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ABSTRACT 

 

 

 

 Antibiotic resistant bacterial infections are a growing public health issue. In food 

producing animals, there is a concern that using antibiotics will increase the risk of antibiotic 

resistance (AMR) on meat products, thus increase consumers’ risk of acquiring AMR infections 

via meat consumption. However, in order to mitigate these risks, there are several areas of 

livestock production where more data are needed to understand current communities of AMR 

genes (resistomes) and how antibiotics influence associated cattle microbiomes. In order to 

obtain more information about these communities, three experiments were conducted: (A) a 

characterization of market cow resistome and microbiomes, (B) the effect of region and tylosin 

exposure on feedlot cattle, and (C) the characterization of liver purulent material from feedlot 

cattle. All three of the studies were conducted utilizing shotgun metagenomics for resistome 

analysis and 16S rRNA amplicon sequencing for microbiome analysis. Both culture-free 

methods used in these studies were chosen because AMR is an ecological concern in microbial 

communities and resistance genes are not exclusively harbored in culturable bacteria. In the first 

study, market cows were selected as the population of interest because, while a fifth of beef 

produced in the U.S. is from market cows, past studies have been more focused on feedlot cattle. 

Findings from the market cows study highlighted that the resistome of bovine trimmings was 

impacted by slaughter facility over the production system the cows were raised in. In the second 

study, cattle were raised in three different geographical regions, and within each geographical 

region pens were either fed or not fed tylosin—a common macrolide antibiotic for the prevention 

of liver abscesses. In addition to the scoring of liver abscesses in these pens of cattle at harvest, 

pen floor feces and soil were collected. These data revealed no significant differences in 
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resistome composition between different antibiotic group exposures, but geographical region 

affected the resistome. Finally, aliquots of liver purulent material of a subset of cattle in the 

aforementioned experiment were collected for characterization in the third study. While tylosin 

is used to reduce liver abscesses in feedlot cattle, and it has been postulated that fusobacterium 

necrophorum is the causative organism of liver abscesses, the mode of action in which tylosin 

reduced abscesses is not known, nor has fusobacterium necrophorum introduction into livers 

resulted in 100% incidence of liver abscesses. To gain a more complete understanding of the 

cause of liver abscesses, purulent material was evaluated with 16S rRNA amplicon sequencing. 

Fusobacterium was identified in all abscesses along with many other phyla, demonstrating a 

polymicrobial bacterial community. All three of these studies further contributed to the 

understanding of resistome and microbiome dynamics as a result of antibiotic exposure. Across 

studies, geographical region and facility of slaughter were seen to contribute more to resistome 

composition changes in both feces and colon content and bovine trimmings than antibiotic 

exposure.   
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CHAPTER 1 

 

 

 

Metagenomics of Food Commodities: Meats and Poultry1 

Meat and poultry products, the animals that produce them, and the environments they are 

processed in are biologically diverse and contain many (thousands) species of bacteria, viruses, 

and fungi arranged in complex living environments. These organisms work together and share 

resources (such as metabolites), much like a community. Within this community, each organism 

has its own genome, yet some genes are ubiquitous across the community, while others are more 

specialized, present in only a few or one single species in the community. Together, the genomes 

and genes within this community are known as the pan-genome (Soucy et al., 2015). By looking 

at samples through the context of community-wide interactions, instead of a few select 

organisms, we can obtain a more holistic model of what is occurring in a given microbial 

community. This ecological way of thinking can be incorporated into any biological research, 

including meat and poultry production. 

However, even with advancements in microbiological culture techniques, many 

organisms within and around meat and livestock products will likely never be cultured in a 

laboratory. This issue is known as the “plate count anomaly”, which leads to estimates that from 

76% (Suau et al., 1999) to upward of 99.9% (Youssef et al., 2015) of cells within samples cannot 

be found with culture plating or enumeration procedures alone. While the vast majority of cells 

will never be cultured in a laboratory setting, these unculturable bacteria still interact within 

biological communities, contribute to meat safety and quality, and affect the dissemination of 

genes of concern to public health, such as virulence factors. To overcome culture-dependent 

                                                
1 Authors: Margaret D. Weinroth, Noelle R. Noyes, Paul S. Morley, Keith E. Belk; this work will also be published 

in 5th edition of Food Microbiology:  Fundamentals and Frontiers 
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methods, researchers have started integrating culture-free approaches into traditional studies with 

techniques such as metagenomics, transcriptomics, proteomics, metabolomics, and whole 

genome sequencing. 

This chapter will specifically address the science of metagenomics, and how it is used in 

meat and poultry production to advance food safety and quality. 

Overview of Metagenomics 

Metagenomics is defined as the direct analysis of genomes contained within an 

environment (such as a processing facility, animal model, clinical samples, etc.) (Thomas et al., 

2012); such studies can be sequence- or function-based. The term metagenomics was first coined 

in 1998 by Handelsman et al. (Handelsman et al., 1998) in reference to the functional analysis of 

all of the genomes within a soil sample. Sequence-based studies deal with the direct genetic 

analysis of genomes contained within environmental samples without a culture step (Thomas et 

al., 2012). Function-based studies, on the other hand, are conducted by cloning large portions of 

screened DNA into a host (Culligan and Sleator, 2016). Here, we focus on sequence-based 

metagenomics. 

History and Process 

As a precursor to modern sequence-based DNA sequencing, originally, whole community 

DNA analysis was conducted by cloning environmental DNA into recipient cells (Simon and 

Daniel, 2011). This method was eventually replaced by methods that directly isolate nucleic 

acids from the environment and sequence them; the first such method was Sanger Sequencing in 

1977 (Sanger et al., 1977). Then, in the mid 2000’s, next-generation sequencing (NGS) was 

introduced with the adoption of pyrosequencing technologies. Next Generation Sequencing 

(NGS) uses the concept of sequencing-by-synthesis, which allows for parallel sequencing 
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reactions to occur simultaneously, increasing sequencing ability from 96 reactions at a time to 

several hundred thousand (Schuster, 2008). The introduction of NGS brought sequencing costs 

down by 10,000 fold and greatly reduced labor requirements, which were intensive for Sanger-

based sequencing. This technology was first commercialized by 454 Life Science and improved 

upon by a method known as bridge sequencing—first marketed by Solexa, which was then 

acquired by Illumina (Heather and Chain, 2016). As a result, DNA sequencing became a tool that 

could be implemented in many laboratories to address more applied topics, including those 

associated with agricultural production and processing (Muir et al., 2016). While NGS DNA 

sequencing was initially used for  single genomes, it eventually became feasible to sequence 

entire communities of microbial DNA without any need for culture- or PCR-based isolation. 

Sequencing a non-enriched sample from an environment of interest (whether that be a 

processed meat product, feces from a food producing animal, a production facility that packages 

ready-to-eat products, human clinical samples from a foodborne outbreak, or many other 

environments of interest to a food microbiologist) provides insights into the structure, 

composition and function of the microbial community – which, together, can be referred to as the 

microbial ecology of the sample. The microbiome is defined as the entire population, and the 

makeup of the community of organisms in a given sample or animal. In order to investigate 

microbial ecology (the interactions of the microbiome with the environment and host), many 

steps need to be performed – from study design to molecular biology to bioinformatics to 

statistical analysis. 

Before sampling is conducted, an experimental design is constructed to meet research 

objectives. While many metagenomic studies currently conducted in meat and poultry science 

are more explanatory in nature (i.e., quantification of what organisms or genes are present in an 
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environment and in what quantities), a shift to hypothesis-driven research is beginning to occur. 

After the experiment is structured, sampling occurs as aseptically as possible, with special 

attention paid to not introducing foreign DNA contamination into the sample. From there, DNA 

is extracted and prepared for sequencing through PCR amplification, ‘cleanup’ steps, and 

ligation of adapters onto the DNA so that the sequencers can recognize the reads (known as 

library preparation). Fragmentation, breaking DNA into smaller pieces, also is conducted during 

library preparation, and is a key differentiator between short-read sequencing where this occurs 

and long-read sequencer where it does not. The manner in which samples are handled (including 

the specific kits and protocols used to extract DNA and conduct library preparation) can both 

introduce bias into sequencing and downstream analysis and must be considered carefully in the 

study design and planning stages (van Dijk et al., 2014). A major breakthrough in the preparation 

of libraries for sequencing was the ability to multiplex samples through use of barcoding.  

Barcoding involves the addition of a known, sample-specific nucleotide sequence onto each 

fragment of DNA, followed by pooling of DNA from multiple samples.  This technique greatly 

reduces sequencing costs by enabling simultaneous sequencing of multiple samples, while 

maintaining the ability to match DNA sequences back to their originating sample during post-

sequencing analysis. 

It is important to note that one of the main differences between a whole-genome and a 

metagenomic pipeline is the absence of an enrichment step in the metagenomic pipeline. While 

single-genome workflows enrich for specific bacteria (through selective culturing and broths), a 

main objective of metagenomics is to look at a non-enriched view of the entire community. 

Thus, no steps are taken to differentially increase abundance of specific species, which would not 

allow for an accurate relative abundance estimations. Sample-processing steps must be as 
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unbiased as possible so as not to artificially perturb the composition of the microbial community 

(van Dijk et al., 2014). 

Once DNA has been extracted, fragmented and a library is generated, sequencing of 

DNA is either achieved through short-read or long read sequencing. To-date, metagenomic 

studies have mostly utilized short-read sequencing due to lower costs, greater general accuracy 

and higher output compared to long-read sequencing technologies. The primary disadvantage of 

short-read technology is the inability to assign what genes or features of interest belong to what 

organism due to the shearing of DNA for library preparation. 

The process of sequencing DNA produces fastq files that contain the DNA sequence of 

each fragment of DNA, as well as the sequencing quality score for each nucleotide.  These short 

fragments are referred to as “reads”, and each read within fastq files have unique identifiers. 

With these raw sequence reads as a starting point, bioinformatic analyses can begin. The first 

step of the bioinformatics pipeline is typically quality control of the sequence data, which 

involves removal of library adapter sequences; removal of low-quality nucleotides on the ends of 

reads; and removal of reads that have overall low quality or are too short. For analyses in which 

bacterial community is of main interest (e.g., a study on the shelf-life of meat), reads that belong 

to the host (e.g., Bos taurus for beef or Gallus gallus to reflect chicken DNA) can be removed as 

part of the quality control process. 

After quality control is complete, assembly and/or alignment of sequence reads can 

begin. Assembly involves stringing the short reads back together into longer sequences called 

“contigs”, typically using de Bruijn graph-based or overlap-layout-consensus algorithms (Miller 

et al., 2010). Due to the nature of metagenomic DNA, assemblies tend to be highly 

“fragmented”; i.e., with numerous short contigs, especially compared to assembly of single-
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genome DNA sequence data. Once contigs are assembled, they typically are compared to 

existing databases using matching algorithms such as BLAST (Altschul et al., 1990) in order to 

identify sequences of interest. 

Alignment, on the other hand, allows bypassing of assembly and attempts to match 

unassembled sequence reads directly to existing databases, typically using algorithms such as the 

Burrows-Wheeler-Aligner (Li and Durbin, 2010). Whether using assembled or unassembled 

data, the process of matching DNA sequences to existing databases allows for identification and 

quantification of genes and/or organisms of interest within the metagenomic data (note that, in 

the case of 16S sequencing which is discussed below, only phylogenetic classification can occur 

while shotgun metagenomic sequencing provides a much broader scope of genomes present in 

the sample, along with functional and gene differentiation). 

Once genes and/or organisms of interest have been identified and counted, descriptive 

and formal inferential statistical tests can be conducted in conjunction with previously collected 

metadata (i.e., descriptive data associated with the samples such as location, sample matrix, 

environmental characteristics, etc.).  Specific comparisons made during statistical analysis 

depend largely on study design, although basic descriptions such as numbers of reads, read 

quality, and level of host contamination are typically reported for all metagenomic studies. After 

formal comparisons have been conducted, raw data and critical output files must be stored on a 

secure server or backed up in another manner, such as in the “cloud”.  As with other sequencing 

studies, metagenomic datasets are often deposited as raw sequence data onto public repositories 

such as the National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) 

(Leinonen et al., 2011), as this is frequently a requirement for publication in high-quality 

scientific journals. 
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Terminology used in discussions of metagenomic studies currently is in flux, and 

oftentimes 16S microbiome studies and/or extensive sequencing of a single species are referred 

to as “metagenomics”. It is important to note that, from a purist point of view, the term 

metagenomic means “genome of genomes” and thus refers to whole-community, unrestricted 

sequencing of all the genomes in a sample (known as shotgun metagenomics). Alternatively, 16S 

studies involve PCR amplification and sequencing of the 16S rRNA gene as a marker to 

investigate the taxonomic bacterial composition of a sample (Jovel et al., 2016). Because shotgun 

is unspecific in what piece of the bacterial genome is amplified and sequenced, it can be used to 

look at microbial community composition, as well as other features of interest, such as specific 

genes and detailed metabolic and functional profiles (Parks and Beiko, 2013). On the other hand, 

16S uses primers that anneal to conserved genomic regions that contain segments of hyper-

variability (known as the V1 to V9 variable regions). The 16S gene itself is specific to bacteria 

and archaea and is highly conserved between species, making it a useful target to capture most of 

the bacteria within a sample; the hyper-variable regions within the 16S gene, on the other hand, 

tend to differ between bacterial genera and/or species, and thus can be used to reconstruct the 

taxonomy of the bacteria and archaea within the sample. 

While much less expensive than shotgun metagenomics, there are some drawbacks 

specific to 16S analysis that are caused by amplifying only a portion of the genome (as opposed 

to unrestricted sampling of the entire genome, as in shotgun studies). Namely, 16S reads cannot 

be assigned to taxa at high resolution, such as at the species or stain level (Jovel et al., 2016). 

Additionally, because only the 16S gene is targeted and sequenced, use of 16S sequencing does 

not allow direct functional analysis of the communities being studied. Some pipelines exist that 

attempt to perform correlative analysis between the taxonomic composition of a sample and its 
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potential functional capacity (e.g., potential metabolic pathways). Some of these pipelines use 

curated databases of both genomes and so-called “marker genes”, the latter of which have been 

validated to correlate to both specific bacterial taxa and specific bacterial functions. It is 

important to note that the accuracy of such correlative analyses is heavily debated in the 

scientific literature (Segata et al., 2012). 

Bioinformatics 

A unique component of analyzing large biological datasets is reducing gigabytes (or 

more) of data down into manageable, useful information. Bioinformatics is defined as the 

application of computational tools to the capture and interpretation of biological data (Bayat, 

2002). Bioinformatics is multidisciplinary in nature as it combines expertise of fields such as 

computer science, statistics, and biology to understand and interpret the information contained in 

large datasets. 

In shotgun metagenomics, there are many tasks that must be automated through shell 

scripts and algorithms in order to make them efficient. These tasks can range from simple to 

more complex, but all of the tasks must be well understood in order to verify that the 

bioinformatics tools are being used appropriately. An example of a simple, but essential, tool is 

read trimming and filtering (i.e., quality control or QC, see above). After raw reads are produced 

by the sequencer, removal of sequencing adaptors and low quality nucleotide reads is an 

essential task. While this would be easy to do manually on one read, a typical study has billions 

to trillions of reads to process. Tools like Trimmomatic (Bolger et al., 2014a) provide free, open 

source scripts for public use. Published tools can be focused on a specific task, such as trimming 

or alignment, or can be in the form of “pipelines” that wrap multiple tools into one bioinformatic 

workflow. Wrapping multiple tools into one computational workflow not only helps with speed, 
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but also with data reproducibility. Galaxy (Afgan et al., 2016) is an example of a Reproducible 

Research System (RRS), which is an environment for executing and tracking computational 

analyses (Goecks et al., 2010). The advantage of these types of systems is that they not only keep 

the analysis organized, but can also be published alongside research findings for reproducibility. 

Special consideration: on target reads. When preparing to conduct an analysis, evaluation 

of whether or not there are enough sequences in relation to the sample type, and enough genetic 

read diversity,  to conduct a statistical analysis. One way to assess this is to perform rarefaction 

of the sequence data to produce a rarefaction curve. A rarefaction curve traditionally displays 

sampling depth on the x-axis and features (species, genes, etc.) or a measure of richness on the y-

axis. If sampling depth (i.e., the number of sequences attributed to each sample) is appropriate, 

the curve constructed for the sample (or group of samples) should level out when an appropriate 

sampling depth is reached. The depth of sequencing that needs to occur differs by bacterial 

community type as a function of diversity (i.e., the more diverse the matrix, the more reads are 

needed). While deep sequencing (i.e., sequencing a genome many times, sometimes hundreds or 

even thousands of times, and generation of a high number of unique reads) would be the most 

ideal for research, the cost makes ‘unlimited’ sequencing impossible. As a result, pre-study work 

with a smaller subset of the sample type of interest, or relaying on previously published work, 

needs to be considered before a sequencing depth is targeted. 

While appropriate sequencing depth is a concern, the number of reads that map to a 

feature of interest (known as a ‘hit’) must also be considered. For example, in a study conducted 

on beef cattle production (Noyes et al., 2016) that sampled both feces and meat, only 1.5% of 

total raw reads from feces aligned to the bovine host genome and were removed from the 

sequence data, while 99.6% of sequences in the meat were associated with the bovine genome.  
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Their study was conducted to evaluate AMR genes in the samples, yet across all samples, only 

0.04% of all raw sequences were attributed to one of such AMR genes. As a result, 99.6% of the 

sequences in this study did not contribute to the research objectives and could be considered off-

target. This is not an uncommon occurrence in metagenomic studies in which the objective is to 

investigate a subset of genes within a wider population. There has been some work to combat 

this issue, including use of both functional metagenomics (not discussed in this chapter) and 

targeted sequencing. Targeted sequencing involves specifying features of interest and designing 

‘baits’ for these targets (Sulonen et al., 2011). Once baits have been designed, they can be used 

to enrich for specific sequences within the metagenomic DNA via magnetic streptavidin beads, 

resulting in more on-target hits than a sample for which targeted sequencing is not used. 

Special consideration: dealing with different library sizes. There are many decisions that 

must be made to minimize bias when conducting a metagenomic study. These decisions start 

with experimental design, and carry through to data presentation. One decision that must be 

made is how to “normalize” sequence data. Weiss et al. described normalizing as, “the process of 

transforming the data in order to enable accurate comparison of statistics from different 

measurements by eliminating artifactual biases in the original measurements (Weiss et al., 

2017).” While library preparation and sequencing technologies have improved dramatically in 

short periods of time, there still can be an issue with uneven sequencing of DNA from samples.  

This results in sequence read datasets of differing sizes. For example, equal volumes of DNA 

extracted from two samples can be sequenced on the same sequencer at the same time, but one 

may generate 20 million reads while the other may generate 40 million reads. 

While differences in the number of sequences obtained from different samples are 

common, they are rarely a reflection of true biological differences, but more of sequencing 
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inconsistency. A few factors that affect read number include raw DNA allocation when pooling 

DNA for sequencing, sequencing protocol and sample matrix, and sequencer efficiency—such as 

variation in output from lane to lane on the same sequencer (Aird et al., 2011) . Because it is 

currently impossible to ensure completely uniform sequencing depth, post-sequencing tactics 

must be used to normalize for the uneven numbers of reads generated per sample. 

Two common methods of normalizing are rarefying and scaling; both provide advantages 

and disadvantages. Rarefying is the process of randomly sampling without replacement from 

each sample up to a common count (Weiss et al., 2017). For example, if one sample had 1,000 

reads and another had 2,000 reads, and the rarefying depth was set at 1,000 reads, the smaller of 

the two samples would be completely represented because all 1,000 reads would be sampled. 

From the 2,000 read sample, 1,000 reads would randomly be drawn without replacement and the 

rest discarded.  This would result in an equal number of sequences for each of the two samples 

(i.e., 1,000), and these reads would be carried forward into statistical analyses. The minimum 

number for rarefying could be selected as the lowest number of reads per sample within the 

dataset; alternatively, a higher number could be chosen, resulting in exclusion of samples with a 

lower number of reads. Scaling, on the other hand, is multiplication of count by a number or 

proportion. While total sum scaling (TSS) divides counts by total number of reads, a more 

sophisticated technique known as cumulative-sum scaling (CSS) builds on this method such that 

counts are divided by the cumulative sum of counts up to a percentile determined by the data 

(Paulson et al., 2013a). Another approach to dealing with count data is a logarithmic-ratio 

transformation. However, because a log transformation can only be used with positive numbers, 

pseudocounts must be added to zeros (i.e., usually adding a 1 to each observation), an issue that 

can result in bias (Martín-Fernández et al., 2015). 
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Rarefying effectively mitigates varied sample read count size and is especially versatile 

in handing small and uneven library sizes (Weiss et al., 2017). Disadvantages to rarefying 

include “throwing away data” (i.e., using only a small proportion of total reads) and adding an 

additional uncertainty to the data (McMurdie and Holmes, 2014). In contrast, CSS and other 

scaling methods utilize all counts in the sequencing data by adjusting them by a proportion. 

However, scaling also has problems associated with it. It can over- or under-estimate rare 

features in samples (Weiss et al., 2017). These issues can be illustrated by looking at two library 

sizes, one of 10,000 counts and another of 100,000 counts. In the small library, overestimation of 

abundance can occur (11). For example, if a feature were present in both samples at a minimal 

number, the scaling factor applied to the smaller library may overestimate a feature that is, in 

fact, very rare in the population. 

Normalizing currently is a necessary tool due to vastly different sequencing library sizes 

among samples. Unfortunately, there is no perfect method that allows all data to be evaluated 

while avoiding over- or under-estimations of features of interest. However, there are tools being 

developed that incorporate more robust models to handle these types of variably-sized data 

(Chouvarine et al., 2016). This is an area that has seen recent growth and will continue to evolve 

as bioinformaticians and statisticians develop models that more correctly handle count data. 

Data Presentation 

Metagenomic data are multivariate, and studies routinely generate gigabytes and even 

terabytes of data. While bioinformatic tools reduce these large datasets to more manageable 

sizes, the way in which metagenomic results are reported and visualized often differ when 

compared to traditional culture-based reporting methods; depending on objective(s), there are 

many visualizations that can be used. A taxonomy plot, or 100% stacked bar graphs, can 
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represent individual sample diversity, or the taxonomy of groups of samples that share common 

phenotypic characteristics. Ordination plots (including Principle Component Analysis [PCA] and 

Non-metric multidimensional scaling [NMDS] plots) are used to visualize calculated orthogonal 

distances between samples based on some mathematical associations in multidimensional space 

that account for sequentially-declining amounts of variance, which typically reflect differences in 

the composition of the microbiome. This allows for visualization of “like” and “unlike” samples, 

i.e., clustering. Heatmaps can be used to illustrate feature abundances (such as a species of 

interest or specific genes or classes of genes) across samples or groups of samples, again with the 

goal of visualizing clusters of like samples. 

Phylogenetic relationships are ‘trees’ built on how similar or dissimilar species or 

communities are. Uses for these trees can include illustrating the full phylogenetic diversity of a 

sample, or comparing a subsection of data, such as the diversity of species within a genus. 

Network analysis is the visualization of associations between genes or other features of interest. 

Co-occurrence of these features is something that can be demonstrated with a network analysis, 

as well as associations. While these methods of visualization are a starting point for data 

interpretation, there are numerous, more robust hypothesis-testing methods such as ZIG models 

(Paulson et al., 2013c), PERMANOVA (Tang et al., 2016), and Bayesian Network Analysis 

(Hobbs et al., 2016) that are used in metagenomics, but that are outside the scope of this chapter. 

Advantages of Metagenomics 

In addition to the relative reduction in cost in the last decade, and the ability to study 

uncultured organisms, metagenomic methods have other advantages as well. These include the 

ability created to assess community ecology and to study unknown pathogens of interest. The 

most touted advantage of metagenomics is the ability to look at an entire community of bacteria. 
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Culture-based techniques often use indicator organisms, such as generic E. coli or aerobic 

plate counts, as markers for pathogenic bacteria. While indicator organisms are used as 

surrogates for indicating potential of pathogen presence as a fraction of a larger population, some 

studies have shown only limited direct relationships between indicators and pathogens (Harwood 

et al., 2005). Instead, in some cases, use of indicator organisms rests on the assumption that, if a 

reduction is induced or occurs in the larger microbial population, the pathogenic sub-population 

also will decline in magnitude accordingly (Brown et al., 2000).  Metagenomics, on the other 

hand, can be used to directly assess presence and abundance of organisms in a microbial 

population, as well as presence of specific genes of interest. While metagenomics has primarily 

been used to develop inferences concerning bacteria, the technique also allows for in-depth 

investigation of the virome (all the viruses in a given environment), the mycobiome (all the fungi 

in an environment), and the plasmidome (all the plasmids). This is of special interest in food 

microbiology, where processes like shelf life and aging also are heavily influenced by fungal 

growth. 

In addition to identifying and quantifying organisms within a given microbial 

community, interactions between organisms can be studied. To assess relationships between 

features of interest (whether genes, genomes or sets of genomes) in a bacterial population, co-

occurrence and co-exclusion can be studied in the context of network analysis. Co-occurrence 

and co- exclusion relationships look at whether a specific feature of interest occurs at a higher 

rate alongside another feature; for example, two genes that are on the same plasmid would have a 

higher co-occurrence than two chromosomal genes from different species of bacteria. Network 

analysis can provide insight into inter-taxa associations to understand symbioses between 

community members; this allows more complex pattern discovery than traditional diversity 
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metrics (Barberán et al., 2012). Understanding associations between different microorganisms 

within a bacterial community can guide researchers towards specific targets for alteration or 

manipulation of the community—a systems approach to food. 

Disadvantages of Metagenomics 

While NGS has lowered sequencing costs, there are still financial barriers. These barriers 

are not just limited to generation of sequence data, but also to computational capabilities, data 

storage and, in some cases, the need to hire a bioinformatician and/or laboratory personnel 

familiar with NGS.  As sequencing costs drop rapidly, costs associated with data analysis and 

storage are forecast to occupy a larger proportion of total experimental costs. After overcoming 

financial costs associated with the technique, there are hurdles related to metagenomics being a 

relatively new method for ecological investigation; namely shortcomings associated with public 

databases, and availability and usability of analytical tools. 

With respect to public databases used in metagenomic analysis, there are several 

difficulties that researchers may encounter, including 1) incomplete databases, 2) mis-annotation, 

and 3) inconsistent nomenclature. While the rise in NGS has helped fuel expansion of many 

databases, there are still features and organisms that have yet to be entered into a database. To 

combat this issue, one method of de novo discovery of novel genes or organisms is called de 

novo assembly (Li et al., 2010).The issue of un-annotated sequence data is especially prevalent 

for fungi; while public databases exist, they are generally a few years behind those established 

for bacteria (Mayo et al., 2014). This is especially challenging to food researchers studying shelf 

life and fermentation, where fungi play an important role in bacterial communities. 

The second issue surrounding databases is the possibility of mis-annotation (i.e., that a 

gene or species of interest is erroneously attributed to an incorrect species due to an error in the 
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database). When mis-annotation occurs, the only remedy is careful curation of the database, 

which is time and labor intensive. 

Finally, there is the concern over inconsistent nomenclature/taxonomic grouping “rules.” 

This can be addressed by instituting standards for the naming of features or organisms. An 

example of this is found in antibiotic resistance gene naming where a gene needs at least a 2% 

difference in nucleotide makeup than its closest relative for it to be designated as a ‘new’ gene 

(Hall and Schwarz, 2016). 

Metagenomic studies require merging of computational and biological knowledge.  

Historically, these disciplines (i.e., computer science and the life sciences) have been largely 

separate. As life science researchers increasingly utilize bioinformatic software, the user-

friendliness of these tools continues to improve (Mayo et al., 2014). Use of 16S sequencing, 

which has a longer track record than more costly shotgun metagenomic sequencing, can be 

analyzed using two widely-available platforms (MOTHUR (Schloss et al., 2009) or QIIME 

(Caporaso et al., 2010a)), both of which have graphical user interfaces for improved accessibility 

for life science researchers. For shotgun metagenomics, such tools have not yet been established, 

and many analyses can still only be performed via the command-line (i.e., only interacting with a 

computer via coded commands, with no mouse capacities or graphics to guide the user). 

Metagenomics of Meat and Poultry 

Limitations associated with use of culture dependent methods have been known in food 

microbiology for many years. Before NGS became common, food microbiologists attempted to 

look at unculturable bacteria through other avenues. For example, 16S Ribosomal DNA PCR and 

Denaturing Gradient Gel Electrophoresis (known as 16S rDNA DGGE fingerprinting) were tools 

used as a precursor to the modern 16S protocol. The 16S rDNA DGGE separates equal length 
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DNA fragments based on sequence-specific melting in a polyacrylamide gel with a gradient of a 

denaturant chemical (Tzeneva et al., 2008). The difference between this method and more 

modern analysis of 16S is that, after extraction and PCR, fragment lengths are separated on a gel 

as opposed to being prepared for library sequencing. While widely employed as a precursor to 

modern day microbial ecology studies, this method did have drawbacks. In addition to less 

developed whole community DNA extractions, other problems with the method included 

formation of chimeric sequences (a new artificial gene created when two or more biological 

genes overlap and combine during PCR) affecting the band distribution, limited DNA fragment 

length (500 bp), co-migration of DNA fragments (resulting in different fragments having 

identical melting behavior), and a single species with multiple rRNA copies resulting in multiple 

bands and diversity overestimates (Ercolini, 2004). 

As a result of these issues, shotgun metagenomic techniques are starting to be used to 

answer specific food safety and quality questions regarding meat and poultry. There are many 

areas within food microbiology in which metagenomics can aid further research. While targeting 

pathogenic bacteria is related to food safety, and assessment of specific spoilage bacteria is more 

associated with meat quality, both safety and quality studies are beginning to look at the entire 

community of organisms in an environment. In the past, metagenomics in meat and poultry 

production was primarily used for descriptive purposes; e.g., finding the true polymicrobial 

diversity of a specific food product or environment (Mayo et al., 2014). As more background 

understanding is obtained, hypothesis testing is now beginning to emerge, using both 16S and 

shotgun metagenomics in randomized, controlled studies(Nieminen et al., 2012). 
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Food Safety 

Pathogen mitigation of specific culturable pathogen strains or indicator organisms has 

been the standard in meat and poultry production as a result of the sensitivity and affordability of 

these methods. However, some culture methods take up to a few days to confirm a positive 

presence of pathogens of interest (Valderrama et al., 2016). While rapid diagnostic methods, 

such as culturing or BAX PCR, allow for fast screening of potential pathogenic bacteria, results 

are only a presumptive positive or negative and still require cultural confirmation through 

biochemical, serological, or genetic tests (Hoorfar, 2011). While not currently deployable within 

the framework of ongoing food safety programs, a future goal of metagenomics is to provide 

confirmatory rapid pathogen detection in complex sample matrices. Currently, metagenomic 

research with respect to pathogenic organisms can be broken down into detection and reduction 

of organisms, as well as more downstream public health application within a greater microbial 

community. 

Pathogenic Bacteria 

Detection of Pathogenic Bacteria with Metagenomics. While whole genome sequences 

for many pathogens are available in the public domain, there has been limited use of 

metagenomics as a tool in true regulatory pathogen identification. An example of limitations 

regarding pathogen detection in metagenomic samples was demonstrated in a metagenomic 

study of a feedlot beef production system (Noyes et al., 2016). This study highlighted both the 

challenges associated with genetic similarity between many bacterial species and the downfalls 

of short read analysis. Because shotgun metagenomics has a non-bias enrichment PCR step in 

library preparation, there is randomness to what portion of any bacterial genome you will 

sequence. For example, in the beef study, a 100 base pair read assigned to Salmonella Newport 
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reference genome could have come from this serotype; but Salmonella Typhimurium and other 

Enterobacteriaceae, such as E. coli, also shared the same conserved genetic region (Yang et al., 

2016). As a result of these homologous regions between bacteria of different strains, and even 

different species, short read sequencing cannot offer a definitive answer to what strain a specific 

150 to 250 base-pair fragment belongs to. In situations where strain level differentiation is the 

difference between an adulterant in a meat product and something considered part of the natural 

microflora, metagenomic tools are not capable of these distinctions due to intra-species genetic 

homology and limitations of short-read sequencing. 

As a result, pathogen detection within un-enriched samples (i.e., within metagenomic 

data) is still a future goal and not a current reality. In contrast, whole-genome sequencing (WGS) 

is already being used in outbreak investigations, as this technique enables highly sensitive 

differentiation of extremely similar serotypes (even down to one single nucleotide polymorphism 

or SNP) (Bergholz et al., 2014). The reason that WGS is currently better suited to such 

applications is its ability to create full-length genomic assemblies from the sequence data, as 

opposed to metagenomic data, which typically produce very fragmented, low-quality assemblies. 

With metagenomic limitations in mind, there has been some work to solve issues 

associated with pathogen detection in metagenomic data. The creators of SeqSero, a web-based 

tool for determining Salmonella serotypes using high-throughput genome sequencing data from 

more than 2,300 serotypes, have attempted to identify Salmonella in shotgun metagenomic data 

(Zhang et al., 2015). While the tool is aimed primarily at WGS assembly of Salmonella, it does 

provide the option for pathogen detection within shotgun metagenomic data. The SeqSero 

developers tested the method by infecting mice with Salmonella Typhimurium and then using 

metagenomic sequencing of DNA extracted from the feces from the mice; they were able to 
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identify Serotype Typhimurium. As a follow up, fecal samples from patients known to harbor E. 

coli O104:H4 also were evaluated using the same tool to test for false positives; no reads from 

this sample group mapped to Salmonella spp. (Zhang et al., 2015). While this work provided a 

framework for identification of pathogens within metagenomic data, the Salmonella in the mice 

was at an elevated level due to an active illness. By contrast, food associated pathogen detection 

would need to detect specific strains at a lower relative abundance than those present in clinical 

infection doses. 

Detection of pathogen reduction using metagenomics. While metagenomics was not used 

during the 2011 European O104:H4 outbreak, retrospective use helped characterize the event. 

After the outbreak, 45 archived fecal samples from patients were evaluated using shotgun 

metagenomics. Using this retrospective analysis, researchers were able to create a draft sequence 

of the outbreak E. coli strain, but were only successful at detecting the strain in 67% of the cases 

that were confirmed via culture (Loman et al., 2013). While not effective at overt pathogen 

detection, this study did provide evidence of the ability to create draft genomes from 

metagenomic samples. This demonstrated the usefulness of metagenomics as an approach to 

characterize outbreak strains and find co-occurrences of outbreaks. Metagenomics also can be 

paired with other NGS techniques to investigate reductions in pathogen prevalence or 

abundance. While not directly related to detection of pathogens, a study conducted to identify 

metabolic pathways of Enterohemorrhagic E.coli demonstrated that the pairing of techniques was 

effective by first using 16S to understand the bacterial community of ground beef, and then 

looking into metabolic pathways (Galia et al., 2017). 

Metagenomics in a Public Health Setting. While there are clear limitations to the clinical 

application of shotgun metagenomic assessments to detect pathogenic bacteria, there has been 
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limited use. For example, in a clinical setting (Nakamura et al., 2008), a patient that presented 

with symptoms consistent with a foodborne illness was tested for presence of several bacterial 

and viral pathogens within feces through traditional culture methods; however, no pathogen was 

detected and therefore the illness could not be diagnosed. After the patient recovered from the 

illness, another stool sample was obtained and the metagenomic DNA was compared to DNA 

extracted from the original sample collected while the patient was ill. Detection of reads 

associated with Campylobacter jejuni resulted, which then was confirmed by PCR in the ‘ill’ 

sample but not the ‘recovered’ sample (Nakamura et al., 2008). This resulted in the ability to 

confirm the causative agent of a foodborne illness that was not possible through traditional 

culture methods. This case demonstrated the utility of shotgun metagenomics in finding a 

causative pathogen when what pathogen you are looking for beforehand is not clear. 

Commensal Bacteria. While identification and quantification of pathogenic bacteria has 

been the cornerstone of food safety for years, researchers are beginning to understand the 

importance of commensal bacteria in modulating health and disease of both individuals and 

environments, such as those introduced via factories or that contaminate meat and poultry 

products. Bystander bacteria, while not harmful on their own, can be the vessel for carrying 

genes of interest that escalate risk of disease. Metagenomics allows for increased understanding 

of relationships between commensal microbes and pathogens because researchers can sequence 

whole-community DNA to obtain a “full resolution picture” of the microbial community. 

Currently, identification and quantification of the organisms in a sample are the cornerstone of 

metagenomic studies, but more advanced analyses are beginning to find their way into the 

literature, including to answer questions such as what portion of the microbiome is transmissible 

both intra- and inter-species? What are the mechanisms of this transmission and what—if any—
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organisms in the commensal microbial population should be considered more or less ‘risky’ 

(Brito and Alm, 2016)? 

A specific example of the role that commensal bacteria can play in dissemination of 

genes of interest lies in the case study of antibiotic resistance genes. When an antibiotic is 

introduced into a bacterial community, some research has demonstrated that the microbial 

community can become stressed, resulting in increased rates of horizontal gene transfer (Beaber 

et al., 2004). Commensal bacteria can donate and accept genes via horizontal gene transfer, and 

as a result, both the commensal and pathogenic bacteria can acquire, carry, and disseminate these 

genes (Djordjevic et al., 2013). A widely studied commensal bacterium is generic E. coli. While 

diarrheagenic E. coli and enterohemorrhagic or shigatoxin-producing E.coli are the main public 

health concern, understanding harmless E. coli aids in the understanding of pathogenic E. coli. 

This is due to the fact that horizontal gene transfer occurs at a higher frequency in bacteria that 

are most closely related (Soucy et al., 2015). 

A specific community dynamic of importance to meat and poultry production is biofilm 

formation in processing facilities. Shotgun metagenomics has allowed study of multispecies 

biofilms and their complex microbial interactions, including genetic makeup, metabolite 

exchange and quorum sensing that may occur between microorganisms in biofilm communities 

(Giaouris et al., 2015). In biofilm communities, E. coli O157:H7 has been shown to possess the 

ability to co-colonize with commensal bacteria, and shotgun metagenomics assays have been 

used to study microbial competition for essential macronutrients (Giaouris et al., 2015). 

Genes of Interest. Biological hazards in meat and poultry products have primarily been 

described in the context of a pathogen or toxin of interest (certainly there are exceptions to this, 

such as E. coli differentiation based on virulence). However, with new technologies, instead of 
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considering the microorganism in its entirety, specific biomarkers can be evaluated (Brul et al., 

2012). In this way, pathogenic bacteria can be further delineated based on specific genetic 

attributes. Two common genetic components of interest in foodborne pathogens are antibiotic 

resistance genes and virulence factor genes. 

Antibiotic Resistance. Antibiotic resistance in meat and poultry products is of concern 

due to use of antimicrobials in the raising of food producing animals. The apprehension 

surrounding antibiotic use in livestock stems from concern that consumption of products derived 

from animals administered antimicrobials could increase risk of antibiotic resistant bacterial 

infections and treatment failure in humans (World Health Organization, 2012). In the past, 

antibiotic resistance has mainly been evaluated using cultural methods, such as those of the 

National Antimicrobial Resistance Monitoring System (The National Antimicrobial Resistance 

Monitoring System, 2016). This protocol is intended to monitor trends in antimicrobial resistance 

among enteric bacteria from humans, retail meats, and animals (The National Antimicrobial 

Resistance Monitoring System, 2016). However, the current workflow calls for enrichment and 

culturing of specific pathogens of foodborne concern, followed by antimicrobial susceptibility 

testing of cultured isolates; enrichment changes the relative abundance of organisms in the 

community and therefore biases results. Furthermore, some of the tested isolates are sequenced 

as part of the NARMS whole-genome sequencing initiative, after which the sequences are 

deposited in GenomeTrakr, a public database of genomes (The National Antimicrobial 

Resistance Monitoring System, 2016). Currently, however, there is no exploration of commensal 

bacteria in these NARMS samples, and therefore no investigation into the potential for a 

“commensal” reservoir of antibiotic resistance genes (Marshall et al., 2009).  Previous research 

has demonstrated that many commensal bacteria harbor antibiotic resistance genes (Marshall et 
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al., 2009).  Hence, accessing these commensal bacteria may be critical in furthering our 

understanding of antimicrobial resistance and its transmission to humans (Marshall et al., 2009).  

While antimicrobial resistance regulatory and surveillance programs continue to rely on testing 

of cultured indicator organisms, the research sector has produced studies that identify and 

quantify all known resistance gene sequences within metagenomic DNA (i.e., the resistome) 

(Noyes et al., 2016).  Such an approach allows for detection of antimicrobial resistance genes 

within both pathogens and commensal bacteria, and potentially allows an opportunity to 

characterize potential for  horizontal gene transfer events within the microbial population (Crofts 

et al., 2017). 

Another challenge when evaluating antibiotic resistance genes in a metagenomic sample 

is the dis-uniform methods of analysis. From sampling to processing to data interpretation, there 

are no standard methods of assessing risk of antibiotic resistant genes in culture-free methods.  

While some metagenomic studies of antibiotic resistance evaluate the functional assays of 

resistance, others infer risk based on database (Martínez et al., 2014). As a result of the varying 

analyses, it is a challenge to directly compare results from one study to the next. 

Virulence Factors. Virulence factors have previously been explored by food 

microbiologists, most notably as a means to differentiate E. coli strains, but primarily in the 

context of pathogen differentiation instead of community-wide characterization. Virulence 

factors are known to spread through bacterial communities using horizontal gene transfer 

avenues such as bacteriophages (Penadés et al., 2015). While presence of genes like eae and stx 

are used to classify E. coli O157:H7 as pathogenic, the ability to identify such genes in a shotgun 

metagenomic sample is challenging due to the short-read nature of sequences and inability to 

create robust assemblies (Yang et al., 2016). Furthermore, linkage inferences between genes and 
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bacteria are limited because library preparation and sequencing do not amplify ‘evenly’, 

resulting in uneven sequence coverage. However, understanding what virulence factors are 

present in a bacterial community can allow researchers to evaluate how these genetic factors 

interact. An example of this approach was used to conduct a culture-free assessment of natural- 

versus conventionally-raised beef cattle in North America (Weinroth et al., 2017c). 

Environment. In addition to looking at the meat and poultry products themselves, a very 

appropriate use of shotgun metagenomics is in characterization of processing facilities used to 

produce meat and poultry products.  Analysis of the biogeography of all potential fomites is a 

discipline known as building ecology (Doyle et al., 2017). In meat or food processing facilities, 

metagenomic analysis has been used to identify food spoilage bacteria and pathogenic bacteria 

on processing surfaces (Pothakos et al., 2015). Another valuable capability that metagenomics 

affords is investigation of co-occurrence of organisms (an example of this is seen in Pothakos et 

al., (Pothakos et al., 2015) who investigated microbial co-occurrence in a meat manufacturing 

plant). Such an analysis can be helpful in mitigating pathogens and spoilage organisms because it 

enables identification of organisms whose abundance is either directly or inversely correlated 

with the pathogens or spoilage organisms of interest. 

Ability to track a microbial community of a given environment is another example of 

how metagenomics can be used in environmental analysis. In addition to characterizing microbes 

in a given environmental community, a longitudinal study allows researchers to observe changes 

in the composition of the microbial community over time, or to compare the 

characteristics/makeup of a community with those from another environment. For example, in a 

study conducted on cooked sausage, Lactobacillus spp. increased in relative abundance during 
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production, while Enterobacteriaceae declined between the processing steps of meat receiving 

and final product (Hultman et al., 2015). 

Recent advancements in biostatistical capabilities (i.e., Bayesian modeling) also have 

enhanced source attribution to product or environmental contamination.  For example, 

SourceTracker (Knights et al., 2011) characterizes 16S data, collected from both the location of 

concern and potential sources of contamination, and attempts to determine which potential 

source was the actual source of the contamination (e.g., tables in a packing room for ready-to-eat 

products could be the location of interest and potential sources of contamination could be 

employee boots, packaging material receiving, and the cooler areas where meat is stored before 

packaging). While this is could be a valuable tool for improving general understanding of 

contamination and sanitation activities, the 16S input does not allow for strain level 

identification, thus limiting the tool’s usefulness in identifying a pathogenic contaminant. 

The software MetaMLST is a more recent tool that allows for microbial strain tracking 

and identification within complex shotgun metagenomic data obtained directly from an 

environmental sample (Zolfo et al., 2017). This tool works by reconstructing multilocus 

sequence typing (MLST) loci of pathogens (multiple areas of one genome) of interest from 

publically available databases and comparing them to microbial communities from shotgun 

metagenomic data (Zolfo et al., 2017). This tool holds promise for identifying pathogen 

contamination from different areas within a processing facility. 

While not directly related to meat and poultry products, metagenomic data also have been 

used to better understand plant worker health. Understanding which microflora and contaminates 

that workers might be exposed to throughout their work shifts helps to develop mitigation 

strategies to prevent possible negative results of exposure. For example, assessment of airborne 



 27 

bacteria found in the air vents of a slaughter house could become a proxy for worker airborne 

exposures, including air quality (McLean et al., 2014). 

Rearing of Animals. Use of metagenomics is not limited to end product food safety and 

abattoir sanitation. Many scientists have focused on use of metagenomics to discover potential 

targets that can be used to influence the microbiome of food animals before slaughter. Objectives 

of such studies vary, but include reduction of pathogen levels within animals, alteration of 

growth status, mitigation of unwanted outcomes such as liver abscesses in cattle, and 

manipulation of the nutrient profile of the meat being produced. As methods become more 

refined and we have accumulated knowledge of animal microbiomes, research goals have 

correspondingly evolved. Early studies focused more on characterization of animal microbiomes 

(Oakley et al., 2014) as a way to understand what organisms were present in normal situations. 

From there, specific locations within the animal’s body that impacted end product food safety 

were mapped using a microbiome approach (Weinroth et al., 2017a). Metagenomics then were 

employed to better understand movement of pathogens within livestock populations. For 

example, metagenomics was used to evaluate Shiga toxin-producing E. coli (STEC) in feedlot 

cattle populations, resulting in the observation that STEC colonization was correlated with a 

lower diversity of gut microflora, which increased as cattle matured (Mir et al., 2016). 

Food Quality 

Metagenomics has not just increased our understanding of pathogenic and harmful 

bacteria, but has also helped us to better understand how all bacteria and organisms change over 

time, and as a result of using specific antimicrobial sequential interventions in processing plants. 

For instance, fermentation and aging of meat adds value and longevity to the final products. 
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While these processes have been characterized through culture-based assays in laboratories, 

metagenomics allows for these processes to be viewed through an entirely different lens. 

Shelf Life. Metagenomics has been used to understand how different processing 

procedures affect the bacterial community and known causative spoilage organisms. In shelf-life 

studies, a metagenomics approach was used to characterize the impact of different ingredients, 

packaging types, and processing variation on shelf life. For example, in marinated broiler meat, 

the addition of a marinade (which contained, among other things, oil and sugar) altered microbial 

communities such that spoilage-associated Leuconostoc gasicomitatum, Leuconostoc gelidum 

and Lactobacillus spp. were favored (Nieminen et al., 2012). 

Metagenomic investigation also has been used to understand effects of differing types of 

packaging on meat storage characteristics. For example, comparison of meat products packaged 

in air, modified-atmosphere (MAP), under vacuum, and active vacuum packaging revealed that 

Brochothrix thermosphacta comprised a larger proportion of the microbiome of meat packaged 

in air and MAP during the early days of a 45 shelf life study; while Pseudomonas spp. became 

more dominate in air over time (Ercolini et al., 2011). While many bacterial species present on 

product had previously been associated with meat spoilage, there also were bacteria found that 

had not previously been associated with meat spoilage. 

In addition to profiling microbes present on meat subjected to shelf-life conditions, a 

study evaluated whether processing environments and other factors contributed to shelf-life 

variation. One study of beef steak production investigated the microbiome of steaks, carcass 

swabs and environmental samples over time (Exploring the Sources of Bacterial Spoilers in 

Beefsteaks by Culture-Independent High-Throughput Sequencing).  The investigators discovered 

many different types of bacterial contaminants across the samples on day zero of sampling, while 
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samples from latter time points showed that phyla associated with spoilage outcompeted skin-

associated bacterial environmental contaminants (P. acnes, Staph. equorum and Staphylococcus 

sp.) to become the most dominant phyla in the community. Other metagenomic studies have 

demonstrated variation in production systems, including lot variation in beef that was packaged 

in modified atmosphere (Säde et al., 2017). 

Fermentation. Culture-based studies associated with fermented meats, such as summer 

sausage, have been plentiful, but such studies focused on a few organisms and were not 

reflective of an entire microbiome. A 16S study of Italian salami highlighted the complexity of 

the ripening process by documenting a diverse bacterial community with higher-than-expected 

numbers of Lactobacilli spp. and Staphylococci spp., as well as presence of previously 

undocumented rare bacterial families. 

Regulatory 

Currently, metagenomic methods are primarily used in the research setting (Ercolini, 2013). 

For a method to be adopted as a benchmark for regulatory compliance, it must be verifiable, 

sensitive, specific, precise and accurate. Current metagenomic methods do not meet all of these 

thresholds, but there is clearly regulatory interest in advancing the technology to meet such 

goals. The current gold standard for monitoring foodborne outbreaks is PulseNet USA. The aim 

of the network is to rapidly detect multi-state outbreaks caused by foodborne pathogens through 

PFGE of outbreak samples with subsequent comparison to a national database of PFGE patterns. 

While still relying on PFGE for some pathogens, PulseNet has begun using WGS for Listeria 

monocytogenes detection, and use in both outbreak investigations and routine surveillance of 

foodborne pathogens (Deng et al., 2016). Though not currently implemented, use of WGS in 

PulseNet and other regulatory frameworks is likely the precursor to regulation of meat and 
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poultry pathogens from a metagenomic perspective (Deng et al., 2016). The ability to trace 

pathogens, or more specifically, virulence patterns, using metagenomic methods may be the 

ultimate tool for identifying specific environmental sources of contamination that is of public 

health concern (Bulut et al., 2017; Yang et al., 2016). 

Future Direction 

In relation to other techniques applied to the area of meat and poultry microbiology, 

metagenomics is still an emerging methodology. While many labratories and researchers have 

demostrated versatility and utility of metegenomics for advancing knowledge within a specific 

discipline, there still are many areas in which use of metagenomics has yet to be fully explored. 

In attempting to forecast what metagenomics may mean for meat and poultry science, it may be 

useful to understand how metagenomics has advanced scientific knowledge within human-

oriented fields. Beyond chracterizing different niches in the human body, research was 

conducted on links between the microbiome and different disease conditions ranging from 

irritable bowel syndrome to some cancers (Althani et al., 2016). Broad areas within meat and 

poultry research that could benefit from further development of metagenomic methods include 

improved usability and accuracy of bioinformatic and statistical techniques, single cell 

sequencing, and intervention-based studies. 

The field of bioinformatics is rapidly expanding, and new techniques are being developed 

in tandum with rapidly decreasing sequencing costs. An area that has seen growth in the past few 

years, and that will continue to mature, is development of graphic user interfaces (GUI) that will 

allow more biologists access to informatic tools. In terms of bioinformatics development, 

advancements in assembly algorithms specific to metagenomic data are continuing to evolve, 

such as the release of metaSPAdes (Nurk et al., 2017). There are other non-conventional 
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methods for bioinformatic development as well, such as crowdsourcing development. Through 

an open call with associated prize money, crowdsourcing developed 89 new sequence alignment 

algorithms, 30 more efficient than the previous benchmark, in just two weeks (Lakhani et al., 

2013). 

Single cell sequencing is another area where growth will likely occur. In shotgun 

metagenomics, diversity of the microbial community decreases ability to detect strain level 

variation and specific genes. Multiple displacement amplification (MDA) enables amplification 

of a single bacterial genome. Use of MDA in conjunction with next-generation sequencing can 

yield almost complete bacterial genomes (Lasken and McLean, 2014). This method has been 

used in built environments where bacteria of interest are low in abundance—such as pathogens 

in hospitals. Use of this method could lead to more complete understanding of low-abundance 

pathogens and their transmission between the environment and a host or a product (Lasken and 

McLean, 2014).  Because processing facilities deal with these same dynamics (i.e., a built 

environment with low pathogen presence, such as a further processing ready-to-eat meat plant), 

the usefulness of this technology is certainly an area worth exploring. 

Use of metagenomics will likely continue to transition from primarily exploratory and 

descriptive studies to causative and intervention based studies. Examples of this within the 

human literature include studies of Clostridium difficile infections and gene editing. In 

individuals with Clostridium difficile infections (CDI), characterized by an over proliferation of 

Clostridium difficile, low volume fecal transplants from healthy donors allow for repopulation of 

the intestinal microbiome with “healthy” microbes. Recent 16S studies have shown high 

abundance of Bacteroidetes and Firmicutes in donor feces, leading to the possibility of CDI 

treatment with a probiotic specifically enriched for these taxa (Shahinas et al., 2012). 
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Gene editing, specifically using CRISPR-Cas9 and other systems, hold promise for 

targeting specific genomes in a metagenomic sample. This technology allows for deletion, 

insertion, and modification of the DNA sequences of cells which, in turn, allows for control of 

function of specific genes and regulatory elements (Hsu et al., 2014). This method already is 

being examined in the context of food safety research. Using the CRISPR-Cas9 system, 

researchers were able to specifically cleave Shiga toxin genes in bacterial cells, leading to 

significant reductions in numbers of Shiga toxin-producing E. coli (Jia et al., 2017). These 

authors believe that this system could be further harnessed to decrease foodborne pathogens and 

other genes of interest in certain microbial communities.  



 33 

CHAPTER 2 

 

 

 

Characterization and Comparison of Market Beef, Dairy and Organic Dairy Cow Resistomes and 

Microbiomes 

Summary 

Bacteria on meat that are resistant to antimicrobials, as a result of cattle management 

practices, is a concern; but there are few data characterizing the nature of this issue for some 

segments of production. Market cows (mature cows harvested for meat after their usefulness as a 

dairy cow or beef calf producer has ended) make up a fifth of U.S. beef produced—but little is 

known about the AMR profile of this sector of beef production. The objectives of this study were 

to use targeted shotgun metagenomics and characterize the resistome and microbiome of colon 

content and trimmings from carcasses of non-fed beef, dairy, and organic dairy cows delivered 

for harvest. Colon content and beef trimmings from two different processing facilities were 

collected during three visits to each facility—to encompass seasonal variation should it exist.  

Beta-lactam resistance was found in the highest relative abundance in beef trimmings, while 

multi-drug resistance was most prevalent in colon content. Beef trimmings resistome was 

impacted by plant location (but not production method), while the resistome of colon content 

was not altered by either factor. Beef trimmings resistomes were found to be correlated to 

microbiome composition, though this was not the case in the colon content. These data provide a 

baseline characterization of an important segment of the beef industry and will allow a more 

comprehensive understanding of AMR public health risk. 
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Introduction 

The association between food animal production and antimicrobial resistance (AMR) is a 

relationship public health officials have expressed interest in (Center for Disease Control and 

Prevention, 2013). There is a concern that administering antibiotics to food animals could 

increase AMR bacteria on meat and result in resistant infection in humans for which treatment 

fails (Economou and Gousia, 2015); a worry both the World Health Organization and the Center 

for Disease Control and Prevention have voiced (Center for Disease Control and Prevention, 

2017a; World Health Organization, 2015). Recently, there has been an increased effort to reduce 

use of medically important antibiotic in food animal production in the United States through the 

Veterinary Feed Directive (VFD) (U.S. Federal Registry 80 FR 31707). While AMR is naturally 

occurring (D’Costa et al., 2011), prevalence within a microbial community can increase through 

selection pressure (Weinroth et al., 2018c) and horizontal gene transfer (von Wintersdorff et al., 

2016). 

Antibiotics are used to treat and prevent disease in food producing animals (Boeckel et 

al., 2015). In both beef and dairy production, antibiotics are used throughout different stages of 

the animal’s lifecycle. In beef cattle, 15.3% of cow-calf operations (businesses that raise calves 

from birth to weaning) use antibiotics for disease prevention (Sneeringer et al., 2015). On dairy 

operations, in addition to the administration of antibiotics for diarrhea, respiratory illness, and 

mastitis, 90.1% of farms administer antibiotics to prevent intra-mammary infections when cows 

are dry (Sneeringer et al., 2015) as well as to treat infection present at the end of lactation. While 

the majority of culled market cows are raised in a conventional system that uses antibiotics to 

improve animal welfare and herd health, organic production (with one requirement for 

certification being no use of antibiotics) is a small but growing segment of the cattle industry 
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(USDA-ERS, 2013). One reason for an increase in the organic market share is the perception that 

organic practices decrease selection pressure for AMR and reduce AMR concerns—though 

scientific literature on the subject has found  not using antibiotics to have little to modest results 

in  reducing AMR (Vikram et al., 2017). 

Investigations on how antibiotics alter the resistomes and microbiomes of feedlot cattle 

and milking dairy cows have employed culture, quantitative PCR (qPCR), or shotgun 

metagenomics methods (Schmidt et al., 2013; Weinroth et al., 2018c). However, studies of the 

impact of antibiotic use on AMR in culled cows is sparse (Agga et al., 2016; Chambers et al., 

2015; Wichmann et al., 2014). At the same time, market cows and bulls comprise 17 to 19% of 

the Federally Inspected U.S. slaughter annually (Woerner, 2012); these animals are either culled 

beef cows or cows culled from dairy operations. Therefore, it is important to gain a baseline 

understanding of this production sector to accurately understand risk associated with U.S. beef 

production. 

Shotgun metagenomics allows for an ecological survey of AMR genes present in a 

bacterial community without having to preselect only a few genes of interest. Targeted shotgun 

metagenomics further refines the ability to look into a community by targeting specific genes and 

reducing background DNA not of primary interest (Noyes et al., 2017). At the same time, in 

addition to focusing on the genes that confer resistance, understanding the phylogenetic makeup 

of the community is vital because some phyla are known to carry AMR genes at a higher 

frequency than others (Berendonk et al., 2015). Hence, the objective of this study was to use 

targeted shotgun metagenomic and 16S rRNA amplicon sequencing to characterize the resistome 

and microbiome of colon content and trimmings from carcasses of beef, dairy, and organic dairy 

market cows at harvest. 
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Materials and Methods 

Description of Study Population. Cows are defined as bovine females that have been 

through parturition. In this study, the population was further refined to ‘market cows’ which are 

cows that have been in a production system (either dairy or as a producer of offspring for 

feedlots) but have come to the end of their productive life and are slaughtered for meat. Market 

cows, in contrast to ‘fed-cattle’ (cattle that spend the last months of their lives in a feed yard on 

high concentrate diets) are typically feed higher roughage diets. Also, in contrast to fed-cattle, 

market cows tend to have a longer lifespan than feedlot cattle, with dairy cows living around 3 to 

5 years and beef cows around 8 to 10 years.  

Three production systems were sampled in this study: conventional beef cows “CON-B”, 

conventional dairy cows “CON-D”, and organic dairy cows “ORG-D.” Because of the nature of 

beef cattle production, there was not a sizable organic market cow beef population to samples, 

thus this group was excluded from this study. The CON-B cows were composed of cows that 

produced calves intended for feedlot production, the use of antibiotics was permitted in this 

production system. The CON-D cows were animals that had produced milk on conventional 

dairies (where antibiotic usage is permitted). All conventionally managed cattle that are 

administered antibiotics must wait a minimum amount of time prior to slaughter to assure no 

antibiotic residue is left in the animal tissue, this is known as a withdrawal time. Finally, ORG-D 

cows were cows raised on certified organic dairy operations that have several management 

requirements such as not allowing antibiotic usage, organic feed, and access to the pasture during 

the growing season.  

Processing Facility Overview. Samples were collected over six visits to two U.S. 

commercial packing facilities that harvested market cows over six months (each plant was 
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visited three times to help account for seasonal variation). One sampling facility was located in 

the Southwest, while the other was located in the Midwest. Samples were collected from 

carcasses of cows that were generated via three production backgrounds at each plant location: 

CON-B, CON-D, and ORG-D. At each packing facility, 9 composite colon content samples and 

9 composite beef trimming samples were collected; three from each production system and 

sample type (Fig. 2.1).  

Colon content sampling. Fifty-four composite colon content samples (each composite 

was comprised of 9 to 10 individual cow colons composited) were collected in total. At each 

facility, three composite samples were obtained to reflect each production system, for a total of 

nine composites per plant per visit (9 samples per visit × 6 visits = 54 samples). Individual colon 

content samples were acquired by obtaining a sigmoid colon from the evisceration belt, making 

an incision in the colon, and then transferring approximately 25 g of colon content into a plastic 

bag; gloves were changed between each colon to prevent cross-contamination. Samples were 

stored at 4°C and shipped to the USDA Meat Animal Research Center (Clay Center, NE) for 

further processing. Composite samples were created by combining the 5 to 5.5g from 9 to 10 

individual colons (50g total / sample) within treatment group. Composited samples were shipped 

on ice to Colorado State University (CSU) in Fort Collins, CO and stored at -80°C until further 

processing. 

Trimmings derived from the chilling cooler. Fifty-four composite beef trimmings samples 

(900 g each) were obtained from carcasses meeting study design requirements while located in 

the plant chilling cooler 24 h ± 4h after colon content samples were collected. While sampling 

occurred according to the same experimental design in the cooler, individual carcass identity was 

not maintained and each sample likely was obtained from different carcasses than those from 
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which colon content was collected. Approximately 90 to 130 g of bovine trimmings (comprised 

of a combination of a the brachiocephalicus, trapezius, rhomboideus, and splenius muscles) from 

each carcass were excised and composited to create three composite samples per production 

system (7 to 10 carcasses per composite). Samples were immediately placed on ice and 

transported to CSU for processing. 

Trimmings derived from fabrication. Because the plant that was located in the Southwest 

did not have an organic product label program, it was impossible to maintain identity of 

carcasses from cows produced in such a fashion through completion of the fabrication (carcass 

disassembly) process. Therefore, trimmings samples collected from carcasses during fabrication 

were only collected in the Midwest plant. Furthermore, because conventional beef and dairy 

cows were not marketed separately in the Midwest plant, the only comparison that could be 

made was between conventional and organic practices. During each of the three plant visits, 

three organic and three conventional trim samples were obtained for a total of 18 composites 

total.  Each trimmings sample was approximately 900 g. Samples were immediately put on ice 

and transported to CSU for processing. 

Isolation of DNA for sequencing. Colon content was thawed at 4°C prior to DNA 

isolation. DNA was isolated from a 0.2 gram aliquot of each composite colon sample using the 

QIAamp PowerFecal DNA Kit (Qiagen, Hilden, Germany) via manufacturer’s instructions. 

Upon arrival at CSU, cooler and fabrication trimmings was kept on ice and processed 

within 24 hours. To each sample bag, 180mL of phosphate-buffered saline (PBS) was added and 

the bag was hand-massaged. After massaging, all supernatant was centrifuged (10,000 ×g for 10 

minutes at 4°C) to pellet intact cells. Pellets were stored at -80°C until DNA isolation. DNA 
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from each thawed pellet was extracted using the QIAamp PowerFecal DNA Kit (Qiagen, Hilden, 

Germany) via manufacturer’s instructions. DNA was concentrated using an ethanol precipitation. 

Library Preparation and Sequencing: shotgun metagenomics. Shotgun metagenomic 

libraries were prepared using the SureSelectXT-HS Target Enrichment System for Illumina 

Paired-End Multiplexed Sequencing Library (Agilent Technologies) with ‘MEGaRICH’ (Noyes 

et al., 2017) a custom-designed target enrichment kit specific to AMR genes, following the 

protocols described in Noyes et al. (Noyes et al., 2017). Prepared libraries were transported to 

the UC-Denver Genomics and Microarray Core Facility (Denver, CO), where paired-end 

(2x150) sequencing was performed on an Illumina NovaSEQ 6000 (Illumina, Inc., San Diego, 

CA) with a target of 20 million reads per colon sample and 100 million reads per cooler and 

fabrication trimmings sample. Along with the biological samples, two ZymoBIOMICS mock 

communities (Zymo Research, Irvine CA) with meta-sequin (Mix A and B) added in at 2% of 

the mock community DNA by weight (Hardwick et al., 2018) were sequenced on each lane 

(more information on this can be found in Supplementary methods).  

Library Preparation and Sequencing: 16S rRNA Sequencing.. Aliquots of DNA from 

each sample were shipped to Novogene Corporation (Beijing, China) for 16S rDNA library 

preparation and sequencing. The V4 region of the 16S subunit was amplified with the 515/806R 

primer set. Paired-end sequencing (2 x 250) was conducted on an Illumina HiSeq 2500 (Illumina, 

Inc., San Diego, CA). 

Shotgun metagenomic processing. Demultiplexed FASTQ files were transferred from UC 

Denver. Samples were processed with the AMRplusplus (Lakin et al., 2017) pipeline with 

modification. Briefly, samples underwent trimming via Trimmomatic (Bolger et al., 2014b) and 

removal of bovine DNA via the BWA aligner (Li and Durbin, 2009). Duplicate DNA reads 
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(reads that were identical the entire length of the read), were removed via BBTools’ dedupe 

script (https://jgi.doe.gov/data-and-tools/bbtools/) Once samples were converted from the 

FASTQ to FASTA format, IDBA-UD (Peng et al., 2012) was used to construct contigs. From 

there, HMMERv 3.1 (Finn et al., 2015) was used to classify contigs to hidden Markov models 

(HMM) trained on the MEGARes AMR gene database (Lakin et al., 2017) for identification of 

AMR genes in the sample. Each model was aggregated into a class, mechanism, and HMM 

group of AMR genes. Genes that required SNP confirmation to confirm resistance, as defined by 

the AMRplusplus pipeline (Lakin et al., 2017), were removed from downstream analysis. Count 

tables were adjusted for lane effect via meta-sequins and a threshold for false-positives for AMR 

models was set using the mock communities, more information on this can be found in 

Supplementary methods.  

Amplicon processing. Demultiplexed samples were obtained from Novogene and 

processed with QIIME2 v. 2018.11 (Caporaso et al., 2010a). Files were imported into QIIME2 

using the ‘qiime tools import’ command using the paired end option. Exact sequence variants 

(ESV) were assigned via DADA2 (Callahan et al., 2016) with the first 20 nucleotides of both the 

forward and reverse reads trimmed as well as truncation at nucleotide 220 of the forward reads 

and 230 on the reverse reads. Phylogenetic trees were generated using MAFFT (Katoh and 

Standley, 2013) v. 7, and FastTree2 (Price et al., 2010). Feature taxonomic classification was 

conducted using a pretrained Naïve Bayesian classifier trained using the 515/806R primers on 

the Greengenes database (DeSantis et al., 2006a). Reads that were assigned to chloroplast and 

mitochondria and those that did not have a kingdom classification were removed. After negative 

controls were removed, tables were parsed by sample type.  



 41 

Experimental design. The study was constructed as a 2x3 factorial, where time of 

collection was treated as random, the first factor was facility (Midwest or Southwest), and the 

second factor was cow production background (CON-B, CON-D, and ORG-D). Because of 

uncertainly of the geographically distribution of cattle feeding into each facility, only differences 

in actual facility not region of harvest could be made. Type 1 error was established at a = 0.05, 

and trends were reported with a at 0.051 to 0.010. 

Shotgun metagenomics statistics. Shannon’s diversity, used as the measurement for alpha 

diversity, were evaluated using the ‘car’ (v. 2.1-6) and ‘emmeans’ (v. 1.1) packages in R (version 

3.4.2) via the ‘Anova’ and ‘lsmeans’ functions, respectively. Mean separation was accomplished 

using the ‘pairs’ function of the ‘emmeans’ R package. Non-metric multidimensional scaling 

(NMDS) ordination was performed using Hellinger transformation and Euclidean distances in 

the metaMDS function of Vegan (Legendre and Gallagher, 2001), with differences compared 

using Vegan’s ‘adonis’. Log2 fold change were calculated using ‘FitZig’ function in 

metagenomeSeq (Paulson et al., 2013a) by fitting multivariate zero-inflated Gaussian mixture 

models. Limma’s ‘makecontrast’ function (Ritchie et al., 2015) was used for pairwise mean 

separation, adjusted with the Benjamini-Hochberg procedure (Benjamin and Hochberg, 1995). 

Amplicon statistics. Differences in read numbers were assessed with the ‘anova’ and 

‘pairs’ functions from base R and emmeans, respectively. Tables were rarified as follows: 

Trimmings derived from the cooler at 48,584 reads, trimmings derived from fabrication at 

50,684, and colon content at 92,539 reads; each sample type was rarefied to the lowest number 

of reads in within a sample type allowing for retention of all samples. Alpha diversity was 

calculated on a rarified table using Faith’s phylogenetic diversity. Beta diversity was assessed 

with weighted and unweighted UniFrac distances. Differences in alpha diversity were assessed 
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with  a Kruskal-Wallis tests while beta diversity differences were evaluated by the ‘adonis’ 

function from the Vegan package v. 2.5-3 for interactions and PERMANOVA for main effects 

and pairwise comparisons. Differential abundance was calculated with the ‘qiime composition’ 

tool using ANCOM (Mandal et al., 2015) on phyla present in more than 1% of the total 

resistome. UniFrac distances were visualized using principal coordinates analysis plots generated 

in EMPeror (Vázquez-Baeza et al., 2013). 

Results 

The interaction between facility and production system the market cows were raised in 

was evaluated in each model; however, no significant interaction (P > 0.05) were observed in 

any model. As a result, only main effects are presented here as facility and production system 

independently acted on the resistomes and microbiomes of all sample types.   

Targeted Shotgun Metagenomics 

A total of 4.8M reads were classified to AMR gene model groups. Colon content, on 

average, contained more (P < 0.001) AMR reads (average 80K, 95% C.I. 65 to 96K) when 

compared to bovine trimmings derived from the cooler (average 7K, 95% C.I. 0 to 22K) or 

fabrication (average 5K, 95% C.I. 0 to 31K); though there was no significant difference (P = 

0.99) between types of trimmings. Within colon content, AMR read number did not differ (P = 

0.252) by facility; but, between production systems organic cows generated DNA with fewer (P 

= 0.009) AMR reads (average = 43K, 95% C.I. 4 to 81K) than conventional dairy cows (average 

= 108K, 95% C.I. 70 to 147K). Faculty and production system of beef trimmings derived from 

the carcass chilling cooler or carcass fabrication did not affect (P > 0.05) AMR read number. 

The resistome of bovine trimmings derived from carcasses located in the chilling cooler 

was comprised of hits to resistance to beta-lactams (27%), multiple drugs (22%) and 
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glycopeptides (14%); tetracycline, macrolide, lincosamides, streptogramines (MLS) and 

aminoglycoside resistance all accounted for more than 5% of the total resistome individually. 

The most abundant mechanisms of resistance for samples of beef trimmings obtained in the plant 

chilling cooler were multi-drug efflux pumps (23%), class A betalactamases (19%) and multi-

drug regulators (10%), Fig. 2.2. Trimmings collected from carcasses that underwent fabrication 

had a higher relative abundance of beta-lactam resistance (55%) followed by between 5 to 10% 

resistance to aminoglycosides, multi-drug, tetracycline, and glycopeptides. Beef trimmings 

samples collected during carcass fabrication also had the highest relative abundance of the class 

A betalactamases (39%) mechanism, followed by multi-drug efflux pumps (6%). Finally, colon 

content obtained from animals during harvest expressed AMR comprised of multi-drug (42%) 

and tetracycline (31%) resistance, followed by macrolides, lincosamides, streptogramines (MLS) 

(7%) and beta-lactam (6%) resistance. At the mechanism level, cattle colon content was 

comprised of 30% multi-drug efflux pumps, 28% tetracycline resistance ribosomal protection 

proteins, and multi-drug regulators 10%. 

Chilling cooler trimmings resistome differed by facility, not production system. AMR 

Shannon’s diversity was not affected (P = 0.412; Fig 2.3A) by production system but was 

affected (P = 0.026) by facility. Beef trimmings obtained from carcasses of cows in the 

Southwest facility generated greater (P = 0.003, Fig 2.3B) Shannon’s diversity than beef 

trimmings derived from carcasses of cows in the Midwest facility. Similarly, overall resistome 

composition of beef trimmings samples collected from carcasses in chilling coolers were not 

affected (P = 0.424, Fig. 2.3C) by production system, though slaughter facility did influence 

resistome composition (P = 0.002; Fig. 2.3D). Between production programs, at the AMR class 

level, there were very few differences in the resistome of beef trimmings collected from 
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carcasses in the chilling coolers: trimethoprim resistance was higher (P = 0.046) in organic 

versus beef and aminoglycoside resistance tended (P = 0.069) to be higher in beef than dairy. 

Facility differences by AMR class were more pronounced: seven classes differed (P < 0.05, Fig. 

2.4) between plant location, while two additional classes tended to differ (P = 0.05 to 0.10, Fig 

2.4). Tetracycline resistance was more highly (P = 0.007) expressed in chilling cooler trimmings 

in the Midwest facility and aminoglycoside resistance tended to be (P = 0.099) expressed more 

highly in the Southwest facility; other classes that differed by plant location made up less than 

5% of the total resistome individually. 

Resistome of conventional and organic fabrication trimmings were similar. No 

production practice differences (P < 0.05) in AMR Shannon’s diversity or community 

composition were detected in beef trimmings derived from carcasses at the end of fabrication. 

Five classes of resistance differed (P < 0.05) between beef trimmings derived from carcasses of 

cattle raised conventionally vs. organically and obtained during fabrication (rifampin, fusidic 

acid, metronidazole, aminocoumarins, and bacitracin), but the average expression of these 

classes was below 1.0 log expression, indicating the log-fold change observed was an artifact of 

spare counts and not of biological significance.  

Colon content resistome overall similar, but many AMR class differed. Shannon’s 

diversity of AMR gene model groups of cow colon content was not affected by facility (P = 

0.982; Fig 2.5C) or production background (P = 0.845; Fig 2.5A). Cow colon content beta 

diversity was not altered by slaughter facility (P = 0.803, Fig 2.5D), though differences in 

resistome composition for cattle colon content due to production background tended to differ (P 

= 0.080, Fig 2.5B) based on Euclidian distance ordination. While community resistomes of cow 

colon content resistome was similar, several classes of resistance differed (P < 0.05; Fig 2.6) by 
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production background, though there were no differences (P > 0.05) in AMR classes between 

facilities. There were no AMR class differences (P > 0.05) in cow colon content between CON-

D and CON-B, and differences between the two conventional treatments when compared to 

organic followed a similar pattern. Resistance to tetracycline was greater (P < 0.05) in colon 

content of both conventional treatments when compared to ORG-D, as was aminoglycoside 

resistance in CON-B and beta-lactam resistance in CON-D. Multi-drug resistance tended be 

higher (P = 0.069 CON-D and P = 0.076 CON-B) in conventional versus ORG-D. Conversely, 

relative abundance of rifampicin colon content of ORG-D had higher (P < 0.05) expression of 

rifampin resistance compared to that from conventional cattle, and a greater expression of 

trimethoprim than colon content from dairy cows. Additionally, aminocoumarin resistance in 

colon content obtained from ORG-D tended to be greater (P = 0.069) than that of colon content 

of CON-D, while metronidazole and trimethoprim tended to be more highly (P = 0.076) 

expressed in the colon content of ORG-D versus CON-B. 

AMR genes decreases in richness through production. Among all sample types collected 

(colon content, trimming derived from the chilling cooler, and trimmings derived from the 

fabrication),  Shannon’s diversity was greater for the resistome in colon contents (P < 0.001, Fig 

2.7B) than on beef trimmings derived from either production location in the facilities, and the 

number of gene model groups decreased (P < 0.05, Fig 2.7C) the further into production the 

sample was acquired. Beta diversity by stage of cow processing differed (P < 0.001, Fig 2.7A), 

with a clear separation between colon contents and bovine trimmings, though bovine trimmings 

derived from the two different locations in the plants were similar to each other. 
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Amplicon Sequencing Results 

After quality filtering, 17.5M reads were retained for microbiome analysis (average = 

139K, range 54K to 194K). The number of reads generated per sample type differed (P < 0 

.0001) as colon content had a greater (P < 0.001) numbers of reads compared to both types of 

bovine trimmings. Colon samples generated an average of 171K (95% C. I.  163 to 178K) 

filtered reads per sample, bovine trimmings from the chilling cooler 118K reads (95% C. I.  110 

to 125K), and bovine trimmings from fabrication 108K reads (range 96 to 120K) on average per 

sample. 

Relative abundance of Proteobacteria (63%), Firmicutes (19%) and Bacteroidetes (7%) 

were greatest in beef trimmings derived from cow carcasses in the chilling cooler, Fig. 2.8. 

Actinobacteria and Acidobacteria individually made up 5 and 1% of colon content microbiome, 

respectively. Similar to trimmings derived from carcasses in the chilling cooler, trimmings 

derived from carcasses during fabrication were mainly comprised of Proteobacteria (49%), 

Firmicutes (25%) and Bacteroidetes (10%), Fig 2.8. Four other phyla, Actinobacteria, 

Acidobacteria, Gemmatimonadetes, and Chloroflexi made up 1 to 7% of the total microbiome of 

beef trimmings obtained from carcasses during fabrication. In contrast to the beef trimmings 

samples, colon content was comprised primarily of Firmicutes (60%) followed by Bacteroidetes 

(27%). Proteobacteria, Tenericutes, Verrucomicrobia, Actinobacteria and Spirochaetes made up 

between 1 to 5% of the total microbiome in cow colon samples, Fig. 2.8. 

Facilities had different cooler trimming colon content Microbiomes 

Alpha diversity of beef trimmings collected from carcasses in the chilling coolers by did 

not differ by production background (P = 0.98) or plant location (P = 0.28). Beta diversity of 

trimmings derived from the cooler differed by facility (weighted UniFrac P = 0.005, unweighted 
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UniFrac P = 0.646; Fig. 2.9) but not by the production system the cows were raised in (weighted 

UniFrac P = 0.646; unweighted UniFrac P = 0.874; Fig. 2.9) When log-fold change was assessed 

at the phylum level between facilities of slaughter, no differences (P > 0.05) were detected at the 

phyla level in trimmings derived from the cooler.  

Alpha diversity of colon content was different (P = 0.011) between facilities but not 

production practices (P = 0.397). Colon content beta diversity differed (weighted UniFrac P = 

0.001; unweighted UniFrac P = 0.001; Fig. 2.9) by facility, while the production system the 

cows were raised in did not (weighted UniFrac P = 0.092, unweighted UniFrac P = 0.224; Fig. 

2.9), though weighted UniFrac differences between production systems were considered a trend. 

At the phyla level, no differences (P > 0.05) among treatments in microbiome were observed in 

colon content. Between facilities, cow colon content in the Southwest processing plant had a 

greater amount (P < 0.05; W = 46) of the phyla Fusobacteria than colon content from samples 

collected in the Midwest facility. Upon further investigation, Fusobacteria was present in 48% of 

cow colon content collected from the Midwest facility and 70% of colon content samples from 

the Southwest facility. Average total relative abundance in colon samples of Fusobacteria was 

0.01% in the Midwest facility (range 0.00 to 0.15%) and 0.15% in the Southwest facility (range 

0.00 to 2.41%). 

In the Midwest Facility, trimming microbiome was affected by season and production system   

In trimmings obtained from carcasses during fabrication, trimmings from conventional 

cattle had higher alpha diversity (P = 0.046; Fig. 2.10) and the two types of trimmings had 

differences (weighted UniFrac P = 0.003, unweighted UniFrac P = 0.067; Fig 2.10) in beta 

diversity. However, there were no phyla level differences (P > 0.05) between conventional and 

organic trimmings derived from fabrication. Between trimmings from the Midwest facility 
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collected in the chilling cooler and fabrication, alpha and beta diversity did not differ (alpha P = 

0.47; weighted UniFrac P = 0.37, unweighted UniFrac P = 0.552; Fig. 2.11). However, season 

was seen to be a significant (weighted UniFrac P = 0.001; unweighted UniFrac P = 0.001; Fig. 

2.11) effect the composition of the trimmings microbiome. 

Discussion 

These data provided a comprehensive look into AMR proliferation and differences in 

market cows colon content and bovine trimmings and the associated microbiomes, Cow colon 

content had a distinct resistome and microbiome when compared to beef trimmings derived from 

carcasses in the chilling cooler, and both production system and facility location provided 

information about the resistome and microbiome of colon content and trimmings derived from 

both the chilling cooler and fabrication. 

Resistomes were different within sample types across all production background groups 

and facility locations. Beef trimmings derived from carcasses in the chilling cooler had high 

proportions of resistance to beta-lactams, multi-drug resistance, and glycopeptides. Trimmings 

derived from carcasses during fabrication also had the greatest number of resistance genes 

assigned to beta-lactam resistance, but in a higher relative abundance than those obtained from 

carcasses in the chilling cooler (55% vs. 27%). Other prominent classes of AMR hits for bovine 

trimmings collected during fabrication were assigned to aminoglycosides, multi-drug, 

tetracycline, and glycopeptides. When the same targeted metagenomic method was used to 

investigate bovine trimmings (with different bioinformatic processing), another bovine 

trimmings study found beta-lactams to be the most abundant class of resistance (Weinroth et al., 

2018b), while a study on ground beef found that tetracycline was the major class of resistance 

(Thomas et al., 2018). It is likely that these study difference could be a result of overall sparse 
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numbers of resistance genes in end product, thus small changes in actual AMR genes could 

dramatically alter the relative abundance of different classes. Additionally, the current study 

deduplicated reads during processing (the removal of reads that are identical within a samples as 

they are thought to be a result of PCR bias), while the two aforementioned studies did not, which 

could also explain differences in relative abundance. Culture methods also have detected high 

levels of tetracycline resistance, with a study of Enterococci from retail ground beef finding 

tetracycline to be the most common class of resistance (Tyson et al., 2018). Resistance to the 

beta-lactam class of antibiotics has been found in some Salmonella serotype isolates (White et 

al., 2001), though the overall prevalence was more challenging to measure as many studies focus 

on subsets of beta-lactam resistance that are a higher generation. 

Colon content resistome, used to represent the effect of different production strategies on 

the cows, also was characterized in the present study. The cow colon resistome was more robust 

than the trimmings resistome, with significantly more reads from colon content attributed to 

AMR. Colon content was comprised mainly of multi-drug and tetracycline resistance. 

Tetracycline resistance is very common in cattle feces and has been documented in dairy 

(Wichmann et al., 2014) and feedlot cattle (Weinroth et al., 2018c), as well as in colon content 

(Vikram et al., 2017). Contrary to a high level of multi-drug resistance found in this study, other 

studies have reported low multi-drug resistance in the feces (Noyes et al., 2016) when employing 

shotgun metagenomics; though multi-drug resistance in the content of pathogens such as 

Salmonella spp. has been reported on the hides of beef cattle (Brichta-Harhay et al., 2011) at a 

higher prevalence. It is unclear if the reason behind this level of multi-drug resistance was a 

result of different cattle management practices (market cows have longer life spans than those of 
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conventional beef fed cattle) or bioinformatic differences (the differing classification of what 

constitutes multi-drug resistance within different databases and assays). 

Once resistomes were characterized within sample type, differences associated with 

common production management methods and facility locations of harvest were evaluated. In 

both sample types, across all metrics measured (diversity, community composition, and class 

level log2 fold change), there were no interactions between region and treatment group, meaning 

that these two factors acted independently on the resistome. 

The resistome of beef trimmings obtained from cow carcasses in the chilling cooler were 

not affected by production background (this result was reinforced in trimmings obtained from 

carcasses during fabrication when conventional and organic samples were compared), though 

plant location did have an impact on diversity and community composition. When evaluated at 

the class level, several classes of resistance differed by plant location. This result was explained 

in the context of the National Antimicrobial Monitoring System, in which data for ground beef 

AMR across the county (National Antimicrobial Resistance Monitoring System, 2017) illustrates 

diversity of AMR genes of different classes and culture organisms throughout the country. More 

broadly, differences in AMR community structure have been noted in soils in different parts of 

the county, indicating that AMR genes differ by geographical location—and not just within 

cattle, but also the environment (Forsberg et al., 2014). 

In contrast to findings associated with beef trimmings samples, colon content resistome 

beta diversity trended to be different by production background, but not facility location, this 

could indicate that trimmings are more influenced by facility environmental factors while colon 

content could be more influenced by the direct application of antimicrobials. Additionally, many 

classes of resistance differed among treatment groups: specifically, colon content samples from 
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organic cattle were comprised of more rifampin resistance genes and fewer tetracycline 

resistance genes compared to both conventional dairy or beef production background groups. 

Vikram and coauthors (Vikram et al., 2017)evaluated colon content in feedlot cattle and found 

that samples from conventional cattle had more tetracycline resistance when evaluated by qPCR, 

though when tetracycline was evaluated using metagenomics, they found no difference between 

production system. Using qPRC, the same feedlot study (Vikram et al., 2017) found that some 

genes associated with MLS and aminoglycoside resistance comprised a higher proportion of all 

AMR genes in conventional cattle, but no difference among samples from groups in beta-lactam 

resistance genes. The present study also identified a higher proportion of aminoglycoside 

resistance genes (colon content samples from beef, and a tendency to be greater in dairy cows, 

when compared to organic), but differed from the qPCR study in respect to MLS and beta-lactam 

resistance, as this study found no difference in the MLS class but an increase in beta-lactam 

resistance. Interestingly, other metagenomic studies (Noyes et al., 2016; Weinroth et al., 2018c) 

of feedlot cattle reported increased relative abundance of aminoglycoside resistance genes in 

feces over time during feeding, even though neither study had administered that class of 

antibiotics. This shift in aminoglycoside resistance, not tied to administration of such drugs 

during production, may indicate that aminoglycoside resistance is driven by factors outside of 

direct selection pressure and may be a result of co-selection with other resistance classes. 

Differing effects of sample type on results due to the production system the cows were 

raised in and region is not unexpected. While colon content was used as a metric to assess animal 

and environmental impact of different regions of slaughter and production practices, trimmings 

were used as the closest product to distribution, and thus as a potential indicator of human public 

health risk. In fact, it has been reported that there is not a strong correlation between the fecal 
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and meat resistomes (Weinroth et al., 2018a). As such, while colon content undoubtedly is more 

indicative of the changes to the animal as a result of treatments, trimmings may be a better gauge 

of processing facility differences than production system. 

Across sample types, there were no substantial community resistome differences that 

were associated with production background. While past work has concluded that treatment with 

antibiotics can result in increased abundance of resistance genes (Chambers et al., 2015), other 

studies have shown this effect to be proportional to the dosage and duration of antibiotic 

administration and that there is not always a permanent effect on the resistome (Kanwar et al., 

2014; Weinroth et al., 2018c). Although no specific drug application records were collected in 

this study, aside from overall labeling differences in production background, it was likely that 

these cattle were never provided diets containing antibiotics, which may explain the lack of 

substantial separation between treatment groups. 

The collection of samples at two different sampling points in the midwestern facility 

(trimmings from the chilling cooler and trimmings from the end of fabrication) allowed for 

several comparisons specific to the Midwest facility. First, it was found that organic cows had a 

different, less diverse microbiome than conventional cows at the end of fabrication. However, 

this result is confounded different production systems are run in the facility. More specifically, 

organic cows were always the very first cows to go through fabrication after the facility was 

cleaned for the day. After the organic cattle were fabricated, while trimmings were removed 

from food contact surfaces, there was not another cleaning. As a result, it is likely there was a 

greater number of bacteria present at the start of the conventional cattle. The likelihood that these 

differences are a result of facility sanitation practices and not a biological difference is reinforced 

by the fact that there were not differences in the production system the cows were raised in in the 
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trimmings derived from the chilling cooler. In fact, when trimmings from the Midwest facility 

were visualized on a principle coordinate analysis, seasonality was seen to be a bigger driver of 

separation than production system or stage of production.  

The microbiome also was investigated, as several studies have identified a link between 

the composition of the resistome and the composition (taxa-wise) of the microbiome (Hu et al., 

2016; Stokes and Gillings, 2011). As with resistome composition, facility of harvest and the 

production system the cows were raised in acted independently on microbiome composition. 

Within both colon content and trimmings derived from the chilling cooler, production system the 

cattle were raised in did not affect the microbiome, through the facility of slaughter did in regard 

to beta diversity. As with the beef trimmings resistomes, the differences in UniFrac distances 

between facilities may have been more indicative of processing facility differences than 

production background influences. After carcass hides were removed during harvesting, they 

were exposed to several environmental factors unique to each of the different processing 

facilities. For example, an assessment of airborne bacteria in a harvest facility found that air 

vents contained actinobacteria, firmicutes and proteobacteria as the dominate phyla present.  

Also, of note within the colon content microbiome between regions, was a greater 

number of samples with a greater mean relative abundance of Fusobacteriaceae of colon content 

from cattle harvested in the Southwest that contained when compared to those harvested in the 

Midwest (and at an average higher rate as well). The family Fusobacteriaceae contains 

Fusobacterium necrophorum, which has classically been implicated as the causative organism of 

liver abscessation (Nagaraja and Lechtenberg, 2007). 
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Figure 2.1: Layout of experimental design for each facility visit; this samples scheme was repeated six times over two facilities.   
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Figure 2.2: Log2 abundance of the 20 highest abundance mechanisms of resistance present in samples divided by samples type.  
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Figure 2.3: Diversity and ordination of resistome trimmings samples derived from the chilling 

cooler by treatment and region. Shannon’s diversity did not differ (P = 0.0412) by production 

system (A) but between facilities, the Southwest facility had higher (P = 0.003) Shannon’s 

diversity when compared to the Midwest facility (C). Non-metric multidimensional scaling of 

Euclidean distance revealed no difference between production practices (P = 0.406, R2 = 0.04; 

B), though facility of harvest did differ (P = 0.002, R2 = 0.07, D).  
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Figure 2.4: Log2 Fold change of antibiotic resistance classes (that were present in more the 0.1% 

of the total resistome) of chilling cooler derived trimmings across treatment types between 

facilities of harvest. Facility of harvest was found to have an effect (P < 0.05) on the expression 

of several classes of resistance. Bars to the left of the midline indicate a lower expression in the 

Midwest while bars to the right indicate a higher expression in the Midwest. 
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Figure 2.5: Diversity and ordination of the colon content resistome by production system and 

facility of harvest. Shannon’s diversity did not differ (P < 0.05) between production systems (A) 

or facility of harvest (C). Non-metric multidimensional scaling of Euclidean distance revealed no 

differences between facility of harvest (P = 0.803, R2 = 0.00), though production system tended 

to differ (P = 0.080, R2 = 0.08). 
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Figure 2.6: Log2 Fold change of classes of antibiotic resistance (that were present in more the 

0.1% of the total resistome) of colon content across facilities between production system. Overall 

resistome tended (P = 0.08) to differ between production systems and several classes of 

resistance were different (P < 0.05) between both types of conventional samples and organic; 

though there were no differences (P > 0.05) between conventional beef and dairy colon content 

by class. Within each panel, bars to the left of the midline indicate a lower expression in the 

dairy or beef when compared to organic colon content while bars to the right indicate a higher 

expression in beef or dairy cattle when compared to organic cattle.
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Figure 2.7:  Resistome differences between stages of production (colon content, trimmings derived from the chilling cooler and 

trimmings derived from fabrication). Stages of production differed (P < 0.001) at the community level and differences (P < 0.05) in 

Shannon’s diversity and richness were also observed.
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Figure 2.8: Taxonomic composition at the phylum level of (top) colon content, (middle) 

trimmings derived from the chilling cooler, (bottom) trimmings derived from fabrication. 
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Figure 2.9: Beta diversity of colon content and trimmings derived from the chilling cooler (as 

measured by weighted and unweighted UniFrac. Samples are colored by production practice the 

cows were raised in and the shape corresponds to the facility the cows were slaughtered in. In 

trimmings derived from the cooler, both weighted and unweighted UniFrac distances were 

different (P < 0.05) between facility of harvest but not the production facility the cows were 

raised in (P > 0.05). In colon content, facility of harvest had different colon content (P < 0.05) 

but not production system weighted UniFrac distances (P = 0.224); production system 

unweighted UniFrac distance differences; though weighted UniFrac differences between 

production systems were considered a trend (P = 0.092).
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Figure 2.10: Trimmings derived from the end of fabrication in the Midwestern facility colored by production system the cows were 

raised in. Alpha diversity differed (P < 0.05) between the two production groups as conventional cattle has a higher diversity. Beta 

diversity also differed (P < 0.05) between conventionally and organically raised cows. 
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Figure 2.11: Comparison of beta diversity (both weighted and unweighted UniFrac distances) of 
trimmings derived from different stages of production in the midwestern facility. The samples 
are colored by stage of production and shaped by season of production. While stage of 
production did not account for a significant (P < 0.05) amount of variation, though seasonality 
did (P > 0.05).   
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CHAPTER 3 
 
 
 

Effect of Tylosin Exposure and Geographical Region of Production on Liver Abscess Rates, 

Microbiomes, and Resistomes in North American Feedlot Cattle 

Summary 

Liver abscesses in feedlot cattle are detrimental to animal performance and economic 

return. Tylosin, a macrolide antibiotic, is used to reduce prevalence of liver abscesses; though it 

does not always reduce them with the same efficacy. Additionally, with growing concern over 

antibiotic resistance, there has been increased scrutiny in regard to using antibiotics in food 

animal production. The objective of this study was to characterize microbiome and resistome 

differences among cattle administered or not administered tylosin across different feedlot 

locations with differing liver abscess rates. Cattle (total of 2,256) from three geographical 

regions were either fed or not fed tylosin. Feces and pen soil samples were collected before 

harvest and liver abscesses were scored at harvest. Shotgun metagenomics and 16S rRNA 

amplicon sequencing, as well as culture samples (feces only), were evaluated. The microbiomes 

and resistomes of cattle did not differ (P > 0.05) as a result of tylosin treatment. However, 

feedlot location did have an effect (P ≤ 0.05) on cattle’s resistomes and microbiomes. Using 

LASSO, a predictive model was constructed that selected four fecal phyla (Euryarchaeota, 

Fibrobacteres, candidate phyla Cloacimonetes [WWE1], and WPS2) and two soil phyla 

(Deferribacteres and Firmicutes) to predict liver abscess rates. This model explained 75% of the 

variation in liver abscess rates, though a larger sample size is needed to increase universal 

robustness of the model. These data suggest that tylosin exposure does not have a meaningful 

impact on overall antibiotic community makeup or microbiome; but that location of cattle 
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production is a driver of both the community of resistance genes presences and microbiome 

composition. 

Introduction 

Liver abscesses in feedlot cattle negatively impact animal efficiency and economic gain, 

in both the feedlot and at the subsequent packing plant. Liver abscess rates have increased in 

feedlot cattle from 13.7% in 2011 to 17.8% in 2016 (Eastwood et al., 2017). It is estimated that 

liver abscesses can decrease carcass returns by $20 to $80 due to condemnation of the liver and 

nearby organs, depending on severity (Brown and Lawrence, 2010). An increase in liver 

abscesses has been linked to high concentrate grain diets during finishing (Nagaraja and 

Lechtenberg, 2007). The commonly accepted etiology is translocation of bacteria from an 

acidotic rumen (with rumen lesions as a predisposing factors) via the portal vein to the liver after 

a rumen wall perforation (Nagaraja and Lechtenberg, 2007). Fusobacterium necrophorum has 

classically been attributed as the causative organism of liver abscessation, though recently, the 

bacterial community within liver abscesses was found to be polymicrobial and diverse (Weinroth 

et al., 2017b). While feeding high grain diets is the primary predisposing factor to liver 

abscesses, other management factors, such as location of feedlot, location within feedlot, cattle 

type, length of time on feed, and other management strategies affect rates of abscessation. 

In feedlot cattle, the main method of reducing liver abscesses is the use of antibiotics, 

namely tylosin phosphate or chlortetracycline. In 2011, tylosin was fed to an estimated 71% of 

all U.S. feedlot cattle housed in feedlots with a capacity of over 1000 animals (USDA–APHIS–

VS–CEAH–NAHMS, 2013). When administered parentally, tylosin reduces prevalence and 

severity of liver abscesses (Nagaraja and Lechtenberg, 2007). Tylosin falls into a class of 

antibiotics known to inhibit bacterial protein synthesis (Nakajima, 1999); however, the exact 
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effect of tylosin on liver abscess rate reduction is unknown. It is hypothesized that tyolsin has an 

inhibitory effect on F. necrophorum or alters rumen bacteria which in turn reduces ruminal 

acidosis (Nagaraja and Lechtenberg, 2007).While tylosin does reduce prevalence and severity of 

liver abscesses, it is not consistent in reducing and eliminating abscesses altogether. 

An emerging concern regarding tylosin use in feedlot cattle is selection for communities 

of bacteria that are more resistant to antibiotics. Both the Center for Disease Control and 

Prevention and the World Health Organization (WHO) have expressed concern regarding 

tylosin, with WHO classifying this class antimicrobials ‘Highest Priority Critically Important 

Antimicrobial,’ the most critical designation of an antimicrobial (World Health Organization, 

2016).  From there, the concern is that bacteria which harbor antibiotic resistant genetics (AMR) 

from foods of animal origins could infect humans (Center for Disease Control and Prevention, 

2017b) and lead to treatment failure in the case of medical need. As a result of these concerns, 

the Food and Drug Administration implemented new regulation regarding administration of 

antimicrobials to food animals to reduce use of antimicrobials that are important in human 

healthcare.Macrolides, as one example, on January 1, 2017, were changed from over-the-counter 

to requiring a prescription as a result of the veterinary feed directive, which mandates that 

producers cannot use antimicrobials in feed and water off label (80 FR 31707). As a result, 

macrolides are still available for use, but require greater oversight in the valid veterinarian-client-

patient-relationship. 

The growing concern over the transmission of AMR to humans via food animals has 

resulted in an interest in replacing traditional husbandry practices with alternatives that do not 

require antimicrobials. Some of these alternatives include essential oils and probiotics, though 

none have been found to be as effective as an antimicrobial (Meyer et al., 2009; Pukrop et al., 
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2017). In order to replace antimicrobials, the drug effects on both target and commensal bacteria 

must be understood. While there has been work on the effect of tylosin on the microbiome and 

resistome of beef cattle, the work was small in scope and performed on individual animals 

(Thomas et al., 2017). The objective of this study was to pair traditional culture techniques with 

metagenomic next generation sequencing to characterize microbiome and resistome differences 

among differing liver abscess rates from cattle administered or not administered tylosin in 

diverse U.S. feedlot locations. 

Materials and Methods 

Cattle Population and Experimental Design. Two thousand two hundred fifty-six cattle 

were enrolled in the study from 5 different feedlots in the United States encompassing BIFSCo 

regions 2 (comprised of California and Nevada) henceforth referred to as R2, 3 (comprised of 

Arizona, New Mexico and Texas) henceforth referred to as R3, and 4 (comprised of Colorado, 

Montana, Utah, and Wyoming) henceforth referred to as R4. Cattle were assigned to 16 pens 

with an average pen size of 141 head. The feedlot in R2 housed dairy-type cattle while the cattle 

in R3 and R4 were characterized as beef-type cattle, hence partially confounding region effects. 

The study was arranged in a randomized complete block design; with region used as the block 

(R2 and R3 both housing 4 pens of cattle and R4 housing 6 pens). In each block, an even number 

of pens were fed or not fed tylosin phosphate according to manufacture instructions (Elanco, 

Greenfield, IN). All cattle were fed and harvested during the same period and fed similar high 

concentrate grain diets besides the previously stated tylosin differences. Cattle base diets 

containing different combinations of sweet bran, cotton seed, fed straw, distillers grains, flaked 

corn, natural molasses. Cattle were treated for BVD and parasites at arrival, cattle in 
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conventional systems were fed Tylosin and Rumensin according to manufacture instructions 

throughout the feeding period.   

Fecal and Soil Sample Collection. Both pen floor feces and soil samples were collected 

no more than 48 hours before harvest. Pen fecal samples were comprised of 20 (25g) pen floor 

fecal grabs collected along the outside and diagonals of each pen for a 500g composite per pen. 

Soil samples were collected in the same manner at 20 locations from the same pen floor and 

composited into one 500g sample. After collection, samples were placed on ice and transported 

to Colorado State University. Upon arrival, soil samples were frozen (-80°C) until further 

processing while a 25g aliquot of each fecal sample was removed from the composite samples 

before freezing (at -80°C) for culture work. 

In Plant Data Collection. Within two days of fecal and soil collection, cattle were 

shipped to a commercial processing facility for harvest, where pen identification was maintained 

via tag transfer on the kill floor. Liver abscess incidence were recorded for all pens using the 

methods described by Brown and Lawrence (2010). Liver abscesses that exhibited an ‘A-‘, ‘A’, 

or ‘A+’ liver score as defined by Eli Lilly (Elanco) Liver Check System were considered 

abscessed and recorded as such (severity was not recorded).  

DNA Extraction. Ten grams of each soil and fecal sample were thawed and DNA was 

extracted using the Mo-Bio PowerMaxSoil DNA isolation kit (Mo Bio Laboratories, Inc., Solana 

Beach, CA) following manufacturer’s protocols. Quality and concentration were evaluated using 

a NanoDropTM spectrophotometer (Thermo Fisher Scientific, Inc.). Samples with a 

260mm:280mm ratio equal to or higher than 1.8 and a concentration equal to or greater than 20 

ng/μl of DNA were sequenced; samples not meeting these thresholds were concentrated using 

ethanol precipitation. 
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Shotgun Sequencing. One hundred μl aliquots of all soil and fecal DNA samples were 

delivered to the Genomic and Microarray Core at the University of Denver for library 

preparation and sequencing (Denver, CO). Sequencing libraries were constructed using an 

Illumina TruSeq DNA Library Kit (Illumina, Inc. San Diego, CA). Samples were sequenced 

(2x150) on four lanes of the Illumina HiSeq 4000 (Illumina, Inc. San Diego, CA); individual 

samples were divided across two lanes to alleviate lane effects. 

16S Sequencing. Thirty microliter aliquots of DNA from fecal and soil samples were 

delivered to Novogene Bioinformatics Technology Company (Chula Vista, CA) for library 

preparation and sequencing. The V4 region of the 16S rRNA subunit was amplified with the 

515F/806R primer set. Paired-end sequencing (2x250) was completed on two lanes of an 

Illumina HiSeq 2500 (Illumina, Inc. San Diego, CA). 

           Fecal Microbiological Analysis. All pen fecal samples were subjected to isolation of 

Enterococcus and generic Escherichia coli. The 25 g of retained feces from each pen was added 

to 225 ml of tryptic soy broth (TSB). Samples were incubated at 37°C for 24 h before plating 

onto Enterococcosel (EC) or MacConkey (MAC) agar. Enterococcosel plates were incubated for 

48 h while MAC plates were incubated for 24 h, both at 43°C. Morphologically representative 

colonies from EC and MAC were re-streaked two times onto the same selective agars and 

incubated as described above. An isolate from each fecal sample from both EC and MAC was 

placed in TSB containing 10% glycerol and frozen (-80°C) until determination of antimicrobial 

susceptibility. 

Minimum inhibitory concentrations (MIC) of isolated Enterococcus and generic E. coli 

to various antimicrobial drugs (Table 3.1) were determined using a broth microdilution method 

(Gragg et al., 2013). Minimum inhibitory concentrations and breakpoints were set using those 
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established by Clinical and Laboratory Standards Institute (2010) or the National Antimicrobial 

Resistance Monitoring System (2010). 

16S Bioinformatics. Raw, demultiplexed reads, trimmed of sequencing adaptors, were 

received from Novagene. Using QIIME2 (Version 2-2018.2, Caporaso et al., 2010), reads were 

assigned exact sequence variants (ESV) via DADA2, using the paired end option with a 19 bp 

trimmed from the forward reads and 20bp from the reverse reads, both from the ‘5 end; the 

chimera detection method was set to ‘pooled.’ Fecal and soil samples were divided into two 

different datasets via ‘feature-table filter-samples.’ Fecal samples were rarified to a depth of 

151,267 reads and soil samples to a depth of 141,106 reads. Taxonomic identity was determined 

using a pretrained Naïve Bayes classifier trained on the Greengenes database (v. 13_8, DeSantis 

et al., 2006) specific to the V4 region. Exact sequence variants assigned to mitochondria and 

chloroplasts, ESV’s with “hits” to only one sample, and completely unknown taxa that did not 

have a Kingdom assignment were removed. 

For construction and validation of the predictive model, 5 additional fecal and 5 soil 

samples and pen level liver abscesses percentages from the same BIFSCo regions were collected 

(during a different study), but a year later were included for validation of the prediction model. 

For construction of the predictive model, the five additional soil and fecal samples were assigned 

ESV and taxonomy using the same parameters and merged into the existing sample table via the 

‘merge’ commands in the feature table plugin. The table (including both feces and soil hits for 

each sample) was rarified at 74,972 reads to allow for all samples to be included. Filtering to 

remove mitochondria, chloroplasts, and unassigned bacteria was performed. Sixteen of the 

samples were randomly chosen to serve as the training dataset while the remaining five were 

held out for model validation. The training model variable selection was performed using 
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LASSO via the ‘coeff’ function in the glmnet package (using the λ that gave the minimum mean 

cross-validated error via the ‘cv.glmnet’ function) and used to construct a linear model via ‘lm’. 

The ‘predict’ function was used to estimate liver abscess percentages for the five samples held 

out from the training dataset. Root Mean Square Error (RMSE) was calculated with the ‘rmse’ 

function from the Metrics package. 

Shotgun Bioinformatics. Demuliplexed fastq files from across different sampling lanes 

were concatenated together using the Linux ‘cat’ command so that each sample had one forward 

and one reverse fastq file. Resistome analysis was conducted via the AMRplusplus pipeline 

(Lakin et al., 2017). Briefly, samples were trimmed using Trimmomatic (Bolger et al., 2014a) 

and bovine DNA was removed from the trimmed reads using the Burrows Wheeler Aligner 

(BWA) (Li and Durbin, 2009) to align to the reference Bos taurus genome (UMD 3.1) as well as 

to the draft Bos indicus genome (Canavez et al., 2012). Any read that aligned to either genome 

were removed. Trimmed non-host DNA reads were aligned to the MEGARes’ (Lakin et al., 

2017) antimicrobial resistance database using BWA. Per Noyes et al. (2016), only AMR genes 

with gene fraction of >80% were considered present in a sample and included in further analyses. 

The number of hits to each AMR gene were compiled and each gene was assigned to an AMR 

class, mechanism, and group. For shotgun resistome analysis, genes present in less than 3 

samples were removed. Remaining counts were normalized by cumulative sum scaling with a 

default percentile for normalization (Paulson et al., 2013b). 

For a comparison of 16S rRNA amplicon sequencing results to shotgun results, the 

microbiome shotgun metagenomics results were obtained with the AMR++ pipeline (Lakin et 

al., 2017) using Kraken (Wood and Salzberg, 2014) for assigning taxonomic labels to reads.  
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Statistical analysis 

Overall liver abscesses rates. When comparing cattle fed with tylosin versus those not, 

individual cattle (N = 2256) were considered instead the pen level differences as individual liver 

data was collected. Using PROC GENMOD SAS (version 9.4) with a Poisson distribution, liver 

abscess rate was compared between tylosin exposure groups controlling for feedlot differences 

and a correlated response of animals in the same pen. Alpha error was set at 0.05, while ‘trends’ 

were reported at between 0.051 and 0.10. 

Shotgun statistics. To assess community-wide difference in resistomes between tylosin 

exposure or non-exposure groups, non-metric multidimensional scaling (NMDS) ordination was 

performed using Hellinger transformation and Euclidean distances using R (v. 3.3.0) with 

Vegan’s ‘metaMDS’ (Legendre and Gallagher, 2001). These difference were formally compared 

using analysis of similarities (ANOSIM) (Clarke, 1993). Multivariate, zero-inflated Gaussian 

mixture models were fit to class and mechanism-level normalized counts using 

metagenomeSeq’s 'fitZig'. (Paulson et al., 2013). Fitzig’s output was used in limma’s 

'makeContrasts' and 'eBayes' functions to conduct pairwise comparisons of log2-fold change in 

abundance between tylosin treated and non-treated cattle, as well as between geographical 

regions, using α = 0.05 with trends reported between 0.051 and 0.10. An inverse Simpson 

Diversity Index was used to evaluate richness between sample groups. 

16S Statistics. For 16S rRNA amplicon sequencing microbiome analysis, alpha diversity 

(richness) was measured using Shannon’s Entropy of Counts. Treatment alpha diversity was 

compared using a Kruskal-Wallis test via the ‘qiime diversity alpha-group-significance.’ Beta 

diversity differences were assessed using PERMANOVA (Anderson, 2001) with a weighted and 

unweighted unifrac distance matrix as the input (computed using “core-metrics’). Differences in 
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phyla and genus between treatment groups and regions were assessed using a Kruskal-Wallis test 

with a False Discovery Rate (FDR) correction via the ‘group_significance.py’ command in 

QIIME1.9 (Caporaso et al., 2010b). Alpha error was set at 0.05 and trends were reported 

between 0.051 and 0.10. 

 Comparing amplicon and shotgun metagenomic data. A Procrustes analysis was used to 

measure the correlation between the 16S rRNA amplicon and shotgun metagenomic sequencing 

results. Count tables were collapsed to the phylum level the ‘metaMDS’ function was applied to 

each matrix from the Vegan R package. The ‘protest’ function was used to test the non-

randomness between the two configurations, with a visualization generated with the base ‘plot’ 

function. 

Results 

Overall Liver Abscess Rates and Tylosin Effect. Out of 2256 cattle, 199 liver abscesses 

were identified. Across all geographical regions, cattle that were not fed Tylosin were 2.1 (95% 

C.I. 1.5 to 2.8) times as likely to develop liver abscesses compared to those cattle that were fed 

tylosin. Cattle treated with tylosin had a lower (P = 0.001) liver abscess rate than those cattle not 

treated with tylosin. The reduction of liver abscesses via tylosin supplementation agreement with 

previous work (Nagaraja and Lechtenberg, 2007) and builds on the scientific consensus of this 

fact (Brown et al., 1975; Nagaraja and Chengappa, 1998). 

Effect of Tylosin and Region on the Cattle Microbiome via Feces. On average, 16S rRNA 

amplicon fecal samples had 528,957 (Range 215,774 to 1,034,823) raw reads per sample. 

Seventy-two percent of reads were retained for down-steam analysis after ESV assignment via 

DADA2; resulting in an average of 382,666 assigned reads per sample (range 151,267 to 
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748,899). Across all samples, 33 phyla and 633 genera were identified, with an average of 22 

phyla (range 16 to 29) and 277 genera (range 189 to 342) per sample. 

Comparison of Treatment Groups and Region. Tylosin’s impact on the microbiome of 

cattle was assessed via analysis of microbial communities in feces samples at the pen level. 

While liver abscess rate reduction via use of tylosin is well established (Nagaraja and 

Chengappa, 1998; Nagaraja and Lechtenberg, 2007) the impact of tylosin exposure on the fecal 

microbiome of cattle is less defined. Thomas et al. (2017) began the investigation of tylosin 

exposure, but their efforts were limited to a small sample size in one location. Here, tylosin 

exposure was compared across three different geographic regions and the sampling was 

comprised of over 2000 cattle; therefore, data from the present study provide a robust assessment 

of tyolsin and regional impact on the microbiome of feedlot cattle. 

In the current study, alpha diversity did not differ between cattle that received tylosin 

versus those that did not (P = 0.06, Fig. 3.1B) or BIFSCo region of feeding (P = 0.25 Fig. 3.1A); 

however, numerically higher alpha diversity in cattle not fed tylosin was considered a trend (P = 

0.06). Loss of bacterial community diverseness as a result of antibiotic treatment is well 

established, and has been exhibited both in human studies (Dethlefsen and Relman, 2011) and in 

the bovine rumen (Thomas et al., 2017). The lower alpha diversity of the fecal microbiomes of 

cattle treated with tylosin in this study further adds weight to supports past findings.   

Fecal microbiome beta diversity, as measured by weighted and unweighted Unifrac 

distances, did not change between cattle treated and not treated with tylosin (P = 0.16, Fig. 3.2A 

and P = 0.69, Fig. 3.2B; respectively). However, weighted and unweighted Unifrac distances 

differed (P = 0.001, Fig. 3.2C and P = 0.007, Fig. 3.2D; respectively) between geographic 

regions. When regional differences were explored at the phyla and genus levels, there were no 
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differences (P > 0.05); this was also true for the comparison of tylosin fed and not fed cattle (P > 

0.05) (Fig.3.3). The lack of beta diversity differences found in composite pen fecal microbiomes 

of tylosin treated and untreated cattle in or between individual phyla and genus was of interest 

because tylosin is known to act across a wide range of gram-positive organisms, but in the 

present study, there was no difference in gram-positive phyla. Not seeing a major change cattle 

associated microbiota between tylosin treated and non-treated cattle also has also previously 

been observed in rumen samples (Thomas et al., 2017).  

Description of Regional Microbiome Differences via Soil Samples. On average, 16S 

rRNA amplicon sequenced soil samples contained 325,166 (Range 179,960 to 90,0612) raw 

reads per sample. Seventy-five percent of reads were retained for down-steam analysis after ESV 

assignment via DADA2, resulting in an average of 244,405 assigned reads per sample (range 

141,106 to 667,975). Thirty-one phyla and 709 genera were detected, with an average of 23 

phyla (range 17 to 29) and 283 genera (range 223 to 417). 

Comparison of Treatment Groups and Region. Community composition of the soil from 

inside feedlot pens was the metric used to characterize regional microbiomes. Unsurprisingly, 

there was no difference in alpha diversity of soil samples between tylosin feed inclusion groups 

(P = 0.44, Fig. 3.4A), but BIFSCo regions of production differed in soil microbiome composition 

(P = 0.01, Fig. 3.4A). When soil microbiome composition by tylosin treatment group, when 

characterized using weighted or unweighted UniFrac distances, there was not a difference (P = 

0.13 and P = 0.24, respectively), though geographical region beta diversity differed in both 

metrics (P = 0.001 and P = 0.002, respectively). When regional differences were further 

investigated at the phyla level, there were no differences (P < 0.05) in specific phyla, but 

Verrucomicrobia and Spirochaetes between regions were both tended (P = 0.07) to be different 
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between regions (Table 3.2). Verrucomicrobia have previously been described in bovine feces 

(Rice et al., 2012); and perhaps more interestingly, abundance has been reported to differ in feces 

by location of feeding (Weese and Jelinski, 2017). Spirochaetes also have been observed in 

bovine feces (Reti et al., 2013) and have been altered by different feeding strategies (Rice et al., 

2012).These trends, in association with alpha diversity differences, likely drove differences in 

beta-diversity between geographical regions. 

Microbiome differences between geographical production region, but not among 

differing antibiotic treatment groups, has been replicated in cow-calf herds in Western Canada 

(Weese and Jelinski, 2017). Weese and Jelinski (2017) found that differentiation of bacteria 

community membership was affected by location of farm, but not by antibiotics across farms—

though when only one farm was considered, differences between treated and untreated calves 

were observed. These same patterns of regional difference, but without treatment differences, 

were observed in the present study; though sample size limited comparison of microbiomes 

specific to one farm. 

Effect of Tylosin on the Antibiotic Resistance. Antibiotic Resistance was measured in two ways: 

phenotypically and genotypically. Genotype was described with shotgun metagenomics while 

phenotypic expression of resistance was assessed via expression of resistance genes in an 

indicator organism using MICs. 

Culture Free. Shotgun metagenomics of composite fecal samples identified 12 classes, 

13 mechanisms and 18 groups of antimicrobial resistance across all samples. Alpha diversity and 

overall resistome composition did not differ (P = 0.19 and P = 0.46, respectively) by treatment 

with or without tylosin (Fig. 3.5A). At the class level, there was no difference (P > 0.05) 

between relative abundance of AMR genes between treatment groups (Fig. 3.6). When evaluated 
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at the mechanism level, some mechanisms differed by treatment (namely Aminoglycoside N-

acetyltransferases, Chloramphenicol acetyltransferases, and Undecaprenyl pyrophosphate 

phosphatase resistance). Of special note, macrolide resistance (of interest due to use of tylosin) at 

the mechanism level between treatments did not differ (P = 0.16) in relative abundance. Across 

all samples, genes aligning to three groups associated with macrolide resistance were detected: 

MphB, mefA, and msrD. The geographical BIFSCo region of production did result in differences 

(P = 0.001) in resistome composition (Fig 3.5B). Several classes of AMR in the feces of cattle in 

different geographical areas differed (P > 0.05, Table 3.3). 

Tylosin exposure did not alter overall AMR richness or beta diversity or macrolide 

resistance. This finding agreed with Thomas et al. (2017), who found that there was no 

correlation between administration of antibiotics and AMR. This finding illustrates that exposure 

to an antibiotic does not always led to a linear increase in resistance when considered complex 

biological models, such as the feedlot pens investigated in this study. Other mechanisms of AMR 

not associated with any administered treatment differed between tylosin groups, such as 

Aminoglycoside N- acetyltransferases. Other studies also have reported aminoglycoside 

mechanisms to be present in cattle not administered that class of antibiotics, and changes to 

aminoglycoside resistance sans treatment with aminoglycosides  (Noyes et al., 2016; Weinroth et 

al., 2018c). While not the objective of this study, this finding demonstrates the complexity of 

AMR genes in microbial ecology and that AMR is not solely driven by selection pressure.  

Geographical BIFSCo region affected overall fecal resistome composition. Eight of ten 

classes of resistance genes that were detected differed by geographical region in pen composite 

feces resistome composition. While this finding was confounded by cattle source (in this case, 

cattle source was not standardized) differences did highlight that antimicrobial treatment is not 
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the only factor that contributes to AMR. It has been established that regional variation exists 

among resistomes in different regions of the world (World Health Organization, 2014). 

Culture. No formal statistics were performed on the culture results; instead general trends 

were observed. In generic E. coli, isolates from the non-tylosin treated group did not display any 

intermediate or resistance to any of the 12 antimicrobials tested. The tylosin fed group did not 

demonstrate resistance or an intermediate breakpoint to 6 of the 12 antimicrobials tested: 

Amikacin, Cefoxitin, Chloramphenicol, Ciprofloxacin, Gentamicin, or Sulfamethoxazole-

Trimethoprim. Of the remaining six antimicrobials, tylosin fed cattle had varying levels of 

resistance (Fig. 3.7C). Enterococcus isolates displayed resistance across both cattle fed and not 

fed treatments (Fig. 3.7A and 3.7B). 

From a culture standpoint, Enterococcus isolates from feces of cattle fed tylosin were 

100% (8/8) resistant to tylosin, while 25% (1/8 resistant and 1/8 susceptible) of isolates from 

feces from cattle that were not fed tylosin had an intermediate or resistant phenotype. These 

results agreed with those of Beukers et al. (2015), who found that resistance to tylosin increased 

in Enterococcus fecal isolates in cattle as a result of tylosin being provided in feed. Disparity 

between culture and shotgun results in the location of resistance genes has been described before 

(Weinroth et al., 2018c), and in that case (as well as likely in this study) was a result of 

extremely different methodology. While culture results are indicative of only one indicator 

organism, shotgun results allow for a survey of both culturable and unculturable bacterial genes; 

an ecological measure of resistance genetics prevalence. On the other hand, cultural methods 

verify phenotypic expression of a gene, as opposed to DNA sequencing which can only verify 

presence of the gene and not functional activity. 
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LASSO for Abscess Rate Prediction. Of all phyla identified across both soil and feces, six 

were selected for inclusion in the model by LASSO: four from feces (Euryarchaeota, 

Fibrobacteres, candidate phyla Cloacimonetes [WWE1], and WPS2) and two from the soil 

(Deferribacteres and Firmicutes). The training model was found to accurately predict the rate of 

occurrence (as a percentage of the total cattle in the pen) of liver abscesses (defined as an ‘A-‘, 

‘A’, or ‘A+’ liver score) within pens of feedlot cattle (adjusted R2 = 0.75, residual standard error 

= 3.5, P = 0.002). When liver abscess rates from the five samples that were omitted from original 

analysis were used to predict liver abscess prevalence using the training model, the model 

accurately predicted the rate of occurrence of liver abscess in feedlot pens—albeit in only five 

samples (RMSE = 4.0, R2 = 0.88, mean absolute error = 3.2). 

The final model for estimating the rate of occurrence of liver abscesses within pens of 

feedlot cattle retained predictors of both fecal and soil phyla—indicating that animal feeding 

practices and geographical region of production both contribute to liver abscess prevalence in fed 

cattle. In composite pen floor feces samples, archaea Euryarchaeota and bacteria Fibrobacteres 

both have been previously described in bovine rumens (Jami and Mizrahi, 2012; Lange et al., 

2005).  Two candidate phyla in pen composite feces samples also were considered important in 

model: candidate phyla Cloacimonetes (which has been found in bovine feces [Sun et al., 2015]), 

and WPS-2 (found previously in ovine rumens (Wang et al., 2016). Euryarchaeota are known as 

methane producers in humans (Horz and Conrads, 2010), while Fibrobacteres and  

Cloacimonetes have both been associated with cellulose digestion (Limam et al., 2014; Ransom-

Jones et al., 2012). Little is known about the function of candidate phyla WPS-2, though in 

addition to presence in ovine rumens, it has been found in anaerobic sludge digesters (Rivière et 

al., 2009) and soil (Hermans et al., 2016). The two soil associated phyla of interest included in 
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the model were Deferribacteres and Firmicutes. Deferribacteres, which are anaerobic respirators, 

were found in a wide variety of environments, but considered rare within many of these 

microbiomes (Alauzet and Jumas-Bilak, 2014). Firmicutes, on the other hand, have been widely 

reported at high concentrations in soil (Fierer et al., 2007) and bovine rumens (Jami et al., 2013; 

Jami and Mizrahi, 2012). Neither fecal nor soil Fusobacteria were selected for inclusion in the 

final model, which was unexpected as Fusobacterium necrophorum has typically been reported 

as the causative organism of liver abscessation (Nagaraja and Lechtenberg, 2007). It is important 

to note that, even with cross-validation during model construction and the implementation of a 

training and test dataset, this model was not based on use of a large sample size. While efforts 

were taken to reduce likelihood of overfitting, this model would benefit from an expanded 

sample size to bolster robustness of predictions. 

Comparison of 16S rRNA Amplicon Sequencing to Shotgun Metagenomics. In this study, 

aliquots of the same DNA were prepared under when two different library preparation methods: 

16S rRNA amplicon and shotgun metagenomics. Fecal shotgun metagenomic and 16 rRNA 

amplicon sequences libraries displayed different taxonomic relative abundance of phyla 

composition between the two library perpetration methods (Fig. 3.8A). Additionally, the number 

of phyla and orders across all samples found between the two preparations (Fig. 3.8B) was 

numerically higher in the 16S rRNA amplicon libraries. Procrustes analysis did not find a 

correlation (P = 0.114, m2 = 0.83) between the two preparation methods at the phylum level. 

These findings are in agreement with Tessler et al. who also found 16S rRNA amplicon 

sequencing to find a greater taxonomic resolution of a bacterial community when compared to 

shotgun sequencing (Tessler et al., 2017).  
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Conclusions 

Tylosin exposure was found to reduce the incidence of liver abscesses in feedlot cattle. 

Tylosin in feed did not alter cattle resistomes or microbiomes as measured by feces from this 

group. On the other hand, the geographical region cattle were raised in affected the cattle’s fecal 

resistome. When pen floor soil samples were evaluated, unsurprisingly, geographical region had 

different soil resistomes but there were not differences between tylosin feeding groups in the 

soil. When soil and feces microbiome results were both used in a model to predict the incidence 

of liver abscesses in a pen of feedlot cattle, predictors from both soil and feces were included in 

the final model—indicating that cattle management and regional differences both drive the 

prevalence level of liver abscesses.   
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Figure 3.1: Cattle fecal microbiome alpha diversity measurements between (a) BIFSCo region 
and (b) cattle fed and not fed tylosin; while regions did not differ (P = 0.25) differences between 
tylosin feed and non-tylosin feed cattle was considered a trend (P = 0.06)  
abc, xy  Boxes that bear different superscripts within panel are different (P < 0.05). 
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Figure 3.2: weighted (a and c) and unweighted (b and d) Unifrac distances of the fecal 
microbiome of cattle colored by the feed inclusion of tylosin (a and b) and by BIFSCo region of 
feeding (c and d). While Tylosin feeding was not found to differentiate (P < 0.05) the 
microbiome composition, BIFSCo region of feeding did have an effect (P > 0.05). 
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Figure 3.3: Relative abundance of the fecal microbiome by pen (organized by exposure to tylosin 
in feed and region of feeding). There were no differences (P > 0.05) between tylosin exposure 
group or treatment groups between individual phyla. 
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Figure 3.4: Soil alpha diversity measurements between (a) BIFSCo region and natural and (b) 
conventional cattle; while regions were different (P = 0.01), treatment with tylosin was not (P = 
0.44). 
abc, xy  Boxes that bear different superscripts within panel are different (P < 0.05). 
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Figure 3.5: Non-metric multidimensional scaling (NMDS) ordination plot of resistome 
differences between (a) cattle supplemented with tylosin versus those not supplemented with 
tylosin (P = 0.46, Stress = 0.08, R= -0.01) and between BIFSCo regions of production (P = 
0.001, Stress = 0.11, R= 0.48).  
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Figure 3.6: Heat map of Log2 normalized counts showing the abundance of classes of resistant 
antimicrobial genes found in all fecal pen samples. There was no difference (P > 0.05) between 
tylosin treated and untreated cattle overall or between classes.  
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Figure 3.7: Susceptibility results of Enterococcus and generic Enterococcus cultured from pen 

floor cattle feces.   
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Figure 3.8: Comparison of two different library preparation methods (16S rRNA amplicon sequencing of the V4 region and shotgun 

metagenomics) of composite fecal samples by (A) taxonomic relative abundance of phyla present, (B) number of unique phyla and 

order of bacteria found across all fecal samples, and (C) Procrustes analysis of correlation (P = 0.144) between the two preparations.    
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Table 3.1: Antimicrobial drugs utilized for evaluating the susceptibility1 of Enterococcus, and 
generic Escherichia coli isolates. 

Enterococcus  Generic E. coli 

Amoxicillin/Clavulanate Amikacin 
Ampicillin 
Cefoxitin 
Ceftiofur 

Chloramphenicol 
Ciprofloxacin 
Gentamicin 

Streptomycin 
Sulfamethoxazole-Trimethoprim 

Sulfisoxazole 
Tetracycline 

 

Ampicillin 
Cephalothin 

Chloramphenicol 
Ciprofloxacin 
Gentamicin 

Streptomycin 
Imipenem 

Nitrofurantoin 
Penicillin G 
Tetracycline 

Tylosin 
1 Susceptibility was determined using breakpoints established by the Clinical and 

Laboratory Standards Institute (CLSI, 2013) or National Antimicrobial Resistance Monitoring 
System (NARMS, 2006). 
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Table 3.2: Number of rarified hits associated with Verrucomicrobia and 
Spirochaetes. 
Phyla FDR1 P-Value BIFSCo Region of Feedlot 

Two Three Four 

Verrucomicrobia 0.07 787 397 86 
Spirochaetes 0.07 4892 3172 941 
              1False Discovery Rate 
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Table 3.3: Least squared means of normalized counts of classes of 
resistance by region of feeding, regardless of tylosin exposure 

Class of Resistance 
BIFSCo Region of Feeding 
Two Three Four 

Aminoglycosides 75b 350a 135ab 
Bacitracin* 0b 5a 0b 
Betalactams 401a 413a 211b 
Cationic* 0b 150a 27b 
Elfamycins 1365a 1576a 1444a 
Fluoroquinolones* 0b 174a 87ab 
MLS1 3378a 2438b 1830b 
Multi-drug* 31b 853a 113b 
Rifampin* 118b 257ab 290a 
Tetracyclines 10949a 9335a 8254a 

* Indicates one of more of the samples had zero hits 
attributed to that class of resistance. 

1 Macrolide-Lincosamide-Streptogramines. 
ab Means that bear different superscripts within row are 

different (P < 0.05). 
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CHAPTER 4 
 
 
 
16S rRNA Characterization of Liver Abscesses in Feedlot Cattle from Three States in the United 

States1
 

Summary 

Liver abscesses are a major economic burden to beef producers. Although a few 

causative organisms have been cultured from purulent material, the full polymicrobial diversity 

of liver abscesses has not been reported. The objective of this study was to characterize purulent 

material collected from liver abscess in beef cattle produced in different production systems in 

three cattle producing states in the United States using 16S rRNA gene sequencing. Due to the 

data structure, a look into differences between region of feeding and application of a common 

antimicrobial was associated with microbiome composition was also conducted. Cattle included 

in the study were fed in California (dairy-type), Colorado and Texas (both beef-type). Liver 

abscesses from a cross-section of feedlots, geographic areas, and tylosin phosphate administered 

groups were collected at harvest, DNA from 34 liver abscess samples was extracted, and the V4 

region of the 16S rRNA gene was amplified and sequenced. Sequences were classified into five 

phyla, 13 classes, and 17 orders in the domain Bacteria. The phyla identified included: 

Bacteroidetes (35.2% of reads), Proteobacteria (28.6%), Fusobacteria (18.2%), Firmicutes 

(12.4%) and Actinobacteria (5.5%). Sequences matching the genera Fusobacterium and 

Trueperella, which have previously been identified as causative agents in liver abscesses, were 

both present in the abscess bacterial communities at a rate of 15.1% and 3.2% of the overall 

                                                
1 This work has been previously published: M. D. Weinroth, C. R. Carlson, J. N. Martin, J. L. Metcalf, P. S. Morley, 
K. E. Belk, Journal of Animal Science, Volume 95, Issue 10, 1 October 2017, Pages 4520–4525, 
https://doi.org/10.2527/jas2017.1743 
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relative abundance, respectively. Furthermore, three of the most common phyla were gram-

negative bacteria. An analysis of similarities (ANOSIM) test was conducted on Euclidean 

distances to assess differences between cattle treated and not treated with tylosin as well as to 

assess differences between regions. Geographical region and treatment with tylosin did affect the 

microbiome (P = 0.002 and P = 0.026 respectively), however a more robust sample scheme is 

needed to explore these differences. To our knowledge, this is the first publication describing the 

complex community of liver purulent material using next generation sequencing in cattle. These 

data may provide the framework for research on a more targeted approach to liver abscess 

prevention and treatment. 

Introduction 

The occurrence of a liver abscesses in feedlot cattle is associated with negative 

performance and economic impacts. It is estimated that liver abscesses, observed at prevalence 

of 20.9% of fed cattle harvested in the U.S., can decrease carcass value by $20 to $80 (Brown 

and Lawrence, 2010; McKeith et al., 2012). Classically, the primary etiology of this disease is 

attributed to Fusobacterium necrophorum (Nagaraja and Chengappa, 1998). However, there has 

been some ambiguity in compositional differences of other microflora’s role in potential role in 

etiology that can be found in these abscesses, and these differences appear to vary systematically 

among feedlots and feeding strategies. Previous studies have indicated that liver abscesses are 

polymicrobial utilizing anaerobic and aerobic cultures (Nagaraja and Chengappa, 1998) and 

whole-genome-sequencing of isolated bacteria (Amachawadi et al., 2016). As reductions of liver 

abscesses remain a concern for the industry, and the use of antimicrobial drugs used for 

prevention and treatment are increasingly scrutinized, a more thorough understanding of the 

bacteriology of liver abscessation is warranted. Therefore, this study characterizes the microbial 



96 

communities in the purulent materials of liver abscesses using 16S rRNA gene amplicon 

sequencing. 

Materials and Methods 

Cattle Population. Sixteen pens of feedlot cattle (Average number of animal in pen: 141), 

from 5 different feedlots in the United States (one feedlot in California, one feedlot in Texas, and 

three feedlots in Colorado) were utilized for this study. Cattle included in the study were a mix of 

dairy-type (California) and beef-type (Colorado and Texas). In order to investigate the effects of 

a commonly utilized liver abscess control strategy, one half of the enrolled pens (n = 8) housed 

cattle that were supplemented with tylosin phosphate following label usage (Elanco, Greenfield, 

IN) for the duration of the feeding period, while the other eight pens were not fed tylsoin.  The 

pens were identified prior to slaughter to facilitate sample collection at the time of harvest.  

Liver abscess collection. A sample of livers identified as having abscess (up to 5 per pen) 

were reserved for removal of the abscess. Liver abscess collection was performed by removing 

the abscess from the liver using a sterile scalpel; taking care to avoid puncturing the abscess 

during the collection process. When multiple liver abscesses were present in one liver, the 

abscess collected was the most convenient to collect that appeared to harbor the most purulent 

material. Liver abscess samples were placed in sterile bags (Whirl-Pak; Nasco Corp., Fort 

Atkinson, WI) and transported on ice to Colorado State University. An aliquot of the abscess 

purulent material was sterily removed from the abscess, placed in sterile 50 ml conical tubes 

(Thermo Fisher Scientific, Waltham, MA), and frozen (-80°C) until the time of DNA Extraction. 

While the original sample plan called for the collection of 80 liver abscess, due to logistical 

limitations (some pens of cattle did not have 5 abscessed livers to sample) and the limit on the 
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amount of purulent material from some abscesses (resulting from the stage and size of the 

abscess), DNA from 34 liver samples was successful extracted and used in downstream analysis.  

DNA Extraction and Sequencing. DNA was extracted from 0.021 g to 0.725 g of purulent 

material using the Mo-Bio PowerFecal DNA isolation kit (Mo Bio Laboratories, Inc., Solana 

Beach, CA) following manufacturer’s protocols. Quality and concentration was evaluated using 

a NanoDropTM spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA). DNA 

extraction samples with a 260mm:280mm ratio < 1.3 (lab average ratio 1.80) and a concentration 

< 20 ng/μl of DNA (concentration average 21.8 ng/μl) were concentrated using ethanol 

precipitation prior to sequencing. 

Thirty microliter aliquots of DNA from all liver samples were delivered to Novogene 

Bioinformatics Technology Company (Chula Vista, CA) for library preparation and sequencing. 

The V4 region of the 16S rDNA subunit was amplified with the 515F/806R primer set. Paired-

end sequencing (2 x 250 base pairs) was completed on the Illumina HiSeq 2500 (Illumina, Inc. 

San Diego, CA). 

Bioinformatics and Statistical Analysis. Reads from sequencing adaptors were trimmed 

from raw sequence data using cutadapt (Martin, 2011). Forward and reverse reads for each 

sample were merged using PEAR v0.9.10  (Zhang et al., 2014) with a minimum read length 187 

and a maximum of 310. Using QIIME v1.9 (Caporaso et al., 2010b), raw sequencing reads were 

clustered into OTU (Operational Taxonomic Units) using open reference methods at 97% 

similarity.  De novo OTU were clustered using sumaclust (Mercier et al., 2013)while reference-

based clustering relied on sortmerna (Kopylova et al., 2012) and the Greengenes 16S rRNA 

reference database (DeSantis et al., 2006a).Taxonomy was assigned to OTU with UCLUST 

(Edgar, 2010) using the Greengene database. Operational taxonomic units assigned to 
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mitochondria and chloroplasts and singleton OTU were removed. The OTU table was 

normalized using cumulative sum scaling. A rarefaction curve was constructed with using Chao1 

measurements from biom files to assess whether sequencing depth sufficiently captured 

diversity. Taxa present in all samples a relative abundance of at least 1.0% in all samples were 

considered part of the ‘common microbiota.’ 

Non-metric multidimensional scaling (NMDS) ordination using Euclidean distances were 

calculated on cumulative sum scaled normalized counts and the analysis of similarities 

“ANOSIM” function in the Vegan Package in R was used to assess differences between cattle 

treated and not treated with tylosin as well as to assess differences between regions. For all 

comparisons in the study, α = 0.05 was utilized.  

Results and Discussion 

Rarefaction Curve. The total number of reads considered in the analysis after quality 

control was 13,505,094. The mean number of reads in each sample was 350,716 (range: 190,551 

to 996,910; standard deviation 191,995). The rarefaction curve (Fig 4.1) shows a plateauing of 

reads mapped to novel OTU as the proportion of reads sampled increases, indicating that the 

microbial community was sampled to an appropriate depth to allow complete characterization of 

the bacterial community.  

Summary Statistics. Through 16S characterization, 5 phyla, 13 classes, and 17 orders 

were identified in the DNA extracted among all sampled abscesses (Fig. 4.2). The phyla 

identified were: Bacteroidetes (35.2% of reads), Proteobacteria (28.6%), Fusobacteria (18.2%), 

Firmicutes (12.4%) and Actinobacteria (5.5%). Of note, reads mapped to the three most 

predominant phyla, which comprised 82% of the abscess microbial community, represent gram-

negative bacteria. This result is interesting as tylosin, a macrolide commonly used to prevent 
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liver abscesses in feedlot cattle, is primarily active against gram-positive bacteria with limited 

efficacy against gram-negatives. While the isolation of gram-negative bacteria from liver 

abscesses has been described (Nagaraja and Chengappa, 1998), the abundance of gram-negative 

bacteria in the gut microbial community may explain why common prevention strategies (i.e. 

macrolide supplementation) have imperfect efficacy for prevention of liver abscessation. Instead, 

these results suggest that reduction strategies which provide more broad spectrum action against 

the entire microbiome may be beneficial in more completely preventing this disease.  

Identification of bacteria of interest and common microbiota. Previous literature has 

identified Fusobacterium necrophorum as the primary causative organism for bovine liver 

abscesses (Nagaraja and Chengappa, 1998). Fusobacterium was found in all liver abscesses 

sampled in this study, and on average reads mapped to this genus comprised 15.1% of the 

microbial community when characterized using 16S rRNA amplicon sequencing (range: 10.6% 

to 21.9%). Another common bacteria associated with liver abscesses, Trueperella pyogenes, was 

identified at genus level in all of the samples but at a lower overall community makeup of 3.2% 

(range: 2.4% to 5.1%).  

Ten other bacterial genera were present in all samples, 5 at a greater relative abundance 

than 3% of all classified reads: Bacteroides (17.6% of mapped reads), Porphyromonas (14.1%), 

Pseudomonas (5.7%), Enterobacteriaceae (3.7%; classified at the family level), and Sneathia 

(3.1%).  The remaining five genera were present in 2.2 to 2.9% of the relative abundance of the 

community: Parvimonas (2.9%), Helcococcus (2.8%), Psychrobacter (2.6%), Atopobium (2.4%), 

Campylobacter (2.2%), and Haemophilus (2.2%). This bacterial community shares several 

genera (namely Bacteroides, Enterobacteriaceae, and Fusobacterium) with a characterization of 

human liver abscesses also done with 16S rRNA sequencing, though other genera, such as 
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Klebsilla, were highly represented in the human abscesses and not characterized in this analysis 

(Song et al., 2014).      

 Bacteroides and Porphyromonas have both been previously described as being present in 

bovine liver abscess purulent material (Nagaraja and Lechtenberg, 2007; Scanlan and Hathcock, 

1983). While Pseudomonas has been reported in other ruminant abscesses (Tadayon et al., 1980) 

and Sneathia has been linked to abscesses in the cervical lymph nodes of other mammals 

(Eisenberg et al., 2016). Organisms from the Enterobacteriaceae family have also been cultured 

from liver purulent material such as Salmonella enterica (Amachawadi and Nagaraja, 2015). 

While there are no previous reports regarding the presence of Parvimonas, Helcococcus, 

Psychrobacter, Atopobium, Campylobacter or Haemophilus in peer-reviewed literature as a 

causative agent of bovine liver abscesses, several of these species have been associated with 

other related disease. For examples, co-occurrence of Parvimonas and Fusobacterium has been 

found in human colorectal cancer (Nakatsu et al., 2015), Helcococcus ovis has been reported in 

associated with bovine valvular endocarditis (Kutzer et al., 2008),and Atopobium has been found 

in purulent material of other mammals (Oyaert et al., 2014).  

Initial Evaluation of Differences Related to Geographic Region and Tylosin Exposure. 

Though not the primary objective of the study, and limited by sample size, sampling structure 

used in this study provided an opportunity for initial investigation of differences that might exist 

in the flora of liver abscesses based upon comparison of geographic regions (n = 8 California, n 

= 9 Texas, and n = 17 Colorado) and tylosin exposure (n = 18 non-tylosin fed, n = 16 tylosin 

fed). Sampling size and the partial confounding of region by cattle type (all the cattle in 

California were dairy-type while the cattle in the other two regions were beef-type) limit 

extensive formal comparison. However, in an observation of feedlot location and 
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supplementation, region where feedlots were located, and supplementation with tylosin 

phosphate both affected liver abscess communities (P = 0.002 and P = 0.026, respectively). 

These comparisons among observed groups of cattle raise the possibility of different liver 

abscess rate composition by area and rearing methods; which in turn may lead to more targeted 

approaches to reduce abscess rates.  

Conclusions 

Management of liver abscesses in feedlot cattle continues to be an important priority for 

the North American beef cattle industry. Currently, the most common management strategies, 

which utilize treatment of cattle by including antimicrobial drugs in feed, are facing intensifying 

scrutiny. As such, a more thorough understanding of the microbial drivers of liver abscessation 

may lead to more efficient and sustainable management strategies; for example, the relationship 

between epimural bacteria and liver purulent material. The observed differences in region and 

rearing strategy provide further avenues for investigation and prevention of abscesses. We 

believe this characterization will allow for an ecological approach to treatment and prevention of 

liver abscesses.   
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Figure 4.1: Rarefaction plot of each individual liver sample from chao1 measurements. The 
leveling off in all samples indicates an appropriate sampling depth was researched to estimate the 
diversity of the community.
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Figure 4.2: Genus level breakdown of liver abscess purulent material averaged over 34 liver 
purulent material samples taken in the study and sequenced with the V4 region of the 16S rRNA 
gene.   
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APPENIDX A:  
 
 
 

Supplementary Materials for Chapter 2  

Sequins and Mock Communities 

For normalization on each data set, the following order was performed: raw data was 

CSS normalized via ‘cumNorm’ function in MetagenomeSeq (Paulson et al., 2013a), CSS tables 

were corrected for lane effect, and then based on the mock communities a false positive 

threshold was set and subtracted from all counts.  

Accounting for Lane Effect. In addition to sequencing samples across different lanes and 

runs of a NovaSEQ 6000, each lane of samples that was sequenced also had two mock 

communities (ZymoBIOMICS) of known DNA quantity and 2% meta sequins by DNA 

molecular weight (Either Mix A or B) on each lane. Upon shotgun sequencing, the resulting 

mock community/Sequin samples were aligned to a FASTA file of the 86 known meta sequin 

(https://s3.amazonaws.com/sequins/annotations/Metasequins_details.txt) using bwa-mem (Li and 

Durbin, 2010). Samtools (Li et al., 2009) was then used to covert the SAM files to BAM files, 

sort and index them and count alignment numbers with ‘idxstats.’ From the alignment numbers, 

total Sequins numbers were calculated for each lane and each lane was normalized based on this 

number to counter lane effect. 

Correcting for False Positives in AMR data with a Mock Community. The 

ZymoBIOMICS mock community, composed of ten known organisms (Listeria monocytogenes - 

12%, Pseudomonas aeruginosa - 12%, Bacillus subtilis - 12%, , Escherichia coli - 12%, 

Salmonella enterica - 12%, Lactobacillus fermentum - 12%, Enterococcus faecalis - 12%, , 

Staphylococcus aureus - 12%, Saccharomyces cerevisiae - 2%, and Cryptococcus neoformans) 
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was processed in the same way as other samples in the study (library preparation with a custom 

library bait capture system specific to AMR genes). After sequencing, the mock communities 

AMR counts were generated in the same way as described with modification to the 

AMRplusplus pipeline. 

To create a list of what AMR genes were undoubtedly present in the 10 organisms 

included in the mock community, draft complete genomes FASTA files were obtained from 

NCBI. The bbmap script ‘randomreads.sh’ was used to fragment the genomes (2x150) with 

500,000 fragments per genome. From there, The synthetic reads were aligned to the MEGARes 

database (Lakin et al., 2017) using bwa-mem (Li and Durbin, 2010). Samtools (Li et al., 2009) 

was then used to covert the SAM files to BAM files, sort and index them and count alignment 

numbers with ‘idxstats.’ The results count numbers were converted to a presence/absence count 

table and aggregated across all genomes for one composite count for the mock community. 

The known counts for the synthetic reads were compared to the CSS normalized counts 

that were generated through sequencing. The CSS mock community lowest count that also had 

the presents of a synthetic DNA reads was established as the cutoff point. From there, the CSS 

normalized cutoff number threshold was subtracted from every count in the count table at the 

HMM model level. Any value that was below zero was treated as a zero and any HMM model 

that had zero hits across all samples as a result of this action were removed from the count table. 

 


