1184 . 1043 . 0932 . 0842 . 0767 . 0706 
.1608 . 1360 . 1177 . 1037 . 0927 . 0838 . 0764 . 0704 

The type curve may conveniently be prepared by plotting values of G( a) versus a on 3 by 5 cycle log-
arithmic paper (convenient size 11 x 14-1/2 inches). Values of Q and t from field tests are then plotted 
on translucent logarithmic paper to the same scale. Superposition of the curves allows a matching point 
to be found from which T and S may be determined from equations ( 1) and ( 2). 

Asymptotic solutions: 

When t is large relative to 
Sr 2 

w 
-T- , which occurs early for an artesian well, T may be determined 

from the slope of the straight line that results from plotting on semilog paper 

S may be determined from the intercepts on the ordinate ( sw/ Q) 

or S may be determined from the data region of the plot by 

s 
2.25 Tt/r 2 

w 

If r is not known, T , but not S , may be determined from w 

T = 2:30 
4•sw~( 1/Q)/~log 10 t 

0 , by S = 2. 25 Tt/ r 2 
w 

These straight line solutions are recommended over the curve-matching method. 

( 3) 

( 4) 

( 5) 

( 6) 

SYMBOLS (Consistent units): 

T Coefficient of transmissibility. ( L 2 /T) 
s Coefficient of storage. dimensionless 
h Head. (L) 

Time. ( T) 

rw Well radius. ( L) 
sw Drawdown in discharging well. (L) 
Q Discharge. ( L 3/T) 
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B- 12. NUMERICAL SOLUTIONS OF STEADY-STATE AND TRANSIENT FLOW PROBLEMS· ARTESIAN 

AND WATER - TABLE WFLLS 
Q 

.... · 
· · · . Aquifer . 

. . . 

REFERENCE: 

Kashef, A. I., Toulouklan, Y. S. and Fadum, R. E., 1952, Numerical solutions of steady-state and tran-
sient flow problems - artesian and water-table wells: Purdue Univ. Eng. Expt. Sta. Bull. 117, Lafayette, 
Ind. 116 p. 

SUMMARIZED BY: 

A. I. Kashef, North Carolina State College 

DESCRIPTION OF CASES TREATED: 

Artesian Wells 

A finite difference equation is determined either from the physical aspects of the nature of flow, or from 
the transformation of the fundamental mathematical equation (Theis equation) t o its finite difference form. 

Let any three successive points L, 0 and R of radii r L , r 0 and r R from the well center 

be chosen through the aquifer within the well influence. It is assumed that the water head at each of these 
points represents the head of the concentric shell containing the point. The intermediate shell represen-
ted by the point 0 , has an internal radius of r LO and an external radius of r OR . These two radii are 

theaveragesof rL and r 0 , and r 0 and rR respectively. 

Considering the Point 0 - or strictly speaking the circle 0 - then, the problem is to determine the piezo-
metric head h0 ' at the end of a given time interval 6t from a knowledge of the piezometric heads h L , 

h0 and hR at L, 0 and R respectively at the beginning of this interval. The initial gradient at shell 0 

is assumed to remain constant throughout the assumed time interval 6t which should in practice be small. 
The smaller the values of both the shell thicknesses and 6t , the more accurate are the results and the 
more labour will be involved in finding a solution. 

Consideringthesefinitethreeconsecutiveshells L, 0 and R, then h' 0=FLhL+ F 0h0 + FRhR {1) 

where: 

M = SA 0/27rT. 6t, A0 = area of the base of shell 0. 

Applying the drawdowns s = h - h rather than the head values h , Equation ( 1) reduces to: e 

( 2) 

The sum of the factors F is equal to unity and M is arbitrarily chosen depending upon the required 
degree of precision within a certain limiting value : 

( 3) 
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Dividing the aquifer into successive concentric shells w, 1, 2, 3 .... . L, 0, R . . . etc. starting 
from the well surface, then the drawdowns within any shell after a certain time interval can be obtained 
by applying equation ( 2). In order to start a solution for this equation, the drawdown at the well surface-
represented by shell w - at the end of any time interval should be calculated. Since the quantity of water 
that leaves any shell is larger than that e ntering into it during a given period by an amount equal to the 
quantity of water that is released from storage in the same shell due to the decrease of head, then the 
condition at the well surface can be determined as follows: 

The ratio of the discharge qw1 (see Figure) entering the first shell w defined by rw and r wi and the 
-u discharge q pumped out of the well is given by: qwi I q = e ( 4) 

where: 

but: 

u = rzwi SI4Tt = rzwi SI4Tnllt, n = 1,2, 3, .... etc. 
r 

q= ~ 1 + j s(ahlat) 2ndr, 
0 

or, in a finite difference form: 

-u z q ( 1 -e ) = Sw ( r z 1- r ) ( h - h 1 ) I Lit w w w w 

or, 

( 5) 

(6) 

where hw and h 1w are the heads at the well surface at the beginning and end of a given time interval Lit. 

s 1 is the drawdown at the end of Lit. Equation ( 6) can be used to determine the head at the well sur-w 
face after any time t since the start of pumping. The treatment of the conuitions at the well surface as 
presented in this summary varies from that given in the original paper. This modification was given by 
.he same authors in the 8th International Congress of Theoretical and Applied Mechanics, Istanbul 1952. 

The physical meaning of equation ( 5) could be applied for any two successive shells within the aquifer. 
Equations ( 1) or ( 2) may be derived on that basis. The application of equation ( 2) should be repeated 
together with equation ( 6) during the successive time intervals up till the steady-state condition is reached 
or the heads at the desired elapsed time since the start of pumping have been found. 

Water -Table Wells 

In this case the numerical method is applied by dividing the water-bearing formation into consecutive 
shells concentric with the center line of the pumped well as in the artesian case. The solution is simpli-
fied by introducing Dupuit 1S assumption. In most of the approximate mathematical solutions given for this 
problem, the variation of the depth of the saturated zone with time is neglected. In the numerical method 
however, this variation is accounted for. 

Following the same notations as in the artesian case, and introducing the specific yield Y rather than the 
coefficient of storage S , the finite difference equation is given by: 

F RhR z + F L hL z + hO - F OhO z ( 7) 

where r ORIM( rR- rO}, FL = rOLIM( rO- rL), 

Equation ( 7) is based on the fact that the difference between the water leaving a shell and the water enter-
ing it, through a certain time interval, is equal to the water drained from the saturated zone within that 
particular shell. Equation( 7) may be derived from transforming the following equation( 8) to its finite-
difference form: 

~ [ ~r ( r a(a~z)) J = 2: { ~~) 
In order to start the solution h 1 at the well surface (first shell ) is determined from the following w 

hi = --J (h 1 ) z q(r - r )lwr k w 1 1 w w1 
equation: 

At the end of the first time interval, it is assumed that h 1 

1 h 1 . 
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B- 13. ARTESIAN WELL, SEMI-GRAPHICAL SOLUTIONS 

REFERENCE: 

Kashef, A . I., 1961, A semi-graphical solution of artesian well problems under the transient condition: 
5th Internat. Conf. Soil Mech. and Foundation Engineering Proc., v. 2, div. 3B-7, p. 637-640. 

SUMMARIZED BY: 

A . ·r. Kashef, North Carolina State College 

DESCRIPTION OF CASE TREATED: 

This paper includes a proposed semi-graphical procedure for determining the piezometric level of an 
artesian well at any time measured from the start of pumping. The method is based on both the Theis 
solution and the numerical method { see the summary on "Numerical Solutions of the Transients Flow 
Problems"). The procedure is thought to be a trial to eliminate some of the idealized assumptions made 
in mathematical solutions, the laboriousness of numerical solutions and a step forward in establishing a 
simple method of solving practical and complicated problems such as that presented by a group of wells. 

From the Theis equation, the following equation can easily be derived: 

ds/dr 
q -u = Z1rTr e 

where: rzs 
u 4Tt 

Transforming equation ( 1) to its finite-difference fo.rm: 

.C:.s = 
-rz 

Se 
4T(n.C:.t) 

and s = 

( 1) 

( 2) 

r= r 
where n expresses the number of time intervals since the start of pumping. Draw the curve e -u vs. r 
for, say, the first time interval ( n = 1) and make the various chosen shells. ".C:.s" within each shell 
lower than the next shell to its right can thus be calculated from equation ( 2). 

After the nth time interval , the same .C:.a values hold true but for ne:w radii = n -.{r . because: 

.C:.s q (.C:.r 'Ii) . e-(r --[n )z S/4T·n.C:.t= q . .C:.r S/4T.C:.t 
-v" 27rTr 

T hus the curve (or polygon) may be drawn once and for all the first time interval and the radii shortened 

to r/ -[2 , r/ --J3 , 4/ ----,{'! , ... etc. to measure the drawdowns corresponding to the 2nd, 3rd, 
4th, . .. . etc. time intervals respectively, rather than shifting the curve itself. Near the well surface, 
an adjustment should be made for .C:.s , between r = r and r = r __,fit at any time interval n w w 
and calculated from: 

( __,fit - 1 ) 

(--Jn. + 1) 
( 3) 

because e -u "' 1. 0 in the vicinity of the well. .C:.s has to be calculated separately from equation ( 3) 
and added to that of shell w. 

This method allowed the selection of time intervals much greater than those in the numerical method. 
Besides, the drawdown curve at any time may be obtained directly without drawing the successive draw-
downs of the successive time intervals as in the case of the numerical procedures. 

Any other drawdown curve may be drawn and applied for the entire solution and not necessar-ily that 
corresponding to the first time interval. The radii are thus increased or decreased accordingly. 

In the original paper an example is solved and compared with the results obtained from the numerical 
solution. 
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B -14. DRAWDOWN AROUND A WELL WITH CONSTANT WATER LEVEL MAINTAINED AT RADIUS b 

REFERENCE: 

' KO t( =-
0 . v 

Permeabi ity K . 
Storage coeff. V 

. b· 

Bureau of Reclamation. Unpublished result derived by R. E. Glover. 

SUMMARIZED BY: 

W. T. Moody, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

BOUNDARY CONDITIONS: 

s = 0 when t = 0, r > 0 

s = 0 when r = b, t > 0 

-2 nKDr-----.;> Q as r----;. 0, t > 0 

SOLUTION: 

00 

s = [ 1 b - 2 n r \ exp (-aXfi t/bz) J 0 ( Xn r/b) ] L xz JZ (X ) 
n=1 n 1 n 

SYMBOLS: 

See sketch above. 

r 
b 
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I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION: 

1 as + -- + r ar 

BOUNDARY CONDITIONS: 

s(r,z,O} 0 

s(ex>,z,t) 0 

as ( az r, 0, t) = 
as az (r,b,t} 

as 
v at 

0 

b 

1 as dz} 
ar Lim 

r -;> 0 
{ Z1rKr 

0 

SOLUTIONS: 

I. Drawdown in Piezometers 

- Q 

s = Q 
47rKb [ W( u} + f ( u, r 

b' 
1 
b' 

s = Q 
87rk(l-d) [ M( u, 1 ; z ) + M ( u, 1 -z) 

r 

d 
b' 

+ f' (u, b 1 -,-r r 

~) M ( u, d; z) - f' ( u, b 
- M ( u, - r' r 

in which 

~ 1 ( . n7rl L n sm-b-
n=1 

00 

n1rd 
- -b- ) . 

or 

~) r 

d ~) J r' 

cos n1rz W ( n1rr ) 
b u, b and, 

~) 
r ~ [ M( u, 

2nb + x+ z) 
r 

_ M ( u, 2nb-x-z ) + M(u, 2nb+ x-z ) _ M ( u, 2nb-x+ z)J 
r r r 

n= 1 

and where 

For values of the function M ( u, {3) see Table 1 of refe renee. 

154 



Asymptotic Solutions: 

(a) Small values of time 

s = Q 
8 1rK ( 1 - d ) 

(2b-l -z)z Ss 
t < 20 K 

[ 
M ( u, 1 + z ) ( 1 - z ) M ( d + z ) -r-- + M u, -r- - u, r d - z ] - M(u, -r-) 

The above solution applies for any t in the case of infinitely deep aquifers, i.e. for b --» oo 

(b) For large values of time, 

Q [ W( u) + f r 1 d ~) J s = 4tKb s ( b' b' b' 
in which 

00 

f 4b L K ( n1rr) ( . n1rl n1rd n1rz 
s "if(1-dT n 0 b sm -b- sinh cosh 

n = 1 

II. Average Drawdown in Observation Wells 

The average drawdown s in an observation well screened between the depths 11 and d 1 ( 11 > d 1 ) 

can be obtained by integrating the equation of drawdown in piezometers with respect to z between the 
limits d 1 and 11 and then dividing the result by ( 11 - d 1). 

Therefore 

s Q 
= 47rKb [ w ( u) > r 1 u, ~ • 1 d 

b'b' ~I' :1 l] 
in which 

2bz ~ 
7rz(1 -d)( 1'-d') L 

n=1 

Asymptotic Solutions: 

( a) Small values of time t < 2( b -1 -1 1 ) z Ss 
20 K 

s 811K(1 -~}( 1'-d') [ F( u, 
1 + l' 

r 
1-1' d+l' --) - F( u --r ' r , 

+ F( 

in which 

d+ d' u,-r-, d- d' -) r - F( u, l+d' 1-d1
] 

r ' -r-) 

d- 1' -) 
r 

F(u,/3,a) 
-xu -yu 

rf/3M(u,f3)- aM(u,a)+ 2[-JY erfc(--JYU) -xerfc -JXU+ e -e J} 
--fiU 

in which 

x = 1 + J3z ; y = 1 + az 

(b) Large values of time, 

s =-Q-
47rKb [ W( u) + fs r 1 d 1

1 
_bd')] b' b' b' b' 
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in which 

f s 7r2 (l-d)(l 1 -d 1 ) 

co 

L 
n=l 

III. Drawdown in Piezometers or Wells for r / b > 1. 5 

For r /b > 1. 5 

s = s Q 
47rKb 

IV. Recovery Equations. 

W(u) 

sin n~d) ( n1r 1 1 

sin -b- nb7rd I ) sin 

If t and t 1 are the time, reckoned respectively from the commencement and end of pumping, the 
residual drawdown s 1 in a piezometer during recovery can be shown to be 

s 1 = s(t) - s( t 1 ) 

Similarly, the average residual drawdown in an observation well is 

s 1 = s(t)- s(t 1 ) 

in which 
t = t + t 1 and t is the time at which the pumping ceased. 

0 0 

Note: E4uivalent solutions for leaky, for anistropic aquifers , or both, can be found in "Advances in Hydro-
Science", Ch. on HydrauUcs of Wells by M. S. Hantush, edited by V. T . Chow, Acad. Press ( in prepara-
tion) . 

SYMBOLS 

v 

b 

d 

dl 

erf( x) 

erfc(x)= 

1 

11 

M( u,x) 

Q 
r 

K/Ss 

Thickness of aquifer, L. 

Depth from top of aquifer of the unscreened 
portion of pumped well, L. 

Depth from top of aquifer of the unscreened 
portion of observation well, L . 

2 J -z -F e Y dy = the error function . 

0 
1 - erf( x) = the complement of the error 
function. 

-1 
Hydraulic conductivity of the aquifer, LT 

The zero-order modified Bessel function of 
the second kind. 

Depth of penetration of pumped well, L. 

Depth of penetration of an observation hole, 
L. 

00 

J 
u 

c -y 
- erf ( x -JY) dy, y tabular values 

of which are given in Table 1 - reference. 
3 -1 Discharge of pumped well, L T 

Radial distance from pumped well, L . 
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s 

s 
sl 

sl 

s 

tl 

u 

Drawdown in piezometers, L. 

Drawdown in observation holes, L. 

Residual drawdown in piezometers, L. 

Residual drawdown in observation holes, L. 

Coefficient of storage. 

S/b = Specific storage, -1 L . 
Time since pumping started, 

Period of pumping, T. 

Time since pumping stopped, 

T. 

T. 

00 --! "'y-y W ( u) dy = The well function, tables of 

u 
which are available. 

W( u, x) The well function for leaky aquifers, 

tables of which are available. 

Z Vertical coordinate measured from top of 

aquifer, positive downward, L. 



B - 16 . FLOW OF GROUND WATER IN SANDS OF NONUNIFORM THICKNESS 

REFERENCE: 

b 

X- Xo, = 11,exp( -2 -d-- J 

Hantush, M. S., 1962, Flow of ground water in sands of non-uniform thickness , 3, Flow to wells : Jour. 
Geophys. Research, v. 67, no. 4, p, 1527-34. 

SUMMARIZED BY : 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION : 

The approximate differential equation for sands of nonuniform thickness is 

+ 

provided ~~ < 0. 20 

ah 
v at 

For b = b
0 

exp [- ( 2} ( x- x
0

}/a J and in terms of s = \- h , the differential equation is 

as 
v at 

BOUNDARY CONDITIONS AND SOLUTIONS: 

1. Well of constant discharge in an effectively infinite aquife r . 
Boundary conditions: 

lim 
r-o>O 

s(x,y,O} 0 

s(x ± cx:J,t) = 0 

s (±=, y, t) 0 

27r 

J r as d9 = -ar 

( 1 ) 

( 2} 

( 3} 

( 4} 
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Solution: 

s = 4:h exp ( i cos 8 ) W ( u, i ) 
0 

Limitation: The above equation is valid only for the period 

and within the semi-infinite plane bounded by a line parallel to the y axis and located by r = r 0 and 

8 = 1r where 

a a 
r o = T ln ( 1 Ob ) 

0 

2. Well of constant discharge near a stream. ( Stream coinciding with y- axis of sketch). 

Boundary conditions: Equations ( 1), ( 2), ( 4) and 

s (ex>, y, t) 

s(O,y, t) 

Solution: 

0 

0 

( 5) 

( 6) 

s = 4~bo exp {: cos e) [ w(u, f} -W (u•, :'J] 
3. Well of constant discharge near an impermeable boundary. (Impermeable boundary coinciding with 

y-axis of sketch). 

Boundary conditions: Equations (1), (2), (4), (5) and 

as ax ( o, y, t) = o ( 7) 

Solution: 

where 

erfc I f3Ux - -
1
-2f3Ua 

I 2x0 ) exp -a 

is a function not availahle in tabular form. A possible approximation may be: 

F "' ~ erfc ( U - -
1
-) [ -

1
- exp (- U <!) - -,{1r erfc ( Uy)J 2 x 2Ua Uy y 

In all the three previous cases the equivalent solutions for aquifers of uniform thickness can be used, 
provided 

r/a < 0.01 
and 

t < 2.5 ra/v 

4. Flowing well in an effectively infinite aquifer. 

Boundary conditions: Equation ( 1), ( 2), ( 3) and 

s(rw,t) = sw 

Solution: 

s= swexp (r:rwcoseJ[~~~~~i~) + exp(--rrw<l/a<l) · E(p,T, r:' )] 
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where 
00 

E = 2 J 
0 

is a function not available in tabular form. However, the following approximations can be made: 

(a) For T/p 2 < 0.05 

s = sw exp ( r: rw cos e) [ 
2 
~ { exp [ ~ ( p- 1) J erfc [ rw a-$ + :~ J 

+ exp [ - r: ( p - 1 ) J erfc [ - rw-t= + ~ J}] 
2--$ 

SYMBOLS: 

v 

p 

T 

e 

A{p,T) 

a 

b 

bo 
E 

erfc ( x) 

(b) 

(c) 

(d) 

F( Ua• Ux• Uy) 

For > 1 

For t = 00 

E( p, oo, 

For !::B..... = 0 
a 

rw 
a 0 

E(p, T, 0) = A(p,T ) .-1 

This last property of E can be used as an approximation for values of 

where 

rw < 0. 01 
a 

G ( T, rw) is a tabulated function. (See 1' Nonsteady flow to flowing wells for leaky 
a aquifers" by M. S. Hantush, JGR, V64, No.8, 1959) 

K ISs 

r/rw 

v tfrw 2 

The polar angle with the pole at the center of the well and the polar axis parallel to 
x-axis . 

The flowing well function available in tabular form. (See Jaeger - "Numerical values 
for temperature in radial heat flow", J. Math. Phys., 34, 1956) 

A geometric parameter defining the exponential var iation of aquifer thickness . 

b
0

exp [- 2( x-x0 )/a] = the aquifer thickness. 

Thickness of aquifer at the site of the well, {at points { x 0 , y) ) . 

The function defined above. 

The complementary error function. 

The function defined above. 
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G(T,rwfa) 

h( X, y, t) 

r' 

u 

u' 

W( u, /3) 

( x, y ) 

( xo.Y0 ) 

Yo 

The flowing well discharge function, available in tabular form . (See previous page). 

Average piezometric head in a vertical column of the aquifer at any point ( x, y) and 
any time t. 

Initial piezometric head. 

Zero-order Bessel function of the first kind. 

The hydraulic conductivity of the aquifer. 

Zero-order Modified Bessel function of the second kind. 

Discharge of steady well. 

Discharge of a flowing well. 

1 
[ ( X + Xo ) z + ( y - y 0 )• z (2 

z z .!. 
( (X - x0 ) + ( Y -Yo) )2 

= (a/2) n (a/10b0 ) 

Effective radius of the well. 

Specific storage of the aquifer. 

Radial distance measured from the point (- x0 , y0 ) . 

Radial distance from center of well. 

hi - h = Drawdown at any point at any time. 

Constant drawdown of flowing well . 

Time since initial condition of flow. 

r z f 4vt 

r' z f 4vt 

( x + x0 ) I --.[4;t, ( y - y0 ) I --.JM , respectively. 

The well function for leaky aquifers available in tabular form. 

Rectangular coordinates . 

Location of the well. 

Zero-order Bessel function of the second kind. 

160 



B - 17. HYDRAULICS OF GRAVITY WELLS IN SLOPING SANDS 

z a, pumped well,.......--.---------
. -----:j:----::T~I . -. . II . ·. tl 

. . " . . . tl_:__..:._ - ·--.___..J I-- - --:-II . 
II . . 
tl · . 

::~ 
r.. o. 

~nitiol water 
"level · ----t--
··r· . ---,-----__L_~. • . . . 

Do 

REFERENCE: 

River of} Y 
constant 
head for 
Case 2 

X 

Hantush, M. S., 1962, Hydraulics of gravity wells in sloping sands: Am. Soc. Civil Engineers Proc ., 
v. 88 , no. HY 4, p. 1-1 5. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION (Approximate): 

(See reference for derivation) 

SOLUTIONS: 

Case l. Well of constant discharge in an infinitely sloping sand 

z -z Q ( r ) ( r) D - D = -- exp - - cos 8 W u -o 211K f3 ' f3 

Case 2. Well of constant discharge upstream from a river and cutting across the natural flow. 

Q ( r { r -- exp · - - cos 8) W ( u -) 2nK f3 ' f3 
r' } W(u', ]3) 

Note: For wells downstream (i.e. aquifer dipping in + x direction) change f3 by ( - f3) in the 
exponent ial. 

Case 3. Well of constant head in an infinitely sloping sand . 

( r - r 
exp -~cos fJ) 

Q(t) = 'ITK(J:bz -Dwz) G(-r, ~w) 

Limitations: The above solutions are limited to the cases where 

SYMBOLS: 

f3 

v 

p 

2 Dw/i 

Specific yield ( effective porosity) of the aquifer. 

The polar angle with the pole at the center of the well. 
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Do 



A ( p, r) 

Dl x,y,t) 

Do 

Dw 
D(x,y,t) 

K 

K 0 (a) 

Q 
Q( t) 

r 

r' 

u 

u' 

W( u,a) 

x,y 

The flowing well function for nonleaky aquifers. For tabular values see "Numerical 
Values for the Temperature in Radial Heat Flow" by J. C. Jaeger, Journal of Math. 
and Phys., V34,1956,pp. 316-321. 

The height of the water table above the base of the sloping sand. 

The distribution of the depth of flow above the base of the aquifer that would prevail if 
there was no pumping. 

The height of the water table at the face of the well. 

The depth of water in an observation well screened throughout and completely penetrat-
ing the sloping sand. 

D at the face of the well (hz .._ Dz )/2D ·w w w 

The flowing well discharge function for leaky aquifers. For tabular values see "Non-
steady flow to flowing wells in leaky aquifers", by M. S. Hantush, Journal of Geo. 
Res. V64, No.8, 1959. 

The depth of the water in the pumping well. 

The slope of the base of the aquifer. 

Hydraulic conductivity. 

The zero-order Modified Bessel function of the second kind. 

The constant discharge of the well. 

The discharge of a constant head well. 

-J ( x- xoJl + ( Y- Yo) 2 

= -J ( X+ Xo) Z + ( y - yO) Z 

Effective radius of the well. 

Specific storage of the aquifer ( see reference for de.finition). 

DwSs + € = Storage coefficient of a water table aquifer. 

Time since the initial condition of flow . 

rz /4 vt 
r'z/4vt 

The well function for leaky aquifers (see Professional Paper 104 by M. S. Hantush. 
NMIMT for tables of W( u, a). 

Rectangular coordinates . 

The point at which the center of the well is located. 

The effective horizontal distance between the well and the stream bed; also the 
horizontal coordinate of the well location. 
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B- 18. DISCHARGE OF INTERFERING WELLS 

REFERENCE: 
Hantush, M. S. , Discharge of interfering wells, unpublished notes. 

SUMMARIZED BY: 

M . A . Marino, New Mexico Institute of Mining and Technology 

STATEMENT OF PROBLEM 

If the location of each of N wells is known and the water levels in each of the N wells at the end of a 
given period of continuous pumping is preassigned, the discharge of each well can be obtained by solving 
t he N linearly independent equations written for the water level in each of the wells, using the Theis 
formula for arte sian aquifers or the modified Theis formula for water-table aquifers as the case may be. 
Thus, two artes ian wells a distance m apart, discharging simultaneously over the same period of time 

t0 from a nonleaky aquifer, and having the same diameter 2 rw and drawdown, sw. will have dis-

c harges Q1 and Qz given by 

Similarly, for three wells forming an equilateral triangle a distance m on a side, 

If t 0 is long enough that m z /4vt0 < 0. 05, the expressions for the preceding particular well patterns 
may be given, respectively by 

and 

where 

R = 1.5 -./vf;; 

The discharge of each of four wells forming a square of side m ,provided mzfvt 0 < 0. 05, is given by 

and for a line of three equally spaced wells a distance m apart, prov ided mz/4vt < 0. 05, the discharge 
of each of the outer wells is 

Q1 = Q3 = [21rTSwln(m/rw) ]/f(R,m,rw) 

and the discharge of the m iddle well is 

Q2 = 21rTswln(m/2rw)/f(R,m,rw) 

where f(R, m,rw) = 2ln(R/m)ln(m/rw)ln(m/2rw)ln(R/rw) 

The corresponding equations for a nonleaky, horizontal, water-table aquifer are obtained from the pre-
ceding expressions by merely replacing (21rTsw) with 1rK( D0 Z - hwz) . 
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SYMBOLS: 

T = Kb 

T = KD0 

to 'fe-y 
W(u)JYdy 

u 
€ 

v 

v 

Initial depth of flow in a water-table aquifer. 

Depth of water in the well. 

Hydraulic conductivity of the aquifer. 

Effective radius of a well. 

Storage coefficient of an artesian aquifer. 

Drawdown in a discharging well (neglecting well losses). 

Transmissivity of an artesian aquifer . 

Transmissivity correspondent to initial depth of flow in a water-table aquifer. 

Length of period of cont\nuous flow since the start. 

well function for nonleaky aquifers; tabular values are available. 

specific yield of the aquifer. 

Kb for water-table aquifers. 
€ 

T/ S for artesian aquifers. 
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B- 19. FLOW OF GROUND WATER TO COLLECTOR WELLS 

REFERENCE : 

Hantush, M. S., and Papadopulos, I. S., 1962, Flow of ground water to collector wells :· Am. Soc. Civil 
Engineers Proc., v. 88, no. HY 5, p. 221-44. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

Note: Only a few of the solutions obtained, those of the drawdown in the caisson of the collector well, are 
given below. For other solutions the reader is referred to the original paper. Only cases of symmetri-
cally located laterals are considered here. 

SOLUTIONS: 

Collector well in an infinite water table aquifer. 

2 rc · · Initial . water table 

Jlll/177/1/71777777777777771777777///)7 

- . . . -= --1-_-.- ~ -.. - -: -. -.-. -.- ~ l.-. 
. . . . . 
. zi . . . . 

1 b '• 

. . Loo~o~:- ,-~~~~ot~{~ J 
· For z 1 b t> 2.5b /v 1 and> 5(rcz+lz)/v 1 , N > 4 1> z-b and rw~ z,- , thepumpinglevelinthe 

caisson can be approximated by: 

Q/N { lz N-1 
sc = 4,-Kb W( 4v 1t) + -1-

Ml 

[ 
11z z J 

1 I W ( 4v It ) - r c W ( ~ It ) + 2 N + 
2 [ 1 -cos .!!( 2Z· + r,w)J b 1 

4b( N-1) 
+ 1rl L n [~- L(n;rc, 0)] cosn~Zi cos ~,.(Zi+ rw)} ( 1) 

If rc ~ 0. 5 b the series can be neglected 

For t > 5 1 z fv 1 , 

where 

R 

1 > !. b and 2 

{ 2 [ 1 

R 
ln l 

( b/; ) z } 0. 25 b/1 

- cos b ( 2Zi + rw)] 

Collector well near a stream in a water table aquifer. 

0------4 

c: =- ::.-= = = - --:.---= = ::l 
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SOLUTIONS: 

The drawdown during the steady state flow is given by 

s = ~ { 2 ln [Y Y] - 2 ( N- 1) 1n [ ,/ ( ] c 4 71'Kb EE y y pp 
+ ( the ln and the series terms of Equation ( 1) ) } 

Also the following holds if 1 > 0. 5 b and rw::: b /271' . 

s = __g_ ln{ YY [ 
c 271'Kb 7 2 

Collector wells under stream beds. 

SOLUTIONS: 

For b 
, 1 > b, rw ::: 71' 

5 bz. 
and for t > -- ( steady state) the drawdown in the 

v 
caisson· is given by 

+ 2(N-1) {i-

71' 
1 - cos ~ ( 2 zi + rw) ] + 

1 - cos 2b ( 2 z 1 + rw) 

( 2n+1 }] - L 2b 11'rc, 0) sin 2 n+ 1 
2b sin 2n+1 z.J 2b 71' 1 

The drawdown in the caisson of a collector well with a single lateral, perpendicular to the river bank and 
in an infinitely thick aquifer is given by 

s c 

(~L)z. ( ~ ) 
Q { a a 

= 271'Kl 0. 5 [ 1 2 2 
1 -(-) ] 2a 

provided 1 > 10 rw , 

+ ln 

and Z. 
1 

If the lateral extends from bank to bank, 1 = E 

a 
2 

S = Q 1 ( 1 2 Zj ) 
c 271'Ka n + rw 
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Also for a lateral extending from t nk to bank in an aquifer of finite thickness b , the steady state 
pumping level is given by 

S - Q 
c - 471Ka 

SYMBOLS: 

a 

b 

f 

K 

L( u, 0) 

1 

1' 

M' 

N 

W(u) 

€ 

v' 

p 

7r 7r } 

{
[1-cos 2b(2Zi+ w)]{1+cosz-brw) 

ln ------------------ ---------------7r 7r 
[1 + cos Zb( 2 Zi+ rw)l{ ,1 -cos Zb rw) 

Eifect ive distance between a collector well and a stream, also width of stream, L. 

Initial depth of saturation of a water-table aquifer, L . 

1' /1 

Hydraulic conductivity of the aquifer, LT- 1 

Zero-order Bessel function of the second kind. 
u 1 K0 ( y) dy , tabular values available. 

0 
Length of a lateral, L . 

1 + rc , L. 

An integer such that M' > _b_ 
2 rc 

Number of laterals of a collector well. 

Radius of the caisson, L. 

Effective radius of a lateral, L. 

Specific storage. 

Specific yield. 

Drawdown in the caisson, L. 

Time since pumping began, . T. 

The well function for nonleaky aquifers. 

Vertical position of a lateral, L. 

2{a-rc)/l 

{2a-2rc-1)/1 

Kb/Sy 

rc I 1 . 
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APPENDIX C 

SUMMARIES OF SOLVED CASES FOR LEAKY AQUIFERS 

TABLE OF CONTENTS 

Page 

C-1. Well of Constant Discharge in a Leaky Aquifer • • • . . • • • . • • . • 169 

C-2. Eccentric Well in a Leaky Aquifer with Varied Lateral Replenishment 170 

C-3. Replenishment of Leaky Aquifers Intersected by Streams. . • • • • 171 

C-4. Nonsteady Vertical Motion in a Steadily and Uniformly Recharged, 
Leaky, Semiperched Aquifer Overlying a Semiconfined Highly 
Transmissive Aquifer. after Initially Zero Head Difference; Water 
Level of the Lower Aquifer Maintained Steady • • • • • • • • • • • 173 

C-5. Nonsteady Vertical Motion in a Leaky Semiperched Aquifer Overlying 
a Semiconfined Highly Transmissive Aquifer, After Cessation of 
Steady Uniform Recharge; Water Level of Lower Aquifer Maintained 
Steady • • • . . . • . . • • • 174 

C-6. Nonsteady Motion in a Perched-Aquifer System Consisting of a Leaky, 
Perched, Infinite Closed Strip Receiving Steady Uniform Recharge, 
and a Lower Infinite Half Strip Replenished by Leakage from the 
Perched Aquifer; Lower Aquifer Connected to a Stream at Steady 
Level, Upper Aquifer Initially Dry . . . • . . . . • • 17 5 

C-7. Nonsteady Motion in a Perched-Aquifer System Consisting of a Leaky. 
Perched, Infinite Closed Strip (After the Cessation of Steady Uniform 
Recharge) and a Lower Infinite Half Strip Replenished by Leakage from 
the Perched Aquifer and Connected to a Stream at Steady Level; both 
Aquifers Initially at a Steady State in Equilibrium with Steady Uniform 
Recharge • . . • . • . • • • • • • 177 

C-8. Nonsteady Motion in a Leaky Infinite Half-Strip Parallel-Aquifer System 
Consisting of a Steadily and Uniformly Recharged Aquifer Overlying a 
Leaky Artesian Aquifer, the Bounding Stream and both Aquifers Initially 
at Uniform Level • • . • . . . . • • • • • . 178 

C-9. Nonsteady Motion in a Leaky Infinite Half-Strip Parallel-Aquifer System 
Consisting of an Unconfined Aquifer Semiperched on a Leaky Artesian 
Aquifer. .The Water Levels of the Two Aquifers Initially are at a Steady 
State in Equilibrium with Recharge W 0 • and are Maintained at Steady 
Non-Equal Levels at the Stream Boundary During Steady Uniform Recharge 
at the Rate ( W0 + W). • • . . . . . . • • • • 180 

C-10. Well Pumping from an Aquifer Overlain by a Slowly Permeable Bed 183 

C-11. Non-Steady Radial Flow in ·an Infinite Leaky Aquifer 185 

C-12. Flow to a Well of Variable Discharge 186 

C-13. Non-Steady Flow to a Well Partially Penetrating an Infinite Leaky Aquifer. 187 

C-14. Non-Steady Flow to Flowing Wells in Leaky Aquifers 188 

C-15. Flow to an Eccentric Well in a Leaky Circular Aquifer 192 

C-16. Modification of the Theory of Leaky Aquifers 194 

C-17. Intercepting Drainage Wells in Artesian Aquifer 197 

C-18. Depletion of Storage , Leakage, and River Flow by Gravity Wells in 
Sloping Sands 199 

C-19. Effect of Well Field Operation Over an Area 203 
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C- 1. WELL OF CONSTANT DISCHARGE IN A LEAKY AQUIFER 

Ground surfac 

Piezometric sur. in semi-confining layer, constontlin ti 
..,----~-----...... 

lnltiaJ.,.Pi.!!-~~-::= _ ""'"'>~e!..."t!!l~fl!._~sitions -::::. 
In ma10 aC)wtTer 7'- - - j_ 

/ -- I -- ....... / I ....... 
/ -

REFERENCE: 

. . I 
Water divide/ 

r . I - /Impermeable 

De Wiest, R. J. M., 1961, On the theory of leaky aquifers: Jour. Geophys. Research, v. 66, no. 12, p. 
4257-62. 

SUMMARIZED BY: 

R. J. M. De Wiest, Princeton University 

DESCRIPTION OF CASE TREATED: 

Potential distribution is found for two cases of unsteady flow in a finite leaky aquifer, where the boundary 
condition at the contour of influence is time dependent and where the initial condition is one of different 
head in the main aquifer and in the semi confining and quasi-impervious layer overlying it. The cases 
considered are a well pumped at a constant discharge and a flowing well at a constant drawdown. 

DIFFERENTIAL EQUATION: 

+ as 
r ar 

s as 
T ar + 

INITIAL CONDITION : 

s ( r, o) = .t.H 

BOUNDARY CONDITIONS: 

SOLUTION: 

lim r as 
ar r -> 0 

H( t) 

Q 
- 2rt 

By method of variation of parameters. 

SYMBOLS: 
B Leakage factor. 
r e Radius of influence. 

T Tr.ansmissivity. 

s Storage coefficient. 

s Drawdown 

t Time. 

r Radial distance. 

Q wen yield. 

.t.H Head difference. 

+ .t.H 
BZ 
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Dimensions 
L 
L 
Lz 
T 

dimensionless 

L 

T 

L 

L3 
T 
L 



C - 2. ECCENTRIC WELL IN A LEAKY AQUIFER WITH VARIED LATERAL REPLENISHMENT 

REFERENCE: 

De Wiest, R. J. M., 1963 Flow to an eccentric well in a leaky circular aquifer with varied lateral re-
plenishment: Geofisica Pura e Applicata, v. 54. no. 1, p. 87-102. 

SUMMARIZED BY: 

R . J. M. De Wiest, Princeton University 

DESCRIPTION OF CASE TREATED: 

An analytical solution is obtained for the flow to an eccentric well in a leaky c ircular aquifer with lateral 
replenishment both for steady and unsteady cases. The flows for external boundary conditions of constant 
head and zero flux, which were treated previously, follow in the limit from a more general boundary con-
dition. Graphs are developed to show the influence of vertical leakage and lateral replenishment on the 
relationship between drawdown at the well and eccentricity. 

DIFFERENTIAL EQUATION: 

INITIAL CONDITION: 

.6Q s(r,e,o) = T r 

BOUNDARY CONDITIONS: 

s(r,O,t) s(0,2r,t) 

s(O,O,t) finite 

s( a, e, t ) as( a, e, t) a ar 

SOLUTIONS: 

See original paper. 

SYMBOLS: 

s Drawdown 

as(r,O,t) 
ae 

s as 
Tat 

as ( r, 21r, t) 
ae 

(L) 

s Storage coefficient of main aquifer ( dimensionless) 

T Transmissivity of main aquifer. (.!/) 
T 

B Leakage factor. ( L) 

.6Q Increment in well yield . 

170 

c5 ( x) 

r.e 

a 

a 

Dirac's delta function. 

Polar coordinates. 

Constant, dependent on ( L) 
geometry of aquifer 
system. 

Radius of circular aquifer. ( L) 



C - 3. REPLENISHMENT OF LEAKY AQUIFERS INTERSECTED BY STREAMS 

REFERENCE : 

De Wiest, R. J . M., 196 3, Replenishment of leaky aquifers intersected by streams: Am. Soc . Civil 
Engineers Proc., v . 89, no. HY 6, p. 165- 191. 

SUMMARIZED BY: 

R . J. M. De Wiest, Princeton University 

DESCRIPTION OF CASE TREATED: 

The interrelationship between surface water and ground water is studied for certain confined and uncon-
fined leaky aquifers, intersected by streams and subjected to water withdrawal by trenches or wells. The 
feasibility of a proposed ground-water recharge project in the vicinity of Princeton, N. J. is numerically 
evaluated. Use is made of Green's functions to find analytical solutions to the problems . 

DIFFERENTIAL EQUATION: 

1 as -- + r ar 

INITIAL CONDITION: 

t.Q s(r,e,o) = ~ r 

BOUNDARY CONDITIONS: 

s(r,O,t} 

s ( 0, 0, t) 

s(a,e,t) 

SOLUTIONS: 

s( 0,2r,t) 

finite 

= a 
as(a,e,t) 

ar 

Se.e original paper. 

SYMBOLS: 

See C-2 

. s as 
Tat 

as(r,O,t) 
ae 
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as ( r, 27T, t) 
ae 
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C - 4. NONSTEADY VERTICAL MOTION IN A STEADILY AND UNIFORMLY RECHARGED, LEAKY. SEMI-
PERCHED AQUIFER OVERLYING A SEMICONFINED IITGHLY TRANSMISSIVE AQUIFER, AFTER 
INITIALLY ZERO HEAD DIFFERENCE; WATER LEVEL OF THE LOWER AQUIFER MAINTAINED 
STEADY. 

l w 1 

" t 
0 

__ _M!L_ 
I 
ht(O)=h2(t)= H2 

I 
(h1 (t) rising) 

n. . . . . . . . 
• • • 0 • • 0 

• o 0 o 

o--~x· L 

REFERENCE: 

Spiegel, Zane, 196Z, Hydraulics of certain stream-connected aquifer systems: New Mexico State Engineer 
Spec . Rept., 105 p. 

SUMMARIZED BY: 

Zane Spiegel, New Mexico State Engineer Offi.ce 

DIFFERENTIAL EQUATION: 

(d/dt)h1 + (K'/m'Sw)ht 

BOUNDARY CONDITION: 

h1 ( o) = Hz 

NONSTEADY SOLUTION: 

h1 ( t) = Hz + ( Wm'/K') ( 1 - exp [ -( K'/m'Sw) t ] 

q 1z(t) = LW(1 -exp [ -(K'/m'Sw)t]) = qz(L,t) 

LIMITATIONS: 

Transmissivity of aquifer ll must be much larger than that of the semiconfining bed and aquifer I. 

SYMBOLS: 

See page 18Z 
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C - 3. NONSTEADY VERTICAL MOTION IN A LEAKY SEMIPERCHED AQUIFER OVERLYING A SEMICON-
FINED HIGHLY TRANSMISSIVE AQUIFER, AFTER CESSATION OF STEADY UNIFORM RECHARGE; 
WATER LEVEL OF LOWER AQUIFER MAINTAINED STEADY. 

(h1 (t) declining) 

REFERENCE: 

Spiegel, Zane, 1962, Hydraulics of certain stream-connected aquifer systems: New Mexico State Engineer 
Spec. Rept., 105 p. 

SUMMARIZED BY: 

Zane Spiegel, New Mexico State Engineer Office 

DIFFERENTIAL EQUATION: 

d/dt}h1 + (K 1/m 1Sw}(h1 - h2 ) = 0 

BOUNDARY CONDITION: 

h 1 ( o) = Hz + w om I I K I 

NONSTEADY SOLUTION: 

LIMITATIONS : 

Transmissivity of aquifer II must be much larger than that of the semiconfining bed and aquifer I. 

SYMBOLS: 

See page 182 
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C - 6. NONSTEADY MOTION IN A PERCHED-AQUIFER SYSTEM CONSISTING OF A LEAKY, PERCHED, 
INFINITE CLOSED STRIP RECEIVING STEADY UNIFORM RECHARGE, AND A LOWER INFINITE 
HALF STRIP REPLENISHED BY LEAKAGE FROM THE PERCHED AQUIFER; LOWER AQUIFER 
CONNECTED TO A STREAM AT STEADY LEVEL, UPPER AQUIFER INITIALLY DRY 

! ! w! l 
htr hr {t) W = W 0 (steady) 

0 ~r;:o:q:Ih:i::i' ±( OD) ::rn:n:J 
J. w2(t) J. ~P W2(t)= wJl- exp(-Mt)J 

where M = (K'/m'S ); 
w 

REFERENCE: 

Spiegel, Zane, 1962, Hydraulics of certain stream-connected aquifer systems: New Mexico State Engineer 
Spec. Rept., 105 p. 

SUMMARIZED BY: 

Zane Spiegel, New Mexico State Engineer Office 

DIFFERENTIAL EQUATIONS: 

Upper aquifer 

Lower aquifer 

(az.faxz.) h2 = (1/k)(afat)h2 - (W2/T2). w2 = we [1-exp(-Mt-)] whereM=(K'/m'Sw) 

BOUNDARY CONDITIONS: 

Upper aquifer 

hi ( 0) = hp 0 

Lower aquifer 

SOLUTION: 

Upper aquifer 

h (t) = {Wm'/K'){1 -exp [ -(K'/m'Sw)t]) 
1 

q1z(t) = LW(1 -exp [ -(K'/m'Sw) t]) = q2 {L,t) 

Lower aquifer 
00 

0 

32 \ (-1)n cosNx · _exp(-Nz.kt]} 
71"3 L (2n+ 1)3(1-NZ.k/M) 

+ 4W0 exp ( -Mt] 
MS1r 

00 

00 

L 
n = O 

n=O 

{-1)n cos Nx 
(1-Nz. k/ M) 

8 --;rz \ exp[-Nz.kt] }-W0 Texp[-Mt] L ( 2 n+ 1) z. ( 1 - Nz. k / M) LMS 
n = O 
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00 

L 
n=O 

{ 2 n+ 1) 
(1-NZ.k/M) 



Note: N = ( 2 n+ 1) r 
ZL • M = ( K'/m'Sw) 

Aquifer outflow for large M 

00 

8 
r~ [ exp [ - N~ kt] } 

(2n + 1)z 

LIMITATIONS: 

1 
2 w ( kt)2 

0 

n = 0 

00 I (-1) n 
n = 0 

{ r- t - ierfc [...:..._.:__( 2~+~l) L] 1 
(kt)! 

Rise in water level of aquifer II must be small with respect to its initial thickness. Validity near the 
bounding stream depends upon the percent of aquifer penetration by the stream. 

SYMBOLS: 

See page 182 
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C - 7. NONSTEADY MOTION IN A PERCHED-AQUIFER SYSTEM CONSISTING OF A LEAKY, PERCHED, 
INFINITE CLOSED STRIP (AFTER THE CESSATION OF STEADY UNIFORM RECHARGE) AND A 
LOWER INFINITE HALF STRIP REPLENISHED BY LEAKAGE FROM THE PERCHED AQUIFER Ar 
CONNECTED TO A STREAM AT STEADY LEVEL; BOTH AQUIFERS INITIALLY AT A STEADY 
STATE IN EQUILIBRIUM WITH STEADY UNIFORM RECHARGE 

h,IJ-=---...;....L.:..::..:. __ -1 

! ~~;r:c:;:crn:r.jlfl 

REFERENCE: 

Spiegel, Zane, i962, Hydraulics of certain stream-connected aquifer systems: New Mexico State Engineer 
Spec. Rept., i05 p. 

SUMMARIZED BY: 

Zane Spiegel, New Mexico State Engineer Office 

DIFFERENTIAL EQUATIONS: 

Upper aquifer 

( d/dt)hi + ( K'/m'Sw) (hi - hp) 0 

Lower aquifer 

( aztaxz) h2 = ( i/k) (at at) h - ( W
0
/T) exp( -Mt) 

BOUNDARY CONDITIONS: 

Upper aquifer 

hi ( 0) = W
0

( m'/K') 

Lower aquifer 

h2 ( X, 0) 

h2 ( L, t) 

SOLUTIONS: 

Upper aquifer 

h ( x) s HL + W 
0 

( L z - x z) /2 T 

( ataK) h2 ( o,t) = o 

hi(t) = ( W m'/K') exp [-( k'/m'S ) t] 
0 w 

Lower aquifer 

LIMITATIONS: 
where N =(2n + i)7T/2L and M = (K'/m'S) 

Rise in water level of aquifer II must be small with respect to its initial thickness Validity near the 
bounding stream depends upon the percent of aquifer penetration by the stream. . 

NOTATION: 

See page 182 
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C - 8. NONSTEADY MOTION IN A LEAKY INFINITE HALF-STRIP PARALLEL-AQUIFER SYSTEM CONSIST-
ING OF .A STEADILY A~D UNIFORMLY RECHARGED AQUIFER OVERLYING A LEAKY ARTESIAN 
AQUIFER, THE BOUNDING STREA M AND BOTH AQUIFERS INITIALLY AT UNIFORM LEVEL 

~ W ~ I 

hd o , t l = h2( o, t l -=" =o.....jo<r:~· ~:..:...· ._. ?-_ .. _~~-· ._.~_ .. _.--:-_. · _.~_?.(_~_ .• t_l.v 
I 

0----'.._ X L 

REFERENCE: 

Spiegel, Zane, 1962, Hydraulics of certain stream-connected aquifer systems: New Mexico State Engineer 
Spec. Rept., 105 p. 

SUMMARIZED BY: 

?.ane Spiegel, New Mexico State Engineer Office 

DIFFERENTIAL EQUATION : 

( a z 1 ax z ) h 1 - ( h 1 - h2 ) I B; 

(a'lax')h2 + (h1 - h2 )1B2' 

BOUNDARY CONDITIONS: 

( 1lk1) ( a1at) h 1 - WIT 1 

( 11 k 2 )( a 1 at) h 2 

h1 ( x, 0) = 0 ; h2 ( x, 0) = 0 

(alax)h 1 (L~t) = o; (alax)h2(L,t) = o 
h1 (o,t) = O ; h2 (o,t) =0 

SOLUTIONS: 

Approximate outflow solution for small t . 

00 

q 1 (o,t) = -(~!3 >{[ck 1 1k2 -alL[ 

n = 0 

1 - exp [- ( a+ N t) t] J 
(a+ N 1 ) 

I 

CX> 

-[(b-c)klk - (b-a)] e-bt \ [ 1-exp[-(a-b+Nt)t]]} 
1 2 L (a-b+ Nt} 

n = O 
CX> CX> 

qz(o,t)= -2T2'?2 { \ [ 1-exp [-(c+N2)t]]-e-bt \ [ 1-exp[ -(c-b+N2)t]J} 
LT 1B 2bk3 L (c + N2 ) L (c -b+ N) 

n = O n = O 2 

-bt -e 
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00 

I:[ 
n=O 

1 - exp [- ( a - b + N 1 ) t] J } 
(a-b+ Nt} 



Approximate outflow solution for large t: . 

q1 ( o, t) = 

00 

\[ 1-exp[-(g+ N4)t)] + (2c+ fk k) L (g+N4) 24 
n = O 

Note: N1 ( 2 n + 1) 2 1r2k / 4 L2 
1 

N2 ( 2 n + 1) 2 1r2k / 4 L 2 
2 

N4 ( 2 n + 1)2,. 2/2L2k 
4 

g 

00 

~[ 
1 - exp [- ( f + 

( f + N4 ) 

1 
B 1 ( 2 ) is the theta function (Whittaker and Watson, 192 7, Ch. 21) 

LIMITATIONS: 

Maximum thickness of saturation in aquifer I must not be much larger than the minimum. Validity near 
the bounding stream depends upon tne percent of aquifer penetration by the stream. 

SYMBOLS: 

See page 182 
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C - 9. NONSTEADY MOTION IN A LEAKY INFINITE HALF-STRIP PARALLEL-AQUIFER SYSTEM CONsiST-
ING OF AN UNCONFINED AQUIFER SEMIPERCHED ON A LEAKY ARTESIAN AQUIFER. THE WATER 
LEVELS OF THE TWO AQUIFERS INITIALLY ARE AT A STEADY STATE IN EQUILIBRIUM WITH 
RECHARGE W0 , AND ARE MAINTAINED AT STEADY NON-EQUAL LEVELS AT THE STREAM 

BOUNDARY DURING STEADY UNIFORM RECHARGE AT THE RATE ( W
0 

+ W). 

REFERENCE: 
Spiegel, Zane, i962, Hydraulics of certain stream-connected aquifer systems: New Mexico State Engineer 
Spec. Rept., i05 p. 

SUMMARIZED BY: 

Zane Spiegel, New Mexico State Engineer Office 

DIFFERENTIAL EQUATIONS: 

(a<~taxz)h2 + (hi-h2 )/B~ (i/k2 )(3/3t)h2 
BOUNDARY CONDITIONS: 

hi (x,o) =his h2 (x,o) = h2s 

SOLUTION: 

For qi(o,t) add: 

to the solutions found in C-8. 
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For q2 (o, t) add: 

to the solutions found in C-8. 

LIMITATIONS: 

B z+ B z 
1 2 

tanh ( B z B z 
1 2 

B z 
1 2 
f L - ( ·B z B z) W oL 

1 + 2 

Maximum thickness of saturation in aquifer I must not be much larger than the minimum. Validity near 
the bounding stream depends upon the percent of aquifer penetration by the stream. 

SYMBOLS: 

See page 182 
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Subscripts 

a,b 

k= 1(1)n 

L,o 

p 

s 
t 

x,y, z 

Symbols; units 

B 1,B2;(L) 

c 
H;( L) 

h; ( L) 

K, K'; ( L/'f) 

k; ( L 2 /T) 

L;(LJ 

M 

m, m';(L) 

Q, ~ ; ( L 3/T) 

q ; ( L 2 /T) 

R;( L) 

S ; (1/L) s 
T ; (L 2 /T) 

t; ( T) 

t'; ( T) 

u, v; ( L) 

v; ( L/T) 

v' ; (L/T) z 

W; ( L/T) 

x,y,z 

SYMBOLS USED IN SUMMARIES BY SPIEGEL 

Explanation 

Denotes that the potential is measured at a boundary. 

Denotes the potential or aquifer coefficient pertaining to the kth of n parallel 
aquifers. 

Value at a fixed point. 

Denotes the potential or aquifer coefficient pertaining to the aquifer in parallel 
with the kth aquifer of a pair of mutually leaky aquifers; for a perched aquifer, 
denotes the atmospheric pressure (zero) at the lower face of the perching 
layer. 

General space coordinate 

Time. 

Coordinate axes. 

Leakage coefficient. 

Constant. 

Hydraulic potential at a stream boundary; 

Hydraulic potential, head. 

Hydraulic conductivity of an aquifer and semi-confining bed, respectively. 

Hydraulic diffusivity, ( T / S) or ( K/ S ) . s 
Width of an aquifer. 

Defined in C- 7. 

Thickness of an aquifer and semiconfining bed, respectively. 

Total aquifer inflow or outflow. 

Aquifer inflow or outflow. 

Point on the y -axis. 

Aquifer storage coefficients (dimensionless). S, general coefficient; 
S , storage derived from expansion of aquifer and water; S , storage co-

a w 
efficient for unconfined aquifers. 

Specific storage ( storage coefficient for aquifer of unit thickness). 

Aquifer transmissivity (transmissibility), equal to ( Km). 

Time. 

Current time variable of integration. 

Hydraulic potentials. 

Effective or bulk velocity of a fluid in a porous medium, defined as the volume 
of fluid passing a unit area of gross cross section per unit time. 

Vertical velocity in a semiconfining bed. 

Areal recharge. 

Coordinates in the rectangular Cartesian system. 
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C - 10. WELL PUMPING FROM AN AQUIFER OVERLAIN BY A SLOWLY PERMEABLE BED 

Ground ·surfoce 

-----------~· · · . · · · · ~ ·. · .· Water table · 

----~--~-~~-· ~· · ·~. ·~·· ~~~-~~··~·- _·. ·_. ~-----·~! 
Slowly permeable Permeability · K1 . m' 

,~ _ ____:__;______,....1 
. 

0 
0 Peqne,ability K 

a 
-01-

Permeable · , - I"' Storage coefficient . S · m 
. . . 0 • • ' • 

/1;1; 7j Ill .7 ;~ 7 j ~ ;"77.7 ~II ~~1·1 .. 1/.1 ~71j; 11./;;;·,j,;ll;ll;llJ~l;l~~ 
REFERENCE: 

Glover, R. E. , Florey, Q. L., and Balmer, G. G., 1952, Chart for analysis of test well data in cases 
where the water-bearing sand is overlain by beds of low permeability - Oahe Unit - Missouri River Basin 
Project, Bureau of Reclamation Technical Memorandum No. 657 , Section C, p. 31-34; and Glover, R. E., 
Moody, W. T. and Tapp, W. N., 1954, Till permeabilities as estimated from the pump-test data obtained 
during irrigation wells investigations - Oahe Unit - Missouri River Basein Project, Bureau of Reclamation 
Technical Memorandum No. 657, Section T, p. 171-176. 

SUMMARIZED BY: 

R. E. Glover, U. S. Bureau of Reclamation 

DIFFERENTIAL EQUATION: 

au 
X oX - u = 

au 
an 

BOUNDARY CONDITIONS: 

u = 0 for x > 0 when 11 = 0 

u = 0 at x = xe when 11 > 0. 

SOLUTION: 

u = [ Ko ( X) Ko ( X e ) lo ( X) ] -- 10 ( Xe) 

SYMBOLS (Consistent units) : 

s r/JU 
X Br 

11 yt 

Time 

a Well radius 

b An outer radius where 

r/1 
Q 

21rKm 

K' y Sm' 
b a a 

00 

) 
'-' 
n=1 

s = 0 

x z J
1 

z (a x ) ( 1 + a z ) 
e n e n 

Q Well flow. 

J 0 (a x ) 0 
n e 
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C - ll NON-STEA DY RA DIAL FLOW IN AN INFINITE LEAKY AQUIFER 

Water table 

Sand or ponded wa ter 

I 

: I ~: -L..--L--'---'----L-

K b . 
1 

1 
1 Artesian sond . . J . :J :. . . .. · · J. 1 r · . 

7777117171 lli/7 lll~/111111177 

REFERENCES: 

Hantush, M . S., and Jacob, C. E ., 1955 , Non - ste ady radial flow in an infinite leaky aqu ifer: Am . Geo -
phys. Union Trans. , v. 36, no . 1, p. 95- 100. 
Hantush, M. S., 1956, Analysis of data from pumping tests in leaky aquifers : Am . Ge ophys. Union 
Trans., v. 37, no . 6, p. 702-14. 

SUMMARIZED BY: 

I. S . Papad opulos , New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION: 

as s as 
r ar - B 2 v at 

BOUNDARY CONDITIONS: 

s ( r, o) 0 

s (oo ,t) 0 

Lim as Q 
r - > 0 r ar = - 2 7TT 

SOLUTION: r2 00 

Q J - y - 4B 2 y 
Q e dy s = 47TT 4 7TT y 

u 

SYMBOLS: 
-1 

v T/S,(L 2T ) 

B -J T/K'/b' ' Leakage factor ( L) . 

b Thickness of artesian sand ( L). 

b' Thickness of semiconfining bed ( L) . 

K Hydraulic conductivity of artesian sand., 
(LT1) 

K' Hydraulic conductivity of semiconfining 
bed(LT-1) 

Q -1 Constant discharge of well ( L 3T ) 

W(u, ~ ) 

r 

s 
s 

T 

u 

W( u, ~) = 

Radial distance from pumped we ll ( L) . 

Coefficient of storage . 

Drawdown at any distance and at any 
time ( L ) . 

-1 
Kb = Transmissibility ( L 2T ) . 

Time after pumping started ( T). 

r 2 S/4Tt 

dy 
u 

(See Table 2 of reference ( 2) ) . 
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c - 12 FLOW TO A WELL OF VARIABLE DISCHARGE 

REFERENCE: 

Hantush, M. S., Flow to a well of variable discharge, Unpublished notes. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

STATEMENT OF THE PROBLEM: 

The problem is to find the non-steady drawdown distribution around a well completely penetrating an in-
finite leaky aquifer of limited thickness and pumping at a variable discharge defined by 

t - ti 
~ = Qc + [ ~ - Qc J e- ( ~ ) 

DIFFERENTIAL EQUATION: 

+ OS 
r or 

s 
132 v 

BOUNDARY CONDITIONS: 

Lim 
r - > 0 

SOLUTION: 

s{r,o) = 0 

s( co, t) 0 

OS 
r-8r 

If vt * < Bz 

s = 

s = 

SYMBOLS: 

B 

b' 

I( u, B) 

K' 

{ 
r Q· 

W( u, B)+ ( ~ - 1) t-t· ) 'I r z r z ) } exp { - .:pf I ( u, V vt * - { B ) 

and if vt * > Bz 

{ 
r + ( ~ t-t · ' I r z rz W(u, B) ~ -1) exp{ -7--) W(u, V{B) - vt* } 

-JT/K'/b' = Leakage factor. 

Thickness of semipervious layer. 

co J exp{- x +~~ ) dx = A partly 
u 

tabulated function. 

Hydraulic conductivity of semiper-
vious layer. 

The ultimate constant discharge of 
the well. 

Discharge at time ti generally 

taken within a few minutes after 
pumping begins. 
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r 

s 
s 

T 

t 

W{ u,/3) 

v 

Discharge at any time t . 

Radial distance from well. 

Coefficient of storage. 

Drawdown at any time at any distance 
r. 

Transmissibility of the aquifer. 

Time since pumping started. 

Time at which ~ is measured. 

A empirically obtained constant de-
fining the variable discharge ~ 
The well function for leaky aquifers, 
available in tabular form. 
T /S. 



c - 13 NON-STEADY FLOW TOA WELL PARTIALLY PENETRATING AN INFINITE LEAKY AQUIFER 

______ ~ ! ~ _W~tl!r: _ tEI:!!_e _ '- ___ _ 

. I Send or ponded water . . · 

I 

I 
--L-~-r~ ~-r~~L-L-~~~~~-

z 

REFERENCE: 

Han tush, M. S. , 195 7, Non-steady flow to a well partially penetrating an infinite leaky aquifer: Iraqi Sci. 
Soc . Proc . , v . 1, no. 1, p. 10-19. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION: 

s as 
BT v at 

BOUNDARY CONDITIONS: 

s(r,z,O) = 0 

s(<XJ,z,t ) = 0 

as as 
az ( r' 0' t ) = az (r,b, t ) = 0 

b 
Lim { Z1rKr I as 

dz } - Q r - > 0 ar 

SOLUTION: 
00 

\ cos Ln 
n1Tz 

b 
n1Tl 

sin b ( "' / ( r ) z + ( nb1rr ) z ) } w u, V B 
n=1 

r For b > 1. 5 the series can be neglected, i.e. the drawdown at large dis tances r > 1. 5 b is given 

by 
s = ...2.._ W(u, E.B) . 

47TT 
SYMBOLS: 

v 

B 

b 

b' 
K 

K' 

= T/ S 

=--..} T/K '/b ' dimension ( L) 

Thickness of artesian sand ( L). 

Thickness of semiconfining bed (L). 

Hydraulic conductivity of artesian 
-1 sand ( LT ) . 

Hydraulic conductivity of semicon-
-1 fining bed, ( L T ) . 

W( u,l3) The w ell function for leaky aquifers, 

1 

Q 
r 

s 
s 

T 

t 

widely tabulated. See Prof. Paper 104, Hantush, NMIMT. z 
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L e ngth of penet ration of well ( L). 
3 -1 Discharge of well ( L. T ) . 

Radial distance from well ( L). 

Coefficient of storage. 

Drawdown at any time t, and any point 
( r, z) of the aquifer. 

Transmissibility= Kb, (L zT- 1). 

Time after pumping started ( T). 

D e pth below top of artesian sand ( L). 



c - 14 NON- STEADY FLOW TO FLOWING WELLS IN LEAKY AQUIFERS 

. . ... : I : . . . . . . . . . . . . . . . 

. k . I I ' . .,,,.,, ~"' . . . . . . .. b . . . . : : . . . . . . . . . . . . l . 
1177771/ /IIIII Ill 'r' 717 7 II :1711111711177777/JI 

REFERENCE: 

Hantush, M. S., 1959, Non-steady flow to flowing wells in leaky aquifers : Jour. Geophys. Research, v. 
64, no. 8, p. 1043-52. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION: 

a's as arz- + r ar 
s 
B' 

BOUNDARY CONDITIONS: 

s(r,o) = 0 

s ( rw , t) = sw 

s(oo,t)= 0 

SOLUTIONS: 

s 
sw 

r 
K 0 (B) 
K ( rw) 

o B 

as 
v at 

CASE I. INFINITE LEAKY AQUIFER 

co 
e- a!-l J 2 

The above infinite integral c annot be integrated direc tly; however it can be evaluated by numerical 
integration. 

- ( rw ) Q - 2 1rTsw G a, B 
r w F or value s of G (a, B) see Table 1 and Figure 3 of reference. 

ASYMPTOTIC SOLUTIONS: 

(a) Small values of time, t < r 2 /2 5v 

s = { e xp [ ~ ( 1- E. ) J erfc [ - .::.W... ,fa -
B rw B 

+ exp [- ~w (1- ~w)J erfc [r: ,fa 
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( 1- r 
r 

J } 



Q "' 27TTsw { 2 + 
1 

exp ( - (?') z a]} 
~ 

(b) Large values of time, 

s"' 
2K ( .!::!!__ o B 

r 
W ( u, B 

v 

Q 
W( ~ ~) 

4a' B 

CASE II. CIRCULAR LEAKY AQUIFER WITH ZERO DRA WDOWN ON OUTER BOUNDARY 

BOUNDARY CONDITIONS: 

s(r,o) = 0 

s( rw,t) = sw 

s(r,t) = 0 e 

SOLUTIONS: 

+ 

BOUNDARY CONDITIONS: 

s( r, o) 0 

s(rw,t) Sw 

as ( ar re , t) = 0 
SOLUTIONS: 

+ 

Q {!if-

1T 

00 

I 
n = 1 

00 

+ 2 I 
n = 1 

CASE III . C L OSED CIRCULAR AQUIF ER 

R (~) 
3 B 

R (~) 2 B 

+ 2 

00 

L 
n = 1 
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~)a 1} BZ 

exp [ - ( € z + ~ ) a ] } n BZ 



SYMBOLS AND FUNCTIONS: 

a 

f3n 

€ n 

v 

A n 

B 

b 

b' 

c n 

E n 

erfc ( x) 

erf( x ) 

exp( x) 

G(a, rwiB) 

In ( x) 

Jn( x ) 

K 

K' 

R ( _s,.) 
1 B 

vtlr,: 

Roots of U
0

( f3n) = 0 {See Table 2 of reference. ) 

Roots of V 1 ( E ElL ) = 0 {See Table 3 of reference. ) 
o n rw 

z -1 TIS, dimension L T 

{3~ Jo(f3n)Jo (f3n~:) exp(-({3~ + 

-v;t;;;; Leakage factor ( L). 

Thickness of the artesian sand ( L). 

Thickness of semiconfining bed ( L). 

r z 
frla 

E z + ( rw ) 2 ] [ J 2 ( E ) _ J
1 

2 ( E re ) ] 
n B o n n rw 

00 
2 J 2 

e -y dy Complementary error function. 
X 

1 - erf { x) 

X 

2 J e -y
2 

dy 

0 

Error function, tables of which are available. 
---[ir 

ex Exponential function. 

A function of a and rw I B . See reference for definition and tabular values { Table 1). 

The nth order Modified Bessel function of the first kind . 

The nth order Bessel function of the first kind. 

Hydraulic conductivity of the artesian sand { LT- 1
). 

Hydraulic conductivity of semiconfining bed { LT - 1
). 

The nth order Modified Bessel function of the second kind. 

Discharge of the flowing well ( L 3T- 1
). 

K ( ~) -o B 
Ko ( -jf) Io ( i ) 

1 ( re ) 
o B 
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r 

s 
s 

s w 
T 

v•(~ 
o rw 

W( x,y) 

y ( x ) 
n 

K (~) -
1 B 

K ( re ) I (2:.... ) 
1 B o B 

I ( re ) 
1 B 

K ( re) I ( ~) 
1 B 1 B 
I ( re ) 
1 B 

Radial distance from well ( L ) . 

Radius of influence of the we ll ( L). 

Effective radius of the well ( L ) . 

Storage coefficient. 

K (~) 
1 B 

Drawdown at any time t , and at any distance r from the well ( L). 

Drawdown at the face of the well. 

Kb = Transmissibility(LzT- 1) . 

Time since the well starts flow ing ( T). 

) -

J ( Enr ) y ( ) 
0 En -o rw 

00 

J 
X 

0 

J (~)Y() 1 r o En w 
0 

The well function for leaky aquifers, widely tabulated. 
See "Tables of the function W( u,/3)" by M. S. Hantush, 
Professional paper 104, NMIMT. 

The nth order Bessel function of the s econd kind. 
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c - 15 FLOW TO AN ECCENTRIC WELL IN A LEAKY CIRCULAR AQUIFER 

s=O 

Case I 

REFERENCE: 

Sand or ponded 
water 

Semi pervious 
Ioyer 

~=0 

Case ll 

Well 

~=0 

Hantush, M . S. and Jacob, C. E., 1960, Flow to an eccentric well in a leaky circular aquifer: Jour. Geo-
phys. Research, v. 65, no . 10, p. 3425-31. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Min ing and Technology 

DIFFERENTIAL EQUATION: 

1 as --+ r ar 

BOUNDARY CONDITIONS: 

Case I Lim 
r 1- > 0 

s 
Bi 

as 
r1 ar1 

s ( r e' t) 

s as 
T at 

Q 
- 27rT 

0 

Case II Lim as 
r1 -

r 1..;,o ar1 

s(r,o) = 0 

s( r, 0) 0 as ( - r t) = 0 ar e' 
SOLUTIONS: 

Case I . Uniform head on the outer boundary 

s = Q 
27rT 

CX> 

- 2 ~ 
n = 1 

Lex> (- [( aomre) z +( -lf-) z] ) 
+ A J 0 (a r) exp -----,4------om om ue 

m = 1 

CX> CXl +II 
n=1 m=1 
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K ( re) I ( i_ )I (E...) cos n 8 
n B n B n B 

I ( ..::e.._) 
n B 

Q 
27rT 



and 
A nm 

-4 J (a 6) n nm A om 

-2J(a o) o om 

( ( a r ) 2 + ( ~B ) 2 ]312 ( a r ) 
om e om e 

Case II. Zero flux across outer boundary. 

s = _2._ { K ( E.!) + 2 1rT o B 

K 1( -If-) I
0

( t) I
0

( i) + [ ( Kn+ 1(-Jf-) + Kn_ 1( -If-) 1 In( t )In( i) cos n 9 

I1 ( ~e ) n = 1 In+ 1 ( lr) + In-1 ( ~e ) 

where, 

c nm 

c om 

( 
- (y ;m + ( -If-) 2 1 ) } 

cos n e exp ---4-:--u----
e 

4 J ( Ynm 6 ) 
n re 

( y 2 _ n 2 ) ( 1 + ( .E..e_ ) 21J 2 ( y ) 
nm Bynm n nm 

and where y nm is the mth zero of J~ 

SYMBOLS: 

0 

B 

b, b' 
I ( x ) 

v 

J ( x) v 

K, K' 

K (x) 
v 

Q 
r 

r e 

T 

e 

Eccentricity or position of well from center of the circular aquifer ( L ) . 

-../T/K'/b' = Leakage factor ( L) . 

Thickness of the artesian sand and of the semipervious layer, respectively ( L). 

The vth order Modified Bessel function of the first kind. 

The vth order Bessel function of the first kind. 

Hydraulic conductivity of the artesian sand and of the semipervious layer, respectively. 
( LT- 1) 

The vth order Modified Bessel function of the second kind. 

-1 Discharge of the well ( L 3T ) . 

Radial distance from the center of the circular aquifer ( L). 

Radius of the circular aquifer ( L). 

- 2 r 0 cos e Distance to any point from the center of the well ( L) . 

Coefficient of storage of the artesian sand. 
Drawdown at any time at any point (r, 9) of the aquifer ( L). 

Kb = Transmissibility ( L 2 T- 1 ) . 

Time since pumping started { T). 

re 2 S f4Tt . 

Polar angle measured from the pole at the center of the circular aquifer. 
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c - 16 MODIFICATION OF THE THEORY OF LEAKY AQUIFERS 

···sand · .. · ·. ··.·. · . . 
ti ~

-··~·-

i#~Af 
Case I Cnse li Case ill 

REFERENCE : 

Hantush, M. S., 1960, Modification of the theory of leaky aquifers: Jour. Geophys. Research, v. 65, 
no. 11, p. 3713-25 . 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS: 

Case I 

Upper Semipervious Layer ( 1) Lower Semipervious Laye r ( 2) 

~ 
az 2 v' 

s 1 (r,z,O) 

s 1 (r,z]t) 

s1 (r, z 1, t) 

as1 
at 

0 

0 

s ( r, t) 

as K' a 
ar + T az 

s ( r, 0) 0 

s(oo ,t)= 0 

(a) ~ az 2 

(b) s2 (r,z,O) 

(c) s 2 (r,O,t) 

(d) s 2 (r,b",t) 

Main Aquifer ( 3) 

K" a 
s 1 (r,z 1,t) - T az s 2 (r,b",t) 

Q Lim 
r - > 0 

. as ( r, t) r-ar - 2 1rT 

Case II 

!..~ 
v" at 

v 

0 

0 

s( r, t) 

as 
at 

Same as Case I, the conditions ( 1c) and ( 2 c) being replaced respective!) by 

Case III 

a 
az st(r,z',t) 

a 
az s 2 (r,O,t) 

0 

0 

Same as Case I, the condition (2 c) being replaced by 
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a 
az s 2 (r,O,t) 0 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 



SOLUTIONS: 

Asymptotic solutions for relatively small and large values of time are obtained. These asymptotic 
solutions can be used to interpolate for the intermediate range of time. 

(a) b' S' and b"S" 
For t < 10K' t < 10K1

' 

For all three cases 

s = ~ H( u, f3) 47TT 

Q [ 1 - e nt erfc ( --fiit ) l q = L 

v = v [ 1 2 qL 
l --- + Qnt L -{nirt 

(b) For large values of time 

Case I 

For t > 5b'S' and t > 5b"S" 
If'" ~ 

Q 
W{ut5 1,a) and qL Q [1 - exp ( - vt a 2 I r 2 t5 1 ) ] s = 47rT t51 

Case U 

For t lOb'S' and t > 10b"S" > -K-,- ~ 

= 
Q w( u tS 2 ) and = Q S'+ S" s 47rT qL S + S' + s" 

Case III 

For t > 5b'S' and t 
10b"S" 

~ > ~ 

Q 
W{ut53' ryK:jb' and Q l 1 - exp{- vK'tlb'TtS 3 )] s = 47rT q = L t53 

The values of s s 
in the intermediate range can be estimated by plotting Ql 47rT versus log u QI4?TT 

or log t for the two ranges of time given above and by joining the two branches by inspection. 

SYMBOLS: 

a 

f3 

v 

v' 
II v 

b, b', b" 

r -J K'lb'T + K 11 lb 11 T 

(114)r"A 

1 + ( s I + S") I3S 

1 + (S'+S")IS 

1 + ( S" + s '13) Is 

= -JK'ib' S' s + 

TIS 

K'b'IS' 

K"b"IS" 

-v K'~b" 
( LzT-1) 

( LzT-1) 

( LzT-1) 

S" 
s 

Thicknesses of main aquifer and of upper and lower semipervious layers , respectively. 
( L) 
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erf( x) 

erfc ( x) 

H( x,y) 

K,K',K" 

n 

Q 

s, s•, s" 

t 

T 

u 

W(x) 

W(x,y) 

z 

z' 

X 

J.-1 z 
e -'( d'( = The error function, available in tabular form. 

- erf( x) = The complement of the error function. 

!00 -'( 

~ erfc (y-JX I -./'( ( '(-X) ) d'( A function, tables of which can be found 
in reference. 

X 

Hydraulic conductivities of the main aquifer and of upper and lower semipervious layer, 
respectively ( LT- 1 ) . 

n.z/S (T- 1). 

Constant well discharge 

Rate of leakage added to main aquifer ( L 3T - 1 ). 

Radial distance from center of well ( L) . 

Drawdowns at any time and any point in the main aquifer and the upper and lower semi-
pervious layers respectively ( L) . 

Storage coeffic ients of the main aquifer and of the upper and lower semipervious layers, 
respectively. 

Time since pumping started ( T). 

K b = Transmissibility of main aquifer ( L zT - 1). 

rz I 4 vt 

Qt = Total volume withdrawn during pumping ( L 3). 

Total volume withorawn from leakage ( L 3). 

The well function for nonleaky aquifers, available in tabular form. 

X 
00 

1 exp ( - '( - Yz ) d'( = The well function for leaky aquifers available in tabular 
4'( '( 

X 
form (see Prof. Paper 104 by M. S. Hantush, NMIMT) . 

Vertical coordinate ( L). 

b"+b (L) . 

b"+ b+ b' (L) . 
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c - 17 INTERCEPTING DRAINAGE WELLS IN ARTESIAN AQUIFER 

K b Artesian sand 

X 

REFERENCE: 

Hantush, M. S., 1961, Discussion of- Intercepting drainage wells in artesian aquifer by D. F. Peterson: 
Am. Soc. Civil Engineers Proc., v. 87, no. IR 4, p. 79-81. 

SUMMARIZED BY: 

I. S. Papadopulos, New Mexico Institute of Mining and Technology 

DIFFERENTIAL EQUATION : 

z 
B2 v 

az 
at 

where 7- = h(x,t )- h 
X 

and h 
X 

h e -x/B 
0 

is the initial steady head distribution. 

BOUNDARY CONDITIONS : 

z ( x, 0) 

z (oo , t) 

z ( O,t) 

SOLUTION: 

h( X, t) - h z = 
X 

.6q q(O,t)-q 
0 

t 

0 

0 

h - h n o 

h - h { n 0 
2 

T (h., - h0 ) 

B --J1f 

e-x/B erfc ( x/2B _ ,. 

{ 
2 -T e 
~ + ,. 

.6V I .6qdt = SB(hn-h
0

) [(0. 5+ T
2 )er.f(r) + 
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rl + ex/B 

erf ( ,-)} 

,. 2 -r e 

erfc 

( qo 

( xf2B + ,. ,.) } 
~ 

B 



SYMBOLS: 

B 

b,b' 

erf(x) 

erfc ( x) 

h( x , t) 

h 
X 

h 
0 

h 
n 

K,K' 

.6q 

qo 
q( 0 , t) 

T 

t.V 

v 

-.,/T / K'/b' = Leakage factor ( L). 

Thickness of artesian sand and semipervious layer, respectively ( L). 

The error function. 

1 - erf( x) = The complement of the error function. 

Head at any point at any time t ( L). 

Initial steady state head distribution ( L). 

Initial head in channel ( L). 

New head in channel ( L). 
-1 Hydraulic conductivity of artesian sand and semipervious layer, respectively ( LT ) . 

q(O,t)-% . 

Initial rate of seepage or channel loss ( L 3T- 1/ L) . 
-1 

Rate of channel loss at time t ( L 3T /L) . 
z -1 Kb = Transmissibility of artesian sand ( L T ) . 

Time since sudden change from h
0 

to hn in channel ( T). 

Total volume of seepage during a period t (L 3/ L). 

TIs ( L ZT - 1 ) . 

-.,/vt/B z 
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c - 18 DEPLETION OF STORAGE, LEAKAGE, AND RIVER FLOW BY GRAVITY WELLS IN SLOPING 
SANDS 

a 
Stream E 
~ 

G • 
Xo 

... .. 
(I) 

t------~~x 

layer 

-: A"ri~~,c,;,· ... ~~d·:: .. : ... : ·. ·. . . . · .. · .. 
REFERENCE: 

Hantush, M . S., Depletion of storage, leakage and river flow by gravity wells in sloping sands, unpublish-
ed notes . 

SUMMARIZED BY: 

M . A. Marino, New Mexico Institute of Mining and Technology 

STATEMENT OF THE PROBLEM: 

To determine the depletion of storage, leakage, and river flow by gravity wells in sloping sands . 

Case I 

A well upstream from a river cutting across the natural flow . 

SOLUTIONS: 

1. Drawdown equation. 

D 2
- D 2 = ~ exp (- xf3- Xo ) {w(u,ar) - W(u',ar•)} o 27rK 

2. Rate and total volume of river depletion. 

0. 5 Q exp ( ~0 ) { exp (ax0 ) erfc ( li') + exp ( -ax0 ) erfc ( li)} 

v r 

(a) Expressions for short times: 

For t < 0.09 v/a 2
: 

0 

(b) Expressions for long times: 

v r 4 Qt i 2 erfc 
0 

( X 

~ 

For a ----J0_ > 1 + -,J 1 + 0. 5 ax0 qr :: Q exp [ - ( a - 1/(3) x0 ] 

Q t 0 ( 1 - 2:~to ) e xp [ - (a - 1/ (3) x 0 ] 
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( 2) 

( 3) 

( 4) 

( 5) 

( 6) 



3. Rate and total volume of storage depletion. 

Q exp (- ~; ) { 1 - 0. 5 [ exp ( 
2
; 0 ) erfc ( 'Y') + erfc ( 'Y)]} ( 7) 

( 8) 

(a) Expressions for short times: 

< 0. 3: V "' Q t 0 { 1 - (3 h' exp ( 2x0 )erfc ( 'Y') - 'Yo erfc { 'fo)l} 
s 2 ..,.fot; 0 /3 0 

( 9) 

For a~ < 0. 3 : V s "' Q t 0 [ 1 - 4 i 2 erfc ( Xo ) ] 
~ 

( 1 0) 

(b) Expressions for long times: 

For a ~ > 1 + ....../ 1 + 0. 5 a x0 

qs = Q exp (- ~\) { 1 - exp [ x0 ( lr -a + 2:/3 2 )] } ( 11) 

QB
2 

{ vt V s = -v- [ 1 - exp - ( iif ) ] - [ 1 - exp ( - ;~ 2 ) ] exp [- x0 ( a-1/ /3) ] } 

( 12) 
4. Rate and total volume of leakage depletion. 

Case II 

A well downstream from a river cutting across the natural flow. 

..... . . · .. : . : : ... · .... :. 
·:Artesian . sand:: 
·. :. · .. :··.·.:: :··::.-:: 

( 13) 

( 14) 

b 

Figure b represents a sloping leaky water-table aquifer, with the aquifer sloping downward 
in the direction of positive x . If the sine of the angle of dip of the system of Figure a is reversed; 
that is, if the parameter (3 is replaced with ( -/3), the present flow system results. Consequently, 
if f3 in the equations of the previous article is replaced with { -/3) , the resulting equations will per-
tain to the present flow system. 
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Case III 

A well near a stream cutting along the natural flow. 

y 

i x,y):= --
(x., y.J .--

Stream 

Direction 
of natura I 
flow 

y 

-semi-confining layer 
~K',b' . 

• . X .. 

· Ar.tesian . sand · 

This flow s ystem is shown schematically in Figure 2 . The drawdown distribution around a well 
steadily discharging from s uc h a system is given by 

Q ( x-xo l{w( ) - W(u",ar" l} 
2 1rK exp - -f3-- u, ar 

Analysis similar to that followed in the first article shows tha t depletions of storage, of l e akage, and 
of river flow are not affected by the slope of the sand as long as the stream is effectively infinite in 
l ength . In other words, in so far as the rate and total volume of depletion of storage, leakare, and 
river flow are concerned, the present flow system behaves as if the aquifer were horizontal. Con-
seque ntly, the required expressions for the rate and total volume of depletions pertaining to the 
present flow situation are obtained from their counter-parts in article one by letting i = 0, that is 
1/ (3 = 0, and replacing x0 with y0 , observing that the c ounterparts of ( 9) and ( 10} are the 

same and can be more readily obtained by using ( 10). 

Spec ial Cases 

For a sloping non-leaky aquifer, the required expressions are obtained from their counterpar ts of the 
previous articles by letting 1/B --> 0; those for a horizontal leaky aquifer are obtained by 

letting 1/ (3 --:;,. 0 ; and those for a horizontal non-leaky aquifer are obtained by letting a --:;,. 0 
in which case, the expressions for Vr, V s• and v1 will be the same as those previously given for 

the range a ~ 

SYMBOLS: 

< 0. 3 . 

B 

b 

b' 

D( x , y, t) 

D ( x,y, t) 
0 

erf ( x} 

erfc(x} 

in e rfc ( x} 

-j Kbf ( K'/b') = Leakage factor. 

0. 5 ( D0 + D), a weight average of the depth of £aturation, which, for r > 1. 5 D0 , 

may be taken equal to D0 and for r < 1, 5 D0 equal to 0. 5 { D0 + Dw). 

Thickness of the semipervious layer. 

Depth of saturation in the water-table aquifer ( "' the height of the water table above 
the base of the sloping sand) at any time and at any point ( x, y}. 

Depth of saturation that would prevail in the water -table aquifer if the well were not 
pumped. 

2 J X, tabular val ues of which are exp ( - f3 z) df3 = The error function of 

0 
available (Dwight, 1961 ; Carslaw and Jaeger, 1959) . 

1 - erf( x} = The complement of the error function, tabular values of which are avail-
able ( Carslaw and Jaeger, 1959). 

The tangent of the angle of dip of the sloping sand; it is positive for a bed sloping upward 
in the direction of positive x , and negative if the bed is sloping downward in the dir-
ection of positive x . 

00 

f l
.n-1 o 

erfc ( (3} d(3 , with n = 1, 2,. . . , and i erfc ( x ) = e rfc ( x } the nth 
X 
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K,K' 

K'/b' 

Q 

r 

r' 

u' 

Vl, Vr, Vs 

W(u,w) 

(X, y) 

a 

y 

y' 

Yo' 

0 I 
0 

€ 

v 

repeated integral of the error function, which is available in tabular form (Kaye, 1955, 
Carslaw and Jaeger, 1959). 

The hydraulic conductivities of the water-table aquifer and the semipervious layer re-
spec tively. 

The leakage coefficient { or leakance) . 

The constant discharge of the well. 

The rate of leakage depletion, or the rate of that part of the well discharge that is de-
rived from induced leakage. 

The rate of river depletion, or the rate of that part of the well discharge that is derived 
from induced infiltration from the river and/ or from the natural flow that would have 
discharged into the river if the well were not pumped. 

The rate of storage depletion, or the rate of that part of the well discharge that is de-
rived from storage in the water-table aquifer. 

~ ( x - xQ) z + ( y - y 0 ) z = Radial distance to any point { x, y) measured from the 

center of a well located at ( x0 , y0 ) . 

~ ( X + XO) z + ( y - y 0) Z ' 

Time since pumping began. 

Period of continuous pumping. 

r 2 
/ 4vt 

r' 2 fud0 u" = r" 2/4vt 

Respectively, the total volumes by which leakage source, river flow, and aquifer 
storage are depleted during a period t 0 of continuous pumping. 
co z 

! ~ exp ( - y - ~) dy = The well function for leaky aquifers, tabular values of which 
y 4y 

are available ( Hantush, 1956, 1963; Walton, 1962; Schoeller, 1962). 

Rectangular coordinates. 
The effective distance from the center of the well to the river site as indicated in Fig. 

and Fig. 2 respectively. 

Location of the well center . 

~1/ (P + 1/Bz 

2 b/ i 

( xo/ --,f40. ) -~ 

( x0 / --.,/40. ) + ~ 

The value of y after replacing t with t 0 

The value of y ' after replacing t with t 0 

( x 0 I ....,J4"0. ) - a ....,Jvt 

( x0 / ~)+a ....,[0. 

The value of 0 after replacing t with t 0 

The value of 0 1 after replacing t with t
0 

Specific yield of sloping sand. 

Kb /€ 
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c - 19 EFFECT OF WELL FIELD OPERATION OVER AN AREA 

(Jt,y) 

REFERENCE: 

Hantush, M. S., Effect of well field operation over an area, unpublished notes. 

SUMMARIZED BY: 

M. A. Marino, New Mexico Institute of Mining and Technology 

An estimate of the effect of a large number of wells on the water levels within and outside the well field 
may be obtained by idealizing the problem by assuming that the pumping of the well field is uniformly dis-
tributed over a circular area of radius a within which most of the wells are located. Such a situation 
may be effectively realized if pumping for irrigation and drainage is accomplished by use of a large number 
of wells distributed throughout the area. 

For leaky aquifers without storage in semipe rvious layers, the drawdown expressions during steady-state 
flow, are as follows: 

For r < a: 

For r > a: 

47rTs = 4V(B/a) I 1 (a/B) K0 (r/B) 

For nonleaky aquifers, the corresponding expressions are : 

For r < a and t > 0. 4 r z / v 

4 7rTs 

For r > a 

4 1rTs 

v{w(ua) + (1/ua) [1- exp(-ua)l- (r/a)zexp(-ua)1 

and t > 0. 4 a z f v : 

V { W( u) + ( 0. 5 ua) exp ( -u) l 

If the well field taps a horizontal water-table aquifer, the corresponding expressions are obtained by re-
placing ( 4 7rTs ) with 27rK ( D z - i5 z ) . 

0 
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SYMBOLS: 

B 

b 

b' 
D 

K,K' 

K'/b' 

K
0

( x}, K 1( x) 

s 
T 

T 

v 

v 

v 

Leakage factor -..)Kb/( K'/b') for artesian aquifers . 

,/K( D 0 + D )/2( K'/b') for water-table aquifers . 

Average thickness of leaky aquifers. 

Thickness of a semipervious layer of leaky systems . 

Height of water table above base of aquifer . 

Initial depth of flow in a water-table aquifer. 

Zero and first order modified Bessel functions of the first kind . 

Hydraulic conductivities in a main aquifer and in a semipervious layer respectively. 

Coefficient of l eakage . 

Zero and first order modified Bessel functions of the second kind . 

Storage coefficient of an artesian aquifer. 

Kb = Transmissivity of artesian aquifers. 

K Do = Transmissivity corresponding to initial depth of flow in a water-table aquifer. 

Time 

Total discharge of the well field. 

Specific yield of the aquifer. 

Kb for water-table aquifers. 

T/S for artesian aquifers. 
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APPENDIX D 

TRANSIENT FLOW THROUGH POROUS MEDIA- UNIQUENESS OF SOLUTIONS 

x,y 

r 

t 

- . q = u.:_ + vJ. 

Daniel Dicker 

Department of Engineering Analysis 

State University of New York 

at Stony Brook 

Cartesian coordinates. 

Time. 

where K4J is the velocity potential. 

-KV4J, velocity. 

T) ( x, t) Free surface -two dimensional case . 

~ ( t) Free surface - one dimensional case. 

€ Porosity. 

K Hydraulic conductivity. 
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TRANSIENT FLOW THROUGH POROUS MEDIA -UNIQUENESS OF SOLUTIONS 

In the study of engineering problems involving differential equations the question of uniqueness of solutions 
takes on special significance when solutions can be obtained only by approximate techniques. For when a prob-
lem is known to have a unique solution the possibility of the approximate method converging to an incorrect 
solution does not exist. On the other hand, when analytical solutions are available but not a uniqueness theo-
rem, one can frequently employ arguments based on the physics of the problem to discard extraneous solutions. 

For many of the problems of flow through porous media a uniqueness theorem is available, even for the 
transient cases. This is a consequence of the fact that the governing differential equation is the Laplace equa-
tion 

So that Green's formula becomes 

J a¢ 
Jc¢ an ds . ( 1 ) 

See ( 1] '' for an application to a steady state problem. ) 

To show how this theorem is useful in a particular transient problem, consider the unsteady flow under a 
a barrier , e. g., row of sheetpiling (Fig. 1) where the unsteadiness is caused by a time (and possibly space) 
varying head both upstream and downstream of the tarrier. The governing differential equation is \j 2 ¢ = 0, 

and the boundary conditions are as follows: on the face of the impervious stratum and on either face of the bar-

rier there is no normal flow, i.e., ~~ = 0 ; at the surface of the sand ¢ = hu ( x, t) to the left of the barrier, 

and to the right of the barrier ¢ = hd ( x, t). It is clear, from physical considerations, that for large lX I 

the direction of flow in the sand tends to be vertical. 

To prove that there is not more than one solution satisfying the above boundary value problem, we assume 
the converse, namely that there are two solutions ¢ 1 ( x, y , t) and ¢2 ( x, y , t) satisfying all the conditions . 

Define a new fu nction equal to the difference , 

1 = ¢ - ¢ 1 2 ( 2) 

This new function also satisfies ~! = 0 on the impervious boundary and on the barrier, and since each 

of the functions ¢ 1 and ¢2 satisfies the given boundary conditions on the sand surface equation ( 2) gives 

'¢ = 0 on the sand surface. Now consider vertical lines at large distances from the barrier. From what was 

said previously it is clear that both ~= 1 and a¢2 
ax must tend to zero on these lines as 

Hence on these lines the difference must also go to zero. 

-

Impermeable · · · . 

I I I I I I~ IiI;:;;, I I I~ IiI I I I~ I I I 1.1 I; I I I I I I 
Fig. I 

* Numbers in brackets ( 1 refer to references at the end of this paper. 
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Equation ( 1) is now appl ied . Figure 2 shows the boundary conditions on 1 (or ~! ) , and indicates 

the path of integration for the right hand side of Equation ( 1). Consider this line integral 

( 3 ) 

As seen in Figure 2 on each segment of the boundary either "¢ = 0 or 

to zero, leaving, from ( 1) 

0 . Hence ( 3 ) is identically equal 

( 4) 

But ( \}'"$) 2 = 1 2 + 1 2 
, that is, a sum of squares, so that the only way ( 4) can be satisfied is if each 

X y 
term is ze ro ; "¢ = 0 , 1 = 0 , everywhere . Hence 1 can be at most a constant. But, since 1 = 0 on the 

X y 
sand surface, the constant must be zero. 

,-
1 

t 
a• =O J 
.Yn "-

L 

•=0 •=0 
==r-r--------,-.r---=---=---~~~--~~ 

~-Lo...J. 1-aq =O 
an 'GJ an 

.ti =0 an 

---~--~----
Fio. 2 

l 
I 
1-- a• =O -+J an 

It has thus been shown that for this transient problem only one solution can exist. This technique is quite 
general, however, and is applicable to many problems of flow through porous media, transient or steady state, 
p rovide d the boundaries are known a priori, i. e. , confined flow. 

For problems involving a free surface there is, however, no general uniqueness theorem. This stems in 
part from the fact that since the location of the free surface is a priori unknown, an additional condition must 
be given for that part of the boundary which is the free surface, and these lead to a non-linear condition which 
makes for considerable mathematical difficulty. More important, however, is the fact that for the boundary 
value problem as customarily posed, there is frequently more than one solution so that additional physical con-
ditions must be specified to make the mathematical problem unique. 

Consider a problem with a free surface where the potential is time dependent, q, = q, ( x, y, t) , and the 

free surface, TJ = TJ( x, t ) is also time dependent, Figure 3. The two boundary conditions on the free surface 

are ( see [ 2, 3 ] 

q, ( x, TJ ( x ) , t) = Ky = K TJ ( x, t) 

since the pressure is zero, and a kinematical condition 

These can be combined to give 
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t= cons!. 

Fig. 3 

To demonstrate non-uniqueness we consider a one dimensional problem, Figure 4, where Q cfs per square 
foot enter a basin of large lateral dimensions causing water to percolate through the soil and the height of water 

in the basin to rise. Let ~ ( t) represent the distance from the top of the basin to the water surface in the 

soil. Utilizing {5) and(6). where ~(t) replaces n{x,t) and ~= ~{y,t), andfollowingPolubarinova-

Kochina [ 4] one obtains the following ordinary differential equation for the free surface 

~ d~ 
~(1- E)+ Qt dt 

K 
€ 

( 7} 

with the initial condition ~ ( 0} = 0 . The simplest way to attack this problem is to assume a solution of thE 

form ~ = ct where c is to be determined. After substituting in the differential equation one finds that the 

above assumption is valid provided 

K 
c = 2€ ( 1 - €) ± 2 

Kz 
- ( 1 - €) z + 4Q 

€ z ( 8) 

For either the plus or minus sign in { 8) above, both the initial value and the differential equation are satisfied. 
Hence we see there are two possible solutions to the problem. For this relatively simple case the proper 
choice is obvious from physical conditions, since the minus sign would yield a solution where the free surfaces 
rises with increasing time. However, for more complicated problems, e . g., problems involving two or three 
space coordinates as well as time, where analytical solutions are not available and where a solution is sought 
by say a finite difference scheme it may, in fact, be quite difficult to ascertain which of several choices is the 
correct one for the physical problem at hand, or as is more likely, the investigator may be unaware that more 
than one solution satisfies the given conditions, and that his method may be producing results for a problem not 
physically correct. 

An illustration of '.i case where the proper choice is not immediately obvious concerns the two-dimensional 
steady seepage out C' . a canal. This problem is treated in both Muskat ( 5] and Polubarinova-Kochina [ 6] . 
In these references, it is shown that for essentially the same canal shape there are two distinct solutions for 
the free surface, and thus the potential fields. A sketch indicating the free streamlines for each of these solu-
tions is shown in Figure 5. 

Q cfs/sq ft 

J~ltll~ltt' 

j (t) 

Fig. 4 
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To further study these solutions it is first noted that for the flow field between the free surfaces, Solution 
I satisfies the condition 

1
. __.;, 
liD q 

r .....;.oo 

and that Solution II satisfies the condition 

- > lim q 

r->oo 

const ( 9} 

0 ( 1 0} 

Consider next the transient motion starting from an assumed initial condition. It seems plausible that 
since gravity is the cause of any fluid motion, initially the flow typified by Solution I will prevail, that is, the 
flow will be essentially vertical as given by ( 9} . However, since there is no real semi-infinite permeable 
medium, eventually an impermeable stratum will be reached by the water envelope and the streamlines will be 
deflected laterally, ultimately ( i.e. , as t --.;> oo ) reaching Solution II. 

Hence we see that Solution I is not in consonance with the real physical earth, and if we admit of a barrier 
to vertical flow, even one located at infinity, Solution II alone can be considered as the steady state solution to 
this problem. Nevertheless, Solution I, though a transitory stage in the development of the steady state flow 
field, may be taken as the "steady state" solution if the time under consideration is small as compared to the 
length of time it takes for the water envelope to reach the impermeable stratum and to be deflected appreciably. 

Fig. 5 
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APPENDIX E 

LIMITATIONS OF DUPUIT-FORCHHEIMER ASSUMPTION IN RECHARGE AND DRAINAGE 

~------------- w ------------------~ 

Water table 

Act ive reQian 

0 

! Pa ssive reQion 
Impermeable 

SUMMARIZED BY: 
Fig. 

Herman Bouwer, Research Hydraulic Engineer, U. S. Water Conservation Laboratory, Tempe, Arizona . 

DIFFERENTIAL EQUATIONS: 

Using the Dupuit-Forchheimer assumption, the following equations have been presented in the literature to 
describe the flow in connection with ground-water mounds 

a. circular mounds 

b. two-dimensional mounds 

where t = time 

V = fillable or drainable porosity. 

KD v + 

The equation for the two-dimensional mounds applies also to the case of parallel drains in land drainage . 

DISCUSSION: 

Use of the Dupuit-Forchheimer assumption yields solutions that imply linearity between total flow rates , 
Q, and D . Because of the frequent application of the Dupuit-Forchheimer assumption ( D-F assumption) in 
the literature pertaining to ground-water mounds and recharge, an examination of the validity of the D-F as-
sumption is in order. 

As with drainage of land by means of parallel drains, the direction of the streamlines under ground-water 
mounds is initially downward, changing to more horizontal, and finally more upward, if D is sufficiently la~·ge. 

The zone where the streamlines terminate is usually not much lower in elevation than where the streamlines 
originate. Thus, flow systems in connection with drainage by parallel drains and with ground-water mounds 
tend to exhibit an active zone in the upper region of the water-bearing material and a passive zone in the lower 
region. Therefore, starting with a small value of D , increasing D will increase Q until the active region 
is fully developed, after which Q will remain unaffected by further increases in D. This relationship is 
schematically shown in Figure 2, where Q initially increases linearly with D ( D-F assumption valid ) but 
becomes essentially constant at larger D-values (D-F assumption no longer valid). The point D where Q 
remains essentially unaffected by further increases in D can be estimated from graphs presente<a in refer-
ences 1 , 2, and 3, as follows 

a. for circular mounds D 0. 75W c 

b. for two -dimensional mounds D w c y 
c . for parallel drains D 0.2S c 

where W = diameter or width of mound or percolation zone 

S = distance between parallel drains. 

!._/ Based on figure 3 in reference 3, which is constructed from data by S. B. Hooghoudt . 
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The difference between the straight line and the curve in figure 2 is the error due to use of the Dupuit-
Forchheimer assumption, an error which can be quite large if D is not small compared to W or S. 

Q 
Dupuit- Forchheimer 

D 
Fig. 2 
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