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ABSTRACT 
 

 

METABOLIC ENGINEERING INTERVENTIONS FOR SUSTAINABLE 2,3-BUTANEDIOL 

PRODUCTION IN GAS FERMENTING CLOSTRIDIUM AUTOETHANOGENUM 

 

Gas fermentation provides a promising platform to turn low-cost and readily available 

single-carbon waste gases into commodity chemicals such as 2,3-butanediol. Clostridium 

autoethanogenum is usually used as a robust and flexible chassis for gas fermentation. Here, we 

leveraged on constraints-based stoichiometric modeling and kinetic ensemble modeling of the C. 

autoethanogenum metabolic network to provide a systematic in silico analysis of metabolic 

engineering interventions for 2,3-butanediol overproduction and low carbon substrate loss in 

dissipated CO2. Our analysis allowed us to identify and to assess comparatively the expected 

performances for a wide range of single, double, and triple interventions. Our analysis managed 

to individuate bottleneck reactions in relevant metabolic pathways when suggesting intervening 

strategies. Besides recapitulating intuitive and/or previously attempted genetic modifications, our 

analysis neatly outlined that the interventions - at least partially - impinging on by-products 

branching from acetyl-CoA and pyruvate (acetate, ethanol, amino acids) offer valuable 

alternatives to the interventions focusing directly on the specific branch from pyruvate to 2,3-

butanediol. 
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Introduction1 
 

 Rethinking complex value chains is a key priority to achieve a modern, low-carbon, 

resource- and energy-efficient economy. Sustainable and carbon circular economy models are 

being developed to offer functionalities analogous or superior to traditional commodities with 

potentially lower environmental impacts, but they currently represent a very small share of the 

market. One component of the technological innovations necessary to attain carbon recycling can 

be the application of bioprocesses enabling conversion of C1-based industrial waste gas streams 

into commodity chemicals (1-2). Carbon monoxide (CO) is a major by-product of the incomplete 

combustion of carbon-based fuels—including coal, oil, natural gas and wood. Furthermore, CO 

is also a major component of synthesis gas (syngas), where the relative amounts of CO and H2 

vary largely, depending on the feedstock, gasifier type and process conditions adopted (3). The 

release of CO into the atmosphere may have significantly negative environmental impact by 

affecting the abundance of greenhouse gases in the atmosphere. 

 The ability to grow on gaseous substrates as the sole carbon source is a defining property 

of the acetogens of the genus Clostridium, which use the carbon-fixation Wood-Ljungdahl 

biochemical pathway for autotrophic growth (4). Regeneration of redox cofactors occurs through 

reactions leading to excreted by-products. One such product of particular importance is 2,3-

butanediol (2,3-BDO), a trace component of the native product profile of some C1-fixing, 

 

1 Published as: Parsa, G., Angela, R., Luca, R., & Joshua, C. S. H. (2022). Metabolic Engineering 

Interventions for Sustainable 2,3-Butanediol Production in Gas-Fermenting Clostridium 

autoethanogenum. MSystems, 7(2), e01111-21. https://doi.org/10.1128/msystems.01111-21 
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anaerobic, acetogenic, ethanologenic, and carboxydotrophic members of the genus Clostridium, 

namely C. autoethanogenum, C. ljungdahlii, C. sp AWRP, C. ragsdalei and C. coskatii (5-7).  

 2,3-BDO is a valuable platform chemical (8), which can be used to produce butadiene (a 

monomer of synthetic rubber), acetoin (a volatile compound used in foods, plant growth 

promoters, and biological pest control), diacetyl (a flavor enhancer), and methyl ethyl ketone (an 

excellent organic solvent). Furthermore, hydrogenation of methyl ethyl ketone produces the fuel 

2-butanol, which shows the highest octane number and the lowest boiling point among the four 

stereoisomers of butanol. Compared to bioethanol, butanol has a higher energy density and lower 

hygroscopicity. Blending of 2-butanol with gasoline does not need to modify the current vehicle 

system (9). 2,3-BDO can be used as antifreeze agent because of the low freezing point shown by 

aqueous solutions of its stereoisomers (10-11), and as a novel chain initiator and extender in the 

manufacturing of polyol components of polyurethane foams (12). Furthermore, 2,3-BDO could be 

exploited in the cosmetics sector owing to its humectant, moisturizing and anti-microbial 

activities (13). 

 The initial reaction for the production of 2,3-BDO from acetyl-CoA is mediated by the 

pyruvate:ferredoxin oxidoreductase (PFOR), which is present in two copies in the genome of C. 

autoethanogenum (CAETHG_0928 and CAETHG_3029) (5,14-15). This enzyme catalyzes the 

interconversion of acetyl-CoA and CO2 into pyruvate, with ferredoxin and thiamine 

pyrophosphate as cofactors (Figure 1). 2,3-BDO formation from pyruvate occurs through three 

subsequent reactions. Firstly, acetolactate synthase (ACLS), encoded by CAETHG_1740 in C. 

autoethanogenum, forms a molecule of acetolactate from two molecules of pyruvate, 

accompanied by the release of a CO2 molecule. Acetolactate is then splitted into acetoin and CO2 

by acetolactate decarboxylase (ACLDC), encoded by CAETHG_2932 in C. autoethanogenum. 
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Acetoin can be finally reduced to 2,3-BDO by a butanol dehydrogenase (hereafter BTDDx), 

which is encoded by CAETHG_0385 in C. autoethanogenum, or by a primary-secondary alcohol 

dehydrogenase (hereafter BTDDy), which is encoded by CAETHG_0553 in C. 

autoethanogenum (16-17). It has been hypothesized that this primary-secondary NADPH-

dependent alcohol dehydrogenase is also involved in ethanol production and not only in 2,3-

BDO synthesis (18). Whereas this enzyme strictly depends on NADPH (17), the reduction of 

acetoin to 2,3-BDO by BTDDx is favored by NADH even if it has been observed both with 

NADPH and NADH (16).  

 

Figure 1. 2,3-butanediol biosynthetic pathway. Shown are the enzymes involved in the 

synthesis of 2,3-butanediol starting from acetyl-CoA.  

 

Although 2,3-BDO production by microbial fermentation of gaseous substrates containing CO 

has been demonstrated (19), 2,3-BDO is usually a secondary product of gas fermentation 

processes. It is desirable to be able to affect the fermentation in such a way that the production of 

2,3-BDO is enhanced relative to the production of other products, including ethanol, that are 

routinely produced in the fermentation of gaseous substrates by acetogens of the genus 

Clostridium. A few key process parameters have been identified as able to influence 2,3-BDO 

production. It has been shown that increasing the hydrogen composition of the gaseous substrate 
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and the specific rate of hydrogen consumption by the microbial culture negatively impacts on the 

2,3-BDO productivity and that increasing the age of the cells in culture favors 2,3-BDO 

productivity (20). Medium manipulations included providing a compound inhibiting one or more 

enzymes, which convert acetolactate to branched chain amino acids to the fermentation (21) or 

increasing the concentration of at least one nutrient selected from the group consisting of vitamin 

B1, vitamin B5, vitamin B7 and mixtures thereof above the cellular requirement of the 

microorganism (22). A clear metabolic engineering strategy for increased 2,3-BDO production is 

not available despite the availability of genome-scale metabolic reconstructions of C. 

autoethanogenum (23-25) and the predictive engineering potential of constraint-based modeling 

(26), based on stoichiometry (27), and kinetic modeling, which allow to gain insights into 

regulatory behaviors or rate limiting steps (28). To avoid the hurdle of quantifying detailed 

enzyme kinetics of each reaction, which is impractical for large-scale networks, many 

frameworks explore a range of parameters and select a subset based on their consistency with 

experimental observations. Using the parameters obtained by training the model, the analysis of 

the network kinetics allows formulating potential engineering strategies. The ensemble modeling 

(EM) framework uses phenotypic data, such as flux changes due to changes in enzyme 

expression to screen for kinetic models. The EM approach builds up an ensemble of models that 

span the space of kinetics allowable by thermodynamic constraints and that would all reach the 

given steady state, when considering flux distribution and metabolite concentrations. The 

constructed models can then be employed to predict system phenotypes, such as flux changes 

due to changes in enzymes’ expression levels (29). Cells are typically robust to perturbations to 

native enzyme concentrations. However, the addition of heterologous pathways may not result in 

similar steady-state stability. The robustness issue of non-natural pathways is addressed in 
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Ensemble Modeling for Robustness Analysis by computing the likelihood for an intervention to 

cause a metabolic instability (30). It is notable that available modeling tools increase the breadth 

of modeling techniques addressing the thermodynamic and kinetic feasibility of a metabolic 

pathway and its robustness against perturbations (31).  

Metabolic engineering to obtain 2,3-BDO is currently limited by the fact that acetogens live at 

the thermodynamic edge of life (32). As shown in Figure 2, the Wood-Ljungdahl pathway, 

which acts as a terminal electron-accepting/energy-conserving process and as a mechanism for 

CO2 assimilation into cell carbon (33), is neutral with respect to ATP production via substrate 

level phosphorylation (32), when acetyl-CoA is transformed into acetate (4). Consequently, 

autotrophic growth of acetogens of the genus Clostridium is strictly dependent on the 

chemiosmotic energy conservation process. The only coupling site for energy conservation is the 

Rnf complex whereby the free energy change of the electron transport is coupled to the extrusion 

of ions from the cytoplasm to the periplasm. The generated electrochemical ion gradient across 

the membrane drives ATP synthesis via a membrane-bound F0F1-ATP synthase (34). 
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Figure 2. Bioenergetics in C. autoethanogenum. The reducing equivalents for the reductive 

steps during CO oxidation are provided by the carbon monoxide dehydrogenase, which reduces 

Fd. The electron-bifurcating and ferredoxin-dependent transhydrogenase Nfn is transferring 

electrons between Fd, NADH and NADPH. The methylene-THF reductase is assumed to be 

electron bifurcating. Excess Fdred is oxidized by the Rnf complex, which reduces NAD and 

builds up a H+ gradient. This gradient drives ATP synthesis via the H+-dependent ATP 

synthase.  

 

 When using CO as the sole carbon source, in the absence of significant H2, a fraction of 

CO is converted to CO2 (35-37). The production of CO2 represents inefficiency in the overall 

carbon capture and, if released, has the potential to contribute to greenhouse gas emissions. 

 This study aims at in silico identifying metabolic engineering interventions for increasing 

2,3-BDO production and limiting the carbon loss in the form of CO2 with a C. autoethanogenum 

culture fermenting a substrate comprising CO and H2 by using constraint-based stoichiometric 

modeling and kinetic ensemble modeling. 
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Results and Discussion 
 

Model validation. GEnome-scale metabolic Models (GEMs) have been previously developed 

for C. autoethanogenum, namely iCLAU786 (32-33) and, more recently, Metaclau (34). Prior to 

the use of a GEM for in silico strain design, we developed a three-step benchmark 

(https://github.com/chan-csu/OptForce_Bdoh). In the first step, we looked for any internal flux 

after blocking all the exchange reactions. In the second step, we looked at flux through ATP 

hydrolysis reaction in the absence of any exchange fluxes. iCLAU786 failed both tests, while 

Metacalu succeeded in both cases. There was no flux-carrying reaction in the absence of 

exchange fluxes in Metaclau. However, there were many reactions with non-zero flux in 

iCLAU786 including the ATP hydrolysis reaction which shows infeasible energy-generating 

cycles. Presence of such cycles result in unrealistic simulation results. Finally, we assessed the 

accuracy of both genome-scale metabolic reconstructions by constraining each of them with 

experimental substrate uptake rates, and by evaluating the ability of the models to predict 

experimentally observed biomass and by-products’ production rates. We retrieved the 

experimental datasets for validation purposes from research articles, which explore gas 

fermentations using C. autoethanogenum grown on CO-rich gas substrates and which report 

quantitative data on gas uptake and production rates (Table 1). We constrained the metabolic 

reconstructions with the gas uptake rates corresponding to each gas fermentation condition, 

shown in Table 1, and we carried out Flux Balance Analysis (FBA) as well as Flux Variability 

Analysis (FVA) simulations by maximizing biomass yield. The accuracy in predicting the 

acetate, ethanol and 2,3-BDO production rates and the specific growth rate was found to be 

superior using Metaclau compared to iCLAU786.  A possible reason for the better performance 

of Metaclau is its better model consistency since it does not contain the aforementioned energy-

https://github.com/chan-csu/OptForce_Bdoh
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generating cycles.  Based on the assessment of Metaclau prediction accuracy by FBA and FVA 

simulations (Figure 3), we used the Metaclau GEM in the following in silico analysis.  

 

Figure 3. Validation of Metaclau predictive capability by contrasting FBA and FVA 

predictions with experimentally determined production rates in benchmarking datasets. 

The plots show the experimental acetate, ethanol, 2,3-BDO production rates and specific growth 

rate (blue dots), which are reported in Table 1, with the flux predictions obtained by FBA 

(orange dots) and with the flux ranges which were obtained by FVA simulations using the 

Metaclau GEM, constrained with the experimental gas uptake rates in Table 1.  
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Table 1. Quantitative datasets for model validation. Shown are the gas substrate uptake rates 

and production rates, which were displayed in publicly available reports on quantitative gas 

fermentations based on CO-rich gas substrates and reliant on C. autoethanogenum. The table 

shows the composition of the gas substrate for each experiment. LBC, MBC and HBC stand for 

low, medium and high biomass concentration 

Refere

nce 

Gas 

sustr

ate 

Biom

ass 

conce

ntrati

on 

Gas 

substrate 

compositio

n 

qCO 

(mm

ol/gC

DW/h

) 

qCO2 

(mm

ol/gC

DW/h

) 

qH2 

(mm

ol/gC

DW/h

) 

qAcet 

(mm

ol/gC

DW/h

) 

qetoh 

(mm

ol/gC

DW/h) 

qBDO 

(mmol

/gCDW/

h) 

μ 
(h-1) 

Valgep

ea 

2017  
Syng

asa LBC 

50% 

CO;20% 

CO2;20% 

H2;10% Ar 

-

18.8 5.65 -12.6 6.35 1.2 0 0.04 

Valgep

ea 

2017 
Syng

as MBC 

50% 

CO;20% 

CO2;20% 

H2;10% Ar 

-

24.6 8.7 -12.5 5.2 2.5 0.01 0.04 

Valgep

ea 

2017 
Syng

as HBC 

50% 

CO;20% 

CO2;20% 

H2;10% Ar 

-

30.6 

12.5

5 -11.9 4.05 

3.7

5 0.09 0.04 

Valgep

ea 

2018 
Syng

asb LBC 

50% 

CO;20% 

CO2;20% 

H2;10% Ar 

-

18.7

92 

5.62

5 

-

12.583 

6.33

3 

1.2

5 0 

0.04 

Valgep

ea 

2018 

High

-H2 

CO LBC 

15% 

CO;45% 

H2;40% Ar 

-

20.0

42 

2.12

5 

-

33.042 

1.08

3 

9.0

42 0 

0.04 

Valgep

ea 

2018 CO HBC 

60% 

CO;40% 

Ar -31 21 0.5 3.3 2.5 0.03 

0.04 

Valgep

ea 

2018 
Syng

as HBC 

50% 

CO;20% 

CO2;20% 

H2;10% Ar -30 12 -11 4 

3.7

5 0.06 

0.04 
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Analysis of the effect of H2 on 2,3-butanediol and CO2 production. CO represents a carbon 

source that provides reducing equivalents via CO oxidation through a water gas shift reaction 

catalyzed by carbon monoxide dehydrogenase (CODH). However, the usage of CO as electron 

donor is associated with the release of CO2 (35-37). For example, when using only CO for 2,3-

BDO production, almost two-thirds of the carbon is lost to CO2 according to:  

11 CO + 5 H2O -> C4H10O2 + 7 CO2 

Since we were interested in identifying metabolic engineering strategies to improve 2,3-BDO 

production in a gas feeding condition minimizing CO2 production, we explored feed gas 

substrates combining CO with H2. Indeed, if H2 is present in the gas, additional reducing 

equivalents are made available by hydrogen oxidation (H2 → 2 H+ + 2e−) and less CO has to be 

dissipated into CO2 via the biological water gas shift catalyzed by CODH. Furthermore, CO2 can 

be advantageously fixed in the Wood-Ljungdahl pathway since the direct use of H2 in the CO2 

reduction to formate by the formate-hydrogen lyase activity (16) allows to save redox compared 

to growth on CO alone. A high-H2/CO gas fermentation process using chemostat cultures of C. 

autoethanogenum (38) observed the aforementioned trend whereby the specific CO2 production 

rate dropped more than fivefold by increasing the supplied H2. Our FVA simulations predicted a 

significant drop of CO2 production rate from 21 mmol/gCDW/h, when CO was the sole gas 

substrate in the Metaclau GEM, to 2 mmol/gCDW/h, when the Metaclau GEM was constrained 

with the CO and H2 uptake rates corresponding to the high-H2/CO gas feeding adopted in ref. 38. 

Running FVA simulations for different combinations of CO and H2 uptake rates allowed us to 

Valgep

ea 

2019 

High

-H2 

CO HBC 

15% 

CO;45% 

H2;40% Ar -20 4 -29 1.9 

7.8

8 0 

0.04 
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identify a subspace of gas uptake rates’ combinations that ensure 2,3-BDO production and that 

substantially decrease CO2 production (Supplementary Figure 1).  We ran another simulation 

using the kinetic ensemble model of the C. autoethanogenum core metabolism derived in ref. 42, 

where we held the CO uptake constant and we varied the H2 uptake rate. We did observe a 

decrease in the 2,3-BDO yield per hydrogen uptake. Especially after the uptake rate of hydrogen 

is > 20 mmol/gDW/hr, no increase in 2,3-BDO or any other significant product profile change 

was observed (Supplementary Figure 2). The additional electrons at high hydrogen uptake are 

consumed in some futile cycles in the model. The primary reason for this model behavior is that 

all kinetics in the model essentially follow Michaelis-Menten kinetics and the hydrogen-

consuming reactions that lead to product formation will ultimately get saturated at a certain 

hydrogen concentration that is correlated to the H2 uptake rate. In the light of this behavior at 

higher simulated H2 uptakes, we constrained the GEM with the particular combination of CO 

and H2 uptake rates reported in ref. 38 which have been experimentally shown to be associated 

with a low CO2 production rate, in order to computationally predict metabolic interventions 

enhancing 2,3-BDO production rate at low CO2 production rate.  

Prediction of genetic manipulations leading to 2,3-butanediol overproduction. The OptForce 

framework (39) implemented within the COBRA toolbox (40) in MATLAB environment was 

used with the Metaclau GEM to enumerate the reactions that should be actively forced through 

genetic interventions in order to achieve the overproduction of 2,3-BDO in C. autoethanogenum 

fed with CO and H2. Optforce allowed us to retrieve single, double and triple interventions 

reported in Supplementary File 2 (https://github.com/chan-

csu/OptForce_Bdoh/raw/master/Results/Supplementary_Table_1.xlsx).  Each intervention can 

foresee the increase, decrease or elimination of the flux value corresponding to each of the 

https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_Table_1.xlsx
https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_Table_1.xlsx
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involved reactions. The Optforce tool suggests genetic manipulations from the metabolic 

network perspective. However, the lack of a quantitative mapping between flux and gene 

expression levels does not let translating the suggested sets of reaction flux changes into 

executable genetic modifications, especially when attempting combinatorial changes. 

Furthermore, the OptForce tool does not account for kinetic and thermodynamics features 

governing the metabolic behavior of C. autoethanogenum (18, 41). Therefore, it is advisable to 

analyze the outcomes of the reaction flux manipulations suggested by Optforce using kinetic 

modeling. To this aim, we used a kinetic representation of C. autoethanogenum core metabolism 

(Figure 4), which proved able to accurately resolve experimentally observed trends (33) and 

which by leveraging the Ensemble Modeling framework (34-35).  

 

Figure 4. C. autoethanogenum core metabolism. Shown is the metabolic network 

representative of the core metabolism of C. autoethanogenum. Cofactors and energy equivalents 

are coded respectively in blue and green colours. Bolded arrows denote by-products’ exchange 
reactions and dashed arrows denote metabolites included in the biomass equation.Reactions 

along with enzymes’ and metabolites’ abbreviations are described in Supplementary File 1.  
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Ensemble Modeling approach does not require the existence neither of metabolomics data nor of 

enzymatic expression data but builds upon a reference steady-state flux distribution to constrain 

the kinetic parameters’ sampling space to a realistic space and, thus, to derive the initial 

ensemble of multiple kinetic parameter sets. This ensemble is subsequently pruned down using 

perturbation datasets, which typically consist of phenotypic responses to enzymatic 

modifications. In ref. 42, the screening of the ensemble of kinetic parametric sets did not rely on 

genetic perturbations, for which available data are currently limited in C. autoethanogenum, but 

on perturbations of environmental conditions. Indeed, the construction of the kinetic model relied 

on a public dataset where gas uptake fluxes changed by effect of increasing the biomass 

concentration over three conditions (45). Eighteen sets of locally stable kinetic parameters fit the 

experimental data in all three conditions. We used this ensemble model consisting of the 18 sets 

of parameters for our simulations. 

The kinetic ensemble model of C. autoethanogenum was instrumental to elucidate the change in 

2,3-BDO production rate as a function of changing the expression levels of the enzymes 

catalyzing the reactions, which took part in the interventions suggested by Optforce. In 

particular, we simulated multiple scenarios where the fold changes of the enzymes catalyzing 

each reaction of the single, double or triple interventions were set to low (+/−20%), medium 

(+/−40%) or high (+/−60%). Each intervention is associated with a distribution of 2,3-BDO 

production rates which resulted from simulating all the 18 sets of kinetic parameters of the 

ensemble model (42). The distribution of the simulated 2,3-BDO production rates relative to 

each single, double and triple intervention are shown respectively in Figures 5, 6, and 7. We 

then identified the interventions that resulted in significantly higher production of 2,3-BDO 
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compared to the wild-type condition (Wilcoxon’s test, significance level at 1%). Tables 2, 3, 4 

reported the reactions involved in statistically significant single, double or triple interventions, 

respectively. We also tested the effects of larger perturbations. We repeated the simulations to 

perturb the enzyme levels by 3, 5 and 10 folds for upregulation and 0.3, 0.2, and 0.1 fold change 

for downregulation. The same strategies were suggested to increase 2,3-BDO production most 

significantly. 

 

Figure 5. Heatmap showing the 2,3-BDO production rate when each of the single 

interventions suggested by Optforce are applied to the kinetic core model. Each row in the 

heatmap represents an intervention and each column represents one of the 18 kinetic parameters 

sets. The intervention can be an up-regulation, a down-regulation or a knockout. The heatmap is 

column wise subdivided in three blocks. Each block corresponds to different extents in the 

change of the levels of the enzymes catalyzing each reaction. We referred to the fold changes in 

enzymes’ expression levels as to low, medium, and high, respectively. 



15 

 

 

Figure 6. Heatmap showing the 2,3-BDO production rate when each of the double 

interventions suggested by Optforce is applied to the kinetic core model. Each row in the 

heatmap represents a double intervention and each column represents one of the 18 kinetic 

parameters sets. The perturbation applied to each reaction included in a double intervention be an 

up-regulation, a down-regulation or a knockout. The heatmap is column wise subdivided in three 

blocks. Each block corresponds to different extents in the change of the levels of the enzymes 

catalyzing each reaction of the double intervention. We referred to the fold changes in enzymes’ 
expression levels as to low, medium and high, respectively. 
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Figure 7. Heatmap showing the 2,3-BDO production rate when each of the triple 

interventions suggested by Optforce are applied to the kinetic core model. Each row in the 

heatmap represents a triple intervention and each column represents one of the 18 kinetic 

parameters sets. The perturbation applied to each reaction included in a triple intervention can be 

an up-regulation, a down-regulation or a knockout.The heatmap is column wise subdivided in 

three blocks. Each block corresponds to different extents in the change of the levels of the 

enzymes catalyzing each reaction of the triple intervention. We referred to the fold changes in 

enzymes’ expression levels as to low, medium and high, respectively. 

 

PFOR up-regulation predicted to be the most effective single intervention. First-order 

interventions which were predicted to increase 2,3-BDO production, compared to the wild-type 

(WT) condition, primarily concern the up-regulation of enzymes involved in the 2,3-BDO 

biosynthetic pathway. As shown in Figure 8, overexpressing pyruvate:ferredoxin oxidoreductase 

(PFOR), which catalyses the interconversion between acetyl-CoA and pyruvate, was predicted to 

be the most effective single intervention for improving 2,3-BDO synthesis (𝑓𝑙𝑢𝑥𝑃𝐹𝑂𝑅 𝑢𝑝,ℎ𝑖𝑔ℎ2,3−𝐵𝐷𝑂 =0.10 ± 0.023; 𝑓𝑙𝑢𝑥𝑊𝑇2,3−𝐵𝐷𝑂 =  0.039 ±  0.0091), followed by the up-regulation of acetolactate 

synthase (ACLS) (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,𝑙𝑜𝑤2,3−𝐵𝐷𝑂 =  0.073 ± 0.032). PFOR up-regulation was predicted to lead 

to a 2.6-fold increase in 2,3-BDO production rate.  This reaction has previously been identified 

to be the rate limiting step in 2,3-BDO formation in C. autoethanogenum (46). Therein, the 

authors assayed the activity of the oxidoreductase enzymes involved in the Wood-Ljungdahl 
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pathway and in the fermentation pathway to 2,3-BDO using C. autoethanogenum, grown 

autotrophically with a feeding gas composed of 2% H2, 42% CO, 20% CO2 and 36% N2. 

Measurements showed at least an activity of 1.1 U/mg for the assayed reactions, whereas the 

PFOR rate limiting reaction exhibited an enzyme activity of only 0.11 U/mg in the presence of 

ferredoxin, corresponding to 90% less than all other reactions assayed. PFOR overexpression 

was found to increase the flux through pyruvate and to increase 2,3-BDO production (46). This 

indicates that the ensemble kinetic model did capture some kinetic information beyond the 

stoichiometric model that is consistent with experimental results. 

As shown in Figure 8, an alternative kind of intervention to increase the 2,3-BDO production 

acts on the pathway leading to acetate and, ultimately, ethanol formation. Indeed, the knockout 

or down-regulation of ethanol:NAD oxidoreductase (ALCDx), the phosphate acetyltransferase 

(PTA) down-regulation and the acetate kinase (ACK) down-regulation were predicted to 

increase 2,3-BDO production (𝑓𝑙𝑢𝑥𝐴𝐿𝐶𝐷𝑥 𝐾𝑂2,3−𝐵𝐷𝑂 =  0.070 ±  0.025; 𝑓𝑙𝑢𝑥𝐴𝐿𝐶𝐷𝑥 𝑑𝑜𝑤𝑛,ℎ𝑖𝑔ℎ2,3−𝐵𝐷𝑂 = 0.066 ±  0.024; 𝑓𝑙𝑢𝑥𝑃𝑇𝐴 𝑑𝑜𝑤𝑛,𝑚𝑒𝑑𝑖𝑢𝑚2,3−𝐵𝐷𝑂 =  0.087 ± 0.030; 𝑓𝑙𝑢𝑥𝐴𝐶𝐾 𝑑𝑜𝑤𝑛,ℎ𝑖𝑔ℎ2,3−𝐵𝐷𝑂 =  0.098 ±0.017). PTA and ACK down-regulations were predicted to result, respectively, in a 2.23-fold 

and 2.51-fold increase in 2,3-BDO production rate. Upon PTA and ACK down-regulation, the 

flux through acetaldehyde:ferredoxin oxidoreductase (ACAFDOR) decreases respectively by 

3.89-fold and by more than 5-fold compared to the wild type case, thus limiting the consumption 

of reduced ferredoxin, which in turn causes the NADP to be regenerated (reduced) to NAD(P)H. 

The latter builds an excess that must be relieved to equilibrium, and, in doing so, reduces acetoin 

to 2,3-BDO. Furthermore, the slight increase in 2,3-BDO production rate could be due to the flux 

decrease which is generally observed through the gluconeogenesis pathway, upon both PTA and 

ACK down-regulation. PTA down-regulation negatively affects also the incomplete TCA cycle. 
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Interestingly, PTA and ACK down-regulations were among the rare cases where the level of 

change in enzyme expression was predicted by the kinetic ensemble model to influence the effect 

size on 2,3-BDO production, with only a moderate phosphate acetyltransferase and acetate 

kinase down-regulation found effective. This outcome could be explainable by the key role of 

the conversion of acetyl-CoA to acetate via acetyl-phosphate for ATP production in the energy 

metabolism of acetogens (47). This also highlights the importance of an accurate quantitative 

model for effective optimization of gene expression. Unless differently specified, hereafter we 

report the 2,3-BDO production rates, which were estimated by simulating the highest change in 

the expression levels of the enzymes involved in each intervention. 

 

Figure 8. Plots showing the distribution of 2,3-BDO production rates across 18 kinetic 

parametric sets, under the wild-type scenario and under the single modification scenario. 

For each intervention, three (low, medium and high) fold changes were simulated. Overlaid are 

the mean and standard deviation of the 2,3-BDO production rates corresponding to each 

intervention at each simulated change in gene expression. The figure only refers to selected 

single interventions reported in Table 2.  
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Table 2. Summary of first order interventions validated by the kinetic model of C. 

autoethanogenum. Shown are the single interventions which result in a statistically significant 

higher 2,3-BDO production rate compared to the wild-type condition (Wilcoxon’ test, 
significance level at 1%).  

Reaction Intervention Adjusted P-value 

    Low 
Mediu

m 
High 

          

ALCDx knock-out 
1,64E-

04 

1,64E-

04 

1,64E-

04 

nadh + h + acald <=> nad + etoh         

PFOR up-regulation 
1,64E-

03 

1,64E-

03 

1,64E-

04 

coa + pyr + Fd_ox <=> co2 + accoa + 

h + Fd_red 
        

GLUD knock-out 
1,64E-

04 

1,64E-

04 

1,64E-

04 

h2o + nadp + glu-L <=> nadph + nh3 

+ akg + h 
        

ALCDx 
down-

regulation 

5,41E-

03 

2,30E-

03 

4,92E-

04 

nadh + h + acald <=> nad + etoh         

ACK 
down-

regulation 

8,20E-

04 

4,92E-

04 

4,92E-

04 

adp + actp <=> atp + ac + h         

ACLS up-regulation 
4,10E-

03 

2,30E-

03 

8,20E-

04 

2 pyr + h <=> co2 + acltt         
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HSDH knock-out 
4,10E-

03 

4,10E-

03 

4,10E-

03 

nad + hom-L <=> nadh + h + aspsa         

HYDFDNy knock-out 
7,05E-

03 

7,05E-

03 

7,05E-

03 

nadp + Fd_ox + 2 h2 <=> nadph + 3 h 

+ Fd_red 
        

PTA 
down-

regulation 

1,64E-

03 

1,64E-

04 

7,23E-

02 

pi + accoa + h <=> coa + actp         

RNF 
down-

regulation 

1,64E-

04 

2,30E-

03 

1,00E+

00 

nad + 3 h + Fd_red <=> nadh + 2 

h_ext + Fd_ox         

          

 

 

 

The benefit induced by the knockout of ALCDx, which catalyses the NAD-dependent 

conversion of acetaldehyde into ethanol, is probably attributable to the negation of a competitive 

reaction for the electrons required for 2,3-BDO in the form of NADH. Indeed, the flux through 

the NAD-dependent butanediol dehydrogenase increases of 29 %. Furthermore, the ALCDx 

knockout induces a 2.78-fold higher flux through the NADP-dependent acetaldehyde 

dehydrogenase (ACALDy), which operating in the opposite direction relative to ethanol 

formation, increases the acetyl-CoA pool for PFOR whose flux increases of 14%.  

Overexpression of both PFOR and ACLS predicted as the most effective double 

intervention. Enhancing the expression of multiple enzymes involved in the 2,3-BDO 

biosynthetic pathway appears as a relevant choice in double interventions (Figure 9). Many of 
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the double interventions rely on the enzymes highlighted in the analysis of single interventions 

and propose the combined intervention on two of such enzymes. Notably, our analysis revealed 

that the preferable enzyme to overexpress along with PFOR is ACLS, which lies immediately 

downstream to pyruvate oxidoreductase and converts pyruvate to acetolactate and carbon 

dioxide. This double intervention resulted in 1.4-fold higher 2,3-BDO production rate compared 

to overexpressing only the pyruvate oxidoreductase gene, with a 3.59-fold higher 2,3-BDO 

production rate compared to the wild-type condition (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝑃𝐹𝑂𝑅 𝑢𝑝 2,3−𝐵𝐷𝑂 = 0.14 ±  0.030).  

On the contrary, overexpressing both PFOR and BTDDx or PFOR and ACLDC resulted in an 

almost identical 2,3-BDO production rate than just overexpressing the PFOR gene alone 

(𝑓𝑙𝑢𝑥𝐵𝑇𝐷𝐷𝑥 𝑢𝑝,   𝑃𝐹𝑂𝑅 𝑢𝑝2,3−𝐵𝐷𝑂 =  0.11 ±  0.026;  𝑓𝑙𝑢𝑥𝑃𝐹𝑂𝑅 𝑢𝑝,   𝐴𝐶𝐿𝐷𝐶 𝑢𝑝2,3−𝐵𝐷𝑂 =  0.11 ± 0.030). These 

findings highlight the benefit of combining Optforce with the kinetic ensemble model since 

kinetic models parameterized from experimental data can help identify the possible kinetic 

bottlenecks inside a metabolic pathway among the interventions suggested by OptForce that are 

equivalent at the stoichiometric level. 
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Figure 9. Plots showing the distribution of 2,3-BDO production rates across 18 kinetic 

parametric sets, under the wild-type scenario and under the double modification scenario. For 

each gene involved in a double intervention, three (low, medium and high) fold changes were 

simulated. Overlaid are the mean and standard deviation of the 2,3-BDO production rates 

corresponding to each intervention at each simulated change in gene expression. The figure only 

refers to selected double interventions reported in Table 3.  

 

Table 3 Summary of second order interventions validated by the kinetic model of C. 

autoethanogenum. Shown are the double interventions which result in a statistically significant 

higher 2,3-BDO production rate compared to the WT (Wilcoxon’ test, significance level at 1%).  

1st 

reaction 

1st 

interve

ntion 

2nd reaction 

2nd 

interventi

on 

Adjusted P-value 

Low 
Mediu

m 
High 

          

ACLS 

up-

regulati

on 

PFOR 
up-

regulation 
1,41E-03 

1,41E-

04 

1,41E-

04 
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2 pyr + h 

<=> co2 

+ acltt 

  

coa + pyr + Fd_ox 

<=> co2 + accoa + 

h + Fd_red 

ACLDC  

up-

regulati

on 

PFOR 

up-

regulation 
7,06E-04 

2,68E-

03 

1,41E-

04 h + alctt 

<=> co2 

+ actn 

  

coa + pyr + Fd_ox 

<=> co2 + accoa + 

h + Fd_red 

ACLS 

up-

regulati

on 

ALCDx 

knock-out 1,41E-04 
1,41E-

04 

1,41E-

04 2 pyr + h 

<=> co2 

+ acltt 

  
nadh + h + acald 

<=> nad + etoh 

ACLDC 

up-

regulati

on 

ACLS 

up-

regulation 
1,98E-03 

1,41E-

03 

2,82E-

04 h + alctt 

<=> co2 

+ actn 

  
2 pyr + h <=> co2 + 

acltt 

ACLS 

up-

regulati

on 

HYDFDNy 

knock-out 7,06E-04 
2,82E-

04 

2,82E-

04 2 pyr + h 

<=> co2 

+ acltt 

  

nadp + Fd_ox + 2 h2 

<=> nadph + 3 h + 

Fd_red 

ACLDC 

up-

regulati

on 

GLUD 

knock-out 2,82E-04 
2,82E-

04 

2,82E-

04 h + alctt 

<=> co2 

+ actn 

  

h2o + nadp + glu-L 

<=> nadph + nh3 + 

akg + h 

BTDDx  

up-

regulati

on 

PFOR 
up-

regulation 
1,41E-03 

1,98E-

03 

2,82E-

04 
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nad + 

bdoh 

<=> 

nadh + h 

+ actn 

  

coa + pyr + Fd_ox 

<=> co2 + accoa + 

h + Fd_red 

ACLS 

up-

regulati

on 

GLUD 

knock-out 1,41E-04 
7,06E-

04 

2,82E-

04 2 pyr + h 

<=> co2 

+ acltt 

  

h2o + nadp + glu-L 

<=> nadph + nh3 + 

akg + h 

ACLS 

up-

regulati

on 

BTDDx 

up-

regulation 
4,66E-03 

1,98E-

03 

2,82E-

04 2 pyr + h 

<=> co2 

+ acltt 

  
nad + bdoh <=> 

nadh + h + actn 

ACLS 

up-

regulati

on 

ACAFDOR 

down-

regulation 
2,68E-03 

7,06E-

04 

2,82E-

04 2 pyr + h 

<=> co2 

+ acltt 

  

ac + 3 h + Fd_red 

<=> h2o + acald + 

Fd_ox 

BTDDx 

up-

regulati

on 

GLUD 

knock-out 2,82E-04 
1,41E-

03 

2,82E-

04 
nad + 

bdoh 

<=> 

nadh + h 

+ actn 

  

h2o + nadp + glu-L 

<=> nadph + nh3 + 

akg + h 

ACLS 

up-

regulati

on 

FDH 

knock-out 2,68E-03 
2,68E-

03 

7,06E-

04 2 pyr + h 

<=> co2 

+ acltt 

  

nadph + 2 co2 + h + 

Fd_red <=> nadp + 

2 for + Fd_ox 
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ACLS 

up-

regulati

on 

FBP 

knock-out 3,53E-03 
3,53E-

03 

7,06E-

04 2 pyr + h 

<=> co2 

+ acltt 

  
h2o + fdp <=> pi + 

h + f6p 

ACLS 

up-

regulati

on 

EX_thf 

knock-out 3,53E-03 
3,53E-

03 

7,06E-

04 2 pyr + h 

<=> co2 

+ acltt 

  thf -> 

ACLS 

up-

regulati

on 

EX_ac 

knock-out 3,53E-03 
3,53E-

03 

7,06E-

04 2 pyr + h 

<=> co2 

+ acltt 

  ac_ext -> 

ACLDC 

up-

regulati

on 

HSDH 

knock-out 1,98E-03 
4,66E-

03 

2,68E-

03 h + alctt 

<=> co2 

+ actn 

  
nad + hom-L <=> 

nadh + h + aspsa 

ACLDC 

up-

regulati

on 

HYDFDNy 

knock-out 4,66E-03 
4,66E-

03 

3,53E-

03 h + alctt 

<=> co2 

+ actn   

nadp + Fd_ox + 2 h2 

<=> nadph + 3 h + 

Fd_red 

BTDDx 

up-

regulati

on 

HYDFDNy 

knock-out 9,88E-03 
9,88E-

03 

9,88E-

03 
nad + 

bdoh 

<=> 
  

nadp + Fd_ox + 2 h2 

<=> nadph + 3 h + 

Fd_red 
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nadh + h 

+ actn 

              

 

 

Among the double interventions which do not encompass PFOR, our analysis suggested firstly 

the combined overexpression of ACLS and BTDDx, and secondly the overexpression of ACLS 

and ACLDC, which ensure an around twofold higher 2,3-BDO production rate compared to the 

wild-type condition (𝑓𝑙𝑢𝑥𝐵𝑇𝐷𝐷𝑥 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝2,3−𝐵𝐷𝑂 =  0.073 ± 0.030;  𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝2,3−𝐵𝐷𝑂 = 0.076 ± 0.031). ACLS and ACLDC were overexpressed individually and in combination in a 

patent of the Lanzatech company (46), whereby the combined intervention allowed to 

experimentally observe increased 2,3-BDO production in a batch culture of C. autoethanogenum 

using a CO-containing gas substrate. However, according to the outcomes of our in silico 

analysis, the double intervention did not lead to a tangible increase in 2,3-BDO production rate 

compared to overexpressing exclusively the acetolactate synthase whereas, according to ref. 46, 

the increase in 2,3-BDO production is primarily associated with the overexpression of the 

acetolactate decarboxylase.  

 Our analysis predicted that a 2.56-fold increase in 2,3-BDO production rate compared to 

the wild-type case could be achievable through a double intervention whereby the acetolactate 

synthase overexpression is combined with the knockout of glutamate dehydrogenase (GLUD), 

which catalyses the NADPH-dependent interconversion between L-glutamate and 2-oxoglutarate 

(𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐺𝐿𝑈𝐷 𝐾𝑂2,3−𝐵𝐷𝑂 =  0.10 ± 0.034). It has been shown that C. autoethanogenum contains a 

strictly NADPH-dependent primary-secondary alcohol dehydrogenase which could reduce 

acetoin to 2,3-BDO (17). Therefore, the suggested knockout of GLUD in conjunction with 
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ACLS up-regulation could favour 2,3-BDO production by avoiding NADPH consumption in the 

reaction catalyzed by glutamate dehydrogenase.   

A slightly less effective intervention foresaw the ACLS upregulation combined with the 

ethanol:NAD oxidoreductase (ALCDx) knockout (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐴𝐿𝐶𝐷𝑥 𝐾𝑂2,3−𝐵𝐷𝑂 =  0.084 ± 0.031). The 

beneficial effect on 2,3-BDO production rate is probably attributable to the negation of a 

competitive reaction for the electrons required for 2,3-BDO in the form of NADH.  

 Another double intervention featured the combination of ACLS up-regulation with 

formate dehydrogenase (FDH) knockout (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐹𝐷𝐻 𝐾𝑂2,3−𝐵𝐷𝑂 =  0.074 ± 0.032). Its mode of 

action is likely based on the manipulation of the NAD(P)H to NAD(P) ratio. Indeed, knocking 

out FDH affords reduced ferredoxin to build up. This excess reduced ferredoxin causes the 

NADP to be regenerated (reduced) to NAD(P)H, which builds an excess that must be relieved to 

equilibrium, and reduces acetoin to 2,3-BDO. This is supported by the fact that the flux through 

the NADH-dependent BTDDx increases by 26% compared to the wild-type condition.  

Also the double intervention consisting of ACLS up-regulation and ACAFDOR down-regulation 

is related to the provision of reduced ferredoxin since ACAFDOR down-regulation allows to 

limit the consumption of reduced ferredoxin (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐴𝐶𝐴𝐹𝐷𝑂𝑅 𝑑𝑜𝑤𝑛2,3−𝐵𝐷𝑂 =  0.073 ± 0.028).  

An alternative intervention foresaw the simultaneous up-regulation of ACLS and the knockout of 

the rate-limiting step in gluconeogenesis catalysed by fructose-bisphosphatase (FBP), which 

converts D-fructose-1,6-bisphosphate (fdp) into D-fructose-6-phosphate (f6p) and which was 

found to afford an almost 2–fold increase compared to the WT case (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐹𝐵𝑃 𝐾𝑂2,3−𝐵𝐷𝑂 = 0.074 ± 0.032). Based on the changes in flux distribution observed upon this intervention, FBP 

knockout restricts biomass formation since fdp is rerouted from f6p to D-fructose-1-phosphate 
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(f1p) through the action of fructose-1-phosphate kinase (FRUK). The advantage conferred to 2,3-

BDO production by this intervention could derive firstly from the generation of ATP associated 

with the conversion of fdp into f1p, and, secondly, from an increased pyruvate pool made 

available for 2,3-BDO through D-fructose transport via the phosphoenolpyruvate:pyruvate 

phosphotransferases, FRUpts and FRUpts2.  

Overexpression of ACLDC on top of PFOR and ACLS predicted to be the most effective 

triple intervention. When we explored the effectiveness of triple interventions, we interestingly 

noted that the up-regulation of the entire branch from pyruvate to 2,3-BDO alone, i.e., 

acetolactate decarboxylase (ACLDC), acetolactate synthase (ACLS), and butanediol 

dehydrogenase (BTDDx), worsens the 2,3-BDO production rate compared to overexpressing 

pyruvate:ferredoxin oxidoreductase alone (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐵𝑇𝐷𝐷𝑥 𝑢𝑝2,3−𝐵𝐷𝑂 = 0.075 ±  0.031). 

Overexpressing BTDDx on top of the simultaneous ACLS and PFOR up-regulation did not 

improve 2,3-BDO production compared to the double intervention ( 

𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐵𝑇𝐷𝐷𝑥 𝑢𝑝,   𝑃𝐹𝑂𝑅 𝑢𝑝2,3−𝐵𝐷𝑂 =  0.14 ± 0.029). On the other hand, the up-regulation of 

ACLDC on top of that of PFOR and ACLS resulted in the most effective triple intervention, 

further boosting the 2,3-BDO production rate by about 7% with respect to the combined PFOR 

and ACLS up-regulation, and leading to an almost 4-fold increase in 2,3-BDO production 

compared to the wild-type condition (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝,   𝑃𝐹𝑂𝑅 𝑢𝑝2,3−𝐵𝐷𝑂 = 0.15 ± 0.056). A strain 

overexpressing all the three genes was characterized in continuous cultures grown on a CO-

containing gaseous substrate and consistently produced higher 2,3-BDO levels compared to the 

plasmid control strain (37).  
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Additionally, our analysis pointed out triple interventions which involved ACLDC and ACLS 

up-regulation but which, overall, were less effective than the double intervention to increase the 

2,3-BDO production rate (Figure 10). One such intervention includes the simultaneous up-

regulation of acetolactate synthase, acetolactate decarboxylase together with 

acetaldehyde:ferredoxin oxidoreductase (ACAFDOR), with a 1,86-fold increase in 2,3-BDO 

production with respect to the wild-type condition (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐴𝐶𝐴𝐹𝐷𝑂𝑅 𝑢𝑝 2,3−𝐵𝐷𝑂 =0.070 ± 0.029). This latter enzyme, reducing undissociated acetic acid to acetaldehyde, plays a 

significant role for energy generation, reconstitution of oxidized ferredoxin needed in the Wood-

Ljungdahl pathway, and regulation of intracellular acetate levels. According to the kinetic 

ensemble model used, the acetaldehyde overproduction resulting from the acetaldeyhe:ferredoxin 

oxidoreductase up-regulation could be converted back to acetyl-CoA by the bifunctional 

aldehyde/alcohol dehydrogenase (NADPH-dependent ACALDy). Several lines of evidence 

actually suggest that the reaction catalyzed by this latter enzyme does not operate predominantly 

in the ethanol production direction (41, 42, 48). The Gibbs free energy estimations of the study 

developing the ensemble kinetic model used here (42) validated the possibility for the reaction to 

run in reverse (Figure 2). Furthermore, the thermodynamics-based metabolic flux analysis of 

syngas chemostat cultures of C. autoethanogenum in ref. 41 showed that the reaction catalyzed 

by the bifunctional aldehyde/alcohol dehydrogenase is thermodynamically prevented from 

operating towards ethanol formation. Furthermore, the knockout of the genes encoding 

the bifunctional aldehyde/alcohol dehydrogenase was found to result in growth reduction and 

increase in ethanol production (48). Therefore, it is plausible to hypothesize that the 

acetaldehyde:ferredoxin oxidoreductase, whose up-regulation has been suggested in our analysis, 

could form an ATP-generating loop, together with the bifunctional aldehyde/alcohol 
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dehydrogenase operating towards acetyl-CoA, the phosphate acetyltransferase and the acetate 

kinase. 

 

Figure 10. Plots showing the distribution of 2,3-BDO production rates across 18 kinetic 

parametric sets, under the wild-type scenario and under the triple modification scenario. For each 

gene involved in a triple intervention, three (low, medium and high) fold changes were 

simulated. Overlaid are the mean and standard deviation of the 2,3-BDO production rates 

corresponding to each intervention at each simulated change in gene expression. The figure only 

refers to selected triple interventions reported in Table 4.  

 

Table 4. Summary of third order interventions validated by the kinetic model of C. 

autoethanogenum. Shown are the triple interventions which result in a statistically significant 

higher 2,3-BDO production rate compared to the WT (Wilcoxon’ test, significance level at 1%).  

1st 

reaction 

1st 

interv

ention 

2nd 

reacti

on 

2nd 

inter

venti

on 

3rd reaction 

3rd 

inter

venti

on 

Adjusted P-value 

Low  Medium High 
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ACLS 

up-

regulat

ion 

BTDDx 

up-

regulation 

PFO

R 

up-

regul

ation 

1,91E

-04 
3,81E-05 

3,81E

-05 
2 pyr + 

h <=> 

co2 + 

acltt 

nad + bdoh 

<=> nadh + h 

+ actn 

coa + 

pyr + 

Fd_o

x 

<=> 

co2 + 

accoa 

+ h + 

Fd_re

d 

ACLDC 

up-

regulat

ion 

ACLS 

up-

regulation 

PFO

R 

up-

regul

ation 

1,91E

-04 
1,91E-04 

3,81E

-05 
h + alctt 

<=> 

co2 + 

actn 

2 pyr + h <=> 

co2 + acltt 

coa + 

pyr + 

Fd_o

x 

<=> 

co2 + 

accoa 

+ h + 

Fd_re

d 

ACLDC 

up-

regulat

ion 

GLUD 

knock-out 

HYD

FDN

y 

knock

-out 

3,81E

-05 
1,91E-04 

3,81E

-05 h + alctt 

<=> 

co2 + 

actn 

h2o + nadp + 

glu-L <=> 

nadph + nh3 + 

akg + h 

nadp 

+ 

Fd_o

x + 2 

h2 

<=> 

nadp

h + 3 

h + 

Fd_re

d 
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ACLDC 

up-

regulat

ion 

ACLS 

up-

regulation 

BTD

Dx 

up-

regul

ation 

7,25E

-04 
7,25E-04 

7,63E

-05 
h + alctt 

<=> 

co2 + 

actn 

2 pyr + h <=> 

co2 + acltt 

nad + 

bdoh 

<=> 

nadh 

+ h + 

actn 

ACLDC 

up-

regulat

ion 

ACLS 

up-

regulation 

ACA

FDO

R 

up-

regul

ation 

7,25E

-04 
7,25E-04 

7,63E

-05 h + alctt 

<=> 

co2 + 

actn 

2 pyr + h <=> 

co2 + acltt 

ac + 

3 h + 

Fd_re

d 

<=> 

h2o + 

acald 

+ 

Fd_o

x 

ACLS 

up-

regulat

ion 

FDH 

knock-out 

EX_t

hf 

knock

-out 

7,25E

-04 
7,25E-04 

1,91E

-04 
2 pyr + 

h <=> 

co2 + 

acltt 

nadph + 2 co2 

+ h + Fd_red 

<=> nadp + 2 

for + Fd_ox 

thf -> 

ACLDC 

up-

regulat

ion 

ACLS 

up-

regulation 

ALC

Dx 

up-

regul

ation 

1,26E

-03 
1,26E-03 

2,67E

-04 
h + alctt 

<=> 

co2 + 

actn 

2 pyr + h <=> 

co2 + acltt 

nadh 

+ h + 

acald 

<=> 

nad + 

etoh 

ACLDC up-

regulat

ion 

ACLS 
up-

regulation 

PTA up-

regul

ation 

2,67E

-03 
6,45E-03 

3,36E

-03 h + alctt 

<=> 

2 pyr + h <=> 

co2 + acltt 
pi + 

accoa 
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co2 + 

actn 

+ h 

<=> 

coa + 

actp 

ACLDC 

up-

regulat

ion 

ACLS 

up-

regulation 

RNF 

up-

regul

ation 

2,00E

-02 
2,00E-02 

6,45E

-03 

h + alctt 

<=> 

co2 + 

actn 

2 pyr + h <=> 

co2 + acltt 

nad + 

3 h + 

Fd_re

d 

<=> 

nadh 

+ 2 

h_ext 

+ 

Fd_o

x 

ACLDC 

up-

regulat

ion 

ACLS 

up-

regulation 

ACK 

up-

regul

ation 

6,45E

-03 
2,67E-03 

5,20E

-02 

h + alctt 

<=> 

co2 + 

actn 

2 pyr + h <=> 

co2 + acltt 

adp + 

actp 

<=> 

atp + 

ac + 

h 

                  

 

Combining the up-regulation of ACLDC and ACLS with the upregulation of either phosphate 

acetyltransferase (PTA) or ferredoxin:NAD oxidoreductase (RNF) or acetate kinase (ACK) 

afforded only lower 2,3-BDO production rate compared to the double intervention encompassing 

the combined upregulation of ACLDC and ACLS (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝,   𝑃𝑇𝐴 𝑢𝑝 2,3−𝐵𝐷𝑂 = 0.050 ±0.026; 𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝,   𝑅𝑁𝐹 𝑢𝑝 2,3−𝐵𝐷𝑂 = 0.056 ± 0.026; 𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐴𝐶𝐿𝑆 𝑢𝑝,   𝐴𝐶𝐾 𝑢𝑝 2,3−𝐵𝐷𝑂 =0.067 ± 0.038).  
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 A triple intervention leading to a 2-fold increase in 2,3-BDO production rate with respect to the 

wild-type case (𝑓𝑙𝑢𝑥𝐴𝐶𝐿𝐷𝐶 𝑢𝑝,   𝐺𝐿𝑈𝐷 𝐾𝑂,   𝐻𝑌𝐷𝐹𝐷𝑁𝑦 𝐾𝑂 2,3−𝐵𝐷𝑂 = 0.081 ± 0.029) consisted in the ACLDC 

up-regulation combined with the knockout of glutamate dehydrogenase (GLUD) and the 

knockout of the electron-bifurcating, NADP- and ferredoxin-dependent [FeFe]-hydrogenase 

(HYDFDNy), which catalyzes the reversible reduction of NADP and oxidized ferredoxin with 2 

H2 (Figure 11). As regards the suggested hydrogenase knockout, it has to be noted that, in 

addition to the NADP-specific electron-bifurcating [FeFe]-hydrogenase, which is predominantly 

active on CO (16), the genome of C. autoethanogenum harbors also an NADH-dependent 

electron-bifurcating [Fe-Fe]-hydrogenase reaction, catalyzed by CAETHG_1576-78, which is 

reflected in the metabolic network used (15). The disruption of the NADP- and ferredoxin-

dependent [FeFe]-hydrogenase severely impaired C. autoethanogenum growth on a CO-rich gas 

mix (49). However, this effect was not observable when C. autoethanogenum was grown on a 

H2-rich gas mix since the disruption of the NADP- and ferredoxin-dependent [FeFe]-

hydrogenase was compensated by the expression of other hydrogenases (49). Several lines of 

evidence suggest that the compensatory role is enacted by the NADH-dependent electron-

bifurcating [Fe-Fe]-hydrogenase. Indeed, the inactivation of this hydrogenase caused the 

microorganism to grow poorly under the H2-rich condition (49). Moreover, transcriptomic data 

of a steady state culture of C. autoethanogenum, grown on a H2-rich gas mix over 23 days, 

showed that the expression of the NADH-dependent electron-bifurcating [Fe-Fe]-hydrogenase 

increased progressively to reach similar levels of expression as the NADPH-dependent electron-

bifurcating [Fe-Fe]-hydrogenase (49). Interestingly, the expression of this hydrogenase did not 

change in C. autoethanogenum fermenting a CO-rich gas mix (23). The increased expression in 

the H2-rich condition suggests that the NADH-dependent electron-bifurcating [Fe-Fe]-
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hydrogenase plays a critical role in H2 uptake. Notably, the mutant with inactivated NADP- and 

ferredoxin-dependent [FeFe]-hydrogenase produced greater amounts of reduced by-products, 

such as ethanol, compared to the wild-type strain under the H2-rich condition (49).  

 

Figure 11. Inferred changes in metabolic fluxes upon the intervention consisting of the 

acetolactate decarboxylase up-regulation combined with the knockout of glutamate 

dehydrogenase and the knockout of the electron-bifurcating, NADP- and ferredoxin-

dependent [FeFe]-hydrogenase. The map shows simulated fluxes for the reactions in the 

metabolic network representative of the core metabolism of C. autoethanogenum corresponding 

to the wild-type case (light grey) or to the triple intervention consisting of ACLDC up-

regulation, GLUD knockout and HYDFDNy knockout (dark grey). Bolded arrows denote by-

products’ exchange reactions Reactions along with enzymes’ and metabolites’ abbreviations are 
described in Supplementary File 1. 

 

The reduction of acetoin to 2,3-BDO can be carried out by a butanediol dehydrogenase 

(CAETHG_0385) whose activity has been shown to be favored by NADH (5). Therefore, it is 

plausible that the reducing equivalents generated by the NAD- and ferredoxin-dependent [FeFe]-

hydrogenase, which was shown able to compensate the disruption of the NADP- and ferredoxin-
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dependent [FeFe]-hydrogenase in a H2-rich gas mix, could be used by the NADH-dependent 

butanediol dehydrogenase to fix carbon into 2,3-BDO. 

Finally, the primary-secondary NADPH-alcohol dehydrogenase, which is encoded by 

CAETHG_0553 in C. autoethanogenum, has been shown to be involved in ethanol (18) and 2,3-

BDO (16-17) synthesis. Therefore, it is conceivable that the knockout of the NADPH-dependent 

glutamate dehydrogenase, foreseen in the triple intervention, could increase the availability of 

reducing equivalents for the 2,3-BDO synthesis by the primary-secondary NADPH-alcohol 

dehydrogenase.  

Overall, our analysis allowed us to identify and comparatively assess the effect on 2,3-BDO 

production rate of a wide range of single, double and triple interventions. Intuitive and 

experimentally pursued metabolic engineering strategies, namely the single pyruvate 

oxidoreductase overexpression or the combined overexpression of pyruvate oxidoreductase with 

the downstream acetolactate synthase and acetolactate decarboxylase enzymes, were reliably 

recapitulated (46).  

Interestingly, our analysis could prioritize single, double and triple interventions by the relative 

increase ensured in 2,3-BDO production rate. For instance, our analysis, thanks to the integrated 

usage of Optforce and kinetic modelling, identified PFOR as the bottleneck reaction in the 

pathway leading from acetyl-CoA to 2,3-BDO. Indeed, only the combined up-regulation of 

PFOR with ACLS, among the double interventions, and the combined up-regulation of PFOR 

with ACLS and ACLDC, among the triple interventions, conferred an increment in 2,3-BDO 

production rate compared to the PFOR up-regulation alone.  
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It is worth noting that according to our analysis, interventions partially impinging on by-products 

branching from acetyl-CoA and pyruvate (acetate, ethanol, amino acids) offer valuable 

alternatives to the interventions focusing directly on the specific branch from pyruvate to 2,3-

BDO. Among the alternative options, the ACK down-regulation, the double interventions 

combining ACLS up-regulation with glutamate dehydrogenase or ethanol:NAD oxidoreductase 

knockout and the triple intervention consisting of the ALCDC up-regulation with the knockouts 

of glutamate dehydrogenase and electron-bifurcating, NADP- and ferredoxin-dependent [FeFe]-

hydrogenase, are worthy of attention and further exploration.  

Materials and Methods 
 

Genome-scale stoichiometric metabolic model. A couple of GEnome-scale Metabolic models 

(GEMs) are publicly available for C. autoethanogenum. The C. autoethanogenum GEM 

iCLAU786 was realized in ref. 23 and refined in ref. 24. The C. autoethanogenum GEM 

Metaclau was made available in ref. 25. iCLAU786 contains 1094 metabolites, 1108 reactions 

and 643 genes, whereas Metaclau contains 855 metabolites, 849 reactions and 532 genes. Prior 

to using GEMs for in silico design of strains overproducing 2,3-BDO, we validated each GEM 

by running three tests. We assessed i) the flux through the network in the absence of flux through 

the exchange reactions, ii) the flux through the non-growth associated ATP hydrolysis reaction in 

the absence of flux through the uptake reactions. Finally, we benchmarked condition-specific 

models against several experimental datasets. Step-by-step benchmarking of both models is 

provided in Validation.m MATLAB script in the GitHub Repository(https://github.com/chan-

csu/OptForce_Bdoh/blob/master/Report/Model_Validation/Validation.m) for this project. 

https://github.com/chan-csu/OptForce_Bdoh/blob/master/Report/Model_Validation/Validation.m
https://github.com/chan-csu/OptForce_Bdoh/blob/master/Report/Model_Validation/Validation.m
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Flux through the network with zero exchanges. Exchange reactions were found in iCLAU786 

and Metaclau, fluxes through exchange reactions were set to zero and, the sum of absolute flux 

through the whole network was maximized.  

Flux through ATP hydrolysis reaction with zero uptakes. Uptake reactions were found in 

iCLAU786 and Metaclau, fluxes through exchange reactions were set to zero and the ATP 

hydrolysis flux was maximized (50). 

Condition-specific model validation. The Flux Variability Analysis (FVA) technique uses two 

linear optimization problems for each reaction of a genomic-scale metabolic reconstruction to 

evaluate the minimum and maximum values of each reaction rate satisfying the constraints, 

which occur as inequalities imposing bounds on the system and as mass balance equations 

imposing mass conservation at steady state. Results obtained through the application of FVA 

provide insight into the capabilities of a metabolic network to investigate the steady-state 

behavior of a microorganism. Before applying the model for in silico design of strains with 

potentially superior characteristics, it is advisable to assess the accuracy of the model by 

constraining the GEM with publicly available experimental data. More precisely, we constrained 

the GEM with substrate uptake rates, maximized biomass yield in FVA calculations, and 

compared model predictions with published experimental data concerning specific growth rate 

and by-products’ production rates. We surveyed the literature stored at Web of Science Core 

Collection, PubMed and individual publisher websites for research articles focused on CO-based 

gas fermentations with C. autoethanogenum and reporting quantitative data on gas exchange 

rates as well as biomass and by-products’ formation rates (Table 1). FVA as a means of model 

validation was run using scripts in the Cobra Toolbox v.3.0 (40) and Gurobi Optimizer version 

9.1 (https://www.gurobi.com/products/gurobi-optimizer/) as the optimization solver. The GEM 

https://www/
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was constrained with experimentally quantitated gas uptake rates. The objective used in the 

simulations was maximizing the biomass formation rate. Finally, the experimentally reported 

values for acetate, ethanol, 2,3-BDO and biomass formation rate were contrasted with the range 

of allowed values resulting from FVA. Furthermore, Flux Balance Analysis (FBA) was used to 

predict acetate, ethanol, 2,3-BDO and biomass formation rate corresponding to each dataset 

included in Table 1 and to assess the consistency of FBA predicted values with the experimental 

values reported in Table 1. The files containing the experimental data obtained by literatue 

mining, the iCLUA786 and Metaclau GEMs and the script used for model validation are 

available in the GitHub Repository (https://github.com/chan-

csu/OptForce_Bdoh/tree/master/Report/Model_Validation). 

 

Relationship between gas feeding and CO2 production. We varied the fluxes through CO and 

H2 uptake reactions step-wise in the range [0 mmol/gCDW/h; -50 mmol/gCDW/h] and the optimal 

objective value was calculated as a function of those fluxes. We investigated the effects of 

varying gaseous substrates’ uptake rates on 2,3-BDO production rate and CO2 production rate.   

Prediction of interventions enhancing 2,3-butanediol production.  The genome-scale 

metabolic reconstruction Metaclau was constrained with CO and H2 uptake rates set to 20 and 33 

mmol/gCDW/h, which we retrieved from the gas fermentation study described in ref. 38. The 

model was used to simulate the in silico design and screening of strains with gene modifications 

which, subject to the model stoichiometry and boundary conditions, could lead to the production 

of higher yields of the 2,3-BDO compound. The design and screening of mutant strains were 

carried out using the computational tool Optforce (39) as it is implemented in the Cobra Toolbox 

v.3.0 within the Matlab environment. In the first step, biomass exchange reaction was set as the 

https://github.com/chan-csu/OptForce_Bdoh/tree/master/Report/Model_Validation
https://github.com/chan-csu/OptForce_Bdoh/tree/master/Report/Model_Validation
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objective function to find the maximum attainable growth rate, and this assumed to present the 

wild type strain. Maximum attainable growth rate was multiplied by 0.1 to obtain a lower bound 

on growth to ensure that the organism can grow in all of the suggested interventions. In the next 

step Optforce with 2,3-BDO exchange as objective was used to find 2,3-BDO maximizing 

phenotype. OptForce compares the flux ranges between the wildtype and butanediol maximizing 

mutant using flux variability analysis to suggest interventions 

(https://raw.githubusercontent.com/chan-csu/OptForce_Bdoh/master/Final_Script.m). The 

perturbations suggested by Optforce to meet the overproduction target can include the increase 

or decrease in the flux values of particular reactions or the elimination of particular reaction 

fluxes, which can be achievable through genes’ over-expression, down-regulation or knockout, 

respectively. In particular, the top 500 theoretical interventions (first, second, and third order 

interventions), which were found consistent with the imposed 2,3-BDO overproduction target 

according to the Otpforce strain design procedure, were retained for further independent 

validation. 

Simulations using the kinetic model of C. autoethanogenum 

Interventions were further analyzed through a kinetic model of the C. autoethanogenum core 

metabolism previously developed with the Ensemble Modeling framework (42). The kinetic 

model accounts for 70 reactions and 62 metabolites. Briefly, in the ensemble modeling 

framework, every reaction in the network was decomposed as elementary reactions with 

elementary kinetics. Using the Gibbs free energy and range for internal metabolite 

concentrations as constraints, a large number of thermodynamically feasible kinetic parameter 

sets were randomly sampled and screened for the convergence and fitness to three sets of 

experimental growth data for C. autoethanogenum in ref. 42, finally resulting in an ensemble of 

https://raw.githubusercontent.com/chan-csu/OptForce_Bdoh/master/Final_Script.m
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18 kinetic parameter sets that were used in this work to validate Optforce predictions. The 

validation of Optforce predictions by kinetic modeling was restricted to the subset of reactions 

encompassed by both methods. Supplementary File 1 provides the lists of reactions and 

metabolites included in the metabolic reconstruction (https://github.com/chan-

csu/OptForce_Bdoh/raw/master/Results/Supplementary_File1.xlsx). The kinetic ensemble model 

of C. autoethanogenum was employed to calculate the change in 2,3-BDO production rate as a 

function of changing enzymes’ expression levels according to the combinations of single, double 

and triple interventions on reactions fluxes, which were suggested by Optforce. We set three fold 

change (FC) values in enzymes’ expression: FC = 1.1, 1.3 and 1.5 for up-regulation and FC = 

0.9, 0.7 and 0.5 for down-regulation. The kinetic representation of the core metabolism was 

constrained by a single reference state where the CO and H2 uptake rates were set to 20 and 33 

mmol/gCDW/h, respectively. By calculating the forward finite difference slopes for each 

intervention across each of the final 18 kinetic parameter sets, we obtained a distribution of 2,3-

BDO production rates in correspondence to each intervention. In order to identify the 

interventions that reflect in a statistically significant higher production of 2,3-BDO compared to 

the wild-type strain, we applied the pairwise Wilcoxon’s test. Raw P-values were adjusted for 

multiple testing by the Bonferroni approach. Statistical analysis was performed within the R 

software environment for statistical computing.  

  

https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_File1.xlsx
https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_File1.xlsx
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Appendix 
 

Supplementary File 1. The file reports the single, double and triple interventions produced by 

Optforce. For each intervention, this file provides the reactions involved along with the change 

proposed (up-regulation, down-regulation, knockout). This spreadsheet can be found in:  

https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_File1.xlsx 

 

Supplementary File 2. The table reports the reactions and metabolites included in the network 

representation of C. autoethanogenum core metabolism. This spreadsheet can be found in: 

https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_Table_1.xlsx 

 

 

Supplementary Figure 1. The Figure shows the 2,3-BDO and CO2 production rate obtained by 

performing FVA at varying uptake rates for CO and H2. Highlighted in blue are the combinations 

of gas uptake rates that do not produce CO2.  

 

 

 

https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_File1.xlsx
https://github.com/chan-csu/OptForce_Bdoh/raw/master/Results/Supplementary_Table_1.xlsx
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Supplementary Figure 2. This figure shows the distribution of fluxes across 18 kinetic 

parametric sets of the exchange reactions for acetate, ethanol, 2,3-butanediol. lactate, CO2 and 

biomassa s well as of the ATPM reaction at incresing H2 uptake rates while preserving the CO 

uptake rate at 20 mmol/gCDW/h.  
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