
DISSERTATION

STRUCTURE IN COMBINATORIAL OPTIMIZATION

AND ITS EFFECT ON HEURISTIC PERFORMANCE

Submitted by

Doug Hains

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2013

Doctoral Committee:

Advisor: Darrell Whitley
Co-Advisor: Adele Howe

Wim Bohm
Edwin Chong

ABSTRACT

STRUCTURE IN COMBINATORIAL OPTIMIZATION

AND ITS EFFECT ON HEURISTIC PERFORMANCE

The goal in combinatorial optimization is to find a good solution among a finite set of

solutions. In many combinatorial problems, the set of solutions scales at an exponential

or greater rate with the instance size. The maximum boolean satisfiability (MAX-SAT) is

one such problem that has many important theoretical and practical applications. Due to

the exponential growth of the search space, sufficiently large instances of MAX-SAT are

intractable for complete solvers. Incomplete solvers, such as stochastic local search (SLS)

algorithms are necessary to find solutions in these cases. Many SLS algorithms for MAX-

SAT have been developed on randomly generated benchmarks using a uniform distribution.

As a result, SLS algorithms for MAX-SAT perform exceptionally well on uniform random

instances. However, instances from real-world applications of MAX-SAT have a structure

that is not captured in expectation by uniform random problems. The same SLS algorithms

that perform well on uniform instances have a drastic drop in performance on structured

instances.

To better understand the performance drop on structured instances, we examine three

characteristics commonly found in real-world applications of MAX-SAT: a power-law dis-

tribution of variables, clause lengths following a power-law distribution, and a community

structure similar to that found in small-world models. We find that those instances with

a community structure and clause lengths following a power-law distribution have a sig-

nificantly more rugged search space and larger backbones than uniform random instances.

These search space properties make it more difficult for SLS algorithms to find good solutions

and in part explains the performance drop on industrial instances.

In light of these findings, we examine two ways of improving the performance of SLS

algorithms on industrial instances. First, we present a method of tractably computing the

average evaluation of solutions in a subspace that we call a hyperplane. These averages can be

ii

used to estimate the correct setting of the backbone variables, with as high as 90% accuracy

on industrial-like instances. By initializing SLS algorithms with these solutions, the search is

able to find significantly better solutions than using standard initialization methods. Second,

we re-examine the trade-offs between first and best improving search. We find that in many

cases, the evaluation of solutions found by SLS algorithms using first improving search are no

worse, and sometimes better, than those found by best improving. First improving search is

significantly faster; using first improving search with AdaptG2WSAT, a state-of-the-art SLS

algorithm for MAX-SAT, gives us more than a 1,000x speedup on large industrial instances.

Finally, we use our hyperplane averages to improve the performance of complete solvers

of the satisfiability problem (SAT), the decision version of MAX-SAT. We use the averages to

heuristically select a promising hyperplane and perform a reduction of the original problem

based on the chosen hyperplane. This significantly reduces the size of the space that must

be searched by the complete solver. Using hyperplane reduction as a preprocessing step, a

standard complete SAT solver is able to outperform many state-of-the-art complete solvers.

Our contributions have advanced the understanding of structured instances and the perfor-

mance of both SLS algorithms and complete solvers on these instances. We also hope that

this work will serve as a foundation for developing better heuristics and complete solvers for

real-world applications of SAT and MAX-SAT.

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisors, Darrell Whitley and Adele Howe. I

would not have made it this far without their guidance. Under their mentoring, I have grown

as both a scientist and a person and I will always be grateful for having the opportunity to

do so. I would like to thank the Air Force Office of Scientific Research for funding this work.

Much of my research was sponsored by the Air Force Office of Scientific Research, Air Force

Materiel Command, USAF, under grant number FA9550-11-1-0088.

I would also like to thank my parents, Lynn and Barbara Hains, for adopting me and

giving me the best childhood a kid could ask for. Their unconditional support for my every

endeavor has meant the world to me. Last but certainly not least, I would like to thank

my wife, Bryanne Hains, for her enduring support, unwavering love, and plentiful cookies

throughout my graduate career.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . xv

1 Introduction . 1

1.0.1 Structure in Instances of MAX-SAT 3

1.0.2 Improving SLS Algorithms . 5

1.0.3 Improving Complete SAT Solvers . 7

1.0.4 Summary of Contributions . 9

1.1 Document Structure . 11

2 Anatomy of Stochastic Local Search for MAX-SAT 13

2.1 Initialization . 15

2.1.1 Estimating Backbone Frequencies . 16

2.1.2 Estimating Locations of Optima . 17

2.1.3 Similarity between Initialization Methods 18

2.2 The Exploitation Component . 19

2.3 The Exploration Component . 20

3 Structured Instances of MAX-SAT . 23

3.1 Characteristics of Structured MAX-SAT Instances 24

3.1.1 Community Structure in SAT and MAX-SAT instances 25

3.1.2 Summary of Structure in MAX-SAT 27

3.2 Generating Structured Instances of MAX-SAT 28

v

3.2.1 Generating Power-Law Instances . 28

3.2.2 Adding Community Structure to Generated Instances 30

3.2.3 Comparison of Instance Generators 31

3.3 Plateaus in Structured Instances . 35

3.3.1 Previous Analysis of Plateaus in Uniform Instances 38

3.3.2 Plateau Characteristics of Structured Instances 40

3.3.2.1 Number of Plateaus in Structured Instances 41

3.3.2.2 Size of Plateaus in Structured Instances 46

3.3.3 The One Big Plateau Hypothesis . 49

3.3.4 Summary of Plateau Characteristics 51

3.4 Characteristics of Global Optima . 52

3.4.1 Prior Analysis of Backbones in Uniform Instances 52

3.4.2 Backbone Analysis of Generated Instances 53

3.4.3 Number of Global Optima . 54

3.4.4 Summary of Global Optima Characteristics 56

3.5 Backbones and Plateaus . 57

3.5.1 Summary of Correlation between Backbone and Plateaus 59

3.6 Generalizing to Industrial Instances . 61

3.7 Summary . 62

4 Improving SLS for MAXSAT . 66

4.1 Initializing Search with Backbone Information 67

4.1.1 Prior Work in Initialization Methods for SLS 72

4.1.2 Hyperplane Initialization . 72

4.1.3 Theoretical Foundations . 74

4.1.4 Computing Hyperplane Averages . 74

4.1.5 Hyperplane Initialization . 75

4.1.6 Evaluating Hyperplane Initialization 77

4.1.7 Hyperplane Initialization and Industrial Instances 80

vi

4.1.8 Summary of Hyperplane Initialization 87

4.2 Fast Initial Descent . 88

4.2.1 Prior Analyses of Local Search . 89

4.2.2 First vs Best Improving Local Search 90

4.2.3 Fast Descent Search with Hyperplane Initialization 102

4.3 Summary . 107

5 Improving Complete Solvers for SAT . 111

5.1 Reducing Problem Size with Hyperplane Averages 113

5.1.1 Ranked Hyperplanes and Global Optima 124

5.2 Hyperplane Reduced MiniSAT . 129

5.3 Summary . 135

6 Conclusion and Future Work . 138

6.1 Future Work . 140

6.1.1 Understanding Community Structure 140

6.1.2 Critical Variables . 141

6.1.3 Hyperplane Reduction . 142

References . 144

Appendix A Names and Sizes of Industrial Instances 151

vii

LIST OF TABLES

3.1 Description of the five instance generators and the shorthand notation used to

refer to each generator. 31

3.2 Mean and standard deviations of modularity on our generated instances. See

Table 3.1 for the description of our generators. 34

3.3 The mean and standard deviation of the average evaluation of all solutions in

the 50 instances constructed by each generator type (Avg. Sol.) and the mean

and standard deviation of the evaluation at which the highest number of plateaus

occurred across all instances of each type (Plat. Peak). 43

3.4 P-values from an analysis of variance test on the mean number of plateaus on

the first 21 levels from 50 instances from each of our eight generators with an

alternative hypothesis that there is a difference in means. There were three

factors in the test: variable distribution (vd), taking values of power-law and

uniform, and clause distribution (cd), taking values of fixed length with k = 3

and power-law, and modular (mod) taking values of true or false. The vd:cd,

vd:mod, cd:mod, and vd:cd:mod are the p-values of interaction effects between

the respective factors. Any factors that are significant at the 0.001 level are

marked with a ‘*’. 45

3.5 P-values from an analysis of variance test on the size of plateaus in non-modular

instance generators. There were tree factors in the test: variable distribution (vd),

clause distribution (cd), and modularity (mod). The vd:cd, vd:mod, cd:mod and

vd:cd:mod columns are the interaction between factors. Any factors that are

significant at the 0.05 level are marked with a ‘*’. 48

3.6 Mean and standard deviations of backbone size on 50 generated instances with

n = 15 and m = 64 per problem type. See Table 3.1 for the description of our

generators. 53

viii

3.7 P-values from an analysis of variance test on the mean size of backbones in 400

generated instances with n = 15 variables. There were three factors in the test:

variable distribution (vd), clause distribution (cd) and modularity (mod). The

vd:cd, vd:mod, cd:mod, and vd:cd:mod columns are the p-values of interaction

effects between the respective factors. Any factors that are significant at the 0.001

level are marked with a ‘*’. 54

3.8 Means and standard deviations of the number of global optima over 50 instances

for each of our generated instance types. See Table 3.1 for the description of our

generators. 55

3.9 P-values from an analysis of variance test on the number of global optima in

400 generated instances with n = 15 variables. The alternative hypothesis is

that the mean number of optima are different. The three factors in the test:

variable distribution (vd), clause distribution (cd), and modularity (mod). The

”vd:cd”, ”vd:mod”, ”cd:mod”, and ”vd:cd:mod” are the p-values of interaction

effects between the respective factors. Any factors that are significant at the 0.001

level are marked with a ‘*’. 55

3.10 Mean and standard deviations of backbone density on our generated instances.

See Table 3.1 for the description of our generators. 56

3.11 Correlation coefficient (left of comma) and p-value (right of comma) found by

Pearson’s method testing the correlation of mean plateau size at each level and

backbone size for the 50 instances from each generator. We report the first

13 levels, after this no correlation was significant at the .001 level. Significant

correlations are marked with (*). 58

3.12 Correlation coefficient(left of comma) and p-value (right of comma) found by

Pearson’s method testing the correlation of mean number of plateaus at each

level and backbone size for the 50 instances of each generator. We report the first

17 levels, after this no correlation was significant at the .001 level. Significant

correlations are marked with (*). 60

ix

3.13 Summary of the three characteristics of industrial instances and their effect on

the search space in comparison to uniform instances with fixed clause length. . . 64

4.1 Means and standard deviations of backbone size on 50 generated instances with

n = 50 and m = 214 per problem type. See Table 3.1 for the description of our

generators. 68

4.2 P-values from t-tests comparing the number of flips to a global optimum (f) for

each of the 50 runs over 50 instances of each type. We use notation f(x) where

x is one of our run sets where 0 is the set of runs with no backbone variables

initialized correctly, .25 is 25% are set correctly, etc. 72

4.3 Means and standard deviations of the percentage of backbone variables correctly

set by hyperplane initialization over 50 generated solutions for each of the 50

instances by generator type (See Table 3.1 for the description of the generator

types). 77

4.4 Mean and standard deviations of the number of flips required for AdaptG2WSAT

to find a global optimum on runs initialized with hyperplane initialization and

random solutions. There were 50 runs for each instance and 50 instances for

each problem type. The p-value column reports the p-value of a one-sided t-

test comparing these values with the alternative hypothesis that the hyperplane

initialized runs require less flips. Results significant at the .001 level are indicated

with a (*). 80

4.5 Mapping of industrial instances chosen for empirical experiments to identification

numbers. 82

4.6 Means and standard deviations of the evaluations rounded to the nearest integer

of 30 solutions produced by hyperplane initialization (Hyperplane) and random

solutions (Random) for the 30 industrial instances from Table 4.5. The p-value

column lists the p-value from one sided t-tests comparing the means with an alter-

native hypothesis that the hyperplane initialized solutions have lower evaluations

than those of random solutions. 83

x

4.7 The means and standard deviations of the evaluations of the best-so-far solutions

after 10%, 50% and 100% of the overall run length over 30 runs per instance (see

Table 4.5 for a description of the instances). Runs were either initialized with

hyperplane initialization or random initialization. The p-value column reports

the p-value from a t-test testing a difference in the mean evaluations. 84

4.8 Means and standard deviations of the evaluations of 30 local optima found by

first improving search (First) and best improving search (Best) for 30 industrial

instances from Table 4.5. The p-value column lists the p-value from a two sided

t-test comparing the means. 92

4.9 Means and standard deviations of the TLOs over 30 runs of first improving search

(First) and best improving search (Best) for 30 industrial instances from Table 4.5.

The p-value column lists the p-value from a two sided t-test comparing the means. 93

4.10 Means and standard deviations of the evaluations of solutions found by Adapt-

G2WSAT starting from 30 local optima found by first improving search (First)

and 30 local optima found by best improving search (Best) on 30 industrial in-

stances from Table 4.5. The p-value column lists the p-value from a two sided

t-test comparing the means. 95

4.11 Means and standard deviations of the time in seconds required to execute 30 runs

of AdaptG2WSAT with each run terminated after 20n bit flips per run. Two

versions of AdaptG2WSAT were used: our modified version using first improving

search (First) and the unmodified version using best improving search (Best). 30

industrial instances from Table 4.5 were used as benchmarks. The p-value column

lists the p-value from a one sided t-test comparing the means with the alternative

hypothesis that the average time of the First runs will be lower. 100

4.12 Mean percentage spent in the initial descent by AdaptG2WSAT using either first

improving (First) or best improving (Best) for the initial descent. Times are in

seconds and are averaged over 30 runs. The 30 industrial instances from Table 4.5

were used. 101

xi

4.13 Means and standard deviations of the evaluations of the best found solutions from

30 runs of Iterated Robust Tabu Search (IRoTS) using first improving (first) and

best improving (best) local search. The p-values are from a two-sided t-test with

an alternative hypothesis that the mean evaluations are different between the two

local search types. 103

4.14 Means and standard deviations of the evaluations of solutions found by four ver-

sions of AdaptG2WSAT: AdaptG2WSAT with first improving initial descent ini-

tialized by hyperplane initialization, AdaptG2WSAT with first improving initial

descent initialized with random solutions, AdaptG2WSAT with best improving

initial descent initialized with hyperplane solutions and AdaptG2WSAT with

best improving initial descent initialized by random solutions. The best average

evaluations are in bold. 105

4.15 P-values from an analysis of variance test on the mean evaluations of solutions

found by runs of AdaptG2WSAT with two factors: initialization method (im)

and descent type (dt). There are two values for each factor, initialization method

is either hyperplane initialization or random solutions and descent type is either

first improving or best improving. There are 30 runs per configuration for a total

of 90 runs for each instance (see Table 4.5 for a list of the instances 106

4.16 Means and standard deviations of the time to execute 20n bit flips by four versions

of AdaptG2WSAT: AdaptG2WSAT with first improving initial descent initialized

by hyperplane initialization, AdaptG2WSAT with first improving initial descent

initialized with random solutions, AdaptG2WSAT with best improving initial

descent initialized with hyperplane solutions and AdaptG2WSAT with best im-

proving initial descent initialized by random solutions. Means are over 30 runs

from each configuration on each of the 30 industrial instances from Table 4.5. . . 108

5.1 The number and percentage of variables (n) and clauses (m) reduced by SatELite

and SatELite+hyperplane reduction for 97 industrial instances. 115

xii

5.2 The mean percentage of reduction in both the number of variables and the number

of clauses on 90 industrial problems (See Table 5.1) by SatELite alone and by

SatELite with hyperplane reduction. The p-values are the result of a paired t-

test with the alternative hypothesis that there are less variables or clauses in the

Hyperplane+SatELite reductions than the SatELite reductions. 124

5.3 The outcome of 20 minute runs of MiniSAT on the eight top ranked hyperplanes

for 97 industrial SAT instances. The hyperplanes were chosen by fixing the four

most frequent variables in each problem and ranked from highest to lowest by

the average evaluation of the solutions within each hyperplane. MiniSAT has

three possible outcomes: S, U and I. S (shaded cells) means a satisfying solution

was found, U means the hyperplane does not contain a satisfying solution, and I

means MiniSAT timed out before deciding on the satisfiability of the hyperplane. 124

5.4 Number of Satisfiable, Unsatisfiable and Indeterminate cases after running Min-

iSAT for 20 minutes on hyperplane reduced problems. 16 hyperplanes averages

were computed corresponding to the four most frequently occurring variable in

each problem. These hyperplanes were then ranked by averages and we ran Min-

iSAT for 10 minutes on the reductions corresponding to the top eight hyperplanes

for each problem. These results are a summary of the data in Table 5.3. 128

5.5 Results of the application+SAT track of the 2013 SAT Competition. There were

31 solvers that were ranked by the number of instances they solved out of the

150 instances in the competition. Our solver, Hyperplane Reduced MiniSAT

(HRMS), ranked 3rd. 130

5.7 The results of the top three solvers from the 2013 SAT competition. The results

are reported as either S for satisfiable or I for indeterminate in the case the solver

timed out after 5,000 seconds. The value in parentheses is the CPU time in

seconds that each solver spent on the instance. 131

xiii

5.6 Total time (in seconds) spent by each solver on the 150 instances and the median

time spent per solver on each instance. Our solver, HRMS, was the second fastest

in total time and median time per instance. 136

A.1 The number of variables and number of clauses of 320 instances from the 2011

SAT competition [67] and the 2012 MAX-SAT competition [52]. Note some in-

stances names have been shortened due to width restrictions but remain uniquely

identifiable. 151

xiv

LIST OF FIGURES

1.1 Examples of three Euclidean TSP problems: (a) a 550 city problem generated with

a uniform random generator, (b) a 535 city problem from TSPLIB constructed

using airport locations and (c) a 662 city circuit board drilling problem. 2

3.1 Histograms of the number of clauses in which each variable appears for three

types of problems: an instance randomly generated with a uniform distribution

(a), an instance generated randomly with a power-law distribution (b), and an

industrial instance from a circuit debugging application (c). 26

3.2 Variable interaction graphs of instances with n = 30 and m = 150 clauses made

by three generators: (a) the standard uniform distribution with k = clauses, (b)

Ansotegui’s power-law generator with k = 3, and (c) our modular generator using

a power-law distribution on variable frequency and k = 3. 33

3.3 The Run-Length Distribution of 10,000 bit flips of AdaptG2WSAT on 50 instances

constructed by each of the eight generator types with size n = 50.The legends

denote the generator type used to constructed the instances using the notation

from Table 3.1. 36

3.4 The Run-Length Distribution of 10,000 bit flips of AdaptG2WSAT on 50 instances

constructed by each of the eight generator types with size n = 100. The legends

denote the generator type used to constructed the instances using the notation

from Table 3.1. 37

3.5 The mean number of plateaus over 50 instances with n = 15 and m = 64 grouped

by generator type (See Table 3.1) for levels 1 through 33. None of the instances

had solutions after level 33. 42

3.6 The mean normalized level of the space as a function of the normalized level

containing the highest mean number of plateaus. The means were taken over 50

instances with n = 15 and m = 64 from each generator type (See Table 3.1) . . . 44

xv

3.7 The mean plateau size over 50 instances grouped by generator type (See Table 3.1)

as a function of level. Levels 1 through 33 are shown as none of the instances had

solutions after level 33. 47

3.8 The fraction of total solutions on each level contained in the largest plateau found

on that level. We observe that large plateaus contain the majority of solutions

on the non-modular instances at levels close to the global optimum. There seems

to be no single large plateau in modular instances. Under the one big plateau

hypothesis, this would suggest modular instances are more difficult. 50

3.9 A histogram depicting the clause length frequencies of the post-c32s-gcdm16-23

instance from the 2011 SAT Competition. This instance is one of the 6 instances

that did not have a power-law distribution over clause length. The other 6 in-

stances had a similar distribution. 63

4.1 The run length distributions of five sets of runs on 50 instances of each generator

type (See Table 3.1 for our generator types). Each set consisted of 50 runs ini-

tialized by setting the 0, 25%, 50%, 75% and 100% of the backbone variables to

their correct settings. The RLD for each set is denoted by a different line style

as shown in the bottom right corner. 70

4.2 The run length distributions of two initialization methods over 50 runs on 50

instances with n = 50 and m = 214 of each generator type (See Table 3.1 for our

generator types). Each set of runs consisted of 50 runs initialized by hyperplane

initialization (hyperplane init) and random solutions (random init) 79

4.3 The frequency of variables that are flipped by first improving and best improving

search during the first 1,000 steps of the two local search algorithms on instance

26 in Table 4.5. The flip sequence is ordered from bottom to top with the first

flip at the bottom and the 1,000th flip at the top. 97

xvi

4.4 The improvement over time of AdaptG2WSAT with best improving search and

with first improving search at three points along runs of 5,000,000 bit flips: (a) the

first 100,000 bit flips, (b) the point where AdaptG2WSAT with first improving

search finds a better solution than the best improving version, and (c) the last

100,000 bit flips. 98

xvii

Chapter 1

Introduction

The goal of a combinatorial optimization problem is to find an optimal solution, or simply

a good solution, among a set of finite solutions. In two important combinatorial optimization

problems, the Traveling Salesman Problem (TSP) and Maximum Satisfiability (MAX-SAT),

the set of possible solutions respectively grows factorially and exponentially in relation to the

size of the problem. Complete solvers, those that use branch and bound or other techniques

to provably find an optimal solution, are intractable for sufficiently large problems. This

necessitates the use of incomplete solvers, algorithms that are not guaranteed to return the

optimal solution [38].

Many of the best incomplete solvers for the TSP perform exceptionally well on uniform

instances, those generated by a uniform random generator, but perform significantly worse

on structured instances [42, 35, 47]. We define structured instances as those instances with an

inherent structure that is not generally found in instances generated using a uniform random

distribution. Two examples of structured instances for the TSP are routing problems through

clusters of cities and the grid-like patterns that arise from circuit-board printing problems

(see Figure 1.1). We have performed our own analyses of the TSP search space [32] and

have shown that our crossover operator, Generalized Partition Crossover, can improve the

performance of incomplete solvers on structured instances of the TSP [84, 85, 30].

Structured problems in MAX-SAT are found in industrial problems, such as circuit de-

bugging and analysis [66, 13]. Like the TSP, incomplete solvers perform worse on structured

instances than uniform random problems [47]. In the MAX-SAT 2012 challenge, the submit-

ted incomplete solvers were able to solve all 378 uniform instances in the random uniform

track, however they were only able to solve 2 out of the 55 industrial problems in the appli-

cation track [52]. The underlying features of the search space that cause this difference in

performance are not well understood [47, 61, 3]. This is a cause for concern as structured

instances mainly arise from real-world applications of MAX-SAT.

1

(a) Uniform Random (b) Clustered

(c) Grid-Like

Figure 1.1: Examples of three Euclidean TSP problems: (a) a 550 city problem generated
with a uniform random generator, (b) a 535 city problem from TSPLIB constructed using
airport locations and (c) a 662 city circuit board drilling problem.

2

Ansotegui et al [3, 5] have observed that the vast majority of industrial instances of MAX-

SAT share three characteristics: a variable frequency that follows a power-law distribution,

variable length clauses that also follow a power-law distribution and a community structure

that is characterized by families of variables that have many interactions between variables of

the same family but few interactions between variables of different families. Although these

characteristics have been observed in industrial instances of MAX-SAT, it is not known if

these characteristics represent an underlying structure that makes industrial instances more

difficult or what that structure might be.

This gap in knowledge of the search space on structured instances and the consequences

to local search behavior motivates the following questions that constitute the majority of

this dissertation:

• How do the three characteristics observed by Ansotegui et al. in structured instances

of MAX-SAT influence the behavior of local search?

• How is the underlying search space affected by these characteristics?

• Can we improve the performance of incomplete and complete solvers on structured

instances?

We find that instances with a community structure and variable clause length are more

difficult for incomplete solvers. Furthermore, we will present evidence that the underlying

structure of the search space is, at least in part, the cause for this difficulty. In light of

these results, we are able to develop several improvements for both incomplete and complete

solvers that increase the performance of state-of-the-art algorithms on industrial instances.

1.0.1 Structure in Instances of MAX-SAT

To address the first question posed above, we begin by developing instance generators

that are able to construct problems with the three characteristics in question: the power-law

variable frequency, clause lengths following a variable frequency and a community structure.

By using our generated instances, we are able to control for these three characteristics. We

3

first examine how the performance of AdaptG2WSAT, a state-of-the-art stochastic local

search (SLS) algorithm [48, 49], is influenced by these characteristics. We find that those

instances with a community structure and variable clause length are significantly more diffi-

cult to solve than uniform random instances. Instances with a power-law variable frequency

are significantly easier for AdaptG2WSAT.

To better understand why these characteristics influence the behavior of SLS algorithms,

we analyze the search space on our generated instances. We base our experimental method-

ology on that developed for previous analyses conducted on search space features of uniform

instances, specifically plateaus [21, 76, 33] and backbones [89].

Plateaus are subsets of connected solutions in the search space with equal evaluations [21].

A large number of small plateaus indicates a rugged space, where the ruggedness of a space

is determined by the variability in evaluations of neighboring solutions [40, 38]. A rugged

landscape can be difficult to navigate for SLS algorithms [54], leading to a decrease in the

quality of solutions that are found.

We find that on those instances with a variable clause length following a power-law

distribution and a community structure that there are significantly more plateaus of a smaller

average size than on uniform random instances. Thus, the search space is most rugged on

those instances that are the most difficult for SLS algorithms.

The backbone is the set of variables that are consistently set to the same truth assignment

across all global optima. Zhang has shown that on uniform random instances of MAX-3SAT

that the size of the backbone set is correlated to the difficulty of the instances [89]. This is

conjectured to be due to the fact that SLS algorithms have a higher probability of incorrectly

assigning a backbone variable when there are more of them. Furthermore, the backbone size

sets an upper bound on the size of the subspace that can contain the optimal solution. The

upper bound grows smaller as the backbone size grows larger. We find in our analysis of

industrial-like instances that that the backbone size is significantly larger in those instances

with a community structure and clause length following a power-law distribution than other

instances.

4

Our analysis of the search space reveals that instances with these characteristics have a

more rugged space and a larger backbone, two search space properties that can make finding

good solutions difficulty. Therefore, we provide not only the first documented link between

the characteristics found in industrial instances and SLS performance, but our search space

analysis provides a fundamental first step towards understanding why problems with these

characteristics are more difficult.

1.0.2 Improving SLS Algorithms

In our analysis of the search space, we observed that the search space is more rugged

with a larger backbone in industrial-like instances. We conjecture that estimating the correct

settings of the backbone variables could improve the performance of SLS algorithms by using

this information to initialize the search closer to good solutions. We empirically show that

initializing an SLS algorithm with the correct settings of the backbone variables can improve

the quality of solutions found at the end of the search.

Although this tells us that the backbone information can be useful to SLS algorithms,

determining the correct settings requires prior knowledge of the global optimal solutions.

Thus, any initialization method that must first find the correct backbone settings is imprac-

tical for search. We therefore propose a method of using the average evaluation of solutions

in a subspace to estimate the correct setting of the backbone variables. This estimation

requires no prior knowledge of the globally optimal solution and can be efficiently computed

directly from the problem instance.

We refer to a subset of solutions in the search space that share a common truth assignment

over some number of variables less than n as a hyperplane. Using the Walsh transformation,

a discrete transform of the objective function to the Walsh basis, we are able to tractably

compute the average evaluation of the solutions contained within an arbitrary hyperplane [83,

82, 31]. With this technique, we compute the average evaluations of the hyperplanes defined

by the clauses of a given instance of MAX-SAT. These averages are then used to construct

a probability distribution that is used to set each of the n variables initial truth assignment.

5

Using the probability distributions constructed from our hyperplane averages, we are able

to estimate the correct setting of the backbone variables with over 90% accuracy, on aver-

age, on industrial-like instances. We use this estimation to initialize an SLS algorithm and

find that on real-world applications of MAX-SAT, hyperplane initialization can significantly

improve the quality of solutions found on the vast majority of our benchmark problems.

In addition to our hyperplane initialization method, we also re-examine the trade-off

between two types of local search: first and next improving search. Best improving search

selects the move yielding the best improvement in evaluation in the Hamming distance 1

neighborhood. In contrast, first improving search selects an arbitrary improving move in the

neighborhood. Many implementations of best improving search have a O(n) computational

complexity per move in the worst case as a result of a scan to find the best move in a buffer

of improving moves. Our implementation of first improving search has only a O(1) worst

case complexity per move as it can simply choose a move at random from the improving

move buffer.

In 1992, Gent et al. conducted a study on the trade-off between using best and improving

search in small, random uniform instances of SAT [23] and found that best improving local

search was no better than first improving search. However, many modern SLS algorithms

continue to use best improving search despite the higher computational cost [71, 49, 75].

We examine the difference between best and first improving search in the first phase of

AdaptG2WSAT on industrial instances. The average evaluations of the local optimum found

by best improving search are significantly better than those found by first improving search.

However, SLS algorithms do not stop at the first local optimum encountered but enter a

second phase of search. The average evaluations of the solutions found at the end of the

second phase using first improving search are not significantly different, and often better,

than those found by AdaptG2WSAT using best improving search.

We conjecture that this is due to “critical variables” being set early by best improving

search. We empirically show that critical variables are flipped very early in the search by best

improving search. This is due to the greedy bias in best improving search; the biggest change

6

in evaluation will come from flipping the variables that appear in the most clauses. This is

not the case in first improving search as it has no such bias. Because the critical variables

are not fixed early on by first improving search, AdaptG2WSAT has a higher probability of

correctly setting the variables in the second phase.

We examine the evaluation change over time over two runs of 5,000,000 bit flips from

AdaptG2WSAT with best improving search and AdaptG2WSAT with first improving search.

The version using best improving search has a higher rate of improvement in the first phase

of search. However, after entering the second phase of search, the version of AdaptG2WSAT

using first improving search finds a better solution than AdaptG2WSAT with best improving

search. At this point, the rate of improvement is greater in the version using first improving

search. It is our belief that this occurs because the critical variables are not fixed in the first

phase by AdaptG2WSAT with first improving search and it therefore has more opportunities

to improve the evaluation of the candidate solution in the second phase.

In addition to leading the search to better solutions, first improving search is much

faster. On the largest instances in our benchmark set, we see a speedup of over 1,000

times in AdaptG2WSAT by replacing best improving search with first improving search.

Using both first improving initial descent and hyperplane initialization significantly improves

the evaluations of solutions found on large industrial instances. Thus, we can significantly

improve not only the quality of solutions found by SLS algorithms on structured instances,

but the time required to do so.

1.0.3 Improving Complete SAT Solvers

Our hyperplane initialization method uses hyperplane averages to construct a probability

distribution that can provide a remarkably good estimate of the backbone variables. The

hyperplane averages appear to be a very powerful tool that can give us information about

where good solutions are located in the search space. Given our promising results using

hyperplane averages to improve incomplete solvers, we next look at how we can use the

averages to improve the performance of complete SAT solvers.

7

The satisfiability problem (SAT) is the decision version of MAX-SAT. Instead of find-

ing the solution that satisfies the greatest number of clauses, the goal is to determine if a

satisfying solution to a given formula exists. If one does exist, we call the problem satisfi-

able. If not, the problem is unsatisfiable. Complete SAT solvers are guaranteed to return a

satisfying solution if one exists, otherwise they will return “unsatisfiable”. However, large,

industrial applications of SAT are so large they can be intractable for SAT solvers. We

therefore propose a search space reduction based on our hyperplane averaging method.

When defining a hyperplane, we fix the truth settings of k variables, and the remaining

‘free’ variables form the solutions in the hyperplane. By using all the possible combinations

of truth assignments to the k variables, we can partition the solutions in the search space of

a given instance into 2k mutually exclusive subspaces, each containing 2n−k solutions. Each

subspace contains a reduced number of solutions that can be searched independently for a

satisfying solution to the original instance.

We use this partitioning in a preprocessing step to reduce a given instance before passing

it to a complete solver. Our preprocessing step works as follows. We use the first four most

frequent variables in a given instance to partition the search space into 16 subspaces. Each

hyperplane represents a reduced subspace that can then be searched by a complete solver. If

the original problem is satisfiable, at least one of the 16 hyperplanes must contain a satisfying

solution.

We next compute the averages of these subspaces using the Walsh coefficients as we do in

hyperplane initialization. The hyperplanes are then ranked in order based on their evalua-

tion; the rank 1 hyperplane has the best average evaluation while the rank 16 hyperplane has

the worst. We then run a complete solver on the reduced problem corresponding to the rank

1 hyperplane. If a satisfying solution is found in the reduced space, the truth settings for the

fixed variables are merged with the reduced solution, and the result is a satisfying solution

for the original problem. If the rank 1 hyperplane does not contain a satisfying solution,

we can run a complete solver on the next highest ranking hyperplane. Theoretically, this

8

process could be repeated (or done in parallel) until either a satisfying solution is found or

all 16 hyperplanes have been determined to be unsatisfiable.

We combined our hyperplane reduction strategy with the MiniSAT complete solver [19]

and submitted our solver to the 2013 SAT competition. In the Application SAT track, we

ranked in 3rd place out of a field of 31 solvers, many of which are considered state-of-the-art

and placed within the top three of previous competitions [68]. In one instance (003e.cnf),

our entry was the only solver that was able to solve the instance. This demonstrates that

not only is our strategy an effective one, but in some cases the hyperplane reduction can

greatly simplify difficult industrial instances.

1.0.4 Summary of Contributions

We have analyzed the structure in instances of MAX-SAT, focusing on three character-

istics found in industrial instances: variable frequency following a power-law distribution,

variable length clauses that also follow a power-law distribution and a community structure.

We have developed instance generators capable of producing instances with these structures

and used them to analyze the impact of these characteristics on the performance of SLS

algorithms. We found that instances with clause lengths following a power-law distribution

and a community structure are significantly more difficult for SLS algorithms to solve.

Further analysis of the search space of these instances reveals several properties that can

explain this drop in performance. Plateaus on industrial-like instances are smaller in size and

greater in frequency than on other instances. This indicates a rugged search space that can be

difficult for SLS algorithms to navigate. Industrial-like instances also have significantly larger

backbones. This increases the probability in expectation that search will incorrectly set a

backbone variable and decreases the upper bound on the size of the subspace containing the

globally optimal solution. These results represent the first documented empirical evidence of

significant differences in the search space of industrial-like instances and can, in part, explain

why industrial instances are more difficult for SLS algorithms.

9

We present two methods of increasing the performance of SLS algorithms on industrial

instances. The first is a method of efficiently computing hyperplane averages and using

these averages to estimate the correct setting of the backbone variables. We also evaluate

the trade-off between first and best improving search in the first phase of SLS algorithms.

We find that first improving search does not significantly decrease the average evaluation

of solutions found by the search over those found by best improving search, and in some

cases can improve them. Combined, our improvements are able to significantly increase the

evaluation of solutions found on industrial instances of MAX-SAT on the majority of our

benchmark instances.

Finally, we improve the performance of complete SAT solvers by using our hyperplane

averages to heuristically select a promising subspace of the search space. Empirical evidence

shows that on industrial instances the subspace containing solutions with the best average

evaluation contains a globally optimal solution in the majority of cases. By reducing the

original formula based on the fixed variables that define the subspace, we can significantly

reduce both the number of variables and clauses. Using the MiniSAT complete solver on

these reduced problems, we were able to solve 113 of the 150 industrial instances in the

Application SAT track of the 2013 SAT competition [68].

Developing theory through analyses of uniform random instances is a common practice in

SAT, MAX-SAT and other combinatorial optimization problems. The resulting theory can

potentially influence the development of algorithms, thus tailoring algorithms to uniform

random instances. However, instances from real-world applications often have structure

that is not captured in expectation by uniform random problems. This results in a gap

both in our understanding of the theoretical implications of structure and the practical

importance of developing algorithms for real-world applications. Our contributions advance

the understanding of structured instances of SAT and MAX-SAT and in part explain why

they are more difficult than uniform random instances for SLS algorithms. Furthermore, we

advance the state-of-the-art in both incomplete solvers for MAX-SAT and complete solvers

10

for SAT. It is our hope that this work will inspire others and serve as a foundation for future

research in structured instances of combinatorial optimization.

1.1 Document Structure

Chapter 2 covers much of the background information relevant to this dissertation. It

covers concepts such as the search space, local search, and SLS algorithms. We also discuss

previous work that is related to our original work presented in the following chapters.

Chapter 3 is our search space analysis of structured instances in MAX-SAT. We present

our instance generators and the algorithms used to construct instances with three character-

istics discussed above. We then show that our generator is capable of producing instances

that are significantly more difficult for SLS algorithms. We then perform an in-depth anal-

ysis of the search space of these instances, finding many significant differences that can help

explain the difficulty encountered by SLS algorithms in industrial instances.

Chapter 4 covers our improvements to SLS algorithms for MAX-SAT. We first present

empirical evidence showing that correctly setting the backbone variables can improve the

performance of SLS algorithms on industrial-like instances. We then present the Walsh trans-

form and describe how the Walsh coefficients can be used to efficiently compute hyperplane

averages. We then show how these averages can be used to find a remarkably good estimation

of the correct setting of the backbone variables. We next revisit the trade-off between first

improving and best improving search and find that first improving search can greatly reduce

the computational time on large industrial instances without sacrificing solution quality.

Chapter 5 details our improvements to complete solvers for SAT. We again utilize the

hyperplane averaging technique first described in Chapter 4 to heuristically choose a hy-

perplane that potentially contains a globally optimal solution. We then describe how the

original problem can be significantly reduced based on this hyperplane. By running a com-

plete solver on our hyperplane-reduced problem, we are able to outperform a large number

of state-of-the-art complete solvers on industrial instances.

11

Chapter 6 is the conclusion of this dissertation. We present a summary of our results and

contributions. As we hope that this work will also serve as inspiration for continued research

into structure in combinatorial optimization problems, we outline several open questions

that arise from our work. We believe that these questions form a solid foundation for future

work.

12

Chapter 2

Anatomy of Stochastic Local Search for MAX-SAT

The focus of this dissertation is on the maximum satisfiability problem (MAX-SAT), an

NP-hard combinatorial optimization problem [22]. However, at times we will also reference

its decision counterpart, the satisfiability problem (SAT).

An instance of MAX-SAT is a boolean formula, which we will assume is in conjunctive

normal form, with n variables and m clauses. The goal is to find the assignment of truth

values to variables that maximizes the number of satisfied clauses. MAX-kSAT instances

have exactly k variables in each clause. Instances are represented in the same manner, only

the goal is simply to decide if there exists a truth assignment that can satisfy all clauses of

the given instance. Similar to MAX-kSAT, kSAT refers to an instance of SAT with exactly

k variables per clause.

A solution, x, to an instance of MAX-SAT or SAT is an assignment of truth values (either

true or false) to each of the n variables in a given instance. We will represent a solution

using a bit string. A value of 0 at bit p in x represents an assignment of false to variable p,

likewise a 1 represents an assignment of true to variable p.

The following is an example instance in conjunctive normal form with four variables and

three clauses:

(x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

We define our MAX-SAT objective function, f , as the number of clauses that remain un-

satisfied under x. Our definition of f is due to convention; because f counts the number of

unsatisfied clauses, this makes MAX-SAT a problem of minimization. In the above example,

f(1011) = 1 as the clause (¬x1 ∨ ¬x3 ∨ ¬x4) is unsatisfied. If the above formula were an

instance of SAT, it would be satisfiable as the solution 1001 satisfies all three clauses. An

instance of SAT is unsatisfiable if there are no satisfying solutions to that instance.

13

Given an instance with n variables, there are 2n possible solutions representing all possible

truth assignments. We use X to denote the set of all possible solutions. We define a

neighborhood relation N on X such that N : X 7→ 2X . X and N form the space of solutions

that a local search algorithm will search as well as the connections between these solutions. In

the search algorithms that we will study for MAX-SAT and SAT, the neighborhood operator

is a single bit flip. Thus N(x) is the set of all solutions which differ by a single bit from x.

Using the example above,

N(1011) = {0011, 1111, 1001, 1010}

Taken together, L = (X,N, f) is referred to as a combinatorial landscape [65].

The aim of local search algorithms is to traverse the solution space of X, using the

connections defined by N , in an attempt to find the best possible solution as evaluated by f .

We will refer to the current solution of a local search as the candidate solution and denote

this solution with x. By deciding to flip bit i in x, the local search moves in the search space

from x to a new candidate solution yi. We therefore often refer to a bit flip as a move. An

improving move is one in which f(yi) < f(x), an equal move is one in which f(yi) = f(x)

and a disimproving move is one in which f(yi) > f(x).

A local optimum is a solution x′ such that f(x′) < y for all y ∈ N(x). A global optimum,

x∗, is a solution that f(x∗) ≤ y for all y ∈ X. The goal in MAX-SAT is to find a global

optimum, or at least to get as close to global optimum as possible. In SAT, local search

cannot determine if an instance is unsatisfiable. However, it can determine an instance is

satisfiable by finding a solution that satisfies the instance. Therefore, local search for both

SAT and MAX-SAT performs essentially the same function: to satisfy as many clauses as

possible. Local search will therefore follow the gradient of the objective function in the

local neighborhood. As a result, it will become stuck at the first local optimum it finds. If

f(x′) > f(x∗), then the local search will be unable to find the global optimum.

To address this issue, an element of stochasticity is added to the local search. For example,

the search could take a random walk after it encounters a local optimum by flipping some

number of random bits in the local optimum. The algorithm could then continue with the

14

standard local search until another local optima is reached, and repeat. Such algorithms are

known as stochastic local search (SLS) algorithms.

The best performing incomplete solvers for both MAX-SAT and SAT are SLS algo-

rithms [38, 47, 53, 71, 49]. Even though SLS algorithms represent the state-of-the-art in in-

complete solvers, Kroc et al. have shown that many SLS algorithms for SAT and MAX-SAT

have difficulty on industrial instances [47]. In the 2011 SAT Competition, SLS algorithms

were the top four algorithms overall (thus beating over a hundred incomplete and complete

solvers) in the uniform random SAT track. These same solvers fell to below 40th place in

the industrial instance category. In fact, no incomplete solvers were above rank 40 in this

category [67]. Similarly, in the MAX-SAT 2012 competition, only 2 of the 55 industrial

instances were solved by incomplete solvers, while SLS algorithms were able to solve all of

the instances in the uniform random track [52].

The remainder of this chapter will discuss the anatomy of SLS algorithms for MAX-SAT

and SAT that we break down into three major components: Initialization, Exploitation, and

Exploration. This will provide a useful framework for discussing our analysis and improve-

ments that follow in the next few chapters, as well as cover much of the prior work in SLS

algorithms for MAX-SAT.

2.1 Initialization

SLS algorithms maintain a candidate solution x and incrementally move through the

search space by flipping bits in x. While SLS algorithms differ in the heuristics they use to

determine which bit to flip, they all must first choose an initial candidate solution x.

The initialization phase is the first step in any SLS algorithm and is perhaps the most

widely overlooked step in the literature on SLS algorithms for MAX-SAT [24, 89, 62]. The

most common method by far of initializing SLS is a uniform probability distribution. In

uniform random initialization, each of the n variables in a given formula are set to 0 or 1

with equal probability.

15

Literature on initialization of SLS algorithms is sparse. Gent et al. performed a study on

several deterministic methods of setting an initial string [24]. These methods did not use any

information about the given instance, but rather tried different deterministic bit settings,

e.g., setting all bits to 0, setting all bits to 1, setting half the bits to 0, etc. The determin-

istic initialization methods found similar results as uniform random initialization [24]. This

suggests that randomness is not necessary in initialization of SLS algorithms, i.e., a uniform

random solution is just as good as setting all bits to 1, given that multiple runs of the search

on the same problem use different deterministic settings.

However, the study of Gent et al. does not address initialization methods which use

information about the search space of the given instance to initialize the search. We are

aware of only two initialization methods that have been reported in the literature that use

information from the problem instance to construct an initial solution, which we discuss in

detail.

2.1.1 Estimating Backbone Frequencies

The first initialization method is one that claims to estimate the backbone of a given

instance. The backbone of an instance of MAX-SAT is the set of variables that have a

consistent truth assignment across all globally optimal solutions for that instance [74]. For

example, if an instance of MAX-SAT with four variables, x1, x2, x3, x4, has the global optima,

0010, 0011, 0110, 0111, the backbone would be x1, x3. If an instance has a single global

optimum, the backbone is the set of all n variables.

The backbone frequency is an extension of the backbone to all n variables of a given

instance that counts the frequency that each variable-value pair l = (xi, vi), where xi is the

variable and vi is the truth value of that variable, occurs in the globally optimal solutions [89].

In the above example, the variable-value pair l′ = (x2, 1) occurs twice. The backbone

frequency of l′ is then 2
4
= .5. Each variable will be associated with two variable-value pairs.

If that variable is in the backbone, one of these pairs will have a frequency of 1 while the

other will have a frequency of 0.

16

Computing the backbone frequency requires all global optima to be known for a particular

instance. Therefore, the backbone frequency must be estimated for it to be useful in local

search. Zhang presents a method of using a set of local optima to construct a probability

distribution over the n variables [88]. This distribution is then used to construct a new

solution for an SLS algorithm. Zhang’s claim is that this distribution, called the pseudo-

backbone frequency, approximates the backbone frequency.

The pseudo-backbone frequency is an estimate of the backbone frequency using the variable-

value pairs found in a set S of local optima rather than the set of global optima. Because S

is a set of locally optimal solutions they are mostly likely not of equal quality. To account

for the variation in solution quality, the following cost reciprocal average counting (CRAC)

method is used to weight the frequency of each variable-value pair l by the cost of the

solutions in which it is found [89]:

p(l) =

∑
∀si∈S,l∈si

1/ci∑
∀si∈S

1/ci
(2.1)

where ci is the cost of solution si. A new solution is then constructed by setting each variable

xi to 1 with probability p(l = (xi, 1)), or to 0 with probability p(l = (xi, 0)).

2.1.2 Estimating Locations of Optima

Qasem et al. take a similar approach to initializing SLS in that they use a set of local

optima to determine a probability distribution [62]. This method is based on the hypothesis

that solutions of good evaluation tend to cluster around other good solutions, with the

best solutions being at the center of a cluster. Furthermore, the search space typically has

multiple clusters. Parkes’ hypothesizes that some clusters are centered around local optima

while other are centered around global optima [59]. Therefore, instead of using the entire

set of local optima, Qasem et al. first apply k-means clustering [34] using the Hamming

distance between local optima as a distance metric. The centroid of the clusters found by

k-means are then computed and the lowest evaluation is used as the initial solution to an

SLS algorithm.

17

2.1.3 Similarity between Initialization Methods

In the cluster method of Qasem et al., once k-means determines a partitioning of the

local optima into a set of clusters, C, the centroid of each cluster, ci, is computed using the

following equation:

ci = argminci

1

|Ci|
∑

s∈Ci

d(ci, s) (2.2)

where ci is the binary string that minimizes the Hamming distance d from the centroid to

the solutions s ∈ Ci. The most efficient way to compute this centroid is by simply taking the

mean of the solutions in the cluster, treating each solution as a real-valued vector in base

10:

ci =

∑
s∈Ci

s

|Ci|
(2.3)

In this case ci will be a vector of n elements in the interval [0, 1]. By rounding the

elements to the nearest integer, we find the bit vector that satisfies equation 2.2.

In Zhang’s method, equation 2.1 is used to compute the probability of setting variable l

to 1. This can be simplified to

p(l) =

∑
∀si∈S,l∈si

1

|S| (2.4)

where S is the set of local optima. Note that for this initialization method we require a

probability for each variable-value pair l and p(l = (xi, 1)) = 1 − p(l = (xi, 0)). We need

not compute all the variable-value pairs. Instead, we can more efficiently compute just

the p values for variable-value pairs with a value of 1. Let q be a vector where element

qi = p(l = (xi, 1)). We can then compute q using the following equation:

q =

∑
s∈S s

|S| (2.5)

Equations 2.3 and 2.5 both find the average truth assignments in a set of local optima.

Therefore, both methods utilize an average of local optima to initialize the search. Although

18

the computation is identical, there are two differences between the methods. The first is that

in Zhang’s method the entire set of local optima is used to determine the average. Qasem

et al. first partition the set with K-means clustering. The second is that Zhang uses the

averages directly as a probability to set each bit. Qasem et al. round the average to find the

closest bit string and use this as an initial solution.

Nevertheless, both methods are very similar. They both require an upfront cost of run-

ning local search to find a large number of local optima (> 100 in the empirical trials in both

studies [62, 89]). Furthermore, these are the only two methods known to us that use infor-

mation about a given instance to initialize the search. Determining if better initialization

methods can impact the performance of SLS will discussed in detail in Chapter 5.

2.2 The Exploitation Component

The exploitation component is the means by which an SLS algorithm guides the search

towards a good solution. Typically, this resembles a standard local search in which gradient

information provided by the evaluation function is used to guide the next move. Variations

on the evaluation function can relax the greediness as we discuss in the next section.

GSAT is perhaps one of the most well-studied stochastic local search algorithms for SAT

and MAX-SAT that makes use of a strict greedy strategy [71, 70, 38]. GSAT will determine

the evaluation of all neighbors of the current solution, y ∈ N(x) and will choose the neighbor

yi that maximizes f(x)− f(yi), where yi is the solution found by flipping bit i in x and f is

the standard MAX-SAT evaluation function returning the number of unsatisfied clauses.

GSAT does not require that a move be improving. If x is a local optimum, GSAT will

make an equal move, otherwise it will make a disimproving move that maximizes f(x)−f(yi).

It will always take a solution yielding the most favorable change to the current evaluation;

it simply does not require that move to be an improving move, allowing it to escape local

optima. In this sense it is one of the most exploitative SLS algorithms for MAX-SAT.

The most straightforward variation to this strategy is in how an improving move is

chosen. We will refer to the strategy outlined above as best improving search. That is at

19

each step, the search flips bit i that maximizes f(x)− f(yi). If there are multiple solutions

with evaluation equal to f(yi), best improving search breaks ties at random.

A variation on this strategy is first improving search. First improving search randomly

selects a move from all improving moves, regardless of the change to evaluation. Let I be a

subset of N(x) such that yi ∈ I if and only if f(yi) < f(x). If I is non-empty, then the next

move is chosen by randomly selecting a move from I. Otherwise, a random equal move is

taken if one exists, otherwise a random disimproving move is taken.

Gent et al. studied the differences in best improving and first improving search with

respect to the performance in terms of quality of solution on six problems: three SAT

encodings of the n-queens problem (n = 6, 8, 16) and three random 3SAT problems with

clause to variable ratio of 4.3 (for 50, 70 and 100 variables) [23]. This study found that there

was no evidence suggesting that best improving search is better than first improving.

The issue of time complexity and differences between first improving and best improving

has not been thoroughly addressed. This may be due to the fact that the instances used

in prior studies were small and thus the difference in timings was not significant. However,

modern industrial instances can have well over a million variables. As a result, implemen-

tations of GSAT and some state-of-the-art SLS algorithms, such as iterated robust tabu

search [75] and AdaptG2WSAT [49], use a slow implementation of best improving search

that can severely impact their performance on large instances. This issue is discussed at

length in Chapter 4.

2.3 The Exploration Component

The last component of an SLS algorithm that facilitates exploration of the search space.

In this case, we do not necessarily care if the move is improving or not. The exploration

component allows the search to continue moving around the space and prevents it from

becoming stuck at local optima. While GSAT allows the search to explore the space by

allowing equal and disimproving moves, it does so randomly. This can be improved by

adding a bias to a random walk when no improving moves are in the neighborhood of the

20

candidate solution [53]. Much of the research in SLS algorithms over the past twenty years

has been in how to bias a random walk in lieu of gradient information.

One of the first SLS algorithms to make use of a biased walk is WalkSAT [70]. The

WalkSAT algorithm has two major differences from GSAT. The first is that, given a candidate

solution x, WalkSAT does not choose a move based on the objective function evaluation of

the solutions in N(x). Instead, it examines a variable’s break-count. The break-count of

variable xi is the number of clauses that will become unsatisfied if xi is flipped. WalkSAT

uses the break-count to heuristically select which variable to flip, but also has a probability

of randomly flipping a variable.

The second difference is that WalkSAT does not consider all n variables when making

a move. WalkSAT first chooses a random clause, cj, which is unsatisfied under the current

candidate solution x. With probability p, it then examines the break count of all variables

in cj and chooses the variable with the least break count. With probability 1− p, it chooses

a random variable in clause cj.

The WalkSAT family of heuristics represents perhaps the most widely-used and best-

performing heuristics for SAT and MAX-SAT [70, 53, 49, 38, 46]. The majority of improve-

ments to WalkSAT are in the choice of which variable to flip after an unsatisfied clause is

chosen [70, 53, 49]. The Novelty heuristic considers history in this choice, by biasing the

choice towards those variables that have not been recently flipped [53]. Novelty+ adds a

lookahead into the variable choice by also considering the evaluation of solutions in N(yp)

when considering a flip of variable p in the candidate solution [48].

While WalkSAT emphasizes exploration of the space, its exploitation component is much

more relaxed than that of GSAT. Consider an instance of MAX-3SAT and a candidate

solution x with an evaluation of f(x) > f(x∗) where x∗ is the global optimum. WalkSAT

will first choose clause cj which is unsatisfied under x. Because k = 3, cj contains three

variables: i, j, and k. Let bc(i) be the break-count of variable i and mc(i) be the make-

count, that is the number of currently unsatisfied clauses that will become satisfied if we flip

variable i. Note that f(yi) = f(x)+ bc(i)−mc(i). It is quite possible that bc(i) < bc(k) and

21

bc(i) −mc(i) > bc(k) −mc(k). Thus with probability p, WalkSAT will flip variable i even

though flipping variable k will produce a better solution.

AdaptG2WSAT is an SLS algorithm that combines the search space exploration of Walk-

SAT and the greediness of GSAT [49]. At each step of the search, if there exists yi ∈ N(x)

such that f(yi) < f(x), AdaptG2WSAT will flip bit i that minimizes f(yi). If only equal or

disimproving moves exist, AdaptG2WSAT will employ the Novelty+ heuristic to determine

which bit to flip.

This strategy works well. Kroc et al. find that AdaptG2WSAT is the best performing

SLS algorithm on structured instances of MAX-SAT of those algorithms in the UBCSAT

suite of SLS algorithms [79, 47]. AdaptG2WSAT and other SLS algorithms based on it have

routinely been among the best performing SLS algorithms at SAT competitions [67, 48, 49]

on random instances.

We will focus on AdaptG2WSAT for our empirical studies as it represents a well-studied,

top performing SLS algorithm that combines both a greedy exploitation component and an

exploration component. Furthermore, the code is freely available as part of the UBCSAT

collection of incomplete solvers for MAX-SAT [79].

Although AdaptG2WSAT performs exceptionally well on uniform random instances, its

performance decreases dramatically on structured instances from real-world applications [47].

The focus of the next chapter will be to better understand why AdaptG2WSAT and other

SLS algorithms have such difficulty with structured instances.

22

Chapter 3

Structured Instances of MAX-SAT

Stochastic Local Search (SLS) algorithms for SAT and MAX-SAT have historically been

developed using uniform random instances as benchmark problems [40, 70, 49, 71]. These

instances have several attractive properties: they are easy to generate and the expectation

of uniformity allows for fairly straightforward analytical analyses. However, several studies

have shown that instances of MAX-SAT with properties that are not found in expectation

in uniform random instances are difficult for SLS algorithms [47, 38, 39, 12, 72].

Ansotegui et al. have found that difficult instances of SAT and MAX-SAT have three

characteristics in common: a distribution of variable frequency that follows a power-law

probability density function [3], a distribution of clause lengths that also follows a power-law

distribution [4] and a community structure [5]. The community structure arises in graph

representations of SAT and MAX-SAT instances and is characterized by subsets of nodes

that share many connections between other nodes in the same subset, but few connections

to nodes outside of the subset. These characteristics are very similar to those found in graph

representations of social and communication networks.

These characteristics are associated with difficult problems, but what is not known is

why these problems are difficult and how the characteristics observed by Ansotegui et al.

relate to the search space of the instance. In the following analyses, we will examine these

characteristics to determine how they influence properties of the search space. To address

the issue of why problems with these characteristics are difficult, we first examine several

features of the search space related to the ruggedness of the space.

The ruggedness of a search space is a measure of how the fitness differs between neigh-

boring points [54]. Problems with more rugged landscapes are typically more difficult for

stochastic local search [38]. We find that the search space is more rugged on instances with

a community structure and variable clause length. We find an inverse correlation between

23

this ruggedness and AdaptG2WSAT’s ability to find global optima. The variable distribu-

tion does not seem to be an important factor in increasing ruggedness of the space or in

decreasing the performance of AdaptG2WSAT. Indeed, as our following analysis will reveal,

a power-law distribution specifically seems to make problems easier rather than harder for

SLS. It is also important to note that these characteristics are identifiable in a tractable way

prior to running any search.

To begin our analysis, we will first review the three characteristics of difficult instances.

We next discuss a new instance generator that we developed to construct MAX-SAT in-

stances with a community structure similar to that found in industrial instances. We then

show that this instance generator produces highly rugged instances that are difficult for

AdaptG2WSAT to solve. Specifically, AdaptG2WSAT fails to solve instances from our gen-

erator with variable counts as low as n = 100 after 10,000 bit flips. In contrast, similar sized

instances from uniform or power-law generators are solved with a probability approaching 1

in less than half of the same number of bit flips. We then present an analysis of the search

space of these instances which reveals certain features of the search space are significantly

different on instances with a community structure than those without.

3.1 Characteristics of Structured MAX-SAT Instances

To examine the characteristics of community structure, variable distribution and clause

distribution, it is helpful to first transform the instance of MAX-SAT or SAT to a graph.

This allows us to not only visualize the instance, but also to employ algorithms developed

for graphs to compute statistics about the instance.

MAX-SAT and SAT instances can be represented by a number of graph representa-

tions [73]. Two of the most common representations are the variable interaction graph

(VIG) and the clause-variable interaction graph (CIG) [5]. The variable interaction graph

(VIG) is a graph G = (V,E) where each vertex vi ∈ V corresponds to variable i in the SAT

or MAX-SAT instance. The edge set E contains edges between vertices vi and vj if and only

if variable i and variable j appear in a clause in the instance.

24

The clause-variable interaction graph (CIG) is a bipartite-graph G = ((V1, V2), E) where

V1 is a set of vertices corresponding to variables as in the VIG and V2 is a set of vertices

which map one-to-one to the clauses of the SAT or MAX-SAT instance. Edge (i, j) appears

in E if and only if variable i appears in clause j.

Ansotegui et al. have shown that both VIGs and CIGs constructed from industrial

instances have a scale-free structure that is not present in uniform random instances [3, 5].

This structure is characterized by the distribution of vertex degrees which can be described

by the power-law probability density function [3],

θpow(x; β) = (1− β)x−β (3.1)

As examples, Figure 3.1 shows the histograms of variable frequency for three different

instances of MAX-SAT with 50 variables and 214 clauses: an instance generated using

a uniform distribution of variable frequency (Figure 3.1a), an instance generated using a

power-law distribution (Figure 3.1b), and the b15 industrial instance from the MAX-SAT

2012 competition (Figure 3.1c) [52]. These histograms show the number of degrees at each

node of a VIG representation of the instances. The distributions shown in Figure 3.1b and

Figure 3.1c are typical of problems with a scale-free structure [3, 80], while Figure 3.1a is

clearly from a uniform distribution.

We analysized of 380 industrial instances collected from the MAX-SAT 2012 competi-

tion [52] and the 2011 SAT competition [67]. The instance names along with the number of

variables and clauses can be found in Table 1 of Appendix A. We found that the variable

distribution in all but four of these instances followed a power-law distribution. We found

that in all but ten of these instances that the distribution of clause lengths also follows a

power-law distribution. These analyses are described in detail in Section 6 of this chapter.

3.1.1 Community Structure in SAT and MAX-SAT instances

Another feature common to industrial instances is the presence of a community structure

in their VIG and CIG representations [5]. Often found in complex networks such as commu-

nication networks or social links, a community structure refers to a clustering of nodes into

25

Number of Clauses Per Variable

F
re

qu
en

cy

5 10 15 20 25

0
20

40
60

80
10

0

(a) Generated Random Uniform

Number of Clauses Per Variable

F
re

qu
en

cy

0 200 400 600 800

0
20

0
40

0
60

0
80

0

(b) Generated Random Power-Law

Number of Clauses Per Variable

F
re

qu
en

cy

0 50 100 150 200

0e
+

00
1e

+
05

2e
+

05
3e

+
05

(c) Industrial

Figure 3.1: Histograms of the number of clauses in which each variable appears for three
types of problems: an instance randomly generated with a uniform distribution (a), an
instance generated randomly with a power-law distribution (b), and an industrial instance
from a circuit debugging application (c).

families. Nodes within the same family share more edges than they do with those outside of

the family. The small world networks of Watts and Strogatz [81] were proposed as a model

of complex networks that can capture community structure. As a way of quantifying the

community structure in such models, Newman et al. have proposed the following modularity

metric [58].

26

Given a graph G = (V,E) and a partition of V into j families, P = P1, P2, ...Pj , the

modularity of G is defined as

Q =
∑

i

(Aii − a2i) (3.2)

where A is a jxj matrix such that entry aij is the number of edges shared between nodes

in Pi and Pj and ai is defined as the sum of row i in E, ai =
∑

j aij. Note that Q depends

on the partition P . The modularity of a graph is defined as the Q value under the partition

yielding the maximum modularity score. A partition with a single subset, i.e. P = P1 = V

will return a Q value of 0. Thus the minimum modularity of any graph is 0 and the maximum

possible modularity is 1. Random graphs have an expected modularity of 0 [58].

In complex networks based on communication and social networks, graphs with a high

community structure typically have a Q value in the range of .4 to .7 with values over .7 being

rare [58]. Ansotegui et al. [5] studied on over 100 industrial instances from the SAT 2011

competition and found that the VIG representations of all but one class of industrial problems

have a modularity score > .4, with some instances having a modularity high as .9. We found

similar results in instances produced by our community structure generator described in the

next section. The mean modularity was over > .4 on instances generated with a community

structure, while the mean modularity of uniform instances with no community structure was

0.

3.1.2 Summary of Structure in MAX-SAT

We have discussed three characteristics that relate to the structure of MAX-SAT and

SAT instances: the power-law distribution of variable frequency and clause lengths and

the community structure. These characteristics will form the basis for our analysis in the

following chapter for several reasons. First, we know that the overwhelming majority of

industrial instances have these characteristics due to the work of Ansotegui et al. [3, 5] and

our own analyses (See Section 6 for details). Second, we have methods to determine if an

instance has these characteristics: The goodness of fit test for power-law distributions and

the modularity metric for community structure. Not only does this allow us to quantify the

27

degree to which instances have these characteristics, but it may also be useful for future work

in the design of enhanced portfolio solvers. Finally, as we will discuss in the next section,

we have developed methods of generating instances with these characteristics.

3.2 Generating Structured Instances of MAX-SAT

Uniform random instances of MAX-SAT are generated by choosing k variables per clause

with a uniform distribution over each variable with the constraint that a particular variable

can only appear once per clause. Thus in expectation, each variable will appear in the

same number of clauses. Uniform instances serve as standard benchmarks for developing

incomplete solvers for SAT and MAX-SAT. It is perhaps not surprising that there is a

significant decrease in the performance of SLS algorithms on industrial instances [47, 3].

We have identified three characteristics of industrial instances that are not present in

uniform random instances. However, the industrial instances at our disposal are much too

large for a complete analysis. We therefore wish to generate small instances with similar

characteristics. Smaller instances will allow us to perform a more thorough analysis of the

search space in our effort to determine why instances with these characteristics are more

difficult for SLS algorithms. The power-law generator of Ansotegui et al. [4] will serve as

our starting point. We alter this generator so that it constructs instances with community

structure. We will then show that instances created with our generator are difficult for

state-of-the art SLS algorithms.

3.2.1 Generating Power-Law Instances

To construct a problem generator that can create instances with the characteristics we

wish to examine, we begin with a problem generator due to Ansotegui et al. that is capable

of producing instances with a variable frequency that follows a power-law distribution [4].

The power-law continuous probability distribution is given by the density function in

Equation 1 [4]. Ansotegui et al. derive a discrete probability function based on this function

by dividing the domain [0, 1] into n intervals. A continuous probability distribution θ over

28

the domain [0, 1] can be broken into n intervals with end points 1/n,2/n,...,n [4]. Normalizing

for the n intervals yields the following family of discrete probability distributions

P (X = i;n) =
θ(i/n)∑n
j=1 θ(j/n)

As the power-law distribution is not defined at x = 0, the term ǫ is introduced, making the

density function

θpow(x; β) =
1− β

(1 + ǫ)1−β − ǫ1−β
(x+ ǫ)−β

This function is then discretized using the above method, giving

P (X = i, β, n) =
(i+ ǫn)−β

∑n
j=1(j + ǫn)−β

This distribution can be used to generate instances that have a power-law distribution

of variables as follows. To generate a formula of m clauses, we must choose k variables for

each clause. These variables are chosen using the following algorithm This will generate

Algorithm 1: Variable Selection in Power-Law Instance Generator

1 Let C = ∅;
2 while Number of elements in C = 1 do

3 Let p =Random number in [0 + ǫ, 1 + ǫ];
4 Let q = 0;
5 Let i = 0;
6 while q < 0 do

7 i = i+ 1;
8 q = q + P (i/n);

9 Repeat previous loop to select a new i

a set of k variable indices from the power-law distribution; variables with the lowest index

will have the highest probability of being chosen. Once the variables are chosen, they are

negated with a .5 probability. The algorithm is repeated for each of the m clauses in the

instance [4]. To construct a formula with variable length clauses, we use a similar algorithm

to first select the length of each clause prior to generating the variables.

In practice, we define our function P by letting n be the number of variables and β = .082.

This value of β was found to generate problems with similar characteristics as industrial

29

instances [3]. To generate instances with a uniform distribution we replace the discrete

power-law function in Algorithm 1 with P (X = i;n) = 1/n.

3.2.2 Adding Community Structure to Generated Instances

Our generator allows us to create problems with a uniform or power-law variable fre-

quency and fixed or variable clause lengths. We now wish to extend the generator to con-

struct problems with the third characteristic we wish to examine: community structure.

To add community structure to the instances generated with Algorithm 1, we want to

generate families of variables that co-occur with one another with high frequency, but co-

occur with variables outside the family with low frequency. To accomplish this task, we add

an additional parameter l to specify the number of families to construct. We then partition

the variables into l + 1 ordered sets based on the variable indices, such that the first set

contains n/(l + 1) variables and the remaining sets have n/(l + 1) + 1 variables.

For example, given the n variable indices 1, 2, 3, ..., n, set 1 consists of variables

{1, 2, .., n/(l + 1)}

set 2 are the variables

{n/(l + 1) + 1, n/(l + 1) + 2, ..., 2(n/(l + 1)), 2(n/(l + 1)) + 1}

set 3 is

{2n/(l + 1) + 1, n/(l + 1) + 2, ..., 3(n/(l + 1)), 3(n/(l + 1)) + 1}

and so on for l + 1 sets. The final variable in the last set will be the first variable in set 2.

Thus set 1 is mutually exclusive of all other sets, but the remaining sets will overlap in one

variable.

The first set is special and we refer to it as connector variables, D = d1, d2, ..., dn/(l+1).

This set does not correspond to a family of variables, but will be distributed within the

remaining sets to connect them to one another. The remaining sets correspond to the

partition of families,

F = {F1 = {v11, v12, ..., v1n/(l+1)}, F2, ..., Fl = {vl1, vl2, ..., vln/(l+1)}}

30

Table 3.1: Description of the five instance generators and the shorthand notation used to
refer to each generator.

Notation Variable Occurrence Clause Length Modular
pl/k3 Power-law Fixed Length, k = 3 No
uni/k3 Uniform Power-law No
pl/pl Power-law Fixed Length, k = 3 No
pl/k3 Uniform Power-law No

pl/k3 (mod) Power-law Fixed Length, k = 3 Yes
uni/k3 (mod) Uniform Power-law Yes
pl/pl (mod) Power-law Fixed Length, k = 3 Yes
pl/k3 (mod) Uniform Power-law Yes

We call algorithm 1 on each family of variables to generate m/l clauses from each family.

This gives us m clauses composed of l families. The variables within each family have a high

rate of co-occurrence, which was one of our objectives, but there is still a high rate of co-

occurrence between families due to overlapping variables. The last variable maps to the tail-

end of the power-law distribution, so in expectation it will occur least frequently. However,

this same variable is at the front-end of the power-law distribution in the next family and

it will be the most frequently occurring variable in expectation. Therefore, without further

modification, there will still be a high number of connections between families.

To adjust for this, we map the last variable of each family to a connector variable in D.

Every appearance of the variable vin/(l+1) in family Fi is replaced with variable di or variable

di+1 with equal probability. Thus our generator creates instances with a ’ring’ structure

such that family Fi will likely be connected to Fi−1 and Fi+1. We will show that instances

generated in this manner have a modularity similar to that in industrial instances and are

difficult for SLS.

3.2.3 Comparison of Instance Generators

With our community structure extension, we have eight generator types. Table 3.1

summarizes our generators and defines the notation we will use to refer to them.

To visualize the difference in variable connectivity between our generators, we generated

one instance from each of the pl/k3, uni/k3 and pl/k3 (mod) generators with n = 30 variables

31

and m = 150 clauses. We used a β = .82 for the power-law distribution and set the number

of clusters to 3 for our modular generator. We then constructed a VIG for each instance. The

resulting graphs are shown in Figure 3.2. It is clear that the uniform instance in Figure 3.2(a)

resembles a random graph. In the non-modular instance with a power-law distribution in

variable frequency, we see that there are a few variables with many connections and many

variables with few connections. The modular instance in Figure 3.2(c) shows the community

structure that we wanted to capture: three clusters of nodes with many interior connections,

but few exterior connections.

To confirm our hypothesis that uniform and power-law generated instances do not have

community structure we need to measure the community structures of instances created

by our generators. The modularity metric of Newman et al. [58] described in Equation 2

provides such a measure. Computing the modularity of a graph requires a partition of the

vertices of the graph. Finding the optimal partition is NP-hard [11, 5]. We therefore use the

graph folding algorithm of Newman et al. [58], to approximate the optimal partition as it

has been shown to find partitions close to optimal and is tractable even on larger graphs [5].

Given a VIG representation of an instance of SAT or MAX-SAT, the graph folding algo-

rithm (GFA) works as follows. First, each variable is assigned to one family such that if there

are n variables, there are n families each containing a single variable. The modularity of VIG

under this initial partition is computed using Equation 2. The algorithm then examines each

vertex and computes the change to modularity that would occur from removing the vertex

from its current partition and adding it to each other partition. The change that results

in the maximum increase to modularity is carried out. This process is continued until no

improvement to modularity can be found, at which point the algorithm has reached a local

optimum.

Once a local optimum is reached, GFA constructs a new graph where the vertices V =

1, 2, ..., l correspond to the partitions in the locally optimal partition P = P1, P2, ..., Pl in the

local optimum. Edges are made such that two vertices (i, j) are connected if and only if there

is an edge between the partitions Pi and Pj. The algorithm is then restarted on this new

32

1

0

2

4

5

6

3

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

(a) uni/k3

1

0

2

3

4

5

6
7

8

9
10

11

12

14

15

17

20

23

25

26

27

(b) pl/k3

3

0

2

4

5

6

7

8

9

10

11

12
1

13

14

15

16

17

18

19

20

21

22

23
24

25

2627

28

29

(c) pl/k3 (mod)

Figure 3.2: Variable interaction graphs of instances with n = 30 and m = 150 clauses
made by three generators: (a) the standard uniform distribution with k = clauses, (b)
Ansotegui’s power-law generator with k = 3, and (c) our modular generator using a power-
law distribution on variable frequency and k = 3.

33

Table 3.2: Mean and standard deviations of modularity on our generated instances. See
Table 3.1 for the description of our generators.

pl/k3 uni/k3 pl/pl uni/pl
0.00 ± 0.01 0.07 ± 0.02 0.00 ± 0.00 0.02 ± 0.02

pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
0.72 ± 0.02 0.72 ± 0.03 0.75 ± 0.04 0.67 ± 0.01

graph. It continues recursively until no further improvements to modularity can be found.

Although GFA is not guaranteed to return the optimal partition, it does find partitions with

higher modularity than those found by other heuristic algorithms that stop at the first local

optimum, such as the Label Propagation Algorithm (LPA) [14, 5].

We generated a set of 50 instances with n = 50 variables and m = 214 clauses with

each of the instance generators. For the modular generator we choose l = 6 families as

empirically we found this parameter setting to generate the highest modularity. We then

ran GFA on each of the instances and recorded the modularity. The modularity of a graph is

the maximum modularity under the optimal partition. Because GFA is a non-deterministic

algorithm, we at best can say the Q found is a lower bound on the modularity. Therefore, we

ran GFA 50 times for each instance and recorded the maximum Q found for each instance.

Table 3.2 reports the mean and standard deviation of the maximum Q values recorded for

each instance.

The (mod) generators are the only generators which produce instances with a modularity

similar to those reported by Ansotegui et al. on industrial instances [5]. This gives us a set

of instances that have similar characteristics to industrial instances. The rationale for ana-

lyzing these these instances is to determine how these factors influence the performance of

SLS algorithms and what impact they have on the underlying search space. SLS algorithms

perform poorly on industrial instances as compared to their performance on uniform ran-

dom instances [47]. Therefore, we expect that SLS algorithms will perform worse on those

instances that share characteristics with industrial instances.

To determine if this is indeed the case, we will use the run length distribution (RLD) as

defined by Hoos et al. [41] to examine the performance of AdaptG2WSAT on our generated

34

instances [49, 48, 71, 70, 53]. The RLD estimates the probability distribution that an SLS

algorithm will find the overall best solution as a function of the number of bit flips. We used

the same 50 instances from each generator with n = 50 variables and m = 214 clauses that

were used to compute the modularity in Table 3.2.

To compute the RLD we ran AdaptG2WSAT on each of our generated instances for 50

runs with each run starting from a different randomly generated solution. Each run was

allowed 10,000 bit flips. For each run, we used an indicator variable for each bit flip. This

variable was set to 1 if a globally optimal solution was found, or set to 0 if not. We then

computed the mean of the resulting binary vectors over the 50 runs from each of the 50

instances from the eight generators. This gave us the probability of finding the optimal

solution at each bit flip for each instance type. We then repeated this experiment using 50

more instances with each generator with n = 100 variables and m = 427 clauses.

Figure 3.3 shows the RLDs of each instance type for the N = 50 instances;Figure 3.4

shows the RLDs for the n = 100 instances. AdaptG2WSAT has the most difficulty finding the

globally optimal solutions on the modular instances with variable clause length distributions.

Surprisingly, on the n = 100 instances, less than 20% of the modular instances with variable

clause lengths were solved after 10,000 bit flips.

Figure 3.3 also shows that AdaptG2WSAT can find the optimal solutions more quickly on

those instances with a power-law distribution over the variables than those with a uniform

distribution. This would seem to indicate that the difficulty in hard industrial instances

is related more to the community structure and clause length than the variable frequency.

Having developed generators capable of producing difficult instances of MAX-SAT, we now

wish to perform a deeper analysis of these instances to better understand the differences in

SLS performance noted in Figures 3.3 and 3.4.

3.3 Plateaus in Structured Instances

Industrial instances come from real-world problems which are transformed to an instance

of MAX-SAT, e.g., circuit debugging and verification [66] or planning [44, 45]. There may be

35

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Flips

P
(s

uc
ce

ss
)

pl/k3

uni/k3

pl/pl

uni/pl

pl/k3 (mod)

uni/k3 (mod)

pl/pl (mod)

uni/pl (mod)

Figure 3.3: The Run-Length Distribution of 10,000 bit flips of AdaptG2WSAT on 50 in-
stances constructed by each of the eight generator types with size n = 50.The legends denote
the generator type used to constructed the instances using the notation from Table 3.1.

36

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Flips

P
(s

uc
ce

ss
)

pl/k3

uni/k3

pl/pl

uni/pl

pl/k3 (mod)

uni/k3 (mod)

pl/pl (mod)

uni/pl (mod)

Figure 3.4: The Run-Length Distribution of 10,000 bit flips of AdaptG2WSAT on 50 in-
stances constructed by each of the eight generator types with size n = 100. The legends
denote the generator type used to constructed the instances using the notation from Ta-
ble 3.1.

37

a deeper structure inherent to these instances as a result of the specific application. However,

instances with a scale-free and community structure offer a good starting point for our

analysis as many industrial instances have been observed to have these characteristics [4, 3, 5].

Furthermore, we have shown that generated instances with these properties are difficult for

AdaptG2WSAT. By using our generators we can directly control for these characteristics in

order to investigate both their individual effects and interaction effects on features of the

search space. Before we discuss our new results, we will first review previous work on these

features in uniform instances of MAX-SAT.

3.3.1 Previous Analysis of Plateaus in Uniform Instances

One of the most well-studied features of the MAX-SAT search space is plateaus. Given

the landscape L = (X,N, f) of an instance of MAX-SAT, the search graph of L is defined

as Gn = (X,N) [76]. A plateau P is a maximal connected subgraph of Gn such that all

solutions in P have an evaluation of l [21]. We refer to l as the level of P , e.g., a plateau of

level 5 is a maximal set of connected solutions that have 5 unsatisfied clauses. A level-set is

all solutions in X that have the same evaluation. The lower the level of a plateau, the closer

that plateau is to the global optimum in terms of evaluation.

The size of a plateau is the number of solutions on that plateau. An exit is a solution,

x, on a plateau such that y ∈ N(x) and f(y) < f(x). Any plateau with at least one exit is

an open plateau and its escape density is the ratio of number of exits on the plateau to its

size. A closed plateau is one with no exits.

Hampson and Kibler investigated several characteristics of plateaus on instances of uni-

formly generated 3SAT with a cv-ratio of 4.3 [33]. They sampled the space using GSAT,

an early stochastic local search algorithm for SAT [71]. From each solution, they ran a

breadth-first search limited to 100,000 nodes on neighboring solutions with equal evaluation.

Hampson and Kibler used these results to estimate characteristics of plateaus and found that

as the level of a plateau improves, so does the size and escape density of that plateau [33].

38

This implies that plateaus will become more of an issue as the search finds solutions closer

in evaluation to the optimal solution.

Frank et al. performed a similar study of plateaus on uniform instances of 3SAT with

varying cv-ratios and n = 100 [21]. On each instance, they used GSAT to sample solutions

with levels of 1,2,3,4 and 5. They then used a breadth-first search to exhaustively expand the

plateaus containing the sampled solutions and collect statistics such as the size and escape

density of the plateaus. They found that plateaus were smaller with a higher number of

closed plateaus and a lower escape density on open plateaus at levels closer to the global

optimum. However, Smyth attempted to recreate the experiments of Frank et al. and found

that plateau sizes were much larger than those reported in the original work [76], indicating

that there was a difference in their methodology and the one employed by Frank.

On small uniform instances of 3-SAT (n ≤ 45), Smyth found by exhaustively exploring

the low level space that the number of plateaus and size of plateaus decreases with the

level. Furthermore, the majority of high level plateaus are open; closed plateaus occur

mostly in the lowest levels of the space, i.e., close to the optimal solution. Smyth also

sampled the space of larger instances (n = 100) and found the same trends as his results

on smaller instances. These results also match those found by Hampson and Kibler. As the

results of Smyth’s sampling methodology coincide with both Smyth’s results from exhaustive

enumeration of plateaus on smaller instances and Hampon and Kibler’s results, this lends

credence to Smyth’s results.

Smyth’s results suggest that the search space becomes more rugged at levels closer to the

global optima. Ruggedness refers to the variability in evaluations of neighboring solutions

and can impact the reachability of solutions to local search [40, 38]. Landscapes that are

more rugged are more difficult to search [40, 38]. Smyth has shown that plateaus on higher

levels are larger than those on lower levels. As both the plateau size and number of plateaus

decrease on levels closer to the optima, the search space will become more rugged as there

will be more variability in neighboring evaluations and the reachability between solutions

will decrease. Because more of these plateaus are closed, a local search algorithm will have

39

to take disimproving moves in order to escape. The findings of Smyth show that plateaus

become more problematic to search at levels closer to optimal solutions.

Interestingly, Smyth also observed that the solutions on high levels are contained within

a single large plateau, the so-called “one-big-plateau” phenomenon [76]. One implication of

this is that the level-sets lower than the large plateau are connected in the sense that search

need not have to travel higher in the space than the one-big-plateau in order move around

in the lower level space. Thus the one-big-plateau phenomenon may enable search to more

easily traverse the space by increasing the reachability of the lower levels.

3.3.2 Plateau Characteristics of Structured Instances

We will first look at several characteristics of the plateaus in our generated instances,

the number of plateaus and the size of plateaus, using a methodology that follows closely to

that in Smyth [76]. Our results indicate a more rugged landscape characterized by a higher

number of small plateaus on modular instances with variable clause lengths. An instance

with a small number of large plateaus will be less rugged as neighboring solutions on a

plateau have the same evaluation. A more rugged landscape is associated with a decrease

in the performance of stochastic local search [54]. We conjecture that at least part of the

reason that the instances generated with the pl/pl(mod) and uni/pl(mod) generator are more

difficult for AdaptG2WSAT (see Figure 3.3) is that these instances are more rugged.

We will use the same terminology as introduced in our review of previous analyses of

plateaus with one exception regarding the term ‘level’. As we are not filtering our instances

for satisfiability, the globally optimal solutions may not have an evaluation of 0. We define the

normalized level of a solution x as f(x)−f(x∗) where x∗ is a global optimum. The normalized

levels of a satisfiable instance are the same as the levels referred to in previous analyses, but

will be normalized on unsatisfiable instances. Note that the prior analyses filtered instances

for satisfiability [76, 33, 21]. As there is no difference between the normalized level and the

prior definition of level in the prior analysis on satisfiable instances, we will simply use the

term level to refer to our revised definition of normalized level.

40

3.3.2.1 Number of Plateaus in Structured Instances

To analyze plateaus we follow a similar methodology as Smyth in that we first wish to

enumerate the space. This limits the size of instances as enumeration of the entire space is

only tractable for small n. We choose n = 15 and m = 64 as we found the enumeration to

be tractable and the instances are large enough to notice significant differences in the search

space structure. We generated 50 such instances with each of the eitght generators listed in

Table 3.1, enumerated every solution and computed the normalized level of each solution.

We then performed a modified breadth first search of solutions to group them into plateaus

by our previous definition.

Figure 3.5 shows the mean number of plateaus as a function of normalized level. For

completeness we give all data up to level 33 as this was the highest level containing solutions

in any of the instances, although we will focus on lower levels due to the fact that search

will likely never encounter the higher levels as even a random initial solution will start at

the mean level of the entire space in expectation. Furthermore, we ignore level 0 for now

as it represents a special case: the set of global optima. We will present results specifically

about the global optima in Section 4.

The most striking difference in Figure 3.5 is in the modular instances, especially those

with a power-law distribution of clause lengths. The fixed length modular instances have

more plateaus but the rise, fall, and center of the peak corresponds more closely to the

non-modular instances than those modular instances with a power-law distribution.

We hypothesize that the peaks seen in Figure 3.5 are centered around the mean evaluation

of all solutions in the space. To verify this hypothesis, we computed the mean normalized

evaluation of each instance. The mean normalized evaluation is the average of the normalized

level of each solution in the search space for the instance. Table 3.3 lists the mean and

standard deviation of the mean normalized evaluation of each instance type as well as the

number of of peaks. While the peak level of plateaus and average solution seem to be quite

close on most instance types, the peak number of plateaus in the two modular instances with

41

0 5 10 15 20 25 30 35

0
10

0
20

0
30

0
40

0
50

0

Level

N
um

be
r

of
 P

la
te

au
s

pl/k3

uni/k3

pl/pl

uni/pl

pl/k3 (mod)

uni/k3 (mod)

pl/pl (mod)

uni/pl (mod)

Figure 3.5: The mean number of plateaus over 50 instances with n = 15 and m = 64 grouped
by generator type (See Table 3.1) for levels 1 through 33. None of the instances had solutions
after level 33.

42

Table 3.3: The mean and standard deviation of the average evaluation of all solutions in the
50 instances constructed by each generator type (Avg. Sol.) and the mean and standard
deviation of the evaluation at which the highest number of plateaus occurred across all
instances of each type (Plat. Peak).

Measure pl/k3 uni/k3 pl/pl uni/pl
Avg. Sol. 7.42 ± 0.67 7.82 ± 0.39 7.64 ± 1.04 8.32 ± 1.16
Plat. Peak 9.04 ± 1.40 9.08 ± 1.12 8.72 ± 1.70 9.20 ± 1.28

Measure pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
Avg. Sol. 7.52 ± 0.61 7.60 ± 0.53 11.60 ± 2.37 11.38 ± 1.81
Plat. Peak 7.98 ± 1.04 8.30 ± 0.91 11.56 ± 2.32 11.36 ± 1.90

power-law distributions match almost exactly with the average evaluation of the solutions

in the space.

Figure 3.6 plots the level of the highest number of plateaus on the x-axis versus the mean

normalized evaluation of solutions in the space on the y-axis for each instance. We performed

a correlation test on these data across all problems which gave us a correlation coefficient of

0.80 with a p-value < 2.2e−16. Indeed, there is a correlation between the level at which the

highest number of plateaus appears and the average of the space. Furthermore, as Table 3.3

shows, the level at which the peak number of plateaus appears tends to be very close to the

average evaluation of the entire space.

Figure 3.5 clearly shows that there are differences in the number of plateaus that are

dependent on the instance type. To analyze the effect of our problem types on the number

of plateaus, we ran an analysis of variance test using the variable distribution (vd), clause

distribution (cd) and modularity (mod) as factors. Table 3.4 lists the results of this test for

the first 21 levels. There were no significant factors at α < .001 at levels greater than 21.

We use a significance of α = .001 to highlight the fact that the clause distribution,

modularity and the interaction between modularity and clause distribution are the most

significant factors. However, the variable distribution is also significant on levels greater

than 7 with α < .05. Interestingly, Figure 3.5 shows that there are less plateaus than those

instances generated with a uniform variable distribution and fixed clause length. Under our

conjecture that less plateaus indicate a less rugged space and will thus make finding optimal

43

5 10 15

6
8

10
12

14
16

18

Level of Highest Number of Plateaus

N
or

m
al

iz
ed

 A
ve

ra
ge

 E
va

lu
at

io
n

Figure 3.6: The mean normalized level of the space as a function of the normalized level
containing the highest mean number of plateaus. The means were taken over 50 instances
with n = 15 and m = 64 from each generator type (See Table 3.1)

44

Table 3.4: P-values from an analysis of variance test on the mean number of plateaus on
the first 21 levels from 50 instances from each of our eight generators with an alternative
hypothesis that there is a difference in means. There were three factors in the test: variable
distribution (vd), taking values of power-law and uniform, and clause distribution (cd),
taking values of fixed length with k = 3 and power-law, and modular (mod) taking values
of true or false. The vd:cd, vd:mod, cd:mod, and vd:cd:mod are the p-values of interaction
effects between the respective factors. Any factors that are significant at the 0.001 level are
marked with a ‘*’.

Level vd cd mod vd:cd vd:mod cd:mod vd:cd:mod
0 0.479 <.001(*) 0.001 0.860 0.316 <.001(*) 1.000
1 0.855 <.001(*) <.001(*) 0.814 0.965 <.001(*) 0.747
2 0.872 <.001(*) <.001(*) 0.548 0.609 <.001(*) 0.723
3 0.738 <.001(*) <.001(*) 0.412 0.707 <.001(*) 0.967
4 0.373 <.001(*) <.001(*) 0.259 0.817 <.001(*) 0.615
5 0.113 <.001(*) <.001(*) 0.230 0.497 <.001(*) 0.372
6 0.051 <.001(*) <.001(*) 0.184 0.471 <.001(*) 0.455
7 0.020 0.003 <.001(*) 0.222 0.549 0.045 0.412
8 0.012 0.812 <.001(*) 0.285 0.507 0.515 0.441
9 0.009 0.009 <.001(*) 0.243 0.637 <.001(*) 0.580
10 0.014 <.001(*) <.001(*) 0.307 0.690 <.001(*) 0.570
11 0.024 <.001(*) <.001(*) 0.292 0.826 <.001(*) 0.636
12 0.052 <.001(*) <.001(*) 0.347 0.796 <.001(*) 0.663
13 0.101 <.001(*) <.001(*) 0.407 0.797 <.001(*) 0.653
14 0.218 <.001(*) <.001(*) 0.542 0.719 <.001(*) 0.765
15 0.443 <.001(*) <.001(*) 0.759 0.672 <.001(*) 0.949
16 0.787 <.001(*) <.001(*) 0.994 0.560 <.001(*) 0.826
17 0.827 <.001(*) <.001(*) 0.731 0.440 <.001(*) 0.569
18 0.540 <.001(*) <.001(*) 0.505 0.350 <.001(*) 0.402
19 0.367 <.001(*) <.001(*) 0.367 0.286 <.001(*) 0.298
20 0.265 <.001(*) <.001(*) 0.269 0.232 <.001(*) 0.229
21 0.216 <.001(*) <.001(*) 0.215 0.200 <.001(*) 0.198

45

solutions harder for SLS algorithms, this would indicate that the power-law distribution

actually makes instances easier. Indeed, this is the trend seen in the run-length distributions

in Figure 3.3.

3.3.2.2 Size of Plateaus in Structured Instances

A second characteristic we wish to examine is the size of plateaus. As our enumerable

instances all have n = 15 variables, the search space contains 215 solutions. Given the higher

number of plateaus in the modular instances, we can infer that the size of those plateaus must

be smaller. To determine exactly how much smaller, we measured the size of the plateaus

found in each instance by level. Figure 3.7 shows the mean size of plateaus as a function of

level for each generator.

We again wish to examine the effect of the variable distribution, clause length distribution

and modularity on the size of plateaus in our generated instances. Table 3.5 lists the p-values

of an analysis of variance (ANOVA) test on the size of plateaus for the first 26 levels. No

significant factors were found at greater levels at α < .001. With the exception of levels 15-

17, where we see a crossover between the modular and non-modular instances in Figure 3.7,

the modularity is significant at all levels. In contrast to the ANOVA results on the number

of plateaus, the variable distribution is a factor at lower levels while the clause distribution

is not. Although this may seem strange given the data in Figure 3.7, we note that there is

an interaction effect between clause distribution and modularity at these lower levels, albeit

at a slightly higher α than .001.

At levels 11 and above the clause distribution becomes a significant factor and we once

again see interaction affects between modularity and the clause distribution. Figure 3.7

shows that the plateaus are larger for those non-modular instances generated with a power-

law variable distribution than those with a uniform variable distribution. Again, this would

indicate that the power-law variable distribution generators create instances with less rugged

landscapes.

46

0 5 10 15 20 25 30 35

0
20

40
60

80

Level

S
iz

e
of

 P
la

te
au

s

pl/k3
uni/k3
pl/pl
uni/pl
pl/k3 (mod)
uni/k3 (mod)
pl/pl (mod)
uni/pl (mod)

Figure 3.7: The mean plateau size over 50 instances grouped by generator type (See Ta-
ble 3.1) as a function of level. Levels 1 through 33 are shown as none of the instances had
solutions after level 33.

47

Table 3.5: P-values from an analysis of variance test on the size of plateaus in non-modular
instance generators. There were tree factors in the test: variable distribution (vd), clause dis-
tribution (cd), and modularity (mod). The vd:cd, vd:mod, cd:mod and vd:cd:mod columns
are the interaction between factors. Any factors that are significant at the 0.05 level are
marked with a ‘*’.

Level vd cd mod vd:cd vd:mod cd:mod vd:cd:mod

1 0.008 0.036 <.001(*) 0.703 0.048 0.065 0.989
2 0.004 0.138 <.001(*) 0.254 0.029 0.023 0.418
3 <.001(*) 0.988 <.001(*) 0.408 0.003 0.020 0.573
4 <.001(*) 0.671 <.001(*) 0.138 <.001(*) 0.002 0.346
5 <.001(*) 0.908 <.001(*) 0.093 <.001(*) 0.003 0.307
6 <.001(*) 0.690 <.001(*) 0.045 <.001(*) 0.003 0.218
7 <.001(*) 0.604 <.001(*) 0.116 <.001(*) 0.015 0.254
8 <.001(*) 0.549 <.001(*) 0.131 <.001(*) 0.016 0.292
9 <.001(*) 0.112 <.001(*) 0.049 0.001 0.003 0.125
10 <.001(*) 0.009 <.001(*) 0.065 0.002 <.001(*) 0.244
11 <.001(*) <.001(*) <.001(*) 0.112 0.124 0.002 0.466
12 0.004 <.001(*) <.001(*) 0.091 0.421 0.028 0.678
13 0.069 <.001(*) <.001(*) 0.244 0.620 0.448 0.549
14 0.311 <.001(*) <.001(*) 0.489 0.766 0.275 0.654
15 0.588 <.001(*) 0.007 0.521 0.966 0.322 0.328
16 0.259 <.001(*) 0.295 0.800 0.752 0.044 0.196
17 0.744 <.001(*) 0.105 0.503 0.794 <.001(*) 0.219
18 0.460 <.001(*) <.001(*) 0.345 0.216 <.001(*) 0.978
19 0.809 <.001(*) <.001(*) 0.879 0.987 <.001(*) 0.451
20 0.888 <.001(*) <.001(*) 0.885 0.523 <.001(*) 0.660
21 0.130 <.001(*) <.001(*) 0.190 0.834 <.001(*) 0.897
22 0.557 <.001(*) <.001(*) 0.438 0.976 <.001(*) 0.772
23 0.788 <.001(*) <.001(*) 0.702 0.878 <.001(*) 0.970
24 0.527 <.001(*) <.001(*) 0.527 0.639 <.001(*) 0.639
25 0.306 <.001(*) <.001(*) 0.306 0.306 <.001(*) 0.306
26 0.494 <.001(*) <.001(*) 0.494 0.494 <.001(*) 0.494

48

3.3.3 The One Big Plateau Hypothesis

Modular instances with a power-law distribution over clause length have more plateaus

containing a smaller number of plateaus than other instances. This is indicative of a more

rugged landscape. If an SLS algorithm follows the gradient to a plateau at normalized level

other than 0 it must escape that plateau by taking either disimproving moves to a higher

level or equal moves to other solutions on the plateau until an escape is found. The one

big plateau hypothesis states that in uniform random instances, there is one large plateau

that connects the lower levels of the space. This allows the search to easily move through

the space without having to move to levels higher than the level containing the ‘one big

plateau’ [76]. It is our conjecture that in the rugged landscapes of the modular instances

that a single large plateau does not exist.

The one big plateau hypothesis was first put forth by Smyth [76]. Smyth enumerated

all solutions on uniform random instances with n = 15 variables and m = 64 clauses and

computed the same variable characteristics as we did for our generated instances. Smyth

observed that in levels 3 through 5 on these instances, the majority of solutions were con-

tained in a single, large plateau. The one big plateau hypothesis is this single large plateau

connects the lower levels by enabling SLS to traverse the one big plateau in order to descend

to different parts of the lower level space. Under this hypothesis, the presence of the plateau

might make it easier for SLS to explore the space and find a globally optimal solution.

We conjecture that SLS will have a more difficult time finding the global optimum on

instances where the large plateau occurs at higher levels or not at all. We examined each

of the enumerable instances from our generators and recorded the size of the largest plateau

at each level. We then computed the fraction of total solutions on each level that were

contained in the level’s largest plateau. Figure 3.8 shows the mean fraction of each set of

instances as a function of level.

We can see from Figure 3.8 that the majority of solutions in the non-modular instances

are contained in a single large plateau roughly in the level range of 3 to 10, coinciding with

Smyth’s findings [76]. However, there are no such plateaus on the non-modular instances.

49

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Level

F
ra

ct
io

n
of

 S
ta

te
s

of
 in

 L
ar

ge
st

 P
la

te
au

pl/k3
uni/k3
pl/pl (mod)
pl/pl
uni/pl

Figure 3.8: The fraction of total solutions on each level contained in the largest plateau
found on that level. We observe that large plateaus contain the majority of solutions on the
non-modular instances at levels close to the global optimum. There seems to be no single
large plateau in modular instances. Under the one big plateau hypothesis, this would suggest
modular instances are more difficult.

50

This would suggest that the space has less connectivity. If SLS were to follow a gradient

leading to an area of the space that does not contain a global optimum, we conjecture that it

would have to travel farther against the gradient to recover from this mistake due to the lack

of an overarching large plateau. Verifying this conjecture, or other possible explanations, we

leave for future work. We can, however, conclude that the one big plateau conjecture does

not hold on our instances with a community structure.

3.3.4 Summary of Plateau Characteristics

These experiments have revealed several significant differences in the plateau character-

istics in our generated instances. First, using a power-law variable distribution and clause

distribution is a significant factor in the number of plateaus. However, using the power-law

distribution for the variable distribution creates instances with less plateaus than a uniform

variable distribution. Using a power-law distribution rather than a fixed clause length creates

instances with more plateaus.

The variable distribution and clause distributions are also significant factors in the size

of plateaus. Again, the effect of using a power-law distribution is split. Instances with

power-law distributed variables have larger plateaus than those with uniform distributions.

Instances with clause lengths following a power-law distribution have smaller plateaus than

those with fixed clause lengths.

The modularity of an instance impacts both the size and number of plateaus and has

interaction effects with the clause and variable distributions. Those instances created with a

modular generator have a greater number of smaller plateaus than their non-modular coun-

terparts. These plateau properties are associated with rugged landscapes that are difficult

for SLS algorithms [54]. The most rugged landscapes appear to be those generated using a

modular generator with a power-law distribution of clause lengths.

We found that there is no large plateau containing the majority of solutions in modular in-

stances. We do, however, observe this phenomenon in those instances that are non-modular,

regardless of the variable or clause distribution. This confirms the one big plateau hypothesis

51

of Smyth [76] on uniform random instances and extends it to those non-modular power-law

distributions. However, we have found that the one big plateau structure is not present in

modular instances, refuting the conjecture on modular instances.

The sum of our plateau analyses strongly point to the fact that modular instances are

more rugged than non-modular instances, variable clause lengths are more rugged than fixed

clause lengths and uniform variable distributions are more rugged than power-law distribu-

tions. Our run-length distributions on n = 50 and n = 100 instances in Figure 3.3 show

that indeed AdaptG2WSAT can find the optimal solutions more easily on those landscapes

which our analyses show to be less rugged. These observations suggest that the difficulty of

SLS on structured instances is in part due to the ruggedness of the search space imposed by

a community structure and power-law distributed clause lengths.

3.4 Characteristics of Global Optima

We will look at two characteristics of the global optima in the space: the number of

global optima and the backbone. The backbone of an instance of MAX-SAT is the set of

variables that have a consistent truth assignment across all globally optimal solutions for

that instance [74]. If an instance has a single global optimum, the backbone is the set of all

n variables. In the case of multiple global optima, the backbone is the set of variables that

have the same truth assignment.

3.4.1 Prior Analysis of Backbones in Uniform Instances

Zhang conducted a study on the backbone size in uniform instances of MAX-3SAT [89]

with n = 25 and the ratio of clauses to variables (cv-ratio) ranging from 1 to 20. For

each instance, Zhang used a complete MAX-SAT solver to find all optimal solutions. From

these, he computed the size of the backbone on each instance. On average, he found that

the backbone size increases with the cv-ratio. Zhang has also shown that as the cv-ratio

of uniform MAX-3SAT problems increases, so does the difficulty of the problem for both

complete and incomplete solvers [87, 89], thus correlating the backbone size with the difficulty

52

Table 3.6: Mean and standard deviations of backbone size on 50 generated instances with
n = 15 and m = 64 per problem type. See Table 3.1 for the description of our generators.

pl/k3 uni/k3 pl/pl uni/pl
7.58±4.54 8.08±5.11 8.86±3.61 9.20±4.59

pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
7.68±4.23 7.44±4.24 11.80±1.98 11.88±1.91

of the instance. However, it is unknown how the structure of a MAX-SAT instance can

influence the backbone size and the implications of this influence to SLS performance.

We examined the same set of instances with n = 15 used in the plateau analysis. As

we have enumerated the entire space of these instances, we simply gathered the solutions at

the normalized level of 0 for each instance. These are the global optima. We then counted

the number of solutions in each set and the backbone size for each set by determining which

variables were set consistently in every solution. This gave us the number of global optima

and the backbone sizes for all of our generated instances.

3.4.2 Backbone Analysis of Generated Instances

Table 3.6 lists the mean and standard deviation of the backbone sizes grouped by in-

stance type. Two trends appear in the data. The first is that those instances with power-law

distribution over clause length have a larger backbone then their fixed clause length coun-

terparts. Second, the modular instances with a power-law distribution over clause length

have a higher average backbone size than the other instances. The larger backbone sizes

correspond with the increased difficulty to find the global optima found in our run-length

distributions. This also matches Zhang’s findings that instances with larger backbones are

more difficult for SLS algorithms [87].

Table 3.7 lists the results of an analysis of variance test on the mean size of backbones

in these instances. The alternative hypothesis is that there is a difference in means. As

we previously have seen, the modularity and clause distribution are the most significant

factors, with the interaction between the two also being significant. This verifies that the

clause distribution and modularity are significant factors in backbone size and, along with

53

Table 3.7: P-values from an analysis of variance test on the mean size of backbones in 400
generated instances with n = 15 variables. There were three factors in the test: variable dis-
tribution (vd), clause distribution (cd) and modularity (mod). The vd:cd, vd:mod, cd:mod,
and vd:cd:mod columns are the p-values of interaction effects between the respective factors.
Any factors that are significant at the 0.001 level are marked with a ‘*’.

vd cd mod vd:cd vd:mod cd:mod vd:cd:mod
0.666 <.001(*) <.001(*) 0.919 0.526 <.001(*) 0.761

Table 3.6, that modular instances with variable clause distribution have larger backbones

than the other instance types tested.

To understand why a larger backbone is correlated with more difficult instances, recall

that the backbone size is the number of variables set consistently across all global optima.

Let the backbone size of an instance be b, then the number of variables that are ‘free’ in the

sense that they can take either true or false values is n − b. We can now define a subset of

2n−b solutions by enumerating all possible combinations of the free variables. We will refer

to this subset as a hyperplane, a topic that will be discussed at length in the next chapter.

The hyperplane defined by the backbone as described above is guaranteed to contain

all the globally optimal solutions. The hyperplane can be thought of as an upper bound

on the area of the space containing the globally optimal solution. If the goal of SLS is to

find a globally optimal solution, then it must find a solution within this hyperplane. As

the backbone size grows, the size of this hyperplane shrinks, thus making a smaller target

subspace for SLS algorithms trying to find the global optima. Additionally, as stochasticity

is an inherent element of all SLS algorithms, the probability of incorrectly setting a backbone

variable on average also increases as the backbone size grows. As the backbone variables are

set consistently within this hyperplane, any such mistakes would drive the search away from

the target area.

3.4.3 Number of Global Optima

We next wish to look at the number of global optima in our instances. Table 3.8 reports

the mean and standard deviation of the number of global optima found in our instances.

54

Table 3.8: Means and standard deviations of the number of global optima over 50 instances
for each of our generated instance types. See Table 3.1 for the description of our generators.

pl/k3 uni/k3 pl/pl uni/pl
28.46±33.37 11.62±17.54 27.46±31.20 16.70±22.38

pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
20.54±24.31 17.74±22.22 13.46±20.78 11.36±11.83

Table 3.9: P-values from an analysis of variance test on the number of global optima in
400 generated instances with n = 15 variables. The alternative hypothesis is that the mean
number of optima are different. The three factors in the test: variable distribution (vd),
clause distribution (cd), and modularity (mod). The ”vd:cd”, ”vd:mod”, ”cd:mod”, and
”vd:cd:mod” are the p-values of interaction effects between the respective factors. Any
factors that are significant at the 0.001 level are marked with a ‘*’.

vd cd mod vd:cd vd:mod cd:mod vd:cd:mod
<.001(*) 0.326 0.027 0.478 0.018 0.067 0.573

Interestingly, there are more global optima in those instances with power-law variable dis-

tributions than those with uniform distributions. This trend is consistent across the various

settings of clause distribution and modularity. There do not appear to be any trends related

to the modularity of the instances, e.g. the uni/k3 instance have less global optima on aver-

age than the uni/k3 (mod) instances but the uni/pl instances have more global optima than

the uni/pl (mod) instances.

Table 3.9 reports the results of an analysis of variance test on the number global optima

across our instance factors. This verifies our observation from Table 3.8: variable distribution

is the only significant factor. Instances with a power-law distribution of variable frequency

have more global optima than those with a uniform distribution as shown in Table 3.8.

Finally, we wish to examine the density of global optima contained in the hyperplane

defined by the backbone. As we previously stated, we conjecture that a larger backbone

creates a smaller target area for SLS algorithms that search for the globally optimal solution.

We know the number of solutions contained in the hyperplane is 2n−b. Given that we have

the number of global optima and backbone size, we can compute the density by dividing

the number of global optima by the size of the hyperplane defined by the backbone for each

55

Table 3.10: Mean and standard deviations of backbone density on our generated instances.
See Table 3.1 for the description of our generators.

pl/k3 uni/k3 pl/pl uni/pl
0.37±0.40 0.36±0.43 0.46±0.38 0.42±0.40

pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
0.28±0.37 0.25±0.33 0.80±0.25 0.85±0.24

instance. Table 3.10 reports the means and standard deviations of the backbone density for

the 50 instances of each type.

Interestingly the most difficult instances, those with a community structure and variable

clause length have the highest density of solutions. Over 80%, on average, of the solutions

in the hyperplane defined by the backbone set are globally optimal. This would suggest

that if SLS were to find the hyperplane defined by the backbone, it would not be difficult

to find the globally optimal solution. Indeed, a large portion of the next chapter is devoted

to a method that we developed of estimating the backbone and using this information to

initialize the search.

3.4.4 Summary of Global Optima Characteristics

We have found that clause distribution and modularity are significant factors in the size

of backbones. Those instances with a community structure and variable clause length have

a larger backbone than non-modular instances with fixed clause lengths. These instances

are also associated with a higher difficulty of finding the global optima (see Figure 3.3).

This agrees with the results of Zhang’s study showing that backbone size and difficulty of

instances are correlated.

We show that variable distribution is the only significant factor in the number of global

optima. There are more global optima in those instances with a power-law distribution than

those with a uniform distribution. The run-length distributions in Figure 3.3 indicate that

these instances are slightly easier than their uniform distribution counterparts when fixing

the other factors. This is not surprising as we expect SLS algorithms will have an easier

time finding the global optima as the number of them increases.

56

Finally, we see that the density of global optima contained in the hyperplane defined by

the backbone is highest on those problems with the largest backbones, namely the instances

with community structure and power-law distribution of clause lengths. This suggests that

finding this hyperplane would greatly increase the success of SLS algorithms in finding the

global optima on those instances. This result in part motivates one of our improvements dis-

cussed in the next chapter, a method of estimating the backbone using hyperplane averages.

3.5 Backbones and Plateaus

We have seen that the number and size of plateaus indicate a more rugged space in

modular instances. Furthermore, the backbone size in these same instances are larger on

average. The ruggedness of the space and backbone size are both related to the difficulty of

instances for SLS algorithms. It is a natural next step to determine if there is any correlation

between these features.

To determine if there is any correlation between the plateau size and the backbone size,

we first grouped the instances by the generator that constructed them. This gave us eight

groups of 50 instances. For each group we then found the correlation coefficient using

Pearson’s method between the average plateau size at each level and the backbone size for

each instance. Although we looked at all levels, we found significant correlations on levels 1

through 13. We therefore only report these levels. Table 3.11 lists the correlation coefficient

and the p-value for each level.

Interestingly, we see in Table 3.11 that the only correlations significant at the .001 level,

with the exception of the uni/pl instances at level 1, are the modular instances with variable

clause distribution. There is an inverse correlation, indicating that the average plateau sizes

are smaller on those instances with larger backbones. We have discussed how smaller plateaus

indicate a more rugged space and thus more difficult instances. Similarly, larger backbones

are also correlated to instance difficulty. Thus as one measure of hardness increases, so does

the other.

57

Table 3.11: Correlation coefficient (left of comma) and p-value (right of comma) found by
Pearson’s method testing the correlation of mean plateau size at each level and backbone
size for the 50 instances from each generator. We report the first 13 levels, after this no
correlation was significant at the .001 level. Significant correlations are marked with (*).

pl/k3 uni/k3 pl/pl uni/pl

1 -0.15,0.310 -0.30,0.034 -0.43,0.002 -0.48,< .001(*)
2 -0.29,0.043 -0.23,0.104 -0.18,0.214 -0.38,0.006
3 -0.21,0.143 -0.15,0.310 -0.26,0.064 -0.34,0.015
4 -0.06,0.664 0.13,0.352 -0.27,0.058 -0.16,0.278
5 -0.04,0.781 0.26,0.066 -0.27,0.055 -0.12,0.426
6 0.11,0.440 0.31,0.029 -0.08,0.577 -0.10,0.479
7 0.20,0.158 0.39,0.005 -0.05,0.745 0.03,0.861
8 0.20,0.172 0.38,0.007 -0.06,0.690 0.06,0.657
9 0.25,0.085 0.36,0.010 -0.02,0.870 0.12,0.404
10 0.24,0.094 0.35,0.013 0.05,0.754 0.17,0.242
11 0.32,0.025 0.36,0.010 0.11,0.436 0.28,0.052
12 0.38,0.007 0.35,0.013 0.13,0.371 0.31,0.027
13 0.45,0.001 0.24,0.100 0.22,0.122 0.30,0.032

pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)

1 -0.15,0.304 -0.18,0.200 -0.70,< .001(*) -0.68,< .001(*)
2 0.12,0.404 -0.11,0.435 -0.58,< .001(*) -0.72,< .001(*)
3 0.20,0.166 0.01,0.922 -0.57,< .001(*) -0.68,< .001(*)
4 0.22,0.122 0.09,0.556 -0.53,< .001(*) -0.64,< .001(*)
5 0.17,0.243 0.11,0.467 -0.54,< .001(*) -0.66,< .001(*)
6 0.17,0.237 0.13,0.385 -0.53,< .001(*) -0.65,< .001(*)
7 0.13,0.376 0.19,0.188 -0.54,< .001(*) -0.60,< .001(*)
8 0.05,0.730 0.22,0.117 -0.54,< .001(*) -0.59,< .001(*)
9 -0.00,0.977 0.26,0.069 -0.53,< .001(*) -0.56,< .001(*)
10 -0.09,0.545 0.27,0.054 -0.51,< .001(*) -0.53,< .001(*)
11 -0.18,0.223 0.32,0.025 -0.48,< .001(*) -0.52,< .001(*)
12 -0.18,0.200 0.28,0.049 -0.47,< .001(*) -0.50,< .001(*)
13 -0.13,0.381 0.16,0.262 -0.42,0.002 -0.47,< .001(*)

58

It is also interesting to note that this inverse correlation is only significant on those

modular instances with a power-law distribution of clause lengths. These results again

highlight the fact that there are significant differences in problems with these characteristics

than the other problem types.

We performed the same analysis on the average number of plateaus, again for each group

of 50 instances and for each level. In this case, we found significant correlations at levels 1

through 17. These are reported in Table 3.12.

Although there are a number of significant inverse correlations at the lower levels, we once

again see that the modular instances with variable clause distribution separate from the rest

of instances. At levels 12 through 17 and higher, both instance groups have significant

positive correlations between backbone size and number of plateaus, with the correlation in

the pl/pl (mod) instances starting at level 8. Again, similar to the correlation with plateau

size, a large number of plateaus is indicative of a more rugged space. Those instances with

larger backbones tend to have more plateaus at these levels.

3.5.1 Summary of Correlation between Backbone and Plateaus

We have examined three characteristics related to problem difficulty: the backbone size,

the number of plateaus and the size of plateaus. At certain levels in modular instances with

variable distribution there is an inverse correlation between size of plateaus and backbone

size. Likewise, there is positive correlation between number of plateaus and backbone size.

Thus as a backbone size grows, it would seem that the plateaus in these instance are also

more problematic.

We conjecture that this is again due to the ruggedness of the landscape. As the ruggedness

grows, the size of plateaus gets lower and the number of them increases. This reduces the

connectedness of the landscape in the sense that to move from one plateau to another on

the same level, the search must also travel to at least one additional level. While this is true

for any landscape, the more rugged the space, the more often this happens.

59

Table 3.12: Correlation coefficient(left of comma) and p-value (right of comma) found by
Pearson’s method testing the correlation of mean number of plateaus at each level and
backbone size for the 50 instances of each generator. We report the first 17 levels, after this
no correlation was significant at the .001 level. Significant correlations are marked with (*).

Level pl/k3 uni/k3 pl/pl uni/pl

1 -0.67,< .001(*) -0.42,0.002 -0.44,0.001 -0.46,< .001(*)
2 -0.42,0.003 -0.36,0.011 -0.33,0.020 -0.39,0.005
3 -0.39,0.005 -0.53,< .001(*) -0.28,0.048 -0.33,0.019
4 -0.43,0.002 -0.59,< .001(*) -0.13,0.367 -0.37,0.008
5 -0.39,0.005 -0.47,< .001(*) -0.03,0.823 -0.28,0.051
6 -0.36,0.011 -0.40,0.004 0.01,0.954 -0.17,0.250
7 -0.28,0.047 -0.41,0.003 0.06,0.691 -0.10,0.491
8 -0.12,0.402 -0.31,0.031 0.13,0.383 0.03,0.844
9 -0.01,0.943 -0.26,0.072 0.18,0.214 0.12,0.408
10 0.07,0.626 -0.19,0.197 0.21,0.136 0.19,0.176
11 0.13,0.373 -0.16,0.279 0.24,0.096 0.22,0.127
12 0.25,0.086 -0.15,0.315 0.23,0.109 0.30,0.037
13 0.25,0.077 -0.07,0.609 0.24,0.099 0.34,0.014
14 0.30,0.037 -0.04,0.780 0.24,0.090 0.38,0.007
15 0.23,0.113 -0.03,0.855 0.21,0.144 0.39,0.005
16 0.17,0.239 0.00,0.977 0.18,0.219 0.40,0.004
17 0.09,0.536 0.05,0.710 0.12,0.413 0.42,0.003

Level pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)

1 -0.70,< .001(*) -0.62,< .001(*) -0.21,0.151 -0.35,0.012
2 -0.69,< .001(*) -0.52,< .001(*) -0.07,0.624 -0.14,0.321
3 -0.64,< .001(*) -0.42,0.002 0.07,0.613 -0.01,0.961
4 -0.53,< .001(*) -0.36,0.011 0.21,0.135 0.09,0.519
5 -0.39,0.005 -0.30,0.032 0.28,0.046 0.15,0.313
6 -0.26,0.071 -0.26,0.071 0.37,0.009 0.21,0.149
7 -0.14,0.345 -0.22,0.133 0.41,0.003 0.25,0.075
8 -0.02,0.885 -0.16,0.253 0.46,< .001(*) 0.31,0.030
9 0.04,0.791 -0.09,0.514 0.49,< .001(*) 0.36,0.011
10 0.09,0.520 -0.03,0.845 0.54,< .001(*) 0.40,0.004
11 0.12,0.410 0.02,0.898 0.57,< .001(*) 0.43,0.002
12 0.13,0.386 0.06,0.654 0.60,< .001(*) 0.46,< .001(*)
13 0.10,0.483 0.14,0.328 0.61,< .001(*) 0.49,< .001(*)
14 0.08,0.590 0.16,0.260 0.59,< .001(*) 0.50,< .001(*)
15 0.04,0.773 0.16,0.273 0.56,< .001(*) 0.51,< .001(*)
16 0.00,0.983 0.19,0.197 0.52,< .001(*) 0.50,< .001(*)
17 -0.03,0.840 0.13,0.384 0.47,< .001(*) 0.47,< .001(*)

60

3.6 Generalizing to Industrial Instances

We cannot perform a similar analysis on industrial instances as it would require enumer-

ating the space. At the very least, we would need to be able to generate all globally optimal

solutions for backbone analysis and sample close to the local optima for a plateau analysis.

This is simply not tractable for industrial instances given their size and the difficulty SLS

algorithms have in getting even relatively close to the global optima [47]. In lieu of apply-

ing our analysis to these instances, we will show that industrial instances have the same

characteristics studied in some of our generated instances.

We took all the industrial instances from the 2011 SAT Competition and the industrial

instances from the 2012 MAX-SAT competition for a total of 322 industrial instances. To

examine the variable distribution of these instances we counted the number of times each

variable appeared in a clause. We then used the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [26] for the maximum likelihood estimation of β in the power-law distribution to

fit the distribution to the sample [2, 57, 15].

To determine the goodness of fit between the distribution and our sample, we used a

nonparametric test known as the Kolmogorov-Smirnov test [51]. This gave us a p-value for

the goodness of fit of the variable frequencies of each instance to a power-law distribution

fit to each instance using maximum likelihood estimation.

We then examined these p-values and found all but 4 instances had a p-value < .05. These

four instances were homer14.shuffled, homer.16.shuffled, homer17.shuffled and bart17.shuffled.

Each variable in these instances appeared exactly the same number of times, thus had a per-

fect uniform distribution. No information could be found about the source of these instances

and we consider them anomalies in our set of industrial instances.

We repeated the same experiment but this time counted the clause lengths of each in-

stance. We applied the same estimation to fit a power-law distribution and the Kolmogorov-

Smirnov test to provide a goodness of fit statistic. We again found that the majority of

instances had a p-value < .05 except for the four previously mentioned instances and 6

61

more: c10idw-i, manol-pipe-c10nidw, manol-pipe-c6bidw-i, manol-pipe-f7nidw, post-c32s-

gcdm16-23, and vda-gr-rcs-w9.shuffled.

Although a power-law distribution could not be fit to the clause lengths of these instances,

the clause lengths were not a fixed length. Figure 3.9 shows the histogram of clause lengths

for the port-c32s-gcdm16-23 instance. The other instances had very similar distributions of

clauses with lengths 2 and 3.

This raises the question: Must the clause distribution be a power-law distribution or s

any non-fixed clause length distribution is sufficient to create difficult instances? We leave

this question open for future work, as our analysis has shown that the majority of industrial

instances do have a power-law distribution over clause length.

3.7 Summary

We have developed a new instance generator that is capable of producing instances with

a community structure. Using the run length distribution method of Hoos et al. to examine

the performance of SLS algorithms, we found that AdaptG2WSAT has more difficulty finding

the global optima on those problems with a power-law distribution of clause length. We have

shown that these instances have characteristics that are common to industrial instances and

we will refer to them as industrial-like.

We analyzed the search space on instances created with our generators and found that

industrial-like instances have a larger number of small plateaus than the other instances.

This indicates a more rugged landscape. Furthermore, in the industrial-like instances there

was no one big plateau, a feature found in other instances that is conjectured to enable the

search to easily traverse the space [76].

Our analysis on backbones revealed a similar pattern. The size of backbones has been

correlated with problem difficulty [89]. Industrial-like instances had a larger backbone, thus

decreasing the upper bound of the area of the space that contains the globally optimal

solution. However, we also found that in industrial-like instances the density of solutions

contained in this area is greater. Finally, we found correlations on industrial-like instances

62

Clause Length

F
re

qu
en

cy

0 1 2

0
50

00
0

15
00

00
25

00
00

Figure 3.9: A histogram depicting the clause length frequencies of the post-c32s-gcdm16-23
instance from the 2011 SAT Competition. This instance is one of the 6 instances that did
not have a power-law distribution over clause length. The other 6 instances had a similar
distribution.

63

Table 3.13: Summary of the three characteristics of industrial instances and their effect on
the search space in comparison to uniform instances with fixed clause length.

Instance
Psuccess

Number of Size of Backbone
Type Plateaus Plateaus Size
uni/k3 0.95 28.74 11.85 8.08
pl/k3 0.99 22.00 16.18 7.58
uni/pl 0.95 27.63 13.47 9.20
pl/pl 0.97 18.13 21.48 8.86
uni/k3 (mod) 1.00 64.31 5.43 7.44
pl/k3 (mod) 1.00 64.24 5.45 7.68
uni/pl (mod) 0.16 128.72 5.1 11.80
pl/pl (mod) 0.23 129.02 6.45 11.88

between the backbone size and plateau characteristics. This suggests that a method of

estimating the correct setting to the backbone variables could greatly increase the ability of

an SLS algorithm to find a globally optimal solution.

Table 3.13 summarizes our results on the three characteristics of industrial instances and

their effect on the search space in comparison to uniform instances with k = 3 fixed clause

lengths. A green (or light colored cell) indicates a significant difference that was less than

the measured property in uniform instances with fixed clause length, while a red (or darker

colored cell) indicates a significant difference that was greater.

This table summarizes our results and indicates that our plateau characteristics may not

have as much of an effect on problem difficulty as the backbone size. We believe that these

results indicate the importance of what we call critical variables. We define a critical variable

as one that, if set incorrectly, can cause the search to set other variables incorrectly and have

a low probability of fixing the mistake. We define an incorrect setting as a truth assignment

to a critical variable that leaves some clauses unsatisfied that are satisfied by the critical

variable in globally optimal solutions. Backbone variables have a high probability of being

a critical variable, but a critical variable is not necessarily a backbone variable.

We believe that setting critical variables incorrectly has the potential to cause a cascade

effect in SLS algorithms. If a critical variable is set incorrectly, it will force other variables

to be set incorrectly as the search attempts to satisfy clauses that are left unsatisfied as a

64

result. This in turn will cause other variables to be set incorrectly as the search attempts to

satisfy clauses. As the cascade effect propagates, the probability that the search will fix the

original error becomes smaller and smaller.

We hypothesize that this effect is more pronounced in those instances with community

structure due to the family structure and connector variables. If a critical variable in family

‘A’ is incorrectly set, it may force the connector variable to take on an incorrect truth

assignment. This in turn can cause a cascade effect in the families connected to ‘A’ by this

connector variable and further propagate to even more families. While we leave testing this

hypothesis for future work, we will see further evidence of critical variables influencing the

behavior of search in the following chapter.

65

Chapter 4

Improving SLS for MAXSAT

We now wish to use the insights gained from our analysis to motivate improvements

to state-of-the-art SLS algorithms on industrial instances. Our analysis revealed that the

average backbone size was largest on the industrial-like instances and that this factor seemed

to be the storngest indicator of difficult instances. Therefore, we conjecture that a good

starting place to improve SLS is to develop a method of estimating the correct setting of

backbone variables.

We will first show that estimating the backbone variables does in fact improve the perfor-

mance of AdaptG2WSAT. We do so by first finding the backbone set for generated instances

of MAX-SAT. By setting different percentages of the backbone variables correctly at the

beginning of search, we observe that the more backbone variables set correctly, the better

AdaptG2SWAT can find a globally optimal solution.

Of course, in order to determine the backbone set of an instance we need to know all

the globally optimal solutions to that instance. Doing so would eliminate the need to run

search. Therefore, we have developed a method of estimating the backbone information

using the average evaluations of solutions contained within hyperplanes, subsets of solutions

in the search space. Not only can we compute these averages in a tractable manner directly

from an instance of MAX-SAT, but we can use these averages to provide a surprisingly

good estimate of the correct setting of the backbone variables. We refer to this method as

hyperplane initialization and it was first published by Hains et al. [31].

Finally, we will discuss the trade-offs between two types of local search: first improving

and best improving, which are used in many SLS algorithms [1]. Best improving search is

a strictly greedy search that will always take the best improving solution in the Hamming

distance 1 neighborhood of the candidate solution. In contrast, first improving search will

select an arbitrary improving move.

66

There is a trade-off between best improving and first improving search in terms of the

quality of local optima found and the effort, as measured in CPU time, to find them. How-

ever, SLS algorithms do not stop at the first local optimum they find. By examining the

behavior of AdaptG2WSAT after the first local optimum is found, we observe that the qual-

ity of local optimum has little to no influence over the quality of solution found at the end of

the search. Indeed, in several cases the average evaluation of solutions is significantly better

when using first improving search.

Our search space analysis in Chapter 3 revealed that the lower level search space in

industrial-like instances contains a large number of small plateaus, indicating a rugged search

space that is difficult for SLS algorithms to navigate. If search can reach this difficult part

of the space faster, it can spend a higher percentage of its overall run time exploring the

rugged areas of the space. By replacing the slow, best improving search in AdaptG2WSAT

with fast first improving search, we can improve the results by allowing the search to spend

more time in the rugged part of the space with little to no negative consequences.

4.1 Initializing Search with Backbone Information

Before discussing methods of estimating backbones, we will first establish that it is a

good idea to do so. We generated 50 problems from each of our eight generators with n = 50

variables and m = 214 clauses (see Table 3.1 for a list of the characteristics of problems

constructed from each generator). Our choice of 50 variables is due to that fact that we need

to find the backbone variables for each instance. In the previous chapter, we used instances

with n = 15 variables as this was small enough to allow us to enumerate the entire search

space. In this case we do not need to enumerate the space, but we do need to find all the

globally optimal solutions. We chose to use n = 50 variables as this is the largest instance

size that allows us to tractably find all the optimal solutions.

To find the optimal solutions, we used a complete MAX-SAT solver to find a single

globally optimal solution, s∗. Let the evaluation of s∗ be f(s∗). We then construct a new

clause which is the exact negation of the global optimum returned by the complete solver.

67

Table 4.1: Means and standard deviations of backbone size on 50 generated instances with
n = 50 and m = 214 per problem type. See Table 3.1 for the description of our generators.

pl/k3 uni/k3 pl/pl uni/pl
11.90±6.48 12.65±8.51 14.28±4.66 17.35±5.78
pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
13.00±5.13 12.35±4.72 19.10±3.46 18.70±3.36

This new clause was added to the original formula. Because we evaluate solutions by the

number of unsatisfied clauses and every solution but s∗ will satisfy the new clause, the

evaluation of all solutions but s∗ will remain the same. However, because of the new clause,

s∗ will have an evaluation of f(s∗)+1 on the modified instance. Therefore, it will no longer be

globally optimal on the modified instance if there are any other solutions with an evaluation

of f(s∗). By repeating this process until no more solutions are found with an evaluation of

f(s∗), we are able to find all the globally optimal solutions without enumerating the space.

Once the optimal solutions were found for each instance, we then determined the back-

bone set of each instance by finding which variables were set consistently across all global

optima. Therefore, we have the backbone variables and their corresponding truth assign-

ments for all 400 instances. The means and standard deviations of the number of variables in

each backbone set per instance type are reported in Table 4.1. The same trend in Table 3.6

from our analysis on smaller instances can be seen in these data: the most industrial-like

instances have the largest backbone size.

Our hypothesis is that if we use backbone information to initialize an SLS algorithm, that

algorithm will be able to find a global optimum easier than when initialized with a random

solution. To test this hypothesis, we constructed five sets of 50 solutions for each instance,

yielding us 250 solutions total per instance. Each set of solutions has a different percentage

of backbone variables assigned correctly. By correct assignment, we mean that the variable

has the same truth assignment as it does in all of the globally optimal solutions. Set 1

has 0% of the backbone variables assigned correctly, set 2 has 25% assigned correctly, set

3 had 50% assigned correctly (as in uniform random initializaiton), set 4 has 75% assigned

correctly and set 5 had 100% of the backbone variables correctly assigned. Non-backbone

68

variables were set to true or false with .5 probability. We rounded up in the case that the

number of variables in a set was an odd number.

For example, if the backbone variables were {x2, x7, x10, x12, x26, x28, x39, x42} and the

truth assignments of these variables were 1, 0, 0, 1, 0, 0, 1, 1 respectively, then a solution in

set 1 would be constructed by assigning the backbone variables as x2 = 0, x7 = 1, x10 =

1, x12 = 0, x26 = 1, x28 = 1, x39 = 0, x42 = 1 and setting the remaining variables to true or

false with equal probability.

In sets 2, 3 and 4, a percentage of backbone variables are set correctly while the remaining

are set incorrectly. In these cases, the backbone variables that were assigned correctly were

chosen uniformly at random from the backbone set. Using the previous example, if we wanted

to generate a solution for set 2 in which 25% of the backbone variables are set correctly, we

would first choose two backbone variables at random, e.g., x2 and x26. We would then

construct a solution where x2 = 1, x7 = 1, x10 = 1, x12 = 0, x26 = 0, x28 = 1, x39 = 0, x42 = 1

and the remaining variables would be set at random. In Set 5, the solution is constructed

so that all backbone variables are correctly assigned.

We then initialized AdaptG2WSAT from the constructed solutions and allowed the al-

gorithm to run until it made 10,000 bit flips. Thus we had 50 runs per set of constructed

solutions for a total of 250 runs per instance. Note that we did not modify the algorithm in

any way, we simply used our constructed solutions as the initial candidate solution instead of

a randomly generated solution as is the default procedure. We then computed the run-length

distributions (RLD) as described in Chapter 2, Section 1 over each set of runs for each of

the generator types. These RLDs are shown in Figure 4.1.

As the percentage of correctly assigned backbone variables increases, so does the growth

rate of the estimated probability of finding a global optimum. Although this phenomenon

can be seen in all our generator types, it is most pronounced in the modular instances with

a variable clause length, i.e., uni/pl (mod) and pl/pl (mod). These are the most difficult

problems for SLS algorithms as found by our analysis in Chapter 3 and are also the most

69

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/k3

1 10 100 1000
0.

0
0.

4
0.

8

Number of Flips

P
(s

uc
ce

ss
)

uni/k3

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/pl

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

uni/pl

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/k3 (mod)

1 10 100 1000
0.

0
0.

4
0.

8

Number of Flips

P
(s

uc
ce

ss
)

uni/k3 (mod)

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/pl (mod)

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

uni/pl (mod)

0
.25
.50
.75
1

Figure 4.1: The run length distributions of five sets of runs on 50 instances of each generator
type (See Table 3.1 for our generator types). Each set consisted of 50 runs initialized by
setting the 0, 25%, 50%, 75% and 100% of the backbone variables to their correct settings.
The RLD for each set is denoted by a different line style as shown in the bottom right corner.

70

industrial-like out of our 8 problem types. We believe this is due in part to the higher density

of global optima in the hyperplane defined by the backbone as discussed in Chapter 3.

In the third set of solutions, 50% of the backbone variables were set incorrectly and the

other 50% were set correctly. This is what we would expect in random solutions. If the

initialization of backbone variables can influence the search, we expect to see the number of

flips to find a global optimum in sets 1 and 2 to be lower than set 3 because there are more

backbone variables set incorrectly. Likewise, in sets 4 and 5 where we set 75% and 100% of

the backbone variables correctly we expect to see less flips required to find a global optimum

than set 3.

While we see evidence of this in Figure 4.1, we want to determine if there is indeed a

significant difference in the mean number of flips required to find a global optimum in our

experimental runs. We have 50 problems from each of the eight generators, and five sets

of 50 runs each. In each of these runs we counted the number of bit flips required to find

a globally optimal solution. If a run did not find a globally optimal solution, we discarded

these runs.

We then carried out one-sided t-tests on the data. For each generator type, we used an

alternative hypothesis that the mean number of flips to find a global optimum was greater

in the 0 and 0.1 run sets than in the 0.5 run set, and that the number of flips in the 0.75

and 1 run sets were less than in the 0.5 set. The p-values of our t-tests are reported in

Table 4.2. In all the t-tests, we can reject the null hypothesis at the .001 level for all the

modular instances with variable clause lengths. All p-values except the 0.75 set and the 0.5

set of uni/pl instances were significant at the .05 level.

Correctly assigning the majority of backbone variables at the beginning of search can

improve the ability of AdaptG2WSAT to find a globally optimal solution. Likewise, incor-

rectly setting the majority of backbone variables can adversely affect the ability of the search

to find a global optimum. This effect is more pronounced on those instances that have a

community structure.

71

Table 4.2: P-values from t-tests comparing the number of flips to a global optimum (f) for
each of the 50 runs over 50 instances of each type. We use notation f(x) where x is one of
our run sets where 0 is the set of runs with no backbone variables initialized correctly, .25 is
25% are set correctly, etc.

Type f(0) > f(.5) f(.25) > f(.5) f(.75) < f(.5) f(1) < f(.5)
pl/k3 <.001(*) <.001(*) <.001(*) <.001(*)
uni/k3 <.001(*) 0.026 <.001(*) <.001(*)
pl/pl <.001(*) <.001(*) <.001(*) <.001(*)
uni/pl 0.010 0.005 0.053 <.001(*)
pl/k3 (mod) <.001(*) <.001(*) <.001(*) <.001(*)
uni/k3 (mod) <.001(*) 0.003 <.001(*) <.001(*)
pl/pl (mod) <.001(*) <.001(*) <.001(*) <.001(*)
uni/pl (mod) <.001(*) <.001(*) <.001(*) <.001(*)

4.1.1 Prior Work in Initialization Methods for SLS

We are aware of only two other initialization methods for MAX-SAT that are able to

improve over a uniform random solution, due to Zhang et al. [89] and Qasem et al [62],

which have been discussed in more detail in Chapter 2. In both of these cases, local search

must first be run multiple times with a uniform random initialization to construct a set of

local optima. The frequency of assignments for each bit found in the set of local optima

are then used to initialize subsequent runs of local search. Zhang hypothesizes that these

frequencies can provide an estimation of the backbone [89], however no experimental data

has been published to support this hypothesis.

4.1.2 Hyperplane Initialization

The early theoretical analysis of genetic algorithms emphasized the potential for popula-

tions to implicitly estimate hyperplane averages and to use this information to guide search

[37, 28]. While this line of research has been criticized [64], a similar idea is at the foundation

of estimation of distribution algorithms: information about the interaction between variables

can be used to guide search [60, 29].

For all k-bounded pseudo-Boolean optimization (PBO) problems, we can convert the

evaluation functions into a polynomial form in O(n) time [83]. This allows us to quickly and

72

exactly compute low order hyperplane averages. We can then explicitly determine which

combination of variable assignments will lead to the highest overall combined hyperplane

average. By using this information to initialize search we achieve two results: 1) search

starts at a solution that must be better than average, reducing the number of steps needed

to reach a local optimum, and 2) the initial solution is in a region of the search space that

is also better than average relative to other regions. Thus, not only is the initial solution

better than average, solutions that are nearby in Hamming space must also be better than

average.

We note that although we focus on MAX-SAT, hyperplane initialization can be general-

ized to other PBO problems. A wide range of important optimization problems are naturally

expressed as k-bounded PBO problems. In computing, this includes hardware verification,

combinatorial auctions, design debugging, software testing and graph coloring[50] as well as

classic NP-hard problems such as MAX-SAT, vertex cover, maximum cut, and maximum

independent set [10]. In biology, NK-landscapes have been developed as a general model

for interacting sets of components (alleles, proteins, amino-acids) with applications in RNA-

folding [65] and the study of viruses [20]. In physics, Ising spin glasses correspond to PBO

problems [17].

We first show how the Walsh transform can be used to efficiently calculate the hyperplane

averages of MAX-SAT instances and then describe a method of using these averages to

construct a solution. This method consistently produces solutions with better evaluations

than those constructed with a uniform random distribution, the standard practice for SLS

algorithms.

We next show that hyperplane information can provide a remarkably good estimation of

the correct assignment of backbone variables. We use this information to initialize runs of

AdaptG2WSAT and find results consistent to explicitly assigning the correct truth values to

the backbone variables.

73

4.1.3 Theoretical Foundations

A discrete function f : {0, 1}n 7→ R can be decomposed into an orthogonal basis

f(x) =
2n−1∑

i=0

wiψi(x)

where wi is a real-valued weight known as a Walsh coefficient and ψi is a Walsh function.

We will represent the index i and vector x as binary strings, and standard binary operations

can be applied. The Walsh function

ψi(x) = −1i
T x(−1)bitcount(i∧x)

generates a sign: if iTx is odd ψi(x) = −1 and if iTx is even ψi(x) = 1.

The MAX-SAT objective function is given by

f(x) =
m∑

j=1

fj(x,maskj)

where each subfunction fj corresponds to a clause and maskj has a 1 bit for each bit used

by fj. The MAX-SAT objective function is a linear combination of subfunctions and we can

apply the Walsh transform to each clause individually:

w =
m∑

j=1

Wfj

where w is a vector of polynomial coefficients and W is the Walsh transform. This generates

the Walsh coefficients associated with each clause. Rana et al. [63] show that we can dispense

with matrix W and directly compute the Walsh coefficient associated with each clause.

Walsh coefficients can overlap if the same bits co-occur in the same clause. In this case, the

coefficients are added together if they share the same index. Given a clause of size k, each

subfunction fj contributes at most 2k nonzero Walsh coefficients to vector w.

4.1.4 Computing Hyperplane Averages

The search space of a MAX-SAT instance with n variables and m clauses corresponds to

a n-dimensional hypercube. If we ‘fix’ the truth values of j variables to 1 or 0, the search

space is reduced to a (n− j)-dimensional hyperplane.

74

The Walsh coefficients can be used to efficiently compute the average evaluation of so-

lutions contained in any (n − j)-dimensional hyperplane [63] [27]. Let h denote a (n − j)

dimensional hyperplane where j variables have preassigned bit values. Let α(h) be a mask

with 1 bits marking the locations where the j variables appear in the problem encoding,

and 0 bits elsewhere. Let solution x assign values to the j variables. Let β(h) = α(h) ∧ x.

This means β(h) has value 0 in all of the positions where the j bits do not appear, and has

the assigned values of the relevant j bits in the appropriate bit locations. Then the average

fitness of hyperplane h is

Avg(h) = favg +
∑

∀b,b⊆α(h)

wbψb(β(h))

where favg = wo is the average over the entire MAX-SAT search space, i.e. favg = (2k −

1)/(2k) ∗m.

Although we can find the averages of any number of hyperplanes using this method, for

the current study we compute the averages of the 2km hyperplanes that exactly correspond

to the m clauses. For example, in a MAX-3SAT problem, there are seven assignments that

can make a clause true. For each of these assignments, we can compute the hyperplane

averages: this tells us how, on average, this assignment will impact the evaluation function

over the remainder of the search space. Note that we only need to compute the hyperplane

averages once. Thus, we not only have local information (whether the assignment makes a

clause true or not), we also have global information about how the assignment affects the

rest of the search space. The computational complexity to do this is O(n) assuming m = cn

and c is a constant.

4.1.5 Hyperplane Initialization

We now describe a method of exploiting hyperplane averages to construct solutions to

MAX-SAT that we call hyperplane initialization. While we use MAX-3SAT to describe the

method, hyperplane voting can be applied to any MAX-SAT problem.

In MAX-3SAT, given a clause vi containing the variables p, q, and r, there are eight

possible assignments of these variables: 000, 001, 010, 011, 100, 101, 110, and 111. We

75

compute the averages of the eight hyperplanes formed by fixing p, q and r to each of these

partial assignments and leaving the remaining variables free. This process is repeated for

each clause in the instance. Thus we compute eight hyperplane averages for each clause for

a total of 8m hyperplane averages. We then use the hyperplane with the best average from

each clause to calculate a probability distribution over all n variables as follows.

Let vi = {p, q, r} be the three variables in clause i. Let Ai : vi 7→ {0, 1} be the partial

assignment of the variables in clause i that correspond to the hyperplane with the highest

average for clause vi. Let truej count the number of times that variable j is set to 1 across all

partial assignments A and let totalj count the total number of times that variable j appears

across all clauses (assignments):

truej =
∑

∀i:j∈vi

Ai(j)

totalj = truej +
∑

∀i:j∈vi

(1⊕ Ai(j))

where (1⊕Ai(j)) = 1 when Ai(j) = 0. We define the following probability distribution over

truth assignments based on the hyperplane voting:

P (j = 1) =
truej
totalj

Solutions are then constructed by generating a random value in the range of (0, 1) for each

variable. If the random value generated for variable j is greater than P (j = 1), j is set to 1,

otherwise j is set to 0.

We require the Walsh coefficients, and on problems with large clause lengths, calculating

the coefficients can become intractable. Therefore, in practice we limit the max clause length

to eight. Any clauses larger than this are ignored. Of course, if an instance consists only of

clauses with length nine or greater, this means we could not get any hyperplane information

about this instance. In these cases, it would be possible to compute the hyperplane averages

over arbitrary subsets of variables, e.g. all possible 3-way combinations of the top 20 most

frequent variables. However, in our studies we have not encountered any such instances

and, as our results in following sections show, our method of ignoring large clauses provides

excellent results.

76

Table 4.3: Means and standard deviations of the percentage of backbone variables correctly
set by hyperplane initialization over 50 generated solutions for each of the 50 instances by
generator type (See Table 3.1 for the description of the generator types).

pl/k3 uni/k3 pl/pl uni/pl
0.76±0.13 0.80±0.14 0.83±0.08 0.83±0.08
pl/k3 (mod) uni/k3 (mod) pl/pl (mod) uni/pl (mod)
0.77±0.10 0.78±0.10 0.94±0.04 0.97±0.03

4.1.6 Evaluating Hyperplane Initialization

We first examine how well hyperplane initialization can estimate the correct assignment of

backbone variables and next look at how starting SLS from a hyperplane initialized solution

affects the run-length distribution compared to starting the search from a random solution.

We will use the same 50 instances from each generator type listed in Table 3.1 as we used in

our experiments in Section 4.1 of this chapter to determine the effect of initializing search

with the correct backbone assignments.

For each instance, we generated 50 solutions using the hyperplane initialization as de-

scribed in Section 2.1.5. For each solution, we computed how many of the backbone variables

were correctly assigned and then normalized these values by dividing by the total number of

backbone variables. This gave us a percentage of backbone variables that were correctly set

in each solution. We then found the mean and standard deviation of these percentages over

all solutions for each instance type. These values are shown in Table 4.3.

Hyperplane initialization can provide a remarkably good estimation of backbone vari-

ables, ranging from 76% of the total backbone variables correctly assigned to 97%. Hy-

perplane initialization provides the best estimation on the most industrial-like instances,

those generated with the pl/pl(mod) and uni/pl(mod) generators (94 and 97 respectively).

In expectation a randomly generated solution would correctly assign 50% of the backbone

variables. We performed a one-sided t-test to each set of solutions (grouped by generator

type as in Table 3.2) with the alternative hypothesis that more backbone variables were

set correctly in the hyperplane initialized solutions than in random solutions. In all tests a

p-value < .001 was found.

77

Based on these results, we conjecture that hyperplane initialization will have a similar

impact to SLS algorithms as our backbone initialization experiments did in Figure 4.1,

but recall hyperplane initialization biases all variables, not just the backbone variables.

When generating the results for Figure 4.1, non-backbone variables were set to true or false

with equal probability. This is not true in hyperplane initialization. We therefore wish to

determine if hyperplane initialization will increase the performance of AdaptG2WSAT in a

similar manner.

We ran AdaptG2WSAT for 100 runs on each of the 50 instances from our eight generator

types. 50 runs per instance were initialized with hyperplane initialization, and 50 runs were

initialized with a uniform random solution in which each bit was set to true or false with equal

probability. Each run was allowed 10,000 bit flips. To determine the effect of hyperplane

initialization on AdaptG2WSAT’s ability to find a global optimum, we then computed the

run-length distributions for each initialization method on each problem type in the same

manner as described in Chapter 3, Section 2.1. Figure 4.2 shows the RLDs for the two

initialization methods broken down by problem type.

The RLDs in Figure 4.2 indicate that hyperplane initialization improves AdaptG2WSAT’s

ability to find the global optima on all instances types. Interestingly, it is more pronounced

on the most industrial-like instances: those with a community structure and a variable clause

length. We believe that this is due to the fact these structures allow us to extract more in-

formation about the space from the hyperplane averages. The smaller clauses that are the

most frequent in a power-law distribution of clause lengths will generate Walsh coefficients

with a higher magnitude. Of course, these instances also have the largest size backbones.

Not only can we get stronger hyperplane information that results in a higher accuracy of the

correct backbone settings, but there are also more variables that are set correctly in these

problems.

To determine if improvement in the RLDs shown in Figure 4.2 is statistically significant,

we counted the number of flips required to find a global optimum for the hyperplane initial-

ized runs and for the runs initialized with a random solution. Table 4.4 reports the means

78

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/k3

1 10 100 1000
0.

0
0.

4
0.

8

Number of Flips

P
(s

uc
ce

ss
)

uni/k3

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/pl

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

uni/pl

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/k3 (mod)

1 10 100 1000
0.

0
0.

4
0.

8

Number of Flips

P
(s

uc
ce

ss
)

uni/k3 (mod)

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

pl/pl (mod)

1 10 100 1000

0.
0

0.
4

0.
8

Number of Flips

P
(s

uc
ce

ss
)

uni/pl (mod)

Hyperplane Init
Random Init

Figure 4.2: The run length distributions of two initialization methods over 50 runs on 50
instances with n = 50 and m = 214 of each generator type (See Table 3.1 for our gener-
ator types). Each set of runs consisted of 50 runs initialized by hyperplane initialization
(hyperplane init) and random solutions (random init)

79

Table 4.4: Mean and standard deviations of the number of flips required for AdaptG2WSAT
to find a global optimum on runs initialized with hyperplane initialization and random
solutions. There were 50 runs for each instance and 50 instances for each problem type.
The p-value column reports the p-value of a one-sided t-test comparing these values with
the alternative hypothesis that the hyperplane initialized runs require less flips. Results
significant at the .001 level are indicated with a (*).

Problem Type Random Hyperplane p-value
pl/k3 220.30±351.17 172.69±319.33 <.001(*)
uni/k3 425.29±692.45 385.28±796.84 0.029
pl/pl 120.18±208.70 92.73±235.16 <.001(*)
uni/pl 298.39±877.58 275.21±864.81 0.173
pl/k3 (mod) 221.08±524.41 176.36±570.32 0.002
uni/k3 (mod) 230.45±493.38 147.38±367.38 <.001(*)
pl/pl (mod) 1267.91±3152.08 411.03±1954.88 <.001(*)
uni/pl (mod) 2166.21±4444.16 360.28±1990.83 <.001(*)

and standard deviations of these data for each instance type and the p-values of a one-sided

t-test with an alternative hypothesis that the hyperplane initialized runs require less flips

than the randomly initialized runs.

The mean flips to find a global optimum are always lower for the hyperplane initialized

runs than those runs initialized with a random solution. This decrease was significant at the

.001 level in five of the eight problem types, and significant at the .05 level in seven of the

eight problem types. The difference in mean flips to a global optimum were not statistically

significant in the uni/pl problem types, although it was lower for the hyperplane initialized

runs. The largest decrease in mean flips to a global optimum are in the modular instances

with a variable clause length. Not only are these the most industrial-like instances, but they

were also the instances with the highest mean percentage of backbone variables set correctly

by hyperplane initialization (See Table 4.3).

4.1.7 Hyperplane Initialization and Industrial Instances

We have shown that hyperplane initialization can increase the performance of Adapt-

G2WSAT on generated instances with industrial-like characteristics. We now wish to ex-

tend our analysis on the impact of hyperplane initialization from our generated instances to

industrial instances. We have selected 30 problems from our set of industrial instances listed

80

in Appendix A. For the sake of brevity, we will refer to these instances using an identification

code as shown in Table 4.5. These instances were chosen from the 380 industrial instances

listed in Appendix A to represent a variety in both the underlying application and in number

of variables.

Due to the fact that the optimal solutions are not known for the majority of these

instances [67, 52], we cannot perform the same run-length distribution analysis as in previous

experiments to measure the performance of SLS algorithms. However, in many applications

of MAX-SAT a globally optimal solution is not needed; merely finding a good solution is often

enough to provide good results [50, 44]. Even so, the quality of the returned solution can

have an impact on the underlying application [13, 66]. Therefore, improving SLS algorithms

can have a valuable impact on real-world applications.

To determine if hyperplane initialization can increase the quality of solutions found by

AdaptG2WSAT, we generated 30 random solutions and 30 solutions initialized by hyperplane

initialization for each of the industrial instances in Table 4.5. We ran AdaptG2WSAT for

20n bit flips starting from each of the generated solutions. Our procedure differs here from

Section 2.1.6 because in Section 2.1.6 all our instances had the same number of variables,

n = 50. Our industrial instances in Table 4.5 range from n = 300 to n = 1, 974, 822 variables.

Therefore, we wanted to consistently scale the number of bit flips relative to the size of the

instance and 20n bit flips is tractable even on the largest of our industrial instances. We

recorded the evaluation of the initial solution and the best-so-far solution after 10% of the

total run, 50% of the total run and at the end of the run.

We first examine the initial solutions found by our generation methods. Our hypothesis

is that the average evaluation of initial solutions generated by hyperplane initialization on

industrial instances will be lower than those found by random solutions. Table 4.6 reports

the mean and standard deviation of the initial solutions found by random and hyperplane

initialization on the 30 instances. The right-most column reports the p-value from a one-sided

t-test with an alternative hypothesis that the mean evaluations of the hyperplane initialized

solutions are lower than the mean evaluation of random solutions.

81

Table 4.5: Mapping of industrial instances chosen for empirical experiments to identification
numbers.

ID Instance Name n m

1 aes-32-1-keyfind-1.cnf 300 1016
2 myciel6-tr.used-as.sat04-320.cnf 570 4625
3 vmpc-25.renamed-as.sat05-1913.cnf 625 76775
4 dp04s04.shuffled.cnf 1075 3152
5 rbcl-xits-18-SAT.cnf 2888 218530
6 E07N15.cnf 4740 41363
7 comb1.shuffled.cnf 5910 16804
8 k2fix-gr-rcs-w8.shuffled.cnf 10056 271393
9 slp-synthesis-aes-bottom12.cnf 17298 57292
10 traffic-b-unsat.cnf 26061 742909
11 gss-21-s100.cnf 31613 95104
12 AProVE11-12.cnf 44805 149118
13 maxxor064.cnf 51064 152039
14 hwmcc10-timeframe-expansion-k45-bc57sensorsp1.cnf 63327 174791
15 countbitssrl064.cnf 75103 225116
16 sokoban-sequential-p145-microban-sequential.040.cnf 87884 1413816
17 11pipe-k.cnf 89315 5584003
18 aaai10-planning-ipc5-TPP-21-step11.cnf 99736 783991
19 UR-10-10p1.cnf 131228 635871
20 post-c32s-gcdm16-23.cnf 135543 404326
21 openstacks-p30-1.045.cnf 171676 858766
22 ibm-2004-23-k100.cnf 207606 861175
23 divider-problem.dimacs-8.filtered.cnf 246943 810105
24 fpu-multivec1-problem.dimacs-14.filtered.cnf 257168 928310
25 wb-problem.dimacs-46.filtered.cnf 300846 789283
26 c2-DD-s3-f1-e2-v1-bug-fourvec-gate-0.dimacs.seq.filtered.cnf 400085 1121810
27 b15-bug-fourvec-gate-0.dimacs.seq.filtered.cnf 581064 1712690
28 mrisc-mem2wire-problem.dimacs-29.filtered.cnf 844900 2905976
29 rsdecoder-problem.dimacs-41.filtered.cnf 1186710 3829036
30 mem-ctrl2-blackbox-mc-dp-problem.dimacs-28.filtered.cnf 1974822 6795573

82

Table 4.6: Means and standard deviations of the evaluations rounded to the nearest integer
of 30 solutions produced by hyperplane initialization (Hyperplane) and random solutions
(Random) for the 30 industrial instances from Table 4.5. The p-value column lists the p-
value from one sided t-tests comparing the means with an alternative hypothesis that the
hyperplane initialized solutions have lower evaluations than those of random solutions.

ID Hyperplane Random p-value

1 111±6 139±9 <.001(*)
2 94±0 1,106±99 <.001(*)
3 48±0 13,226±736 <.001(*)
4 346±8 639±20 <.001(*)
5 860±22 27,190±1,481 <.001(*)
6 1,070±41 4,440±164 <.001(*)
7 2,081±24 3,656±40 <.001(*)
8 1,244±1 67,557±1,875 <.001(*)
9 5,542±52 10,810±121 <.001(*)
10 27,358±462 60,543±685 <.001(*)
11 8,360±68 19,524±128 <.001(*)
12 18,313±123 26,372±190 <.001(*)
13 19,852±161 31,650±171 <.001(*)
14 19,566±97 36,346±181 <.001(*)
15 29,585±193 46,792±195 <.001(*)
16 660±21 343,007±2,832 <.001(*)
17 31,133±25 1,361,003±67,209 <.001(*)
18 19,266±53 190,654±1,303 <.001(*)
19 41,822±132 141,053±595 <.001(*)
20 36,560±124 84,211±263 <.001(*)
21 38,480±129 212,247±798 <.001(*)
22 81,968±193 183,359±670 <.001(*)
23 90,088±163 146,661±415 <.001(*)
24 87,622±203 159,068±407 <.001(*)
25 98,042±225 164,982±490 <.001(*)
26 130,489±273 231,173±584 <.001(*)
27 280,231±440 368,539±577 <.001(*)
28 233,413±662 509,449±1,112 <.001(*)
29 292,240±384 685,530±813 <.001(*)
30 611,118±2,017 1,182,185±1,309 <.001(*)

83

In all cases the hyperplane initialized solutions had evaluations significantly lower than

random solutions. In some cases, this difference was an order of magnitude or more. In

two cases, instances 2 and 3, hyperplane initialization constructed 30 solutions with the

same evaluation. Further analysis of these solutions revealed that the truth settings for each

variable were the exact same in all solutions: all the variables were set to false. Analysis of

these two instances revealed that the literals in over 90% of the clauses in both instances were

all negated. As we compute hyperplane averages on a clause by clause basis this naturally

resulted in an extremely heavy bias towards setting variables false.

Having established that hyperplane initialized solutions have better evaluations than

random solutions, we now wish to determine how these solutions influence the subsequent

search. We recorded the best found solution at intervals of 10% of the overall run length of

20n bit flips. To keep runs tractable on large instances, we limited the maximum number of

bit flips for a single run to 5,000,000.

Table 4.7: The means and standard deviations of the evaluations of the best-so-far solutions
after 10%, 50% and 100% of the overall run length over 30 runs per instance (see Table 4.5 for
a description of the instances). Runs were either initialized with hyperplane initialization
or random initialization. The p-value column reports the p-value from a t-test testing a
difference in the mean evaluations.

ID Percent of Run Hyperplane Random p-value

1
10% 9±2 10±2 0.300
50% 6±1 6±1 0.578
100% 5±1 5±1 1.000

2
10% 3±0 4±1 <.001(*)
50% 1±0 1±0 1.000
100% 1±0 1±0 1.000

3
10% 12±2 12±2 0.054
50% 9±1 9±2 0.596
100% 8±1 8±2 0.795

4
10% 15±4 22±4 <.001(*)
50% 4±2 5±2 0.135
100% 2±1 2±1 0.196

5
10% 34±57 67±81 0.076
50% 7±2 7±2 0.608
100% 6±1 6±2 0.461

Continued on next page

84

Table 4.7 – Continued from previous page
ID Percent of Run Hyperplane Random p-value

6
10% 67±5 54±8 <.001(*)
50% 24±6 21±5 0.033
100% 13±3 12±3 0.366

7
10% 204±11 196±12 0.011
50% 100±11 109±13 0.005
100% 69±8 74±10 0.020

8
10% 116±6 115±7 0.550
50% 104±6 102±6 0.300
100% 94±7 91±8 0.098

9
10% 34±7 39±6 0.010
50% 14±4 13±4 0.130
100% 10±3 10±3 0.361

10
10% 157±31 210±100 0.009
50% 107±21 108±28 0.861
100% 96±20 95±23 0.878

11
10% 669±26 420±21 <.001(*)
50% 349±43 234±20 <.001(*)
100% 192±16 165±10 <.001(*)

12
10% 1,401±33 1,570±51 <.001(*)
50% 1,109±51 1,238±68 <.001(*)
100% 904±38 976±87 <.001(*)

13
10% 899±26 928±25 <.001(*)
50% 619±48 568±41 <.001(*)
100% 415±46 352±39 <.001(*)

14
10% 447±36 626±45 <.001(*)
50% 235±35 311±32 <.001(*)
100% 100±15 167±24 <.001(*)

15
10% 1,349±27 1,962±69 <.001(*)
50% 1,110±34 1,338±79 <.001(*)
100% 961±59 979±74 0.313

16
10% 12±0 28±5 <.001(*)
50% 12±0 19±3 <.001(*)
100% 12±0 16±2 <.001(*)

17
10% 338±35 554±25 <.001(*)
50% 333±34 543±26 <.001(*)
100% 279±63 516±61 <.001(*)

18
10% 141±1 147±3 <.001(*)
50% 110±6 117±4 <.001(*)
100% 87±6 94±6 <.001(*)

Continued on next page

85

Table 4.7 – Continued from previous page
ID Percent of Run Hyperplane Random p-value

19
10% 111±8 550±38 <.001(*)
50% 53±8 351±52 <.001(*)
100% 42±7 168±58 <.001(*)

20
10% 1,260±35 3,063±46 <.001(*)
50% 1,123±68 2,432±199 <.001(*)
100% 1,087±54 1,852±86 <.001(*)

21
10% 76±8 67±4 <.001(*)
50% 40±4 35±3 <.001(*)
100% 27±2 25±3 <.001(*)

22
10% 3,114±57 3,887±50 <.001(*)
50% 2,461±169 3,126±222 <.001(*)
100% 1,811±159 2,301±105 <.001(*)

23
10% 3,088±220 9,449±232 <.001(*)
50% 2,606±276 7,620±419 <.001(*)
100% 2,255±259 5,962±357 <.001(*)

24
10% 8,258±84 9,049±116 <.001(*)
50% 6,659±435 7,162±512 <.001(*)
100% 5,186±342 5,170±283 0.848

25
10% 3,978±93 7,923±159 <.001(*)
50% 3,165±191 7,020±260 <.001(*)
100% 2,442±164 6,019±304 <.001(*)

26
10% 6,190±80 13,857±163 <.001(*)
50% 5,216±59 10,853±90 <.001(*)
100% 5,014±74 10,165±273 <.001(*)

27
10% 18,093±261 29,030±208 <.001(*)
50% 13,371±189 19,820±197 <.001(*)
100% 12,578±432 18,665±992 <.001(*)

28
10% 3,109±98 59,388±1,501 <.001(*)
50% 2,854±358 30,602±954 <.001(*)
100% 2,085±272 29,628±1,607 <.001(*)

29
10% 22,316±122 130,539±598 <.001(*)
50% 10,283±248 36,567±471 <.001(*)
100% 9,927±280 34,284±467 <.001(*)

30
10% 72,819±1,084 370,027±683 <.001(*)
50% 11,171±168 35,972±581 <.001(*)
100% 10,472±919 34,657±534 <.001(*)

Table 4.7 lists the means and standard deviations of the best-so-far solution at the 10%

mark, the 50% mark and the 100% mark of the 30 runs for each instance. We compared the

86

means using a two-sided t-test with the alternative hypothesis that the mean evaluations of

the best-so-far solutions in the hyperplane initialized runs are different than those of the runs

starting from the random solutions. A two-sided test was chosen because in some cases the

mean of the random runs was higher. The p-values of these tests are also listed in Table 4.7.

At the 10% mark, there were 20 significant differences. In two cases, instances 11 and 6,

the mean best-so-far solution from the random runs was higher than the hyperplane means.

In all other significant cases, the hyperplane means were better. At the 50% mark, there were

21 significant differences. Again, in these cases the hyperplane means were better except for

instances 6, 9, and 11. At the 100% mark, there were 20 significant differences. The mean

evaluations of the best-so-far solutions was better in the hyperplane initialized runs in all

but two cases: instances 11 and 13. Of the cases in which the random runs were significantly

better, only in the case of instance 11 were the random runs significantly better than the

hyperplane initialized runs at all marks.

On large instances, instance 14 and up with the exception of instance 22 in which no

significant difference was found, the hyperplane runs consistently have a significantly better

mean evaluation than those runs starting from random solutions. This occurs at all points

along the runs. In some cases the difference between means is an order of magnitude and

more.

4.1.8 Summary of Hyperplane Initialization

In our evaluation of hyperplane initialization, we found that hyperplane initialization can

provide a significantly better estimation of the correct backbone assignments than random

solutions. The best estimations, correctly assigning over 90% of the total backbone variables,

occurred on the most industrial-like instances, those generated with the uni/pl(mod) and

pl/pl(mod) generators (see Table 3.1 for a full description of our generators).

When we initialized AdaptG2WSAT with the hyperplane initialized solutions, the search

was able to find a global optimum faster than runs initialized from random solutions. We

conjecture that this is because the search starts closer to the hyperplane defined by the

87

backbone set that contains all of the globally optimal solutions as discussed in Chapter

3. The search was influenced the greatest on the most industrial-like instances, the same

instances that hyperplane initialization provided the best estimation of the correct backbone

assignments.

We extended our analysis to industrial instances and found that hyperplane initialization

constructed significantly better solutions than random initialization on all instances. In some

cases, the evaluations were improved by an order of magnitude or more. We examined the

best-so-far solutions found by AdaptG2WSAT when initialized by hyperplane initialization

at various points in the search. On all instances with 60,000 variables those runs initialized

by hyperplane initialization were able to find significantly better solutions than those runs

initialized with random solutions with one exception in which there was no significant differ-

ence. This provides strong evidence that hyperplane initialization can significantly improve

the quality of solutions found by SLS algorithms.

4.2 Fast Initial Descent

SLS algorithms can be split into two phases. The first phase is the part of the search

prior to the first local optimum being found and the second is after the first local optimum is

found [78, 1]. We will refer to this first phase as the initial descent and look at two strategies

for this phase: a first improving search and a best improving search. Best improving search

for MAX-SAT first identifies the improving moves in the neighborhood of the candidate

solution and takes the best improving move. First improving search arbitrarily selects an

improving move without necessarily considering all improving moves.

AdaptG2WSAT and other SLS algorithms, e.g. GSAT [71], employ a best improving

search for the initial descent [48, 49]. Best improving search can be costly; exact implemen-

tations employed by most SLS solvers have a computational complexity of O(n) while first

improving search has a complexity of O(1) [1]. Prior studies on uniform random instances

of MAX-SAT by Gent and Walsh (1992) and by Schuurmans and Southey (2001) [23, 69]

indicate that best improving local search methods are no better than first improving local

88

search, yet many modern algorithms continue to use best improving local search despite the

extra computational cost [48, 49, 75].

We therefore wish to revisit this issue by analyzing industrial problems to determine if

there is any advantage to using best improving search over next improving search for the

initial descent. We will carry out this analysis in two stages.

The first stage is an analysis of the local optima found found by the two types of local

search and the time required to find a local optimum. The purpose of this experiment is to

establish any differences in the quality of local optima found by the two searches and the

effort required to find them in terms of CPU time.

The initial descent to a local optimum is only the first of two phases of SLS. We are

therefore also concerned with how the search behaves after a local optimum is found. In the

second stage of our analysis we will look at the effect of the two initial descents on the final

solutions found by the second phase of SLS.

4.2.1 Prior Analyses of Local Search

Gent and Walsh [25, 24] analyzed hill climbing in GSAT [71] to determine what con-

tributed to its performance. Gent and Walsh [23] examined the influence of greediness (best

improving moves) and randomness (first improving moves) on six problems: three SAT en-

codings of the n-queens problem (n = 6, 8, 16) and three random 3SAT problems with clause

to variable ratio of 4.3 (for 50, 70 and 100 variables). They found that neither greediness nor

randomness were important for GSAT’s performance. Gent and Walsh [24] divided search

into two phases: a short duration of hill climbing followed by a long duration of plateau

search. They tested on random 3SAT problems with up to 1000 variables and showed that

hill climbing progresses through increasingly lengthening phases in which the incremental

improvement declines until a plateau is reached.

Schuurmans and Southey (2001) identified characteristics of local search that can be used

to predict behavior [69]. Seven different algorithms were run on MAX-3SAT problems in

89

the phase transition region from SATLIB. They found that effective SAT solvers first find a

good local optimum and then explore quickly and broadly to find a solution.

These studies assessed performance on small random 3SAT instances. Do these conclu-

sions extend to large problems and industrial applications where the optimal solution is not

known? To address this question, we will perform our own analysis of the trade-off between

first and best improving search on the industrial problems listed in Table 4.5.

4.2.2 First vs Best Improving Local Search

We first examine the quality of local optima found by first improving and best improving

local search on industrial instances. We use a common implementation for the update in

both searches in which the neighborhood is updated in amortized constant time [82]. In

other words, the list of improving moves in the Hamming distance 1 neighborhood from the

candidate solution is updated in constant time for both best improving and first improving

search.

In best improving search, we scan this list to find the move with the best improvement

to the evaluation of the candidate solution, breaking ties at random. This has a worst case

complexity of O(n) in the event that the number of improving solutions is some factor of

n. We have empirically shown that indeed best improving search implemented in this way,

even with a constant time neighborhood update, has an O(n) worst case computational

complexity [1].

First improving search needs only to select an improving move. Therefore, we need only

to select an element at random from the list of improving moves. A scan is not required.

This implementation of first improving search, along with a constant time update, has O(1)

worst case computational complexity.

We constructed 30 random solutions for each of the industrial instances in Table 4.5

by setting each variable to true or false with equal probability. From each solution we

started both best improving search and first improving search. Once the search reached

a solution with no improving moves in the Hamming distance 1 neighborhood, the search

90

was terminated. We recorded both the CPU time required to find these solutions and their

evaluations. Table 4.8 reports the mean and standard deviations of these evaluations for

each instance. We also ran a two-sided t-test comparing the evaluations from each search

for each instance. The p-values are reported in the right-most column of Table 4.8.

We see that in the majority of instances, with the exception of instances 3 and 18, there

is a significant difference between the evaluations of local optima found by best improving

search and first improving search. Instance 18 is a planning problem that has been reduced

to an instance of MAX-SAT [44]. In 9 out of the 28 significant cases, specifically instances

2, 6, 8, 10, 16, 17, 19, 21 and 22, first improving search found better solutions on average

than best improving search. In the remaining 19 out of 28 significant cases, best improving

search found local optima with better evaluations.

We next look at the cost of finding a local optimum in terms of CPU time. To do so, we

measure the CPU time required by each run to find a local optimum, time to local optimum

(TLO), that was required for each run. Given that first improving search has a constant

time complexity and that best improving search has a linear time complexity, we expect

to see shorter times from the runs using first improving search. The means and standard

deviations of TLO over the 30 runs on each instance are reported in Table 4.9 along with

p-values from a one-sided t-test with the alternative hypothesis that the TLO from the first

improving runs is lower than those from best improving runs.

Although there is little difference in the smaller instances, as the instance size grows

we begin to see significant differences in the TLO. In all instances with more than 3,000

variables, the runs using first improving search have a significantly lower mean TLO than

those runs using best improving search. Clearly on the largest instances, the initial descent

could have a major impact on the CPU time required by the search. On the largest instances,

the difference between times is over a factor of 1,000.

We can make a major savings in the effort required to reach a local optimum in terms of

CPU time on large instances by using first improving as opposed to the best improving used

in state-of-the-art SLS algorithms. However, we see mixed results in the evaluation of local

91

Table 4.8: Means and standard deviations of the evaluations of 30 local optima found by
first improving search (First) and best improving search (Best) for 30 industrial instances
from Table 4.5. The p-value column lists the p-value from a two sided t-test comparing the
means.

ID First Improving Best Improving p-value
1 55±5 50±4 <.001(*)
2 18±3 24±3 <.001(*)
3 28±2 26±3 0.023
4 139±9 129±9 <.001(*)
5 349±19 227±10 <.001(*)
6 285±23 317±22 <.001(*)
7 737±22 710±20 <.001(*)
8 417±17 451±12 <.001(*)
9 2,148±40 1,983±30 <.001(*)
10 2,667±218 3,050±168 <.001(*)
11 4,362±49 4,313±53 <.001(*)
12 6,132±74 5,487±45 <.001(*)
13 6,782±73 6,510±71 <.001(*)
14 7,154±84 6,666±62 <.001(*)
15 9,808±85 9,402±101 <.001(*)
16 563±31 1,152±38 <.001(*)
17 2,120±83 4,363±78 <.001(*)
18 2,493±123 2,490±93 0.926
19 10,635±130 12,671±125 <.001(*)
20 18,416±99 18,171±116 <.001(*)
21 6,836±56 7,205±76 <.001(*)
22 24,075±123 24,437±125 <.001(*)
23 34,021±283 31,713±191 <.001(*)
24 36,178±210 32,600±186 <.001(*)
25 44,571±151 40,161±169 <.001(*)
26 56,267±269 55,013±132 <.001(*)
27 74,250±260 70,816±234 <.001(*)
28 118,522±1,125 103,727±440 <.001(*)
29 191,198±457 173,903±378 <.001(*)
30 255,366±817 237,565±537 <.001(*)

92

Table 4.9: Means and standard deviations of the TLOs over 30 runs of first improving
search (First) and best improving search (Best) for 30 industrial instances from Table 4.5.
The p-value column lists the p-value from a two sided t-test comparing the means.

ID First Improving Best Improving p-value
1 0.00±0.00 0.00±0.00 1.000
2 0.00±0.00 0.00±0.00 1.000
3 0.00±0.00 0.00±0.00 1.000
4 0.00±0.00 0.00±0.00 1.000
5 0.02±0.01 0.01±0.00 0.985
6 0.01±0.01 0.01±0.00 <.001(*)
7 0.00±0.01 0.01±0.00 <.001(*)
8 0.04±0.01 0.07±0.00 <.001(*)
9 0.01±0.00 0.07±0.00 <.001(*)
10 0.26±0.02 0.31±0.01 <.001(*)
11 0.01±0.00 0.21±0.01 <.001(*)
12 0.02±0.00 0.43±0.01 <.001(*)
13 0.02±0.01 0.66±0.02 <.001(*)
14 0.02±0.00 0.92±0.02 <.001(*)
15 0.04±0.01 1.37±0.02 <.001(*)
16 0.37±0.04 4.99±0.13 <.001(*)
17 1.38±0.21 5.57±0.55 <.001(*)
18 0.22±0.01 4.17±0.06 <.001(*)
19 0.26±0.04 7.83±0.38 <.001(*)
20 0.08±0.01 4.25±0.06 <.001(*)
21 0.33±0.06 10.29±0.62 <.001(*)
22 0.40±0.05 10.93±0.43 <.001(*)
23 0.19±0.02 13.21±0.57 <.001(*)
24 0.22±0.03 14.53±1.36 <.001(*)
25 0.20±0.02 17.25±0.84 <.001(*)
26 0.43±0.03 37.77±3.52 <.001(*)
27 0.79±0.05 189.63±4.94 <.001(*)
28 0.81±0.06 589.20±33.36 <.001(*)
29 1.01±0.05 1,164.21±45.88 <.001(*)
30 2.01±0.10 4,558.74±197.82 <.001(*)

93

optima found by the two searches: the majority of local optima found by best improving

search are better than first improving. Our next experiment will determine if this difference

affects the final solution found at the end of the second stage.

We ran AdaptG2WSAT on the industrial instances in Table 4.5 with two types of initial

descent: first improving and best improving. We ran 30 runs of each type for 20n bit flips

with a maximum of 5,000,000 bit flips1. Note that AdaptG2WSAT uses a best improving

initial descent as default, so our best improving runs are no different from its default behavior.

Table 4.10 reports the means and standard deviations of the evaluations from each of the

runs along with the p-values from a two-sided t-test testing for a difference in the means.

In the majority of cases, there is no significant difference. Interestingly, in all cases that

are significant at the .001 level those runs using first improving search found better solutions

on average than the rest. At α = .05, only instances 14, 18 and 22 have a significant difference

in favor of those runs using best improving search. On the vast majority of instances, there

is either no significant difference or a significant difference indicating that first improvement

finds better solutions.

We conjecture that first descent is better in some cases as it is not biased towards flipping

the critical variables. To illustrate our point, we choose instance 26, as this is one of the

larger instances on which first improving search performed better. This instance has 400,085

variables and 1,121,810 clauses. We first counted the variable frequencies of all the variables

in this instance. 71 of the 400,085 variables in this instance each appeared in over 1,500

clauses. The next most frequent variable appeared in less than 300 clauses. The vast

majority of variables, 345,600 to be exact, appeared in less than 10 clauses.

We then looked at the first 1,000 bit flips of the runs from best improving and first

improving search. We plotted this against the step at which each bit was flipped in Figure 4.3.

There is a heavy bias towards flipping the bits with > 1, 500 frequency in the first few

1Six instances were terminated before 20n flips.

94

Table 4.10: Means and standard deviations of the evaluations of solutions found by Adapt-
G2WSAT starting from 30 local optima found by first improving search (First) and 30 local
optima found by best improving search (Best) on 30 industrial instances from Table 4.5.
The p-value column lists the p-value from a two sided t-test comparing the means.

ID First Improving Best Improving p-value
1 5.07±1.28 4.97±1.22 0.758
2 1.00±0.00 1.00±0.00 1.000
3 8.43±1.70 8.53±1.36 0.802
4 1.83±0.99 1.83±1.12 1.000
5 5.90±1.97 7.10±2.76 0.058
6 12.30±2.72 12.83±2.69 0.448
7 74.17±9.86 75.27±8.72 0.649
8 90.97±7.50 92.13±7.15 0.540
9 10.33±3.17 11.10±3.85 0.403
10 95.07±23.08 94.67±20.07 0.943
11 165.20±10.50 167.80±16.17 0.464
12 975.57±86.61 969.00±58.27 0.732
13 351.87±38.69 331.90±43.46 0.065
14 166.83±23.63 149.67±19.98 0.004
15 978.67±73.52 1,031.97±78.76 0.009
16 15.93±2.03 16.30±1.66 0.448
17 515.70±60.96 736.67±52.34 <.001(*)
18 93.73±6.00 90.40±5.12 0.024
19 168.37±57.70 265.97±60.02 <.001(*)
20 1,852.17±86.18 1,832.83±102.46 0.432
21 24.63±2.59 25.83±2.51 0.074
22 14,374.20±46,751.12 2,201.50±136.67 0.330
23 5,962.33±357.42 6,022.60±331.71 0.501
24 5,170.03±282.82 5,369.30±400.56 0.030
25 6,019.20±304.18 6,074.67±355.18 0.519
26 10,164.87±272.79 10,350.77±212.12 0.005
27 18,665.27±992.01 21,407.70±1,198.17 <.001(*)
28 29,627.50±1,607.30 30,519.43±2,293.06 0.087
29 34,284.23±467.12 35,515.43±396.03 <.001(*)
30 34,657.31±534.48 35,439.06±707.13 <.001

95

iterations of the search in best improving search. This makes sense, as it will greedily flip

the variables that satisfy the most clauses. Those variables that appear most frequently will

have a greater chance to satisfy more clauses.

First improving has no such bias. Although 2 of the variables with 1, 500 frequency

are flipped, there is no bias towards the more frequent variables. We conjecture that first

improving search performs better as it does not prematurely fix these critical variables early

in the search.

By setting the critical variables early, we believe that AdaptG2WSAT with best improv-

ing search will have a harder time undoing any mistakes made in setting these variables. To

better understand how the search is influenced by the two local searches, we ran both Adapt-

G2WSAT using first improving search and AdaptG2WSAT using best improving search for

5,000,000 bit flips on the same instance used to generate Figure 4.3. Figure 4.4 shows the

improvement over time at three points along the searches.

Figure 4.4(a) shows the first 100,000 bit flips. During the first 100,000 flips, first im-

provement maintains a relatively constant rate of improvement. Due to the greedy bias,

best improving search improves at a faster rate. However, at about 320,000 bit flips first

improving finds a better best-so-far solution as shown in Figure 4.4(b). At this point, Adapt-

G2WSAT with first improving search improves at a faster rate than AdaptG2WSAT with

best improving search. We believe this is a direct result of not setting the critical variables

early in the search.

In Figure 4.4(c), both searches have stagnated and cannot find improving solutions.

At this point, there is little chance that either search will find an improved solution. We

conjecture that alternative strategies must be employed in the second phase to alleviate this

stagnation by using additional information about the space beyond the immediate gradient,

e.g., Sutton’s directed plateau search [77] or hyperplane information. Nevertheless, the search

using first improving search during the initial descent has found a better solution than the

best improving search.

96

0 500 1000 1500

First Improving

1
50

0
10

00

0 500 1000 1500

Best Improving

Number of Clauses in which Flipped Variable Occurs

V
ar

ia
bl

e
F

lip
pe

d
(f

irs
t 1

00
0

Ite
ra

tio
ns

)

Figure 4.3: The frequency of variables that are flipped by first improving and best improving
search during the first 1,000 steps of the two local search algorithms on instance 26 in
Table 4.5. The flip sequence is ordered from bottom to top with the first flip at the bottom
and the 1,000th flip at the top.

97

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

50
00

0
10

00
00

15
00

00
20

00
00

Bit Flip

E
va

lu
at

io
n

of
 B

es
t−

S
o−

Fa
r

S
ol

ut
io

n

First Improving

Best Improving

(a) First 100,000 Bit Flips

350000 400000 450000 500000

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

Bit Flip

E
va

lu
at

io
n

of
 B

es
t−

S
o−

Fa
r

S
ol

ut
io

n

First Improving

Best Improving

(b) Crossover Point

4900000 4920000 4940000 4960000 4980000 5000000

10
38

0
10

40
0

10
42

0
10

44
0

10
46

0

Bit Flip

E
va

lu
at

io
n

of
 B

es
t−

S
o−

Fa
r

S
ol

ut
io

n

First Improving

Best Improving

(c) Last 100,000 Bit Flips

Figure 4.4: The improvement over time of AdaptG2WSAT with best improving search and
with first improving search at three points along runs of 5,000,000 bit flips: (a) the first
100,000 bit flips, (b) the point where AdaptG2WSAT with first improving search finds a
better solution than the best improving version, and (c) the last 100,000 bit flips.

The results in Table 4.10 do not reflect another advantage of using first improving search:

the savings in computational time required to find a local optimum. Table 4.11 reports the

mean and standard deviation of the CPU time required over the 30 runs for each instance.

98

The p-values are the result of a one-sided t-test with an alternative hypothesis that first

improving search will have lower mean times than best improving search.

Although there is little difference in smaller instances, AdaptG2WSAT with first improv-

ing search requires a significantly lower time to execute 20n bit flips. AdaptG2WSAT with

best improving search on the majority of instances. Again we see time savings on the order

of several magnitudes on the largest instances. Perhaps more interesting is the fact that the

time required for the second phase in AdaptG2WSAT is greatly dwarfed by the cost of the

initial descent on large instances.

To better illustrate this phenomenon, we took the time to local optima from each run

in Table 4.9 and divided by the overall run times in Table 4.11. This gave us a percentage

of time that the search spent in the initial descent. Tale 4.12 lists these percentages. We

only report the values for instances 6 and above as the smaller instances had no significant

difference in the time to local optima.

As we can see, the majority of the overall running time is spent in the initial descent phase

when using best improving search. By allowing the search to reach a local optimum faster,

more of the search can be spent in the exploration phase. As we have seen in the previous

chapter, the lower levels of the space are more rugged and thus present more difficulty to SLS

algorithms. A fast initial descent will allow the search to spend more time in this difficult

area of the space in time constrained applications.

It is important to note that the computational time is a factor in SLS algorithms that

have a constant time update. If there are additional components to the algorithm that have

a computational complexity of O(n) or higher per move, then this advantage may be lost.

One example of this is Iterated Robust Tabu Search (IRoTS) [75]. This SLS algorithm

incorporates a best improving local search along with a Tabu list of flipped bits. When a bit

is flipped, it is put on the Tabu list where it will remain for a fixed number of steps, known

as the Tabu expirations. If a bit is on the list, it will not be flipped again.

We replaced the best improving local search in IRoTS with a first improving local search.

We ran 30 runs of IRoTS with both best improving and first improving search on our 30

99

Table 4.11: Means and standard deviations of the time in seconds required to execute 30
runs of AdaptG2WSAT with each run terminated after 20n bit flips per run. Two versions
of AdaptG2WSAT were used: our modified version using first improving search (First) and
the unmodified version using best improving search (Best). 30 industrial instances from
Table 4.5 were used as benchmarks. The p-value column lists the p-value from a one sided
t-test comparing the means with the alternative hypothesis that the average time of the First
runs will be lower.

ID First Improving Best Improving p-value
1 0.00±0.00 0.00±0.00 1.000
2 0.00±0.00 0.01±0.00 0.125
3 0.06±0.01 0.06±0.00 0.315
4 0.01±0.00 0.01±0.00 0.043
5 0.23±0.03 0.24±0.03 0.052
6 0.06±0.01 0.07±0.01 <.001(*)
7 0.04±0.00 0.05±0.00 <.001(*)
8 0.81±0.17 0.89±0.15 0.071
9 0.30±0.03 0.37±0.05 <.001(*)
10 5.92±1.09 6.20±0.97 0.293
11 0.22±0.02 0.43±0.01 <.001(*)
12 0.47±0.08 0.85±0.03 <.001(*)
13 0.32±0.01 0.96±0.01 <.001(*)
14 0.41±0.02 1.30±0.02 <.001(*)
15 0.70±0.03 2.03±0.03 <.001(*)
16 17.20±1.53 22.64±1.27 <.001(*)
17 32.30±34.56 8.16±3.08 <.001(*)
18 0.79±0.03 4.90±0.05 <.001(*)
19 3.28±0.36 11.20±0.38 <.001(*)
20 2.17±0.06 6.35±0.07 <.001(*)
21 4.30±0.42 13.86±0.37 <.001(*)
22 19.05±5.37 28.91±1.73 <.001(*)
23 7.78±0.41 20.99±0.64 <.001(*)
24 7.78±0.13 21.45±0.20 <.001(*)
25 7.16±0.15 23.80±0.39 <.001(*)
26 15.10±2.99 52.87±9.42 <.001(*)
27 16.06±2.74 233.14±85.99 <.001(*)
28 12.04±2.70 743.93±103.84 <.001(*)
29 12.65±2.45 1,465.57±188.25 <.001(*)
30 11.62±2.26 5,117.51±903.11 <.001(*)

100

Table 4.12: Mean percentage spent in the initial descent by AdaptG2WSAT using either
first improving (First) or best improving (Best) for the initial descent. Times are in seconds
and are averaged over 30 runs. The 30 industrial instances from Table 4.5 were used.

ID First Improving Best Improving
6 9.66% 15.42%
7 12.30% 20.69%
8 4.60% 8.09%
9 2.08% 18.51%
10 4.39% 5.03%
11 4.51% 48.05%
12 3.43% 50.90%
13 5.68% 69.04%
14 5.92% 70.39%
15 5.10% 67.53%
16 2.17% 22.03%
17 4.26% 68.19%
18 27.81% 85.10%
19 8.03% 69.86%
20 3.88% 66.93%
21 7.65% 74.19%
22 2.08% 37.80%
23 2.50% 62.93%
24 2.87% 67.75%
25 2.81% 72.47%
26 2.83% 71.45%
27 4.93% 81.34%
28 6.72% 79.20%
29 7.95% 79.44%
30 18.53% 94.13%

101

industrial instances for 20n bit flips. Due to the computational complexity of updating and

enforcing the Tabu list there was no significant difference in the running time between the two

versions of IRoTS using first and best improving search. Because the running times were not

significantly different between IRoTS first improving and best improving search and IRoTS

is very slow, we set a maximum time limit of 20 minutes per run rather than terminate the

runs after a fixed number of bit flips. There were, however, significant differences in the

average evaluation of the solutions found at the end of the runs. These values are reported

in Table 4.13.

We ran a two-sided t-test comparing the mean evaluations of the solutions found at the

end of the 30 runs from each version of IRoTS on each instance. The p-values from these

tests are also reported in Table 4.13. We can see that in the case of IRoTS, the difference

between mean evaluation is significant in 27 of the 30 instances. Of these significant cases,

only in instances 3, 8, 16, 17, and 18 are the evaluations found by the first improving run

lower than those found by the best improving runs. We conjecture that this is because the

Tabu mechanism allows the greedy best improving search to undo mistakes in setting the

critical values. Further testing of this hypothesis will be discussed more in the future work

section.

4.2.3 Fast Descent Search with Hyperplane Initialization

Finally, we combine our hyperplane initialization with a fast initial descent. We used

hyperplane initialization to construct 30 solutions for each of the benchmark instances in

Table 4.5. We used these solutions to initialize our version of AdaptG2WSAT that uses first

improving search for the initial descent. Again, each run was terminated after 20n bit flips

with a maximum of 5,000,000 flips per run.

Table 4.14 reports the means and standard deviations of the evaluations of the best

solution found by these runs. For comparison, we also report the means and standard

deviations of evaluations of solutions found by identical runs using AdaptG2WSAT with

best improving for the initial descent initialized by hyperplane initialization, AdaptG2WSAT

102

Table 4.13: Means and standard deviations of the evaluations of the best found solutions
from 30 runs of Iterated Robust Tabu Search (IRoTS) using first improving (first) and best
improving (best) local search. The p-values are from a two-sided t-test with an alternative
hypothesis that the mean evaluations are different between the two local search types.

Instance First Improving Best Improving p-value
1 8±2 7±1 0.059
2 4±2 4±1 0.183
3 17±2 19±3 <.001(*)
4 29±4 15±3 <.001(*)
5 169±13 6±1 <.001(*)
6 112±14 67±23 <.001(*)
7 176±10 129±14 <.001(*)
8 115±9 126±13 <.001(*)
9 252±25 172±30 <.001(*)
10 284±39 203±36 <.001(*)
11 892±49 264±28 <.001(*)
12 1,985±40 1,386±82 <.001(*)
13 1,014±26 821±61 <.001(*)
14 653±20 660±60 0.546
15 1,960±61 1,069±144 <.001(*)
16 36±5 336±22 <.001(*)
17 799±49 2,691±123 <.001(*)
18 198±11 210±16 <.001(*)
19 2,525±49 1,460±448 <.001(*)
20 2,870±64 2,505±159 <.001(*)
21 94±6 81±4 <.001(*)
22 4,760±69 2,863±360 <.001(*)
23 11,294±205 8,070±993 <.001(*)
24 11,371±120 8,082±1,428 <.001(*)
25 10,086±115 7,497±864 <.001(*)
26 11,992±173 10,996±284 <.001(*)
27 84,893±15,454 30,568±162 <.001(*)
28 312,803±28,461 95,233±26,855 <.001(*)
29 542,494±22,858 251,129±51,078 <.001(*)
30 1,092,200±16,364 768,341±44,946 <.001(*)

103

with best improving initial descent initialized by random solutions, and AdaptG2WSAT with

first improving initial descent initialized by random solutions.

We first note that the RN+Best column of Table 4.14 is the default implementation of

AdaptG2WSAT in the UBCSAT package. This implementation was only able to find the

best evaluations, on average, on four instances: Instances 1, 2, 4, and 10. In each case, at

least one other configuration of AdaptG2WSAT was able to find an equal mean evaluations.

We can therefore state that on our benchmark industrial instances, at least one combination

of our improvements is able to find equal or better solutions.

We see mixed results on the combination of improvements. No one combination is con-

sistently better than the other. To determine the significance of our improvements we ran

an analysis of variance test on the data in Table 4.14. We used two factors with two values

each in this test: the initialization method (im), which was either hyperplane initialization or

random, and the initial descent type (dt), which was either first improving or best improving.

We ran the analysis of variance on an instance by instance basis, thus we had 30 samples

from each combination of the two factors. Table 4.15 reports the p-values for the significance

level of each factor (im and dt) and the p-value of the significance of an interaction effect

between the factors (im:dt).

We will first examine the impact of the initialization method (im) in Table 4.14 and

Table 4.15. There were 17 instances in which the initialization method was a significant

factor. In all but two of these (instances 11 and 22), the runs initialized by hyperplane

initialization were able to find significantly better solutions than those runs initialized by

random solutions.

The impact of the descent type (dt) are not as significant. There were six instances in

which the descent type was a significant factor. In three of these, first improving was the

best (instances 13,19, and 29) and best improving found better solutions in the other three.

The impact of the interaction effect was similarly mixed. There were nine instances in

which the interaction between the initialization method and descent type (im:dt in table 4.15

were significant). In four of these instances (instances 13,14,19, and 29) the combination

104

Table 4.14: Means and standard deviations of the evaluations of solutions found by four
versions of AdaptG2WSAT: AdaptG2WSAT with first improving initial descent initialized
by hyperplane initialization, AdaptG2WSAT with first improving initial descent initialized
with random solutions, AdaptG2WSAT with best improving initial descent initialized with
hyperplane solutions and AdaptG2WSAT with best improving initial descent initialized by
random solutions. The best average evaluations are in bold.

Id
Hyperplane Random Hyperplane Random
First Imp. First Imp. Best Imp. Best Imp.

1 5±1 5±1 5±1 5±1
2 1±0 1±0 1±0 1±0
3 9±1 8±2 8±1 9±1
4 2±1 2±1 2±1 2±1
5 6±1 6±2 6±1 7±3
6 12±3 12±3 13±3 13±3
7 66±10 74±10 69±8 75±9
8 91±7 91±8 94±7 92±7
9 10±4 10±3 10±3 11±4
10 97±18 95±23 96±20 95±20
11 177±12 165±10 192±16 168±16
12 862±39 976±87 904±38 969±58
13 283±30 352±39 415±46 332±43
14 85±16 167±24 100±15 150±20
15 968±72 979±74 961±59 1,032±79
16 12±0 16±2 12±0 16±2
17 580±76 516±61 279±63 737±52
18 95±6 94±6 87±6 90±5
19 39±6 168±58 42±7 266±60
20 1,093±73 1,852±86 1,087±54 1,833±102
21 27±3 25±3 27±2 26±3
22 1,849±173 2,301±105 1,811±159 2,202±137
23 2,096±284 5,962±357 2,255±259 6,023±332
24 5,238±314 5,170±283 5,186±342 5,369±401
25 2,265±141 6,019±304 2,442±164 6,075±355
26 5,388±62 10,165±273 5,014±74 10,351±212
27 17,547±1,163 18,665±992 12,578±432 21,408±1,198
28 3,270±454 29,628±1,607 2,085±272 30,519±2,293
29 9,846±470 34,284±467 9,927±280 35,515±396
30 14,022±623 34,657±534 10,472±919 35,439±707

105

Table 4.15: P-values from an analysis of variance test on the mean evaluations of solutions
found by runs of AdaptG2WSAT with two factors: initialization method (im) and descent
type (dt). There are two values for each factor, initialization method is either hyperplane
initialization or random solutions and descent type is either first improving or best improving.
There are 30 runs per configuration for a total of 90 runs for each instance (see Table 4.5 for
a list of the instances

Id
Initialization Descent Initialization Method :
Method Type Descent Type

1 0.819 0.819 0.819
2 0.319 0.319 0.319
3 0.948 0.648 0.397
4 0.096 0.922 0.922
5 0.219 0.036 0.154
6 0.799 0.309 1.000
7 <.001(*) 0.350 0.775
8 0.558 0.081 0.387
9 0.205 0.883 0.329
10 0.659 0.834 0.918
11 <.001(*) 0.001 0.021
12 <.001(*) 0.106 0.027
13 0.310 <.001(*) <.001(*)
14 <.001(*) 0.807 <.001(*)
15 0.002 0.074 0.023
16 <.001(*) 0.498 0.416
17 <.001(*) 0.006 <.001(*)
18 0.301 <.001(*) 0.012
19 <.001(*) <.001(*) <.001(*)
20 <.001(*) 0.385 0.663
21 <.001(*) 0.239 0.213
22 <.001(*) 0.076 0.380
23 <.001(*) 0.055 0.384
24 0.349 0.235 0.044
25 <.001(*) 0.015 0.199
26 <.001(*) 0.005 <.001(*)
27 <.001(*) <.001(*) <.001(*)
28 <.001(*) 0.575 <.001(*)
29 <.001(*) <.001(*) <.001(*)
30 <.001(*) <.001(*) <.001(*)

.

106

of hyperplane initialization and first improving search found better solutions on average.

In the other five instances (instances 17,26,27,28, and 30) the combination of hyperplane

initialization and best improving search found better solutions.

We know that first improving search can drastically reduce the time to execute 20n bit

flips from Table 4.11. However, hyperplane initialization requires more time than construct-

ing a random solution due to the calculation of Walsh coefficients and hyperplane averages.

Table 4.16 reports the means and standard deviations of the overall run times, including

initialization, of the 30 runs per instance by the various configurations of AdaptG2WSAT

used in Tables 4.14 and 4.15.

Hyperplane initialization does increase the amount of time required to execute a fixed

number of bit flips. This is especially apparent in instances with a large number of clauses,

e.g., instances 10 and 17. This is because we must process each clause to both generate Walsh

coefficients and compute the hyperplane averages. Although this time is significant, we note

that it is possible to improve upon the time required by our initialization method [31].

However, in many cases, especially those larger instances, hyperplane initialization can

actually improve the mean run time of those runs using best improving search. We conjecture

that this is because the initialization method will start the search closer to a local optimum.

Table 4.12 shows the percentage of time spent in the initial descent on large instances

dominates the search. By starting closer to a local optimum, the search can find a local

optimum using less bit flips, thus transitioning to the second phase more quickly and using

less overall time.

4.3 Summary

We have examined two improvements to SLS algorithms: hyperplane initialization and

fast initial descent using first improving search. We have found that these improvements can

increase both the quality of solutions found and the time taken to find them when compared

to the performance of the standard implementation of AdaptG2WSAT. However, the best

performing configuration of these improvements varies from instance to instance. These

107

Table 4.16: Means and standard deviations of the time to execute 20n bit flips by four
versions of AdaptG2WSAT: AdaptG2WSAT with first improving initial descent initialized
by hyperplane initialization, AdaptG2WSAT with first improving initial descent initialized
with random solutions, AdaptG2WSAT with best improving initial descent initialized with
hyperplane solutions and AdaptG2WSAT with best improving initial descent initialized by
random solutions. Means are over 30 runs from each configuration on each of the 30 industrial
instances from Table 4.5.

Id
Hyperplane Random Hyperplane Random
First Imp. First Imp. Best Imp. Best Imp.

1 0±0 0±0 0±0 0±0
2 0±0 0±0 0±0 0±0
3 1±0 0±0 1±0 0±0
4 0±0 0±0 0±0 0±0
5 5±0 0±0 5±0 0±0
6 0±0 0±0 0±0 0±0
7 0±0 0±0 0±0 0±0
8 3±0 1±0 3±0 1±0
9 1±0 0±0 1±0 0±0
10 68±1 6±1 67±1 6±1
11 1±0 0±0 1±0 0±0
12 2±0 0±0 2±0 1±0
13 1±0 0±0 1±0 1±0
14 1±0 0±0 2±0 1±0
15 2±0 1±0 2±0 2±0
16 24±1 17±2 22±1 23±1
17 189±10 32±35 225±38 8±3
18 3±0 1±0 3±0 5±0
19 5±0 3±0 5±0 11±0
20 3±0 2±0 4±0 6±0
21 6±0 4±0 7±0 14±0
22 18±1 20±1 18±0 29±2
23 13±0 8±0 18±0 21±1
24 18±1 8±0 21±0 21±0
25 11±0 7±0 16±1 24±0
26 26±3 15±3 37±3 53±9
27 26±2 16±3 62±2 233±86
28 50±0 12±3 83±1 744±104
29 43±0 13±2 305±3 1,466±188
30 167±1 12±2 1,477±12 5,118±903

108

differences may indicate that there are more structural qualities to industrial instances than

those captured by our generated instances.

Hyperplane initialization can provide an estimation of the correct assignment of the

backbone variables with a high degree of accuracy on our generated instances. On those

instances with the most industrial-like properties, hyperplane initialization can assign over

90% of the backbone variables correctly. We find that this not only increases the evaluation

of the initial solution but also improves the ability of AdaptG2WSAT to quickly find a global

optimum when it is initialized with hyperplane initialization.

We revisit the issue of best improving versus first improving search and conduct a new

analysis on industrial instances. SLS algorithms can be split into two phases: the initial

descent before a local optimum is found, and the exploration phase after a local optimum

is found. We conducted our analysis by using both first improving and best improving

search during the initial descent of AdaptG2WSAT. We found that although there can be

significant differences in the evaluation of local optima found at the end of the initial descent,

this makes little difference in the quality of solution found at the end of the exploration phase.

Furthermore, first improving search is much faster on large industrial instances, giving up

to a 4000× speedup in the overall run time on fixed length runs.

This gave us four configurations of AdaptG2WSAT: Hyperplane initialized AdaptG2WSAT

with first improving initial descent, random initialized AdaptG2WSAT with first improving

initial descent, hyperplane initialized AdaptG2WSAT with best improving initial descent,

and random initialized AdaptG2WAT with best improving initial descent (the standard

implementation in UBCSAT). The first three represent various configurations of our im-

provements. We found that in all 30 of the industrial instances we used as benchmarks, at

least one of these configurations outperformed the standard implementation.

Given our results on generated instances, we would have expected the hyperplane ini-

tialized runs to outperform the randomly initialized runs. Although this is indeed what we

saw in most cases, there were two instances, instances 11 and 21 from Table 4.5, where the

randomly initialized runs found significantly better solutions on average than the hyperplane

109

initialized runs. Given our previous results on generated instances, we conjecture that these

instances must contain some additional structure beyond the community structure, clause

distribution and variable frequency found in our generated instances.

Nevertheless, we were able to improve quality of solutions found on almost all of our

benchmark industrial instances by using hyperplane initialization and first descent search.

In the previous chapter, we have identified why the search space is more difficult on instances

having industrial-like properties. In this chapter, we have shown two methods by which we

can improve the performance of SLS algorithms on instances with these properties. In

the next chapter, we will discuss a method based on applying our hyperplane averages to

complete solvers and show that this method can improve the ability of complete solvers to

find globally optimal solutions on industrial instances.

110

Chapter 5

Improving Complete Solvers for SAT

In the previous chapter we discussed several improvements to SLS algorithms. These

algorithms are suitable for applications where simply finding a solution with low evaluation

is good enough [13, 66]. However, there are some cases when we need to know if the problem

is satisfiable or not [50]. Although SLS solvers can determine if a problem is satisfiable by

finding a satisfying solution, they typically cannot say anything in the unsatisfiable case.

Complete SAT solvers, which are guaranteed to return a satisfying solution if one exists, are

ideal for applications in which we need to determine the satisfiability of an instance.

The majority of complete SAT solvers are based on the Davis-Putnam-Logemann-Loveland

(DPLL) algorithm [16], which is a backtracking branch-and-bound search based on resolu-

tion and other inference rules [55, 19]. There has been much research into the improvement

of the DPLL algorithm, such as improved efficiency [55, 19], better conflict detection [6], and

improved heuristics for ordering the variables assignments, which dictate the search paths

explored [8]. However, rather than focus on improving DPLL or an existing solver directly,

we take a different approach.

We use our method of efficiently computing hyperplane averages (See Section 3 in Chapter

4) to reduce the search space of the original problem as a preprocessing step prior to running

a complete solver. In Chapter 3, we discussed how the backbone variables define a hyperplane

in the search space. In Chapter 4, we have shown how hyperplane averages can provide a

good estimation of the correct assignment of backbone variables. Our hyperplane reduction

method will use these estimations to produce a new problem from the original by fixing a

parameterized number of variables to the best guess truth assignment based on hyperplane

averages. Although the use of preprocessors is common practice in solving SAT instances,

our method is unique in that we directly use the hyperplane averages to heuristically chose

a hyperplane and confine the search to that subspace.

111

SatELite is perhaps the most widely used preprocessor and incorporates a number of

techniques to reduce both the number of variables and the number of clauses in the original

formula [18]. The methods used in SatELite and other preprocessors ensure that the reduced

formula will be satisfiable if and only if the original formula is satisfiable [18].

Our method differs from SatELite in this regard. We will use hyperplane averages to

heuristically chose a subspace that we hope contains an optimal solution. Because our

hyperplane averages can only estimate the location of the optimal solution, we cannot be

sure a globally optimal solution is contained within this subspace. If a complete solver finds

a satisfying solution within the reduced subspace, then the original problem is satisfiable.

However, if a solver finds that our reduced problem is unsatisfiable, the original problem

may still be satisfiable as it is possible that a global optimum exists outside of the subspace.

In this case, we can either perform another reduction to a different hyperplane or run the

complete solver on the original problem.

This strategy is effective and has proven to be one of the best strategies in the 2013

SAT Competition in the Application SAT track [68]2. In the application track, consisting of

real-world applications of SAT, our hyperplane reduction method paired with the MiniSAT

complete solver [19] was able to solve 113 out of the 150 industrial instances in the track.

This was good enough to rank our solver in 3rd place, out of a total of 31 entrants, many of

which are considered state-of-the-art in complete solvers for SAT [68, 8, 6].

We first will describe our hyperplane reduction method with some empirical results to

demonstrate its effectiveness at both reducing the original problem and finding hyperplanes

containing optimal solutions. We will then present our results from the 2013 SAT Competi-

tion.

2Due to a technicality our entry was disqualified because the word ‘unsatisfiable’ was present in our final
answer for three satisfiable problems, despite the fact that our solver produced verifiable satisfying solutions
for these problems.

112

5.1 Reducing Problem Size with Hyperplane Averages

The goal of hyperplane reduction is to select a single hyperplane that not only contains

the global optimum, but also significantly reduces the search space. The hypothesis is that

by reducing the search space, we make the job of finding a satisfying solution (or determining

the space does not contain one) easier for a complete solver. This is the same hypothesis

that motivated preprocessors such as SatELite. This strategy has been proven effective for

the state-of-the-art generation of DPLL-based solvers [18, 67].

As we have shown in Chapter 4, we were able to generate solutions to our industrial-

like generated instances with over 90% of the backbone variables correctly assigned using

hyperplane averages. Initializing search with these solutions led to a higher probability of

finding a global optimum. When using hyperplane averages to initialize search on large,

industrial instances, the search was able to find better solutions on average. We will use

a similar technique as a preprocessing step to reduce the size of industrial instances before

passing them off to a complete solver.

In Chapter 4, Section 3, we show how the Walsh coefficients can be used to efficiently

compute the average evaluation of solutions contained within a hyperplane [82, 31, 83].

The hyperplanes we chose for our initialization method were based on the variables in each

clause. For example, on an instance with n = 6 variables, if the first clause was C1 =

(x1∨¬x3∨x4) then we would compute the hyperplanes defined by all possible combinations

of truth assignments over x1, x3, and x4, which we refer to as the fixed variables. These

would be 0 ∗ 00 ∗ ∗, 0 ∗ 01 ∗ ∗, 0 ∗ 10 ∗ ∗, 0 ∗ 11 ∗ ∗, 1 ∗ 00 ∗ ∗,1 ∗ 01 ∗ ∗,1 ∗ 10 ∗ ∗,1 ∗ 11 ∗ ∗, where

‘∗’ denotes a free variable. Thus, for each clause of size k, we have the average evaluation

for 2k hyperplanes.

Our strategy is to select a single hyperplane, for example 11∗00∗, and reduce the original

problem by eliminating the fixed variables and any clauses that are satisfied by them. For

example using hyperplane 11 ∗ 00∗, if our original problem was

(x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x5) ∧ (¬x2 ∨ ¬x4 ∨ x6)

113

it would be reduced to

(¬x3 ∨ x5

A satisfying solution to the reduced problem would be setting x3 = 0 or x5 = 1. To find

the satisfying solution to the original problem, we can replace the free variables with the

assignments found to satisfy the reduced problem, giving us 110001.

Computing the averages over the hyperplanes corresponding to the clauses works well

for our hyperplane initialization. Although using the clause-based hyperplanes to vote on a

promising initial assignment works well for hyperplane initialization, in hyperplane reduction

we are not constructing a solution. Furthermore, we want to fix the variables that have the

greatest potential to reduce the size of the original formula.

Therefore, instead of using the hyperplanes defined by the clauses, we compute the aver-

ages of the hyperplanes corresponding to fixing the most frequent variables. The rationale

is that we can eliminate the most clauses by fixing the variables that appear in the most

clauses. In practice, we first compute the frequency of occurrence of each variable in the

original instance. We then select the four most frequently occurring variables. We choose

four variables as empirically it gave us the best results. If we choose less variables, we do

not gain as big of a reduction as the resulting hyperplanes will contain more solutions. If we

choose more variables, hyperplanes become more restrictive. Although this results in better

reductions, we also lessen the probability that the hyperplane contains a global optimum.

Once the four variables are chosen, we compute the average evaluations of the 16 hy-

perplanes associated with the 16 possible truth assignments to the four variables and then

select the hyperplane with the best average evaluation. The original problem is then reduced

as described above by removing the fixed variables and any clauses that are satisfied under

their truth assignments.

To evaluate the ability of hyperplane reduction to reduce the problem size, both in terms

of n andm, we selected 100 problems from the application track of the 2011 SAT competition.

These problems were selected to represent a range of both size and application. We select

114

different problems from those in Table 4.5 because many of the industrial problems used in

Chapter 2 are from the MAX-SAT 2012 competition [52].

These problems were contributed to the 2012 MAX-SAT competition by Safarpour and

represent an application of MAX-SAT to circuit debugging and analysis [13, 66]. Through

private correspondence with the contributor, we have learned that these problems are un-

satisfiable. Although they are extremely difficult for MAX-SAT solvers, indeed the global

optimum is unknown for many of these problems, they are quite easily determined to be un-

satisfiable by a SAT complete solver due to obvious contradictions in the formulas. Therefore,

these problems would not be suitable for testing a SAT solver and we chose a different set

to represent applications of SAT.

We ran SatELite on the 100 problems that we selected from the SAT competition. Of

these, 3 were solved by simply reducing the problems so we eliminated these from our set

leaving us with 97 reduced problems. We then ran our hyperplane reduction algorithm on

the 97 reduced problems. To further reduce our hyperplane reduced problems, we then ran

SatELite again on the hyperplane reduced formulas. Therefore, our preprocessing pipeline

is as follows.

Original Problem -> SatELite -> Hyperplane Reduction -> SatELite

Table 5.1 reports the number of variables n and the number of clauses m on the original

problem, the initial SatELite reduction and the hyperplane reduction. We also report the

percentage of the reduction from the original problem for both n andm on the two reductions.

In all cases, hyperplane reduction+SatELite is able to reduce the problem further than just

running SatELite.

Table 5.1: The number and percentage of variables (n) and clauses (m) reduced by SatELite
and SatELite+hyperplane reduction for 97 industrial instances.

Instance Reduction n (% reduced) m (% reduced)

driverlog3
Original 170 1559
SatELite 78(54.12%) 834(46.5%)
Hyperplane 10(48.24%) 136(37.78%)

Continued on next page

115

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

bart17
Original 231 1166
SatELite 11(95.24%) 11(99.06%)
Hyperplane 26(83.98%) 175(84.05%)

aes-32-1
Original 300 1016
SatELite 154(48.67%) 356(64.96%)
Hyperplane 8(46%) 52(59.84%)

rovers1
Original 439 5423
SatELite 292(33.49%) 3,732(31.18%)
Hyperplane 4(32.57%) 90(29.52%)

aes-32-2
Original 504 1840
SatELite 206(59.13%) 408(77.83%)
Hyperplane 8(57.54%) 64(74.35%)

aes-64-1
Original 596 2780
SatELite 196(67.11%) 532(80.86%)
Hyperplane 20(63.76%) 160(75.11%)

vmpc-25
Original 625 76775
SatELite 0(100%) 0(100%)
Hyperplane 4(99.36%) 972(98.73%)

aes-32-3
Original 708 2664
SatELite 258(63.56%) 460(82.73%)
Hyperplane 8(62.43%) 64(80.33%)

vmpc-29
Original 841 120147
SatELite 0(100%) 0(100%)
Hyperplane 4(99.52%) 1,132(99.06%)

ferry5
Original 984 8702
SatELite 350(64.43%) 405(95.35%)
Hyperplane 4(64.02%) 138(93.76%)

vmpc-32
Original 1024 161664
SatELite 0(100%) 0(100%)
Hyperplane 4(99.61%) 1,252(99.23%)

dp04s04
Original 1075 3152
SatELite 844(21.49%) 2,046(35.09%)
Hyperplane 163(6.33%) 808(9.45%)

vmpc-34
Original 1156 194072
SatELite 0(100%) 0(100%)
Hyperplane 4(99.65%) 1,332(99.31%)

vmpc-35
Original 1225 211785
SatELite 0(100%) 0(100%)
Hyperplane 4(99.67%) 1,372(99.35%)

Continued on next page

116

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

vmpc-36
Original 1296 230544
SatELite 0(100%) 0(100%)
Hyperplane 4(99.69%) 1,412(99.39%)

rbcl-xits-15
Original 2384 164746
SatELite 827(65.31%) 894(99.46%)
Hyperplane 5(65.1%) 3,189(97.52%)

rbcl-xits-18
Original 2888 218530
SatELite 961(66.72%) 1,043(99.52%)
Hyperplane 5(66.55%) 3,488(97.93%)

ndhf-xits
Original 4020 466486
SatELite 1,396(65.27%) 1,895(99.59%)
Hyperplane 5(65.15%) 5,943(98.32%)

abb9-c
Original 6228 484871
SatELite 16(99.74%) 5,775(98.81%)
Hyperplane 4(99.68%) 1,213(98.56%)

vda-gr-rcs-w9
Original 6498 130997
SatELite 763(88.26%) 771(99.41%)
Hyperplane 4(88.2%) 744(98.84%)

dp10s10
Original 7759 23004
SatELite 5,919(23.71%) 14,062(38.87%)
Hyperplane 213(20.97%) 1,183(33.73%)

E05F18
Original 7794 126826
SatELite 1,181(84.85%) 3,178(97.49%)
Hyperplane 20(84.59%) 3,612(94.65%)

E04F19
Original 9044 295685
SatELite 1,018(88.74%) 1,968(99.33%)
Hyperplane 20(88.52%) 10,487(95.79%)

E02F20
Original 10420 395383
SatELite 1,432(86.26%) 3,976(98.99%)
Hyperplane 20(86.07%) 12,566(95.82%)

E04F20
Original 10420 484053
SatELite 1,733(83.37%) 19,397(95.99%)
Hyperplane 56(82.83%) 25,652(90.69%)

E05F20
Original 10420 481346
SatELite 1,512(85.49%) 12,372(97.43%)
Hyperplane 20(85.3%) 15,701(94.17%)

E02F22
Original 13574 1301188
SatELite 2,126(84.34%) 39,135(96.99%)
Hyperplane 20(84.19%) 39,612(93.95%)

Continued on next page

117

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

abb9-tr
Original 14013 481761
SatELite 2,243(83.99%) 40,368(91.62%)
Hyperplane 4(83.96%) 604(91.5%)

gss-14-s100
Original 31229 93855
SatELite 18,213(41.68%) 39,865(57.52%)
Hyperplane 442(40.26%) 1,779(55.63%)

gss-16-s100
Original 31248 93904
SatELite 17,912(42.68%) 38,462(59.04%)
Hyperplane 406(41.38%) 1,705(57.23%)

gss-19-s100
Original 31435 94548
SatELite 17,753(43.52%) 37,719(60.11%)
Hyperplane 448(42.1%) 1,900(58.1%)

gss-21-s100
Original 31613 95104
SatELite 17,774(43.78%) 37,625(60.44%)
Hyperplane 447(42.36%) 1,823(58.52%)

gss-22-s100
Original 31616 95110
SatELite 17,752(43.85%) 37,482(60.59%)
Hyperplane 445(42.44%) 1,796(58.7%)

gss-27-s100
Original 31951 96161
SatELite 17,676(44.68%) 36,831(61.7%)
Hyperplane 496(43.13%) 2,021(59.6%)

mizh-sha0-36-4
Original 50073 210235
SatELite 29,500(41.09%) 89,892(57.24%)
Hyperplane 24(41.04%) 128(57.18%)

sha0-36-5
Original 50073 210223
SatELite 29,496(41.09%) 89,877(57.25%)
Hyperplane 24(41.05%) 128(57.19%)

pathways-17
Original 53919 308235
SatELite 12,954(75.98%) 35,636(88.44%)
Hyperplane Hyperplane Unsatisfiable

ibm-2004-01-k90
Original 64699 276210
SatELite 29,736(54.04%) 63,664(76.95%)
Hyperplane 1,027(52.45%) 6,636(74.55%)

slpaes-top24
Original 65983 209942
SatELite 41,792(36.66%) 86,618(58.74%)
Hyperplane 1,428(34.5%) 7,416(55.21%)

AProVE11-15
Original 66715 228274
SatELite 31,707(52.47%) 55,377(75.74%)
Hyperplane 853(51.2%) 5,437(73.36%)

Continued on next page

118

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

md5-48-3
Original 66892 279258
SatELite 40,203(39.9%) 121,909(56.35%)
Hyperplane 4(39.89%) 144(56.29%)

AProVE11-09
Original 68779 234693
SatELite 34,721(49.52%) 62,554(73.35%)
Hyperplane 9(49.5%) 4,071(71.61%)

pipesworld-12
Original 68952 1029036
SatELite 7,433(89.22%) 11,486(98.88%)
Hyperplane Hyperplane Unsatisfiable

slpaes-top25
Original 71356 227126
SatELite 45,155(36.72%) 93,590(58.79%)
Hyperplane 1,477(34.65%) 7,674(55.42%)

slpaes-top26
Original 76943 245006
SatELite 48,647(36.78%) 100,860(58.83%)
Hyperplane 1,526(34.79%) 7,938(55.59%)

AProVE11-16
Original 84025 282766
SatELite 41,359(50.78%) 81,027(71.34%)
Hyperplane 668(49.98%) 4,993(69.58%)

slpaes-top28
Original 88763 282870
SatELite 56,013(36.9%) 116,257(58.9%)
Hyperplane 1,624(35.07%) 8,459(55.91%)

slpaes-top29
Original 94998 302862
SatELite 59,882(36.96%) 124,349(58.94%)
Hyperplane 1,673(35.2%) 8,721(56.06%)

AProVE11-11
Original 96526 325263
SatELite 46,397(51.93%) 93,226(71.34%)
Hyperplane 70(51.86%) 1,801(70.78%)

traffic-r
Original 98651 3362666
SatELite 1,171(98.81%) 6,648(99.8%)
Hyperplane 541(98.26%) 157,490(95.12%)

slpaes-top30
Original 101451 323566
SatELite 63,881(37.03%) 132,723(58.98%)
Hyperplane 1,722(35.34%) 8,976(56.21%)

SAT-dat.k80-04
Original 104450 457628
SatELite 62,075(40.57%) 195,213(57.34%)
Hyperplane Hyperplane Unsatisfiable

UTI-10-5t1
Original 108508 527595
SatELite 72,472(33.21%) 297,745(43.57%)
Hyperplane 46(33.17%) 382(43.49%)

Continued on next page

119

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

sokoban.050
Original 109684 1767096
SatELite 37,888(65.46%) 771,199(56.36%)
Hyperplane 420(65.07%) 4,382(56.11%)

velev-pipe
Original 118038 8780591
SatELite 12,110(89.74%) 46,375(99.47%)
Hyperplane 4(89.74%) 152,920(97.73%)

UR-10-10p1
Original 131228 635871
SatELite 65,884(49.79%) 238,265(62.53%)
Hyperplane 52(49.75%) 406(62.47%)

sokoban.060
Original 131484 2120376
SatELite 41,728(68.26%) 870,079(58.97%)
Hyperplane 420(67.94%) 4,382(58.76%)

12pipe-bug4
Original 138563 4675040
SatELite 57,369(58.6%) 120,410(97.42%)
Hyperplane Hyperplane Unsatisfiable

12pipe-bug6
Original 138795 4671352
SatELite 57,611(58.49%) 123,494(97.36%)
Hyperplane 1,272(57.58%) 20,051(96.93%)

pipesworld-18
Original 141856 2742601
SatELite 6,029(95.75%) 15,401(99.44%)
Hyperplane Hyperplane Unsatisfiable

traffic-3
Original 142205 1312352
SatELite 795(99.44%) 1,100(99.92%)
Hyperplane 143(99.34%) 39,715(96.89%)

sokoban.070
Original 153284 2473656
SatELite 45,568(70.27%) 968,959(60.83%)
Hyperplane 420(70%) 4,382(60.65%)

smtlib-share
Original 164758 456350
SatELite 136,895(16.91%) 316,415(30.66%)
Hyperplane 500(16.61%) 3,879(29.81%)

sokoban.080
Original 175084 2826936
SatELite 49,408(71.78%) 1,067,839(62.23%)
Hyperplane 420(71.54%) 4,382(62.07%)

smtlib-src-wget
Original 180045 538304
SatELite 119,072(33.87%) 260,573(51.59%)
Hyperplane 625(33.52%) 2,949(51.05%)

ibm-2002-30r-k85
Original 181484 890298
SatELite 93,897(48.26%) 214,240(75.94%)
Hyperplane 1,482(47.44%) 10,250(74.78%)

Continued on next page

120

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

SAT-dat.k85
Original 181484 890298
SatELite 93,897(48.26%) 214,240(75.94%)
Hyperplane 1,482(47.44%) 10,250(74.78%)

ibm-2002-21r-k95
Original 191522 788339
SatELite 133,054(30.53%) 355,982(54.84%)
Hyperplane 86(30.48%) 1,368(54.67%)

UCG-15-10p1
Original 200003 1019221
SatELite 97,502(51.25%) 352,067(65.46%)
Hyperplane 58(51.22%) 438(65.41%)

ibm-2004-23-k100
Original 207606 861175
SatELite 136,410(34.29%) 339,304(60.6%)
Hyperplane 95(34.25%) 1,395(60.44%)

AProVE11-02
Original 214734 743081
SatELite 107,919(49.74%) 190,262(74.4%)
Hyperplane 70(49.71%) 6,570(73.51%)

q-query-3
Original 218792 1020908
SatELite 190,030(13.15%) 718,824(29.59%)
Hyperplane 96(13.1%) 11,817(28.43%)

ACG-15
Original 218990 943377
SatELite 82,534(62.31%) 272,071(71.16%)
Hyperplane 85(62.27%) 503(71.11%)

UCG-20-5p1
Original 224986 1204430
SatELite 103,738(53.89%) 370,059(69.28%)
Hyperplane 60(53.86%) 474(69.24%)

AProVE11-07
Original 233177 782677
SatELite 117,732(49.51%) 232,867(70.25%)
Hyperplane 34(49.5%) 6,236(69.45%)

UTI-20-10t1
Original 238008 1278025
SatELite 168,324(29.28%) 707,581(44.63%)
Hyperplane 46(29.26%) 409(44.6%)

pipesworld-27
Original 249618 5949456
SatELite 11,561(95.37%) 25,916(99.56%)
Hyperplane Hyperplane Unsatisfiable

UTI-20-10p1
Original 260342 1391257
SatELite 121,668(53.27%) 432,772(68.89%)
Hyperplane 56(53.24%) 464(68.86%)

smtlib-libsmbclient
Original 266663 768347
SatELite 217,518(18.43%) 521,921(32.07%)
Hyperplane 345(18.3%) 3,183(31.66%)

Continued on next page

121

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

smtlib-rfunit
Original 266805 720122
SatELite 266,649(0.06%) 718,511(0.22%)
Hyperplane 7(0.06%) 166(0.2%)

AProVE11-10
Original 289828 1008603
SatELite 146,944(49.3%) 253,446(74.87%)
Hyperplane 807(49.02%) 20,188(72.87%)

AProVE11-06
Original 302076 1039056
SatELite 142,963(52.67%) 259,987(74.98%)
Hyperplane Hyperplane Unsatisfiable

ipc5
Original 314455 2920820
SatELite 5,984(98.1%) 10,079(99.65%)
Hyperplane Hyperplane Unsatisfiable

openstacks
Original 324116 1643601
SatELite 123,627(61.86%) 314,422(80.87%)
Hyperplane 64,984(41.81%) 441,590(54%)

smtlib-servers
Original 360364 1076507
SatELite 190,314(47.19%) 368,673(65.75%)
Hyperplane 1,997(46.63%) 7,916(65.02%)

traffic-r-uc
Original 467551 4467733
SatELite 13,985(97.01%) 14,701(99.67%)
Hyperplane 36(97%) 4,982(99.56%)

transport.2city040
Original 580875 3140965
SatELite 226,183(61.06%) 705,632(77.53%)
Hyperplane 21,290(57.4%) 145,167(72.91%)

blocks37-1.150
Original 645431 11795567
SatELite 155,651(75.88%) 3,094,125(73.77%)
Hyperplane 11,400(74.12%) 101,906(72.9%)

blocks36-0.160
Original 652445 11706080
SatELite 145,898(77.64%) 2,858,145(75.58%)
Hyperplane 10,804(75.98%) 96,524(74.76%)

blocks36-0.170
Original 693135 12437620
SatELite 145,898(78.95%) 2,858,145(77.02%)
Hyperplane 10,804(77.39%) 96,524(76.24%)

transport.city060
Original 723130 3869060
SatELite 222,059(69.29%) 452,886(88.29%)
Hyperplane Hyperplane Unsatisfiable

blocks36-0.180
Original 733825 13169160
SatELite 145,898(80.12%) 2,858,145(78.3%)
Hyperplane 10,804(78.65%) 96,524(77.56%)

Continued on next page

122

Table 5.1 – Continued from previous page
Instance Reduction n (% reduced) m (% reduced)

transport.3city020
Original 756832 4116966
SatELite 390,900(48.35%) 1,546,822(62.43%)
Hyperplane 14,122(46.48%) 106,216(59.85%)

transport.city030
Original 945406 5079060
SatELite 371,079(60.75%) 1,109,256(78.16%)
Hyperplane 57,732(54.64%) 391,289(70.46%)

transport.city040
Original 1260306 6771840
SatELite 442,679(64.88%) 1,120,116(83.46%)
Hyperplane 57,732(60.29%) 391,289(77.68%)

clauses-8
Original 1461771 5687554
SatELite 1,014,482(30.6%) 3,515,162(38.2%)
Hyperplane 59,444(26.53%) 143,867(35.67%)

transport.city050
Original 1575206 8464620
SatELite 514,279(67.35%) 1,130,976(86.64%)
Hyperplane 57,732(63.69%) 391,289(82.02%)

Table 5.2 summarizes this result by reporting the mean and standard deviation per-

centage reduction over the original problem from both SatELite and SatELite+Hyperplane

Reduction. We ran a paired t-test between the number of variables in the SatELite reduc-

tions and the number of variables in the SatELite+Hyperplane reductions. The alternative

hypothesis in this test was that there were less variables in the SatELite+Hyperplane reduc-

tion. The results were significant at the 0.001 level. A similar test comparing the number of

clauses also resulted in a p-value of < .001.

These results tell us that SatELite+Hyperplane reduction provides a significantly larger

decrease to the problem size in both terms of the number of variables and the number of

clause than SatELite alone. However, this reduction comes at a cost. By fixing the four most

frequent variables to specific truth assignments, we limit the search to the free variables. If

there is not a satisfying solution with these same truth assignments, then the search will not

find it. We will next examine how often the reduced space contains a satisfying solution.

123

Table 5.2: The mean percentage of reduction in both the number of variables and the number
of clauses on 90 industrial problems (See Table 5.1) by SatELite alone and by SatELite with
hyperplane reduction. The p-values are the result of a paired t-test with the alternative
hypothesis that there are less variables or clauses in the Hyperplane+SatELite reductions
than the SatELite reductions.

Reduction Method Reduction of Variables Reduction of Clauses
SatELite Reduction 40.40 ± 24.87% 27.18 ± 22.84%
SatELite+Hyperplane Reduction 48.00% ± 28.62 36.87 ± 29.21%
p-value < 0.001 < 0.001

5.1.1 Ranked Hyperplanes and Global Optima

To examine how often our hyperplane reduced problems contain a satisfying solution, we

need a complete solver that can efficiently search the subspaces. We will use the MiniSAT

complete solver to decide the satisfiability of the hyperplane reduced problem [19]. MiniSAT

is a lightweight, open source solver designed for use in experimental SAT research.

For each of the 97 industrial instances, we chose the four most frequent variables and

computed the average evaluations over the 16 hyperplanes corresponding to the 16 possible

truth assignments to these variables. We then sorted the hyperplanes from highest average

evaluation to lowest average evaluation and ran MiniSAT for 20 minutes on the reduced

problems from the eight hyperplanes with the highest averages. We recorded the result from

each run of MiniSAT and report them in Table 5.3.

Table 5.3: The outcome of 20 minute runs of MiniSAT on the eight top ranked hyperplanes
for 97 industrial SAT instances. The hyperplanes were chosen by fixing the four most frequent
variables in each problem and ranked from highest to lowest by the average evaluation of
the solutions within each hyperplane. MiniSAT has three possible outcomes: S, U and
I. S (shaded cells) means a satisfying solution was found, U means the hyperplane does
not contain a satisfying solution, and I means MiniSAT timed out before deciding on the
satisfiability of the hyperplane.

Instance 1 2 3 4 5 6 7 8
12pipe-bug4 S U U U I I I I
12pipe-bug6 U U U S I I I I
aaai10-pathways-17 I I I I I I I I
aaai10-pipesworld-12 I U I I I S U I
aaai10-pipesworld-18 I I I I I I S I

Continued on next page

124

Table 5.3 – Continued from previous page
Instance 1 2 3 4 5 6 7 8
aaai10-pipesworld-27 I I I I I I U I
aaai10-ipc5 I I I S S I S S
abb9-c I I I I I I I I
abb9-tr S S S S S S S S
ACG-15 S I S S I I I I
aes-32-1 U U U S U U U U
aes-32-2 U U U U S U U U
aes-32-3 S U I U I U U I
aes-64-1 I U I U U U U I
AProVE11-02 S S S S S S S S
AProVE11-06 I U U U I U I U
AProVE11-07 S I I I S I I I
AProVE11-09 S S S S S S S S
AProVE11-10 U U U U U S U U
AProVE11-11 U U U U U U U U
AProVE11-15 U U U U U S U S
AProVE11-16 U U U S S U S S
bart17 S S S S S S S S
blocks36-0.160 S S S S S S S S
blocks36-0.170 S S S S S S S S
blocks36-0.180 S S S S S S S S
blocks37-1.150 S S S S S S S S
clauses-8 U U U U U U U U
dp04s04 U U I U U I U U
dp10s10 S S S S S S S S
driverlog3 S I I I I I I I
E02F20 S S S S S S S S
E02F22 S S S S S S S S
E04F19 S S S S S S S S
E04F20 S S S S S S S S
E05F18 S S S S U S S S
E05F20 S S S S S S S S
ferry5 S U U U U I I I
gss-14-s100 U U U U U U U U
gss-16-s100 U U U U U U U U
gss-19-s100 U S U U U U U U
gss-21-s100 U U U U U U U S
gss-22-s100 U U U U S U U U
gss-27-s100 I I I I I I I I
ibm-2002-21r-k95 S S S S S S S U
ibm-2002-30r-k85 S S S S I S I S
ibm-2004-01-k90 S S I S S S S S

Continued on next page

125

Table 5.3 – Continued from previous page
Instance 1 2 3 4 5 6 7 8
ibm-2004-23-k100 S S S S S S S S
md5-48-3 S S S S S S S S
mizh-sha0-36-4 S S S S S S S S
ndhf-xits I I I I I I I I
openstacks S S S S S S S S
q-query-3 U I U I S I I I
rbcl-xits-15 S S S S S S S S
rbcl-xits-18 S S S S S S S S
rovers1 S I I I S I I I
SAT-dat.k80-04 I I I I I I I I
SAT-dat.k85 S S S S I S I S
sha0-36-5 S S S I S S S S
slpaes-top24 I I I I I I I S
slpaes-top25 S I I S I S I I
slpaes-top26 S I I I I S S I
slpaes-top28 S S S S S S I S
slpaes-top29 S S S S I S S S
slpaes-top30 I I S S S S S S
smtlib-libsmbclient S S S S S S S S
smtlib-libsmbsharemodes S S S S S S S S
smtlib-rfunit S S S S S S S S
smtlib-servers I I I I I I I I
smtlib-src-wget S S S S S S S S
sokoban.050 I I I I I I I I
sokoban.060 I I I I I I I I
sokoban.070 I I I I I I I I
sokoban.080 I I I I I I I I
traffic-3 I I I S I I S I
traffic-r S S S S S S S I
traffic-r-uc S I S S I S S S
transport.city060 I S U U I S U U
transport.city030 I I S I I I I I
transport.city040 I I I I I I I I
transport.city050 I I S I I I I I
transport.3city020 U U I U U I U I
transport.2city040 U I U U U I S U
UCG-15-10p1 S S I S I I S I
UCG-20-5p1 S S S S S I S S
UR-10-10p1 S S S S I I I I
UTI-10-5t1 S I I I I I I I
UTI-20-10p1 I S I I I I I I
UTI-20-10t1 S I I I I I I I

Continued on next page

126

Table 5.3 – Continued from previous page
Instance 1 2 3 4 5 6 7 8
vda-gr-rcs-w9 S S S S S S S S
velev-pipe S U U U U U U U
vmpc-25 S U U U U U U U
vmpc-29 S U U U U U U U
vmpc-32 S U U U U U U U
vmpc-34 I U U U U U U U
vmpc-35 I U U I S U U U
vmpc-36 I I I I I U U U

There are three possible outcomes from a run of MiniSAT on a hyperplane reduction

reporting in Table 5.3: Satisfiable, Unsatisfiable, and Indeterminate. Satisfiable means that

MiniSAT found a satisfying solution in the hyperplane and that the original problem is

satisfiable; these are the shaded cells. Unsatisfiable means that MiniSAT found that the

hyperplane reduced problem is unsatisfiable. This, however, does not necessarily mean that

the original problem is not satisfiable; only that the hyperplane does not contain a satisfying

solution. Indeterminate means that MiniSAT timed out without determining if the reduction

was satisfiable or not. Table 5.4 summarizes the results.

Of the 97 industrial instances in Table 5.3, the majority of rank one hyperplanes contain

a satisfying solution. The second highest return value from MiniSAT is indeterminate. In the

indeterminate cases, it is possible that the reduced problem based on the rank one hyperplane

is satisfiable but MiniSAT was unable to find a satisfying solution in the 20 minutes allowed

per run. We know for certain that the rank one hyperplane does not contain a satisfying

solution in only 17 of the 97 instances.

In the cases where the rank one hyperplane is unsatisfiable, we cannot say for certain

anything about the satisfiability of the original problem. Therefore, we have two options.

We can either run MiniSAT on the original problem or we can run MiniSAT on a different

hyperplane reduction. The second strategy does have some merit. For example, Table 5.3

shows that in some cases where the rank 1 hyperplane is unsatisfiable, e.g., gss-19-s100, the

rank 2 or higher ranked hyperplanes are satisfiable.

127

Table 5.4: Number of Satisfiable, Unsatisfiable and Indeterminate cases after running Min-
iSAT for 20 minutes on hyperplane reduced problems. 16 hyperplanes averages were com-
puted corresponding to the four most frequently occurring variable in each problem. These
hyperplanes were then ranked by averages and we ran MiniSAT for 10 minutes on the re-
ductions corresponding to the top eight hyperplanes for each problem. These results are a
summary of the data in Table 5.3.

Hyperplane Ranking 1 2 3 4 5 6 7 8
Satisfiable 53 40 40 45 40 42 41 40
Unsatisfiable 17 26 25 24 20 20 25 21
Indeterminate 27 31 32 28 37 35 31 36

Of course, one of the 16 total hyperplanes must contain a satisfying solution if the original

solution is satisfiable. The hyperplanes partition the solutions in the original search space

into 16 mutually exclusive sets, the union of which equals the original space. Thus, with an

unbounded runtime, it is possible to search the rank 1 hyperplane, until either a satisfying

solution is found or MiniSAT determines the reduction is unsatisfiable. If a satisfying solution

is found, we can stop and conclude that the original problem is satisfiable. Otherwise, we can

run MiniSAT on the rank 2 hyperplane, until a satisfying or unsatisfying result is reached.

We can then repeat this process on the higher ranked hyperplanes until either a satisfying

solution is found or all hyperplanes have been found to be unsatisfiable, in which case we

can conclude the original problem is unsatisfiable.

While theoretically this strategy would work, an unbounded run-time is an unreasonable

assumption due to the NP-complete nature of SAT. Indeed, some of the problems in our

benchmark set are unsolved. Therefore, we need to set an upper bound on the runtime

allowed per hyperplane. We can of course, continue with this strategy, however if the time

limit is reached on any of the 16 hyperplanes , we can no longer determine the unsatisfiability

based on the results of the hyperplane reductions alone. This concept will be the basis of

our strategy for combining hyperplane reduction with MiniSAT.

128

5.2 Hyperplane Reduced MiniSAT

We will now describe our strategy for combining hyperplane reduction and MiniSAT. We

will refer to the entire procedure as Hyperplane Reduced MiniSAT (HRMS). HRMS was

designed to be submitted to the 2013 SAT Competition [68], therefore some of the design

decisions were made to abide by the competition rules. Specifically, the competition imposes

a 5,000 second limit per instance.

Given the time limit, we would not have enough time to search all 16 hyperplanes even for

10 minutes a piece. Our strategy was to instead search as many hyperplanes as possible, while

leaving 10 minutes for MiniSAT to run on the original problem. We gave each hyperplane an

upper bound of 10 minutes. That is, if MiniSAT ran longer than this on any one hyperplane

without determining the satisfiability of the reduction, the run was aborted and MiniSAT

was run on the next hyperplane. If an unsatisfiable result was found, MiniSAT immediately

ran on the next best ranked hyperplane. If a satisfying solution was not found with 10

minutes remaining in the run, MiniSAT aborted its current run and ran on the original

unreduced problem for the remainder of the time.

Table 5.5 reports the results of our solver in the 2013 SAT competition. 31 other solvers

were submitted to this track. The ‘Virtual Best Solver’ is a hypothetical solver that shows

the results if the best runs on each instance were attributed to a single solver. The rankings

were computed by determining how many of the 150 instances were solved by returning a

solution that satisfies the original formula. Our solver, which we refer to here as HRMS,

came in 3rd place in the ranking order based on the total number of solved problems.

Table 5.6 reports the time in seconds used by each solver on all of the instances (Total

Time) and the median time in seconds spent by each solver on the 150 instances (Median

Time). If the rankings were done on the total amount of time spent solving the 150 instances

or the average time spent per instance, our solver would have ranked second. This tells us

two things: 1. our hyperplane reduction strategy is competitive with the state-of-the-solvers

129

Table 5.5: Results of the application+SAT track of the 2013 SAT Competition. There were
31 solvers that were ranked by the number of instances they solved out of the 150 instances
in the competition. Our solver, Hyperplane Reduced MiniSAT (HRMS), ranked 3rd.

Ranking Solver Number of Solved Instances

0 Virtual Best Solver (VBS) 149
1 Lingeling aqw 119
2 ZENN 0.1.0 113
3 HRMS 111
4 satUZK 48 110
5 Riss3g 3g 108
6 Lingeling 587f 107
7 CSHCapplLG 106
8 gluebit-lgl 1.0 105
9 MIPSat 105
10 forl nodrup 104
11 MIPSat 104
12 glucose 2.3 103
13 glue-bit 1.0 102
14 Solver43b b 102
15 Riss3g 102
16 strangenight satcomp11-st 102
17 Solver43a a 101
18 BreakIDGlucose 1 100
19 glueminisat 2.2.7j 100
20 CSHCapplLC 100
21 relback v1.1 99
22 gluH 1.0 99
23 ShatterGlucose 1 99
24 gluH-simp 1.0 96
25 Nigma 1.0 96
26 GlucoRed r531 93
27 RSeq V 1.1 93
28 Nigma-NoPB 1.0 92
29 minipure 1.0.1 84
30 sattimeRelbackShr SRShr1.0 73
31 SAT4J SAT COMPETITION 2013 70

130

at solving industrial instances of SAT. 2. Our strategy is also relatively fast in terms of the

running time required to solve industrial instances.

These results are even more intriguing when we also consider that we used MiniSAT as

our solver [19]. MiniSAT is a fully featured SAT Solver, but it has not been competitive

with more recent SAT solvers for several years [19, 67]. In the last SAT competition in

2011, Glucose was the winner of the application track [6, 67]. Not surprisingly, many of

the entrants to the 2013 competition are based on Glucose, e.g., GlucoRed, ShatterGlucose,

glueminisat. Not only do we solve more instances than Glucose using an unmodified version

of MiniSAT, but we also outperform the Glucose variants.

The two solvers that were able to solve more than HRMS are ZENN and Lingeling [8].

ZENN is a new solver that incorporates a phase shift paradigm [86]. ZENN uses two different

phases in the search: one phase that is similar to MiniSAT and a second phase based on a

Glucose-like search. ZENN alternates between these two search methods after a threshold

number of restarts have been reached [86].

Lingeling is based on the PrecoSAT solver [7] which incorporates preprocessing techniques

of reducing the number of clauses and variables into the search itself. In addition, there are

multiple improvements to the search procedure used in PrecoSAT and versions of Lingeling

that were entered in previous competitions [9].

To examine the difference between the top three solvers, we looked at the result for each

of the 150 instances in the SAT track and the time spent on each instance. These values are

reported in Table 5.7.

Table 5.7: The results of the top three solvers from the 2013 SAT competition. The results
are reported as either S for satisfiable or I for indeterminate in the case the solver timed out
after 5,000 seconds. The value in parentheses is the CPU time in seconds that each solver
spent on the instance.

Instance HRMS ZENN Lingeling
001a I(5000) I(5000) S(1608)
001b S(1570) I(5000) I(5000)
001c I(5000) I(5000) S(475)
001d S(936) S(3484) I(5000)

Continued on next page

131

Table 5.7 – Continued from previous page
Instance HRMS ZENN Lingeling
002a S(26) I(5000) I(5000)
002b I(5000) I(5000) S(2587)
002c S(2375) I(5000) I(5000)
003a I(5000) I(5000) I(5000)
003b I(5000) I(5000) I(5000)
003c I(5000) I(5000) S(2990)
003d I(5000) I(5000) S(4745)
003e S(3086) I(5000) I(5000)
004a S(2559) I(5000) I(5000)
004b S(899) S(1162) S(622)
005a I(5000) S(1103) I(5000)
005b S(532) S(3281) S(328)
005c S(1219) I(5000) S(1020)
006a I(5000) S(1053) I(5000)
006b I(5000) S(1214) S(114)
007a I(5000) S(3351) I(5000)
007b I(5000) S(1714) I(5000)
007c I(5000) I(5000) S(3216)
007d S(3355) S(576) S(97)
008a S(3946) I(5000) I(5000)
008b I(5000) I(5000) S(4059)
008c I(5000) I(5000) S(1180)
009a S(463) I(5000) I(5000)
009b S(2250) I(5000) S(3160)
009c S(42) S(4572) I(5000)
010 I(5000) I(5000) I(5000)
9vliw-bug1 S(73) S(157) S(245)
9vliw-bug10 S(70) S(79) S(193)
9vliw-bug4 S(71) S(157) S(182)
9vliw-bug6 S(67) S(67) S(115)
9vliw-bug7 S(101) S(63) S(200)
9vliw-bug8 S(115) S(171) S(163)
9vliw-bug9 S(108) S(70) S(77)
aaai10-pathways-17 I(5000) S(2898) S(622)
aaai10-ipc5 S(74) S(111) S(225)
ACG-15-10p1 S(1867) S(1536) S(358)
ACG-20-5p1 S(1541) S(1077) S(330)
aes-16 I(5000) S(601) S(2206)
aes-24-2 S(927) S(4741) I(5000)
aes-24-4 S(2576) S(3224) S(2904)
aes-32-1 S(2125) S(2378) S(591)
aes-32-2 S(110) S(4102) S(1253)

Continued on next page

132

Table 5.7 – Continued from previous page
Instance HRMS ZENN Lingeling
aes-64 I(5000) S(516) S(1340)
AProVE07-11 S(110) S(63) S(533)
AProVE09-06 S(992) S(791) S(847)
b04-s-2 I(5000) I(5000) I(5000)
b04-s-pre S(539) S(225) S(388)
b04-s I(5000) S(2942) S(2235)
blocks-130 S(159) S(118) S(72)
blocks-150 S(44) S(76) S(53)
E02F20 S(282) S(86) S(731)
E02F22 S(730) S(1133) S(451)
E04F19 S(172) S(58) S(44)
esawn-uw3 S(381) I(5000) S(199)
grid-3.045 S(1144) S(512) S(450)
grid-3.055 S(59) S(465) S(102)
grid-3.065 S(107) S(223) S(503)
grieu-vmpc-31 S(277) S(1250) S(1765)
gss-17-s100 S(61) S(190) S(182)
gss-18-s100 S(358) S(308) S(221)
gss-19-s100 S(1038) S(915) S(627)
gss-20-s100 S(1197) S(720) S(383)
gss-21-s100 S(348) S(4959) S(574)
gss-22-s100 S(1313) I(5000) I(5000)
gss-23-s100 I(5000) I(5000) I(5000)
gss-24-s100 S(2827) I(5000) I(5000)
gss-25-s100 I(5000) I(5000) I(5000)
hitag2-7 I(5000) I(5000) S(70)
hitag2-8 I(5000) I(5000) S(1375)
itox-vc1033 S(5) S(2) S(31)
itox-vc1130 S(7) S(2) S(39)
md5-47-1 S(53) S(130) S(59)
md5-47-2 S(44) S(120) S(75)
md5-47-3 S(84) S(38) S(191)
md5-47-4 S(42) S(19) S(89)
md5-48-1 S(454) S(173) S(178)
md5-48-2 S(97) S(160) S(133)
md5-48-3 S(488) S(475) S(35)
md5-48-4 S(67) S(63) S(385)
md5-48-5 S(69) S(23) S(128)
ndhf-xits-19 I(5000) S(1309) S(1)
ndhf-xits-21 S(633) S(5) S(2)
openstacks S(252) S(41) S(26)
partial-10-11-s S(1101) S(1946) S(751)

Continued on next page

133

Table 5.7 – Continued from previous page
Instance HRMS ZENN Lingeling
partial-10-17-s I(5000) I(5000) S(4922)
partial-10-19-s I(5000) I(5000) S(1964)
partial-5-13-s S(127) S(60) S(61)
partial-5-15-s S(178) S(165) S(186)
partial-5-17-s I(5000) S(1134) S(614)
partial-5-19-s S(456) S(1199) S(533)
pb-200-03-lb-03 S(90) S(377) S(56)
pb-300-01-lb-00 S(48) S(37) S(217)
pb-300-02-lb-06 S(38) S(119) S(88)
pb-300-02-lb-07 S(10) S(2) S(25)
pb-300-03-lb-13 S(15) S(46) S(53)
pb-300-05-lb-16 S(2203) S(1340) S(497)
pb-300-05-lb-17 S(938) S(180) S(820)
pb-300-06-lb-02 S(518) S(642) S(1340)
pb-300-09-lb-07 S(89) S(55) S(71)
pb-300-10-lb-12 S(3447) S(415) S(1715)
pb-300-10-lb-13 S(87) S(163) S(793)
pb-400-02-lb-15 S(328) S(257) S(339)
pb-400-04-lb-19 S(164) S(365) S(507)
pb-400-05-lb-00 S(380) S(1420) S(728)
pb-400-09-lb-05 S(52) S(60) S(174)
pb-400-10-lb-00 S(17) S(41) S(34)
post-cbmc S(76) S(76) S(199)
q-query-3 S(45) S(50) S(143)
rbcl-xits-14 S(5) S(1) S(2)
rpoc-xits-15 S(606) S(1) S(1)
slp-top25 I(5000) I(5000) I(5000)
slp-top26 I(5000) I(5000) I(5000)
slp-top27 S(1388) S(430) I(5000)
smtlib-aigs- S(14) S(2) S(1053)
total-10-15-s S(23) S(491) S(71)
transport-city-25-020 S(58) S(30) S(63)
transport-city-25-030 S(445) S(38) S(34)
transport-city-25-040 S(203) S(460) S(885)
transport-city-25-050 S(49) S(545) S(1136)
transport-city-25-060 S(383) S(1588) S(261)
transport-city-35-020 S(958) S(458) S(641)
transport-city-35-030 I(5000) S(3392) S(3355)
transport-city-35-040 S(1417) I(5000) I(5000)
transport-three-020 I(5000) I(5000) I(5000)
transport-three-030 I(5000) I(5000) I(5000)
transport-two-020 S(984) S(323) S(1026)

Continued on next page

134

Table 5.7 – Continued from previous page
Instance HRMS ZENN Lingeling
transport-two-030 S(1105) S(1048) S(1214)
transport-two-040 S(841) S(115) S(2436)
UCG-15-10p1 S(1409) S(842) S(369)
UR-15-10p1 S(1608) S(1362) S(724)
UR-20-10p1 I(5000) S(4452) S(2691)
UR-20-5p1 S(2451) S(1530) S(786)
UTI-15-10p1 S(136) S(310) S(381)
UTI-20-10p1 S(2652) S(1451) S(1953)
UTI-20-5p1 S(1236) S(990) S(1108)
velev-npe S(80) S(247) S(490)
velev-pipe-b7 S(1241) S(97) S(181)
velev-pipe-b9 S(96) S(104) S(49)
vmpc-29 S(51) S(213) S(527)
vmpc-30 S(2) S(169) S(1517)
vmpc-32 I(5000) S(1013) S(4012)
vmpc-33 S(736) S(4444) S(1326)
vmpc-34 I(5000) S(3166) I(5000)
vmpc-35 I(5000) I(5000) I(5000)
vmpc-36 I(5000) I(5000) I(5000)
zfcp-2.8-u2-nh S(81) S(81) S(202)

Table 5.7 shows that there were several instances that HRMS solved that the other two

solvers did not. Indeed, in instance 003e, HRMS was the only solver among the 31 entrants

that solved this instance [68]. Additionally, HRMS was often the fastest solver to reach a

solution when other solvers were able to find a solution. This tells us that there are cases

where not only is hyperplane reduction an effective strategy at finding solutions efficiently,

but hyperplane reduction often provides the best results in terms of both finding solutions

and the time required to do so.

5.3 Summary

We have used our hyperplane averages to heuristically select a hyperplane in industrial

instances that we hope contains a globally optimal solution. We then perform a reduction

135

Table 5.6: Total time (in seconds) spent by each solver on the 150 instances and the median
time spent per solver on each instance. Our solver, HRMS, was the second fastest in total
time and median time per instance.

Solver Total Time Median Time

Virtual Best Solver (VBS) 67391 452
Lingeling aqw 250712 1671
ZENN 0.1.0 285593 1904
HRMS 273180 1821
satUZK 48 288204 1921
Riss3g 3g 298632 1991
Lingeling 587f 306968 2046
CSHCapplLG 309761 2065
gluebit-lgl 1.0 291967 1946
MIPSat 307557 2050
forl nodrup 316879 2113
MIPSat 325120 2167
glucose 2.3 306865 2046
glue-bit 1.0 291928 1946
Solver43b b 315139 2101
Riss3g 322501 2150
strangenight satcomp11-st 324324 2162
Solver43a a 312244 2082
BreakIDGlucose 1 313876 2093
glueminisat 2.2.7j 314200 2095
CSHCapplLC 355796 2372
relback v1.1 308343 2056
gluH 1.0 316141 2108
ShatterGlucose 1 324754 2165
gluH-simp 1.0 334811 2232
Nigma 1.0 345460 2303
GlucoRed r531 363050 2420
RSeq V 1.1 391404 2609
Nigma-NoPB 1.0 354518 2363
minipure 1.0.1 420429 2803
sattimeRelbackShr SRShr1.0 480920 3206
SAT4J SAT COMPETITION 2013 464330 3096

136

using the SatELite preprocessor on the hyperplane subspace. We have shown that this re-

duction produces instances that are significantly smaller than a reduction based on SatELite

alone. When we rank hyperplanes based on the four most frequent variables, the highest

ranking hyperplane often contains a satisfying solution. In these cases, a complete solver

such as MiniSAT can find a satisfying solution to the original problem by examining only

the best hyperplane.

We expanded this strategy to develop an entry to the 2013 SAT competition [68]. If the

best hyperplane is unsatisfiable, or if the satisfiability cannot be determined in ten minutes,

we move on to the next highest hyperplane. This strategy has proven to be very effective. Our

entry was ranked 3rd out of 31 solvers in the application track of the competition by solving

113 out of 150 instances. Our strategy is also efficient: we were the second fastest solver in

the competition. Furthermore, there is some evidence that we can solve exceptionally hard

problems with hyperplane reduction; our solver using hyperplane reduction was the only one

to solve the 003e instance [68].

This provides further evidence that hyperplane information can be used to guide search.

While we have shown that this is true for SLS algorithms in the previous chapter, we have

now shown that it is also applicable to complete SAT solvers. We conjecture that this again

comes down to hyperplane averages being able to provide a good estimation of the backbone

and critical variables. By using these estimations to fix the variables prior to search, we

reduce the work required by complete solvers to determine the satisfiability of an instance.

137

Chapter 6

Conclusion and Future Work

Random uniform problems are easy to generate, and their uniformity allows for a fairly

straightforward analytical analysis. While these properties are valuable for developing theory

and initial testing for new algorithms, there is some risk in focusing too much on these

artificial problems.

In MAX-SAT and SAT, many of the SLS algorithms that are considered state-of-the-

art are based on prior algorithms that have been developed using uniform random bench-

marks [46]. One issue that arises from this practice can clearly be seen by examining the

results of recent SAT competitions. In the 2011 SAT competition, the top 4 performing

algorithms in the uniform random SAT track were SLS algorithms. Although these same

SLS algorithms, along with others, were also submitted to the industrial SAT track, not a

single SLS algorithm ranked above 40th place on the applied problems [67].

Instances from real-world applications tend to be structured in a way that is not captured

in expectation by uniform randomly generated instances [47, 39, 41]. It has been observed

that industrial instances have several common characteristics: a power-law distribution of

variables, a power-law distribution over clause length and a community structure [3, 5].

However, prior to our work, these characteristics have not been connected to the performance

of SLS algorithms nor have they been correlated to underlying structures in the search space.

To better understand why structured instances are difficult for SLS algorithms, we have

extended an existing generator to several instance generators based on the generators that

can produce instances with a power-law distribution over variable frequency, clause lengths

following a power distribution and a community structure. This allowed us to control for

these characteristics and by doing so, we found that SLS algorithms have more difficultly

finding the optimal solutions on those instances with a community structure and variable

clause length. Further analysis of these industrial-like instances reveals that the search space

138

is more rugged than in uniform random instances and the backbone size is larger, two search

space features which are associated with difficult for SLS.

In light of these results, we next looked at improving the performance of SLS algorithms

on industrial instances. We presented a method of tractably computing the average evalu-

ation of solutions in a subspace of the search space that we call a hyperplane [83, 31]. We

have shown that hyperplane averages can be used to provide a remarkably good estimation

of the correct backbone settings, with a greater than 90% accuracy on the most industrial-

like instances. We then used the hyperplane averages to construct solutions that were used

to initialize an existing SLS algorithm called AdaptG2WSAT. By using the hyperplane ini-

tialized solutions, AdaptG2WSAT was able to find significantly better solutions in the vast

majority of cases.

We then examined the difference between two types of local search: first improving and

best improving [1]. Current SLS algorithms typically employ a best improving search despite

evidence from Gent and Walsh [25, 24] that suggests there is no advantage to using best

improving over first improving on uniform random instances and its greater computational

cost. Our own analysis of the trade-off between the two searches revealed a similar result

on industrial instances: the end solutions found by AdaptG2WSAT using first improving

search were the same, or significantly better, than those found by AdaptG2WSAT using

best improving search in the majority of cases.

We conjecture that AdaptG2WSAT using first improving search can do better than

AdaptG2WSAT with best improving search due to the effect of critical variables. Best

improving search will always take the bit flip that maximizes the number of satisfied clauses

in the resulting solution. By doing so, we believe this forces the search to set critical variables

in the first few iterations of the search. If these variables are set incorrectly, it may trigger

a cascade effect causing the search to set other variables incorrectly that occur in the same

clauses as the critical variables. As this effect propagates to more and more variables, it

becomes increasingly unlikely that the search will repair the mistake it made early on. As

first improving search takes an arbitrary improving move, it is not as heavily biased towards

139

flipping the critical variables early in the search. Because of this, AdaptG2WSAT using first

improving search will have more opportunities to find improving moves in the second phase.

Finally, we examined how the hyperplane averages can be used to improve complete SAT

solvers on industrial instances. We first show that by fixing the variables corresponding

to a promising hyperplane, we can significantly reduce the size of the original problems in

terms of both the number of variables and the number of clauses. We then ranked the

hyperplanes by their averages and show that the first rank hyperplane contains a satisfying

solution in the majority of cases. Based on this result, we formulate a strategy for using

the hyperplane averages in a preprocessing step. Our hyperplane reduction strategy coupled

with the MiniSAT complete solver ranked 3rd in the 2013 SAT competition. Our strategy

not only beat many state-of-the-art complete solvers, but we also solved one instance that

was not solved by any other solvers.

6.1 Future Work

We have shown that randomly generated instances with two of the three characteristics

common to industrial instances are indeed more difficult for SLS algorithms. Further analysis

of these instances has revealed search space properties that are at least partial explanations

of the increase in difficulty. We used these results to improve the performance of both

incomplete and complete solvers on industrial instances. Our work has advanced both the

knowledge of structured instances and the state-of-the-art in solving these instances. We

hope that this dissertation will also serve as a foundation for future work on solving real-

world applications of combinatorial optimization. To that end, in the following sections we

outline several open questions from this work that should serve as excellent starting points

for future research.

6.1.1 Understanding Community Structure

In our analysis of structured instances, we generated instances with a community struc-

ture by using ‘connector variables’ to link several families of highly connected variables. This

140

creates a ring-like structure of families linked to neighboring families. However, there are

other community structures that could be considered. For example, a central family with

radial connections to multiple families that are connected only through the central family. A

second example is an instance in which any one family has a probability of being connected

to any other family.

It would be fairly straightforward to repeat our search space analysis on various commu-

nity structures and observe how they influence the underlying structure of the search space.

Experiments on other types of community structure may give us a better understanding of

how modularity affects performance critical search space features such as ruggedness and

backbone size.

Algorithms for computing the modularity of MAX-SAT and SAT instances provide a

partitioning of the variables into families [5]. This partitioning may be leveraged by con-

structing subproblems that correspond the inter-family variable interactions. These sub-

problems could then be solved independently of one another, and the final solutions merged

together to form a solution for the original formula. Partition and patch strategies have

proven successful in other problems of combinatorial optimization, i.e., the cycle patching in

Lin-Kernighan-Helsgaun or the Edge Assembly Operator for the TSP [36, 56].

An additional artifact of our construction method is the cardinality of the families created

by our modular generator. Our generators will construct modular instances with l families

with the same cardinality. Although we have not exmained the cardinality of families found

in industrial instances, we suspect that they are not uniform in size. Additional analysis

should be done not only on the connections between between families in modular instances,

but also on the relative sizes of the families.

6.1.2 Critical Variables

We hypothesize that there are critical variables, perhaps more so in those instances with

a community structure, that if set incorrectly can cause cascade effects that make it difficult

for the search to repair the mistake. We believe that critical variables are the reason that

141

first improving search can sometimes perform better than best improving search. The greedy

bias of best improving search will cause the critical variables to become fixed early in the

search. First improving does not have such a bias and may allow the search more freedom

to try different settings of the critical variables.

There is some indication from our results with IRoTS that using a Tabu mechanism can

at least offset the bias of best improving search. These results showed that IRoTS with

best improving search almost always found better solutions than IRoTS with first improving

search. By making other bits Tabu, even if the search fixes a critical variable early on, it

may be forced to flip the variable later in the search due to the bias from the Tabu list.

More experimentation is required to better understand the interaction effect between the

local search type, Tabu lists and critical variables.

6.1.3 Hyperplane Reduction

Although our hyperplane reduction strategy shows great promise, there are still several

ways it might be improved. One is our selection of variables that define the hyperplane.

We choose to use the most frequent variables as we believe these are likely to be critical

variables and also have the most potential to reduce the problem size. However, if a variable

is negated half the time it appears in an instance, its Walsh coefficient will be 0. Therefore,

it will not contribute as much to the hyperplane average as a variable that is negated 90%

of the time. Pair-wise and higher order interactions can have similar effects.

Likewise, the size of the clauses in which each variable appears in can also reduce the

variables impact on the hyperplane averages. Variables appearing in larger clauses will have

a smaller Walsh coefficient than those in smaller clauses. Thus we may be able to extract

more information about the hyperplanes by using alternative heuristics that bias the choice

towards those variables that will contribute more to the hyperplane information.

Another aspect that we have left unexplored for the time being is the parallelization of

our strategy. Katsirelos et al. have shown that efficient parallelization is extremely difficult

for SAT solvers, and in fact may not even be possible due to the resolution proofs used in

142

modern solvers [43]. Portfolio methods, e.g. SATZilla, are the standard way of utilizing

parallel architectures. CPU resources are allocated to a portfolio of solvers based on the

predictions of the solver performance that are made from problem characteristics.

While hyperplane reduction could be included in a portfolio of solvers, it also suggests

an alternative approach to parallelizing SAT solvers. Hyperplanes are mutually exclusive

partitions of the space and can therefore be searched independently in parallel without any

overlap. We can also easily adjust the number of hyperplanes that are generated simply

by using more variables. Choosing k variables will partition the space into 2k hyperplanes.

Thus if p parallel nodes are available, we can choose
√
p variables and search each of the

resulting p hyperplanes in parallel.

The advantage of this is that on difficult problems that are intractable without hyperplane

reduction, the reduced problems associated to the hyperplanes may be tractable. Indeed, in

the 2013 SAT competition our hyperplane reduction strategy solved one problem (003.cnf)

that was not solved by any other solvers [68]. Another advantage is that we can also de-

cide an instance is unsatisfiable without resorting to the original problem. As soon as one

node finds a satisfiable solution, the rest can stop. If all nodes return that the hyperplane

reduction is unsatisfiable, we can conclude that the original problem is unsatisfiable. Thus,

our hyperplane reduction strategy could easily be used to efficiently parallelize a SAT solver,

albeit at a coarse-grain level.

143

References

[1] Greedy or not? best improving versus first improving stochastic local search for
MAXSAT, author=Whitley, D. and Howe, A. and Hains, D., journal=Proceedings of
the National Conference on Artificial Intelligence, year=2013.

[2] Hirotogu Akaike. Information theory and an extension of the maximum likelihood
principle. In Selected Papers of Hirotugu Akaike, pages 199–213. Springer, 1998.

[3] C. Ansótegui, M. Bonet, and J. Levy. On the structure of industrial SAT instances.
Principles and Practice of Constraint Programming-CP 2009, pages 127–141, 2009.

[4] C. Ansótegui, M.L. Bonet, and J. Levy. Towards industrial-like random SAT
instances. In Proceedings of the 21st International Joint Conference on Artifical
Intelligence, pages 387–392. Morgan Kaufmann Publishers Inc., 2009.

[5] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of
SAT formulas. In Theory and Applications of Satisfiability Testing–SAT 2012, pages
410–423. Springer Berlin Heidelberg, 2012.

[6] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT
solvers. In Proceedings of the 21st International Joint Conference on Artifical
Intelligence, volume 9, pages 399–404, 2009.

[7] Armin Biere. PrecoSAT @ SC’09. Proceedings of SAT Competition 2019, 4:41–43,
2009.

[8] Armin Biere. Lingeling and friends at the SAT competition 2011. FMV Report Series
Technical Report, 11(1), 2011.

[9] Armin Biere. Lingeling, plingeling and treengeling entering the sat competition 2013.
Proceedings of SAT Competition 2013, page 51, 2013.

[10] E. Boros and P.L. Hammer. Pseudo-boolean optimization. Discrete applied
mathematics, 123(1):155–225, 2002.

[11] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On finding graph clusterings with maximum
modularity. Graph-Theoretic Concepts in Computer Science, pages 121–132, 2007.

[12] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are.
In Proceedings of the 12th International Joint Conference on Artifical Intelligence,
pages 331–337, 1991.

[13] Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris. Automated design
debugging with maximum satisfiability. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 29(11):1804–1817, 2010.

144

[14] Aaron Clauset, Mark Newman, and Christopher Moore. Finding community structure
in very large networks. Physical Review E, 70(6), 2004.

[15] Aaron Clauset, Cosma Rohilla Shalizi, and Mark Newman. Power-law distributions in
empirical data. SIAM Review, 51(4):661–703, 2009.

[16] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[17] C. DeSimone, M. Diehl, M. Juenger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact
Ground States of Two-Dimensional J Ising Spin Glasses. Max-Planck-Inst. für
Informatik, Bibliothek & Dokumentation, 1996.

[18] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In Theory and Applications of Satisfiability Testing, pages 61–75.
Springer, 2005.

[19] Niklas Een and Niklas Sörensson. Minisat. In 6th International Conference on Theory
and Applications of Satisfiability Testing, page 2003, 2007.

[20] S.F. Elena, R.V. Solé, J. Sardanyés, et al. Simple genomes, complex interactions:
Epistasis in RNA virus. Chaos, 20, 2010.

[21] J. Frank, P. Cheeseman, and J. Stutz. When gravity fails: Local search topology.
Journal of Artificial Intelligence Research, 7:249–281, 1997.

[22] M.R. Garey and D.S. Johnson. Computers and intractability, volume 174. 1979.

[23] Ian Gent and Toby Walsh. The enigma of SAT hill-climbing procedures. 1992.

[24] Ian P. Gent and Toby Walsh. An empirical analysis of search in GSAT. Journal of
Artificial Intelligence Research, 1, 1993.

[25] Ian P Gent and Toby Walsh. Towards an understanding of hill-climbing procedures
for SAT. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 28–33, 1993.

[26] Jean Charles Gilbert and Claude Lemaréchal. Numerical optimization: theoretical and
practical aspects. Springer, 2006.

[27] D. Goldberg. Genetic Algorithms and Walsh Functions: Part I, A Gentle
Introduction. Complex Systems, 3:129–152, 1989.

[28] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[29] D. Goldberg, B. Korb, and K. Deb. Messy Genetic Algorithms: Motivation, Analysis,
and First Results. Complex Systems, 4:415–444, 1989.

145

[30] D. Hains, D. Whitley, and A. Howe. Improving Lin-Kernighan-Helsgaun with
crossover on clustered instances of the TSP. Proceedings of Parallel Problem Solving
from Nature, pages 388–397, 2012.

[31] Doug Hains, Darrell Whitley, Adele Howe, and Wenxiang Chen. Hyperplane
initialized local search for MAXSAT. Proceedings of the Annual Conference on
Genetic and Evolutionary Computation Conference, 2013.

[32] DR Hains, LD Whitley, and AE Howe. Revisiting the big valley search space structure
in the TSP. Journal of the Operational Research Society, 62(2):305–312, 2010.

[33] S. Hampson and D. Kibler. Large plateaus and plateau search in boolean satisfiability
problems: When to give up searching and start again. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 26:437–455, 1996.

[34] J.A. Hartigan and M.A. Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[35] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126:106–130, 2000.

[36] K. Helsgaun. General k-opt submoves for the Lin-Kernighan TSP heuristic.
Mathematical Programming Computation, 1(2):119–163, 2009.

[37] John Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[38] H. Hoos, K. Smyth, and T. Stützle. Search space features underlying the performance
of stochastic local search algorithms for MAX-SAT. In Proceedings of Parallel Problem
Solving from Nature, pages 51–60, 2004.

[39] H.H. Hoos. A mixture-model for the behaviour of SLS algorithms for SAT. In
Proceedings of the National Conference on Artificial Intelligence, pages 661–667, 2002.

[40] H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann, 2004.

[41] Holger H Hoos and Thomas Stutzle. Towards a characterisation of the behaviour of
stochastic local search algorithms for SAT. Artificial Intelligence, 112(1):213–232,
1999.

[42] David S. Johnson and Lyle A. Mcgeoch. The traveling salesman problem: A case
study in local optimization. In Local Search in Combinatorial Optimization, pages
215–310. John Wiley and Sons, 1997.

[43] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon. Resolution and
parallelizability: Barriers to the efficient parallelization of SAT solvers. In Proceedings
of the Twenty-Seventh National Conference on Artificial Intelligence, 2013.

146

[44] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of the National Conference on Artificial Intelligence,
pages 1194–1201, 1996.

[45] H. Kautz and B. Selman. Blackbox: A new approach to the application of theorem
proving to problem solving. In Proceedings of the Fourth International Conference on
Artificial Intelligence Planning Systems, pages 58–60, 1998.

[46] H.A. Kautz, A. Sabharwal, and B. Selman. Incomplete algorithms. Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, 185:185–204, 2009.

[47] L. Kroc, A. Sabharwal, C.P. Gomes, and B. Selman. Integrating systematic and local
search paradigms: A new strategy for MaxSAT. In Proceedings of the 21st
International Joint Conference on Artifical Intelligence, pages 544–551, 2009.

[48] C. Li and W. Huang. Diversification and determinism in local search for satisfiability.
In Theory and Applications of Satisfiability Testing, pages 158–172, 2005.

[49] C. Li, W. Wei, and H. Zhang. Combining adaptive noise and look-ahead in local
search for SAT. Theory and Applications of Satisfiability Testing–SAT 2007, pages
121–133, 2007.

[50] J. Marques-Silva. Practical applications of boolean satisfiability. In Proceedings of the
9th International Workshop on Discrete Event Systems, pages 74–80. IEEE, 2008.

[51] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68–78, 1951.

[52] MAX-SAT 2012 competition. http://maxsat.ia.udl.cat, 2012.

[53] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In
Proceedings of the National Conference on Artificial Intelligence, pages 321–326, 1997.

[54] Peter Merz and Bernd Freisleben. Fitness landscapes and memetic algorithm design.
New ideas in optimization, pages 245–260, 1999.

[55] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Annual
Design Automation Conference, pages 530–535, 2001.

[56] Y. Nagata. Fast EAX algorithm considering population diversity for traveling
salesman problems. Evolutionary Computation in Combinatorial Optimization, pages
171–182, 2006.

[57] Mark Newman. Power laws, pareto distributions and zipf’s law. Contemporary
physics, 46(5):323–351, 2005.

[58] Mark Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113, 2004.

147

[59] A.J. Parkes. Clustering at the phase transition. In Proceedings of the National
Conference on Artificial Intelligence, pages 340–346, 1997.

[60] Martin Pelikan, David Goldberg, and Fernando Lobo. A survey of optimization by
building and using probabilistic model. Technical Report 99018, IlliGAL, 1999.

[61] A. Prugel-Bennett and M.H. Tayarani-Najaran. Maximum satisfiability: Anatomy of
the fitness landscape for a hard combinatorial optimization problem. IEEE
Transactions on Evolutionary Computation, 16(3):319–338, 2012.

[62] M. Qasem and A. Prugel-Bennett. Learning the large-scale structure of the MAX-SAT
landscape using populations. IEEE Transactions on Evolutionary Computation,
14(4):518–529, 2010.

[63] S. Rana, R.B. Heckendorn, and D. Whitley. A tractable Walsh analysis of SAT and its
implications for genetic algorithms. In Proceedings of the National Conference on
Artificial Intelligence, pages 392–397, 1998.

[64] Colin R. Reeves and Jonathan E. Rowe. Landscapes. In Genetic Algorithms –
Principles and Perspectives: A guide to GA theory, pages 231–263. Springer, 2002.

[65] C.M. Reidys and P.F. Stadler. Combinatorial landscapes. SIAM review, 44(1):3–54,
2002.

[66] S. Safarpour, H. Mangassarian, A. Veneris, M.H. Liffiton, and K.A. Sakallah.
Improved design debugging using maximum satisfiability. In Formal Methods in
Computer Aided Design, 2007. FMCAD’07, pages 13–19. IEEE, 2007.

[67] Satisifiability Competition 2011. http://www.satcompetition.org/2011/, 2011.

[68] Satisifiability Competition 2013. http://www.satcompetition.org/2013/, 2013.

[69] Dale Schuurmans and Finnegan Southey. Local search characteristics of incomplete
SAT procedures. Artificial Intelligence, 132(2):121–150, 2001.

[70] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In
Proceedings of the National Conference on Artificial Intelligence, pages 337–337, 1994.

[71] B. Selman, H. Levesque, D Mitchell, et al. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on Artificial
intelligence, pages 440–446, 1992.

[72] B. Selman, D.G. Mitchell, and H.J. Levesque. Generating hard satisfiability problems.
Artificial Intelligence, 81:17–29, 1996.

[73] Carsten Sinz. Visualizing SAT instances and runs of the DPLL algorithm. Journal of
Automated Reasoning, 39(2):219–243, 2007.

148

[74] J. Slaney and T. Walsh. Backbones in optimization and approximation. In
International Joint Conference on Artificial Intelligence, volume 17, pages 254–259,
2001.

[75] Kevin Smyth, Holger H Hoos, and Thomas Stützle. Iterated robust tabu search for
MAX-SAT. In Advances in Artificial Intelligence, pages 129–144. Springer, 2003.

[76] K.R.G. Smyth. Understanding stochastic local search algorithms: An empirical
analysis of the relationship between search space structure and algorithm behaviour.
Master’s thesis, The University of British Columbia, 2004.

[77] A.M. Sutton, A.E. Howe, and L.D. Whitley. Directed plateau search for MAX-k-SAT.
In Third Annual Symposium on Combinatorial Search, 2010.

[78] Dave AD Tompkins, Adrian Balint, and Holger H Hoos. Captain Jack: new variable
selection heuristics in local search for SAT. In Theory and Applications of Satisfiability
Testing, pages 302–316. Springer, 2011.

[79] UBCSAT. http://ubcsat.dtompkins.com/, 2013.

[80] Xiao Fan Wang and Guanrong Chen. Complex networks: small-world, scale-free and
beyond. Circuits and Systems Magazine, IEEE, 3(1):6–20, 2003.

[81] Duncan Watts and Steven Strogatz. Collective dynamics of small-worldnetworks.
Nature, 393(6684):440–442, 1998.

[82] D. Whitley. Defying gravity: constant time steepest ascent for MAX-kSAT. Technical
report, Department of Computer Science, Colorado State University, December 2011.

[83] D. Whitley and W. Chen. Constant Time Steepest Ascent Local Search with
Statistical Lookahead for NK-Landscapes. In GECCO ’12: Proceedings of the Annual
Conference on Genetic and Evolutionary Computation Conference, 2012.

[84] D. Whitley, D. Hains, and A. Howe. Tunneling between optima: partition crossover
for the traveling salesman problem. In Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, pages 915–922. ACM, 2009.

[85] D. Whitley, D. Hains, and A. Howe. A hybrid genetic algorithm for the traveling
salesman problem using generalized partition crossover. Parallel Problem Solving from
Nature–PPSN XI, pages 566–575, 2011.

[86] Takeru Yasumoto and Takumi Okugawa. ZENN. Proceedings of SAT Competition
2013, page 95, 2013.

[87] W. Zhang. Phase transitions and backbones of 3-SAT and maximum 3-SAT. In
Principles and Practice of Constraint Programming-CP-2001, pages 153–167, 2001.

[88] W. Zhang and M. Looks. A novel local search algorithm for the traveling salesman
problem that exploits backbones. In International Joint Conference on Artificial
Intelligence, volume 19, page 343, 2005.

149

[89] W. Zhang, A. Rangan, and M. Looks. Backbone guided local search for maximum
satisfiability. In Proceedings of International Joint Conference on Artificial
Intelligence, volume 18, pages 1179–1186, 2003.

150

Appendix A

Names and Sizes of Industrial Instances

Table A.1: The number of variables and number of clauses of 320 instances from the 2011
SAT competition [67] and the 2012 MAX-SAT competition [52]. Note some instances names
have been shortened due to width restrictions but remain uniquely identifiable.

Instance Number of Variables (n) Number of Clause (m)
driverlog3 170 1559
driverlog1 207 588
bart17.shuffled 231 1166
homer16.shuffled 264 1476
homer17.shuffled 286 1742
aes-32-1 300 1016
homer14.shuffled 300 2130
rovers1 439 5423
aes-32-2 504 1840
myciel6 570 4625
aes-64-1 596 2780
vmpc-25 625 76775
aes-32-3 708 2664
dp04u03 825 2411
vmpc-29 841 120147
aes-32-4 912 3488
ferry5 984 8702
aes-64-2 1000 5176
vmpc-32 1024 161664
dp04s04 1075 3152
aes-32-5 1116 4312
vmpc-34 1156 194072
aes-128-1 1192 10656
vmpc-35 1225 211785
rbcl-xits-08 1278 68055
vmpc-36 1296 230544
aes-64-3 1404 7572
rpoc-xits-09 1430 87044
rbcl-xits-09 1430 79453
aes-64-4 1808 9968
aes-128-2 2000 20544
rbcl-xits-15 2384 164746
aes-128-3 2808 30432
rbcl-xits-18 2888 218530

Continued on next page

151

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
rand-net60-25 3000 8881
rand-net60-30 3600 10681
ndhf-xits-19 4020 466486
am-7-7 4264 14751
gripper13u 4268 38965
minandmaxor016 4271 12620
mulhs016 4656 13871
E07N15 4740 41363
korf-15 4740 45569
E05X15 4740 41379
E15N15 4740 44327
rand-net60-40 4800 14281
comb1.shuffled 5910 16804
abb313GPIA-9-c 6228 484871
vda-gr-rcs 6498 130997
E02F17 6664 69700
E03N17 6664 93544
korf-17 6664 89966
dp10s10 7759 23004
E04N18 7794 120068
E05F18 7794 126826
korf-18 7794 186934
aes-128-10 8080 96704
rand-net70-60 8400 25061
countbitsrotate032 8527 25484
countbitsarray04 8750 25865
x1mul.miter 8756 55571
E04F19 9044 295685
c6288mul.miter 9540 61421
k2fix 10056 271393
E02F20 10420 395383
E04F20 10420 484053
E05F20 10420 481346
k2fix 11313 305160
k2mul.miter 11680 74581
maxxor032 13240 39143
E02F22 13574 1301188
abb313GPIA-9-tr 14013 481761
E00N23 15364 2210893
E00X23 15364 2133873
6pipe 17064 545612
slp-bottom12 17298 57292

Continued on next page

152

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
velev-pipe-1.1-6 17710 304026
dekker 19473 58308
slp-bottom13 19995 66333
all-986 21317 63664
slp-bottom14 22886 76038
velev-pipe-1.0-7 24415 711050
pathways-13-step17 25631 142227
slp-bottom15 25972 86411
traffic-b 26061 742909
smtlib-qfbv 27224 68879
li-exam-61 28147 108436
slp-bottom16 29254 97456
aaai10i-rovers-18-step11 29317 277090
gss-14 31229 93855
gss-16 31248 93904
gss-19 31435 94548
gss-21 31613 95104
gss-22 31616 95110
gss-27 31951 96161
rovers-18-step12 32523 308440
slp-bottom17 32733 109177
q-query-3-l46 33090 165828
traffic-f 33320 763101
traffic-pcb 33320 766757
traffic-kkb 34510 701694
traffic-fb 35819 773506
slp-bottom18 36410 121578
li-test4-100.shuffled-370 36809 142491
traffic-3b-unknown 39151 533919
slp-bottom19 40286 134663
slp-bottom20 44362 148436
hwmcc10 44692 129620
AProVE11-12 44805 149118
dividers10 45552 162874
smulo064 47129 141002
slp-bottom21 48639 162901
wb2 49490 140056
wb1 49525 140091
mizh-sha0-36-4 50073 210235
sha0-36-5 50073 210223
pathways-17-step20 50277 283903
maxxor064 51064 152039

Continued on next page

153

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
slp-top21 51138 162526
slp-bottom22 53118 178062
pathways-17-step21 53919 308235
slp-top22 55875 177646
k50 56536 158531
slp-bottom23 57800 193923
slp-top23 60823 193450
slp-bottom24 62686 210488
k45 63327 174791
pipesworld-12-step15 63349 943492
ibm-2004-01-k90 64699 276210
slp-top24 65983 209942
sokoban.030 66084 1060536
AProVE11-15 66715 228274
md5-48-3 66892 279258
slp-bottom25 67777 227761
AProVE11-09 68779 234693
pipesworld-12-step16 68952 1029036
gus-md5-12 69553 226752
gus-md5-11 69561 226787
bjrb07amba2andenv 70167 209513
bc57sensorsp3 70297 194006
bc57sensorsp2 71285 196970
slp-top25 71356 227126
slp-bottom26 73074 245746
countbitssrl064 75103 225116
slp-top26 76943 245006
bobsm5378d2 82007 241364
AProVE11-16 84025 282766
sokoban.040 87884 1413816
11pipe-11-ooo 88289 4187694
k50-pdtpmsns2 88352 262658
slp-top28 88763 282870
pdtpmspalu 89190 265718
11pipe-k 89315 5584003
maxxororand064 92464 276623
slp-top29 94998 302862
openstacks-1.025 95456 477186
openstacks-3.025 95456 483561
smtlib-qfbv 95810 287045
manol-c6bidw-i 96089 283993
pdtswvtms14x8p1 96095 285404

Continued on next page

154

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
AProVE11-11 96526 325263
countbitswegner128 98048 293759
traffic-r-sat 98651 3362666
pdtpmsgoodbakery 98935 296405
TPP-21-step11 99736 783991
slp-top30 101451 323566
pdtviseisenberg1 102621 307469
SAT-dat.k80-04 104450 457628
dividers-multivec1 106128 397650
UTI-10-5t1 108508 527595
sokoban.050 109684 1767096
pdtviseisenberg2 115266 345359
pdtvisns2p3 116405 346850
velev-pipe-sat-1.0-b9 118038 8780591
pipesworld-18-step15 130021 2509375
UR-10-10p1 131228 635871
sokoban.060 131484 2120376
openstacks-p30-1.035 133566 667976
openstacks-p30-3.035 133566 676901
post-c32s-gcdm16-23 135543 404326
12pipe-bug4 138563 4675040
12pipe-bug6 138795 4671352
pipesworld-18-step16 141856 2742601
traffic-3 142205 1312352
SM-AS-TOP 145900 694438
sokoban.070 153284 2473656
minxorminand128 153834 459965
pdtswvsam6x8p3 154038 460862
velev-vliw-4.0-9-i1 154309 3230738
ACG-10-10p0 155107 675624
pdtvissoap1 156058 466691
UCG-15-5p0 162696 821000
pdtvisns3p02 163622 488120
smtlib-libsmbsharemodes 164758 456350
openstacks-p30-1.045 171676 858766
openstacks-p30-3.045 171676 870241
sokoban.080 175084 2826936
smtlib-src-wge 180045 538304
ibm-2002-30r-k85 181484 890298
SAT-dat.k85 181484 890298
pdtvisns3p00 183325 546914
ibm-2002-21r-k95 191522 788339

Continued on next page

155

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
eijkbs6669 192503 564953
c10idw-i 196306 582994
UCG-15-10p0 199304 1005834
UCG-15-10p1 200003 1019221
maxor128 200308 598619
maxxor128 200440 599015
c5-DD-s3v1 200944 540984
c5-DD-s3v2 200944 540984
2dlx-ca-bp 202253 4313014
smtlib-libmsrpc 206768 599363
ibm-2004-23-k100 207606 861175
9dlx-vliw 209724 3634677
AProVE11-02 214734 743081
q-query-3-L70 218792 1020908
ACG-15-5p1 218990 943377
pipesworld-27-step13 224228 5314673
UCG-20-5p1 224986 1204430
divider-problem-2 228874 750705
divider-problem-5 228874 750705
AProVE11-07 233177 782677
SM-RX-TOP 235456 934091
UTI-20-10t0 237336 1262609
rsdecoder4 237783 933978
UTI-20-10t1 238008 1278025
rsdecoder-fsm2 238290 936006
rsdecoder5 238290 936006
rsdecoder6 238290 936006
divider-problem-8 246943 810105
minandmaxor128 249327 746444
pipesworld-27-step14 249618 5949456
smtlib-VS3-benchmark-S2 257030 769313
fpu-multivec1-problem-14 257168 928310
grid-strips 257380 2139615
UR-20-10p0 258781 1372095
UR-20-10p1 259234 1387934
UTI-20-10p0 259616 1374599
smtlib-lfsr-008-063-080 259762 656573
UTI-20-10p1 260342 1391257
dme-03-1-k247 261352 773077
smtlib-libsmbclient 266663 768347
rsdecoder1-blackbox-32 277950 806460
wb-conmax1 277950 1221020

Continued on next page

156

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
wb-conmax3 277950 1221020
grid-strips-grid-y 281936 2464339
AProVE11-10 289828 1008603
c6-DD-s3-f1-e1-v1 298058 795900
wb-problem-46 300846 789283
AProVE11-06 302076 1039056
wb-problem-45 309491 806440
manol-pipe-f7nidw 310434 923497
TPP-30-step11 314455 2920820
openstacks-p30-3.085-SAT 324116 1643601
smtlib-lfsr-004-127-112 350506 878969
smtlib-servers-slapd 360364 1076507
smtlib-nlzbe256 361856 1084031
hard-6-U-7061 370048 1118066
9dlx-vliw-at-b-iq8 371419 7170909
c1-DD-s3-f1-e2-v1 391897 989885
rsdecoder-multivec1 394446 1626312
i2c-problem-26 397668 1205454
c2-DD-s3-f1-e2-v1 400085 1121810
rsdecoder2 415480 1632526
manol-pipe-c10nidw 433601 1291714
bc57-sensors-1-k303 435701 1379987
smtlib–lfsr-008-079-112 448370 1130525
c4-DD-s3-f1-e2-v1 448465 1130672
wb-4m8s1 463080 1759150
wb-4m8s3 463080 1759150
wb-4m8s4 463080 1759150
traffic-r-uc-sat 467551 4467733
9dlx-vliw-at-b-iq9 482093 9676386
q-query-3-L150 486992 2456708
blocks-blocks-36-0.120 489685 8779920
AProVE11-13 504189 1742927
blocks-blocks-37-1.120 516641 9436757
i2c-problem-25 521672 1581471
hard-25-U-7061 541150 1645836
blocks-blocks-37-1.130 559571 10223027
1dlx-c-iq57-a 569795 8562505
transport-cities-15nodes 580875 3140965
b15-bug-fourvec-gate-0.seq 581064 1712690
rsdecoder-multivec1-33 627993 2125620
blocks-blocks-37-1.150 645431 11795567
1dlx-c-iq60-a 651875 9927770

Continued on next page

157

Table A.1 – Continued from previous page
Instance Number of Variables (n) Number of Clause (m)
blocks-blocks-36-0.160 652445 11706080
blocks-blocks-36-0.170 693135 12437620
rsdecoder1-blackbox-30 707330 1106376
transport-city-25nodes 723130 3869060
blocks-blocks-36-0.180 733825 13169160
transport-three-14nodes 756832 4116966
c4-DD-s3-f1-e1-v1 797728 2011216
mrisc-mem2wire-29 844900 2905976
SM-MAIN-MEM-buggy1 870975 3812147
velev-npe-1.0-9dlx-b71 889302 14582074
transport-city-35nodes 945406 5079060
valves-gates-1-k617 985042 3113540
mem-ctrl1 1128648 4422185
transport-three-14nodes 1134832 6175026
rsdecoder-problem-41 1186710 3829036
rsdecoder-problem-31 1197376 3863287
rsdecoder-problem-38 1198012 3865513
rsdecoder-problem-39 1199602 3868693
rsdecoder-problem-36 1220616 3938467
rsdecoder-problem-40 1220616 3938467
transport-city-35nodes 1260306 6771840
clauses-8 1461771 5687554
transport-three-14nodes 1512832 8233086
rsdecoder-problem-37 1513544 4909231
transport-city-35nodes 1575206 8464620
mem-ctrl2 1974822 6795573
hard-18-U-10652 1987351 5963534
wb-4m8s-problem-47 2691648 8517027
wb-4m8s-problem-48 2766036 8774655
wb-4m8s-problem-49 2785108 8812799
mem-ctrl-problem-27 4426323 15983633
post-cbmc-zfcp 10950109 32697150

158

