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The theoretical behavior of hygroscopic aerosols in an environment typical of cloud base and sub-cloud 
regions is reviewed. Particular attention is paid to an evaluation of the appropriateness of a variety of 
assumptions typically made in the treatment of aerosol to cloud drop transitions. It is found that the ideal 
assumptions associated with the solute modification to surface vapor pressure involves significant errors 
for the small CCN. While small hygroscopic aerosols are well characterized by their equilibrium size, the 
slow response times of larger aerosols make them poor candidates for description by equilibrium theory. 
Non equilibrium effects are quantified as a function of size. The activation process is also considered 
for a variety of specified supersaturation fields. In general the activation of hygroscopic aerosols is not 
instantaneous, the lag time associated with activation is particularly important for the larger aerosols. 
The implications of these findings on numerical cloud models is discussed. 

1 Introduction 

The dynamic interaction of hygroscopic aerosols with their environment has been modeled in some detail 
since Howell's (1949) hand calculations of the growth of a distribution of cloud droplets existing in moist 
air cooled at a uniform rate. Another seminal paper on the interaction of aerosols with their environment 
is that of Mordy (1959) which brought Howell's calculations into the computer age and extended their 
considerations to study the effects of larger aerosols, varying updraft velocities, and differing aerosol 
number concentrations. 

Subsequently aerosol studies have progressed and received financial support over time as they form a 
critical link in studies of visibility (Hanel, 1976), cloud precipitation efficiency and weather modification 
(Hobbs, Smith and Radke, 1980), or cloud radiative properties (Twomey, 1974, 1977). The last point 
is particularly relevant to current research as a change in the radiative properties of clouds can have 
significant climatic implications (Manabe and Wetherald 1967, Cess and others, 1984). It will be from 
this latter perspective that I examine the processes surrounding the transition of solution drops or haze 
particles to cloud drops. 

In any attempt to numerically simulate the interactions of aerosols and cloud microstructure a correct 
simulation of the wet aerosol to cloud drop transition is critical. In this study I plan to address this 
issue in several steps. The first of which is presented here, where I will review in some detail the 
interactions between individual solution drops and an environment characteristic of the cloud base or 
sub-cloud regions of stratocumulus clouds. This study is conducted primarily from the perspective of the 
Ammonium Sulfate aerosol which is thought to dominate the activation process for marine stratocumulus 
clouds (Dinger and others, 1970). In particular I have identified (see Table 1) a set of five sample sizes 
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through which I will quantify many particular aspects of the mass dependent behavior of aerosols in an 
environment where the relative humidity approaches and exceeds saturation. 

Table 1: Size table for sample set of five ammonium sulfate salts. 

II CCN 1 CCN 2 CCN 3 CCN 4 CCN 5 
Dry Mass (g) 4 X 10-ls 4 X 10-17 4 X 10-16 4 X 10-15 4 X 10-14 

Dry Radius (cm) 8.14 X 10-7 1.75 X 10-5 3.78 X 10-5 8.14 X 10-6 1.75 X 10-5 

In subsequent parts of this study I hope to look at: (1) The interaction of a distribution of droplets 
with an evolving vapor field. (2) The effect on the activation process of random distributions of solution 
sizes for a specified solute mass, and small scale fluctuations in the supersaturation field on the droplet 
size. (3) Parameterizations of the activation process and their applicability for various modeling studies. 

The outline of the remainder of this study is as follows: In Section 2 I review the behavior of 
hygrosocpic aerosols in equilibrium with their environment, in particular I examine the validity of a 
number of assumptions commonly made in the equilibrium treatment of aerosols. Section 3 looks at 
details of aerosol growth toward equilibrium and activation under a variety of conditions. Section 4 is 
a summary in which the implications of the previous sections' conclusions on numerical cloud models is 
discussed. 

2 Equilibrium considerations for hygroscopic aerosols 

The equilibrium between multiple phases and constituents in a thermodynamic system is given by mini-
mizing the internal energy, U, or maximizing the Entropy, S, of the heterogeneous system. Mathemati-
cally this can be expressed in term of the variation of the extensive variables: 

(6S)u,V,n,r:::; O, ( oU)s,V,n,r 0 

where V is the volume of the system and n1c is the amount of constituent k, both of which are kept 
constant during the variation. 

In terms of the intensive variables this equilibrium condition requires that pressure, temperature 
and chemical potential remain constant across a surface of phase separation. These separate conditions 
are commonly referred to as mechanical, thermal and chemical equilibrium respectively. Thus for the 
system to be in thermodynamic equilibrium it must necessarily be in chemical, thermal and mechanical 
equilibrium, conditions of which require for a curved interface, two phase, two species system: 

T" = T' (1) 

p" I 20' (2) = p+-r 
µ1 = µ~ (3) 
µ; I (4) = µ2, 

Where the superscript primes designate different phases and the subscript numerals denote the differing 
chemical constituents. The surface pressure, c,, modifies the pressure along the surface of a drop of radius 
r, and in general is a function of temperature and solute concentrations. 
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2.1 The generalized equilibrium relationship 

A consideration of pressure balance yields Kelvin's equation for equilibrium between a drop in a vapor 
field, while equating chemical potentials across surfaces of phase separation yields the modifying effect of 
small concentrations of solute on the equilibrium vapor pressure over the drop. Considered together they 
yield the well know relation for equilibrium between an aqueous solution drop of radius r and humid air: 

er ( 2cr ) - = aw exp --- . e6 R11Tpwr 
(5) 

Where er is the equilibrium vapor pressure over a drop of radius r, e. is the saturation vapor pressure 
measured with respect to an infinite plane of pure water, aw is the water activity of the solution drop, cr 
is the surface tension between the solution drop and the air, Pw liquid water density, Rv the gas constant 
for water vapor, and T is temperature in Kelvin. In the derivation of the above equation 1 all that was 
neglected was the enthalpy difference between the two phases and the specific volume of the liquid phase 
in comparison with the specific volume of the vapor phase. Both are excellent approximations. 

2.2 Departures from ideality in the solute effect 
In Equation (5) the presence of the factor aw is a departure from most approaches which use the van't 
Hoff factor i and the ratio of the solute mass to the mass of water as an exponential modifier to the 
equilibrium vapor pressure over the drop. This results from only considering ideal solute interactions 
with the vapor field at the surface of the drop. Following Hanel (1976)2 the correct formulation of the 
water activity for a solution drop can be constructed in terms of a number of empirical factors. Commonly 
the cloud physics literature speaks of the van't Hoff factor from which the following form of the water 
activity aw follows, 

(6) 

where Mis the molecular weight of solute (subscripts) or water (subscript w), m designates mass, and 
n designates mole number. Alternatively, physical chemists tend to prefer a description in terms of the 
practical osmotic coefficient, cI> •: 

( 
Mw ma) aw= exp -vt.- • - , 
Ma mw 

(7) 

with v representing the number of ions a salt molecule dissociates into. The latter is a preferable 
description since values for it are more accessible (Robinson and Stokes, 1959) and it doesn't suffer from 
the ambiguity of definition which characterizes i, a point which we shall return to shortly. 

For sufficiently dilute solutions Equation (6) above can be approximated: 

nw 1 . n6 ( • n6 ) ---. - ~= - i- exp -i-
nw + in. nw nw 

( .Mw m•) =exp -i-•- . 
Ma mw 

(8) 

From a comparison of approximation in Equation (8) and the relation of Equation (7) one is tempted 
to form the equivalency i = vt •. This equivalency was used by Byers in his definition of a factor iByera 
which is often confused with the van't Hoff factor but is actually via and only reduces to an equivalency 
with the van't Hoff factor for sufficiently dilute substances as discussed above (See Kunkel 1969, and Low 

1 See Pruppa.cher and Klett chapter 4 - 6 for a much more detailed discussion of these points 
2 Also see Low, 1969a,b for original comments on this issue. 
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1969). Furthermore, for sufficiently dilute substances t., approaches unity so that i approaches 11, and 
Equations (7) and (8) reduce to, 

aw exp (-11 Mw · m.,) . (9) 
M., mw 

This then is the manner in which the solute effect on the equilibrium surface pressure over a solution drop 
is accounted for in many introductory texts. It offers the great advantage of having the modification of 
the vapor pressure over the drop depend logarithmically in direct proportion to the solute concentration, 
it is however not correct, as equating the van't Hoff factor i to the degree of dissociativity of the solute 
11 appears to have no physical basis, and is only done because for some species the numbers appear to be 
approximately equal. 

In general, however, the modification of the equilibrium vapor pressure over a pure solution drop 
depends in a much more complicated manner on the relative concentration of the solute, and its chemical 
character. It is accurately described only in terms of the empirical relations given above and should as 
a matter of practice be described in terms of Equations (6) or (7) withy i or t., appropriately chosen. 
The extent to which the approximations bound up in Equation (9) are valid are measured by departures 
of t., from unity. t., is tabulated for our sample set of CCN under varying humidities in Table 2, and 
as is evident there, the assumptions of ideality (i.e., t., = 1) are far from being met. Another point 
which is evident in Pruppacher and Klett's (1978) Table 4-2 is that departures from ideality are much 
greater for Ammonium Sulfate then they are for either Sodium Chloride or Sodium Nitrate. The fact 
that Sodium Chloride tends to behave ideally may be a historical factor in the general neglection of these 
strong departures from ideality. 

2.3 Relationship between solute mass, relative humidity and drop size. 
Here I examine the effect of varying concentrations of solute on the radius r of a solution drop in 
equilibrium with its environment. One can consider the solute in terms of its effective volume radius a: 

a = [ 4 m., ] 1/3 ' 
31rp., 

so that a will be referred to as the radius of the dry aerosol; the assumption that the aerosol, when dry, 
takes the shape of a sphere is made implicitly. Since the mass of the water can be expressed in terms 
of drop radius and the aerosol radius, a: mw = j1r Pw( r - a )3 for a given species, with water activity aw 
described as per Equation (7); Equation (5) can be written: 

1n (er) = 2u _ vi (p.,Mw) 1 
e., R11Tpwr " PwM., (~ - 1)3 • 

(10) 

A condition of equilibrium is that vapor niehter diffuse to or from the drop. This condition will be met 
only when the vapor pressure at the drop surface er, is identical to the ambient vapor pressure which I 
denote by e00 • Since e.(f1oo) is the relative humidity (RH), it is apparent by requiring the solution drop 
to be at equilibrium we force the left hand side of the above relation to equal the log of the relative 
humidity. For ease of notation we define the coefficients a, {3, and , , 

2u 
a= RvTpz' 

the form of Equation (10) can be further simplified: 

i = 
a 
r 
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3 
- - -{3 - r (r - a) ' (11) 

where it should be recalled that the concentration and temperature dependence of (j and a are now 
implicit in the specification of the coefficients o and {3. Thus, considering the parameters ( o, /3) to be 
constant, it is possible to solve for the equilibrium size r a dry hygroscopic salt of radius a will obtain at 
a given relative humidity. Equation (11) is just a reformulation of Kohler's equation, and solutions for a 
given a are known as Kohler curves. 

Equation (11) allows for a general solution by multiplying it through by the factor r(r - a)3 and 
collecting terms according to explicit dependence on r to some power. In so doing we construct a poly-
nomial f(r) for which (a,o,{3,;) are coefficients and whose zeros are solutions of (11). More specifically 
given that: 

(r - a)3 = r3 - 3ar2 + 3a2r - a3, 
f ( r) follows by inspection, 

f(r) = ;r4 + (-3;a - o) r3 + (3a(;a + o)) r2 + (f3a3 
- a2(;a + 3o)) r + oa3 (12) 

where the polynomial reduces to third order for the case when the curvature and solute terms exactly 
cancel one another (i.e.,;= 0, RH= 100 %). 

Solving the equilibrium relation by finding the zeros of the polynomial is most straight forward by 
assuming constant coefficients. To study the impact of the constant o and /3 assumptions I examined 
the case when f3 was reduced to 76. 7 % of its original value. This was chosen as reflective of the effect 
departures from ideality would have on the solute term for molalities of 0.1 in Ammonium Sulfate; as is 
evident in Table 2, this is a reasonable departure from ideality. In Figure la the change in the solutions 
are less than the change in {3, and for the RH = 95% curve, the influence of changes in f3 is relatively 
independent of solute mass. For the case of;= 0, the sensitivity of the solution to the f3 term increases 
with increasing solute mass. However, as a increases concentration effects on f3 will diminish significantly 
(making our assumption of f3 = 0.761/3ideo.l increasingly unrealistic, see for instance Table 2). For the 
sake of comparison I varied o similarly ( i.e., decreased it to 76. 7 % of its original value.) Differences due 
to variations of o quickly become negligible (see Figure lb) in the RH = 95 % curve, while they mirror 
the changes in /3 seen in the ; = 0 curve. The latter is to be expected since for the ; = 0 polynomial o 
and f3 only enter into the 1st order term in ratio to one another. 3 

Thus a determination of whether the errors likely to be incurred for the assumption (/3, o) independent 
of solution concentration (i.e., the ratio ; ) depends largely on ones application; it is perhaps enough for 
our discussion to state that these assumptions have the potential to lead to significant although not 
overwhelming errors. Hereafter, and for purely pragmatic reasons, I will assume ( o, {3) independent 
of concentration effects as doing so allows me to examine other properties of equilibrium in a more 
straightforward manner. 

In Figure 2 various curves are presented for ammonium sulfate and sodium chloride and their equi-
librium sizes as a function of their dry size. These curves were obtained by solving for the zeros of f ( r) 
given in (12). These figures clearly show that equilibrium requires an extraordinary amount of growth 
for the largest aerosol salts as the relative humidity approaches 100%. As a result the largest aerosol 
rarely obtain their equilibrium sizes, a point we shall return to later. 

A further assumption that is commonly made in conjunction with Equation (11) is that a<: r this 
greatly simplifies the solute term and allows for a simple analytic solution for the;= 0 case: 

r(; = O)r>• = ~-
3Th.is becomes apparent if you solve for the roots of the polynomial /(r; "Y = 0)/cr. 
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Table 2: The 95, 99, and 100 % equilibrium sizes, concentrations (in terms of the Molality M = m':,• :g-~0 ) 

of solution at those sizes and the departure of solution drops from ideality for sample set of 5 CC . a 

interpolated from water activity data tabulated in Low (1969a,b) via the relation: ~a = -lft~0 ~tu. Note, 
equilibrium sizes were calculated assuming ideality. 

II CCN 1 CCN 2 CCN 3 CCN 4 CCN 5 
RH= 95% Radius (cm) 2.40 X 10-6 5.55 X 10-5 1.24 X 10-5 2.73 X 10-5 5.94 X 10-5 

M 1.81 1.31 1.13 1.03 0.96 
~a 0.6229 0.6297 0.6348 0.6387 0.6420 

RH= 99% Radius (cm) 2.79 X 10-6 7.07 X 10-6 1.71 X 10-5 3.93 X 10-5 8.76 X 10-5 

M 0.94 0.48 0.31 0.24 0.21 
~a 0.6430 0.6782 0.7048 0.7203 0.7299 

RH= 100% Radius (cm) 3.00 X 10-5 8.38 X 10-6 2.41 X 10-5 7.08 X 10-5 2.12 X 10-4 

M 0.68 0.25 0.09 0.03 0.01 
~a 0.6599 0.7176 0.7662 0.8888 1.0 

As illustrated in Figure 3 this assumption leads to significant errors through out the range of aerosol 
sizes and relative humidities typically of interest to cloud physicists and so, in general, is unwarranted. 

2.4 The Kohler Curves 
Hitherto, I have examined the sensitivity of t he equilibrium relations to a number of assumptions and 
outlined a procedure by which one can accurately calculate the equilibrium size at a given relative 
humidity. The classical method of describing equilibrium is via the Kohler curves which define a line 
in (r,;) space for which solution drops of radius rare in equilibrium with the ambient vapor pressure 
described by ; (recall that ; = 1n RH). Several of these curves are plotted in Figure 4, each curve 
representing a differing mass of Ammonium Sulfate as per our sample set of 5 CCN. As these curves 
contain a wealth of information about the behavior of soluble salts in equilibrium with a vapor field 
they are well worth the extended discussion which follows. Furthermore, points raised subsequently are 
generalizable as curves for other soluble salts will differ only quantitatively from those plotted in Figure 
4. 

Broad characteristics The left hand side of the curves have positive slope and are entirely convex. 
In this region the curve traces a line of stable equilibrium in ( r,;) space. The right hand side of the 
curves have negative slope and are initially convex, but the second derivative quickly changes sign leading 
to concavity as the equilibrium line asymptotes toward; = 0. The right hand side of the curve is well 
described by Kelvin's equation (see limiting dash-dot line) which implies that solution effects are negligible 
and equilibrium is described by a balance between drop radius and the magnitude of the ambient vapor 
field. In this region of (r, ;) space the curve traces out a line of equilibrium, but in contrast to the left 
hand side of the curve the equilibrium is not stable. 

Stable equilibrium This property characterizes the equilibrium line on the Kohler curves' left hand 
side. It can be seen qualitatively by looking at the sketch given in Figure 5a. Here, a drop displaced 
from the equilibrium line to the left, will have an equilibrium vapor pressure given by ie,l which is less 
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than the ambient vapor pressure given by 'Ya. As a result the drop will act as a sink of vapor, causing 
vapor to diffuse to it from the environment, forcing growth which is represented by the dashed arrow as a 
movement toward the equilibrium line. Similarly for a drop displaced slightly to the right since 'Ye,r > 'Ya 
vapor will diffuse from the drop to the environment, and the forcing will again be toward the equilibrium 
line as the drop shrinks. 

Unstable equilibrium This situation behaves conversely to what was discussed above, here I refer 
the reader to Figure 5b. Because of the negative slope in this region of (r,1) space a displacement of the 
drop to the left of the equilibrium line causes the equilibrium vapor pressure at the drops surface to rise, 
thus 'Yl,e > 'Ya and the drop will continue to shrink, thereby displacing it even further from its equilibrium 
line. Likewise, a displacement to the right will decrease the vapor pressure at the drops surface thus 
causing vapor to diffuse toward the drop and as it grows it will be displaced increasingly further from the 
equilibrium line. This property of increased displacement from equilibrium after a slight perturbation is 
what characterizes this type of equilibrium as unstable. 

Very stable/unstable equilibrium I have chosen to modify my equilibrium discussion with the use 
of the modifier very so as to distinguish regions of the curve where the slope of the equilibrium curve is 
steep vs. regions where it is relatively flat. A steep equilibrium curve implies that small excursions from 
equilibrium result in large differences between the ambient vapor pressure and the vapor pressure at the 
surface of the drop. The magnitude of the forcing on the drop will be proportional to this difference, so in 
regions of stable equilibrium a steep equilibrium curve implies that the drop will be strongly forced toward 
equilibrium, thus at low supersaturations or relative humidities the solution drops are strongly forced 
toward their equilibrium sizes, particularly for the smaller salts. This is the reason why smaller salts are 
commonly expected to exist at their equilibrium size. For the larger salts ( see Figure 4) the equilibrium 
line becomes increasingly flat, which indicates that drops not in equilibrium with their environment are 
not strongly forced toward equilibrium (in the case of stable equilibrium). As a result larger aerosols 
rarely exist at their equilibrium size. In the unstable equilibrium part of the space we see that the curve 
is initially convex and becomes increasingly steep. This promotes rapid initial growth for newly activated 
drops as slight departures from equilibrium promote increasingly larger departures from equilibrium. 
This process continues for only a short period, however, as the equilibrium line quickly becomes concave 
and flattens out, thereby diminishing the vapor pressure forcing on the solution drop. 

2.5 Aerosol activations 

Droplet activation is a term used to designate the transition of the growth trajectory from a stable mode 
to an unstable one and is well described geometrically by the local maxima in the equilibrium curves in 
Figure 4. It can be found by solving for the radius at which the derivative of the equilibrium relation 
becomes zero. This radius is frequently designated as the activation radius or critical radius and is 
denoted by re, From Equation (11), 

(13) 

As before a polynomial, g( r ), can be constructed, for which the zero's represent solutions. So that r c is 
defined implicitly such that g( r c) = 0, where 

g(r) = r4 + (-4a)r3 + (6a2 - 3{3a3 /o)r2 + (-4a3)r + a4 = 0. (14) 
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Again using Equation (11), given re and solving for the equilibrium supersaturation 'Ye: 

(15) 

Which shows that the activation properties of soluble aerosols depend only upon the size and chemical 
composition of the aerosol ( a, /3), and the ambient temperature associated with a. The activation radius 
and supersaturations are plotted in Figure 2 ( see solid lines) for Ammonium sulfate and Sodium Chloride. 
While specific values are tabulated in Table 3 for our sample set of CCN. This table demonstrates that 
the size range of aerosols chosen as our sample set clearly represent the size range of aerosols of interest 
to cloud physicists. 

Table 3: Activation table for sample set of five ammonium sulfate salts. 

II CCN 1 CCN 2 CCN 3 CCN 4 CCN 5 
Activation Size ( cm) 4.71 X 10-5 1.35 X 10-5 3.95 X 10-5 1.18 X 10-4 3.57 X 10-4 

Supersaturation (%) 1.74 0.594 0.199 0.066 0.021 I 

The assumption r ::> a discussed previously is most frequently made in conjunction with the activation 
properties of aerosols as doing so allows for a simple closed form description of activation properties of 
the aerosol: 

(16) 

Unfortunately this approximation is not very accurate, particularly (see long dashed curves in Figure 3) 
for the smaller CCN which are well described by the equilibrium theory. 

3 Diffusional Growth of Solution Drops 

Equilibrium implies that the solution drop is in balance with the ambient vapor pressure. In other 
words the vapor pressure at the surface of the drop will be equal to that in the environment around 
the drop. Since diffusion is a down gradient process, this lack of a gradient in the vapor field between 
the drop and its environment will result in no net diffusion of vapor, and hence no further change in 
the mass of the solution drop. A drop not in equilibrium with its environment will be characterized by 
diffusional accretion ( excretion) of water vapor to (from) its surface. As indicated qualitatively in the 
discussion of stable equilibrium of the previous section, larger soluble salts are more likely to be out of 
equilibrium with their environment as the forcing they experience toward equilibrium is relatively less 
than that experienced by a smaller mass of soluble material. Forcing toward equilibrium is just another 
way of speaking about the rate of droplet growth. To examine this issue more quantitatively requires an 
examination of the droplet growth equations. 

3.1 Diffusional growth equations 

In the presentation that follows I will be following the method outlined by Srivastava (1992) since it most 
elegantly presents the theory and its implicit approximations. My discussion deviates from Srivastava's 
in that ventilation effects are neglected while gas kinetic effects are accounted for. This is appropriate 
for small solution drops which will tend to be in dynamic equilibrium with their environment. The gas 
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kinetic effects are important for drops which have radii on the order of the mean free path of the air 
molecules. For drops which are on this order the assumption that the moist air is a continuous field 
right up to the drops surface breaks down. The break down in the diffusional theory can be mitigated 
by corrections to the parameters representing the diffusivity of water vapor and thermal conductivity of 
air. These "corrections" can lead to differences in Dv and ka. of many orders of magnitude for solution 
drops of sub-micron scale. To indicate corrections to the diffusivity and thermal conductivity parameters 
for gas kinetic effects, a superscript * is added to the standard variables. Using the definitions given by 
Pruppacher and Klett (1978): 

D* Dv = V 
r +l2iLfl£ 

r+.5" rae 7f;;T 

k* ka. (17) = 
r +~~• a. 

r+~T rctTPCp R"T 

Where Oc and OT are the condensation and thermal accommodation coefficients respectively; in the 
course of this study they will be taken to be constant4: Oc = 0.036, OT = 0. 7. AT and Av represent 
thermal and vapor jump lengths which denote the minimum distance from the surface of the drop for 
which the diffusion equation is valid; they too will be kept constant during the course of this study5: 

Av = 1.04 X 10-5 cm, AT = 2.16 X 10-5 cm. Cp is the specific heat of air at constant pressure and per 
unit mass, pis the density of the moist air, while Rv is the gas constant for water vapor. 

For steady state diffusion of vapor the change in mass of the drop is described by the diffusion equation 
solved for a spherical system: 

(18) 

where mis the mass of the solution drop, r is the radius of the solution drop ( consistent with our previous 
discussion), n: is the coefficient for the diffusion of water vapor corrected for gas kinetic effects, p00 is 
the ambient vapor density, and Pr is the equilibrium vapor density at the surface of the drop. Growth of 
the drop is additionally constrained by the ability of the environment to accommodate the heat liberated 
during the condensational process. Again assuming steady state processes and a spherical system one 
can form an equation for the diffusion of heat to the environment: 

{19) 

where Q is the amount of heat diffusing to or from the drop ( depending on the relative magnitudes of 
the drop surface temperature Tr and the ambient temperature T00 ), and k: is a measure of the thermal 
conductivity of air. 

Neglecting ra9-iation effects and processes other than the release of latent heat associated with the 
change in phase of vapor diffusing across the boundary of phase separation at the drops surface, the 
above equations can be related via, 

Ldm = dQ 
dt dt' 

where Lis the latent heat of evaporation. From Equation (19) it is apparent that to solve for the chan~e 
in mass of the droplet it is enough to solve for AT= Tr -T00 • Combining (18) and (19) with W = t;j 

•see Pruppacher a.nd Klett, 1978. Values taken from Table 13-1 
5 ibid 
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yields: 

LD* = k* t1 (Poo - Pr) 
ti 

LD* = k* t1 [p.,oo (soo + 1) - Pa,r(Sr + 1)], 
ti 

(20) 

(21) 

where subscript s denotes the saturation vapor density which by Gibbs phase rule is a function of one 
thermodynamic variable only, which I take to be temperature. Furthermore, I denote the nature of the 
temperature dependence via the second subscript: p.(Tr) = Pa,r and p.(T 00 ) = Ps,oo• s00 is defined as 
the ambient supersaturation of the environment while the modification to the vapor pressure along the 
droplets surface is denoted by Sr: 

_ Poo _ foo d l _ Pr _ er _ 'Y s00 +l=---- an ,sr+ =-----e, 
Pa,oo ea Pa,oo e. 

where the last equality is based on the definition of , from the previous discussion. 
Even though the equation for ~T depends implicitly on Tr a closed form solution may be constructed 

by using a Taylor series expansion for Pa,r about T 00 and truncating after the first order expansion. In 
general a linear fit to saturation vapor density is not a good approximation (Srivastava 1992), however in 
the case of condensational processes, ~T /T 00 :s; 10-5 (Neilburger and Chien, 1960) so for the purposes 
of our study the first order Taylor series expansion is a very good approximation. As a result Equation 
(21) simplifies: 

(22) 

where superscript prime represents differentiation with respect to the argument. Yielding upon rear-
rangement, an equation for ~T entirely in terms of the ambient temperature6 : 

~T = LD:Pa,oo ( Soo - Sr) . 
k: + P~,00LD~(sr + 1) 

(23) 

Using (19) it is straight forward to solve for the change in the mass of the solution drop by substituting 
for ~T from above: 

dm = 4,rr [ k:n:P.,oo ( Soo - Sr) ] . 
dt k: + ~,00 LD~( Sr + 1) 

(24) 

With m = m. + mw (both of which were defined in the previous section), 

dm dmw 2 dr 
dt = T = 41rPw(r- a) dt' 

since the mass of the solute dissolved in the solution drop will remain invariant ( i.e., dch., = 0). This 
then allows a formulation of the droplet growth equation in terms of radius: 

8This statement is true only if we implicitly take adva.ntage of the near equality between Tr and T 00 a.nd replace the 
former with the atter-with little loss in accuracy-in the definition of o which appears implicitly in Sr via the definition of 
-y (see Equation {11)). 
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Via the ideal gas law the above equation finds expression in terms of saturation vapor pressure and its 
first derivative which can be solved using Clapeyron's equation, 

(
P~,oo) _ e~,oo _ 1 _ L _ 1 
Pa,oo - e.,,oo T - R11T 2 T' 

so that the droplet growth equation can be expressed in the more conventional form: 

dr r { Soo - Sr } 

dt = Pw(r - a) 2 c.vTw + (sr + 1)4,.. (~ - 1) . 
11 e,,00 le0 .L .n.11.Loo 

(25) 

Further approximations generally involve neglecting Sr with respect to 1 and a with respect to r in the 
denominator. The former is generally a good assumption since in most situations of interest Sr will be 
on the order of 0.01 or less. The fact that the denominator size factor is given by (r~a)2 as opposed to 
simply f follows directly from the fact that the density of a solution drop is not constant and so when 
computing the relationship between mass and radius the change in density due to a change in solution 
concentration must be accounted for. 

3.2 Numerical integrations of the droplet growth equation 

In this section I conduct a brief study of the behavior of individual condensation nuclei in an idealized 
sub-cloud and cloud base layer. First I look at characteristic timescales at which solution drops approach 
equilibrium, this is then followed by an examination of the behavior of the set of CCN as they act as 
centers of vapor deposition and potentially activate in a supersaturated environment. 

Calculations were based on solutions of Equation (25) with constants specified as per the discussion of 
the previous section. Solute and curvature effects were considered to act ideally ( i.e., ( a, /3) independent 
of concentration), although I chose7 I., = 0.75 for the ammonium sulfate solute and I., = 0.93 for calcu-
lations involving sodium chloride. Calculations for Sr were carried out at a temperature of 13°C, which 
is characteristic of stratus clouds observed during FIRE I (Schubert and others, 1987), and temperature 
modifications on the surface tension term were included as per Pruppacher and Klett (1978). Initial 
equilibrium sizes were calculated based on the polynomials of the previous section. 

Before proceeding I verified my integration procedure for droplet growth with a comparison to values 
obtained analytically by Best8 (1951). The results are tabulated in Table (4). Best obtained his results via 
a graphical integration and did not account for gas kinetic effects or the changing density of the solution 
drop as it accumulates more liquid water mass. To account for discrepancies in growth times evident in 
Table ( 4) I repeated my numerical integrations with slight modifications to the growth equations. The 
results of these integrations are plotted in Figure (6), which are summarized below. 

First I did a reference integration under the conditions associated with Table ( 4) where m., = 10-13 g 
and Sodium Chloride taken as the solute. I specified ambient temperature of 0 °C, an ambient super-
saturation of 0.05%, and an initial solution drop radius of 0.75 µm. I., was specified as indicated above. 
The results of this reference integration are those that are tabulated under the column ~tme in Table 4. 
I then included a series of perturbations or modifying assumptions in the droplet growth equations: 

1Except for the calculations associated with Figure 6, where ~, = 1.0 was chosen to correspond to the calculations of 
the equilibrium radii of the previous section. As shown there, errors introduced by this assumption will be on the order of 
several percent. 

8 After being cited in Mason's book, and then again in the books on cloud physics by Rogers, and Rogers and Yau these 
calculations have attained the status of somewhat of a standard. 
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Table 4: The amount of time, ~t in seconds, it takes a sodium chloride solution drop to grow to the 
specified radius. Results from my integrations are compared with values obtained by Best (1951) for 
differing amounts of solute. 

m. = 10-14 m. = 10-13 m. = 10-12 
Radius (microns) ~tBeat ~tme ~tBeat ~tme ~tBeat ~tme 

1.0 2.4 4.61 0.15 0.146 0.013 0.003 
2.0 130 248 7.0 7.66 0.61 0.286 
5.0 1,000 1,370 320 343 62 41.6 
10.0 2,700 2,910 1,800 1,670 870 190 
15.0 5,200 4,770 4,200 3,470 2,900 1,650 
20.0 8,500 7,050 7,400 5,710 5,900 3,700 
30.0 17,500 12,900 16,000 11,520 14,500 9,280 
50.0 44,500 30,100 43,500 28,570 41,500 26,000 

Effect of Chemical Species: The long dashed-dot line in Figure (6) represents the solution to the 
growth equation for an amount of ammonium sulfate solute with dry radius equivalent to that for the 
control integration. The chemical species modifies growth only in terms of its effect on the solute term 
of the growth equation. This term is most important prior to activation, but for solute concentrations of 
the amount specified here initial radii of 0. 75 µm already exceed the activation size. Barely discernable 
on the plot is the fact that the normalized drop size rapidly falls below unity, then maintains a rather 
steady normalized size at about 0.85, although after 30 minutes the ammonium sulfate solution drop has 
managed to gain to within about 91 % of the sodium chloride drop. Thus the effect of ammonium sulfate 
is to initially retard the drop growth, the fact that we are always at a normalized size of less than unity 
implies that the growth trajectory for ammonium sulfate is behind the trajectory for sodium chloride. 
The slow but steady approach to unity is consistent with the growth pattern of a slightly smaller drop 
for which solution effects are no longer important. 

Constant density assumption: This normalized trajectory is represented by the long dashed ( short 
space) line. The effect of assuming constant density is equivalent to saying that r ( r - a) in the 
denominator of Equation {25). Here I show that this assumption only initially retards the growth of the 
solution drop. Since the initial radius size was relatively large, the effect of this assumption is relatively 
negligible and not likely to be a source of the discrepancy in the results of Table ( 4). Again the normalized 
radius slowly approaches unity, a reflection of the tencency toward monodispersity in the droplet growth 
equation. 

Neglection of gas kinetic effects: For this integration I fixed Dv = limr-oo n: = Const. I used 
a similar approach in obtaining constant values for the thermal diffusivity, k:, but here instead of using 
the limiting values indicated in Pruppacher & Klett {1978), I used limiting values more representative of 
those chosen by Best. The results of this integration are more interesting (see the medium dashed line) 
and explain the differences between my results and those of Best as per Table ( 4). Initially the neglection 
of the gas kinetic effects give values for thermal diffusivities which are much too high, this makes the 
denominator in (25) too small, and thus the growth rate proportionally too large. Eventually the gas 
kinetic effects become negligible in the control integration and since we have a proportionally larger drop 
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its growth rate will be proportionally smaller suggesting an asymptotic approach toward a normalized 
radius of unity. Then, however, the effect of the different values for the diffusivity parameters becomes 
apparent as the solutions cross and continue to diverge, where after 30 minutes the drop has a normalized 
size of about 90 % of that of the control simulation. This crossing of the normalized trajectory over the 
unity line reflects initially more rapid growth followed by slower growth after gas kinetic effects become 
negligible. Thus the discrepancies between my time constants and those calculated by Best appear to be 
largely the result of the parameterization of the diffusivity parameters, with my integrations reflecting 
more current knowledge in our understanding of the behavior of these parameters. 

Additionally Figure (6) illustrates the sensitivity of droplet growth to ambient temperature where 
the short dashed line represents the growth behavior of the control drop at 13°C. The enhancement of 
temperature increases the diffusion of vapor on to the drop allowing the drop to grow progressively larger, 
so that after 30 minutes of integration a drop growing at 13 °C is fifty percent larger than a drop growing 
at 0°C. 

3.2.1 The forcing of individual solution drops toward equilibrium 

Here I examine the time-scales under which solution drops move toward equilibrium under a variety of 
situations. 

Table 5: The amount of time, T in seconds, it takes a solution drop to grow from its 99 % to 100 % 
equilibrium size in the given supersaturation field for the sample set of 5 CCN. Also tabulated is Xi,j 
which attempts to parameterize a relationship between dry CCN mass and time constants: = ( )Xi,i. 

I S (%) II TCCNl I TCCN2 I TCCN3 I TCCN4 I TCCN5 I Xl,2 I Xl,5 I 
2.0 0.0008 0.0056 0.0348 0.1881 0.9715 0.85 0.77 
1.0 0.0013 0.0099 0.0623 0.3465 1.8367 0.88 0.79 
0.5 0.0021 0.0164 0.1055 0.6110 3.3667 0.89 0.80 
0.2 0.0036 0.0289 0.1915 1.1956 7.0730 0.90 0.82 
0.1 0.0050 0.0415 0.2790 1.8660 11.8000 0.92 0.84 

Characteristic timescales for the sample set of 5 CCN are tabulated in Table (5). This Table was 
constructed in an attempt to quantify the rate at which a solution drop will pass through various equi-
librium sizes as it encounters higher supersaturations characteristic of the cloud base region. The range 
of timescales indicated for the sample set cover over 4 orders of magnitude and are roughly proportional 
to mass. The timescales are sensitive to the forcing ( i.e., an order of magnitude increase in the forcing 
results in a factor of 4 to 8 increase in r) but the dominant factor is the amount of solute. As the mass 
of dry aerosols found in the troposphere span many orders of magnitude, the time constants for growth 
toward equilibrium will span many orders of magnitudes, from fractions of a second, to hours, or even 
days for the giant aerosols which I am not considering here. 

In attempt to quantify this relationship between T and dry mass md I define a parameter x i,j: 

(m·)x.,,, 
===> Tj = Ti m~ . 

This parameter will give some quantitative measure of how the characteristic time at which a CCN 
approaches equilibrium varies as a function of mass and forcing. In particular I have tabulated Xi,i 
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derived from columns 1 and 5 as well as for columns 1 and 2. The fact that x consistently increases for 
decreased forcing shows that the mass sensitivity of the characteristic times bears an inverse relationship 
to the forcing. Furthermore since x1,2 is consistently greater than x1,s I conclude that the mass sensitivity 
factor x bears an inverse relationship to mass in that it is largest when describing the sensitivity of T to 
mass for the smaller CCN. Overall, however, it is apparent that the time constant as defined here bears 
a dependancy on mass to some power where that power lies between 3/4 and unity. 

These timescales are implicit in Figures (7) (a) and (b) where I have plotted the variation of the 
size of the sample set of CCN as a function of time in two different ambient relative humidities which 
are taken to be fixed. For both figures the initial size of the CCN was taken as its 95 % size. Plots of 
size are normalized to the equilibrium size for easier comparison between figures. (See Table 2 for these 
sizes). The time series of the different aerosols approaching their equilibrium size show the same order 
magnitude type relations to one another as seen in Table (5). These graphs display a number of features 
which are worthy of further discussion: 

(i) As was evident in Figure 2 the distance between the RH95% and RH99% equilibrium sizes vs. the 
distance between the RH99% _and RH1oo% sizes is of the same order for the smaller CCN, but the 
latter becomes dominant with increasing solute mass. So while the RH95% size of CCN5 is about 
0.68 of its RH99% size, it is only 0.28 of its RH1oo% size. This should be contrasted with CCNl whose 
RH95% size is 0.88 of of its RH99% size, and 0.82 of its RH10o% size. Thus the larger CCN have 
proportionally a much greater distance to travel (in mass space) in their approach toward their 
RH1oo% equilibrium size and most of this distance lies between their RH99% and RH1oo% sizes. 
Moreover, from Equation (25) the growth rate is inversely proportional to radius. In the figures the 
slopes look relatively equal, but accounting for the log scaling for time implies that visually equal 
slopes will differ drastically due to the increasing time scale along the abscissa. These effects in 
combination lead to the orders of magnitude increase in the time taken by increasingly larger CCN 
to approach their equilibrium size. 

(ii) As an illustrative example we see from the figures that CCN5 takes approximately 1 second to reach 
its RH 99% size, while it takes about 100 seconds to reach its RH too% equilibrium size. Because of 
the orders of magnitude difference in time it takes to grow the largest of the CCN from its RH 95% 
size to its RH 99% size vs. the time it takes to grow to the RH too% size it would seem that the 
assumption of a soluble aerosol being in equilibrium with its environment in the sub-cloud region 
becomes increasingly bad as the relative humidity of the subcloud region approaches 100 %. 

(iii) The growth rate of the CCN diminishes as its approaches its equilibrium size. In fact the approach 
to equilibrium is asymptotic as the numerator of Equation (25) approaches zero as the solution 
drop approaches its equilibrium size. 

Other attempts have been made to measure the timescale at which solution drops approach equilib-
rium. Sedunov (1978) in assessing the validity of the assumption of equilibrium between condensation 
nuclei and their environment derives an expression for the characteristic time Ta, for establishing equilib-
rium: 

2 r t r equil -- = 1 - (1 - ro)e-;:; where, Ta ex: --. 
r equil "Y equil 

Since quantitatively Sedunov was measuring an e-folding time for drops approaching their equilibrium 
size from a small distance (in mass space) away, his actual numbers will differ considerably from ours. 

l 
However in terms of their proportional dependence on r~quil ex: m;quil :::: a3 ex: ma since the radius of the 
drop at activation is roughly a function of the radius of the solute to the power of three halfs, they are 
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in general agreement with numbers I obtained earlier through numerical integration (i.e., Xsedunov 1). 
Sedunov's inverse dependence on 'i'equil indicates that time constants for motion toward equilibrium 
depend on what the equilibrium is, and that as equilibrium approaches RH = 100% ::} 1' equil = 0, T 

can be expected to increase. Again, this feature of growth toward equilibrium is well represented in an 
intercomparison of Figure (7) (a) and (b ). 

Mordy in his celebrated 1959 paper also discusses a time constant, Tm, associated with thee-folding 
time for a droplet forced toward equilibrium. In considering the approach to the 100 % equilibrium value 
Mordy argues that rm <X m:12. This represents a somewhat stronger dependence on the mass of the 
solute than what I found, however, Mordy's discussion was in the context of the RH95% equilibrium size 
where the approach to equilibrium is slowest and most dependent on the mass of solute. 

3.2.2 Numerical simulations of the activation process for individual drops in idealized 
supersaturation fields 

In Figure (8) I have plotted a time series representing the evolution of the set of 5 CCN in constant 
supersaturation fields ranging from s = 2% to s = 0.1%, with an ambient temperature of 13 °C .. These 
plots were constructed by integrating Equation (25) using a timestep of 2 µs and an initial radius for 
each category of CCN corresponding to its RH = 95% equilibrium size. In cooperation with Table 3 
this figure provides an excellent illustration of the idealized activation process. It also illustrates that 
although activation is not an instantaneous process it can proceed very rapidly, as we have organized 
information with respect to time of activation for the different CCN in Table (6). 

Table 6: Time Tin seconds for differing masses of solute to reach activation in the presence of a constantly 
supersaturated vapor field for drops initially at their RH= 95% size. • denotes no activation. 

I Supersaturation(%) II rccN1 I rccN2 I rccN3 I rccN4 I rccNs I 
2.0 0.100 0.054 0.166 0.634 2.80 
1.0 * 0.176 0.354 1.26 5.51 
0.5 * * 0.866 2.56 10.9 
0.2 * * * 7.50 27.3 
0.1 * * * 27.9 58.2 

Of interest here is the general trend for the smaller CCN to activate before the larger CCN, despite 
the fact that the larger CCN will activate at a lower supersaturation. This is predominantly a result of the 
different growth trajectories associated with non-equilibrium effects. What is notable is that the smallest 
CCN (CCNl) takes proportionally much longer to activate than the next smallest (CCN2), a pattern of 
behavior which is inconsistent with our previous statement. While the steadily increasing activation times 
of CCN2 through CCN5 is a result of the increasing effect of non-equilibrium, the retarded activation 
rate of CCNl relative to CCN2 is due to the fact that the ambient supersaturation for CCNl is only 
slightly greater than that required for activation. As a result CCNl is much more weakly forced toward 
its activation size. In terms of Equation (25) the retardation in the growth rate of CCNl relative to 
CCN2 results predominantly from a reduction in the numerator term, while the progressive retardation 
in the activation time of CCN3 thru CCN5 relative to CCN2 is largely due to (1) the increased distance 
through mass space the larger CCN must travel to activate and (2) to their decreased growth rates due 
to a larger denominator in the growth equation. 
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This time series behavior plotted in Figure (8) brings out a number of interesting features which are 
itemized below: 

(i) Growth is most dramatic for the drops forming on the smallest mass of soluble aerosol. Furthermore 
the actual point of activation is clearly represented for the smallest CCN, but becomes increasingly 
difficult to discern for the larger CCN. 

(ii) With regard to Table (6) and our previous discussion it is clear that the tabulated activation 
behavior is well represented in the time series data. 

(iii) The effect of the surface tension in inhibiting activation is clear for the smallest aerosol as CCNl 
doesn't activate in situations represented by Figure (8) (b )-( e ), this is consistent with earlier con-
clusions that Sc,ccnt 1.8% (see Table 3). In situations where CCN don't activate the movement 
of the CCN toward an equilibrium size and the maintenance of that size is represented in the plots, 
although it is difficult to see (look for instance at CCN3 in the last frame). 

(iv) Activation is most clearly represented by a convergence of the growth trajectories associated with 
the varyingly sized CCN. This behavior is well represented in all the plots 

An interesting manifestation of the fact that the large CCN activate last in the above situation is that 
for very large CCN we may infer that they never activate, but continue to grow so long as RH > 100%. 
This arises from the realization that the amount of time it takes the largest aerosols to grow to their 
activation size may conceivably be longer than their lifetime in the cloud. 

This then raises some interesting questions: (1) To what extent can finite growth periods associated 
with all CCN influence whether or not a CCN will activate at all, particularly in cloud like situations 
where the maximum supersaturations may exist only for a short period of time. (2) Is it possible 
that in a rapidly varying supersaturation field that growth trajectories as plotted in Figure (8) could 
actually cross. In an attempt to address these questions I looked at the evolution of CCN in a more 
realistic supersaturation field which varies with time. In particular I chose a supersaturation field which 
approaches a maximum value of 1 % from an initial value of RH= 95% => s = -5% and then decays to 
a final value of 0.1 %. The time constant for approach to the maximum value was five minutes, while the 
time constant for decay to the final value was increased to model differing scenarios under which solution 
drops would spend more or less time at or near the maximum supersaturation. Additionally the timestep 
for the numerical integrations was increased by a factor of 1000 to 2 ms, but otherwise the calculations 
are the same. The growth trajectories are plotted in Figure (9) along with the supersaturation fields. 
The time it takes for the varying sized CCN to activate is given in Table (7). 

Table 7: Time T in seconds for differing masses of solute to reach activation in the presence of a time 
varying vapor field (with Sma:i: = 1%, for comparison see row two of the previous table) for drops initially 
at their RH= 95% size. • denotes no activation. 

I Profile II rccN1 I rccN2 I TCCN3 I TCCN4 I rccNs 

1 1.0 11 * 1 81.1 1 64.4 1 63.2 1 12.4 

While the supersaturation fields were chosen to be similar of those found in clouds it is not correct 
to conclude that the trajectories plotted in Figure (9) are necessarily representative of what one would 
expect to find in a real cloud, as the latter differs in at least two important and perhaps critical respects: 
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(1) Clouds are characterized by the growth oflarge populations of CCN. (2) The vapor deposited on these 
CCN interact strongly with the ambient vapor field. Nevertheless, my hope is that the behavior of CCN 
illustrated in the trajectories of Figure (9) are instructive and can contribute to a better understanding 
of the behavior of soluble aerosol salts in a supersaturated environment. 

Table (7) has only one row since the activation time is the same regardless of the decay constant 
of the supersaturation field. This implies that the response time of the aerosols is rapid enough for the 
aerosols to reach their activation radius before the supersaturation begins to decrease. In Figure (9) the 
maximum supersaturation occurs at about the 130 second mark, while the last aerosol to activate does 
so at 87.7 seconds. Table (7) and Figure (9) bring out a number of additional interesting points which 
are itemized below. 

(i) The balance between stronger forcing {for the larger aerosols) and most rapid response (for the 
smaller aerosol's) favors CCN4 for most rapid activation. The supersaturation never gets large 
enough to cause CCNl to activate, and CCN2 activates last due to the fact that the supersatu-
ration does not reach the critical value for activation of CCN2 until about this time. While the 
supersaturation reaches the critical value for activation of CCN5 first, it is slower to activate due 
to its slow response time. 

{ii) Activation is most dramatic for the smaller CCN as after activation they rapidly grow to a size 
limited by the next larger CCN. This type of behavior demonstrates the tendency of a drops spectra 
to narrow under the influence of condensational growth. Growth trajectories show no signs, however, 
of crossing.Growth trajectories do not cross and show no inclination of that possibility. In order 
for growth trajectories to cross the reduction of vapor pressure over one drop must be greater than 
the reduction of vapor pressure over another drop of equal size but greater solute mass. However, 
for drops of equal size the drop with greater mass of solute (assuming same chemical composition) 
will always have the greatest reduction in vapor pressure and hence the greatest growth rate. Thus 
a crossing of trajectories is physically impossible a result with which any parameterization of the 
activation process must be consistent. 

(iii) The growth trajectories are plotted on a linear abscissa (Figure (10), since linear time is a quantity 
more familiar to us. The dramatic activation process is still clearly evident and none of the main 
features described above. 

(iv) The growth of CCNl to its non-activated equilibrium size is characterized by strong oscillations over 
the first 20 seconds. This feature was created intentionally to illustrate the problem of attempting 
to resolve the growth trajectories of small aerosols in numerical cloud models. The oscillations are 
not evident in Figure {8) since the growth equation was integrated for this figure with a time-step 
of 2 µs. The fact that even a 2 ms timestep (which was used to create Figures (9) and (10)) is 
not sufficient to resolve the growth of the smaller aerosols, should be considered in the context of 
numerical cloud models which typically use timesteps on the order of seconds or tens of seconds. 

4 Summary 

It was found that for Ammonium Sulfate departures from ideality in the solute term were significant. 
With the practical osmotic coefficient commonly differing by 20 % from its ideal value. Nevertheless, 
predictions of equilibrium sizes resulting from a neglection of this effect tended to only be on the order of 
5 - 10 % in error. Given the range of uncertainties in cloud modeling and aerosol measurements this is not 
an important source of error, but still it should be accounted for when possible, especially in theoretical 
studies or 1-D models. 
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Distances in mass space between equilibrium sizes were small for small amounts of solute, but tended 
to grow increasingly large for the larger sized CCN. Thus, the difference between the RH99% and RH100% 
sizes was proportionally much greater for the large aerosols. This is a major factor in making non-
equilibrium effects important for the larger aerosols typically of interest. The quality of the equilibrium 
solution for solution drop sizes in a saturated environment is such that above a critical size equilibrium 
becomes unstable. The transition region between unstable and stable equilibrium represents a demarca-
tion line between cloud drops and haze particles and represents a critical point for cloud modelers who are 
often interested in the dynamics of cloud drops but are not able to treat the behavior of the proto-drops 
or haze particles in a realistic manner. It is seen that common assumptions which neglect the radius of 
the solute in comparison to the drop when calculating equilibrium or activation sizes involves significant 
errors. Cloud models which have a means by which to measure CCN size before the activation process 
should use this size in determining the correct activation size of the CCN. Characteristic times at which 
CCN approach their equilibrium sizes differ in rough proportion to their mass. As atmospheric aerosols 
of interest in the formation of cloud often span four or more orders of magnitudes their growth rates 
will also widely differ. This presents a vexing problem for cloud modeler, since to resolve the growth 
of the smallest solution drops requires timesteps on the order of milliseconds. An alternative approach 
would be to diagnose the size of the smallest aerosols based on the rather good assumption that they 
are in equilibrium with their environment. Furthermore, this assumption should not significantly alter · 
the structure of the vapor field since the smallest aerosols, despite their number, are unlikely to act as a 
large enough sink for water vapor to significantly interact with the vapor field in the cloud base region. 
As the aerosols increase in size however, they can interact more strongly with the vapor field ( since they 
take up more water) but the assumption of them being in equilibrium will become increasingly bad. It 
would then seem that the vapor depositional processes of the larger aerosols should be calculated in a 
predictive manner if possible, or parameterized if not. 

In contrasting the activation process for small and large Ammonium Sulfate CCN it was found 
that the activation process is most dramatic for the smallest CCN which activate first (given high enough 
supersaturations) in an evolving supersaturation field. The largest CCN can grow to the Hocking limit and 
never technically activate, being forced the whole time in a regime of stable equilibrium growth, as opposed 
to the activated cloud drops which grow in a regime which is characterized as unstable equilibrium. This 
illustrates an important property of the larger CCN as they may spend their entire (pre-collision) life 
in the cloud existing as solution drops or oversized Haze particles. In increasing supersaturation fields 
typical of cloud base, the medium sized aerosols will activate first. If supersaturations continue to increase 
smaller aerosols will activate subsequently, while larger aerosols will continue to activate, after a slight 
delay, even in a non-changing or slightly decreasing supersaturaiont field. 

It is not possible for a given size solute to form a solution drop or cloud drop which is larger than 
that which will form on a larger amount of solute experiencing the same conditions. While activation 
becomes a relaxed property for the larger masses of solute this should not mislead one into thinking that 
the growth trajectories of a small mass of solute can ever cross those of a larger mass of solute. This could 
provide a valuable constraint for parameterizations of the growth of solution drops, as the condensational 
growth of the smallest aerosols will ultimately be limited by the growth of the largest aerosols. 
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Figure 10: Diffusional growth rates as a function of time for the individual solution drops of Table 1 
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gives a better overview of the droplet activation process. The oscillations associated with the growth 
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