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ABSTRACT 

 

INDUCIBLE PHOTORECEPTOR DEGENERATION MODEL IN GOLDFISH 

 

Photoreceptor degenerative diseases are among the leading causes of vision loss and 

there is presently no known cure. The future success of biological and prosthetic vision 

rescue approaches following photoreceptor loss remains questionable, due to the 

morphological and functional changes occurring in the remaining retinal circuitry. In the 

current study we sought to establish a chemically-induced photoreceptor degenerative 

model in goldfish, based on the ability of teleost to regenerate their retina following 

damage. N-methyl-N-nitrosourea (MNU) was chosen to chemically induce the 

photoreceptor degeneration, because it has been found to be potent, and selective in 

mammalian studies. We hypothesized that MNU would induce selective and complete 

photoreceptor loss in the goldfish retina as well as the consequent morphological changes 

observed in mammalian retinas. 

Under anesthesia, fish received a direct, intraocular injection of MNU into the 

posterior chamber of one eye whereas the contralateral eye served as sham-injected 

control. The effects of MNU were determined by standard immunohistochemical 

methods using known, well-established molecular markers of retinal cells.  
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The MNU induced unilateral, selective, and dose-dependent photoreceptor 

degeneration: up to ~ 60% of photoreceptors lost the injected eye of the goldfish within 7 

days, followed by nearly complete regeneration by ~50 days post-injection. Repeated 

MNU treatments did not increase the magnitude of degeneration, but delayed the 

regeneration. Unlike in mammals, MNU did not destroy all of the photoreceptors in fish. 

The incomplete photoreceptor degeneration together with the quick regeneration may be 

responsible for preventing the development of chronic morphological and functional 

consequences. However, the regeneration observed after MNU treatment is promising. 

Inducing total photoreceptor degeneration in fish retina, possibly by combining MNU 

with other factors shown to destroy photoreceptors (i.e. strong light) could provide an all-

encompassing natural model for studying the potential of stem cell-based vision rescue 

approaches after photoreceptor loss.  
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1. BACKGROUND 

1.1 Introduction 

Vision loss affects approximately 3.4 million United States citizens over the age of 

40. As the number of Americans over this age continues to increase, there appears to be a 

correlative increase in all age-related diseases including those associated with vision loss 

(CDC: www.cdc.gov/visionhealth/data/national.htm). Retinal degenerative diseases are 

among the leading causes of blindness in older people (Gaillard and Sauve, 2007). With 

the exception of glaucoma (where ganglion cells die due to the compression of their 

axons), and some forms of vitreoretinal degeneration (affecting the inner retina first), 

most retinal degenerative diseases are characterized by the progressive loss of 

photoreceptor cells. For example, age-related macular degeneration (occurrence: 11.5%, 

~1.75 million U.S. citizens) (Friedman et al., 2004), characterized by degeneration of 

photoreceptors in the central neural retina, is the leading cause of blindness in the United 

States and is on the rise with the ageing population. Retinitis pigmentosa (occurrence: 

0.34%, 1 in 3500-4000) (Bunker et al., 1984) is an inherited disorder, caused by gene 

mutations that results in photoreceptor degeneration and ultimate vision loss (Lamba et 

al., 2008). Presently, there are no effective treatments available for these blinding 

diseases; however both biological (“cell-based”) and prosthetic approaches for rescue 

and/or reconstruction of retinal tissue are being investigated. 
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Although these two approaches are fundamentally different, both are based on the 

assumption that after the loss of photoreceptors, the remaining retinal neural circuitry 

remains intact, and is capable of processing the information provided by the reintroduced 

photoreceptors, regardless of their biological or prosthetic nature.  

However, recent research shows that this concept is incorrect. Photoreceptor 

degenerative diseases, which ultimately result in permanent vision loss in humans as well 

as in transgenic animal models, are characterized by consequent morphological changes 

of the remaining retinal tissue, called “remodeling”. The “retinal remodeling” theory 

presented by Marc and Jones (2003) summarizes the process in retina that go well beyond 

the loss of photoreceptors. In order to understand the functional and structural 

consequences of photoreceptor degeneration on the rest of the retina, which could affect 

vision rescue attempts, further studies on both genetic and non-genetic animal models of 

retinal degeneration must be done.  

The teleost fish retina is a traditional model for studying visual information 

processing (Famiglietti et al., 1977; Kaneko et al., 1981), but even more important model 

for studying tissue regeneration. It is because in teleost fish, unlike in mammals, retinal 

neurogenesis continues beyond embryonic development, and proceeds well into adult 

life. In addition, fish are able to regenerate their functional retina via generation of new 

retinal neurons following retinal damage (Hitchcock et al., 2004; Johns, 1977; Lyall, 

1957). This striking capacity for neuronal regeneration is related to the continued 

presence of stem cells and their progeny within the mature teleost retina (Otteson and 

Hitchcock, 2003). 
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The focus of this research was to determine whether or not chemically-induced 

photoreceptor degeneration in the goldfish retina would be followed by chronic 

morphological consequences similar to those observed in human blinding diseases, such 

as retinitis pigmentosa or macular degeneration, and if the fish retina could regenerate 

their chemically-destroyed photoreceptors. Together, the current study evaluated if the 

fish retina can serve as a natural model for cell-based visual function restoration in 

patients with photoreceptor loss. 

The following sections review: (1) the fundamental structure of the vertebrate retina, 

pointing out specific aspects relevant for this study; (2) the major human photoreceptor 

degenerative diseases; (3) the existing animal models; and (4) currently explored 

treatment strategies.  

1.2. Vision 

Vision is a complex sensory process that allows for the detection of size, color, 

distance, motion, and orientation of the surrounding environment (Gaillard and Sauve, 

2007). The perception of one’s surroundings begins when light rays reflect off an object 

and strike the cornea. The surface of the cornea bends the rays, while the diameter of the 

pupil controls the quantity of light that pass into the eye. The light rays then pass through 

the lens, which causes an additional bending of the rays to focus them on the retina at the 

back of the eye. 

Light that strikes the retina, passes through the relatively transparent retinal layers, 

and is either captured by millions of light-sensing photoreceptors or absorbed by retinal 

pigment epithelial (RPE) cells sclerad to the photoreceptors. Primary sensory neurons 

called rod and cone photoreceptors capture the light with photosensitive pigments and 
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their complex phototransduction mechanisms convert the energy of photons into 

electrical signals (Sung and Chuang, 2010). The light-evoked electrical signal alters 

glutamate release from photoreceptors to second order retinal neurons, and with that step 

the light information is channeled into the neural pathway. The signals travel on 

seemingly parallel tracks back through the retinal layers (Joselevitch, 2005; Lamba et al., 

2008) to the ganglion cells, whose axons transport information to the visual cortex of the 

brain (Masland, 2001).  

1.3. Retina 

The retina is an approximately 200 µm thick aggregate of neural tissue which acts as 

a receiver of incoming light rays and as an image processing center. There are five main 

classes of neurons that make up the retina: photoreceptors (rods and cones), horizontal 

cells, bipolar cells, amacrine cells, and ganglion cells (Sung and Chuang, 2010; Wassle, 

2004). These highly organized retinal neuron classes reside in 3 well-defined layers in the 

retina. The outer nuclear layer (ONL) consists of the rod and cone photoreceptor cell 

bodies. The inner nuclear layer (INL) harbors bipolar cells, horizontal cells and amacrine 

cells. The ganglion cell layer (GCL) is made up of “displaced” amacrine cells, ganglion 

cells, and their axons. 

The retina also contains supporting cells, which include glial cells and the retinal 

pigmented epithelial (RPE) cells. RPEs lie against the outer most part of the ONL and 

encase the photosensitive outer segment of the photoreceptors. It is pigmented and acts as 

a photon sink that catches all the stray photons not absorbed by the photoreceptors (Sung 

and Chuang, 2010). RPE cells also play crucial role in recovering bleached 

photopigments (Strauss, 2005). Müller cells are large “housekeeping” glial cells that span 



 5

the entire retina and have several important functions that are vital to the health of the 

retinal neurons (e.g. migration of progenitor cells, removal of waste) (Lamba et al., 

2008).  

Retinal cells have been studied for decades and much progress has been made toward 

understanding their functions and identifying the members of the various cell classes. In 

some species, only a few cell classes have been completely cataloged (e.g. bipolar cells in 

mice). However, there is no universal catalog for classifying retinal cells based on either 

morphology or function across all species.  

1.3.1. Photoreceptors 

Photoreceptors are millions of tiny, light capturing cells that lie in the outer (sclerad) 

layers of the retina. The two types are: (1) rods, which are responsible for vision at a low 

light level and (2) cones, which are responsible for vision at bright light levels and color 

vision (Wassle, 2004). Structurally, both rods and cones can be divided into 2 parts, the 

cell bodies and the outer segments (OS). The portion of the photoreceptor cells in which 

phototransduction takes place is the OS (Sung and Chuang, 2010; Yau and Hardie, 2009). 

The activation of the transduction pathway by photons leads to hyperpolarization of the 

photoreceptors and consequent reduction of transmitter (glutamate) release onto second 

order retinal neurons.  

A change in the number of photoreceptors in the fish retina following chemical 

challenge is in the focus of the present study.   
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1.3.1.1. Cones  

Cone photoreceptors operate in bright light conditions. They contain one of three 

types of cone photopigments, each with different wavelength-sensitivity:  L-cones (red or 

long-wavelength, λmax = 625 nm), M-cones (green or middle-wavelength, λmax = 530 nm), 

and S-cones (blue or short wavelength, λmax = 450 nm). Cones also mediate color vision. 

In darkness, the membrane potential of cones is depolarized and their glutamate release is 

high. Light produces hyperpolarization, graded with intensity and thereby reduces the 

glutamate release from the cone’s complex synaptic terminal, called the cone pedicle 

(Wassle, 2004). Glutamate released by cones is sensed by second order retinal neurons, 

bipolar cells and horizontal cells.   

1.3.1.2. Rods 

Rods are the predominant, light-sensitive photoreceptor cells that mediate vision in 

dim light. In humans, rods outnumber cones 20:1, and with the exception of the macula 

and fovea (which are the areas of central vision), they are distributed throughout the 

retina. In the mammalian retina, rod signals are processed in a specialized circuitry in 

which all rods contact to a single type of bipolar cell, the rod bipolar cells (Masland, 

2001). These rod bipolar cells do not pass the visual information directly onto ganglion 

cells, but excite another interneuron, the AII amacrine cell. The AII cells then form 

synapses with the axon terminals of cone bipolar cells which in turn excite the ganglion 

cells (Sarthy, 2001). Contrary to mammals, rod distribution in fish is even over the entire 

retina. In fish, rod signals are processed by Mb (mixed) bipolar cells, which also receive 

cone input, and connect to ganglion cells directly. Unlike mammals, which lose 

photoreceptors throughout their lives, the number of photoreceptors in the retina of 
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goldfish is maintained over the lifetime of the animal (Hitchcock et al., 2004; Johns, 

1977; Lyall, 1957). This is due to the continuous regeneration of rods from retinal 

progenitors located at the ciliary marginal zone (CMZ) and from distal INL progenitor 

cells, a process which is aided by Müller cells (Raymond and Rivlin, 1987; Sarthy, 2001).  

1.3.2. Horizontal cells  

Horizontal cells (HCs) are laterally connecting GABAergic interneurons that receive 

excitatory (glutamatergic) input from photoreceptors. HCs regulate the light signal flow 

from photoreceptors through feedback inhibition to photoreceptors and feed forward 

inhibition to bipolar cells. These synaptic interactions enhance sensitivity to illumination 

and reduce the redundancy of signals transmitted to the bipolar cells (Masland, 2001). 

HCs also play a fundamental role in mediating the antagonistic center-surround 

organization of the ganglion cells receptive fields (Trenholm and Baldridge, 2010), a 

phenomenon thought to be responsible for contrast detection (Masland, 2001).  

1.3.3. Bipolar cells  

Bipolar cells (BCs) are second-order retinal neurons, responsible for gathering input 

from photoreceptors and passing it on to ganglion cells. BCs are physiologically 

classified into two main functional groups (ON-type or OFF-type) based on the polarity 

of their response to illumination. Illumination of the receptive-field center results in 

depolarization of ON-type BCs and hyperpolarization of the OFF-type BCs. Thus, when 

stimulated, ON and OFF type BCs split the visual signals into parallel pathways; one 

pathway carrying the signal as positive contrast, and the other carrying it as negative 

contrast information, respectively. The ON-type BCs terminate in the inner part of the 
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inner plexiform layer (IPL), while OFF-type cells terminate in the outer part of the IPL. 

Therefore ON and OFF pathways are morphologically separated and remain so until they 

reach the visual cortex (Suzuki and Kaneko, 1990; Werblin and Dowling, 1969).  

The mammalian retina contains 10 types of BCs (Wassle, 2004) whereas at least 15 

different morphologically distinct types of BCs have been discovered in the goldfish 

retina (Ishida et al., 1980; Saito et al., 1985; Suzuki and Kaneko, 1990). Goldfish BCs, 

besides belonging to either the ON, or OFF-type physiological classes, can be further 

divided by their input. Mixed input BCs (Mb) receive both rod and cone input and cone-

driven BCs receive only cone input. For the purpose of this study, we have chosen the 

ON-type, Protein Kinase C-α (PKCα) immunopositive, Mb BCs as a marker of 

appropriate sectioning quality and orientation.   

1.3.4. Amacrine cells  

Amacrine cells (ACs) are laterally spanning inhibitory interneurons, whose processes 

are found in the second synaptic layer of the retina, called inner plexiform layer (IPL). A 

majority of AC bodies are (orthotopically) found in the INL and some AC bodies are 

found to be displaced into the GCL. These multifunctional cells play a vital role in 

controlling the synaptic output from BCs onto ganglion cells via inhibitory feedback to 

BCs (Masland, 2001). ACs also provide (feed forward) inhibition to other ACs and 

ganglion cells. There are several types of ACs (~ 40 different subtypes) in every species, 

which are distinguished by the wide variety of neurotransmitters and neuroactive 

substances that they express, by their distinct synaptic partners, and by the synaptic layer 

in which they communicate (Masland, 2001). Thus, the ACs are thought be the most 

diverse class of inhibitory interneurons within the CNS.  
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In the current study, the dendritic organization of orthotopic or “displaced” ACs, 

which use acetyl choline as their neurotransmitter, were used to address the structural 

integrity of the IPL in the fish retina following photoreceptor degeneration.  

1.3.5. Ganglion cells  

Ganglion cells (GCs) are the final output neurons of the retina. They are responsible 

for collecting visual information (primary excitatory information from BCs and inhibitory 

information from ACs), and transmitting it as an electrical signal to different parts of the 

brain (Wassle and Boycott, 1991). Most GCs are located in the ganglion cell layer (GCL) 

and have a distinct structure, with a large cell body and prominent dendritic arbors. The 

historical study of retinal cell morphology, performed by Cajal in 1892, introduced the 

idea of GC classification based on dendritic morphology, size of the cell body and 

dendritic tree, and location of the dendritic arbors (Cajal, 1892). Since then, there have 

been multiple attempts to morphologically classify GCs in different species (Boycott and 

Wassle, 1974; Polyak, 1941). Based on their light-evoked responses, GCs can be divided 

into three main classes: “ON” type GCs respond to incremental increases of retinal 

illumination by increased action potential firing, “OFF” type GCs respond to incremental 

decreases of illumination with increased action potential firing in the darkness, and 

ON/OFF type GCs which respond to illumination changes with  increase firing at both 

the beginning and the end of the light stimulus (Schiller, 2010). Accordingly, “ON” type 

GCs receive excitatory input from ON BCs, OFF GCs from OFF BCs, and ON-OFF GCs 

from both types of BCs. These classes have been further subdivided based on 

morphology and function, which can also vary among different animal species.  
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In the goldfish retina, based on soma size there are 4 different types of GCs, which 

have been further subdivided into 15 subtypes based on their dendritic stratification 

patterns (Hitchcock and Easter, 1986). In the human retina, there are at least 18 different 

morphological types of GCs. In a broad sense, most GCs can be lumped into two types, 

as described in primates: magnocellular/ parasol/α GCs (M cells) and the parvocellular/ 

midget/ β GCs (P cells), both of which can also be divided into “ON” and “OFF” 

subtypes. M cells account for ~ 10% of all GCs. They have large cell bodies and 

receptive fields, they are sensitive to luminance contrast, and they are primarily 

concerned with motion detection and analysis of gross features (Kaplan and Shapley, 

1986). P cells account for ~ 80% of all GCs. They have smaller cell bodies and receptive 

fields, a lower luminance contrast, and are primarily concerned with color and fine 

feature analysis (De Monasterio and Gouras, 1975; Derrington et al., 1984; Wiesel and 

Hubel, 1966). The remaining, up to 10% of GCs, does not project to the thalamus, but 

instead to the hypothalamus. They have been identified as members of the non-image 

forming system: these melanopsin-expressing, intrinsically photosensitive GCs entrain 

the mammalian circadian clock (Hattar et al., 2002). 

One common retinal disease that affects primarily GCs is glaucoma. However, since 

glaucoma is primarily associated with GC damage the current study did not focus on 

providing further insight to this disease.  

1.3.6. Müller cells  

Müller cells (MCs) are one of four distinct types of glial cells and the most 

predominant (90%) form of retinal glia. These cells function to provide the neuronal 

retina with support, and they act as housekeeper cells by helping remove excess 
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neurotransmitter from the extracellular space (Dowling, 1987). MC bodies are located in 

the INL but their processes span the entire retina, forming basket-like processes, that 

project from the inner border of the GCL to the distal border of the ONL. The trunk of 

these cells is interspersed between the other retinal cells and the radial branches stretch 

throughout retinal layers connecting them to every class of retinal neuron and to the 

retinal vasculature (Newman and Reichenbach, 1996). The MCs vary in population 

density and morphology depending on the region of the retina in which they are located. 

In the central retina, they have longer, finer trunks and a narrower endfoot, and they are 

higher in density. In the periphery, they have shorter, stout trunks with a wider endfoot, 

and are less densely populated (Sarthy, 2001). The cytoskeleton of MCs is made up of 

microfilaments, microtubules, and widely studied intermediate filaments. Glial fibrillary 

acidic protein (GFAP) and vimentin  are the most common MC  intermediate filament 

proteins present in all vertebrates and thus used as molecular markers to 

immunocytochemically label, identify and study MCs (Sarthy, 2001). Glutamine 

synthetase (GS), an enzyme expressed in the MCs of all vertebrates, is also a commonly 

used to molecular marker to label fine MC processes and glial endings (Mack et al., 

1998).    

In more recent years, MCs have been identified as one source of the newly dividing 

progenitor cells. In the teleost, retinal regeneration in response damage starts with MC re-

differentiation into progenitor cells (Fimbel et al., 2007). In the current study, we 

examined the MC morphology, which is known to change following photoreceptor 

degeneration and in response to regeneration (see below).  
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1.4. Retinal degenerative diseases 

In addition to the natural decrease in retinal cell density and visual acuity that occurs 

with age (Rivolta et al., 2002), disorders that result in the degeneration of the retina have 

been termed retinal degenerative diseases. Most diseases in this group are considered 

inherited, genetic diseases, caused by one or more gene mutations. In the human retina, 

there have already been over a 160 retinal degenerative genes indentified (see RETNET 

for a list of retinal disease-causing genes and statistics: 

http://www.sph.uth.tmc.edu/retnet), most of them associated with vision loss due to the 

death of light-sensitive rod and cone photoreceptors (Rivolta et al., 2002). The two most 

prevalent disorders among them are age-related macular degeneration and retinitis 

pigmentosa.   

1.4.1. Age-related macular degeneration 

Age-related macular degeneration (AMD) is a retinal degenerative disorder 

associated with ageing that leads to the progressive loss of central vision. This disease 

affects an estimated 1.8 million Americans over the age of 40 (CDC: 

http://www.cdc.gov/visionhealth/basic_information/eye_disorders.htm) and is the leading 

cause of blindness worldwide (Gehrs et al., 2006). Macular degeneration, though the 

cause is unknown, can occur when mutated genes send faulty messages to the retina that 

result in the degeneration of RPE cells and the dense population of central photoreceptors 

(cones), which make up the macula. Due to the responsibility of this region, these 

mutations often result in a progressive loss of the clear, sharp, central vision (Lamba et 

al., 2008). 
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The extent of vision loss depends upon whether the patient has the wet or dry form 

of AMD. The wet form only occurs in ~ 10% of all AMD cases, and is commonly 

associated with more severe vision loss. It progresses at a rapid rate and is characterized 

by the swelling of blood vessels behind the retina, which grow abnormally under the 

macula and then start to leak fluid and eventually red blood cells. The leakage can lead to 

scarring and ultimately result in permanent damage to the light-sensitive retinal cells, 

causing blind spots and central vision loss (Gehrs et al., 2006; Huang et al., 2010). The 

most common (70-90% of all cases), dry form of AMD progresses at a much slower rate 

and is often characterized by the thinning of the macula overtime. Blind spots in central 

vision occur when drusen, yellow deposits or debris from deteriorated tissue, accumulates 

in or around the macula (Bressler et al., 1988; Gehrs et al., 2006). 

1.4.2. Retinitis pigmentosa 

 Retinitis pigmentosa (RP) is a heterogeneous family of genetically inherited 

neurodegenerative diseases. These are the most common inherited retinal degenerative 

diseases, affecting approximately 1 in 4000 people worldwide (Berson, 1993; Bunker et 

al., 1984). RP results primarily in the loss of the rods and secondarily cone 

photoreceptors. This is followed by the degeneration of the RPE (Huang et al., 2010). At 

least 45 different genes have been identified as sites of mutation for this disease alone, 

which only accounts for ~ 60% of all retinal degeneration patients (~30% unidentified 

gene defects remain) (Hartong et al., 2006). The most common gene mutations leading to 

this disorder, are in the rhodopsin gene (RHO) (~25% of dominant RP), the USH2A gene 

(~20% recessive disease), and the RPGR gene (~70% X-linked RP). Some retinitis 

pigmentosa patients (20-30%) can also inherit associated non-ocular diseases, the two 
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most common are Bardet-Biedl syndrome (obesity, hypogenitalism, cognitive 

impairment, polydactyly, and renal disease) and Usher’s syndrome (hearing impairment) 

(Hartong et al., 2006).  

Since the term retinitis pigmentosa encompasses many genetically heterogeneous 

diseases, the symptoms of this disorder and their severity, as well as, their age of onset 

can be quite variable. Due to this variability, it has made it nearly impossible to predict a 

time course for when photoreceptors will degenerate and blindness will result. The 

classic pattern of blindness for many RP patients begins in adolescence when patients 

start to develop problems with dark adaptation and experience night blindness. As young 

adults, the patients will often experience a loss of their peripheral visual field first, 

followed by the onset of tunnel vision. As the disease progresses toward its final stages, 

patients will experience a narrowing of the tunnel vision and eventually they will loose 

central vision entirely (Berson, 1993; Hartong et al., 2006). 

1.5. Treating blinding diseases 

At this time there are no cures for retinal degenerative diseases, however, there are 

treatments, drugs, and therapies that can be used to slow their progression. For example, 

laser surgery can be used to destroy leaky blood vessels in small areas affected with 

AMD. Wet AMD patients can also undergo photodynamic therapy (PDT). In PDT an 

intravenous (i.v.) injection of a light activated drug is given. When subsequently exposed 

to light of the required wavelength the drug destroys new blood vessels. Alternatively, 

patients can receive monthly eye injections of a drug that blocks the vascular endothelial 

growth factor (VEGF) that is secreted into the eye and is involved in new blood vessel 

formation (i.e. anti-VEGF injection therapy) (Ahmadi and Lim, 2008; Miller, 2010). 
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Patients suffering from Advanced AMD are advised to take a daily dose of the age-

related eye disease study (AREDS) formulation to reduce their risk of vision loss. The 

AREDS formula (vitamin A, vitamin C, vitamin E, and zinc) is an active treatment that 

protects retinal cells against oxidative stress (Wong et al., 2011). In patients suffering 

from retinitis pigmentosa, vitamin A (Berson et al., 1993a; Berson et al., 1993b) is 

prescribed and an omega-3-rich diet is recommended (Berson et al., 2004), in order to 

increase their time of useful vision.  

Several mechanistically diverse approaches to therapy of retinal degeneration are 

also currently being investigated. These include: (1) gene-specific approaches; (2) 

nutritional or neuroprotective approaches; (3) prosthetic approaches; and (4) biological 

“cell-based” approaches.  

1.5.1. Gene-specific approach 

There are two gene-therapy approaches to the treatment of retinal degeneration. They 

vary depending upon the type of gene mutation causing the disorder. For dominantly 

inherited mutations (gain-of-function mutation), the idea is to eliminate the altered amino 

acid sequence coded by the mutation indirectly, by eliminating the mutant gene. The 

normal copy of the remaining gene, should then, in theory, code for the functional protein 

(Hartong et al., 2006). An example of this is the ribozyme-based (catalytic RNA) therapy, 

which is a mutation-dependent approach that has been used to block the mutant RNA 

sequence for rhodopsin (pro23his) and slow the progression of photoreceptor 

degeneration in transgenic mice (LaVail et al., 2000; Lewin et al., 1998; O'Neill et al., 

2000). Another example is RNA interference (RNAi)-based therapy, which is a mutation-

independent method for posttranslational gene silencing that has been used identify and 



 16

silence genes that effect retinal cells (Cashman et al., 2005). For recessively inherited 

mutation (loss-of-function mutation), the idea is a gene-replacement treatment, in which 

one could induce the local production of a missing protein, by introducing a normal copy 

of the gene into the diseased tissue (Hartong et al., 2006). This approach has been 

successful for the RPE65 gene mutation (mutation associated with Leber congenital 

amaurosis (LCA)). A subretinal injection of the normal RPE65 gene (which encodes the 

RPE isomerase required for the production of the 11-cis-retinal photopigment) was able 

to restore vision in mice and dogs (Acland et al., 2001; Dejneka et al., 2004; Narfstrom et 

al., 2003; Narfstrom et al., 2005). Similar human trials have also been done on patients 

with LCA, which resulted in improved navigational testing, visual field, and papillary 

response (Musarella and MacDonald, 2011).   

1.5.2. Nutritional approach 

The nutritional approaches are non-specific and as such are used regardless of 

specific causal mutation. Instead of addressing the genetics, they affect the secondary 

biochemical pathways that are altered. Small-molecule drugs, such as calcium-channel 

blockers, and neurotrophic factors have been studied as possible treatments (Hartong et 

al., 2006). Photoreceptor survival was seen in some animal models of retinal 

degeneration, treated with neurotrophic factors (Leveillard et al., 2004; Sahel, 2005). 

However, the small-molecule drug trials on mice and other animals, have failed thus far 

to confirm any benefits (Frasson et al., 1999). 
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1.5.3. Prosthetic approach 

For over 30 years, the “prosthetic approach” has been aimed toward electrically 

stimulating the non-retinal components of the visual system in an effort to provide partial 

restoration of vision to the blind (Dowling, 2009). Early in the development of the 

technique, visual prostheses were focused on either brain-surface or penetrating 

electrodes to stimulate the visual cortex (Brindley and Lewin, 1968). Recently, 

techniques have been focused on retinal stimulation and they fall into two types of retinal 

prostheses: (1) optoelectronic systems and (2) external power-based multielectrode 

arrays. However, these approaches have proved to be suboptimal. There are currently 

more than 20 different groups conducting prosthetic research, but only four groups that 

have ongoing retinal implantation studies, two of which should have retinal prosthesis 

systems available for use within the next year (Dowling, 2009).   

1.5.3.1. Optoelectronic approaches 

Optoelectronic (OE) prostheses convert energy from light into electricity via 

photodiode arrays. When positioned between the photoreceptor layer and retinal pigment 

epithelium, these implants provide subretinal stimulation by projecting electrical signals 

on the remaining retinal neurons (Dowling, 2009). The first two OE systems developed, 

consisted of the implantation of passive multiphotodiode arrays into the subretinal space 

(Optobionics Corporation, 1990; Retina Implant, 2003). The later of the two models 

added additional photodiodes (which could generate electrical power to amplify circuits 

in the implant) and direct stimulation electrodes, which together elicited phosphenes or 

light spots. The Retina Implant company was set to release a modified version of this 

product in 2010 (Zrenner, 2007). A third system developed by Stanford University had a 
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similar design, in which a multiphotodiode array was implanted into the subretinal or 

epiretinal space (Asher et al., 2007; Palanker et al., 2005). The OE approach would, 

theoretically allow for a rescue of vision at any stage in the degeneration process. This 

particular prosthesis was based on the idea that a correct mathematical model exists that 

could transform visual signals into physiologically relevant electrical stimulation 

patterns. The computed electrical information must mimic a normal, functioning retinal 

circuit in order to be interfaced with the visual pathway. In other words, computer 

algorithms must be used to process a video stream of images into an electrical signal that 

the brain can interpret (Asher et al., 2007).  

The following is an example of this prosthetic hardware design: Initially a ~ 3 mm 

chip, covered in photodiodes (< 18000 pixels), is implanted into the center of the fovea. 

A patient then wears specialized goggles, mounted with an LCD screen, to receive 

images. A video camera is used to capture images and transmit them to a computer. The 

computer processes the data and the resulting images are displayed on the goggles LCD 

screen. A pulsed infrared (IR) light illuminates the LCD screen and projects the images 

through the eye optics onto the implanted chip. Each photodiode that covers the chip 

converts the projected IR signals into a pulsed biphasic current with a common power 

supply (inductive coils, lying in the subretinal space). Visual information is then 

introduced to the damaged retinal tissue, via the chips electrical stimulation. The 

remaining functional retina should respond normally to the visible light (Asher et al., 

2007). 

The most recently developed OE system (Imperial College) involves re-engineering 

retinal ganglion cells and bipolar cells to make them light sensitive (Poher et al., 2008). A 
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head-mounted gallium nitride LED array could then be used stimulate these new cells to 

fire action potentials. This system would not require the implantation of a power supply 

and it would provide the ability to target individual cells and receptive fields (Nikolic, 

2007).   

1.5.3.2. External power-based approach 

The external power-based approach is the alternative to optoelectronic prostheses.  

Implanted multielectrode arrays and transcutaneous telemetry transfer the data and power 

by capturing an image and processing the signal externally. These epiretinal 

multielectrode arrays have demonstrated phosphene perception from local electrical 

stimulation and thus, there have been several ongoing clinical trials of these devices. 

These systems appear to be the best for short term use, however, they provide very low 

spatial resolution (Dowling, 2009).    

1.5.4. Biological approach 

The cell-based approach is based on the idea of using retinal progenitor cells and 

stem cells to replace and regenerate damaged retinal tissue, and to improve vision. This 

idea of “rescue and regeneration” has been studied for many years and to this day still 

remains a feasible treatment option (Gaillard and Sauve, 2007; Huang et al., 2010).  

Early retinal repair strategies date back to the 1940s, when research groups explored 

the idea of neuronal replacement as a means of restoring retinal function. Retinal 

transplantation of embryonic rat eyes into the brain was first reported in 1946 (Tansley, 

1946). Throughout the 1980s and 1990s, Raymond Lund studied intra-cranial 

transplantation of fetal rat retina. This was to study axon pathfinding, and in it they 
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pioneered the early work that showed functional connections between mature nervous 

system and transplanted neural tissue (Craner et al., 1989; Lamba et al., 2008). In 1959, 

Royo and Quay performed a direct transplantation of fetal rat retinas into the eye and saw 

graft survival (Royo and Quay, 1959). During the mid 1980s del Cerro and colleagues 

began transplanting strips of retinal tissue with attached retinal pigment epithelium (RPE) 

into the eye and then studied the survival of this graft (Parysek et al., 1985). In 1985, 

Gouras and colleagues performed the first successful transplantation of cultured human 

RPE cells in to the subretinal space of a monkey’s eye (Gouras et al., 1985). These early 

studies saw graft survival and cell differentiation, but lacked the migration and 

integration of these cells into the host retina (Lamba et al., 2008).   

In the last 20 years, researchers have focused more on the cell replacement, by 

transplanting retinal cells and stem cells into the vitreous (between the lens and retina) or 

into the subretinal space (between the retina and pigment epithelium) (Lamba et al., 

2008). Thus far, it has been shown that a direct injection of cells into vitreous of the eye 

can result in some cell migration into the ONL (Takahashi et al., 1998) and that the 

subretinal approach can also work (Lu et al., 2002). The more important or perhaps 

challenging question, that continues to be explored, is what are the potential cell sources 

for this cell-based replacement approach. The types of cells used to date, include, but are 

not limited to: retinal pigment epithelial cells (RPE), intact sheets of embryonic retina, 

dissociated retinal cells, retinal progenitor cells (RPC), neural progenitor cells, embryonic 

stem cells (ESC), induced pluripotent stem cells (iPS), mesenchymal stem cells (MSC), 

and bone marrow-derived, very small embryonic-like (VSEL) stem cells (Huang et al., 

2010; Lamba et al., 2008). The discussion of all cell types used for this rescue approach 
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is beyond the scope of this thesis. However, two main sources of retinal cells for 

replacement have been reported to include: (1) RPE cells and (2) photoreceptor 

precursors (Huang et al., 2010).   

As discussed above, RPE cells have been considered as a source of cell replacement 

since the 1980s (Gouras et al., 1985; Parysek et al., 1985). In more recent years, RPE cell 

replacement has been used in human trials in patient suffering from AMD. Some 

restoration of vision was reported in patients following RPE transplantation (Binder et al., 

2004). However, due to surgical complications (fibrosis and rejection) the problems with 

RPE cell transplantation remain unresolved. In the 1990s, the use of iris pigment 

epithelial (IPE) cells was also introduced, because of their suitable properties and 

accessibility. Transplantation of the IPE cells into the subretinal space was found to delay 

photoreceptor degeneration, but did not improve vision (Rezai et al., 1997).  

The transplantation of photoreceptor precursors has also been investigated, which 

involves the introduction of healthy retinal cells into the degenerated retina of the host 

eye. This approach would, theoretically, slow the progression of the disease and/or 

replace the damaged retinal cells. Cell survival, cell differentiation, and some synapse 

formation between the transplanted cells and the host retina has been shown to occur for 

both embryonic dissociated cells and retinal sheets that were injected subretinally in 

rodent models, but no improvement of vision was observed (Radtke et al., 2008). 

Researchers hypothesized that the inability of the implanted cells to form functional 

connections was responsible the failure of vision restoration. These connection problems 

were attributed to the formation of a glial scar (“glial seal”, discussed further in section 

1.6) and the neural remodeling of inner retinal circuitry, characteristics which accompany 
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most forms of retinal degenerative diseases. These are the likely causes for a decrease in 

synaptic receptivity of the damaged retinal neurons to the newly introduced cells (Huang 

et al., 2010; Marc et al., 2003).  

The overall goal of the current study was to test the fish retina as a natural model 

system, where the cell-based rescue approach might be tested at different stages of 

remodeling, following photoreceptor loss.   

1.6. The retinal remodeling theory  

Photoreceptor degenerative diseases can be placed into three broad categories, rod-

degenerative, mixed rod/cone degenerative and debris-associated degeneration. These 

forms can vary by the primary genetic or environmental insult (Jones et al., 2005). 

However, all forms appear to have a common sequence. Degeneration begins in the 

retinal pigmented epithelium or in rod photoreceptors, which initiates photoreceptor loss. 

This is followed by continuous cell death, which results in the rewiring/ remodeling of 

surviving neural retina. Since corruption of this magnitude was known to evoke 

remodeling and atrophy in deafferented central nervous system (CNS), it was 

hypothesized by Marc and Jones (2003) that photoreceptor degeneration would result in a 

similar remodeling of the retina.  

The idea of neuronal remodeling is, therefore, not a new, retina specific concept. It 

had been widely documented in field learning/memory (Doubell and Stewart, 1993; Gao 

et al., 1998; Vanreempts et al., 1992) and epilepsy (Koyama et al., 2004; Pollard et al., 

1994; Represa and Benari, 1992), and in 1974, Kolb and Gouras first noted indications of 

altered retinal circuitry following retinal degeneration (Kolb and Gouras, 1974). Still, for 

nearly twenty years, the idea of retinal remodeling was not recognized. Limited by time, 
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cost investment, and visualization tools, the early retinal remodeling studies were focused 

on neural retinal survival and the early stages of photoreceptor loss. Researchers focused 

on working with models that could produce rapid photoreceptor loss rather than keeping 

animal models around long enough to fully understand the progression of these diseases. 

Simple cell counts were preformed on the early stages of photoreceptor loss, but specific 

changes occurring to the surviving neuronal retina were not documented (Jones and 

Marc, 2005), until photoreceptor degeneration studies revealed neurite sprouting and 

abnormal changes in the inner retina (Jones et al., 2005; Machida et al., 2000). Marc and 

Jones set out to confirm their theory of retinal remodeling by documenting the stages of 

degeneration and the specific changes that occur within the surviving retinal cells. They 

used computational molecular phenotyping (CMP) (Marc and Jones, 2002) and overlay 

electron microscopy (Marc and Liu, 2000) to screen human and animal models of retinal 

degeneration. CMP allowed them to quantitatively track the fate of all major retinal cell 

groups throughout the disease process and across different animal models (Marc and 

Cameron, 2001; Marc and Jones, 2002; 2003). They began by using aged human retina 

from RP patients and then moved on to animal models, which allowed them to determine 

if all retinal degenerations trigger the same remodeling. Using several disease models, 

from various species, they were able to demonstrate that most of these retinal 

degenerative models accurately reflect human diseases. From the CMP theme maps, they 

were able to reconstruct the three phases of retinal remodeling in the animal and 

determine that almost all retinal degenerations result in remodeling (Jones and Marc, 

2005).  
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Phase 1: Photoreceptor stress: Retinal degeneration causes photoreceptors to become 

stressed. Rods begin to shorten, RPE cells become altered and uncouple, photoreceptor 

synaptic terminals are depleted, and neurite extensions extend down past their normal BC 

and HC target into the GCL. The depletion of normal synaptic signaling then triggers a 

cascade of new rewiring events. BCs retract their dendrites and switch their synaptic 

targets and HCs extend their processes into the IPL (Jones and Marc, 2005). MCs begin 

to hypertrophy (Jones et al., 2003a).      

Phase 2: Photoreceptor death: Microglia remove retinal debris from the initial trigger 

of photoreceptor stress, while trophic effects ultimately result in the death of most 

photoreceptors. Once photoreceptors are depleted and MCs hypertrophy is significant, the 

distal processes of MCs form a “glial seal,” almost completely sealing-off the neural 

retina from the surviving RPE and choroid (Jones and Marc, 2005).  

Phase 3: Neuronal remodeling: BC corruption, due to the loss of dendritic synapses, 

contributes to further disruption and leaves surviving cells vulnerable to cell death. As the 

retina thins and neurons die, MCs hypertrophy and migrate, partially filling the empty 

space of the ONL. This provides a pathway for neuronal migration and causes distortion 

the INL and ONL laminations. RPE cells and choroidal vessels can also migrate into 

retina through the gaps in the “glial seal” and cause displacement of INL cells. ACs use 

the glial processes to migrate into the GCL. The surviving AC, BC and GC neurite 

extensions form tangled microneuromas that can merge with the existing IPL and OPL 

and result several new synapses. The overall result was the reorganization or rewiring of 

the inner retinal circuitry (Jones and Marc, 2005).  
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Marc and Jones (2005) also modeled the signal processing by microneuromas, a 

model derived from a serial section reconstruction of excitatory and inhibitory 

components. In a normal retinal circuit BCs contribute a brief impulse of depolarizing 

current to yield a small-signal GC voltage response. This brief impulse response occurs 

due to nested AC feedback (Marc and Liu, 2000), which truncates the BC output. In a 

microneuroma, the modeled BC output is a resonant “ringing”, much like in epileptic 

seizures. This oscillatory response would occur due to the formation of new, 

reverberatory, serial excitatory (BC to BC) synapses and its interaction with the persistent 

inhibitory feedback from ACs (Jones and Marc, 2005).   

Current physiological studies have added further understanding to the remodeling 

and functional changes that occur in the degeneration-induced retina. Using the rd-1/rd-1 

mouse, Margolis and colleagues (2008) have found that spontaneous rhythmic synaptic 

activity, which is thought to originate from a negative feedback loop between ACs and 

BCs, drives both ON and OFF GCs to fire at a fundamental “beating” frequency of ~10 

Hz (Margolis and Detwiler, 2011; Margolis et al., 2008). In addition, neurochemical 

remodeling of glutamate receptors on BCs and ACs during the early stages of retinal 

degeneration (Chua et al., 2009) may also contribute to the already hypothesized 

oscillating membrane potential of  GCs (Margolis and Detwiler, 2011). Overall, the 

rhythmic activity of GC output in the remodeled retina does agree with the Jones and 

Marc (2005) hypothesis of a “ringing” output of BCs, but the exact mechanisms involved 

remains unclear.  

Retinal remodeling could interfere with the success of photoreceptor rescue. If the 

retinal circuitry is corrupt, the newly introduced photoreceptors would have to make 
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proper connections with the remaining retinal neurons and trigger a rearrangement of the 

downstream retinal circuitry in order to process visual signals properly.   

1.7. Animal models for retinal degeneration 

There are various types of photoreceptor degenerative diseases that are responsible 

for impairing vision and eventually leading to blindness. Regardless of the inherited 

genetic cause, a major characteristic of these chronic diseases is photoreceptor loss, 

resulting in the significant reorganization of the inner retinal circuitry over time (Marc 

and Jones, 2003). Several animal models have been investigated in order to better 

understand the various forms of the retinal degenerative diseases.  

1.7.1. Hereditary animal models 

One of the first documented hereditary models for retinal defects was a mouse strain 

(r mouse) that lacked rod photoreceptors (Keeler, 1924). Almost 20 years later, an 

identical mouse strain (rd mouse) was discovered (extinct r mice are believed to have 

been rediscovered as rd mice) and later became the primary model for studying human 

autosomal recessive retinitis pigmentosa (Bruckner, 1951). The number of retinal disease 

genes that have been identified has since increased exponentially (Rivolta et al., 2002). 

As a consequence, numerous genetically engineered mouse models carrying those genetic 

defects have been developed. A detailed review of these models far exceeds the scope of 

this thesis; however, it is important to note here that many of the existing “cell-based” 

therapeutic approaches investigate the possibility of preventing or slowing down 

photoreceptor degeneration in these transgenic mouse, or zebrafish lines (Jones et al., 

2003b; Strettoi et al., 2003; Strettoi et al., 2002).  
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1.7.2. Inducible, acute animal models of retinal degeneration 

Previous studies have also identified several inducible, acute models for inducing 

photoreceptor stress/damage in the vertebrate retina, such as: (1) exposure to strong light 

(Noell et al., 1966); (2) increased intraocular pressure (Seidehamel and Dungan, 1974) ; 

(3) modified diet (Scott et al., 1964); and (4) intraperitoneal or intraocular injections of 

chemical agents (Alkemade, 1968; Bellhorn et al., 1973; Kiuchi et al., 2002; Lee and 

Valentine, 1990; Matsumura et al., 1986). It is important to note that although the 

primary target in which retinal degeneration occurs in humans and in these inducible 

animal models differ, the result of photoreceptor cell death remains the same (Nambu et 

al., 1997).   

1.7.2.1. N-methyl-N-nitrosourea (MNU) triggered retinal degeneration 

MNU is a direct acting DNA alkylating agent and is a known carcinogen, teratogen, 

and mutagen in a variety of laboratory animal tissues (Nakajima et al., 1996; Yoshizawa 

et al., 1999). Previous studies have shown that this alkylating agent selectively destroys 

retinal photoreceptors. MNU induces degeneration by reacting with the 7-position of 

guanine in the DNA base molecules, yielding the 7-methyldeoxyguanosine (7-medGua) 

adduct (Ogino et al., 1993; Yoshizawa et al., 1999). Immunohistochemical labeling of the 

7-medGua revealed selective 7-medGua DNA adduct formation in the photoreceptor 

nuclei (Ogino et al., 1993). If the damage from these adducts is severe enough and not 

repaired, it will result in the up-regulation of the Bax protein (which induces cell death), 

and the down-regulation of the Bcl-2 protein (which is known to prevent apoptosis). The 

consequence is the activation of the caspase 3, 6, and 8 proteins, which ultimately results 

in apoptotic cell death (Ogino et al., 1993; Tominaga et al., 1997; Tsubura et al., 2003; 



 28

Yoshizawa et al., 1999). Several methods (TUNEL, electron microscopy, and DNA 

fragmentation) have confirmed that MNU induces selective photoreceptor loss in a 

variety of animal species by this process (Yoshizawa et al., 1999).   

A single intraperitoneal (i.p.) or intravenous (i.v.) injection of MNU, induced 

selective and progressive photoreceptor degeneration in the retina of rat (Nakajima et al., 

1996; Yoshizawa et al., 1999), mouse (Nagar et al., 2009; Nambu et al., 1997; Yuge et 

al., 1996), hamsters (Herrold, 1967); (Taomoto et al., 1998), rabbits (Ogino et al., 1993), 

and non-human primates (Tsubura, 1998).  

In the mouse, the long term retinal effects of MNU-triggered photoreceptor 

degeneration showed a striking similarity to the chronic morphological consequences that 

have been identified in humans with blinding photoreceptor degenerative diseases (Nagar 

et al., 2009).  

1.7.2.2. Establishing photoreceptor degeneration model in goldfish 

Retinal growth in teleost fish is a gradual and continuous process that takes place 

throughout the life of the animal. New retinal neurons and glial cells are continuously 

added from the small zone of mitotically active cells known as the ciliary marginal zone 

(CMZ). These new neurons can differentiate and become incorporated into the retinal 

circuitry (Lamba et al., 2008; Reh, 1987). In the central retina, rod photoreceptors arise 

from rod progenitor cells, which migrate along MC processes to reach the ONL 

(Hitchcock et al., 2004). These rod progenitor cells are generated from a population of 

slowly dividing MCs located in the INL, that act as retinal stem cells (Bernardos et al., 

2007). When damage occurs to the fish retina, the normally mitotically quiescent MCs 

rapidly re-enter the cell cycle and re-differentiate into the progenitor-like cells needed to 
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regenerate the damaged area of retina (Lamba et al., 2008). Depending upon the cause of 

the retinal damage, the regeneration can lead to almost full morphological and functional 

recovery in 28 days (Vihtelic and Hyde, 2000). Due to its appealing characteristics and 

strong regenerative capabilities, the current study is focused on exploring the goldfish 

retina as new model of retinal degeneration. 

In order to establish a new model, first we needed to find a way to physically or 

chemically-induce photoreceptor degeneration by: (1) eliminating photoreceptors 

selectively and more or less evenly across the retina and (2) do this in a way that would 

allow the fish to survive long enough for circuitry remodeling to occur. For this study, we 

chose to chemically-induce photoreceptor degeneration in the goldfish retina using the 

carcinogenic drug MNU. This drug has been shown to cause acute photoreceptor cell 

death in mammals (Nakajima et al., 1996; Tsubura, 1998; Yuge et al., 1996), in a dose-

dependent manner (mice, rat, monkey), and its selectivity suggests that it could be used to 

induce local and unilateral photoreceptor degeneration.  
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2. STATEMENT OF HYPOTHESIS 

 

Presently, there is no cure for human retinal photoreceptor degenerative diseases. 

Experimental success with biological rescue approaches using transgenic mouse models 

is restricted to the very early stages of these diseases: the progression of diseases can be 

slowed, or even limited vision can be transiently regained. The potential use of 

biological, cell-based rescue approaches in treating late chronic stages of photoreceptor 

degeneration remains questionable due to the morphological and functional changes of 

the remaining retinal circuitry. Previously, N-methyl-N-nitrosourea (MNU) has been 

shown to cause photoreceptor loss in various mammalian retinas. Importantly, MNU also 

triggered all of the well-characterized structural changes (degeneration, glial seal 

formation, remodeling) which are associated with inherited human photoreceptor 

degenerative diseases. Unlike the mammalian retinas, fish retina regenerates after 

damage. Thus, MNU treatment of the goldfish retina, considering its unique capability to 

regenerate photoreceptors, could provide a new model for studying stem cell-based vision 

rescue approaches after photoreceptor loss. 

The overall hypothesis of this study was that MNU induces photoreceptor loss in the 

goldfish retina and consequently triggers similar chronic morphological changes to those 

observed in mammalian retinas.  
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In order to test whether or not the MNU-treated goldfish retina can serve as a natural 

model for stem cell-based vision rescue strategies after photoreceptor degeneration, the 

following hypotheses were examined experimentally: 

(1) A unilateral, intraocular injection of MNU into the eye will induce local, unilateral 

photoreceptor degeneration and allow for survival of the goldfish. 

(2) MNU will induce complete photoreceptor cell loss in the goldfish retina as seen in 

previous mammalian models. 

(3) Chronic morphological consequences of photoreceptor degeneration (i.e. glial seal 

formation, remodeling), as seen in humans, will follow MNU-triggered photoreceptor 

loss in the goldfish retina. 

(4) Following MNU treatment, the goldfish retina remains capable of regenerating 

photoreceptors. 
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3. MATERIALS AND METHODS 

3.1. Animals 

Adult, 3-5” (~3-4 years old) and 8-9” (~6-8 years old) goldfish (Carassius auratus), 

weighing 30-100g were obtained from Alpine Koi & HomeScapes, Fort Collins, CO. 

Fish were maintained between 19- 21ºC in 50 gallon tanks, filled with tap water 

circulating through a filter system, and then placed into 10 gallon tanks (3 fish/tank) by 

treatment group. Fish were fed once daily and kept on a 12 hour light: 12 hour dark 

schedule, throughout the project, with lights turned on at 10:00 AM. Animals were 

handled in compliance with Colorado State University Institutional Animal Care and Use 

Committee; in accordance to our CSU IACUC protocol 09-1419A.  

3.2. Chemicals 

Unless otherwise stated, all salts and chemicals were obtained from Sigma (St. 

Louis, MO). The fish Ringer’s solution contained 119 mм NaCl, 12 mм HEPES, 3.25 mм 

MgCl2, 0.25 mм CaCl2, 2.5 mм KCl, and 12 mм glucose, pH 7.4 (set with NaOH), 

osmolarity ~260 mosm. Upon arrival, N-Methyl-N-nitrosourea (MNU) was prepared 

immediately by dissolving the powder in 7 mL of 100% Dimethyl Sulfoxide (DMSO) 

(vehicle), protected from light, and stored in 25 µl aliquots at -20º C until use. MNU is 

sensitive to humidity and light, its half-life ranges from 125 hours at pH 4 to 

approximately 2 minutes at pH 9 (Report on Carcinogens, Eleventh Edition, U.S. DHHS, 

viewed at: http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s132nitr.pdf). The half-life 
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time of intravenously applied MNU in rat is approximately 15 minutes post injection 

(Swann, 1968). Thus, precautions were taken to minimize light exposure during 

injections. The MNU stocks were removed from the -20º C freezer, vortexed lightly, and 

each aliquot was used within 45 minutes.  

3.3. Surgical procedures/ drug administration 

Goldfish were deeply anesthetized by placing them into a solution of MS-222 (100 

mg/L tricaine methane sulfonate, Sigma, St. Louis, MO), immediately before injections 

(Braisted and Raymond, 1993). Deep anesthesia in fish is characterized by the loss of 

posture, loss of reflexes, and cessation of opercular movement (Summerfelt, 1990). 

Following MS-222 anesthesia, a 10 µl Hamilton syringe fitted with a 26-gauge needle 

was used to intraocularly inject 4 µl or 6 µl of MNU (14% w/v (stock) MNU in DMSO or 

7% w/v in DMSO) into the posterior chamber of the one eye. The contralateral eye in 

each fish served as a sham-injected control (4 µl or 6 µl of 100% DMSO). For “DMSO 

control” experiments, fish received an intraocular injection of 4 µl of 100% DMSO into 

one eye, and 4 µl of fish Ringer’s solution into the contralateral eye. The appropriate 

injection volume (4-6 µl) was determined from an estimated ocular volume and previous 

fish studies, involving goldfish of approximately the same size (~ 5 inches long fish, 

(Yazulla and Studholme, 1997). The appropriate concentration of MNU was calculated 

from the mammalian dose (60 mg/kg), in which rodents received an intraperitoneal (i.p.) 

injection of MNU (Nagar et al., 2009; Wan et al., 2006). The saturated MNU solution 

contains 1 g MNU in 7 ml DMSO, thus a 4 µl bolus of the stock would contain 0.56 mg 

MNU. Based on the i.p. used, efficient mammalian dose of 60 mg/kg, intraocular 

injection of 4 µl saturated MNU (stock) solution would translate into and effective dose 
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for 8.3 grams of body weight. A goldfish eye weights about 0.2 g. Thus, 4 µl of the stock 

solution contained roughly 40 times the mammalian dose, considering that the eyes are 

somewhat isolated from systemic circulation. Injections were repeated a second time on 

13 fish, at 14 days post initial injection. After all injections, fish were placed back into 

the MS-222 water for a couple of minutes and then returned to 10 gallon filtered and 

oxygenated tanks for the rest of the experiments, until euthanasia.  

3.4. Tissue preparation 

Retinal tissue was harvested after euthanasia by overdose of MS-222 (100 mg/l). 

Fish were kept in the water containing MS-222 for 10 minutes after the cessation of 

opercular movement and then were decapitated. After decapitation, the brain and spinal 

cord were immediately pithed. This method of euthanasia is in full agreement with the 

guidelines for fish published by the AVMA Panel on Euthanasia (2007). Fish treated with 

a single dose of MNU were euthanized at 1, 3, 5, 7, 10, 14, 21, 28, 35, 42, and 49 days 

post-injection (dpi). Double-injected fish received a second treatment 14 days after the 

first injection and were euthanized at 7 (21), 14 (28), 21 (35) days post second injection 

(days post first injection). “DMSO control” fish were euthanized at 7 dpi. After 

euthanasia, the eyes were enucleated and processed for cryosectioning. The whole eye 

was puncture fixed at room temperature for 15 minutes in freshly prepared 4% 

paraformaldehyde in 0.1M phosphate buffered saline (PBS; pH 7.4, osmolarity: ~260 

mosm). The eyes were bisected in the coronal plane, separating the anterior and posterior 

chambers, and the lens was removed. Eyecups were then placed in digestive enzyme (18 

mg/ml Hyaluronidase in 0.1 M PBS) for 5 minutes, to break down dense vitreous humor. 

Eyecups were rinsed, post-fixed in 4% paraformaldehyde in 0.1M PBS for 5 minutes, 
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washed 3 times with 0.1M PBS for 15 minutes per wash, and then cryoprotected by 

keeping overnight in 30% sucrose solution at 4°C. The eyecups were embedded in 

Tissue- Tek
* 

O.C.T Compound (Sakura
*
 Finetek, VWR International), frozen at -80°C 

for ~20 minutes, and cryostat (HM500; Microm) sectioned into 20 µm thick vertical 

sections. Sections taken in the middle portion of the eyecups (i.e. just outside the optic 

nerve, but within ~2000 µm) were mounted on Superfrost/Plus glass slides (VWR 

International), air dried for at least 10 minutes at room temperature, and stored at -20ºC 

until use. 

3.5. Immunohistochemsitry 

Standard procedures (Gallagher et al., 2010) were used and all steps were performed 

at room temperature. Retinal sections were rehydrated by washing 3 times in 0.1M PBS, 

for 7 minutes per wash, outlined with a Pap Pen (Electron Microscopy Sciences, Hatfield, 

PA), and then incubated in blocking solution (0.3% Triton X-100 v/v, 0.1% sodium azide 

w/v, and 1% bovine serum albumin (BSA) w/v in 0.1M PBS) for 1 hour. Retinal sections 

were incubated overnight with primary antibodies (listed in Table 1) diluted in blocking 

solution. Primary antibodies used were goat anti-choline acetyltransferase (ChAT) 

(1:100, Millipore, Billerica, MA), mouse anti-glial fibrillary acidic protein (GFAP) (GA5, 

1:500, Cell Signaling, Danvers, MA), rabbit anti-glial fibrillary acidic protein (GFAP) 

(1:1000, DAKO, Glostrup, Denmark), mouse anti-glutamine synthetase (clone GS-6, 

1:500, Chemicon, Temecula, CA), rabbit anti-proliferating cell nuclear antigen (PCNA) 

(FL-261, 1:100, Santa Cruz Biotechnology, Santa Cruz, CA), mouse anti-PKCα (clone 

MC5, 1:500, Biomol/ Assay Design/ Enzo Life Sciences, Plymouth Meeting, PA), rabbit 

anti-PRKCA (PKCα-type recombinant protein) (1:500, Sigma), and mouse anti-vimentin 
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(clone V9, 1:500, Sigma). Retinal sections were washed with 0.1M PBS, 3 times at 15 

minutes per wash, and then incubated in the appropriate secondary antibodies (Table 2) 

for 2 hours. The secondary antibodies used were Alexa Fluor 488 and 546 (1:400, 

Invitrogen, Carlsbad, CA), Fluorescein polyclonal chicken anti-mouse (1:400, Rockland, 

Gilbertsville, PA), and Cy3 polyclonal donkey anti-rabbit (1:400, Millipore). Cell nuclei 

were labeled with the cyanine monomer TO-PRO
®

-3 (1:5000, Molecular Probes), applied 

concurrently with secondary antibodies. Retinas received 3 final washes in 0.1M PBS, at 

15 minute per wash, slides were cover-mounted by glass slides in Vestrashield (Vector 

Laboratories, Burlingame, CA), and observed with a scanning laser confocal microscope 

(Zeiss LSM 510 Meta).  
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3.5.1. Antibodies  

Choline Acetyltransferase (ChAT): The affinity purified polyclonal anti-ChAT 

antibody was generated in goat, using human placental enzyme. Its specificity was 

established via immunoblot, recognizing a single band of 68-70 kDa, for rat, mouse, 

macaque monkey, guinea pig, chicken, opossum, avian and human. In retina, this 

antibody selectively labels a subtype of amacrine cell (AC) that also internalizes 

radioactive acetylchoine (Masland and Mills, 1979; Voigt, 1986). Immunocytochemical 

techniques have demonstrated that this anti-ChAT antibody labels the soma of 

cholinergic neurons in the INL and GCL of the inner retina of goldfish, and neurite bands 

in laminae 2 and 4 of the IPL (Tumosa et al., 1984).  

Glial Fibrillary Acidic Protein (GFAP), rabbit: The polyclonal anti-GFAP 

antibody was purified in an immunoglobulin fraction of rabbit antiserum, produced by 

immunizing rabbit with native GFAP isolated from bovine spinal cord. Immunoreactivity 

of this antibody has been shown to cross-react with the GFAP in cat, dog, mouse, rat, and 

sheep. The sequence homology is 90-95% between species. In several animals, including 

the goldfish (Bignami, 1984; Jones and Schechter, 1987), GFAP has been shown to label 

astrocytes and retinal Müller cells (MCs). Nagar et al (2009) confirmed that this antibody 

specifically labels MCs in the mouse retina and a single ~ 50 kDa band in Western blot, 

which correlated with the manufacturer’s specifications. In our hands, double label 

experiments with mouse anti-vimentin and rabbit anti-GFAP resulted in perfect overlap 

in MCs. The results confirmed that fish GFAP expression level in every MC of the 

goldfish retina is high enough to use GFAP as a molecular marker even in control retinas 

(Bignami, 1984).  
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Glial Fibrillary Acidic Protein (GFAP), mouse: The polyclonal anti-GFAP 

antibody was produced by immunizing mice with native GFAP purified from pig spinal 

cord. According to the manufacturer’s report, western blot analysis of extracts from 

mouse and rat brain recognize a single band of 50-55 kDa. Immunohistochemical 

experiments have shown that this antibody will label astrocytes of mouse brain. In order 

to confirm that this antibody would label the MCs of the goldfish retina, a co-labeling 

experiment was performed between the mouse anti-GFAP and rabbit anti-GFAP, which 

resulted in prefect overlap between the labeling of the two antibodies.  

Glutamine Synthetase (GS):  The monoclonal anti-GS antibody (clone GS-6) is a 

mouse IgG2a isotype purified from sheep brain. Western blot analysis of supernatants 

from rat brain, spinal cord, liver, and kidney with this antibody showed a band of ~ 42 

kDa (Serbedzija et al., 2009) similar to the 45 kDa band seen in the manufacturer’s 

Western blot analysis of rat brain. The GS antibody is a known marker of astrocytes and 

oligodendrocytes in the rat brain (Serbedzija et al., 2009) and it has been shown to 

primarily immunolabel the fine processes and glial endings of MCs in fish, including 

goldfish (Mack, 2007; Strettoi et al., 2002).  

Proliferating Cell Nuclear Antigen (PCNA): The polyclonal anti-PCNA (FL-261) 

antibody was generated in the rabbit, raised against the entire human PCNA gene (261 

amino acids). Western blot analysis using this antibody has shown, in multiple species, 

including zebrafish, appropriate banding for PCNA between 34 and 36 kDa 

(Manufacture’s Report). In the teleost, including goldfish, PCNA immunolabeling has 

been used to identify cell proliferation during retinal regeneration (Hitchcock and 

Raymond, 1992; Negishi and Shinagawa, 1993; Vihtelic and Hyde, 2000).  
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Protein Kinase C alpha (PKCα) mouse: The affinity purified monoclonal anti-

PKCα antibody (clone MC5) was generated in mouse, using bovine brain PKCα. Western 

blot analysis of chick and rat brain with this antibody showed a single band of 80kDa in 

size (Vanderzee et al., 1995). This correlates with the manufacturer’s Western blot 

analysis indicating reactive specificity in humans, mouse, rat, bovine, canine, fish 

(rainbow trout), guinea pig, monkey, pig, rabbit, and sheep PKCα, detected by a single 

band of ~80kDa. This antibody does not detect other PKC isoforms; it is specific for 

PKCα, in the V3 region. In the rat and human retina, Gong and colleagues (2006) used 

this antibody to immunolabel rod bipolar cells (BCs). This is consistent with the 

observation that PCKα (clone MC5) is a rod BC marker (Wassle et al., 1991). In the 

goldfish retina, the monoclonal anti-PKCα antibody has been shown to selectively label 

Mb (ON-type) BCs (Suzuki and Kaneko, 1990; Vaquero et al., 1997; Yazulla and 

Studholme, 1998). 

Protein Kinase C alpha (PRKCA/PKCα) rabbit:  The affinity isolated polyclonal 

anti-PRKCA antibody was produced in rabbit by Prestige Antibodies
®

 Powered by Atlas 

Antibodies, developed and validated by the Human Proteome Resource project 

(www.proteinatlas.org). Using the recombinant protein fragment, CVINVPSLCGMDHT 

EKRGRIYLKAEVADEKLHVTVRDAKNLIPMDPNGLSDPYVKLKLIPDPKNESKQ

KTKTIRST, in human PKCα, the antibody was tested by immunohistochemistry, protein 

array, and Western blotting against hundreds of normal and diseased human tissues. 

Because this antibody was fairly new, its specificity in goldfish was questionable. 

Therefore, co-labeling experiments were performed between the well characterized 

mouse and rabbit anti-PKCα antibodies. The results confirmed that the rabbit anti-
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PRKCA antibody is specific to PKCα and labels Mb BCs of the goldfish retina, perfectly 

overlapping with the mouse anti-PKCα antibody labeling.   

Vimentin (VIM): The monoclonal anti-vimentin, clone V9, is a mouse IgG1 isotype 

derived from the hybridoma produced by the fusion of mouse myeloma cells and 

splenocytes from an immunized mouse. Its specificity has been confirmed in horse, 

monkey, bovine, rabbit, canine, gerbil, feline, hamster, human, pig, chicken, and rat. The 

anti-VIM antibody can be used for labeling cultured mammalian cells and tumors (Zhang 

et al., 2009), and for localizing vimentin in fibroblasts, endothelial cells, lymphoid tissue, 

and melanocytes, in normal and pathological tissues of mesenchymal origin (Bohn et al., 

1992). VIM is an intermediate filament protein of MCs and it is present in the teleost 

neural retina (Liepe et al., 1994). It has been shown to have a strong immunoreactivity in 

the main radial process and endfeet of the MCs (Mack et al., 1998).  

TO-PRO
®

-3: The monomeric cyanine nucleic acid stain, TO-PRO-3, allows for 

ultrasensitive detection of double-stranded nucleic acids. It is an exclusively detectable 

far-red fluorescent, excited around 633 nm. It has demonstrated highly specific and stable 

nuclear labeling on sectioned tissue (Suzuki et al., 1997), and thus may be used as an 

alternative to the short wavelength nuclear stain DAPI (Bink et al., 2001).  TO-PRO
®

-3 

has been used to label lateral cells in living zebrafish, specifically labeling hair cell nuclei 

(Santos et al., 2006). 

3.5.2. Confocal laser microscopy 

Fluorescent imaging of the OCT-embedded sections was performed with a Ziess 

LSM-510 confocal microscope (Carl Ziess, Oberkochen, Germany) equipped with lasers 

and the appropriate combination of emission filters. An argon laser (Ar 488) was used to 
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trigger green fluorescence and two helium/neon lasers (HeNe 543 and HeNe 633) were 

used to evoke red and far-red fluorescence of the fluorophores used in this study (see 

Table 2 above). On double labeled sections, sequential scans were performed at the 

different wavelengths to avoid cross talk between channels.  All images were taken with 

a 40x, oil immersion objective. Single optical plane images were used unless otherwise 

noted. If it was necessary, Z-stack images were taken at 2 µm intervals then composite 

images were generated by overlapping the middle portion of the Z-stacks, ~10- 12 µm in 

thickness. Such images were used, for example, to reconstruct entire cross sections of 

eyecups in order to determine possible local differences in the thickness of retinal layers 

(see below). Ziess LSM Image Examiner software (Carl Zeiss, Oberkochen, Germany) 

was used to view the images and crop to the areas of interest. When necessary, image 

brightness and contrast was uniformly adjusted for the entire digital image in Photoshop 

CS3 and CS4 (Adobe 10.1).   

3.5.3. Eyecup reconstruction 

For morphological analysis of an entire goldfish retina, previously discussed 

methods were used for immunolabeling (TO-PRO
®

-3 and PKCα). Vertical cross-sections 

of eyecups were imaged entirely, via confocal microscopy, as Z-stack images of 

consecutive optical planes (~40 images). Adjacent, unitary frames (consisting Z-stack 

images) were taken from one side of the eyecup to the other in a consecutive manner; the 

initial image was taken at the most peripheral location. Ziess LSM Image Examiner 

software was used to scroll between the Z-stack images needed for gathering 

measurements and to mark a representative, 175 µm long area of retina per image. 
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Photoshop CS3 and CS4 (Adobe 10.1) was used to reduce the image size for 

reconstruction and to adjust the brightness and contrast of the images.  

Adjacent unitary, 40x frames with identifiable, overlapping edge regions were 

aligned to reconstruct the entire eyecup using Microsoft
®

 Office Power Point
®

 2003 

version (Boudard et al., 2010). Figure 1 demonstrates a control eyecup reconstruction, 

which was used for evaluating the overall retinal structure and for determining 

corresponding regions of the eyecups. Each image was used to determine three 

measurements: (1) ONL soma count (within the 175µm long white bracket), (2) ONL 

width (3 measurements per image, yellow lines), and (3) bipolar cell (BC) length (light 

blue line) (Fig. 1, inset).   
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Fig. 1. Reconstructed image of the retina in an entire vertical cross-section of the eye. 
Immunohistochemical labeling shows the overall morphology of retinal layers in the goldfish 

retina. All somas were labeled with the nuclear dye TO-PRO
®
-3 (red). Mb bipolar cells are 

labeled with anti-PKCα antibodies (green). The entire cross section was reconstructed with 

adjacent images taken at 40x magnification. Region of the optic nerve head is shown with a blue 

arrow. (Insert) Representative unitary image taken at 40x magnification, demonstrates 

measurements acquired for morphological analysis. A 175 µm long area of retina (white bracket) 

was used for each image to count somas of ONL and to acquire ONL width (yellow lines) and 

Mb bipolar cell (light blue lines) length measurements. Scale bar: 20 µm. 

30.50 µm 

29.63 µm 

29.95 µm 

72.72 µm 175.04 µm 

ONL           INL                   GCL 
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3.5.4. Validating the plane of sectioning 

The length and morphology of Mb BCs, labeled with PKCα antibody (Yazulla and 

Studholme, 1998), were used to judge the appropriate perpendicularity of the sectioning. 

To determine the average BC length from reconstructed control retinas, all positively 

labeled Mb BCs (PKCα), which could be identified as a full cell within a single slice of 

the Z-stack image, were measured. The length was measured from the most distal 

dendritic, outer plexiform layer (OPL) process, to the most proximal point of the axon 

terminal in the inner plexiform layer (IPL). Only BCs with a rather linear axon were 

considered to have an appropriate Mb BC morphology. If the length of labeled Mb BCs 

from the dendritic layer in the outer plexiform layer (OPL) to the axon terminal in the 

inner plexiform layer (IPL) were either longer or shorter than the average length of these 

cells (65 + 10 µm, (Yazulla and Studholme, 1998)), sections were excluded from further 

analysis. A mismatch in the BC length indicated that the sectioning plane was not 

perpendicular. 

3.6. Data analysis 

3.6.1. Morphometrical analysis 

TO-PRO
®

-3- labeled somas in the ONL and INL, were manually counted using a 

handheld tally counter on the best quality, single optical plane image chosen from a Z-

stack. The area of interest was either a 175 µm, or 100 µm long area (Braisted and 

Raymond, 1993) of the 40x image of the vertically cross-sectioned retina (Fig. 1, inset, 

white brackets). All soma counts were done twice per image to ensure consistency and 

minimize errors. In every section, two separate 100 µm wide areas were counted and 
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averaged. Two separate sections were used per animal (Fimbel et al., 2007). To 

determine the average ONL width for each image, three measurements were taken. Width 

measurements were done by measuring the TO-PRO
®

-3- labeled somas from the outer 

most edge of the ONL (closest to the photoreceptor outer segments) to the inner most 

edge of the ONL (closest to the outer plexiform layer (OPL)). The three measurements 

were averaged for each image, identifying the uniformity of the ONL layer across the 

entire eyecup. Variation between animals was compared as discussed above. 

All BC length measurements from both of the entire reconstructed control retinas were 

averaged. 

3.6.2. Statistical analysis of morphometrical data 

SigmaPlot 11.0 software extended with a statistical package and Microsoft Excel 

(2003) were used to statistically analyze all data. When comparing independent variables 

(i.e. data from multiple groups of animals), a Two or Three Way Analysis of Variance 

(ANOVA) test was performed. When appropriate, the Holm-Sidak method was used, 

because the test is more powerful than the Turkey and Bonferroni tests for multiple 

comparisons. For analyzing dependent samples (i.e. the experimental data obtained in a 

self-controlled experiments), a two-tailed, paired-Student’s t test was used (Microsoft 

Excel, 2003). For all data analysis the P-values of < 0.05 was considered significant. 

Cumulative quantitative data are presented as averages + SEM. 

3.6.3. Analysis of colocalization for molecular markers 

Quantitative estimation of colocalization between known immunohistochemical 

markers was performed using Image J software (NIH, Bethesda, MD, USA). The JACoP 
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plug-in was used to calculate the Pearson’s coefficient (Bolte and Cordelieres, 2006) 

using Costes’ approach. Pearson’s coefficient provides an analysis of pixel intensity and 

location in a duel-channel image with values ranging from -1 to 1 (-1: negative 

correlation; 0: no correlation; 1: complete correlation) (Gonzalez, 1987; Liu et al., 2010; 

Manders et al., 1992). Costes’ approach performs two things: 1) it sets an automatic 

threshold level for both channels, eliminating inconsistent or irreproducible results, and 

2) it provides a statistical analysis of true colocalization through evaluation of 

randomized images (Bolte and Cordelieres, 2006; Costes et al., 2004). To evaluate 

colocalization, single optical plane confocal images of the control goldfish retina were 

used.   
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4. RESULTS 

4.1. Morphology of the control goldfish retina 

To determine the overall morphology of the retinal layers in goldfish retina, 

immunohistochemical experiments were performed with the nuclear dye, TO-PRO
®

-3, 

and a PKCα antibody on vertically cryosectioned retinas. Mb bipolar cells (BC), labeled 

with PKCα (Yazulla and Studholme, 1998), provided the means of determining retinal 

stretching and deformations, and were used to judge the appropriate perpendicularity of 

the sectioning (see Methods for details). Retinal morphometric analysis was performed 

on the entire vertical cross-section of the eyecup. Reconstructed images were built from 

adjacent Z-stack images, taken at 40x magnification, using Microsoft
®

 Office Power 

Point
®

 2003 version. A 40x image depicts an approximately 200 µm long area of the full 

retina cross-section, out of which the best 175 µm long area was analyzed quantitatively 

as a unit. Focusing on the ONL (see Methods, Fig. 1, inset), somas were counted in the 

outer nuclear layer (ONL) and three measurements of the ONL width were recorded and 

averaged, for each image.  

 This simple, but systematic morphometric analysis of the ONL was performed in 

order to (1) set the design of consequent experiments by providing information on the 

variation of these ONL parameters within and across control retinas and  (2) to provide a 

base for determining possible chemically-induced morphological changes of the ONL in 

future experiments.  
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In Figure 2, values resulted by the above described morphometric analysis of two 

eyecups (Fish 1and Fish 2, respectively) were plotted.  

 

Fig. 2. Morphometric 

analysis of the ONL of 

two control goldfish 
retinas. Vertical cross-

sections of the retinas 

were imaged with a 40x 

objective, covering ~200 

µm long area/image. Full 

retinal cross-sections 

across the entire eyecups 

were reconstructed from 

slightly overlapping 

images of adjacent 

regions. Pink points 

represent the central 

region adjacent to the 

optic nerve head. 

Diagrams of the ONL 

soma counts (A) and 

ONL width (B) 

demonstrate that these 

parameters of the ONL 

are similar across animals 

(Fish 1 and Fish 2).  

 

The plotted lines show that the measured ONL parameters, ONL soma count and ONL 

width (Fig.2A and 2B, respectively) are approximately uniform across the entire eyecup. 

The most peripheral portions were thinner and contained fewer somas (Otteson and 

Hitchcock, 2003). The average soma count was similar between fish (Fish 1: 240+16; 

Fish 2: 242+27; n=34 sections for each), as was the ONL width (Fish 1: 29.8+1.7 µm; 

Fish 2: 28.3+2.7 µm; n=34x3 measurements for each, respectively). Statistical analysis 

by means of Two Way Analysis of Variance (Holm-Sidak method, see Methods for 

details) tests were performed on both the ONL soma count and the ONL width data. The 

tests confirmed that there were no statistically significant differences among the regions 
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of retina for a given fish (ONL soma count: p=0.981; ONL width: p=0.995). In other 

words, the measured parameters of the ONL “within” each retina were homogenous. 

Moreover, neither of the two morphometrical parameters analyzed were significantly 

different between the two retinas analyzed here (ONL soma count: p=0.782; ONL width: 

p=0.116) (see Appendix 1 for details).  

In summary, the absolute numbers of morphometrical data describing the ONL of 

control retinas appeared very similar between individual fish. In addition, the ONL in the 

goldfish retina appears to be uniform in thickness and soma numbers across the entire 

vertically cross-sectioned retina, except for the most peripheral regions. It should be 

noted, that the size of the fish used for these experiments were similar. Together this data 

suggests that the retina, of similarly sized fish, is relatively uniform “within” and between 

animals. 

4.2. Effects of DMSO injections on the morphology of the goldfish retina 

N-Methyl-N-nitrosourea (MNU), our choice of chemical agent to induce 

photoreceptor degeneration, is insoluble in water. Therefore, for intraocular delivery, 

MNU has to be dissolved in dimethyl sulfoxide (DMSO). Although DMSO is considered 

to be a relatively safe solvent for in vivo administration of several water-insoluble 

substances (Santos et al., 2003), intravitreal DMSO injections reportedly caused toxic 

effects in the rabbit retina (Silverman, 1983). Therefore, we first determined if intraocular 

DMSO administration alone caused photoreceptor damage in fish. Following the 

previously-described counting methods, data was obtained from DMSO-injected eyes 

(4µl DMSO injected eyes into one eye, n=3) at 7 days post-injection (dpi) and was 
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compared to the data obtained from control retinas (no injection, n=2, same as on Fig. 

2A). The results are plotted in Figure 3.   

 

Fig. 3. Morphometric analysis of control versus DMSO injected eyes at 7 dpi. Data 

obtained from control (no injection, n=2) and DMSO (4 µl, n=3) injected eyes is aligned by 

corresponding eccentricity. ONL soma counts were obtained from a 175 µm long area of 

retina per image, across an entire vertical cross-section of eyecups. Data is presented as 

average ± sem. Pink points represent the regions adjacent to the optic nerve head. The 

difference between control and DMSO-treated retinas were significantly different (Two Way 

ANOVA, p= 0.007).  

 

Based on the averaged ONL soma counts, intraocular DMSO application does 

appear to cause a small reduction of photoreceptor numbers (i.e. Fig. 3, Regions 1-12). 

Indeed, a Two Way Analysis of Variance (Holm-Sidak method) test confirmed that the 

difference in ONL soma counts between the control (averaging 242±4.6/area, n=2x34) 

and DMSO-treated retinas (averaging 226±3.8/area, n=3x34) was significant (p= 0.007). 

There was no significant difference in ONL soma counts (p= 1.000) across the regions of 

individual retinas from DMSO-injected eyes. Statistical comparison of ONL width data 

(not shown) between the control and DMSO-treated retinas resulted in no significant 

difference (p= 0.097) (Appendix 2).  



 52

These findings suggested that an intraocular injection of 4 µl DMSO caused some 

damage to the outer retina and reduced the number of photoreceptors in a uniform 

manner across the entire retina. Due to the low number of fish used in this experiment 

and the variation between the two measured parameters, these results had to be treated 

with caution. This data also suggested that the ONL soma counts provide a more 

sensitive test for measuring photoreceptor numbers than averaged ONL width 

measurements.  

4.3. Morphology of the MNU-treated retina  

The ability of MNU to induce photoreceptor degeneration in the fish retina was 

tested by administering a direct intraocular injection of MNU (4 µl of 14% w/v in 

DMSO) unilaterally, along with a concurrent direct DMSO (4 µl, “sham”) injection into 

the contralateral eye. MNU has never been used in fish, so a pilot study (n=3) was 

performed to alleviate any concerns about the possible side effects of the drug. The fish 

were carefully monitored over the course of the experiments, but no behavioral signs of 

MNU-induced extended pain were noted. Following the time course of MNU effects on 

photoreceptors seen in mice (Nagar et al., 2009; Nambu et al., 1997; Yuge et al., 1996), 

fish were euthanized and retinal tissue was harvested and processed at 7 dpi.  

Representative images of retina, obtained from an MNU-treated and the contralateral 

(sham) eye from the same animal, are presented in Figure 4.  
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Fig. 4. Qualitative comparison of sham-injected (DMSO) versus MNU-treated goldfish 
retinal sections at 7 dpi.  Representative images (40x magnification) were taken from areas of 

corresponding eccentricity from reconstructed retinas of the same fish. Somas were labeled with 

the nuclear dye TO-PRO
®
-3 (1:5000, red) and Mb bipolar cells were labeled with the PKCα 

antibody (1:500, green). The decrease in ONL somas demonstrates photoreceptor cell loss 

following MNU (14% w/v in DMSO) injection. Scale bar: 20 µm. 

 

The overall layered retinal structure was preserved in the MNU-treated eye. 

Nonetheless, the ONL layer of the retina harvested from the MNU-treated eye appeared 

much thinner than that of the sham-injected control. This clearly indicated a decrease in 

the number of photoreceptors, whose somas make up the ONL (Fig. 4).  

In order to determine whether or not the intraocular MNU injection affected 

photoreceptors evenly across the retina, the entire vertical cross-section of both MNU-

treated and contralateral, sham-injected eyecups were reconstructed for 3 fish and their 

morphometric parameters (see methods, Fig. 1) were compared. The average ONL soma 

count and ONL width data obtained by such measurements are plotted on Figure 5.  
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Fig. 5. Morphometric 

analysis of three MNU-

treated goldfish retinas at 
7dpi. The animals received 

a single intraocular 

injection of 4 µl of MNU 

(14% w/v) into the left eye 

and 4 µl of DMSO (sham) 

into the contralateral right 

eye. All ONL soma counts 

and width measurements 

were taken from a 175 µm 

long area of retina per 

image, across the entire eye 

cup. Data is presented as 

average ± sem (n=3). Pink 

points represent the region 

adjacent to the optic nerve. 

The diagrams show that 

MNU treatment reduced 

both the number of somas 

in the ONL soma count (A) 

and the ONL width (B). The 

MNU-induced 

photoreceptor loss was 

significant (p<0.001) and 

uniform across the retina. 

 

MNU application reduced both of the measured ONL parameters across the entire 

retina (Fig. 5). Two Way Analysis of Variance (Holm-Sidak) tests confirmed that when 

compared to the sham-injected retinas, ONL parameters of MNU-treated retinas were 

significantly different both in terms of a decrease photoreceptor soma number (p<0.001) 

and a decrease in ONL width (p<0.001). The analysis did not detect a significant 

difference (p= 0.958) in the ONL soma numbers and ONL width (p= 0.998) across the 

regions of MNU-treated retina, indicating that MNU treatment induced uniform 

photoreceptor loss (Appendix 3). 

In order to determine whether MNU induced photoreceptor degeneration locally, the 

average “unitary” ONL soma count (i.e. for a 175 µm long section/image) of three 
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DMSO (“DMSO sham”) retinas, obtained from animals that received an MNU treatment 

in the contralateral eye, were compared to three DMSO-treated retinas (“DMSO control”) 

obtained from animals whose contralateral eye was injected with fish Ringer’s solution 

(183±10, n=3x32 vs. 227±15, n=3x32, respectively). The average ONL soma counts are 

plotted in Figure 6.  

 

Fig. 6. Morphometric analysis of “DMSO control” versus “DMSO sham” injected eyes at 7 

dpi.  Data obtained from DMSO control (4 µl, n=3) and DMSO sham injected eyes (4 µl, n=3) 

is aligned by corresponding regions of retina. ONL soma counts were obtained from a 175 µm 

long area of retina per image, across an entire vertical cross-section of eyecups. Data is 

presented as average ± sem. Pink points represent the regions adjacent to the optic nerve head. 

ONL soma numbers of the DMSO sham-injected retinas were significantly lower than that of the 

DMSO control retinas at 7 dpi (Two Way ANOVA, p<0.001).  

 

The plotted line graph shows that the average number of ONL somas in the “DMSO 

sham” retinas were less than that of the “DMSO control” retinas in almost every region 

analyzed (Fig. 6). A Two Way Analysis of Variance (Holm-Sidak) test confirmed that the 

difference was significant (p<0.001) (Appendix 4). This result suggested that a unilateral, 

intraocular MNU injection induced photoreceptor degeneration primarily locally, in the 

MNU-treated eye in 7 days. However, the MNU effect was not restricted to the treated 
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eye. A slight decrease (~15 %) in the number of photoreceptors in the contralateral eye 

was also noted, which was more than one could expect from DMSO itself (Fig.6). These 

results were not unexpected: intraperitoneal administration of MNU has been shown to 

cause photoreceptor degeneration in a variety of species (Herrold, 1967; Nakajima et al., 

1996; Ogino et al., 1993; Tsubura, 1998; Yuge et al., 1996), indicating that MNU or its 

active metabolites can get into the eye by crossing the blood/ retina barrier. Therefore, it 

is not surprising that intraocularly applied MNU might leak out and exerts effects on 

other parts of the body, including the contralateral eye. These concerns notwithstanding, 

the pilot experiments confirmed that our experimental design was correct and applicable. 

Even if some photoreceptor loss occurred in the contralateral eye, the unilateral, 

intraocular MNU injection did not blind the fish on both eyes, so they could feed, and 

thus survive. Therefore, we tested further whether or not the MNU-induced photoreceptor 

degeneration in fish could be used to model human photoreceptor degenerative diseases. 

4.4. MNU-induced cell death is photoreceptors specific 

The results presented so far confirmed that (1) the main morphological parameters of 

the ONL (thickness and soma density/numbers) in the goldfish retina are uniform across 

the central portion of the fish retina, and (2) intraocular MNU application could induce 

significant photoreceptor degeneration by 7 dpi in a uniform manner across the retina of 

the injected eye (Fig. 5). These findings also demonstrated that morphometric analysis of 

the central retina provides representative data which are valid for all retinal areas, 

especially if the effects of intraocular MNU injections are evaluated in a self-controlled 

manner (e.g. comparing the qualitative parameters to those obtained from the 

corresponding retinal area of sham treated, contralateral eye to reduce individual 
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differences across fish). Thus, the study from this point on was focused on the central 

region of retina, ~2000 µm on either side of the optic nerve head (see methods, Fig. 1, 

~10 images in both directions from blue arrow).  

The next question we asked was whether or not the intraocular MNU application 

triggered cell death that was specific to photoreceptors, as it was found to be the case in 

mouse after i.p. MNU application (Nagar et al., 2009; Yuge et al., 1996). In order to 

determine that the initial MNU dose (14% w/v) yielded a reproducible retinal damage 

response, 6 more fish were intraocularly injected with the initial MNU dose (14% w/v). 

Tissue was harvested and processed, following the protocols applied previously 

(Methods). Immunohistochemical labeling was used to evaluate the 100 µm sections of 

retina for MNU-induced photoreceptor damage (Fig. 7).  

 

Fig. 7. Representative images for quantitative analysis of sham-injected versus MNU-
treated goldfish retinal sections at 7 dpi. Representative images (40x magnification) were 

taken from corresponding areas of retina for the same fish. Somas labeled with the nuclear 

dye TO-PRO
®
-3 (1:5000, red) and Mb bipolar cells labeled with the PKCα antibody (1:500, 

green). Scale bar: 20 µm.  

 

Cumulative data is presented in Figure 8.  
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Fig. 8. Summary diagram of MNU-induced photoreceptor cell loss at 7 dpi. Diagrams 

represent the decrease in average (n=9) ONL (A) soma counts following MNU treatment at 7 

days post single intraocular injection of 4 µl of 14% MNU (MNU) versus 4 µl of DMSO (Sham). 

No significant loss was seen in the INL (B) soma counts. Data is presented as average + sem. 

***: p<0.00005, paired-Student’s t test. 

 

Soma counts of the ONL and INL were collected and averaged for 7 day post MNU-

injected fish (n=9). Paired-Student’s t tests were performed to compare the dependent 

samples, soma count numbers between the MNU-treated and sham-injected contralateral 

retinas of the same animals. The analysis confirmed that a single, direct intraocular 

injection of MNU (14% w/v) caused significant (two-tailed, p<0.00005) photoreceptor 

degeneration in the MNU-treated eye, by 7 dpi (Fig. 8A). No significant differences were 

seen in the INL layer (two-tailed, p=0.37) between treatment groups (sham vs. MNU, 

Fig. 8B). This data was in agreement with the results of our pilot study and strengthened 

the claim that an intraocular injection of MNU can induce photoreceptor degeneration in 

the in the treated eye within 7 days.    

4.5. MNU-induced photoreceptor degeneration in both left and right eyes  

Photochemical stress models demonstrate that chemicals, triggered by light (e.g. 

Rose Bengal), can lead to retinal cell death (Eichenbaum et al., 2009). Since MNU is a 

light-sensitive chemical, we wanted to ensure that the observed photoreceptor 

degeneration in MNU-injected eyes was not associated with photochemical stress 
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triggered by accidental, uneven illumination of our fish tanks. To do this 4 fish received a 

direct intraocular injection of 4 µl of MNU (14% w/v) into the right eye, along with a 

sham injection of 4 µl of DMSO into the contralateral (left) eye. Fish were kept in the 

same tanks under the exact same light cycle and illumination as before. The tissue was 

harvested and processed at 7 dpi, following the protocols discussed above. The ONL and 

INL soma counts were compared between the MNU-treated and sham-injected eyes, 

obtained from the same fish in a pair-wise manner via paired-Student’s t test. The data 

confirmed that the ONL soma count was significantly (two-tailed p<0.0008) reduced for 

the MNU-treated eye, when compared to its sham-injected control (Fig. 9). The INL was 

not affected by MNU treatment (data not shown). 

 

Fig. 9.  Ocular laterality comparison of MNU-induced photoreceptor cell loss. 
Comparison of left (L) (n=4) versus right (R) (n=9) eye injections of 4 µl of MNU (14% w/v 

in DMSO) and 4 µl of sham (DMSO). Data is presented as average ± sem. Diagram 

represents a decrease in ONL soma counts, at 7 dpi, between the MNU and sham-injected 

eyes. ***: p<0.00005, **: p<0.0008, paired-Student’s t test. No significant difference was 

detected between two sides (L vs. R) for the same treatment: sham versus sham or MNU 

versus MNU, respectively (Two Way ANOVA, p=0.531). 

 

To determine the ocular laterality of the injection or systemic absorption of MNU 

affected by photoreceptor loss, a Two Way Analysis of Variance (Holm-Sidak method) 

test was performed for multiple comparisons of independent samples to compare the 
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treatments (sham and MNU) between the right and left eye MNU injections. The analysis 

confirmed that the extent of photoreceptor loss was independent of which eye received 

the MNU treatment. There was no significant difference (p=0.531) seen when comparing 

either of the treatments (sham or MNU) between the right and left eyes (Appendix 5).  

4.6. MNU-induced selective, dose dependent photoreceptor degeneration 

In order to determine the lowest concentration of MNU that would induce 

photoreceptor loss, a simple dilution experiment was performed using the calculated 

MNU stock (14% w/v) and half of its concentration (7% w/v). Fish received a single 

direct intraocular injection of either 14% or 7% MNU, as discussed above, and then at 7 

dpi the tissue was harvested and processed for morphometrical evaluation. Vertical cross-

sections of retina were labeled using the nuclear dye TO-PRO
®

-3 and antibodies against 

PKCα, and the soma counts of the sham and MNU-treated eyes were compared at both 

the ONL and INL layers. The data was first evaluated separately by the dose (between 

sham and MNU-treated eyes for each dose), using paired Student’s t test for the 

dependent samples, to look for effects of the MNU treatment. Significant photoreceptor 

cell loss was found in the ONL (two-tailed, p<0.00005) by one week following a single 

intraocular injection of 4µl of MNU (14% w/v): about 60% of the photoreceptors were 

eliminated compared to sham injected eyes (n=9). The reduced dose of MNU (4µl of 7% 

w/v solution per eye) caused a smaller (~30%), but significant (two-tailed p<0.002) 

reduction in the number of photoreceptors (n=5) within the same one week period (Fig. 

10A). It should be noted that, due to the ability of MNU to cause damage in the 

corresponding, sham-injected eye, percentages of photoreceptor loss may be greater if 
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compared to control retinas. The number of cells in the INL of the treated eyes appeared 

to be unaffected by MNU (Fig. 10B).  

 

Fig. 10. Dose experiment: 

14% versus 7% MNU 

treatment at 7 dpi. Data 

demonstrates the MNU 

induced photoreceptor loss 

following a single direct 

intraocular injection of 4 µl of 

14% MNU stock or 4 µl of 

7% MNU half concentration. 

The diagrams summarize the 

ONL (A) and INL (B) soma 

counts of the 14% (n=9) and 

7% (n=5) MNU-treated eyes 

versus their sham-injected 

control. (A) Significant 

photoreceptor loss was seen 

in both the 14% and 7% 

MNU-treated eye, when 

compared to the sham. (B) 

INL was not significantly 

affected. Data is presented as 

average +sem. ***: 

p<0.00005, **: p<0.002, 

paired-Student’s t test. 

 

Two Way Analysis of Variance (Holm-Sidak method) test was performed to 

compare photoreceptor loss between doses. The results indicated that ONL soma counts 

of the MNU-treated groups (14% and 7% MNU doses) were significantly different 

(p=0.007) (Appendix 6). In concert with previous MNU studies performed in mammals 

(Herrold, 1967; Nakajima et al., 1996), MNU caused specific and dose-dependent 

photoreceptor degeneration in fish. Based on the fact that photoreceptor loss was greater 

with the 14% than with the 7% MNU dose (Fig. 10A), it was decided that the study 

would continue with the stronger 14% MNU dose.  
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4.7. Age does not contribute to MNU effects 

One of the known risk factors associated to retinal degenerative diseases is advanced 

age. Some hereditary disorders begin relatively suddenly at a specific age, while for 

others photoreceptor degeneration is marked by the progressive deterioration of the retina 

over time (Parapuram et al., 2010). To determine whether age is a contributing factor to 

the MNU-induced retinal degeneration in the goldfish, we considered studies to test the 

intraocular MNU effects on older goldfish. However, it is very difficult to determine the 

exact age of a commercially available goldfish without an expert analysis of scales, 

which we could not perform. Alternatively, size can be used as an indicator of age. The 

larger goldfish is normally older. However, growth is not linear and depends –at least– on 

two factors we could not track: (1) food resources during the lifetime of the fish, and (2) 

the size of the pond (tank) where the fish were raised.  

Despite these concerns, an experiment was performed on two of the largest goldfish 

we could obtain. These were 8-10 inches long, which is approximately the maximum size 

goldfish can reach. Note that the standard size of goldfish in all other experiments was 3-

5 inches (see Methods). These larger fish had a larger eye volume, so the injection 

volumes were scaled accordingly, 6 µl of MNU (14% w/v) was injected into the left eye, 

and 6 µl of DMSO served as sham into the contralateral right eye. Following the 

previously discussed protocols, at 7 dpi the processed tissue was immunohistochemically 

labeled and compared by ONL soma count for treatment (sham or MNU) and age of the 

animal (Fig. 11). Throughout this study, the larger fish were referred to as “Old” fish, 

while all standard sized fish were referred to as “Young” fish. 
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Fig. 11. Comparative study of MNU-induced photoreceptor cell loss in young versus old 
goldfish retina at 7 dpi. Summary diagrams represent ONL soma counts of MNU-treated 

young goldfish (MNU) versus sham-injected contralateral (C) eyes (n=9) and MNU-treated 

old goldfish (MNU) versus sham-injected contralateral (C) eyes (n=2). Data is presented as 

average + sem. 

 

It was concluded that MNU (14% w/v) could induce photoreceptor degeneration in 

the older fish; however, it did not seem to be more extensive than the effect in younger 

animals (Fig. 11). Thus, the MNU-triggered photoreceptor loss appeared fairly uniform 

between the different age groups. Only a more systematic study (i.e. larger sample size) 

could rule out age completely as a contributing factor. Nevertheless, the results of these 

pilot experiments did not justify the notion of focusing the rest of our investigations to 

older goldfish. 

4.8. Time course of MNU-triggered photoreceptor death in fish 

In rat and mouse retinas there is evidence of photoreceptor disruption by 1 day post 

i.p. MNU injection (Yoshizawa et al., 1999; Yuge et al., 1996). In several studies, 

widespread photoreceptor death was seen after 3 days, and the entire ONL was nearly 

gone within 7 dpi (Yoshizawa et al., 1999; Yuge et al., 1996). In order to determine the 

time course of photoreceptor degeneration in the goldfish, following a single intraocular 
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injection of 4µl of 14% w/v MNU, fish were sacrificed at 0, 1, 3, 5, 7, 10, 14, 21, 28, 35, 

42, and 49 dpi. Representative images of retinal cross-sections are presented in Figure 12.  

 

Fig. 12. Time course of morphological changes in the retina following a single MNU 

injection. Fish were euthanized and retinas were processed on the days post MNU application as 

shown above the images. Somas labeled with the nuclear dye TO-PRO
®
-3 (1:5000, red) and Mb 

bipolar cells labeled with the PKCα antibody (1:500, green). Scale bar: 20 µm. 

 

 

Population data on the time course of MNU effect is plotted in Figure13. The 

number of TO-PRO
®

-3 nuclear stain labeled somas did not change in the sham-injected 

retinas throughout the time course of the experiment. In the MNU-treated eye, marked 

(~50%) loss of photoreceptor was first observed in the ONL 5 dpi, (Fig. 13A, **: 

p=0.001, n=5, Two way ANOVA). The goldfish photoreceptor loss was nearly maximal 

by 7 days (***: p<0.001, n=9): approximately 60% of the photoreceptors was destroyed. 

The number of photoreceptor somas in the ONL remained at the same level through 21 

dpi (***: p<0.001, n=5). 
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Fig. 13. Time course of 

MNU-induced retinal 

degeneration following 

a single intraocular 

injection. Line graphs 

plot soma counts in the 

ONL (A) and INL (B) 

for 14% MNU-treated 

(MNU) versus sham-

injected (Sham) eyes. 

Data is presented as 

average + sem.  

(n=4-9, for details see 

corresponding text in 

Results). 

 

 *: p<0.02, **: p=0.001, 

***: p<0.001, Two Way 

ANOVA, Holm-Sidak 

method. 

 

 By 28 dpi the number of photoreceptor started to increase compared the period 7-21 dpi, 

but remained still significantly less then than the corresponding numbers in the sham-

injected retinas (***: p<0.001, n=7). Only at 42 dpi, out of the last three time points (35 

dpi, 42 dpi and 49 dpi), were there significantly fewer photoreceptor somas found in the 

ONL when compared to the sham numbers (*: p=0.018, n=5). The number of cells in the 

INL did not change significantly over the time course of the experiments in either eye 

(p=0.538) (Fig. 13B) (Appendix 7).  

These data demonstrated that, although a single dose (4 µl, 14% w/v) of intraocular 

MNU treatment could induce selective photoreceptor degeneration in the fish retina, it 

did not lead to complete photoreceptor loss. In summary, the maximal MNU effect was ~ 

60% loss (as compared to the contralateral sham-injected control) and it was reached by 

7dpi. The photoreceptor number remained unchanged until about 21 dpi, and then started 
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to increase. The increase in the photoreceptor number between 21- 28 dpi suggested that 

retinal regeneration had started. By approximately 50 dpi the photoreceptor numbers 

were not significantly different from those in control or sham-treated retinas.   

4.9. A second dose of MNU extended the degenerated state 

A single dose of MNU (4 µl, 14% w/v) induced substantial photoreceptor 

degeneration, but it was not complete. Considering that lower dose (4 µl, 7% w/v) 

appeared to be less effective (Fig.9), we sought an experiment using a higher MNU dose. 

However, 14% w/v is the most concentrated MNU solution one can make, based on the 

solubility of MNU. In addition, the injection volume cannot be elevated above 4 µl. This 

has been calibrated for the size of goldfish used in the current set of experiments (Yazulla 

and Studholme, 1997). In pilot trials, increasing the volume caused an obvious leak of the 

drug solution out of the eye at the injection site during the end phase of injection. Thus, 

despite an increased injection volume, the actual amount of MNU delivered into the eye 

was probably not increased. Therefore, in order to increase the dose of delivered MNU 

we decided to give a second MNU injection of the same dose (4 µl, 14% w/v) to the same 

eye 14 days after the initial MNU injection. Likewise, the contralateral eye received a 

second sham treatment at the same time. Fish were euthanized at 7 (21), 14 (28), and 21 

(35) days post second injection (initial dpi), and retinas were processed and analyzed as 

previously described. For demonstration purposes, the data representing time course of 

the double MNU-injection induced degeneration was plotted (Fig. 14) along with the data 

obtained from a single dose experiments (same as on Fig. 13).  
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Fig. 14. Time course 

diagram demonstrating 

the effects of a second 

dose of MNU on 

photoreceptor 
degeneration. (A) Line 

graph indicates the ONL 

soma counts following  the 

14% MNU treatment 

(single dose of MNU, 

double dose of MNU) 

versus the sham-injected 

(Sham single, Sham 

double) eyes. (B) 

Expanded view of the 

double injected time 

points. Data is presented as 

average + sem. All time 

points represent at least an 

n=5 fish per group except 

for day 49 (n=4) and day 

35 double injected (n=2). 

(*: p<0.02, ***: p<0.001, 

Two Way ANOVA, Holm-

Sidak method. 

 

We expected the second MNU injection to exert its maximal effect on the same time 

scale as the first one (about 7dpi). However, the second intraocular MNU injection had 

serious consequences in the eye. These included inflammation, yellowish coloration of 

the lens, white coloration of the cornea, and often times led to the complete destruction of 

the entire retina and pigment epithelium. Morphological analysis of the ONL was 

possible only on a limited number of double injected eyes. When analysis was possible, 

however, we found no additional loss of photoreceptors at 7 (21), 14 (28), and 21 (35) 

days post second injection (initial dpi). The average number of somas/unitary area in the 

ONL on these days were 62±11, (n=5); 44±2, (n=6) and 53±5 (n=2). These numbers 

represent about 40% of the corresponding control values. Thus, we could not reach 

complete photoreceptor degeneration with the second MNU injection. 
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When Two Way Analysis of Variance (Holm-Sidak method) tests were used to 

analyze the data, it was determined that there was a significant photoreceptor loss, when 

compared to the control, at day 21 (p=0.010), day 28 (p<0.001), and day 35 (p=0.019) 

(Appendix 8). From these data, it was concluded that the second dose of MNU (14% w/v) 

did not induce further degeneration of the ONL, but instead extended the period of retinal 

degeneration (~60% photoreceptor loss at 35 day post initial injection) compared to that 

caused by a single injection (Fig. 14). The number of cells in the INL remained 

unaffected by the second MNU injection (data not shown). It should also be noted that 

the previously-mentioned inflammation and irritation to the retina following the second 

dose of MNU prevented further investigation of these particular retinas at later time 

points. Based on these results, it was concluded that a double injection of MNU could 

maintain degeneration for an extended period of time, but does not lead to more 

complete, specific photoreceptor degeneration. 

4.10. Retinal regeneration following MNU treatment  

Unlike mammals, the teleost retina is known to exhibit persistent neurogenesis 

throughout its life due to two stem cell populations (Hitchcock et al., 2004). Nearly all 

retinal cell types arise from the stem cell population located at the ciliary marginal zone 

(CMZ), which is continuously added to the periphery of the retina as the animal grows. 

The other stem cell population, responsible for producing rod precursor cells in the ONL, 

arises from Müller cells (MCs) in INL (Fimbel et al., 2007; Johns, 1977; Thummel et al., 

2008). Decades of research has demonstrated that injury or damage to the teleost retina 

(via high light exposure, puncture, or toxic injection) stimulates a rapid response to 

regenerate the damaged retinal neurons (Braisted et al., 1994; Fimbel et al., 2007; 
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Hitchcock et al., 1992; Raymond et al., 1988). One such response is the proliferation of 

MCs. MCs have been shown to reenter the cell cycle and produce the appropriate 

progenitor cells needed to replace the damaged retinal cells (Braisted et al., 1994; Fimbel 

et al., 2007; Vihtelic et al., 2006a; Yurco and Cameron, 2005). This rapid response was 

demonstrated in the zebrafish following a single intravitreal injection of ouabain, a drug 

that induces rapid cell death in all nuclear layers of the retina. Regeneration reportedly 

started within 1 day post intravitreal ouabain injection (Fimbel et al., 2007). In our 

goldfish study, we saw an increase in the ONL soma numbers between 21- 28 dpi (Fig. 

13), which would suggest that retinal regeneration had started. In order to identify 

whether regeneration was responsible for the increase of soma numbers in the ONL 

following MNU treatment, immunohistochemical labeling of newly dividing cells was 

performed using an antibody for proliferating cell nuclear antigen (PCNA). PCNA has 

been used to detect regeneration in several teleost retinas (Cid et al., 2002; Vihtelic and 

Hyde, 2000). Vertical cross-sections of a control and MNU-treated retina, harvested at 14 

dpi, were labeled with the nuclear dye, TO-PRO
®

-3, and progenitor cell marker, anti-

PCNA antibody, to identify a regeneration response following the MNU-induced 

photoreceptor damage (Fig. 15).   
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Fig. 15. Immunohistochemical analysis of newly dividing cells in the goldfish retina. 
Vertical cross-sections of a control (no injection) (top) and 14 day post MNU-injected retina 

(bottom) were double labeled with the nuclear dye, TO-PRO
®
-3 (1:5000, red) and the 

progenitor cell marker, proliferating cell nuclear antigen antibody (1:100, green, PCNA). 

The low power (40x) view of the control retina demonstrates the presence of PCNA+ cells 

primarily in the ciliary marginal zone (CMZ), representing the continuously dividing 

precursor cells. PCNA+ cells in the 14 days post MNU-treated retina were located in the 

ONL and INL, suggesting cell proliferation and migration. Arrows mark PCNA+ cells. 

Scale bar: 20 µm.  
 

Previous immunohistochemical analysis of fish retinas has demonstrated that normal 

retinal growth is mediated by the CMZ, where PCNA labeling was found (Johns, 1977; 

Marcus et al., 1999; Vihtelic and Hyde, 2000). Our data is in agreement with those 

findings. PCNA immunolabeling was found primarily in the CMZ (Fig. 15, top left) of 

the control retina and there was minimal labeling observed across the central retina (Fig. 
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15, top right). For the damaged (14 dpi MNU-treated) retina, PCNA immunolabeled cells 

were also observed in the CMZ (Fig. 15, bottom left). However, unlike the control retina, 

additional PCNA+ cells were found in both the ONL and INL layers across the central 

retina (Fig. 15, bottom right). The morphologies of the PCNA+ cells appeared to be 

different from each other and depended upon their location in the retinal layers. Similar 

to what has been reported on the shape of the PCNA+ cells in regenerating teleost retina, 

PCNA+ cells in the ONL layer appeared to have a round and compact morphology, 

whereas cells in the INL they were spindle-shaped and organized in clusters (Vihtelic and 

Hyde, 2000). Together these observations suggest that (1) MNU treatment induces a 

retinal regeneration response in the goldfish retina at 14 dpi and (2) this regeneration 

response is strong enough to recover the ONL soma numbers by ~50 dpi. 

4.11. MNU did not cause Müller cell hypertrophy 

Müller cells, which stretch radially from the GCL to the OPL, are involved in several 

important functions that are vital to the health of retinal neurons: migration of progenitor 

cells, removal of waste, balance of glutamate and K
+ 

in the extracellular space (Lamba et 

al., 2008). In vertebrates, the MCs are known to react to retinal damage and stress by 

increasing expression of the intermediate filament protein, glial fibrillary acidic protein 

(GFAP), and undergoing reactive gliosis (Bringmann et al., 2006; Fimbel et al., 2007). 

One of the chronic consequences of photoreceptor degeneration is a marked extension of 

processes and hypertrophy of MCs into the empty space of the ONL and the formation of 

a “glial seal” or “glial scar”. Nagar and colleagues (2009) found in the mouse retina that 

the MNU-induced photoreceptor loss triggered glial activation. The activation was 

characterized by enhanced GFAP expression and promoted the growth and extension of 
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the MCs. The end result was the formation of a “glial seal” (stage 2 of the retinal 

remodeling theory, see Background, section 1.6) which covered the entire retina by 28 

days post MNU i.p. injection (Nagar et al., 2009).  

In order to demonstrate that MNU-induced photoreceptor degeneration in fish 

triggers chronic consequences similar to those seen in mammals, it was important to 

identify whether a “glial seal” formation occurs in the goldfish retina following MNU 

treatment. A reliable MC marker for the goldfish retina had to first be determined. Thus, 

an immunohistochemical analysis was performed with known MC markers: GFAP (Mack 

et al., 1998; Nagar et al., 2009), vimentin (VIM) (Drager, 1983; Vaughan and Lasater, 

1990), and glutamine synthetase (GS) (Mack et al., 1998; Riepe, 1978), on vertical cross-

sections of control goldfish retina (Fig.16). 

 

Fig. 16. Immunohistochemical analysis of Müller cell markers in control goldfish retina. 
Vertical cross-sections of control retinas were double labeled with the nuclear dye, TO-PRO

®
-3 

(1:5000, red), and Müller cell markers (green) mouse anti-glutamine synthetase (1:500, GS, A), 

mouse anti-glial fibrillary acidic protein (1:500, GFAP, B), and mouse anti-vimentin (1:500, 

VIM, C). The low power (40x) view the control retina demonstrates that all three antibodies can 

label Müller cells in the goldfish retina. GFAP appears to provide the clearest Müller cell 

labeling. VIM also weakly labeled a band in the OPL (horizontal cells) and some photoreceptor 

outer segments (arrows). Scale bar: 20 µm. 

 

Our results confirmed that all three antibodies labeled MCs in the goldfish retina 

(Fig. 16). The anti-GS immunolabeling in the goldfish retina was extensive, but did not 
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well-define the outlines of MCs and their processes, and thus, did not allow for 

discrimination of individual MCs. However, an advantage of this immunostaining was 

that it clearly labeled the outer border of the ONL and marked the proximal extent of 

MCs (Fig.16A). The anti-GFAP and anti-VIM antibodies (Fig. 16 B and C, respectively) 

provided less extensive immunolabeling, but both made the individual MCs 

distinguishable.  

GS antibody was ruled out for future use. The anti-GFAP antibody appeared to label 

the MCs better than the anti-VIM antibody, delineating thicker processes and more 

complete structures. The GFAP immunolabeling marked MC processes throughout the 

retina, including in the outer retina, whereas the anti-VIM antibody immunolabeled 

processes primarily in the inner retina. Even in the inner retina, the VIM+ labeling was 

less intense than that produced by the antibody labeling for GFAP.  Labeling with the 

anti-VIM antibody also produced an immunopositive band in the OPL with some weak 

labeling occurring in the photoreceptor outer segments (Fig. 16C, arrow). This was 

consistent with previous studies showing VIM+ OPL labeling as putative horizontal cell 

(HC) process (Vaughan and Lasater, 1990). 

Based on these results, GFAP immunolabeling seemed to be the best choice to detect 

possible changes in the MC morphology following MNU-induced photoreceptor loss. As 

mentioned above, GFAP is thought to be an inducible protein in that its quantity 

increases with retinal damage (Sarthy, 2001). Consequently, one could argue that GFAP 

immunolabeling in the control retinas was restricted to a subpopulation of (active) MCs. 

This hypothesis had to be tested before the GFAP immunolabeling was used as a MC 

marker for comparative studies between MNU-treated and sham-injected goldfish retinas. 
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We predicted that VIM immunolabeling should mark all MCs because VIM is a 

structural protein in these cells (Sarthy, 2001). Taking into account that to our anti-VIM 

antibody also labeled HCs in the goldfish retina (Fig. 16), double immunolabeling studies 

were performed with anti-VIM and anti-GFAP antibodies to determine whether or not 

they were labeling the same MC populations. A representative image of the colabeling 

experiment is shown in Figure 17.  

 
Fig. 17. Colabeling study with the Müller cell markers GFAP and Vimentin in control 
goldfish retina. Vertical cross-sections of a control (no injection) retina were double 

immunolabeled with the Müller cell markers: mouse anti-vimentin antibody (1:500, VIM, green) 

and rabbit anti-glial fibrillary acidic protein antibody (1:1000, GFAP, red). Low power (40x) 

view the control retina demonstrates that both the VIM and GFAP antibodies can label Müller 

cells in the goldfish retina, and there is colabeling between these antibodies (arrows), especially 

in the inner retina. Scale bar: 20 µm. 

 

Colocalization between the two antibodies (anti-VIM and anti-GFAP) was assessed 

using a correlation analysis which determines the Pearson’s coefficient (PC). PC 

describes the spatial correlation of pixels in dual-colored images and gives it a value 

ranging from -1 to 1 (Gonzalez, 1987; Liu et al., 2010; Manders et al., 1992).  A negative 

correlation between the red and green pixels is defined by values < 0; no correlation is 

designated by a value equal to zero; positive correlation is defined by values > 0, with 1 

equaling complete correlation (Bolte and Cordelieres, 2006). In this study we chose to 

calculate the PC by using Costes’ approach (Costes et al., 2004), which is best suited for 
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images with background noise, as this approach automatically determines the threshold 

for both green and red intensities, thereby minimizing human error. Additionally, this 

approach elevates the possibility of colocalization do to chance, by providing a statistical 

comparison between the actual PC value of the image and a PC value calculated for the 

same image after randomizing red and green values associated with the pixels (Bolte and 

Cordelieres, 2006). For a given image, the true colocalization of red and green labeling 

occurs when the PC for the red and green pixels of the image is significantly higher 

(probability of colocalization, p-value > 95%) than the PC calculated for randomized red 

and green pixels of the same image (Costes et al., 2004).   

Costes’ approach was used to analyze a representative single optical plane image 

from the projected image shown in Figure 17. The PC calculated was 0.526 with a P-

value equal to 100% (see Appendix 9 for details). This PC shows a significant positive 

correlation between VIM and GFAP immunolabeling and its value indicates only partial 

colocalization. This index is consistent with what would be expected, based on the 

restricted VIM immunolabeling to the inner retinal MC processes and the additional 

immunolabeling of VIM+ HCs and photoreceptor outer segments. In conclusion, this 

analysis suggested that we did get true colocalization between the VIM and GFAP 

immunolabeling in the goldfish control retina.  

After establishing GFAP as a specific MC marker, which labeled not just the 

subpopulation of active MCs, but all MCs in the control goldfish retina, 

immunohistochemical analysis of the MNU-treated retinas were performed. Here we 

focused on the evaluation of morphological changes in MCs at multiple time points (0, 7 

dpi, and 49 dpi). The anti-VIM antibody was used as an additional control in this 
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colabeling study to further evaluate any MNU treatment-specific MC changes. 

Furthermore, we maintained a clear sense of retinal layer orientation and photoreceptor 

damage by using the nuclear dye TO-PRO
®

-3. Figure 18 (bottom) summarizes the MC 

densities seen in the control (no injection), 7 dpi, and 49 dpi MNU-treated retinas.   

 

Fig. 18. Immunohistochemical analysis of Müller cell morphology over the time course of 

the study. Vertical cross-sections of retina were triple labeled with the nuclear dye, TO-PRO
®
-3 

(1:5000, TO-PRO
®
-3, blue) and the Müller cell markers, mouse anti-vimentin antibody (1:500, 

VIM, green) and rabbit anti-glial fibrillary acidic protein antibody (1:1000, GFAP, red). (Top) 

A control retina demonstrating the level and location of immunohistochemical labeling for each 

antibody. (Bottom) The merged images for the control (no injection), 7 days post MNU-injected 

(7 dpi), and 49 days post MNU-injected (49 dpi) demonstrate that both Müller cell markers can 

be identified throughout the degeneration (7 dpi) and regeneration (49 dpi) process. The MNU-

treatment did not appear to affect the Müller cell density over the time course of the study. 

Müller cells did not form a “glial seal”. Scale bar: 20 µm.  

 

In this portion of the study we did not quantify the intensity of GFAP 

immunolabeling. However, the qualitative data clearly demonstrates that over the time 

course of our experiments MC hypertrophy and “glial seal” formation did not occur in the 
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MNU-treated goldfish retina. The GFAP and VIM antibodies did colabel the MC 

processes, but the colocalization appeared to be restricted to the inner retina.  

4.12. MNU did not trigger the remodeling of amacrine cell processes in the IPL 

According to Jones and Marc (2005), the third stage of the “retinal remodeling 

theory” is marked by extension of neurites, entanglement of inner plexiform layer (IPL), 

and the rewiring or remodeling of inner retinal cell circuitry. To identify whether inner 

retinal remodeling/rewiring occurs and to further confirm that MNU-induced selective 

photoreceptor degeneration in the goldfish, an inner retinal cell marker had to be 

established. In the mouse retina, antibodies directed against choline acetyl transferase 

(ChAT) have been shown to selectively label cholinergic amacrine cells (ACs) within the 

INL and GCL (i.e. orthotopic and displaced subtypes), with labeled processes forming 

two straight bands across the IPL (Haverkamp and Wassle, 2000). We hypothesized that 

if extensive remodeling of the AC processes takes place in the inner retina (Jones and 

Marc, 2005), then these bands should lose their laminated appearance. In order to test 

that, we first performed immunohistochemical studies to confirm that the ChAT antibody 

provides appropriate, two-band labeling in the goldfish retina as it was described in 

mouse (not shown), which it did. Retinas from MNU-treated eyes were then 

immunolabeled with anti-ChAT antibody, as were control eyes, to compare labeling 

patterns and identifying inner retinal deformities (Fig. 19). The nuclear dye, TO-PRO
®

-3, 

was used to label retinal somas for orientation purposes.  
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Fig. 19. Representative low power (40x) view of the INL morphology in control versus 

MNU-treated retinal sections at 7 and 28 dpi. Cholinergic amacrine cells labeled with anti-

Choline acetyl transferase antibody (1:100, ChAT, green) and all somas labeled with the nuclear 

dye TO-PRO
®
-3 (1:5000, red). Scale bar: 20 µm. 

 

In a control goldfish retina, the anti-ChAT antibody labeled cholinergic ACs somas 

in both the INL and the GCL, and two distinct IPL bands, similar to the mouse 

references. Labeling patterns did not change for MNU-treated eyes at 7 or 28 dpi. From 

the immunohistochemical labeling results we concluded that MNU does not cause any 

visible changes to the inner retinal ACs and MNU had no inner retinal effects by 7 or 28 

dpi (Fig. 19). However, since the anti-ChAT antibody clearly provided laminated band 

labeling in the IPL of the goldfish retina, it may be used at later time points to identify 

morphological changes to the retina at later stages of the remodeling theory. 
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5. DISCUSSION 

 

The goal of this thesis project was to establish a chemically-induced, acute 

photoreceptor degeneration model in goldfish, using the drug MNU, and to evaluate it for 

its appropriateness in examining the chronic morphological consequences of 

photoreceptor degeneration, seen in human diseases (Marc and Jones, 2003). 

Furthermore, such a model system could then be used to study functional changes 

associated with the reorganization of the retinal circuitry after photoreceptor loss. It is 

essential to perform functional studies before attempting vision restoration techniques in 

human patients. The teleost fish seems to be a promising model for these functional 

studies because they are known to regenerate their retina following retinal damage 

(Hitchcock et al., 2004; Johns, 1977; Lyall, 1957). The capacity for this neuronal 

regeneration is due to the life long presence of stem cells in the ciliary marginal zone 

along with Müller cells (MCs) capable of re-differentiating within the mature fish retina 

(Otteson and Hitchcock, 2003). Assuming that the regenerative capabilities of the 

goldfish retina would be preserved throughout the degeneration and remodeling stages, 

the goldfish retina could provide an excellent natural model system for studying the steps 

of the stem cell-based rescue approach following blinding photoreceptor loss. 

5.1. Rational for using the fish retina for modeling blinding diseases   

The potential benefits of studying the fish retina, to gain insight about vision 

restoration, was recognized long ago (Lombardo, 1968). Due to continuous retinal growth 
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and the ability to regenerate retinal tissue following damage (Fernald, 1985; Johns and 

Easter, 1977), several studies were done to gain understanding about the teleost fish 

retina. In mature mammalian retina, there has been a lack of evidence showing a stem 

cell source, there appears to be no proliferation zone at the retinal margin, and there is 

limited evidence of regeneration capability (Reh and Levine, 1998). However, RPE cells 

and MCs of the mature mammalian retina have been shown to demonstrate some 

proliferation following damage such as FGF stimulated regeneration of the RPE cells in 

embryonic chick (Coulombre and Coulombre, 1965; Park and Hollenberg, 1989; Pittack 

et al., 1991) and even in mammalian retina (Ahmad et al., 2000; Tropepe et al., 2000). 

This limited regenerative capability of some birds and mammals is suggested to indicate 

a gradual loss of the proliferating CMZ over evolution (Lamba et al., 2008). However, if 

such evolutionary connections are possible, then understanding fish degeneration and 

regeneration may lend greater knowledge to the understanding and rescue of damaged 

retinal cells in mammals.  

In the teleost fish, retinal degenerative diseases have been modeled and studied from 

many aspects by inducing the destruction of retinal neurons chemically (Braisted and 

Raymond, 1992), with light (Vihtelic and Hyde, 2000), and surgically (Cameron and 

Easter, 1995; Lombardo, 1968). A more recent approach is the use transgenic models. 

Zebrafish is the commonly used teleost model because they provide a cost efficient, 

rapidly developing, easily transducable organism, in which one can induce and identify 

specific gene mutations (Brockerhoff, 2011). Once the transgenic animals became a 

major model for genetic manipulations (Stuart et al., 1988), several other genetically 

engineered and mutant lines were developed, which demonstrated specific retinal defects 
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such as cone-specific or rod-specific degeneration (Brockerhoff, 2011; Collery et al., 

2006). These transgenic models have provided a clearer understanding of the early stages 

of degeneration, but such models are inherently self-limiting due to their continuous 

degeneration of newly dividing cells once they reach the stage of cell specificity. In 

addition, unlike the well established transgenic mouse models for photoreceptor 

degeneration, which can feed and survive blind for months, survival is short for the 

genetically blind zebrafish (Fadool et al., 1997; Fadool and Dowling, 2008). Death is 

likely due to the reduced ability to feed. In addition, the cascade of mutant gene defects 

can be lethal to the animal (Brockerhoff, 2011). Thus, none of these transgenic fish 

models allow one to study the late stages of retinal degenerative diseases and 

regeneration. 

 In order to study the long-term consequences of photoreceptor loss and possibly 

regeneration afterwards, we needed an acute fish model that could survive long enough 

(months) for the chronic stages of degeneration to occur and to assess potential 

regeneration at those later periods.  

To overcome the major shortcoming of existing transgenic fish models posed by the 

short lifespan, we speculated that the fish would require vision in one eye to eat and 

survive. Goldfish was chosen as our model of interest because of their appealing 

regenerative characteristics (persistent neurogensis), longer, hardier life-span (~ 15-20 

years), similar photoreceptor ratio to humans (Morris et al., 2005), and desirable cell 

qualities for possible, future physiological studies (e.g. large BC terminals).  

Based on the selective and complete photoreceptor degeneration induced 

experimentally by the toxic, carcinogenic drug MNU in other animal models, we chose 
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this drug to chemically-induce degeneration in goldfish retina (Herrold, 1967; Nagar et 

al., 2009; Nakajima et al., 1996; Taomoto et al., 1998; Tsubura, 1998). Both 

intraperitoneal (i.p.) and intravenous (i.v.) injections were ruled out as our preferred 

method of drug administration because both methods induced degeneration in the retinas 

of both eyes (Nagar et al., 2009; Nakajima et al., 1996; Taomoto et al., 1998).  

Since there are limited physical connections between the opposite eyes of an animal, 

we decided to administer MNU via unilateral intraocular injection. Although the eyes are 

immunologically sequestered from systemic circulation (Xie et al., 2010), the fact that 

systemic MNU injections can cause photoreceptor degeneration indicates that MNU, or 

its toxic metabolites, pass through the ocular barriers and get into the retina. In our study, 

significant differences were seen in the ONL soma counts between the MNU-treated and 

sham-injected control eyes. Significant differences were also seen between the control 

and sham-injected eyes, which suggests that some MNU entered into the systemic 

circulation and reached the other eye. Together this data confirmed that most of the MNU 

remained in the injected eye and induced photoreceptor damage locally. The significant 

difference in ONL soma count between the MNU-treated and contralateral eyes of each 

fish and the survival of the MNU-treated goldfish at ~ 50 dpi, suggested that unilateral 

vision was preserved in the sham-injected eye. The long experiments (~ 50 dpi) 

performed here support the notion that carefully designed acute photoreceptor 

degeneration in fish might be a valuable model system for later stages of photoreceptor 

degeneration.  
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5.2. Intraocular MNU does not eliminate all photoreceptors in goldfish   

We found that MNU, similar to what was found in mammals (Nagar et al., 2009; 

Nakajima et al., 1996; Ogino et al., 1993; Taomoto et al., 1998; Tsubura, 1998), 

selectively destroyed photoreceptors in fish. After intraocular delivery, the MNU-

mediated destruction was uniformly distributed across the retina and remained primarily 

restricted to the treated eye. The MNU-triggered photoreceptor death was dose-

dependent, but did not appear to be age-dependent based on our study. Similar to 

previously reported data in other species (Nakajima et al., 1996; Ogino et al., 1993; 

Taomoto et al., 1998; Tsubura, 1998; Yuge et al., 1996), degeneration was induced in the 

goldfish retina by 7 days post MNU injection. This was an advantage over other acute 

methods of retinal degeneration used in fish: some require long treatment times (e.g. 

phototoxicity) and most result in non-specific, non-uniform levels of retinal cell damage 

(Rapp et al., 1985; Vihtelic and Hyde, 2000). 

The most prominent difference between the goldfish and the majority of tested 

mammalian retinas was in the efficacy of MNU at destroying photoreceptors. In past 

mammalian studies the investigators used relatively low MNU doses (15-90 mg/kg) to 

induce complete photoreceptor cell loss (Nakajima et al., 1996; Schaller et al., 1981; 

Taomoto et al., 1998). In our study, degeneration of the ONL, using 4µl of the most 

concentrated MNU stock solution (~ 40x that of the 60 mg/kg dose), never reached 

completion. Considering that the unilateral MNU injections caused retinal damage 

primarily in the injected eye, one would assume that most of the effective MNU would 

remain in the injected eye and that a little would enter the systemic circulation. However, 



 84

despite this high dose, the maximum photoreceptor loss was only 60% of photoreceptors 

compared the sham-injected control by 7 dpi.  

In a recent mammalian study, a single i.p. injection of MNU into the Arvicanthis 

ansorgei (Sudanian grass rat) also reduced the number of photoreceptors by ~ 60% 

(Boudard et al., 2010). Similar to our results, elevated concentrations of MNU could not 

induce total photoreceptor degeneration. Bourdard and colleagues (2010) suggested that 

the incomplete degeneration might be related to the high cone content of the retina in 

their model. This speculation was based on the observation that during MNU-induced 

photoreceptor cell death, rod loss preceded the cone loss.  

This phenomenon is not specific to MNU. In both genetic and non-genetic 

mammalian models of retinal degeneration, it has been noted that under the conditions, 

where photoreceptors are challenged, there appears to be a sequential loss of rods 

followed by cones (Cideciyan et al., 1998; Jimenez et al., 1996; Lewis, 2002). This 

correlates closely with most photoreceptor degenerative diseases in which mutations are 

generally found to be rod selective, yet cone degeneration still occurs (Mohand-Said et 

al., 2001). According to Mohand-Said and colleagues (2001) there are cell-cell 

interactions that help determine the fate of cells, patterning, and differentiation within 

retina. Thus, taking into account rod-cone interactions, the sequential loss of 

photoreceptors suggests that cone survival is dependant upon the presence of rods 

(Mohand-Said et al., 2001). Examples of this have been seen in goldfish and bovine 

retina, during the differentiation and functional development of the photoreceptors 

(DesJardin et al., 1993; Raymond et al., 1995). This pattern has also been seen in humans 

suffering from RP, where cone cell loss is thought to be dependent upon a specific 
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amount of rod cell damage (>75%) (Cideciyan et al., 1998). Similarly, in cone-rich 

zebrafish retina, extensive bright light exposure has been shown to cause simultaneous 

rod and cone degeneration, but the breakdown of rods was reported to be more complete 

(Vihtelic and Hyde, 2000).  

In summary, rod photoreceptors appeared to be more sensitive to the MNU-induced 

insult. Thus, the relatively resistant and highly abundant cone photoreceptors of the 

goldfish retina may be a plausible reason for the incomplete degeneration seen in the 

current study.  

5.3. MNU treatment has no chronic morphological consequences in the fish retina 

In the human retina, photoreceptor cell death is followed by the second chronic stage 

of degeneration. This stage is characterized by the hypertrophy of MCs into the empty 

spaces of the ONL, left behind by dying photoreceptors, and entombment of the 

remaining neuronal retinal as it forms a seal (Marc and Jones, 2003). This process is 

commonly observed in transgenic photoreceptor degeneration models, such as the rd 

mice (Strettoi et al., 2002). In previous acute studies, in which mice received a single i.p. 

injection of MNU, a “glial seal” formation was produced secondary to the photoreceptor 

death, at about 28 dpi (Nagar et al., 2009; Tsubura et al., 2010).  

In the current study, we used known MC markers, antibodies against the glial 

fibrillary acidic protein (GFAP) and vimentin (VIM) intermediate filaments, to 

qualitatively track the morphological changes of MCs in the MNU-damaged retina over 

the time course of degeneration. We hypothesized that if the hypertrophy of MCs and 

“glial seal” formation occurred, following photoreceptor loss, it would form a 

prominently labeled band lying in the empty space of the ONL adjacent to the RPE. 
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However, in our study similar levels of GFAP immunolabeling, unlike that found in 

mammals (Eng and Ghirnikar, 1994; Lewis and Fisher, 2003), was expressed at all times 

in the teleost retina. Furthermore, no extensive MC hypertrophy was seen spanning 

across the goldfish retina and even after repeated intraocular injections of MNU no “glial 

seal” formation was identified.  

Based on the findings of previous degenerative models, the lack of a “glial seal” 

formation is likely due to the level of photoreceptor damage (Morris et al., 2007). As 

reported in transgenic zebrafish studies, the loss of a large number of rods or the loss of 

other retinal neurons in addition to rods was needed to activate the robust proliferation of 

MCs in which new neuronal progenitor migrate radially across the INL and ONL and 

differentiate into the missing neuronal cells (Montgomery et al., 2010). Similarly, in 

light-damaged zebrafish retinas, severe photoreceptor damage was needed to induce 

morphological changes in the MCs (Vihtelic et al., 2006b). This data suggests that 

massive rod loss or cone loss is needed to induce hypertrophy of MCs and to elicit a 

“glial seal” formation. In our experiments, we could not eliminate all of the 

photoreceptors. Therefore, the incomplete loss of photoreceptor and rapid response of the 

MCs to the damage may be responsible to the lack of “glial seal” formation in the MNU-

treated goldfish retinas.  

We also found no evidence of the third degenerative stage (remodeling) taking place. 

In order to determine whether remodeling was occurring within the INL following MNU-

treatment, vertical cross-sections of retina from various time points were immunolabeled 

for cholinergic amacrine cells. This anti-ChAT antibody is known to label orthotopic and 

“displaced” cholinergic amacrine cells in the INL and GCL and to distinctly label two 
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straight bands across the IPL. Based on the qualitative labeling of the two straight bands 

observed over the ~ 50 dpi time course, no microneuroma formation was observed in the 

IPL of MNU-treated retinas. This evidence, taken together with the fact that we could not 

trigger “glial seal” formation in the goldfish retina with the MNU treatment, might 

suggest that the sequential nature of retinal remodeling events, as seen in mammalian 

circuitry (Marc and Jones, 2003), are applicable to fish. Thus, we concluded that we 

failed to trigger the concurrent stages required for remodeling to take place. Future 

experiments are necessary to test whether microneuroma formation can happen after 

“glial seal” formation in the goldfish retina.  

5.4. Regeneration of MNU-treated goldfish retina  

The MNU-induced photoreceptor loss in the goldfish retina was not permanent. 

Instead, photoreceptor soma counts began to increase between 21- 28 days post MNU 

injection and were not significantly different from the control counts by ~ 50 dpi, 

suggesting that regeneration occurred. This observation is consistent with the notion that 

in the teleost retina a rapid regeneration response accompanies most retinal injury or 

damage (Johns, 1977; Otteson and Hitchcock, 2003).  

Previous studies have identified that stem cells (located in the CMZ) along with stem 

cell-like MCs capable of re-differentiating (located in the INL) are the source of 

regeneration in the teleost retina (Brockerhoff, 2011; Hitchcock et al., 2004; Montgomery 

et al., 2010). Antibodies against proliferating cell nuclear antigen (PCNA) have been 

commonly used to label these newly dividing cells. In previous degenerative studies the 

PCNA antibody has been shown to label unique clusters of cells that span the INL and 

ONL (Negishi et al., 1990). These PCNA+ cell clusters are considered to be positive 
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hallmarks of regeneration in the fish retina (Bernardos et al., 2007; Raymond et al., 1988; 

Vihtelic and Hyde, 2000). These rapid regenerative responses, starting with MC 

proliferation, have been seen in zebrafish, as early as 1 day post intravitreal injection of 

ouabain (Fimbel et al., 2007). According to previous studies, MCs respond to the retinal 

damage by reentering the cell cycle and generating new progenitor cells which follow the 

parallel tracks of the neighboring MCs into the ONL where they differentiate and replace 

the damaged retinal neurons (Fimbel et al., 2007; Thummel et al., 2008).  

In order to confirm that regeneration was responsible for the increase in ONL soma 

numbers, observed in the current study, retinal cross-sections of control and MNU-treated 

retinas were immunolabeled for PCNA. In the control retinas PCNA+ round cells were 

located primarily in the CMZ. These results are consistent with the normal growth 

patterns that occur due to the stem cells population located in the CMZ of a growing fish 

retina (Otteson and Hitchcock, 2003). In the MNU-treated retinas, we observed PCNA+ 

neurons across the entire retina, suggesting that MCs had responded to the chemically-

induced damage by generating new progenitor cells that migrate and differentiate to 

replace the damaged ONL. The time frame of regeneration in the current study (~ 50 dpi 

in goldfish) is similar to what was seen in ouabain-treated zebrafish retina (~ 60 dpi) 

(Fimbel et al., 2007). This data demonstrates that regeneration is most likely the reason 

for increased ONL soma counts at ~ 50 dpi.  

The apparent retinal regeneration in MNU-treated goldfish raises questions about the 

“glial seal” formation. Such as: If a “glial seal” were to form, could the rapid regenerative 

response of proliferating MCs be responsible for preventing the formation of a solid, 

visibly encasing seal? If the seal were broken, would it be identifiable with the MC 
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marker (GFAP)? Furthermore, if the seal were broken, would retinal remodeling still take 

place? Future experiments are needed to address these possibilities. 

5.5. Overall evaluation of MNU-treated goldfish retina as a degeneration model  

The best studied genetic mouse model of photoreceptor degeneration is the rd-1/rd-1 

mouse, in which the rod and cone photoreceptors die in the first week after birth (Blanks 

et al., 1974). This model is important because degeneration in rd-1/rd-1 mouse retina is 

known to follow the chronic morphological stages seen in humans (Marc et al., 2003). 

Recent studies using the rd-1/rd-1 mouse to produce intrinsically light sensitive neurons 

have highlighted the limitations this transgenic model has for translational therapeutic 

research (Busskamp et al., 2010; Thyagarajan et al., 2010). Overall the results concluded 

that rd-1/rd-1 mice do get some restoration of light sensitivity by targeting bacterial 

photosensitive proteins carried by viral vectors to surviving cone inner segments 

(Busskamp et al., 2010) or ganglion cells (GCs) (Busskamp et al., 2010; Thyagarajan et 

al., 2010) , but the neurons were much less sensitive to light than the normal retina.  In 

the study reactivating the surviving cone inner segments, the rd-1/rd-1 mouse model 

demonstrated a limited window of reactivation time due to the short lifespan of the cones 

(Busskamp et al., 2010). Since the GCs survive the initial stages of photoreceptor 

degeneration, studies targeting GCs for the production of intrinsically light sensitive 

neurons had a wider window (Busskamp et al., 2010; Thyagarajan et al., 2010). However, 

the cortical and behavioral visual performance of these animals showed minimal 

improvement after regaining some light sensitivity at the retinal level. The limited 

success of these models indicates why there is still a need for a more functionally 

applicable model for retinal degeneration. 
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Can our goldfish model system compete with the existing models? Based on the 

results of the current study the answer is no, not yet. The incompleteness of this model is 

paralleled by incomplete induction of acute MNU-mediated photoreceptor loss in the 

goldfish retina. It is unclear at this point whether the remaining photoreceptors and/or the 

re-differentiating MCs are responsible for preventing subsequent morphological changes 

associated with photoreceptor loss as seen in the mammalian retina. With these questions 

notwithstanding, our study has brought some promising results indicating that with 

modifications, an acute fish model could provide a competitive option for studying the 

later stages of photoreceptor degeneration especially if its regenerative nature is 

preserved.  

The MNU-induced fish model demonstrated that unilateral photoreceptor 

degeneration would allow for one to study this model over a long period of time, making 

it theoretically possible to use fish as a platform for studying chronic morphological 

changes. In our study, MNU did not cause the extent of damage necessary to mimic the 

stages of degeneration, but it was promising to see that both the CMZ and the MC driven 

progenitor cells could outlive the carcinogenic toxin. The regenerative capabilities of the 

MNU-treated teleost retina remained strong enough to regenerate photoreceptor levels to 

their original state. Ultimately this study suggests that with appropriate methods used to 

eliminate all photoreceptors, one could model stem cell-based treatments. Nonetheless, it 

was concluded that MNU alone can be ruled out as an optimal way of causing complete 

photoreceptor degeneration in fish and mimicking the chronic stages seen in humans and 

rodents. However, if combined with another photoreceptor selective toxin or method, it 

may be useful. Future experiments will address other chemical agents and intense light as 
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possible factors to combine with MNU to cause complete photoreceptor degeneration in 

goldfish retina.  
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 7. APPENDICES 

APPENDIX 1 

Two Way Analysis of Variance  

 

Data source: CONTROL FISH: ONL SOMA COUNT 
 

General Linear Model (No Interactions) 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.244) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

FISH 1 106.250 106.250 0.0782 0.782  

POSITION 33 21455.191 650.157 0.478 0.981  

Residual 33 44840.250 1358.795    

Total 67 66401.691 991.070    

 

The difference in the mean values among the different levels of FISH is not great enough to exclude the 

possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in POSITION.  There is not a statistically significant difference (P = 0.782). 

 

The difference in the mean values among the different levels of POSITION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in FISH.  There is not a statistically significant difference (P = 0.981). 

 

Power of performed test with alpha = 0.0500:  for FISH : 0.0500 

Power of performed test with alpha = 0.0500:  for POSITION : 0.0500 

 

Least square means for FISH :  

Group Mean  

1.000 240.471  

2.000 242.971  

Std Err of LS Mean = 6.322 
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Two Way Analysis of Variance  

 

Data source: CONTROL FISH: ONL WIDTH 
 

General Linear Model (No Interactions) 

 

Dependent Variable: WIDTH#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.936) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

FISH 1 38.335 38.335 2.603 0.116  

POSITION 33 192.428 5.831 0.396 0.995  

Residual 33 486.031 14.728    

Total 67 716.794 10.698    

 

The difference in the mean values among the different levels of FISH is not great enough to exclude the 

possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in POSITION.  There is not a statistically significant difference (P = 0.116). 

 

The difference in the mean values among the different levels of POSITION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in FISH.  There is not a statistically significant difference (P = 0.995). 

 

Power of performed test with alpha = 0.0500:  for FISH : 0.219 

Power of performed test with alpha = 0.0500:  for POSITION : 0.0500 

 

Least square means for FISH :  

Group Mean  

1.000 29.812  

2.000 28.310  

Std Err of LS Mean = 0.658 
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APPENDIX 2 

Two Way Analysis of Variance  

 

Data source: CONTROL VS. DMSO (CONTROL): ONL SOMA COUNT 
 

General Linear Model 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.272) 

 

Equal Variance Test: Failed (P < 0.050) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 10721.782 10721.782 7.567 0.007  

POSITION 32 13731.733 429.117 0.303 1.000  

TREATMENT x POSITION32 28802.352 900.073 0.635 0.928  

Residual 99 140274.667 1416.916    

Total 164 193945.176 1182.593    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in POSITION.  There is a statistically 

significant difference (P = 0.007).  To isolate which group(s) differ from the others use a multiple 

comparison procedure. 

 

The difference in the mean values among the different levels of POSITION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 1.000). 

 

The effect of different levels of TREATMENT does not depend on what level of POSITION is present.  

There is not a statistically significant interaction between TREATMENT and POSITION.  (P = 0.928) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 0.726 

Power of performed test with alpha = 0.0500:  for POSITION : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x POSITION : 0.0500 

 

Least square means for TREATMENT:  

Group Mean SEM  

CONTROL242.394 4.633  

DMSO 225.939 3.783  

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

CONTROL vs. DMSO16.455 2.751 0.007 Yes   

 

Comparisons for factor: TREATMENT within 1 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 37.667 1.096 0.276 No   
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Comparisons for factor: TREATMENT within 2 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 56.333 1.639 0.104 No   

 

Comparisons for factor: TREATMENT within 3 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 72.333 2.105 0.038 Yes   

 

Comparisons for factor: TREATMENT within 4 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 42.000 1.222 0.225 No   

 

Comparisons for factor: TREATMENT within 5 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 20.500 0.597 0.552 No   

 

Comparisons for factor: TREATMENT within 6 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 34.333 0.999 0.320 No   

 

Comparisons for factor: TREATMENT within 7 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 30.167 0.878 0.382 No   

 

Comparisons for factor: TREATMENT within 8 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 30.833 0.897 0.372 No   

 

Comparisons for factor: TREATMENT within 9 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 23.667 0.689 0.493 No   

 

Comparisons for factor: TREATMENT within 10 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 36.833 1.072 0.286 No   

 

Comparisons for factor: TREATMENT within 11 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 14.333 0.417 0.677 No   

 

Comparisons for factor: TREATMENT within 12 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 37.000 1.077 0.284 No   

 

Comparisons for factor: TREATMENT within 13 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 20.833 0.606 0.546 No   

 

Comparisons for factor: TREATMENT within 14 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 32.667 0.951 0.344 No   

 

Comparisons for factor: TREATMENT within 15 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 48.500 1.411 0.161 No   
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Comparisons for factor: TREATMENT within 16 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 35.333 1.028 0.306 No   

 

Comparisons for factor: TREATMENT within 17 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 38.500 1.120 0.265 No   

 

Comparisons for factor: TREATMENT within 18 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 16.667 0.485 0.629 No   

 

Comparisons for factor: TREATMENT within 19 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 7.167 0.209 0.835 No   

 

Comparisons for factor: TREATMENT within 20 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 20.500 0.597 0.552 No   

 

Comparisons for factor: TREATMENT within 21 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 21.000 0.611 0.543 No   

 

Comparisons for factor: TREATMENT within 22 

Comparison Diff of Means t P P<0.05   
DMSO vs. CONTROL 23.500 0.684 0.496 No   

 

Comparisons for factor: TREATMENT within 23 

Comparison Diff of Means t P P<0.05   

DMSO vs. CONTROL 38.333 1.116 0.267 No   

 

Comparisons for factor: TREATMENT within 24 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 3.167 0.0922 0.927 No   

 

Comparisons for factor: TREATMENT within 25 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 4.167 0.121 0.904 No   

 

Comparisons for factor: TREATMENT within 26 

Comparison Diff of Means t P P<0.05   

DMSO vs. CONTROL 25.167 0.732 0.466 No   

 

Comparisons for factor: TREATMENT within 27 

Comparison Diff of Means t P P<0.05   

DMSO vs. CONTROL 7.000 0.204 0.839 No   

 

Comparisons for factor: TREATMENT within 28 

Comparison Diff of Means t P P<0.05   

DMSO vs. CONTROL 11.000 0.320 0.750 No   

 

Comparisons for factor: TREATMENT within 29 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 7.167 0.209 0.835 No   
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Comparisons for factor: TREATMENT within 30 

Comparison Diff of Means t P P<0.05   

DMSO vs. CONTROL 43.167 1.256 0.212 No   

 

Comparisons for factor: TREATMENT within 31 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 18.000 0.524 0.602 No   

 

Comparisons for factor: TREATMENT within 32 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 16.833 0.490 0.625 No   

 

Comparisons for factor: TREATMENT within 33 

Comparison Diff of Means t P P<0.05   

DMSO vs. CONTROL35.333 1.028 0.306 No   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 113

Two Way Analysis of Variance  

 

Data source: CONTROL VS. DMSO (CONTROL): ONL WIDTH 
 

General Linear Model 

 

Dependent Variable: WIDTH#  

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

Equal Variance Test: Failed (P < 0.050) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 54.096 54.096 2.812 0.097  

POSITION 32 302.693 9.459 0.492 0.988  

TREATMENT x POSITION32 373.266 11.665 0.606 0.946  

Residual 99 1904.796 19.240    

Total 164 2720.607 16.589    

 

The difference in the mean values among the different levels of TREATMENT is not great enough to 

exclude the possibility that the difference is just due to random sampling variability after allowing for the 

effects of differences in POSITION.  There is not a statistically significant difference (P = 0.097). 

 

The difference in the mean values among the different levels of POSITION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.988). 

 

The effect of different levels of TREATMENT does not depend on what level of POSITION is present.  

There is not a statistically significant interaction between TREATMENT and POSITION.  (P = 0.946) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 0.250 

Power of performed test with alpha = 0.0500:  for POSITION : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x POSITION : 0.0500 

 

Least square means for TREATMENT :  

Group Mean SEM  

DMSO 30.337 0.441  

CONTROL29.169 0.540  
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APPENDIX 3 

Two Way Analysis of Variance  

 

Data source: DMSO (SHAM) VS. MNU: ONL SOMA COUNT 
 

Balanced Design 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.076) 

 

Equal Variance Test: Passed (P = 0.988) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 402095.006 402095.006 590.613 <0.001  

POSITION 27 10307.208 381.748 0.561 0.958  

TREATMENT x POSITION27 6700.494 248.166 0.365 0.998  

Residual 112 76250.667 680.810    

Total 167 495353.375 2966.188    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in POSITION.  There is a statistically 

significant difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple 

comparison procedure. 

 

The difference in the mean values among the different levels of POSITION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.958). 

 

The effect of different levels of TREATMENT does not depend on what level of POSITION is present.  

There is not a statistically significant interaction between TREATMENT and POSITION.  (P = 0.998) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 1.000 

Power of performed test with alpha = 0.0500:  for POSITION : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x POSITION : 0.0500 

 

Least square means for TREATMENT :  

Group Mean  

SHAM 184.548  

MNU 86.702  

Std Err of LS Mean = 2.847 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

SHAM vs. MNU 97.845 24.303 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 1 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 107.333 5.038 <0.001 Yes   
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Comparisons for factor: TREATMENT within 2 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 122.333 5.742 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 3 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 120.333 5.648 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 4 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 111.667 5.242 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 5 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 96.667 4.537 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 6 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 107.333 5.038 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 7 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 100.000 4.694 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 8 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 101.667 4.772 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 9 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 106.000 4.976 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 10 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 88.667 4.162 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 11 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 101.000 4.741 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 12 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 106.667 5.007 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 13 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 102.667 4.819 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 14 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 94.000 4.412 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 15 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 100.333 4.710 <0.001 Yes   
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Comparisons for factor: TREATMENT within 16 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 115.667 5.429 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 17 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 106.333 4.991 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 18 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 107.667 5.054 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 19 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 85.667 4.021 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 20 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 93.000 4.365 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 21 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 92.333 4.334 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 22 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 91.333 4.287 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 23 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 85.667 4.021 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 24 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 84.000 3.943 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 25 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 75.000 3.520 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 26 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 78.333 3.677 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 27 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 77.667 3.646 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 28 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 80.333 3.771 <0.001 Yes   
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Two Way Analysis of Variance  

 

Data source: DMSO (SHAM) VS. MNU: ONL WIDTH  
 

Balanced Design 

 

Dependent Variable: WIDTH#  

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 0.834) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 3448.025 3448.025 373.947 <0.001  

POSTION 27 91.237 3.379 0.366 0.998  

TREATMENT x POSTION 27 114.701 4.248 0.461 0.989  

Residual 112 1032.710 9.221    

Total 167 4686.673 28.064    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in POSTION.  There is a statistically 

significant difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple 

comparison procedure. 

 

The difference in the mean values among the different levels of POSTION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.998). 

 

The effect of different levels of TREATMENT does not depend on what level of POSTION is present.  

There is not a statistically significant interaction between TREATMENT and POSTION.  (P = 0.989) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 1.000 

Power of performed test with alpha = 0.0500:  for POSTION : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x POSTION : 0.0500 

 

Least square means for TREATMENT :  

Group Mean  

SHAM 21.541  

MNU 12.480  

Std Err of LS Mean = 0.331 

 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

SHAM vs. MNU 9.061 19.338 <0.001 Yes  

 

Comparisons for factor: TREATMENT within 1 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 11.303 4.559 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 2 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.720 3.920 <0.001 Yes   
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Comparisons for factor: TREATMENT within 3 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 11.367 4.585 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 4 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.896 3.991 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 5 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.098 3.669 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 6 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 10.280 4.146 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 7 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.197 3.709 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 8 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.122 3.679 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 9 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 10.366 4.181 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 10 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 10.160 4.098 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 11 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.788 3.948 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 12 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 10.008 4.036 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 13 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 10.224 4.124 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 14 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.154 3.692 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 15 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.174 3.700 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 16 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 11.373 4.587 <0.001 Yes   
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Comparisons for factor: TREATMENT within 17 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 10.236 4.128 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 18 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.488 3.827 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 19 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 8.942 3.607 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 20 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 9.837 3.967 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 21 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 7.353 2.966 0.004 Yes   

 

Comparisons for factor: TREATMENT within 22 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 8.478 3.419 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 23 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 8.022 3.236 0.002 Yes   

 

Comparisons for factor: TREATMENT within 24 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 5.787 2.334 0.021 Yes   

 

Comparisons for factor: TREATMENT within 25 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 6.143 2.478 0.015 Yes   

 

Comparisons for factor: TREATMENT within 26 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 5.637 2.273 0.025 Yes   

 

Comparisons for factor: TREATMENT within 27 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 5.276 2.128 0.036 Yes   

 

Comparisons for factor: TREATMENT within 28 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 8.271 3.336 0.001 Yes   
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APPENDIX 4 

Two Way Analysis of Variance  

 

Data source: DMSO (CONTROL) VS. DMSO (SHAM): ONL SOMA COUNT 
 

Balanced Design 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.067) 

 

Equal Variance Test: Passed (P = 0.769) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 95676.021 95676.021 78.701 <0.001  

POSITION 31 19435.979 626.967 0.516 0.983  

TREATMENT x POSITION31 10321.646 332.956 0.274 1.000  

Residual 128 155608.667 1215.693    

Total 191 281042.313 1471.426    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in POSITION.  There is a statistically 

significant difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple 

comparison procedure. 

 

The difference in the mean values among the different levels of POSITION is not great enough to exclude 

the possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.983). 

 

The effect of different levels of TREATMENT does not depend on what level of POSITION is present.  

There is not a statistically significant interaction between TREATMENT and POSITION.  (P = 1.000) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 1.000 

Power of performed test with alpha = 0.0500:  for POSITION : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x POSITION : 0.0500 

 

Least square means for TREATMENT :  

Group Mean  

CONTROL227.229  

DMSO 182.583  

Std Err of LS Mean = 3.559 

 
All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

CONTROL vs. DMSO 44.646 8.871 <0.001 Yes  

 

Comparisons for factor: TREATMENT within 1 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 28.000 0.984 0.327 No   
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Comparisons for factor: TREATMENT within 2 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 31.667 1.112 0.268 No   

 

Comparisons for factor: TREATMENT within 3 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 48.000 1.686 0.094 No   

 

Comparisons for factor: TREATMENT within 4 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 40.667 1.428 0.156 No   

 

Comparisons for factor: TREATMENT within 5 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 27.000 0.948 0.345 No   

 

Comparisons for factor: TREATMENT within 6 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 18.333 0.644 0.521 No   

 

Comparisons for factor: TREATMENT within 7 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 37.333 1.311 0.192 No   

 

Comparisons for factor: TREATMENT within 8 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 42.000 1.475 0.143 No   

 

Comparisons for factor: TREATMENT within 9 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 33.333 1.171 0.244 No   

 

Comparisons for factor: TREATMENT within 10 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 36.333 1.276 0.204 No   

 

Comparisons for factor: TREATMENT within 11 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 48.333 1.698 0.092 No   

 

Comparisons for factor: TREATMENT within 12 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 59.000 2.072 0.040 Yes  

  

Comparisons for factor: TREATMENT within 13 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 54.333 1.909 0.059 No   

 

Comparisons for factor: TREATMENT within 14 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 39.667 1.393 0.166 No   

 

Comparisons for factor: TREATMENT within 15 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 23.667 0.831 0.407 No   
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Comparisons for factor: TREATMENT within 16 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 42.667 1.499 0.136 No   

 

Comparisons for factor: TREATMENT within 17 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 45.333 1.592 0.114 No   

 

Comparisons for factor: TREATMENT within 18 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 30.333 1.066 0.289 No   

 

Comparisons for factor: TREATMENT within 19 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 25.333 0.890 0.375 No   

 

Comparisons for factor: TREATMENT within 20 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 51.333 1.803 0.074 No   

 

Comparisons for factor: TREATMENT within 21 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 47.333 1.663 0.099 No   

 

Comparisons for factor: TREATMENT within 22 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 73.000 2.564 0.011 Yes   

 

Comparisons for factor: TREATMENT within 23 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 58.000 2.037 0.044 Yes   

 

Comparisons for factor: TREATMENT within 24 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 58.667 2.061 0.041 Yes   

 

Comparisons for factor: TREATMENT within 25 

Comparison Diff of Means t P P<0.05   
CONTROL vs. DMSO 48.000 1.686 0.094 No   

 

Comparisons for factor: TREATMENT within 26 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 48.333 1.698 0.092 No   

 

Comparisons for factor: TREATMENT within 27 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 39.667 1.393 0.166 No   

 

Comparisons for factor: TREATMENT within 28 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 87.333 3.068 0.003 Yes   

 

Comparisons for factor: TREATMENT within 29 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 42.000 1.475 0.143 No   
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Comparisons for factor: TREATMENT within 30 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 43.333 1.522 0.130 No   

 

Comparisons for factor: TREATMENT within 31 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 50.333 1.768 0.079 No   

 

Comparisons for factor: TREATMENT within 32 

Comparison Diff of Means t P P<0.05   

CONTROL vs. DMSO 70.000 2.459 0.015 Yes   
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APPENDIX 5 

Two Way Analysis of Variance  

 

Data source: ONL SOMA COUNT: RIGHT VS. LEFT EYE 
 

General Linear Model 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 0.427) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 20309.402 20309.402 71.737 <0.001  

EYE 1 34.615 34.615 0.122 0.730  

TREATMENT x EYE 1 114.940 114.940 0.406 0.531  

Residual 22 6228.444 283.111    

Total 25 31612.615 1264.505    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in EYE.  There is a statistically significant 

difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple comparison 

procedure. 

 

The difference in the mean values among the different levels of EYE is not great enough to exclude the 

possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.730). 

 

The effect of different levels of TREATMENT does not depend on what level of EYE is present.  There is 

not a statistically significant interaction between TREATMENT and EYE.  (P = 0.531) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 1.000 

Power of performed test with alpha = 0.0500:  for EYE : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x EYE : 0.0500 

 

Least square means for TREATMENT :  

Group Mean  

MNU 54.972  

SHAM 115.528  

Std Err of LS Mean = 5.056 

 

Least square means for EYE :  

Group Mean SEM  
r 86.500 5.949  

l 84.000 3.966  

 

Least square means for TREATMENT x EYE :  

Group Mean SEM  

MNU x r 58.500 8.413  

MNU x l 51.444 5.609  

SHAM x r 114.500 8.413  

SHAM x l 116.556 5.609  
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All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

SHAM vs. MNU 60.556 8.470 <0.001 Yes   

 

Comparisons for factor: EYE 

Comparison Diff of Means t P P<0.050   
r vs. l 2.500 0.350 0.730 No   

 

Comparisons for factor: EYE within MNU 

Comparison Diff of Means t P P<0.05   

r vs. l 7.056 0.698 0.493 No   

 

Comparisons for factor: EYE within SHAM 

Comparison Diff of Means t P P<0.05   

l vs. r 2.056 0.203 0.841 No   

 

Comparisons for factor: TREATMENT within r 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 56.000 4.707 <0.001 Yes   

 

Comparisons for factor: TREATMENT within l 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 65.111 8.209 <0.001 Yes   
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APPENDIX 6 

Two Way Analysis of Variance  

 

Data source: 14% VS 7% MNU DOSE: ONL SOMA COUNT 
 

General Linear Model 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 0.473) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 16888.706 16888.706 39.732 <0.001  

DOSE 1 2649.150 2649.150 6.232 0.020  

TREATMENT x DOSE 1 1234.134 1234.134 2.903 0.101  

Residual 24 10201.644 425.069    

Total 27 35425.250 1312.046    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in DOSE.  There is a statistically significant 

difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple comparison 

procedure. 

 

The difference in the mean values among the different levels of DOSE is greater than would be expected by 

chance after allowing for effects of differences in TREATMENT.  There is a statistically significant 

difference (P = 0.020).  To isolate which group(s) differ from the others use a multiple comparison 

procedure. 

 

The effect of different levels of TREATMENT does not depend on what level of DOSE is present.  There 

is not a statistically significant interaction between TREATMENT and DOSE.  (P = 0.101) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 1.000 

Power of performed test with alpha = 0.0500:  for DOSE : 0.590 

Power of performed test with alpha = 0.0500:  for TREATMENT x DOSE : 0.249 

 

Least square means for TREATMENT :  

Group Mean  
SHAM 119.778  

MNU 68.522  

Std Err of LS Mean = 5.750 

 

Least square means for DOSE :  

Group Mean SEM  

14.000 84.000 4.860  

7.000 104.300 6.520  

 

Least square means for TREATMENT x DOSE :  

Group Mean SEM  
SHAM x 14.000 116.556 6.872  

SHAM x 7.000 123.000 9.220  

MNU x 14.000 51.444 6.872  

MNU x 7.000 85.600 9.220  
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All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

SHAM vs. MNU 51.256 6.303 <0.001 Yes   

 

Comparisons for factor: DOSE 

Comparison Diff of Means t P P<0.050   
7.000 vs. 14.000 20.300 2.496 0.020 Yes   

 

Comparisons for factor: DOSE within SHAM 

Comparison Diff of Means t P P<0.05   

7.000 vs. 14.000 6.444 0.560 0.580 No   

 

Comparisons for factor: DOSE within MNU 

Comparison Diff of Means t P P<0.05   

7.000 vs. 14.000 34.156 2.970 0.007 Yes   

 

Comparisons for factor: TREATMENT within 14 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 65.111 6.699 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 7 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 37.400 2.868 0.008 Yes   
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APPENDIX 7 

Two Way Analysis of Variance  

 

Data source: TIME COURSE (SINGLE INJECTION) ONL SOMA COUNT 
 

General Linear Model 

 

Dependent Variable: Soma#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.478) 

 

Equal Variance Test: Failed (P < 0.050) 

 

Source of Variation  DF   SS   MS    F    P   

Treatment 1 36746.218 36746.218 103.755 <0.001  

Day 10 19212.679 1921.268 5.425 <0.001  

Treatment x Day 10 25848.533 2584.853 7.298 <0.001  

Residual 106 37541.475 354.165    

Total 127 124580.219 980.947    

 

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size 

of a factor's effect depends upon the level of the other factor. 

 

The effect of different levels of Treatment depends on what level of Day is present.  There is a statistically 

significant interaction between Treatment and Day.  (P = <0.001) 

 

Power of performed test with alpha = 0.0500:  for Treatment : 1.000 

Power of performed test with alpha = 0.0500:  for Day : 0.999 

Power of performed test with alpha = 0.0500:  for Treatment x Day : 1.000 

 

Least square means for Treatment :  

Group Mean  

SHAM 110.998  

MNU 76.402  

Std Err of LS Mean = 2.402 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: Treatment 

Comparison Diff of Means t P P<0.050   

SHAM vs. MNU 34.596 10.186 <0.001 Yes   

 

Comparisons for factor: Treatment within 1 

Comparison Diff of Means t P P<0.05   

MNU vs. SHAM 13.600 1.143 0.256 No   

 

Comparisons for factor: Treatment within 3 

Comparison Diff of Means t P P<0.05   

MNU vs. SHAM 11.833 1.089 0.279 No   

 

Comparisons for factor: Treatment within 5 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 36.333 3.344 0.001 Yes   
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Comparisons for factor: Treatment within 7 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 65.111 7.339 <0.001 Yes   

 

Comparisons for factor: Treatment within 10 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 61.400 5.159 <0.001 Yes   

 

Comparisons for factor: Treatment within 14 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 59.167 5.445 <0.001 Yes   

 

Comparisons for factor: Treatment within 21 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 77.800 6.537 <0.001 Yes   

 

Comparisons for factor: Treatment within 28 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 37.000 3.678 <0.001 Yes   

 

Comparisons for factor: Treatment within 35 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 18.833 1.733 0.086 No   

 

Comparisons for factor: Treatment within 42 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 28.600 2.403 0.018 Yes   

 

Comparisons for factor: Treatment within 49 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 21.750 1.634 0.105 No   
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Two Way Analysis of Variance  

 

Data source: TIME COURSE (SINGLE INJECTION) INL SOMA COUNT 
 

General Linear Model 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.839) 

 

Equal Variance Test: Passed (P = 0.094) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 430.368 430.368 2.158 0.145  

DAY 10 2996.758 299.676 1.503 0.148  

TREATMENT x DAY 10 1790.778 179.078 0.898 0.538  

Residual 106 21137.948 199.415    

Total 127 26371.742 207.652    

 

The difference in the mean values among the different levels of TREATMENT is not great enough to 

exclude the possibility that the difference is just due to random sampling variability after allowing for the 

effects of differences in DAY.  There is not a statistically significant difference (P = 0.145). 

 

The difference in the mean values among the different levels of DAY is not great enough to exclude the 

possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.148). 

 

The effect of different levels of TREATMENT does not depend on what level of DAY is present.  There is 

not a statistically significant interaction between TREATMENT and DAY.  (P = 0.538) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 0.174 

Power of performed test with alpha = 0.0500:  for DAY : 0.245 

Power of performed test with alpha = 0.0500:  for TREATMENT x DAY : 0.0500 

 

Least square means for TREATMENT :  

Group Mean  

SHAM 50.553  

MNU 54.297  

Std Err of LS Mean = 1.802 
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APPENDIX 8 

Two Way Analysis of Variance  

 

Data source: TIME COURSE (DOUBLE INJECTION) ONL SOMA COUNT 
 

General Linear Model 

 

Dependent Variable: SOMA#  

 

Normality Test (Shapiro-Wilk) Passed (P = 0.414) 

 

Equal Variance Test: Failed (P < 0.050) 

 

Source of Variation  DF   SS   MS    F    P   

TREATMENT 1 11693.231 11693.231 37.103 <0.001  

DAY 2 23.612 11.806 0.0375 0.963  

TREATMENT x DAY 2 1453.837 726.919 2.307 0.126  

Residual 20 6303.167 315.158    

Total 25 23534.462 941.378    

 

The difference in the mean values among the different levels of TREATMENT is greater than would be 

expected by chance after allowing for effects of differences in DAY.  There is a statistically significant 

difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple comparison 

procedure. 

 

The difference in the mean values among the different levels of DAY is not great enough to exclude the 

possibility that the difference is just due to random sampling variability after allowing for the effects of 

differences in TREATMENT.  There is not a statistically significant difference (P = 0.963). 

 

The effect of different levels of TREATMENT does not depend on what level of DAY is present.  There is 

not a statistically significant interaction between TREATMENT and DAY.  (P = 0.126) 

 

Power of performed test with alpha = 0.0500:  for TREATMENT : 1.000 

Power of performed test with alpha = 0.0500:  for DAY : 0.0500 

Power of performed test with alpha = 0.0500:  for TREATMENT x DAY : 0.241 

 

Least square means for TREATMENT :  

Group Mean  

SHAM 101.044  

MNU 53.589  

Std Err of LS Mean = 5.509 

 

Least square means for DAY :  

Group Mean SEM  
21.000 78.700 5.614  

28.000 77.000 5.125  

35.000 76.250 8.876  

 

Least square means for TREATMENT x DAY :  

Group Mean SEM  
SHAM x 21.000 94.800 7.939  

SHAM x 28.000 109.333 7.248  

SHAM x 35.000 99.000 12.553  

MNU x 21.000 62.600 7.939  
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MNU x 28.000 44.667 7.248  

MNU x 35.000 53.500 12.553  

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: TREATMENT 

Comparison Diff of Means t P P<0.050   

SHAM vs. MNU 47.456 6.091 <0.001 Yes   

 

Comparisons for factor: DAY 

Comparison Diff of Means t P P<0.050   

21.000 vs. 35.000 2.450 0.233 0.994 No   

21.000 vs. 28.000 1.700 0.224 0.969 No   

28.000 vs. 35.000 0.750 0.0732 0.942 No   

 

Comparisons for factor: DAY within SHAM 

Comparison Diff of Means t P P<0.05   

28.000 vs. 21.000 14.533 1.352 0.471 No   

28.000 vs. 35.000 10.333 0.713 0.734 No   

35.000 vs. 21.000 4.200 0.283 0.780 No   

 

Comparisons for factor: DAY within MNU 

Comparison Diff of Means t P P<0.05   

21.000 vs. 28.000 17.933 1.668 0.297 No   

21.000 vs. 35.000 9.100 0.613 0.795 No   

35.000 vs. 28.000 8.833 0.609 0.549 No   

 

Comparisons for factor: TREATMENT within 21 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 32.200 2.868 0.010 Yes   

 

Comparisons for factor: TREATMENT within 28 

Comparison Diff of Means t P P<0.05   

SHAM vs. MNU 64.667 6.309 <0.001 Yes   

 

Comparisons for factor: TREATMENT within 35 

Comparison Diff of Means t P P<0.05   
SHAM vs. MNU 45.500 2.563 0.019 Yes   
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APPENDIX 9 

Image A: 042111dv Fish 87L15a GFAP 1to1000 VIM 1to500 Slice 10of15 Split Resize Rotate Crop 

Change Adjust.tif (red) 

Image B: 042111dv Fish 87L15a GFAP 1to1000 VIM 1to500 Slice 10of15 Split Resize Rotate Crop 

Change Adjust.tif (green) 

 

Pearson's Coefficient: 

r=0.572 

 

Overlap Coefficient: 

r=0.622 

 

r^2=k1xk2: 

k1=0.246 

k2=1.569 

 

Using thresholds (thrA=84 and thrB=72) 

 

Overlap Coefficient: 

r=0.94 

 

r^2=k1xk2: 

k1=0.567 

k2=1.559 

 

Manders' Coefficients (original): 

M1=0.991 (fraction of A overlapping B) 

M2=0.933 (fraction of B overlapping A) 

 

Manders' Coefficients (using threshold value of 84 for imgA and 72 for imgB): 

M1=0.198 (fraction of A overlapping B) 

M2=0.97 (fraction of B overlapping A) 

 

Costes' automatic threshold set to 56 for imgA & 16 for imgB 

Pearson's Coefficient: 

r=0.526 (0.0 below thresholds) 

M1=0.592 & M2=0.362 

 

Van Steensel's Cross-correlation Coefficient between 042111dv Fish 87L15a GFAP 1to1000 VIM 1to500 

Slice 10of15 Split Resize Rotate Crop Change Adjust.tif (red) and 042111dv Fish 87L15a GFAP 1to1000 

VIM 1to500 Slice 10of15 Split Resize Rotate Crop Change Adjust.tif (green): 

CCF min.: 0.059 (obtained for dx=20) CCF max.: 0.572 (obtained for dx=0) 

 

Results for fitting CCF on a Gaussian (CCF=a+(b-a)exp(-(xshift-c)^2/(2d^2))): 

Formula: y = a + (b-a)*exp(-(x-c)*(x-c)/(2*d*d)) 

Time: 0ms 

Number of iterations: 525 (8000) 

Number of restarts: 2 (2) 

Sum of residuals squared: 0.0015 

Standard deviation: 0.0060 

R^2: 0.9988 
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Parameters: 

  a = 0.0181 

  b = 0.5756 

  c = -0.8771 

  d = 9.1990 

FWHM=21.662 pixels 

 

Cytofluorogram's parameters: 

a: 0.208 

b: 4.427 

Correlation coefficient: 0.572 

 

Li's Intensity correlation coefficient: 

ICQ: 0.17119890737900667 

 

Costes' randomization based colocalization: 

Parameters: Nb of randomization rounds: 1000, Resolution (bin width): 0.0010 

r (original)=0.572 

r (randomized)=0.0±0.0010 (calculated from the fitted data) 

P-value=100.0% (calculated from the fitted data) 

 

Results for fitting the probability density function on a Gaussian (Probability=a+(b-a)exp(-(R-

c)^2/(2d^2))): 

Formula: y = a + (b-a)*exp(-(x-c)*(x-c)/(2*d*d)) 

Time: 0ms 

Number of iterations: 468 (8000) 

Number of restarts: 2 (2) 

Sum of residuals squared: 0.0013 

Standard deviation: 0.0096 

R^2: 0.9839 

Parameters: 

  a = 0.0011 

  b = 0.2071 

  c = 0.0000 

  d = 0.0019 

FWHM=0.0040 

 

Colocalization based on distance between centres of mass 

Threshold for Image A=84; Image B=72 

Particles size between 0 & 1048488 

Image A: 1 centre(s) colocalizing out of 39 

Image B: 1 centre(s) colocalizing out of 41 

 

Colocalization based on centres of mass-particles coincidence 

Threshold for Image A=84; Image B=72 

Particles size between 0 & 1048488 

Image A: 4 centre(s) colocalizing out of 39 

Image B: 4 centre(s) colocalizing out of 41 

 

 

 

 


