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ABSTRACT

NONLINEAR INTERNAL WAVE - TOPOGRAPHIC INTERACTION AND TURBULENT

MIXING USING NUMERICAL SIMULATIONS

Stratified fluid mixing in the oceanic setting involves complex overturning processes and turbu-

lence working against stable background stratification driving fluid interaction between regions of

different density that arise due to temperature and salinity variations. Mixing across layers of con-

stant density (isopycnals) occurs when overturning results from flow events such as the breaking

of internal waves. Increased study of processes that contribute to turbulent mixing in stratified flu-

ids help to improve our an understanding of oceanic circulation currents, thermohaline circulation,

nutrient and pollutant mixing as well as informing global climate and weather models. Quanti-

tative measurement of turbulence and turbulent mixing in the field is limited by the difficulty of

making temporally and spatially resolved measurements. Numerical simulation has become an im-

portant tool in studies of turbulent processes in the stratified flow environment environment. Our

understanding of these small scale processes increase our ability to explain and predict phenomena

such as the weakening of the mid-Atlantic current. Recent increases in available computational

resources have allowed for increases in simulation resolution but they remain insufficient to simul-

taneously resolve the large scale structures such as inertial gravity waves as well as turbulence, an

inherently small scale process. This has led to most simulations at the large scale only allowing for

studies of bulk flow processes with parameterized mixing. On the other hand, theoretically based

simulations at the laboratory scale are not able to fully incorporate physically realistic processes

that occur in the actual environment. In addition to simulations at the laboratory scale this research

presents simulations at an intermediate scale in an effort to demonstrate that study at this scale is

needed for bridging the observations at the small scale (≤ 10m) to the realistic field scale (∼ 1000

m). There are no studies in the current literature comprehensively analyzing the interaction be-
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tween internal waves and multiple topographic ridges such as those found in the Earth’s oceans

or multiple isolated structures such as seamounts, especially at scales smaller than the field scale

(∼ 1000 m) but larger than the laboratory scale (≤ 10 m). Research on the physics of internal

waves interacting with isolated and multiple ridges remains an open line of inquiry and are theo-

rized to be the location of significant amounts of turbulent mixing. Intermediate scale simulations

are needed to help display realistically reproducible results and demonstrate that the knowledge

gained from larger parameterized simulations and resolved small-scale simulations can inform a

broader understanding of stratified turbulence and mixing.

The Osborn model is one of the most common methods for parameterizing turbulence through

the prescription of a turbulent eddy diffusivity Kρ = Γϵ/N2, where Γ is a irreversible mixing

coefficient, ϵ is the dissipation of turbulent kinetic energy and N is the buoyancy frequency. For

various reasons, including the limitations of instrumentation, an assumption of a constant Γ = 0.2

and an isotropic ϵ is common when the turbulent eddy diffusivity is derived from field measure-

ments of overturning flow scales and a single component of the velocity gradient tensor. Using

direct numerical simulations (DNS) of stably stratified turbulence with an assumption of Γ = 0.2

results in Kρ less than that computed directly from the DNS. Furthermore, for most stratified flows

an assumption of an isotropic kinetic energy dissipation rate leads to an overestimate of Kρ. Us-

ing DNS data, it is shown here that improved estimates of Kρ computed directly from measured

data can be obtained without either of these assumptions using the instantaneous vertical density

profile and existing parameterizations derived from measurable quantities leading to better estima-

tion of Kρ. This finding has potential to greatly improve estimates of ocean mixing derived from

measurements.

Rotation of the Earth visibly influences large scale structures in the oceanic environment such

as internal gravity waves. DNS simulations with rotational forcing are used to examine rotations

impact on the turbulent scales of flow. Analyses comparing calculated values of the irreversible

mixing coefficient as a function of the turbulent Froude number in flows including forcing by

Coriolis rotation f show no difference from flows without rotational forcing. Commonly the ratio
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N/f is used for flow regime classification. A new parametric space denoting the relative forcing

of f and N clearly shows the ambiguity of this dimensionless parameter for flow classification

as a wide range of turbulence is observed in flows with the same N/f classification. A ratio of

the turbulent diffusivity to the molecular diffusivity κ̂ = Kρ/κ is shown as a valuable tool for

eliminating unrealistic flow simulations, where κ̂ > 0(10) should be used to ensure a separation

of molecular and turbulent scales. This analysis definitively shows that Coriolis forcing does not

influence values of the mixing coefficient, a small scale parameter, and that classifications of flow

regimes using N/f are clearly ambiguous. These results are combined with simulation results

without rotation, with continuous forcing and with mean shear incorporated to show that all these

simulations follow the same trends for the irreversible mixing coefficient Γ as a function of the

turbulent Froude number (Frt =
ϵ

Nk
).

Detailed analysis of a 43-simulation parametric study examines the interaction between internal

waves and bottom topography, specifically oceanic ridges. Results show similar flow structures in

relatively-larger scale flows, that do not resolve the smallest turbulent scales as those simulated

at the laboratory scale. Bridging the gap between the laboratory scale and field scale is becoming

possible with recent increases in computational resources. These simulations start to fill an obvious

gap in research using numerical simulations. Flows with increased Froude number show increased

turbulence, dissipation and non-linear dynamics. Critical slopes clearly concentrate internal wave

beams as internal waves interact with topography increasing turbulence. Smaller ridge heights

allow for more of the internal wave energy to be transmitted while a tall ridge reflects more energy.

Formation of bolus cores are observed for conditions corroborating field and DNS observation of

energy flux and flow structure. Topographic ridge height is shown to influence the characterization

of turbulence in addition to the slope criticality and wave amplitude of forcing. Increased non-

linearity of the internal waves combined with energy resulting from critical topographic slopes is

shown to result in increased distribution and magnitude of turbulence. These flow conditions are

shown to increase the mass and distance travelled by generated boluses, one of the most significant

influences on turbulent mixing. There are no studies in the current literature comprehensively
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analyzing the interaction between internal waves and multiple ridges or multiple isolated structures

especially at scales below the field scale (∼ 100 m) and above the laboratory scale (≤ 10 m).

Much remains to be understood on the physics of internal waves interacting with isolated and

multiple ridges. This work provides a start to the bridge in this simulation gap showing the utility

of fundamental process models in informing physically realistic models and field measurements to

improve understanding and prediction of mixing in stratified geophysical flows.
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Chapter 1

Introduction

1.1 Motivation

Fluids in the Earth’s oceans and the atmosphere are typically stratified due to variations in

temperature and/or salinity. If the fluid is stably stratified, then the higher density fluid lies below

the fluid of a lower density. Vertical perturbations of a fluid of a certain density into fluids of

different density leads to a restoration force driven by gravity or buoyancy and is the basis for the

initial generation of internal waves. These oscillations are termed internal waves because they are

internal to a fluid.

Interest in breaking internal waves, especially in the ocean, has been an increasing area of

research and study. Understanding of internal wave generation, propagation and fate is seen as

crucial to the understanding of global oceanic circulation (Thorpe, 2004). The turbulence resulting

from the breaking of internal waves in the ocean is one of the dominant processes believed to have

enough energy to be one of the main drivers of vertical mixing in the global ocean circulations

(Kunze & Sanford, 1996; Polzin et al., 1997). Figure 1.1 show the variety of turbulent processes

that create mixing in the ocean. Some of the depicted processes are driven by internal waves (e.g.

breaking, reflection/interaction, internal tides, etc.) while others are surface tides, wind on the

surface of the water and fluvial input. Length scales relevant in stratified flow vary from less than

1 mm to 100 m (Thorpe, 2004) while the energy-containing scales that drive the processes can be

on the order of magnitude of the ocean or globe. As with the length scales, the characteristic time

scales of the dynamic processes also vary. Relative distribution of processes as a function of time

and length scales is shown in Figure 1.2. Turbulence can lead to the transport of sediment, nutrients

and biological material in baroclinic intrusions. Numerous observations (Gregg, 1987; Kunze &

Sanford, 1996; Kunze et al., 2006; Ledwell et al., 2011) show that there is weak mixing normal

to the surfaces of constant density (isopycnals), which is known as diapycnal mixing. However,
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diapycnal (across isopycnal) mixing observations from near the boundaries, and specifically in

regions of rough topography (Polzin et al., 1997; Klymak et al., 2006; Levine & Boyd, 2006) show

increases in orders of magnitude which has led to the conjecture that internal wave breaking as a

result of topographic interaction is a major source of mixing (Munk & Wunsch, 1998).

Figure 1.1: Sketch depicting processes that can lead to turbulence in the ocean. Depiction is not drawn to

scale (Thorpe, 2004).

Quasi-steady mean flow over topography as a result of low frequency tidal oscillation leads

to lee wave and hydraulic-jump type phenomena. Unlike the classical hydraulic jump in an open

channel flow these waves and jumps are affected by and generally inhibited by the stratification.

These types of phenomena have been observed in the field at a variety of locations (Wesson &

Gregg, 1988; Alford et al., 2013; Nikurashin & Ferrari, 2013) suggesting that continued study of

lee-wave driven turbulence should help inform the mixing processes accounted for in the next gen-

eration of climate and oceanic circulation models. Models currently are not able to fully account for

all of these processes accurately. Internal wave interaction with barotropic tidal currents and bot-

tom topography also leads to the generation of internal tides (Wunsch, 1975). Fate of these radiated

low-mode internal tides is still uncertain (Garrett & Kunze, 2007) where some energy is thought

to scatter into higher modes (St. Laurent & Garrett, 2002) as some energy moves into higher fre-
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Figure 1.2: Illustration depicting the span of the relevant time and spatial scales in geophysical fluid dy-

namics (Cushman-Roisin & Beckers, 2008).

quency internal waves in the ocean interior (Polzin, 2009) or break on remote topographies across

the ocean basin (Hult et al., 2009; Venayagamoorthy & Fringer, 2012). Plumes of high density

fluid propagating into fresh unmixed fluid are called gravity currents and are important phenomena

that impact mixing in a stratified fluid. Interactions of internal waves and topography result in

turbulent mixing and the forcing of high density fluid cores upslope over or on top of topographic

features in the form of boluses fluid flow (Venayagamoorthy & Fringer, 2007; Legg & Adcroft,

2003). Interaction of complex bathymetric topography and the internal wave field causes internal

waves to steepen and break as a result shear or convective instability. Studies by Cacchione &

Wunsch (1974), Helfrich (1992), Venayagamoorthy (2006), Shroyer et al. (2009) and Walter et al.

(2014) extensively show the interaction of the internal wave field with a continental slope. Sarkar

(2003) and Jalali et al. (2017) show some initial simulations that are compared to observational

data from the South China Sea showing realistic models of the observed phenomena. Jarosz et al.
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(2014) and Klymak et al. (2006) show that isolated mid ocean ridges can be considered turbulent

mixing “hot spots." due to the internal wave induced mixing. Most initial simulations of the flow

structure and the wave-topographic interaction model a simple, single triangular ridge at either

laboratory (∼ 1m) or field scales (> 1000m). Numerical, experimental and observational studies

of the turbulent mixing processes in these types of cases need additional research.

Using numerical studies, mixing due to internal wave breaking, both isolated and as a result of

flow-topography interaction, can be parameterized in terms of the forcing of the wave energy and

the geometric parameters of the topography. Internal waves are much more complex phenomena

than surface waves as they are three-dimensional and are affected by the surrounding stratification

that varies both spatially and temporally in the ocean as a result of current and wave propagation.

1.2 Background & Objectives

This dissertation research uses data derived from numerical simulations to study the fundamen-

tal physics of internal wave turbulence in stably stratified fluid flows in both an isolated setting and

as a result of interaction with topography. The three main objectives of this research are as follows:

1. Show how direct numerical simulations (DNS) can be used to inform field scale sim-

ulations and observations. Use of informed dimensionless number parameterizations and

consideration of flow physics can be used for improved estimates of ocean mixing. DNS

results have the ability to enhance understanding of the processes and quantities that are dif-

ficult to measure directly in field settings and that are parameterized in numerical simulations

at the field scale.

2. To better understand the turbulence and mixing resulting from internal wave interac-

tion with topographic ridges through a parametric study performed using geometric

parameters but also with consideration of the forcing mechanism (i.e. mean flow, tidal

flow). Combinations of internal wave interaction with topography leads to bores, wave-wave

interaction, hydraulic jumps and lee wave generation. This part of the research will extend

the knowledge of internal waves and tides interacting with continental slopes (Venayag-
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amoorthy & Fringer, 2006; Legg, 2004b) and isolated ridges (Klymak et al., 2012; Legg,

2014; Jalali et al., 2017). Furthermore, it will attempt to combine the results of the previous

works and show how turbulent processes change under the conditions provided by variation

to the bathymetry-wave interaction.

3. Understand the influence of the precision and scale of numerical models for stratified

flow problems. Numerical modeling of natural processes is limited by scales. Computa-

tional resources are currently not sufficiently powerful to both resolve the smallest scales

of turbulence and model a large field-scale simulation. This part of the research will be in-

formed by results from laboratory-scale direct numerical simulations (DNS) and large eddy

simulations (LES) that resolve the smaller scales to evaluate the results of intermediate-scale

models that use parameterizations for turbulent mixing processes. Massachusetts Institute of

Technology general circulation model (MITgcm), a widely used and accepted stratified flow

modeling tool for large field-scale simulations (Marshall et al., 1997) was adapted and used

for simulations at intermediate scales. Determination of the effect of large-scale processes

such the rotation of the earth (Coriolis rotation) on the turbulence scales is also considered

as an aspect of model scale effects.

Increased understanding of turbulent mixing process will impact areas of fundamental research,

field-scale simulations of stratified turbulence, through parameterizations and robust parameter

scalings relating relevant fluid and flow properties. The models analyzed here, as well as future

models building on this research, will help inform applied field research through the ability to

direct targeted measurement and data collection campaigns. At the broader level, this will help

improve our understanding of global oceanic circulation and mixing through more physics based

global climate models that inform societal decision making processes.

1.3 Dissertation Layout

The remainder of the dissertation is laid out in the following Chapters:
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• Chapter 2 presents an analysis of the driving physics, governing equations as well as a dis-

cussion of different computational fluid dynamics modeling methods, direct numerical sim-

ulation (DNS) versus large eddy simulations (LES) versus Reynolds averaged Navier-Stokes

(RANS) simulations.

• Chapter 3 covers a literature review of stably stratified flow, interactions of stratified flow

with topography, as well as turbulent mixing and use of numerical simulations as a tool for

helping to understand these processes. Descriptions of the methods and limitations of field

measurement instrumentation are briefly discussed. Common non-dimensional parameters

are introduced.

• Chapter 4 uses DNS data analyses to develop an improved method of inferring the diapycnal

diffusivity/mixing from quantities measured in the field, directly addressing objective 1.

• Chapter 5 presents research completed in collaboration with the National Center for Atmo-

spheric Research (NCAR) and uses DNS to show that while Coriolis rotation directly influ-

ences large-scale eddies of the flow, which supply the energy for mixing, it does not directly

influence the smaller, turbulent scales of the flow. This chapter also addresses objective 1.

• Chapter 6 addresses objectives 2 and 3 through a two-dimensional parametric study of in-

ternal wave interactions with isolated Gaussian ridges at intermediate scales using highly

resolved MITgcm simulations.

• Chapter 7 also addresses objectives 2 and 3 by looking at the flow structures present in the

MITgcm simulations that result from internal wave interaction with ridge topography.

• Chapter 8 summarizes the conclusions that can be drawn from the work presented in the

preceding chapters of the dissertation.
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1.4 Summary

This dissertation presents work using numerical simulations to gain insight into the turbulent

mixing processes in stratified flows occurring due to the interaction of nonlinear internal waves,

internal tides and other phenomena in an isolated setting as well as a result of interaction with

simulated bottom topography. Two DNS data sets are used to make scaling arguments with dimen-

sionless parameters for improved understanding of turbulent processes and their inference. With

a continuously stratified fluid a parametric study using a combination of forcing and geometric

parameters is presented. Intermediate-scale range of simulations were used in a context to study

turbulent mixing processes and see how well they compare with lab- and field-scale simulations.

Also presented is how well turbulent mixing processes can be parameterized in larger-scale mod-

els for more accurate use of these modeling tools and accounting for the accuracy of modeled

turbulence. Use of dimensional analysis and parametric space is also used to illustrate and isolate

certain effects of turbulence and how these are parameterized in large-scale models and inferred

from field measurements.
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Chapter 2

Governing Equations and Numerical Methodology

This chapter presents the governing equations for fluid flow, a discussion on the scales of

turbulence and overview of numerical approximation methods used to provide solutions to the

Navier-Stokes equations. This chapter aims to provide the background needed for discussion of

the relevant literature in Chapter 3 and the work presented in Chapters 4-7. These equations can be

solved exactly in theory, but the complexity of highly turbulent flow creates a need for simplifying

assumptions, parameterizations and solutions based on numerical approximation.

2.1 Governing Equations

The governing equations of fluid motion are derived from the conservation of mass, momen-

tum, and energy using the continuum hypothesis. The continuum hypothesis assumes that a fluid

is a continuously deformable substance rather than a collection of individual molecules. Taking

a discreet and deformable differential volume of fluid the Reynolds transport theorem is used to

derive the conservation equations,

DBsys

Dt
=

∂

∂t

∫

cv

ρβdV– +

∫

cs

ρβU · n̂dA (2.1)

where β is a generic intensive (per unit of mass) property of B, ρ is the density of the fluid, U

is the velocity vector at the system boundary and n is the unit normal vector, convention positive

outward from the integral control volume surfaces. D
Dt

is notation for the substantial, or material

derivative, of extensive property B following the system in this notation. The right-hand side of

Eqs. (2.1) contains two terms that represent the instantaneous time rate of change of β within the

control volume and the time rate of change of β within the system due to the amount of β entering

and leaving the control volume, V– .
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Assuming a differential control volume and applying the Gauss divergence theorem to Eq.

(2.1) coverts the equation to differential form. In terms of fluxes, the terms of the equation are the

time rate of change of B within the system as the sum of the changes of β within a fixed control

volume and the net flux of β through the control surfaces that define the control volume

ρ
Dβ

Dt
=

∂(ρβ)

∂t
+∇ · (ρβU). (2.2)

2.1.1 Conservation of Mass

If the extensive property, B, of interest is mass then mass per unit mass, β = 1. Equation 2.2

simplifies to

0 =
1

ρ

Dρ

Dt
+∇ ·U, (2.3)

where the left hand side is equal to zero as mass can not be created or destroyed inside the system.

This equation represents conservation of mass within a fixed control volume as a sum of material

changes in density within the control volume and the net flux of mass through the control surfaces.

2.1.2 Conservation of Momentum

Newton’s second law applied to a system of particles defines conservation of momentum where

the sum of the forces acting on the system of fluid particles is equal to the change in momentum of

the system. In integral form this is defined by

D

Dt

∫

sys

UρdV– =
∂

∂t

∫

cv

UρdV– +

∫

cs

UρU · n̂dA, (2.4)

where β = U. Application of the Gauss divergence theorem converts this equation to the differen-

tial form of Newton’s second law written per unit volume of fluid
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ρ
DU

Dt
= −∇p+ ρf +∇ · τij, (2.5)

where the three terms on the right hand side of the equation represent the force of pressure, p, body

forces, f and the rank tensor of viscous shear stress forces, τij . If a constant density is assumed

then there are 10 unknowns between the four equations in that comprise Eqs. (2.3) and Eq. (2.5).

In order to close the set of equations, Stokes hypothesis can be applied assuming an incompressible

(constant density) fluid τij = 2µSij , where µ is the dynamic viscosity and Sij = 1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)

,

is the strain rate tensor. When this constitutive relation for τij is substituted into equation 2.5 the

resulting equation is the Navier-Stokes equation for incompressible fluid

ρ
DU

Dt
= −∇p+ ρg + µ∇2U, (2.6)

where the dynamic viscosity is considered nearly constant and the only body force is a result of

gravitational acceleration, g, f = g = −kg.

2.1.3 Conservation of Energy

An equation of state and the thermodynamic equation are needed to close the system of equa-

tions given by Eqs. (2.3) and Eq. (2.6) when the density is not a known constant. The first law of

thermodynamics states that the change of energy within a defined system is a result of heat trans-

fer and work rate exchange between the system and the surroundings. The intensive property for

defining conservation of energy is specific energy for a system of fluid particles E = e+ 1
2
U·U+Φ,

where the respective terms on the right hand side of the equation represent the internal, kinetic and

potential energies of the system. With β = E and following the same procedure as for conservation

of mass and momentum the Reynolds transport theorem simplifies to
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ρ
DE

Dt
= −∇ · (q+ pU− τij ·U) , (2.7)

where q is the heat flux per unit area, pU and τij ·U are the pressure and viscous work terms. If

the viscous work term is neglected, through the definition of enthalpy, the conservation of energy

equation can be written in terms of temperature, T :

dT

dt
= KT∇

2T, (2.8)

where KT is the coefficient of thermal diffusivity. If the density of a fluid is a linear function of

temperature, the energy equation (Eq. (2.8)) can be written as a function of density

dρ

dt
= Kρ∇

2ρ, (2.9)

where Kρ is the molecular diffusivity of density replaces KT as the density can also be affected

by changes in salinity (Kundu et al., 2008). Kρ ≈ KT when the primary stratifying agent is

temperature (Thorpe, 2005).

2.1.4 Boussinesq Approximations

In many geophysical settings, a fluid can be considered incompressible. If changes in density

due to variations in pressure, salinity and temperature are small, the governing conservation equa-

tions can be simplified. If a fluid is assumed incompressible the conservation of mass Eq. (2.3)

can be written as

∇ ·U = 0, (2.10)
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also known as the continuity equation and implies that the velocity field is solenoidal or divergence

free.

If the density and pressure terms in the conservation of momentum equation, Eq. (2.6) are

replaced by a decomposition into a background and fluctuating term (ρ(x, t) = ρ0 + δρ(x, t) and

p(x, t) = p0 + δp(x, t)) the equation becomes

DU

Dt
= −

1

ρ0
∇δp+

δρ

ρ0
g + ν∇2U, (2.11)

where ν is the kinematic viscosity, the background pressure is assumed hydrostatic (i.e. ∇p0 =

ρ0g) and density perturbations, δp, are due to changes in salinity or temperature, not due to pres-

sure: the incompressible Navier-Stokes equations. In most geophysical settings δρ << ρ0 which

leads to the main emphasis of the Boussinesq approximation that all variations in density can be

neglected except when multiplying the gravity term. The resulting term in the equation, (δρ/ρ0)g,

shows that density is an active scalar and is known as the buoyancy term.

Using simplification and decomposition of the density Eq. (2.9) is modified to become the

density transport equation:

Dδρ

Dt
= Kρ∇

2δρ. (2.12)

This equation is dynamically coupled to the momentum equation and must be solved concurrently.

Equations (2.10)-(2.12) represent the Boussinesq set and represent the governing equations most

commonly used in most geophysical applications. If the Coriolis force influences a particular flow

this term will be added to the momentum equation to account for its impact. The Boussinesq

approximations break down if pressure changes are great enough to impact the density of the fluid

(i.e. compressible flow) or the hydrostatic pressure is very large. It is important to understand the
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simplifications and approximation used in the derivation of this set of equations so that they can be

applied correctly in the study of geophysical flows.

2.2 Scales of Turbulence

In most areas of fluid dynamics it is common to see the turbulence of fluid flow characterized by

the Reynolds number Re = UL/ν where U is a characteristic velocity scale, L is a characteristic

length scale and ν is kinematic viscosity. The largest eddy diameter defines the characteristic

length L scale constrained by the boundaries of the system. Characteristic velocity is the speed of

the largest eddy and is a function of the geometric length scale, U(L). A time scale can be defined

from the ratio of these two quantities τ(L) = L/U(L), the time it takes the characteristic eddy to

complete a single circulation. Time and geometric scales that define climate, oceanic circulations

and other geophysical processes are much larger than the scales that define turbulence. The largest

eddies in a system transport the majority of momentum and energy within a system. Contained

within the characteristic eddy is a range of smaller eddies that dynamically interact until they reach

their smallest theoretical size, generally denoted by η, where they can be dissipated by the viscosity

of the fluid1. In other words the largest circulation is set by the geometry of the system, the smallest

is set by the viscosity of the fluid and there is a distribution of intermediate eddy sizes between.

Richardson (1922) proposed a framework that describes the transfer of turbulent kinetic energy

across these scales and this description still underpins our understanding of the fundamentals of

turbulence where turbulent kinetic energy is transferred between the scales by an energy cascade

until it reaches a scale small enough for the kinetic energy to be dissipated into internal energy.

Most current descriptions of turbulence in theory are based on a statistical approach and as-

sumptions that the flow is homogeneous, isotropic and stationary. These assumptions can be made

to help understand a wide variety of flow phenomena although they are not accurate for all types

of flow conditions. The hypotheses of Kolmogorov (1941) rely on classification of high Reynolds

1In this dissertation the Greek letter η is used both to denote a turbulent length scale as well as change in the height of

the free surface in numerical simulations. Unless otherwise noted assume η denotes the Kolmogorov turbulent length

scale.
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number flow as stationary (i.e. in statistical equilibrium in time) and the existence of three flow

regime ranges; (1) the energy containing range, (2) the inertial subrange where energy is transferred

between scales and (3) the dissipation range. The inertial and dissipation range taken together are

referred to as the universal equilibrium range and based on his theory turbulence should be statis-

tically isotropic and only depend on the kinetic energy dissipation rate, ϵ, and the the kinematic

viscosity, ν. Within the inertial subrange the transfer of energy can be described using solely ϵ.

Conversion to internal energy depends only on ν within the dissipation range. Using these two

parameters Kolmogorov defined a characteristic length, velocity and time scale of the smallest

turbulent eddy, respectively:

η ≡ (ν3/ϵ)1/4, (2.13)

uη ≡ (νϵ)1/4, (2.14)

τη ≡ (ν/ϵ)1/3. (2.15)

Kolmogorov followed the energy cascade postulation of Richardson (1922) but did not address the

mechanisms for energy transfer in the inertial subrange or all of the impacts of the largest energy

containing circulations. Exact understanding of the mechanisms that allows energy transfer within

the cascade is still unknown. Available energy in the spectrum does scale as a function of η and

k (wave number) when the turbulent kinetic energy distribution among the various scale eddies is

described in wave number space. The energy density is given by

E(k) ∼ ϵ2/3k−5/3, (2.16)
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Figure 2.1: Energy spectra plotted as a function of wave number (k) (Thompson et al., 2015).

where the power on the wave number, k, underpins Kolmogorov’s famous -5/3 law and is used in

assessments of whether or not a flow is turbulent. The energy density contains the high spectra

above the inertial subrange bandwidth defined by k−5/3 and is low below and so defines the sepa-

ration between energy production and dissipation. Figure 2.1 shows a plot of the energy cascade.

2.3 Numerical Methods

In turbulent flows eddies are defined by a range of spatial and temporal scales interacting

dynamically. The non-linearity of the flow means that a full analytical solution to the Navier-

Stokes equations are not possible. Approximate solutions are obtained using numerical methods.

Reynolds averaged Navier-Stokes (RANS), large eddy simulations (LES) and direct numerical

simulations (DNS) are the three main methods utilized for obtaining a numerical approximation to

fluid flow by approximating solutions the Navier-Stokes equations. Each of the methods resolve

different temporal and spatial scales of turbulent motion. Each of these methods employ the use
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of a computational grid. Flow quantities are calculated directly at the grid points or in some cases

at an intermediate location between the nodes of the grid. The choice of the computational fluid

dynamics (CFD) model from those above is also influenced by the structure and resolution of the

computational grid.

2.3.1 Reynolds-Averaged Navier-Stokes (RANS)

A Reynolds decomposition of velocity (U ), pressure (p) and density (ρ) are given by Eq. (2.17),

Eq. (2.18) and Eq. (2.19), respectively,

U(x, t) = ⟨U(x, t)⟩+ u(x, t), (2.17)

p(x, t) = ⟨p(x, t)⟩+ p′(x, t), (2.18)

ρ(x, t) = ⟨ρ(x, t)⟩+ ρ′(x, t). (2.19)

Each parameter is “decomposed” into the sum of two components, where ⟨⟩ denotes a temporal

averaged quantity and u, p′ and prime on a quantity (i.e. ρ′) gives the turbulent fluctuations of the

quantities around the mean. Substitution of these decompositions into Eqs. (2.10)-(2.12) gives the

Reynolds-Averaged Navier-Stokes equations (RANS) in summation notation, Eqs. (2.20)-(2.22)

∂Ui

∂xi

= 0, (2.20)

D⟨Ui⟩

Dt
= −

1

ρ0

∂⟨ρ⟩

∂xi

−
⟨ρ⟩

ρ0
gδi3 +

∂

∂xj

[

ν
∂⟨Ui⟩

∂xj

− ⟨uiuj⟩

]

, (2.21)

D⟨ρ⟩

Dt
=

∂

∂xj

[

κ
∂⟨ρ⟩

∂xj

− ⟨ρ′uj⟩

]

, (2.22)
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where the indices i and j are used to denote the directional components using summation notation

and δi3 is the Kroenecker delta function (δij = 1 if i = j and δij = 0 if i ̸= j). RANS equations are

analogous to Eqs. (2.10)-(2.12) except that they include the additional turbulent fluctuation terms.

These components of the equation are termed the Reynolds stress tensor −⟨uiuj⟩ and turbulent

density flux −⟨ujρ
′⟩ in Eq. (2.21) and Eq. (2.22), respectively. These terms can be thought of as

the stress on the mean flow from the turbulent transfer of momentum. These terms also represent

additional unknowns in this formulation of the Navier-Stokes and create what is known as the

turbulence closure problem where there are more unknowns than there are available equations. For

the large majority of engineering applications detailed information about turbulent fluctuations of

the flow are not needed and information about time-averaged properties is sufficient. A turbulence

model is needed to parameterize the fluctuating terms when solving turbulent flow using RANS

simulations. Common RANS turbulence models apply a set of transport equations that are solved

in addition to the flow equations. Application of the turbulent-viscosity and gradient diffusion

hypotheses describe the turbulent transport terms in an analogous manner to molecular transport

and provides additional equations that reduce the nine additional unknown terms in the Reynolds

stress tensor and the scalar flux vector, resulting in two equations

−⟨uiuj⟩ = Km

(
∂⟨Ui⟩

dxj

+
∂⟨Uj⟩

dxi

)

−
1

3
⟨uiuj⟩δij, (2.23)

⟨ujρ
′⟩ = Kd

∂⟨ρ⟩

∂xj

, (2.24)

where Km is the turbulent (eddy) viscosity and Kd is the turbulent diffusivity of density. In order

to close the system of equations these two terms must be prescribed. This creates a simple way

to obtain a solution to the RANS equations but it is important to note that both Km and Kd are
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flow, not fluid properties like kinematic viscosity and molecular diffusion, and therefore can be

directionally dependent.

2.3.2 Large Eddy Simulations (LES)

In most cases small turbulent eddies tend to be isotropic and behave similarly to the other

small eddies in a given flow. Large eddies are more likely to be anisotropic and can be greatly

influenced by flow direction. They also extract energy from the mean flow and can conform to the

geometry/bathymetry of the region surrounding the flow being anlayzed. Application of the RANS

equations necessitates the condition that all eddies are described by the same turbulence model. A

large eddy simulation (LES) simulation calculates, and directly resolves, the large anisotropic ed-

dies using a time-dependent simulation. A simple model is used for the anisotropic eddies that are

smaller than the computational grid (subgrid-scale, or SGS, turbulence closure model) and can not

be resolved as a result. Spatial filtering is used to sort the eddies at a pre-determined threshold

resolving the unsteady computations of the flow field above that threshold. LES modeling has

resulted from concerted efforts to develop a general model applicable to a variety of practical ap-

plications (Malalasekera & Versteeg, 2007) and is generally considered the middle ground between

RANS based CFD models (Section 2.3.1) and direct numerical simulations (DNS), discussed in

the following Section (Section 2.3.3). As available computational power and resources have in-

creased the use of LES CFD models have also become more prevalent, and will likely become a

more viable option for general CFD modeling in the near future.

2.3.3 Direct Numerical Simulations (DNS)

Direct numerical simulations, or DNS, give instantaneous and time-resolved solutions to the

unsteady Navier-Stokes equations, Eqs. (2.10)-(2.12), including the mean flow and the turbulent

velocity fluctuations. The computational grid must have sufficiently fine resolution in order to

capture the smallest turbulent eddies at the Kolmogorov scale η. Additionally the time steps used in

the DNS must be smaller than the period of the fastest fluctuations in the flow field. Instantaneous

observations of the flow field can be generated by DNS that are not observable or measurable in the
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field or laboratory setting making them a very useful and powerful tool for understanding turbulent

flow (Malalasekera & Versteeg, 2007). Turbulent transport and energy budgets can be accurately

calculated from DNS results and can be useful to compare to estimated budgets from the field and

laboratory experiments.

The computational costs associated with DNS simulations are extremely high and see more

limited application than LES or RANS. Resolving the full range of length and time scales present

in a turbulent flow creates limitations based on the currently available computational resources. As

discussed in Section 2.2 the Reynolds number is a commonly used to define the level of turbulence

in a flow. If the largest eddy in a flow is defined by l than l/η ≈ Re3/4. If a DNS is three-

dimensional then l/η ≈ Re9/4 ≈ N , where N is the number of grid points. This scaling shows

that an increased Reynolds number leads to an increase the number of grid points needed for a

DNS controlled by the power 9/4. As a result DNS is generally limited to moderately turbulent

flows. Pseudo-spectral methods, hyper viscosities and low wave number forcing are all methods

that can be used in DNS to increase the Reynolds number of the flow. DNS presented in Chapter

4 and Chapter 5 apply pseudo-spectral methods in order to decrease the number of computations

needed to resolve the flow. Using this method the velocity field u(x, t) is represented by a fast

Fourier series u(x, t) = Σeik,xû(x, t), where k is the wave number in N3 wave number space.2

This can then be used to determine the maximum possible Reynolds number for a simulation give

the limits of the available computational resources by application of N ∼ 1.6Re3/4 scaling (Pope,

2000). N6 computational operations are reduced to N3logN operations by solving the linear terms

in the Navier-Stokes equations in wave space and the non-linear terms in physical space using this

method.

2In the fast Fourier series equation k denotes the wave number. Elsewhere it has been used to denote the turbulent

kinetic energy. Hereafter assume that the symbol k denotes the turbulent kinetic energy unless specifically noted to

signify a different quantity.
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Chapter 3

Literature Review

3.1 Stratified Flow & Internal Waves

When in referenced in the context of the atmospheric or oceanic setting, the term “stratified

fluid" is generally referring to a body of fluid that is layered by variations in density. The density

variation can be continuous, isolated at discontinuous interfaces, or a combination of both. Un-

der most conditions the density generally varies in reference to a vertical position from a bottom

boundary at z = 0. The equation of state for density variation from a reference density ρ0 in the

oceanic context as a function of changes in temperature T and salinity S is given by

ρ = ρ0(1− αT + βS), (3.1)

where coefficients α and β are the coefficients of thermal expansion and contraction of salinity,

respectively (Thorpe, 2005).

When a fluid parcel of certain density is displaced into a region of a higher density in a con-

tinuously stratified fluid, there is a resulting buoyancy force that works to establish an equilibrium.

This unforced movement and transfer of momentum resulting from the buoyancy force can result

in the parcel passing its equilibrium position and lead to an oscillation at a specific frequency,

referred to as the buoyancy or Brunt-Väisälä frequency, N .

N =

√

−
g

ρ0

dρ̄

dz
, (3.2)

where g is gravitational acceleration and dρ̄/dz is the background mean density gradient. If N2 >

0, the fluid is stably stratified as a result of lighter fluid overlying denser fluid (i.e. dρ̄/dz < 0).
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When N2 < 0, the fluid is considered unstably stratified and subject to convective motion and

turbulent mixing as a result of a light fluid plume rising through denser fluid (i.e. dρ̄/dz>0). In the

case where N2 = 0 the fluid is considered to be neutrally stratified. Motions result in the generation

of a field of internal waves when the perturbations are less than the background frequency. Internal

waves propagate in any direction within a continuously stratified flow.

The relation shown in Eq. (3.3) is the range of possible internal wave frequencies ω

f < ω < N, (3.3)

where f denotes the inertial or Coriolis frequency of rotation and is a result of the rotating motion

of the earth. Internal waves in the range near to f are referred to as inertial gravity waves and are

strongly influenced by the earth’s rotation. In the oceanic or atmospheric setting, wave period of

internal waves (2π/ω) vary between minutes and hours depending on the location and the degree of

stratification where it is assumed that N > f , which is the case for the majority of the atmosphere

and ocean (Kundu et al., 2008).

Equation (3.4) shows the linearized non-hydrostatic Boussinesq equations solved for the verti-

cal velocity w as a partial differential equation (Thorpe, 2005; Kundu et al., 2008)

∂2

∂t2
∇2w +N2∇2

Hw + f 2∂
2w

∂z2
= 0, (3.4)

where ∇2, Eq. (3.5), is the Laplacian operator and ∇2
H in Eq. (3.4) denotes the horizontal Lapla-

cian operator.

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3.5)

Assuming a wavelike solution to Eq. (3.4) for the vertical velocity as follows:

21



w(x, y, z) = W (z)ei(kx+ly−ωt), (3.6)

results in an ordinary differential equation in terms of W , Eq. (3.7). Solutions to Eq. (3.7)

become exponential in z when N2
−ω2

ω2
−f2 < 0 and are trapped by the surface of the fluid and represent

surface waves propagating in the horizontal plane. When N2
−ω2

ω2
−f2 > 0, the solutions to the ordinary

differential equation are trigonometric in the z direction and results in waves propagating in three

dimensions (Kundu et al., 2008)

d2W

dz2
+

(
N2 − ω2

ω2 − f 2

)

(k2 + l2)W = 0. (3.7)

Deduction of the dispersion relation, Eq. (3.8), comes from the simplification of Eq. (3.7),

ω =
(
f 2sin2θ +N2cos2θ

)1/2
. (3.8)

If the Coriolis rotation of the earth is neglected the dispersion relation reduces to Eq. (3.9)

ω = Ncosθ = Nsinβ, (3.9)

where θ denotes the angle between the horizontal and the phase velocity defined as cp = ω/k.

This quantity also denotes the wavenumber vector. Here β denotes the angle between the hori-

zontal direction and the wave group velocity, cg = ∇kω (Lighthill & Lighthill, 2001). The phase

and group velocity vectors are by definition perpendicular to each other where energy of an in-

ternal wave propagates in the direction and speed of the group velocity, as shown in Figure 3.1.
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Figure 3.1: Illustration from Kundu et al. (2008) showing the propagation angles of internal waves where

K = (k, l,m) is the wave number vector.

Energy from the source follows lines of constant phase and particles move perpendicular to the

wavenumber vector.

When a propagating internal wave interacts with a boundary, it will reflect following a unique

set of laws. In acoustics and optics, the classic theory of Snell’s Law shows that the angle of the

incident wave to the normal direction of the reflecting surface is preserved. In the case of internal

wave reflection, the angle with respect to the gravity vector is preserved (Thorpe & Umlauf, 2002;

Phillips, 1977). Enhanced boundary layer mixing occurs when the angle β is equivalent to the

angle of the topographic bottom slope boundary, α. Classification of a critical slope in the case

of internal wave boundary interaction depends both on the slope of the boundary and the angle of

the group velocity vector to the horizontal. Topographic bottom slopes with α > β are considered

subcritical, “transmissive" slopes where the wave energy is forward reflected. In cases where

α < β, internal waves reflect back with beams in both the upward and downward direction and
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Figure 3.2: Illustration depicting the “transmissive", (a) & (b), and “reflective", (c) & (d) cases of internal

wave interaction with a rigid topographic boundary based on the characteristic angles α and β (Thorpe &

Umlauf, 2002). cgI and cgR are the group velocities of the waves incident and reflective from the slope,

respectively.

is considered the “reflective case" (Venayagamoorthy, 2006). Different cases illustrating internal

wave angle reflections relative to the bottom slope angle are shown in Figure 3.2.

3.1.1 Scales of Stratified Turbulence

Various length scales can be defined for stably stratified geophysical flows that incorporate

the effects of buoyancy. The buoyancy length scale gives a measure of the maximum possible

displacement for a given N at which all kinetic energy is converted to potential energy against the

stratification. This length scale is defined by

Lb =
(⟨w′2⟩)

1/2

N
, (3.10)

where w′ is the vertical velocity fluctuation. At a smaller scale Ozmidov (1965) defined a length

scale, LO, to represent the largest vertical isotropic scale of motion in a stratified flow where

buoyancy influences turbulence,
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LO =
( ϵ

N3

)1/2

. (3.11)

The turbulent vertical motions defined by buoyancy and Ozmidov length scales are often associated

with turbulent overturning motion. The Ellison length scale is also used to define the size of

turbulent overturning motions in stratified flow and is defined as

LE =
⟨ρ′2⟩1/2

∂⟨ρ⟩/∂z
, (3.12)

where ∂⟨ρ⟩/∂z is the mean background density gradient and ⟨ρ′2⟩1/2 is the root-mean-square den-

sity fluctuation (Ellison, 1957). The lengths of the overturns can be derived from measured density

profiles and the resorting method proposed originally by Thorpe (1977) where if an overturn ex-

ists an instantaneous density profile will not be in equilibrium when compared to the background

density profile. Thorpe sorting takes the instantaneous profile and re-sorts it in ascending order

restoring a gravitationally stable profile that is then used to determine magnitudes of vertical dis-

placements δT . If an overturn is detected in a measurement the Thorpe scale is calculated by

LT = ⟨δ2T ⟩
1/2, (3.13)

where ⟨δ2T ⟩
1/2 is the root-mean-square displacement. The Thorpe and Ellison length scales are

considered equivalent in linearly stratified fluid (Smyth & Moum, 2000) but it has been noted that

the Thorpe length scale may have a time dependence and so may not be equivalent in measurements

with insufficient time resolution (Cimatoribus et al., 2014).
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3.2 Physical Measurement

Understanding the turbulence and dynamics of oceanic flows requires physical measurement.

The complexity, size and transience of the three-dimensional structures that are inherent to oceanic

turbulence create significant barriers to flow measurements being resolved in either time and/or

space. Grant et al. (1962) first made direct measurement of oceanic turbulence using hot film

anemometry in 1950. Free falling profilers have become popular since their introduction in the

1960’s as a result of not being influenced by a ship or buoy motion (Lueck et al., 2002). Mea-

surements made by instruments connected by a cable to ship or buoy can be influenced both by

surface wave motion as well by the vibrations created by the connective cable (Lueck et al., 2002).

Widely used instruments for oceanic measurements include the acoustic Doppler current profiler

(ADCP), the conductivity-temperature-depth (CTD) probe and the vertical microstructure profiler

(VMP). Each instrument is designed to create a stable platform that contains the necessary mea-

surement probes, and circuits to supply power to the instrumentation as well as collect and store

the signal from the probe. The VMP is typically employed as a free falling instrument while the

ADCP and the CTD are typically mounted to a ship, buoy or sea floor. Examples of each type of

these instruments is shown in Fig. 3.3.

3.2.1 Acoustic Doppler Current Profiler (ADCP)

The ADCP is used to measure the velocity field using between 4 and 5 acoustic transducers

and the Doppler shift principle. Transducers on the probe emit an acoustic frequency in multiple

directions in order to measure the different components of the velocity field simultaneously. The

emitted acoustic ‘pings’ of sound are emitted at a constant frequency and bounce off of particles

suspended in the water column, which are reflected back to and measured by the instrument. Sound

waves returning to the instrument have a different frequency as a result of the Doppler shift. If the

acoustic wave emitted by the ADCP is reflected by a particle traveling toward the instrument the

returning frequency will be higher than the emitted frequency. Conversely, if the the emitted sound

wave is reflected from a particle traveling away from the instrument the returning frequency will
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Figure 3.3: Images of commonly used oceanic measurement instrumentation (Garanaik, 2018). (a): CDT

rosette, (b): UCTD, (c): ADCP and (d): VMP
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be lower than the emitted frequency. The difference in frequency between the two acoustic waves

is called the Doppler shift and can be used to determine the velocity of particles in the water

column. By proxy the velocity of the water column can be determined from the calculated particle

velocities. In the oceanic setting the ADCP is primarily used to measure the horizontal velocities

and can collect data at rates between 50 and 200 Hz. ADCPs are typically mounted instruments,

attached to a ship or the seafloor up to 1000 m in depth.

3.2.2 Conductivity-Temperature-Depth (CTD) Probes

This instrument is primarily used to measure chemical, physical and biological properties in

oceanography. Examples of quantities measured by a CDT probe most commonly include, but are

not limited to, temperature, pressure, salinity, pH and dissolved oxygen. CTD probes are typi-

cally deployed by being lowered from a stationary ship up to the maximum desirable depth (up to

multiple thousands of meters) and then pulled up through the water column collecting samples at

specified intervals using the samplers displayed in Fig. 3.3a, known as the sampling rosette. The

UCDT (underway CDT) shown in Fig. 3.3b is an instrument that is used to measure temperature,

pressure, and salinity from ships moving up to 13 nautical miles per hour. As a result of making

measurements from a ship that is underway this instrument typically is used to make measurements

only a few hundred meters from the surface of the ocean (Rudnick & Klinke, 2007). Measurement

of the temperature, salinity and pressure are needed for understanding and quantification of strati-

fied turbulence and determination of the stratification.

3.2.3 Vertical Microstructure Profiler (VMP)

The VMP instrument is deployed unattached to a ship or mooring. When the instrument is

released it falls under its own weight through the water column to a predefined depth collecting

measurements of shear, temperature and other CTD quantities using high resolution sensors. When

the instrument reaches the predefined depth of measurement it releases ballast weight in order to

become positively buoyant and return to the ocean’s surface for retrieval. The high-resolution,

state-of-art sensors on this instrument allow for the concurrent measurement of turbulence and
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hydrographic data. VMPs are much more expensive than a normal CDT probes or ADCPs but

allow collection of concurrent hydrographic and turbulence data and more direct estimation of

oceanic states of turbulence when compared to quantities derived from measurements made by the

other instrumentation. Even though this instrument is able to collect shear data it typically can

only measure one or two components in the three-dimensional field. As a result an assumption

of isotropic turbulence is typically made, where the dissipation rate of turbulent kinetic energy, ϵ,

and thermal dissipation, χ, are considered equivalent in all three coordinate directions. As will

be discussed in Chapter 4 and Chapter 5 in stratified flow this assumption has an impact on our

understanding of oceanic turbulence.

Due to the difficulty and operational risk measurements in the deepest part of the ocean and

near to boundaries are extremely limited. The majority of oceanic turbulence measurements esti-

mate a value for the vertical eddy diffusivity of 10−5 m s−2 (Gregg, 1989). This value is an order

of magnitude less than the canonical value that has been estimated for the vertical eddy diffusivity

needed in order to maintain global thermohaline circulation (Munk, 1966). Microstructure mea-

surements from below 1000m depth show a global average diffusivity on the order of 10−4 m s−2

(Waterhouse et al., 2014). These field measurements combined with CFD simulations of stratified

flow and careful consideration of the governing physics are needed to further understand these

processes due to the limitations of physical measurement and observation.

3.3 Dimensionless Parameters

Use of dimensionless parameters is common in the analysis of fluid mechanics problems (Ten-

nekes et al., 1972; Pope, 2000). They allow for the comparison of different scales of flow as well as

translation between physical, computational and theoretical studies of turbulence. The following

parameters provide useful tools for analyzing stratified turbulence (Brethouwer, Billant, Lindborg,

& Chomaz, 2007). Many of these parameters can be defined in more than one way. The definitions

presented here are either the most accepted/common definitions in the field or are definitions that
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are used within a specific context where the working definition is illustrative of a certain concept

or physical phenomena.

3.3.1 Reynolds Number

The Reynolds number is perhaps the most widely used dimensionless parameter in fluid me-

chanics. It is commonly applied as a proxy for the degree of turbulence. By the definition the

Reynolds number expresses a ratio of inertial forces to viscous forces

Re =
UL

ν
, (3.14)

where U is the characteristic velocity scale, L is the characteristic length scale and ν is the kine-

matic viscosity of the fluid. When Re >> 1, the fluid’s motion is not affected by its viscosity

and the inertia creates turbulence that is triggered via hydrodynamic instabilities. The larger the

value for the Reynolds number the higher the degree of turbulence. The Reynolds number is also

used when analyzing wake dynamics and boundary layer separations (Pope, 2000; Spedding et al.,

1996).

3.3.2 Turbulent Reynolds number

A ratio measure of the turbulent viscosity to molecular viscosity is given by the turbulent

Reynolds number

Ret =
k2

ϵν
= νt

1

ν
, (3.15)

where k is the turbulent kinetic energy, ϵ is the rate of dissipation of turbulent kinetic energy. The

ratio of k2 to ϵ scales as the turbulent viscosity νt. This dimensionless parameter is particularly

useful as one tool in analysis of the degree of turbulence in computational simulations and turbulent

mixing studies.
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3.3.3 Froude number

Non-dimensional steepness of an internal wave can be defined by a Froude number,

Fr =
U0

Cph

, (3.16)

where U0 is the maximum velocity amplitude and Cph is the linear first-mode internal wave celerity

in a stratified fluid. This is an important non-dimensional parameter for characterizing an incoming

internal wave in numerical simulations as defined by Kundu et al. (2008).

3.3.4 Vertical Froude number

Rather then a strict ratio of inertial to gravitational forces given by the normally defined Froude

number, the vertical Froude number defined by Equation 3.17 (Aguilar et al., 2006) is a measure

of the inertial and buoyancy forces in the case of stratified flow interacting with topography

Frv =
U

Nh
, (3.17)

where U is the fluid velocity, h is the maximum height of the topography and N is the buoyancy

frequency. If Frv << 1 the effects of stratification impact the non-linear turbulence. This ratio

has been called different names by a variety of authors, such as “Long’s number” by Aguilar &

Sutherland (2006), but most definitions preserve the same defining ratio.

3.3.5 Horizontal Froude number

Also defined by Aguilar et al. (2006), the horizontal Froude number incorporates the horizontal

extent of the along-stream length of the topographic obstacle, A. When Frh < 1, the vertically

propagating internal waves are created along the face of the topography and can be an important

parameter for evaluation of stratified flow interaction with three-dimensional obstacles.
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Frh =
U

NA
. (3.18)

3.3.6 Turbulent Froude number

In stratified flows the turbulent Froude number is a ratio of buoyancy effects to turbulence

effects. The definition of this parameter also introduces the definition of turbulent time scale

(TL = k/ϵ), which is a timescale measure of the largest isotropic, or turbulent, eddy (Pope, 2000).

Depending on the order of magnitude of this number, it can be used to evaluate the degree stratifi-

cation is inhibiting turbulence.

Frt =
ϵ

Nk
=

1

NTL

. (3.19)

3.3.7 Turbulent Rossby number

All internal waves are in the frequency spectrum between the Coriolis frequency f and the

buoyancy frequency N . The turbulent Rossby number is a ratio of the rotational effects, as com-

pared to the buoyancy effects in the turbulent Froude number, to turbulent effects. This dimension-

less parameter is used to evaluate the effects of rotation on turbulence

Rot =
ϵ

fk
=

1

fTL

, (3.20)

and similarly to Eq. (3.19) it can be defined in terms of the turbulent time scale TL, as shown in

Eq. (3.20).
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3.3.8 Mixing Efficiency

When considering mixing a stratified flow, the mixing efficiency can be defined (Ivey & Im-

berger, 1991) by the flux Richardson number given by

Rf = B/(B + ϵ), (3.21)

where B is the buoyancy flux (B = g/ρ0(ρ
′w′), ρ′ is the density fluctuation and w′ is the fluctua-

tions in the vertical velocity). B + ϵ gives the net mechanical energy that is required to sustain the

motion of turbulence and includes the turbulent kinetic energy coming from production, advection

and transport. By this definition it is not possible to separate the flux due to wave action (reversible

mixing) and the flux that results only due to turbulent motions (irreversible mixing). In order to

define the local rate of the irreversible transfer of kinetic energy and density, the flux Richardson

number is defined as

Rf =
ϵPE

ϵPE + ϵ
, (3.22)

where ϵPE is the rate of dissipation of turbulent potential energy. From the definition presented in

Equation 3.22, the irreversible mixing coefficient (Γ) is defined and is also used as a measure of

irreversible energy loss,

Γ =
ϵPE

ϵ
. (3.23)

3.3.9 Buoyancy Reynolds number

The buoyancy Reynolds number, Eq. (3.24), is commonly used for the evaluation of the mixing

efficiency (and by proxy turbulence) from field data. As discussed in Mater & Venayagamoorthy
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(2014a), it has the advantage of being explicitly defined, as compared to the gradient Richardson

number, as a measure of mixing efficiency

ReB =
ϵ

νN2
, (3.24)

where the equation gives the ratio of kinetic energy dissipation to buoyancy force. It should be

noted that ReB is an ambiguous parameter in that for a given value of the buoyancy Reynolds,

the mixing efficiency can vary by an order of magnitude (Mater & Venayagamoorthy, 2014a).

However, using the buoyancy Reynolds number is a useful, but not unique, diagnostic tool for

evaluating mixing efficiency and turbulence in stratified flows.

3.3.10 Diffusivity Ratio

The ratio of turbulent diffusivity to molecular diffusivity, Eq. (5.4), can be used to evaluate the

degree of turbulence, particularly in DNS simulations, and is defined by

κ̂ =
Kρ

κ
=

ϵPE

N2κ
, (3.25)

where rate of potential energy dissipation is denoted as ϵPE , molecular diffusivity by κ and turbu-

lent diffusivity by Kρ. If κ̂ < O(10), then there is not a sufficient separation of scales in the flow

and it is therefore likely that mixing is dominated by molecular effects.

3.3.11 Topographic steepness parameter

Steepness of the bottom topography is classified as “critical" (ϵ = 1), “supercritical" (ϵ > 1) or

“subcritical" (ϵ < 1) by Phillips (1977) using the topographic steepness parameter ϵ defined as

ϵ =
γ

s
, (3.26)
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where topographic slope is denoted by γ and the slope of the internal wave beam, s, is given by

s = tanα =
k

m
=

(
ω2 − f 2

N2 − ω2

)

, (3.27)

where the definition of the angle between the internal wave characteristic and the horizontal plane

is denoted by α, and k and m are the horizontal and vertical wave-numbers respectively. The

topographic steepness parameter is a fundamental parameter to the study of wave-topography in-

teraction (Venayagamoorthy, 2006) and the generation of internal tides (Klymak et al., 2012).

3.3.12 Tidal excursion parameter

The tidal excursion parameter defines the difference between the “internal tide" regime and the

“quasi-steady" lee wave regime

Ex =
U0κ

ω
, (3.28)

where U0 is the amplitude of the barotropic tidal current and ω is the frequency (St. Laurent &

Garrett, 2002). Differences between these two regimes based on observed timescales has been

proposed by Dohan (2004). “Internal tides" regimes are considered dominant when Ex is less than

1 and tidal excursion scale is less than the topographic scale. When the tidal excursion scale is

greater than that of the topography and Ex is greater than 1, the stratified flow is considered to be

a “quasi-steady lee wave".

3.4 Continuously Stratified Flow Past Topography

Stratified flow past topography gives rise to a variety of turbulent and flow phenomena. These

phenomena have been studied using field scale observations (e.g. Munk & Wunsch, 1998; Vosper
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et al., 1999; Jarosz et al., 2014; Wijesekera et al., 2014), numerical simulations (e.g. Suzuki &

Kuwahara, 1992; Di Lorenzo et al., 2006; Winters & Armi, 2012) as well as theoretical and math-

ematical analyses (e.g. Drazin, 1961; Smith, 1988; Voisin, 1991). There are a variety of different

flow patterns, the most common of which have been studied and classified. The following sec-

tion describe a brief history of early observational and theoretical analyses. Brief descriptions of

important flow phenomena and a summary of recent research is also presented.

3.4.1 Observational/analysis history

As early as the 1940s, analytical studies, using linear theory, have shown that obstacles inter-

acting with a continuously stratified fluid create small amplitude disturbances (Lyra, 1943; Queney,

1947). Observations of topographically trapped lee-waves were made by Scorer (1949) and appli-

cations of linear theory have shown consistent results (Vosper et al., 1999; Smith et al., 2002) when

analyzing these types of phenomena. Seminal work by Long (1953) showed an extension of linear

theory to the non-linear flow fields that arise under certain conditions. This research created a

breakthrough in understanding and analysis of these flows. Field observations have shown that the

vertical mixing resulting from breaking internal waves near the ocean boundaries can explain verti-

cal advection-diffusion balances (Munk & Wunsch, 1998; Thorpe, 2004). The transfer of turbulent

energy from these locations near the boundary to the ocean interior help explain mixing processes

measured far from boundaries and close global energy budgets. Baines (1998) provides the most

comprehensive early review of stratified flow past obstacles but others have provided other reviews

of stably stratified flow past obstacles (e.g. Long, 1972; Smith, 1979, 1989; Baines, 1987).

3.4.2 Experimental background

Cacchione & Wunsch (1974) used laboratory experiments of stratified first-mode waves shoal-

ing to show that at critical slope angles, shear generated instabilities generate periodic vortices that

mix the local fluid. This mixed fluid flows along isopycnals to mix the interior of the fluid. An

extension of this work by Ivey & Nokes (1989) quantified the efficiency of the mixing observed

in these processes. Here the mixing efficiency is defined as the ratio of the increase in potential

36



energy to the loss of kinetic energy due to the mixing created by incident waves. An upper bound

of 0.2 for the mixing efficiency was proposed and has seen widespread use as a result. Laboratory

work by Dauxois et al. (2004) was conducted in order to generate more clearly defined incident

wave beams interacting with a sloping boundary. The authors used plunging cylinders made of

polyvinyl chloride (PVC) to generate planar, parallel wave patterns that were studied using classi-

cal Schlieren imaging techniques. Time series images in Figure 3.4 show a wave front propagating

up a supercritical slope (γ/s = 1.28) where the isopycnal surface lines concentrate, collapse and

overturn leading to mixing of density.

3.4.3 Wave instability & breaking

Instabilities leading to the breaking of internal waves due to interaction with topography trans-

fers energy to higher wave numbers. This leads to turbulent mixing near the boundary. St. Laurent

& Garrett (2002) have estimated that up to 30% of the energy can be dissipated near the boundary

while the remaining energy radiates in the form of low-mode internal waves that interact with other

internal waves or other topographic boundaries remote from the initial source (Polzin et al., 1997).

An in depth discussion of this process based on topographic characteristics, density stratification

and the tidal forcing is presented by Polzin (2009). Nikurashin & Legg (2011) and Nikurashin

& Ferrari (2013) have simulated these processes using numerical modeling. Static and dynamic

instabilities are the two most likely causes of internal wave breaking (Thorpe, 2005) and the type

of instability impacts the mixing efficiency (Linden & Redondo, 1991). A static instability is also

referred to as a convective instability where generally heavier, more dense fluid, overlies light, less

dense, fluid leading to overturning motions. A static instability can occur when N2 < 0 or the

ratio of the local fluid velocity U to the wave speed c is greater than 1. Dynamic instabilities are

also known as shear instabilities, a classic example is the formation of Kelvin-Helmholtz billows,

when the fluid velocity overcomes damping effects of the density stratification as shown in Figure

3.5. This type of instability is common in atmospheric shear layers and the oceanic thermocline

and is an important factor in internal wave mixing (Smyth & Moum, 2012). As shown in Venayag-
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Figure 3.4: Images from the experiments of Dauxois et al. (2004) showing the Schlieren images of the

isopycnal surfaces as they propagate and overturn while moving up a super-critical slope (γ = 35◦) over

one incident wave period.

38



amoorthy & Fringer (2012), when the gradient Richardson number (Equation 3.29) less than 0.25

the occurrence of dynamic instabilities is possible.

Figure 3.5: Two layer density stratified flow showing a dynamic (shear) instability in the form of Kelvin-

Helmholtz billows. The irreversible turbulent mixing is seen in panel (b) where the sharp interface has been

mixed (from Hult et al., 2009).

Rig =
N2

(∂U/∂z)2
(3.29)

3.4.4 Internal tides

Internal waves in the ocean that have the same daily frequency as the global surface (barotropic)

tides are called internal tides. Internal tides are also referred to as baroclinic tides and are generated

by the interaction of stratified flow currents with mid-ocean ridges, continental shelves, seamounts
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and other bottom topographies (Wunsch, 1975). Shifts in the direction of the internal tide can sig-

nificantly alter the dynamics of the flow field around bottom topography and as a result the degree

of turbulent mixing (Jalali et al., 2017). Reviews of internal tides by Garrett & Kunze (2007) and

Vlasenko et al. (2005) discuss the relevant experimental, analytical, and numerical study findings

pertaining to their generation, transformation, dissipation and fate. Interaction between an internal

tide and bottom topography is commonly characterized by the topographic steepness parameter,

Eq. (3.26), the tidal excursion parameter, Eq. (3.28) and a ratio of the topographic height to the

total fluid depth (δ = h/d). Tidal energy conversion to turbulent mixing increases monotonically

with the topographic obstacle height (h) and decreases monotonically as a function of obstacles

horizontal length scale in cases with supercritical or critical topography (Pétrélis et al., 2006). For

subcritical topography, various analytical solutions have been proposed for the amount of energy

converted (Bell Jr, 1975; Bell, 1975; Llewellyn Smith & Young, 2002; Khatiwala, 2003). Nu-

merical studies of internal tides by King (2010) and Nikurashin & Legg (2011) have been able

to incorporate the non-linear term in the governing equations to provide a further insight into the

dynamics. Studies by Legg & Huijts (2006) and Legg & Klymak (2008) focused on flow features

leading to increased local mixing when an internal wave field was analyzed using the MITgcm

(Marshall et al., 1997) model with physically realistic topography.

In the abyssal ocean, barotropic tidal currents radiating away from topographic or solid bound-

aries likely play a major role in the meridional overturning current (MOC) and maintaining global

stratification and energy mixing (Munk & Wunsch, 1998; Wunsch & Ferrari, 2004). The eventual

fate of internal tides in the oceanic environment is still poorly understood (Gerkema et al., 2006).

Propagation away from boundaries is observed as both high and low-wave frequency modes where

horizontal low-modes travel much more quickly then the vertical higher modes. Low-mode inter-

nal waves have been observed to travel O(1000)km away from generation sites on the Aleutian

Ridge or the Hawaiian Islands. Interaction between multiple internal tides is important for under-

standing the global ocean circulation and how the earth’s oceans are mixed (Thorpe, 2005).
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3.4.5 Lee waves

Lee waves form on the back side of a topographic obstacle when stably stratified fluid flows

over the obstacle and accelerations resulting from the vertical displacement of the fluid create

waves. These types of lee waves can be observed in the atmosphere when stratified flow encoun-

ters a mountain range or other obstacles and the fluid motion upward generates condensation and

cloud formation (Kundu et al., 2008). Lee waves can be considered stationary relative to a solid

boundary because the wave phase propagation is cancelled by the mean flow movement and the

wave becomes phase-locked with the topography. Applications of linear theory usually consider

steady flow conditions over a small obstacle of finite amplitude. As the inverse of the vertical

Froude number, Frv, increases, the streamlines also steepen until they are vertical where the limit

of applicability of the theory is reached. In cases where there is high value for the inverse vertical

Froude number, there is non-linear wave breaking and overturning. As these waves become more

and more non-linear, the flow field can transform itself into a spilling and plunging flow behind the

obstacle (Smith, 1985). Lee waves have been extensively studied and modeled using experimental

(e.g. Vosper et al., 1999; Dupont et al., 2001) and numerical methods (e.g. Huppert & Miles,

1969; Lilly & Klemp, 1979; Smith, 1985; Muraki, 2011) including variations in the shape of the

topographic obstacle.

3.4.6 Flow splitting

Flow splitting occurs when a stratified flow encounters a topographic obstacles and splits to

travel around the obstacle rather than working against the stratification to flow over the obstacle.

In some cases the stratification can help force a flow into this type of separated two-dimensional

flow. Explanation of conditions where this type of flow is generated by an obstacle, rather than a

lee wave, relies on the analysis using vertical Froude number Frv and a theoretically formulated

critical height given by the Sheppard formula, Equation 3.30, which is a function of the vertical

Froude number (Drazin, 1961),
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Figure 3.6: Breaking lee waves from a detailed simulation of off ridge flow where the size of the breaking

wave is ≈ 200m. Panels are colored by temperature and show off-ridge (a) and cross-ridge (b) flow (from

Klymak et al., 2012).

zc = h

(

1−
U

nh

)

, (3.30)

where zc is the height when the flow will have sufficient energy to overcome the topographic obsta-

cle and form lee waves. Figure 3.7 shows the effect of stronger stratification on the development

of separated flow regimes. Flow splitting regimes can also combine and interact with lee wave

formation. Hunt & Snyder (1980), Snyder et al. (1985), Vosper et al. (1999), and Ding et al. (2003)

have all shown analysis of flow splitting as a function of zc.

3.4.7 Boundary layer separation

Separation of the boundary layer in stratified flow over obstacles is the result of non-linear

dynamics where the flow rapidly decelerates and creates an adverse pressure gradient. The product

of the aspect ratio of the topographic obstacle (h/Ad, where Ad is defined as the lee-side half width)

and the inverse of the vertical Froude number is commonly used to define degrees of boundary layer

separation into three regimes: (1) boundary-layer separation (NAd/U < π); (2) attached boundary
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Figure 3.7: Depiction of flow encountering a three-dimensional topographic obstacle with (a) neutral strat-

ification and (b) stable stratification ((Hunt & Snyder, 1980)).

layer (NAd/U ≥ π); and (3) possible post-wave (lee or internal) separation where the separation

occurs beneath the first lee-wave crest. Ambaum & Marshall (2005) showed that the degree of

stratification impacts the location of the boundary layer separation. Boundary layer separation can

result in a separate (second) internal wave generation mechanism then the encountered topography

(Sutherland, 2002; Aguilar & Sutherland, 2006; Aguilar et al., 2006). Hunt & Snyder (1980) use

a possible boundary layer separation to explain eddies circulating around vertical axes in stratified

wake structures.

3.4.8 Internal hydraulic jump

Like hydraulic jumps observed in open channel flow, internal hydraulic jumps are a function

of flow accelerations creating wave steepening and breaking. Internal hydraulic jumps are not

well understood but have been observed as a result of flow interaction with topography (Armi
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& Mayr, 2011), straits, fjords and sills (Wesson & Gregg, 1988; Cummins et al., 2006; Moum

& Smyth, 2006; Gregg & Pratt, 2010) and in the abyssal ocean (Alford et al., 2013). Hydraulic

jumps can lead to significant amounts of turbulent mixing. Thorpe (2010) and Thorpe & Li (2014)

present the only significant research on internal hydraulic jumps in a continuously stratified fluid.

Formation and structure of internal hydraulic jumps is theorized to be increasingly complex with

their formation as a result of interaction with three-dimensional topography (Baines, 1998). More

observations and studies of these types of waves would help quantify and understand their impact

on mixing, turbulence and the distribution of energy.

3.4.9 Gravity Currents

When there is a current of fluid that has a higher density than the surrounding horizontal fluid,

it is classified as a gravity current. The two main types of gravity currents are intrusive gravity

currents (IGC) that travels through an ambient fluid at the level of neutral buoyancy and bottom

boundary gravity currents (BBGC) that travel along a solid boundary. These types of gravity cur-

rents can result from the mixing and turbulence generated by internal wave and stratified flow

interaction with topographic obstacles and create significant mixing and entrainment of sediments

on their own. Most studies of gravity currents on sloping bottom topography have been conducted

within a homogenous fluid. Simpson (1999) provides a comprehensive treatment of gravity cur-

rents in his book on the subject.

3.4.10 Recent analysis

The vast majority of research on internal waves interacting with topography concentrates on

the continental slope/shelf. A comprehensive review of the laboratory, numerical and field work

analyzing internal waves near the continental slope is presented by Lamb (2014). Research has

shown that some of the energy contained in internal tides/waves dissipates through turbulence and

mixing at continental slopes, however, it is also recognized that a significant portion of this energy

is radiated away from the continental margins (Venayagamoorthy & Fringer, 2006). Some research

has focused on the interactions of internal waves in a continuously stratified fluid with isolated or
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ridge-like topography. Wessels & Hutter (1996), Sveen et al. (2002), Chen et al. (2008) and Chen

(2009) showed results from experiments of internal solitary waves in two-layer flows interacting

with gaussian hills and triangular topography. Numerical simulations by Legg & Adcroft (2003)

investigated the interaction of internal waves with concave and convex slopes, on corrugated slopes

with cross-slope (Legg, 2004a) and along-slope barotropic forcings (Legg, 2004b) and with an iso-

lated gaussian ridge (Legg, 2014). Works by Jalali et al. (2017), Jalali & Sarkar (2017), Musgrave

et al. (2016), Nikurashin & Legg (2011), Legg & Klymak (2008), and have evaluated numerical

results (sometimes in combination with field data) of internal wave interactions with rough topog-

raphy, isolated idealized ridges, single triangular ridges and a cross-section of actual topography.

Results from Jalali & Sarkar (2017) and Jalali et al. (2017) are shown in Figure 3.8 and Figure

3.10, respectively. There are no studies in the current literature comprehensively analyzing the

interaction between internal waves and multiple ridges or multiple isolated structures especially

at scales below the field scale and above the laboratory scale. Research on the physics of inter-

nal waves interacting isolated and multiple ridges remains an open line of inquiry. The analysis

presented herein aims to start filling in a portion of this knowledge gap.

Application of numerical simulations to help understand the physics of internal waves and

interpret observational measurements is an increasing useful tool for engineers and scientists. Di-

rect numerical simulation (DNS) has become a useful tool for analysis of small domains where

an isolated set of waves can be analyzed and all turbulent scales can be resolved under various

forcing and stratification conditions. Behavior of these waves can inform simulations and observa-

tions where the turbulent scales can not be fully resolved. Work by Garanaik & Venayagamoorthy

(2019), Pouquet et al. (2018), Maffioli et al. (2016b), Mater & Venayagamoorthy (2014b), Mater

et al. (2013) and Lindborg & Brethouwer (2008) are examples of periodic box DNS simulations

that have been used to help understand the turbulence and mixing in stratified fluids. Due to the

constraints put on DNS simulations by the limits of computational resources, large eddy simula-

tions (LES) have become a popular alternative for more realistic replication of the flow physics

then Reynolds-Averaged Navier-Stokes (RANS) models (Chow & Street, 2004). LES allows for
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Figure 3.8: Snapshot from LES of a cross-section of topography of the Luzon Strait in the South China Sea.

Figure shows normalized zonal velocity and density isopycnals (from Jalali & Sarkar 2017).

the small scales to be represented using small, subgrid-scale (SGS) parameterized turbulence clo-

sure models while the large energy containing scales are resolved. Division between the resolved

and parameterized scales is done through either implicit or explicit filtering. Accuracy of LES can

depend on how well the subfilter-scales have been modeled. Various SGS closure models have

been proposed but the dynamic mixed model (DMM) (Zang, 1994; Zang et al., 1993) is commonly

used in turbulent mixing analyses seen in environmental flows and has been used for a wide variety

of applications (e.g. Fringer & Street, 2003). Other LES codes have been used to study internal

waves (e.g. Slinn & Levine (2003), Skyllingstad & Wijesekera (2003)), which include the Stanford

Unstructured Non-hydrostatic Terrain-Following Adaptive Navier-Stokes Simulator (SUNTANS)

and MIT general circulation model (MITgcm). MITgcm has been used as a tool in this dissertation

study to evaluate the scaling of internal wave-topography interaction at different scales.
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Figure 3.9: Field scales simulations in two and three dimensions by Legg (2014).

3.5 Summary

The four sections in this chapter present an introduction to stratified flows and internal waves,

an overview of flow measurement instrumentation used in the field setting, dimensionless param-

eters relevant to the study of stratified flow interaction with topography and review of the past

work on continuously stratified flow interacting with topographic obstacles. Relevant equations,

parameters and terminology are all presented. A brief review of the main contributions from the

theoretical, experimental, observational and numerical study of this topic is also covered as it per-

tains to this research. Understanding the basic turbulent mixing processes that arise as a result of

the generation on the flow phenomena described in this chapter is the first step in being able to crit-

ically analyze numerical simulations of stratified flow interacting with topography. Dimensionless
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Figure 3.10: Velocity results of simulations by Jalali et al. (2017) of stratified flow over a single idealized

ridge with variations in excursion number (Ex = U0/Ωl, where U0 is the amplitude of the tidal velocity, Ω
is the tidal frequency and l is the roughness half-length) in critical (a, b, c) and supercritical (d, e, f) cases.

parameters and scaling are used in the following section to analyze idealized stratified turbulence

numerical simulations in the absence of boundary interactions.
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Chapter 4

Revisiting the Osborn Model3

4.1 Introduction

Diapycnal mixing is the molecular diffusion of density across isopycnals (surfaces of constant

density)(Osborn, 1980). In stratified flows, such as those found in the ocean, diapycnal mixing

is essential for maintaining the circulation driving oceanic currents and the resulting overturning

events, creating mixing of different fluid masses and transport of nutrients (Munk & Wunsch,

1998). However, there are numerous challenges for direct measurement of pertinent quantities

needed to determine the diapycnal diffusivity Kρ which provides the pathway for estimating tur-

bulent heat/mass fluxes in oceanic flows. These include instrumentation that collects subsets of

turbulence data, data collected in only the vertical dimension (as profiles) and an inability to make

reliable measurements near boundaries (Osborn & Lueck, 1985; Hult et al., 2011; Venayagamoor-

thy & Koseff, 2016; Gregg et al., 2018). Widely used instrumentation for oceanic measurement

that are directly mounted to a buoy or ship include ADCPs (acoustic Doppler current profilers) and

CTD (conductivity-temperature-depth) probes. Another common autonomous instrument is the

VMP (vertical microstructure profiler) which is released from the surface and collects data while

free-falling through the ocean.

Thus, by necessity, a number of indirect methods are commonly used in oceanography for

quantifying Kρ. Of these, the model due to Osborn (1980) has found widespread use. Under the

assumptions of statistical homogeneity and stationarity, the diapycnal diffusivity is obtained from

3The research presented in this chapter has been submitted to the Journal of Fluid Mechanics under the title “On

the use and misuse of the Osborn model: Implications for improved estimates of ocean mixing rates" by M. R.

Klema and S. K. Venayagamoorthy. This chapter is written to reflect and acknowledge the contribution of Dr. S. K.

Venayagamoorthy.
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the turbulent kinetic energy equation using the gradient diffusion hypothesis as

Kρ = Γ
ϵ

N2
, (4.1)

where Γ = Rf/(1−Rf ) is called the irreversible mixing coefficient, ϵ is the turbulent kinetic energy

dissipation rate, and N is the buoyancy frequency associated with the background stratification.

Rf = ϵPE/(ϵPE + ϵ) where ϵPE is the dissipation rate of turbulent potential energy, is known as

the diapycnal mixing efficiency, or flux Richardson number (see Ivey & Imberger 1991, Peltier

& Caufield 2003, Venayagmoorthy & Stretch 2010 and Venayagamoorthy & Koseff 2016, for

detailed discussions on the flux Richardson number).

In the oceanic setting the irreversible mixing coefficient Γ is often assumed to have the constant

value of Γc = 0.2 (Osborn, 1980; Bouffard & Boegman, 2013). Validity of assuming that this pa-

rameter has a constant value has been challenged and debated (Gregg et al., 2018; Ijichi & Hibiya,

2018; Mater & Venayagamoorthy, 2014a). Various parameterizations for the mixing efficiency

have been proposed (Mater & Venayagamoorthy, 2014a; Monismith et al., 2018) but the constant

value of 0.2 for Γ has received widespread acceptance and application for estimating diapycnal

diffusivities using the Osborn model in oceanic flows. Assumption of a constant irreversible mix-

ing coefficient oversimplifies diapycnal mixing as the turbulent diffusivity should depend on the

magnitudes of turbulence and stratification in a flow. This is summarized by Maffioli & Davidson

(2016) and Venayagamoorthy & Koseff (2016) who show the irreversible mixing coefficient as the

ratio of the turbulent potential and kinetic energy dissipation rates, Γ = ϵPE/ϵ. This irreversible

definition of the mixing coefficient is used for the present analysis. Garanaik & Venayagamoor-

thy (2019) (hereafter GV19) used direct numerical simulations (DNS) of homogeneous stratified

turbulence to clearly show that the value of the irreversible mixing coefficient is not a constant

but instead has a strong functional dependance on the magnitude of the turbulent Froude number,

Frt = ϵ/Nk, where k is turbulent kinetic energy.

The rate of dissipation of turbulent kinetic energy, ϵ, is often inferred in one of two ways. The

first method is to directly infer ϵ from microstructure measurements that typically use shear probes
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to measure two out of the nine turbulent components of the fluctuating velocity gradient tensor of a

three-dimensional velocity field (Osborn & Cox, 1972; Thorpe, 2005). To do this, the assumption

of local isotropy is invoked (Danaila et al., 2017; Garanaik & Venayagamoorthy, 2018). This

assumes that the kinetic energy and corresponding kinetic energy dissipation rate is equivalent

with respect to all three coordinate dimensions (Thorpe, 2005). Whenever this assumption is made

it is denoted ϵ1D in the analysis presented in this paper. Gregg et al. (2018), Itsweire et al. (1993)

and Garanaik & Venayagamoorthy (2018) show that the isotropy assumption for the kinetic energy

dissipation rate is valid for stratified flows when the turbulent Froude number, Frt ≥ 1. However,

when the flow is strongly stratified (typically for Frt < 1), then the isotropy assumption starts

to break down. Increased stratification limits the component of the velocity field in line with the

stratification and results in a non-isotropic velocity field (Gargett, 1988; Holford & Linden, 1999;

Lindborg & Brethouwer, 2008).

The second method indirectly infers a kinetic energy dissipation rate through an equivalency

assumption between derived kinematic scales namely: the Ozmidov length scale (Ozmidov, 1965)

and Thorpe length scale (Thorpe, 1977). The Ellison length scale (Ellison, 1957) has also been

used as an alternative to the Thorpe length scale given that they have been found to track each

other quite well (Itsweire et al., 1993; Mater et al., 2013). In oceanic flows, the Thorpe length

scales are determined from instantaneous vertical density profiles (typically using CTD casts from

a ship or mooring) or from VMP dropped from a ship. Using such one-dimensional profiles, both

the Thorpe (LTh) and Ellison (LE) scales provide a statistical measure of the vertical distance

travelled by fluid parcels in order to achieve a position of equilibrium (Thorpe, 2005; Ellison,

1957). Further details of these length scales can be found in the works of Dillon (1982), Winters et

al. (1995), Ellison (1957) and Thorpe (1977). The Ozmidov length scale is a kinematic length scale

that is often used to define the size of an isotropic large eddy scale that is unaffected by buoyancy

in stratified turbulence. Thus, based on the grossly simplifying assumption that the Thorpe scale

(LTh) is equivalent to the Ozmidov scale (LO = (ϵ/N2)1/2), the rate of dissipation of turbulent

kinetic energy is inferred (i.e. ϵTh = L2
ThN

3). Mater et al. (2013) presented arguments that LO
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and LTh are only equivalent for flow conditions with a turbulent Froude number of order 1. Smyth

& Moum (2000) showed that the ratio of the Thorpe and Ozmidov length scales can be used to

estimate the age or evolution of a turbulent event. The analysis of GV19 rigorously showed that

the ratio of the Ellison (or Thorpe) and Ozmidov length scales can be used to infer both the local

state of turbulence and the mixing efficiency in stably stratified turbulent flows. These three length

scales see widespread application given that they can be readily calculated from measured field

data.

Despite the numerous studies pertaining to these prevalent issues with the Osborn model, to the

best of our knowledge, no systematic study has been done to pinpoint the consequences of these

assumptions on mixing estimates. Thus, the main aim of this research is to bring to focus how

these common assumptions and practices associated with the use of the popular Osborn model

have a significant impact on estimates of the diapycnal diffusivities. In what follows, the key

non-dimensional parameters that will be used for the analyses presented and that are pertinent in

stratified turbulence are discussed in §4.2. This is followed by a short discussion on the direct

numerical simulations that are used as testbed for the analyses presented is discussed in §4.3.

Results that systematically show how these common assumptions cause the diapycnal diffusivities

to vary by orders of magnitude compared to the exact true diffusivities directly obtained from DNS

are presented in §5.4. Concluding remarks are made in §4.5.

4.2 Common dimensionless parameters

There are several dimensionless numbers that are important in the study of stratified turbulence

of which two will be highlighted given their significance and use in the results presented. Perhaps

the buoyancy Reynolds number ReB = ϵ/νN2, where ν is the kinematic viscosity, is most pop-

ular mainly due the fact that it can be calculated readily from measured quantities in the ocean.

However, ReB is an ambiguous parameter in that for any given value, the mixing efficiency (or

coefficient) can vary by an order of magnitude (Mater & Venayagamoorthy 2014 and GV19). De-
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spite its ambiguity, it can be used as a diagnostic for evaluating the intensity of turbulence and

mixing in stably stratified flows.

Another useful dimensionless parameter is the turbulent Froude number Frt. It has proved to

be a robust parameter for determining the particular state of a stratified flow, i.e., at low values of

Frt, the flow is strongly influenced by buoyancy effects and conversely at high Frt by turbulence.

This is evident when its definition is cast as a competition of the buoyancy timescale (N−1) to the

turbulence decay time scale (TL = k/ϵ). As pointed out by GV19, Frt can be used a diagnostic

indicator of the local state of evolution of a stably stratified flow. GV19 go onto to provide phys-

ically based scaling arguments to quantity Γ as a function of Frt. Here, we will use Frt as the

primary non-dimensional parameter to assess the impact of each of the common assumptions used

for calculating Kρ via the Osborn model.

The ratio between the turbulent diapycnal diffusivity (Kρ, as defined by Equation 4.1) and

the molecular diffusivity (κ), denoted here as κ̂ is defined by Equation 4.2. This is a useful non-

dimensional way to represent Kρ especially when applied to DNS data, to clearly show the magni-

tude of the diapycnal diffusivity relative to its molecular counterpart. We note that κ̂ can be defined

using ϵPE , N and κ and cast in terms of relevant non-dimensional parameters as shown in Equation

4.2 where Pr = ν/κ is the Prandtl number.

κ̂ =
Kρ

κ
=

ϵp
N2κ

= ΓReBPr. (4.2)

4.3 Simulations and Data

The direct numerical simulations for this analysis were completed using the pseudo-spectral

code developed by Riley et al. (1981) and were initially presented in Garanaik & Venayagamoor-

thy (2018). The simulations solve the Navier-Stokes equations with the Boussinesq approximation

for stably stratified homogeneous decaying homogeneous turbulent flows in a non-dimensional

2π cubic domain with 5123 grid points and periodic boundary conditions. This DNS data was

also used in the analysis presented in GV19. These types of simulations are used to study tran-
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sient or episodic turbulent flow behavior such as breaking internal waves in the oceans. Initial

turbulent kinetic energy in the simulations results from an imposed three dimensional Gaussian

isotropic solenoidal velocity field. The initial velocity scale (u0) and initial length scale were both

set equal to 1. Characterization of the background stratification was set by an initial Richardson

number Ri0 = (NL0/u0) with values of Ri0 = 0.01, 0.1, 1.0 and 10 for each of the four respective

simulations presented. This range of Richardson numbers cover flow conditions representative of

weakly to strongly stratified conditions, respectively. All four simulations were run for a duration

of 5L0/u0. In all simulations the molecular Prandtl number Pr = 1 for all simulations to ensure

accurate resolution of the dissipative scales of the density (scalar) field. Garanaik & Venayag-

amoorthy (2018) provide further details of these simulations.

4.4 Results

The goal of this section is to use the DNS results to illustrate how the common assumptions

used with the application of the Osborn model individually impact estimates of turbulent diffusiv-

ities. Using the four DNS runs, implications of these assumptions are systematically investigated.

Three parameters are used in the calculation of the diffusivity as presented in Equation 4.1. In

Section 4.4.1 the assumption of a constant (irreversible) mixing coefficient Γc = 0.2 is discussed.

Implications of estimates of the dissipation rates of turbulent kinetic energy, ϵ, using an assump-

tion of local flow isotropy (as is done in the field when using microstructure data) and indirectly

by inference from kinematic flow scales are examined in Section 4.4.2. The combined impact of

the simplifications and assumptions made in quantifying Kρ is discussed in Section 4.4.3. Section

4.4.4 provides a brief discussion on improving estimates of diapycnal diffusivity from available

measurements. The third parameter in Equation 4.1 is N , the buoyancy frequency. Estimating

the background density stratification against which turbulence must work to mix fluids of different

densities in the field is not trivial. Investigation of this parameter is beyond the scope of the present

analysis and is an area for further investigation. The interested reader is referred to Arthur et al.
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(2017) for a detailed discussion on how the way N is computed can impact estimates of diapycnal

mixing in stratified flows.

4.4.1 Implications of a constant irreversible mixing coefficient

Figure 4.1a shows the diffusivity ratio (κ̂) plotted as a function of the turbulent Froude number

(Frt and colored by the buoyancy Reynolds number (ReB). Diffusivity ratios (κ̂) of the four

DNS was calculated two different ways. The first approach calculates diffusivity ratio using the

irreversible definition for the mixing coefficient (Γ = ϵPE/ϵ) denoted κ̂ρ. The second set of data

uses the assumed constant value of Γc = 0.2 to calculate the diffusivity ratio, denoted κ̂c. In both

these calculations, values for the kinetic energy dissipation rate, ϵ, were taken directly from the

DNS. This figure clearly shows that assuming a constant value of 0.2 for the irreversible mixing

coefficient results in different values of diffusivities than those calculated using the irreversible

definition. At higher turbulent Froude number (Frt > 1) the use of Γc over-predicts the true

diffusivity. When the turbulent Froude number is close to unity, the diffusivities calculated using

Γc are equivalent to those calculated using Γ (i.e., κ̂c ≈ κ̂ρ). As the magnitude of the turbulent

Froude number decreases (Frt < 1), buoyancy effects become more dominant and the diffusivity

ratio κ̂c under-predicts the true diffusivity ratio κ̂ρ.

In order to clearly highlight the implication of the constant Γc = 0.2 assumption, Figure 4.1b

shows the data presented in Figure 4.1a normalized by κ̂ρ. Diffusivities calculated using this true

turbulent definition necessarily collapses on itself and the impact of the constant assumption for

Γ becomes striking. At higher turbulent Froude numbers, the assumption of Γc = 0.2 results

in estimates for the diffusivity ratio up to two orders of magnitude greater than the diffusivity

determined directly from the turbulent quantities. As the buoyancy effects increase, the difference

between κ̂c and κ̂ρ decreases until they are equivalent as Frt approaches unity. Below Frt < 1,

κ̂c under predicts κ̂ρ and reaches a constant value that is about 5 to 6 times less than the exact

value κ̂ρ. It is clear from this data analysis that an assumption of a constant Γ = 0.2 is not

accurate because the mixing efficiency is a dynamic variable that is strongly dependent on the
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Figure 4.1: (a) Diffusivity ratios plotted as a function of the turbulent Froude number, Frt. Data plotted as

open triangles apply the turbulent definition of the irreversible mixing coefficient (Γ = ϵPE/ϵ) in calculating

the turbulent diffusivity. The data presented as filled triangles assumed Γ = 0.2 when calculating the

turbulent diffusivity. (b) Diffusivity ratios normalized by κ̂ρ. All data is colored by the buoyancy Reynolds

number, ReB .

flow conditions as has been pointed out previously by a number of studies such as GV19. The

agreement at Frt ∼ 1 is somewhat not surprising given that the turbulence and buoyancy time

scales are approximately equal. However, the constant value of Γ = 0.2 at Frt ≈ 1 is coincidental

and should not be considered a robust result. Regardless, what is clear is that the assumption

of a constant Γ does have a significant and differing impact on estimates of turbulent diffusivity

depending on competition between the stratification and turbulence in a given flow.

4.4.2 Implications of an inferred kinetic energy dissipation rate

Figure 4.2a shows the three inferred dissipation rates of turbulent kinetic energy, ϵ1D, ϵLE
and

ϵTh normalized by the exact dissipation rates ϵ obtained directly from the DNS, plotted as a function

of the turbulent Froude number. Results calculated by indirect inference using the Ellison and

Thorpe scales closely track each other confirming the analysis of Itsweire et al. (1993) and Mater

et al. (2013). For low values of the turbulent Froude number, the inferred rates of dissipation of

kinetic energy are 15-18 times larger than ϵ. Above Frt ∼ 1, ϵLE
and ϵTh under-predict ϵ resulting

in a ratio close to zero. Results show that an assumption of isotropy is less significant, over-

predicting the kinetic energy dissipation rate by a factor of two for strongly stratified conditions
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Figure 4.2: (a) Normalized rates of dissipation of turbulent kinetic energy inferred using an assumption

of local isotropy (ϵ1D) or derived from the Ellison length scale (ϵLE
) and Thorpe length scale (ϵTh), as

a function of the turbulent Froude number, Frt. These are all normalized by the true dissipation rates ϵ
obtained directly from the DNS. (b) Normalized diffusivity ratios using inferred rates of dissipation. All

data is colored by values of the buoyancy Reynolds number, ReB .

(Frt << 1). This over-prediction decreases as Frt increases becoming functionally equivalent

to the exact dissipation rates above Frt > 1, for weakly stratified flow conditions. Figure 4.2b

shows the results of using ϵ1D and ϵLE
in calculations of normalized turbulent diffusivity ratio. If

ϵ1D is used the over-predictions remain much less than an order of magnitude for flows at low Frt

and becomes equivalent at high Frt which indicates that anisotropic effects of stratification are not

dominant/important when Frt > 1. Using ϵLE
in calculations of the turbulent diffusivity amplifies

the differences shown in Figure 4.2a. In the strongly stratified flow regimes (Frt < O(0.1)) the

turbulent diffusivity is up to one order of magnitude greater than κ̂ρ. For Frt > O(1) the turbulent

diffusivity calculated using ϵLE
(∼ ϵTh) results in an under-prediction of the turbulent diffusivity

by up to three orders of magnitude for Frt ≈ 10). This is a result of the inferred ϵLE/Th having

very small magnitudes compared to the true dissipation rates for weakly stratified flow conditions.

This result has important implications in the field when only CTD profiles are used to infer mixing

rates in a weakly stratified turbulent flow field since such profiles would hardly reveal any major

overturning events even though the turbulence is strong.
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4.4.3 Implications of a constant irreversible mixing coefficient combined

with an inferred kinetic energy dissipation rate

As pointed out previously, it is common practice to use a constant mixing coefficient combined

with an inferred kinetic energy dissipation rate in applications of the Osborn model. Figure 4.3

shows the differences in turbulent diffusivities calculated with these two combined assumptions.

All data are plotted as a function of the turbulent Froude number. Figure 4.3a shows the magni-

tudes of the diffusivity ratio while Figure 4.3b shows the values normalized by κ̂ρ as also used

in Figure 4.1b and Figure 4.2b. The turbulent diffusivity is over-predicted in flows dominated by

buoyancy effects (low Frt) by up to one order of magnitude and under-predicted by almost two

orders of magnitude for flows with low stratification when Γc and ϵLE/Th are both used. These re-

sults show that while these assumptions may be acceptable for flow regimes with Frt ∼ O(1), for

flow regimes that are characterized by a turbulent Froude number outside this narrow intermediate

range, the combination of these two assumptions will lead to predictions of turbulent diffusivities

that are much different than the actual flow diffusivities.

As could be predicted based on observing the data trends in Figure 4.1 and Figure 4.2 the com-

bination of Γc and ϵ1D results in an estimate of turbulent diffusivity for flows with Frt < O(1) that

is not significantly different from the true magnitude. under-prediction of the turbulent diffusivity

created by Γc is mostly offset by the over-prediction created by using ϵ1D in strongly stratified

flow regimes. Above Frt > O(1) the assumption of Γc dominates the estimates creating an over-

prediction that reaches up to two orders of magnitude. The nearly constant turbulent diffusivity

shown in Figure 4.3b for the more strongly stratified flows is simply a result of combining the two

different assumptions and is not a physical characteristic of the flow. We have used data and anal-

ysis driven by the physics of the controlling equations applied in the DNS to show that while these

common assumptions may be acceptable when using microstructure measurements (∼ 2− 3 times

difference) it has been traditionally made for the wrong reasons. Such a systematic analysis that

breaks down and analyzes the impact of each of these parameters has not been shown previously.
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Figure 4.3: Plots illustrating the combined impact of a constant mixing coefficient and inferred rates of

dissipation of turbulent kinetic energy as a function of turbulent Froude number, Frt. (a) Diffusivity ratios

calculated using (i) isotropic assumption in conjunction with a constant Γc = 0.2; (ii) inferred dissipation

rates from Ellison scale in conjunction with a constant Γc = 0.2; and (iii) true diffusivity ratio from DNS.

(b) Diffusivity ratios shown in (a) normalized by κ̂ρ. All data is colored by the Buoyancy Reynolds number,

ReB .

4.4.4 Implications for improved estimates of ocean mixing

In the light of these issues, the question then is how to move forward? Here we briefly discuss

how best to leverage these insights to improve estimates of ocean mixing even when only lim-

ited physical field measurements are available. Use of scaling insights developed from physically

based arguments in combination with careful consideration of the assumptions made will directly

incorporate consideration of the relevant flow physics and limit unnecessary approximations. The

turbulent Froude number as used in this analysis is a useful parameter for indicating the local state

of turbulence (GV19) and as a measure of the competition between the turbulence and buoyancy

time scales in stratified flows (Mater et al., 2013). While the parameter is useful for flow classifi-

cation and theoretical analysis, it is difficult to calculate from field measurements but it turns out

that it does not need to be explicitly determined for improved estimates. For example, GV19 show

that the Frt can estimated using the ratio between LE and LO (see their Figure 3). Analysis in

Section 4.4.1 clearly corroborates the assertion that the irreversible mixing coefficient can not be

assumed constant. Determination of the best estimate of the irreversible mixing coefficient can be

determined using the scaling analysis (e.g. such as those presented in GV19 using the ratio of LO
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and LE). In particular, the scaling results presented in Figure 4 of GV19 allows for determination

of a value of Γ that is best for the measured flow conditions given a ratio of LE to LO. Analysis

in Section 4.4.2 clearly shows that an assumption of local isotropy for the estimation of the rate

of dissipation of kinetic energy dissipation using microstructure measurements may be reasonable.

Using ϵ1D only will bias turbulent diffusivity estimates by factor of 2-3 times as compared to mul-

tiple orders of magnitude if ϵLE/Th is used. This again underscores how the common assumption

of the equivalency between the Thorpe and Ozmidov scales to infer dissipation rates of turbulent

kinetic energy is fundamentally flawed.

4.5 Concluding Remarks

The analyses presented here provide a systematic evaluation of the most common assump-

tions used in applications of the Osborn model. DNS data of homogeneous stratified turbulence

have been used in manner that takes into direct consideration how the data from field measure-

ments are used. Use of a constant value for the irreversible mixing coefficient combined with

indirect inference of the kinetic energy dissipation rate from either the Thorpe (or Ellison) scale

results in significant error in the estimations of the turbulent diffusivity. When compared to values

calculated directly from the DNS data an assumption of local isotropy from microstructure mea-

surements combined with a determination of a irreversible mixing coefficient value from suitable

parameterizations should result in more accurate estimates of the turbulent diffusivity and hence a

more appropriate way to use the Osborn model.

4.6 Summary

The Osborn model is widely used for quantifying diapycnal diffusivity Kρ in oceanic flows.

There are two main simplifications that are routinely made when using this model. First, a constant

value of 0.2 is assumed for the mixing coefficient Γ. Second, the dissipation rates of turbulent ki-

netic energy ϵ are inferred using either the Thorpe (or Ellison) length scales or from microstructure

measurements using the isotropy assumption. Data from direct numerical simulations of homo-
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geneous stratified turbulence are used as a testbed to highlight impacts of these assumptions on

estimates of Kρ. A systematic analysis comparing inferred diffusivities to exact diffusivities as

function of the turbulent Froude number Frt show that the use of a constant Γ results in an under-

prediction of Kρ by up to a factor of 5 for strongly stratified conditions (low Frt) and an over-

prediction of Kρ by up to two orders of magnitude in weakly stratified conditions (high Frt). The

use of inferred dissipation rates ϵ derived from Thorpe/Ellison scales result in significant errors in

estimates of Kρ ranging from an over-prediction of one to two orders of magnitude in the low Frt

regime to an under-prediction of several orders of magnitude for high Frt. However, the use of the

isotropy assumption for estimating ϵ results in an over-prediction of Kρ by no more than a factor

of 2 for low Frt and converges on the exact Kρ for Frt ≥ 1. The implications of these findings

for improved estimates of ocean mixing rates are discussed.
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Chapter 5

Effect of Coriolis rotation on mixing efficiency4

5.1 Introduction

The amount of energy available for mixing at small scales has many important implications

for oceanic and atmospheric flows. Mixing in geophysical flow helps to maintain the meridional

overturning circulation and are used in estimations of the small scale fluxes that are used in mass

budgets, heat budgets and the mixing of nutrients (Munk & Wunsch, 1998). Parameterizations of

the eddy diffusivities of momentum (νt) and the scalar density (Kρ) are commonly used in large

scale models, but models can be sensitive to the accuracy of the parameterization (Garanaik &

Venayagamoorthy, 2018). In order to be as accurate as possible these model parameterizations

must account for all significant factors influencing mixing.

Density stratification is necessary for the existence of internal waves in the Earth’s ocean and

atmosphere but the degree of stratification has a direct impact on the amount of diapycnal mix-

ing (Aguilar & Sutherland, 2006). A large body of work has analyzed turbulence and mixing in

the presence of stratification (see Riley & Lindborg, 2013, Riley & Lelong, 2000 and references

therein). Another important factor in the analysis of geophysical flows is the impact of planetary

rotation. It is less clear what the impact this rotation has on small scale turbulent mixing, espe-

cially in a role that is coupled with stratification (Praud et al., 2006). The inclusion of rotation has

led to increased study of inertial gravity waves and what is classified as rotating stratified turbu-

lence (RST) (Pouquet et al., 2018; Rosenberg et al., 2017, 2016; Marino, Pouquet, & Rosenberg,

2015; Marino, Rosenberg, et al., 2015). An important question that has not been answered clearly

is whether or not the inclusion of rotation will impact the existing parameterizations for the ir-

4The research presented in this chapter has been submitted to the Journal Environmental Fluid Mechanics under the

title “Effect of rotation on mixing efficiency in homogeneous stratified turbulence using unforced direct numerical

simulations” by M. R. Klema, S. K. Venayagamoorthy, A. Pouquet, D. Rosenberg and R. Marino. This chapter is

written to reflect and acknowledge the contribution of the other authors.
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reversible mixing efficiency in unforced stably stratified flows that mostly do not account for the

rotation.

Direct numerical simulations (DNS) have been an important avenue for understanding strati-

fied turbulence both with and without the influence of rotation (de Bruyn Kops, 2019; Pouquet et

al., 2019, 2018; Rosenberg et al., 2017; Maffioli & Davidson, 2016; Rosenberg et al., 2016; Rorai

et al., 2015; Marino et al., 2014, 2013; Brethouwer, Billant, Lindberg, & Chomaz, 2007; Waite

& Bartello, 2006; Riley & de Bruyn Kops, 2003). Recent work using DNS has led to both some

insights into and actual parameterizations of small-scale mixing (Garanaik & Venayagamoorthy,

2019; Maffioli et al., 2016a; Mater & Venayagamoorthy, 2014b; Lindborg & Brethouwer, 2008)

by trying to answer questions about turbulent mixing in geophysical flows and demonstrating how

DNS can be utilized in the broader study of geophysical flows. Some analysis of DNS with RST

assert that there is an observable effect of rotation on the magnitude of potential energy available

for mixing (Pouquet et al., 2018). Analysis of RST DNS has also shown that rotation and strat-

ification are complementary in determining the relative strength of the direct and inverse energy

cascades. Here, we use DNS simulations with rotation to help gain insight into irreversible (di-

apycnal) mixing and whether its inclusion in larger scale parameterizations of diapycnal mixing in

stably stratified geophysical flows is needed for robust models.

Information and insights derived from numerical simulations is most useful when analyzed

with thought to the complexity of laboratory and field observations. Applicability of any the-

oretical or numerical analysis is limited when it cannot be realistically tested or measured in a

physical setting. However, making direct measurements of turbulent mixing in the field (in par-

ticular) is limited due to instrumentation capability and complications from internal wave motions

that contaminate flux measurements (Gregg et al., 2018; Venayagamoorthy & Koseff, 2016). In

oceanography, this has necessitated the use of indirect techniques to infer momentum and heat

fluxes. As an example, the diapycnal diffusivity in a homogeneous and stationary flow can be

defined as (Osborn, 1980):

63



κρt = Γ
ϵ

N2
, (5.1)

where Γ = ϵP/ϵ is an irreversible mixing coefficient, ϵP is the rate of potential energy dissipation,

ϵ is the rate of kinetic energy dissipation and N =
√

(−g/ρ)(d⟨ρ⟩/dz) is the buoyancy frequency.

All of the parameters in Eq. 5.1 are quantities that are readily available from a DNS. Determination

of N and ϵ in the field requires simplifying assumptions such as local isotropy and choices on how

the background density stratification is computed (Garanaik & Venayagamoorthy, 2018; Arthur

et al., 2017), but it can generally be assumed that both N and ϵ are measurable in the physical

setting. Γ has been assumed to have a constant canonical value of 0.2 (Osborn, 1980), but its

constancy has been reviewed and challenged repeatedly (Gregg et al., 2018). Based on arguments

in Venayagamoorthy & Koseff (2016), the irreversible definition of the mixing coefficient will be

used exclusively herein.

Parameterizations for the mixing efficiency in geophysical flows are commonly based on one

of three fundamental dimensionless parameters: the gradient Richardson number Ri (Venayag-

amoorthy & Koseff, 2016); the buoyancy Reynolds number ReB (Salehipour & Peltier, 2015; Shih

et al., 2005); and the turbulent Froude number Frt (Garanaik & Venayagamoorthy, 2019; Maffioli

et al., 2016a). Rotational effects have not been included explicitly in the majority of mixing param-

eterizations of geophysical flows. The ratio of the buoyancy frequency N to the Coriolis rotational

frequency f has been used to classify types of expected turbulent behavior and mixing and the

importance of this ratio on geostrophic lateral mixing has been stressed by various researchers in

RST (Lelong & Sundermeyer, 2005; Praud et al., 2006; Waite & Bartello, 2006; Kurien & Smith,

2014). N/f has been thought to dictate the behavior of flow development, as for example the

orientation of shear layers, but neither the Rossby number nor N/f control the amount of kinetic

and potential dissipation in stably stratified flows. The limited effects of rotation on turbulence

in stably stratified flows has been noted (e.g. see Galperin et al. (1989); Kantha et al. (1989)),

where effects of rotation impact regimes with convective or unstable flow dynamics. Despite this

fact, scaling arguments using N/f and Rot see continuous application and use in the literature in
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conjunction with parameterizations of turbulence and turbulent mixing. Establishing a clear pic-

ture of whether irreversible mixing is impacted by rotation in stably stratified geophysical flows,

drives this study. In what follows, a theoretical discussion on the key non-dimensional numbers is

presented in section 5.2. Details of the numerical simulations and data are presented in section 5.3

followed by the results in section 5.4 and conclusions in section 5.5, respectively.

5.2 Theoretical Analysis

The amount of irreversible mixing in turbulent flows is a result of the dissipation of turbulent

kinetic energy. The diapycnal (irreversible) mixing coefficient Γ is an instantaneous measure of

how much of the turbulent kinetic energy is converted to background potential energy through

dissipation (Garanaik & Venayagamoorthy, 2019). The buoyancy Reynolds number ReB (also

referred to as the Gibson number) is one of the most commonly used parameters for evaluating

turbulent mixing since it can be calculated from field measurements (under certain assumptions

such as isotropy at small scales) made in the atmosphere or ocean. ReB is defined as

ReB =
ϵ

νN2
, (5.2)

where ν is the kinematic viscosity. However, despite its popularity, it has been noted that ReB may

be useful but insufficient as a single parameter to characterize mixing (Gregg et al., 2018; Mater

& Venayagamoorthy, 2014a). Definitional ambiguity comes from the possibility to achieve the

same value for the buoyancy Reynolds through various combinations of its constituent parameters

(Mater & Venayagamoorthy, 2014b). Note that the diapycnal diffusivity can be recast as a function

of ReB in non-dimensional form as

κρt

ν
= ΓReB. (5.3)

Eq. 5.3 implies that ReB needs to be sufficiently large for smaller-scale turbulence to exist

(Riley & Lindborg, 2013). It also shows how using ReB to parameterize Γ might be ill-posed given
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that both of these quantities together define the diapycnal diffusivity. Given that the molecular

diffusivities of scalars (salt and temperature) can vary by several orders of magnitude, it might be

more appropriate to use a different dimensionless parameter for analyzing the degree of turbulent

mixing of scalars as follows:

κ̂ =
κρt

κ
=

ϵP
N2κ

= ΓReBPr. (5.4)

where κ is the molecular diffusivities of scalars in a given fluid, Pr is the molecular Prandtl (or

Schmidt) number. Values for this diffusivity ratio parameter κ̂ are readily computable from the

DNS results, but harder to obtain in the field.

The turbulent Froude number gives a ratio of buoyancy effects to turbulent effects:

Frt =
ϵ

Nk
≡

1

NTL

, (5.5)

where k is the turbulent kinetic energy. Frt may be the dimensionless parameter best suited to

parameterize mixing in stratified turbulence (Shih et al., 2005; Ivey & Imberger, 1991). Difficulty

in computing this number from measured quantities has limited its application in the field setting

but it has seen widespread use in numerical simulation analysis (Pouquet et al., 2018; Maffioli &

Davidson, 2016). Recent work has shown a link between the mixing efficiency and Frt (Garanaik

& Venayagamoorthy, 2019; Pouquet et al., 2018; Feraco et al., 2018). The work by Garanaik

& Venayagamoorthy (2019) is specifically designed to show how the link between Γ and Frt

can be used by researchers analyzing data measured in the field. The degree of stratification and

turbulence are both contained in the definition of the turbulent Froude number and represent the two

processes having the greatest influence on the evolution of the flow (Maffioli & Davidson, 2016;

Lindborg & Brethouwer, 2008). In particular the definition of the turbulent time scale (TL = k/ϵ) is

contained within this parameter, which is a measure of the decay time of turbulent kinetic energy

(Venayagamoorthy & Stretch, 2010). In this light, Frt can also be viewed as the competition

between the buoyancy time scale ∼ N−1 and the turbulent time scale TL.
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Analogous to the turbulent Froude number, the turbulent Rossby number defines the relative

strength of rotational to turbulent effects, again, also in terms of time-scales:

Rot =
ϵ

fk
=

1

fTL

. (5.6)

Using Frt and Rot as the two key parameters for the presentation of simulation results allows

for evaluation of the relative impact of varied levels of stratification and rotation on the behavior

of irreversible mixing in simulated geophysical flows. We will use ReB and κ̂ as the two key

diagnostic parameters to both evaluate and ensure that small scale irreversible mixing does indeed

exist in the data analyzed.

5.3 Simulations and Data

Direct numerical simulations of the non-dimensional Boussinesq equations with rotation, Eqs

5.7 and 5.8, were made using the Geophysical High-Order Suite for Turbulence (GHOST) code

(see Mininni et al. (2011) for details). GHOST is a pseudo-spectral computational fluid framework

that is parallelized using a hybrid MPI/OpenMP/CUDA scheme and has demonstrated excellent

scalability and performance to over 130,000 computational nodes (Rosenberg et al., 2015). A

new version of the code includes the possibility of non-cubic boxes and of non-periodic boundary

conditions in one direction (Sujovolsky et al., 2018; Fontana et al., 2020).

∂tu− ν∆u+Nθẑ +∇p− fu× ẑ = −u · ∇u (5.7)

∂tθ − κ∆θ −Nw = −u · ∇θ (5.8)

All simulations were made using 10243 grid points in a triply periodic box. Simulations 1-

10 in Table 5.1 all have velocity initialized at large scales with a superposition of Taylor-Green

vortices, as has been done for stratified flows in other studies (Sujovolsky et al., 2018; Hebert & de

Bruyn Kops, 2006). Initialization with Taylor-Green vortices primes the development of rotational

flow structures within a simulation, rather then having rotational structures forced to develop from
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Figure 5.1: Vertical plane visualization of three simulations using the scalar field in the center (y = π) of

the periodic box at or near the peak of dissipation rate of the turbulent kinetic energy. All three simulations

have the same rotational frequency (f = 0.04) but the stratification increases from left-to-right, N = 0.2,

N = 1.6 and N = 5.5 respectively. The corresponding turbulent Froude number also varies by an order of

magnitude between the simulations as a result: Frt = 2.035, Frt = 0.18 and Frt = 0.02. The red-to-blue

colors represents the continual change from lighter to heavier fluid.

random initial conditions. The impact of rotation on the irreversible mixing coefficient should be

most apparent in these ten simulation if it is influencing scalings via Frt and Rot.

Simulations 11-30 are initialized with randomized phases in Fourier space. These twenty sim-

ulations are a subset of the randomly initialized runs previously presented and analyzed (Pouquet

et al., 2018; Rosenberg et al., 2016). There are no initial scalar fluctuations with either initializa-

tion. This setup allows for the buoyancy fluctuations to develop from the internal dynamics of the

Boussinesq equations (Rosenberg et al., 2016). Inputs to all simulations were varied by specifica-

tion of the buoyancy frequency N , Coriolis rotation f , kinematic viscosity ν, molecular diffusivity

κ (always maintaining a Prandtl number, Pr = ν/κ, equal to 1) and the evolutionary time step.

No mean shear or other forcing was imposed in the simulations; hence, the energy decays over

the course of a simulation. A total of thirty DNS runs using the GHOST code are presented and

evaluated to study the effect of rotation on irreversible mixing. Table 5.1 gives the details of all

simulations in this analysis. Fig 5.1 shows a two-dimensional snapshot of three simulations at

or near the peak of dissipation rate of turbulent kinetic energy in the vertical plane at the center

(y = π) of the periodic box. This snapshot of the vertical cross-section show the instabilities

of the flow using the scalar field for runs 14, 18 and 22. All three of these simulations have the
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Table 5.1: Details of the 30 simulations, where the Froude, Rossby and buoyancy Reynolds numbers are

calculated at the peak of dissipation rate of turbulent kinetic energy. The initial Reynolds number is given by

Re0 = U0L0/ν where the initial characteristic length and velocity scales are given by L0 = 1 and U0 = 1
respectively. [1] denotes a data subset also analyzed in Pouquet et al. (2018), with reference identification

ID.

Run N(s−1) f(s−1) N/f ν(m2s−1) Frt Rot ReB Re0 JFM ID

1 0.7 0.13 5 4.50E−4 0.78 3.87 791 2222 -

2 5.0 1.00 5 3.00E−4 0.06 0.31 10 3333 -

3 2.7 0.38 7 2.50E−4 0.13 0.91 59 4000 -

4 0.4 0.02 20 1.00E−4 1.54 30.75 12740 10000 -

5 0.5 0.40 1.25 1.50E−4 1.22 1.53 5004 6667 -

6 1.0 0.80 1.25 1.75E−4 0.49 0.62 894 5714 -

7 2.0 1.60 1.25 1.25E − 4 0.20 0.25 254 8000 -

8 1.0 1.00 1 1.50E−4 0.50 0.50 1057 6667 -

9 1.0 0.40 2.5 1.50E−4 0.60 1.50 1279 6667 -

10 2.5 0.25 10 1.25E−4 0.27 2.56 263 8000 -

111 1.0 0.01 106 5.50E−4 0.28 30.03 110 1818 JFM54

121 1.9 0.01 199 5.50E−4 0.11 22.39 27 1818 JFM37

131 0.1 0.04 2.5 2.70E−4 4.25 10.62 48886 3704 JFM61

141 0.2 0.04 5 2.70E−4 2.035 10.18 10851 3704 JFM60

151 0.4 0.04 10 1.54E−4 1.034 10.34 4035 6494 JFM59

161 0.8 0.04 20 1.54E−4 0.473 9.46 893 6494 JFM56

171 1.2 0.04 30 1.50E−4 0.29 8.56 384 6667 JFM53

181 1.6 0.04 40 1.50E−4 0.18 7.11 194 6667 JFM51

191 2.0 0.04 50 1.50E−4 0.13 6.30 110 6667 JFM49

201 2.4 0.04 60 1.50E−4 0.09 5.36 69 6667 JFM46

211 3.8 0.04 94 1.50E−4 0.04 3.43 20 6667 JFM39

221 5.5 0.04 138 1.50E−4 0.02 2.11 6 6667 JFM31

231 3.8 0.05 69 1.00E−4 0.04 2.57 30 10000 JFM41

241 2.0 0.04 25 1.50E−4 0.13 3.13 109 6667 JFM48

251 4.0 0.08 50 1.50E−4 0.03 1.60 16 6667 JFM35

261 0.7 0.27 2.6 2.10E−4 0.53 1.33 817 4762 JFM57

271 1.3 0.54 2.5 2.10E−4 0.24 0.58 200 4762 JFM52

281 2.7 0.54 4.9 2.10E−4 0.07 0.33 34 4762 JFM43

291 3.8 0.75 5.0 1.50E−4 0.03 0.16 17 4762 JFM33

301 2.7 1.07 2.5 2.10E−4 0.06 0.14 29 4762 JFM42

same imposed rotation (f = 0.04) but the stratification increases in the simulations presented from

left-to-right. It is clear from these visualizations that the vertical motions decrease with increasing

stratification.
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5.4 Results

5.4.1 Energy and Dissipation

Influences of rotation are commonly visible in geophysical flows at the energy containing scales

and these scales are thus influenced by rotation. Examples of the evolution of simulation inte-

grated energy and dissipation rate are shown in Fig 5.2. Fig 5.2a shows this evolution of run 14

(dashed lines), run 18 (dash-dot lines) and run 22 (dotted lines), respectively. Dissipation rates

from these simulations were indirectly calculated using simulation enstrophy, see (Pouquet et al.,

2018; Rosenberg et al., 2016; Mininni et al., 2011) for details. These are the same simulations visu-

alized in Fig 5.1. As the stratification increases there is a visible increase in the oscillatory transfer

of energy between the kinetic (green) and potential (blue) modes. It is also clear that increases

in the stratification lowers the turbulent dissipation rate (magenta). Fig 5.2b shows simulations

runs 21, 25 and 29 where the buoyancy frequency of the simulations are similar (N = 3.8 − 4.0)

between the runs and the value for f is varied. Unlike variations of N , variations of f do not

significantly influence the behavior of energy or dissipation rate in the simulations. These results

are consistent with the results of simulation runs 9, 6 and 8 (not shown here) where N = 1 in

all three simulations but rotation of the runs is f = 0.4, f = 0.8 and f = 1 respectively. It is

apparent from these simple diagnostics that f does not appear to have a noticeable influence on

the energetics (especially on the dissipation rates) in stably stratified flows. Clearly the magnitude

of the rotational parameter is an order of magnitude, or less, than the buoyancy parameter for the

runs in Fig 5.2b. This likely limits the influence of f as compared to N on the flow. The relative

magnitudes of these parameters in the simulations was chosen in order to maintain their relevance

to N/f values seen in geophysical flows and will be explained in more detail in the following

section.

5.4.2 Parametric Space

Fig 5.3 plots a portion of time series data from all 30 of the runs analyzed in this study as dis-

crete values. Data plotted for each run shows parameter values at 12 different times starting at the
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Figure 5.2: Temporal simulation evolution of volume integrated kinetic energy k (green), potential energy

(blue), and the kinetic energy dissipation rate ϵ (magenta) for runs (a) at a constant rotation f = 0.04 and

(b) at approximately constant stratification, N = 3.8− 4.0 (see Table 5.1).

time of the peak of the dissipation rate of turbulent kinetic energy. These 12 data points are equally

time-spaced values over this interval with the intermediate between each point simply removed for

visualization. These sub-sets of the data are presented in a Frt-Rot parametric framework. The

runs can be easily distinguished. They all evolve from a higher to a lower value of ReB, because

of self-similar energy dissipation (see Rorai et al. (2015) for the purely stratified case). Any given

simulation, as expected, follows the lines of constant N/f . Also, the magnitudes of Frt and Rot

evolve over the course of the simulations due to turbulent dissipation. As the magnitudes of Rot

and Frt decrease, the increase in stratification will limit the amount of turbulence and mixing,

especially vertically (see Fig 5.1).

Work presented by (Mater & Venayagamoorthy, 2014b) uses a multiple parameter framework

evaluates the dominant flow regimes in stratified shear flows. This new parametric framework

uses this same idea of using a multi-parameter framework but to define dominant flow regimes

that include rotation but with an absence of imposed shear. Fig 5.3 clearly shows how the relative

magnitudes of rotation and stratification are coupled in the geophysical context along lines of

constant N/f . All flows in this parametric space evolve, as noted above, where values of N/f ∼

100 are commonly seen in the atmosphere and N/f ≤ 10 is appropriate for the oceanic setting.

The parametric space is divided into four different regions using O(1) magnitudes of Frt and Rot

as delineations and the nomenclature of Aluie & Kurien (2011) for classification. In region 1

71



the magnitudes of the rotation and stratification are small and of comparable magnitude so this

quadrant of the graph is denoted by rs. While there is an influence of stratification and rotation in

this region the flow behavior likely approximates the behavior of classical turbulence since their

effects are negligible (i.e. high Frt and high Rot). In region 2 the stratification is approximately an

order of magnitude greater than the rotation and is denoted rS (low Ftt, high Rot). Rotation and

stratification are both significant and have similar magnitudes in region 3, RS. Region 4 denotes an

area in the parametric framework where the rotation is a least an order of magnitude greater than the

stratification, Rs. The majority of geophysical flows are classified as falling along one of the N/f

lines denoted therefore none of the simulations fall into region 4 where N/f < 1. Flows that fall

into this classification region may be relevant in astrophysics, for example for stars that are rotating

rapidly, but are not seen except in specific isolated cases in the geophysical setting. The magnitude

of rotation in these simulations (Rot ≥ 0.1) would be considered weakly rotating except in certain

specific contexts (i.e. Ecke & Niemela (2014)). Increasing the amount of rotation to reach an order

of magnitude where Rot ≤ 0.01 and maintaining N/f relevant to the geophysical setting would

also necessitate an increase in N , which would lead to simulations results with Reynolds numbers

too low to be considered turbulent.

Data in Fig 5.3a is colored by the buoyancy Reynolds number in order to illustrate one of the

common measures of turbulent mixing. In the plots, values for the buoyancy Reynolds number are

limited to O(1) or greater, which eliminates inclusion of viscosity affected (low Reynolds number)

flows. From these results, it can be easily seen that the ratio of N/f is not a useful diagnostic tool

for explicitly determining levels of turbulent mixing. ReB values vary by up to three orders of

magnitude on multiple N/f lines. Additionally, the turbulent Froude number can also be observed

to take almost any value in the rS and RS regimes for any given N/f . These observations point to

the fact that while both N and f influence the flow, it is clear from this framework that their ratio

does not provide a diagnostic signature for the levels of irreversible mixing in RST in the absence

of forcing.
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Figure 5.3: Time series plots of the runs in a parametric framework using Frt and Rot. Data is colored by

ReB (a) and by the diffusivity ratio κ̂ (b), see Eqs. 5.2 and 5.4, respectively.

Fig 5.3b shows the same data as in Fig 5.3a, but the data is now colored by the diffusivity ratio

κ̂ whose values are also constrained to O(1) or greater to exclude data dominated by molecular

mixing effects. DNS results that do not report a value for κ̂ that is at least O(1) have mixing mostly,

if not exclusively, due to molecular diffusion. It has been shown that the background mixing in

the ocean is of O(10)(Munk & Wunsch, 1998) and these simulations have been designed to be

comparable to physically realistic flows. DNS data where κ̂ < O(1) may introduce non-physical

data where the molecular diffusion is the same order of magnitude, or larger, than the turbulent

diffusion. Run 22 is an example of a run that is near this threshold. Overall, the same observations

and conclusions can be made about the ambiguity of N/f as a diagnostic tool. Some of the

results in this plot show values for κ̂ that would suggest limited amounts of mixing when compared

to the data evaluated using ReB that suggest more significant levels of mixing. This illustrates

the importance of using multiple parameters and criteria for the evaluation of mixing in DNS

data. This theoretical framework (Frt, Rot) provides a useful diagnostic for classifying RST DNS

for geophysical flow regimes and could also be applied to measured data if parameterizations to
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determine Frt from measurable quantities are used as proposed by (Garanaik & Venayagamoorthy,

2019).

5.4.3 Irreversible Mixing

Fig 5.4 presents the parameterization of Γ as function of Frt for the RST runs plotted together

with the non-rotating DNS data presented in Garanaik & Venayagamoorthy (2019): sheared un-

stratified Shih et al. (2005), forced stratified (Maffioli et al., 2016a) and unforced stratified runs

(Garanaik & Venayagamoorthy, 2019).The remarkable feature is that the scaling relationship be-

tween Γ and Frt presented in (Garanaik & Venayagamoorthy, 2019) holds well despite the fact that

f does not appear evidently in Frt. An increase in the irreversible mixing efficiency for Frt ∼ 0.1

seen in some studies is not observed. While the presence of rotation may provide additional en-

ergy at scales comparable to and larger than the energy-containing scales in a stratified flow, it does

not appear to have any discernible effect on the scaling of the diapycnal (small-scale) irreversible

mixing coefficient. It can also be seen in Fig 5.4 that the distribution of ReB covers six orders

of magnitude and more importantly, ReB can vary by over an order of magnitude for any given

value of Γ, reinforcing previous research showing the ambiguity of ReB. As previously noted in

Garanaik & Venayagamoorthy (2019) it is clear that a unique scaling of Γ with ReB is not possible.

These results extend that observation to data that includes the influence of rotation.

5.5 Concluding Remarks

This paper analyzes scaling properties of homogeneous, decaying and rotating stratified tur-

bulent mixing through the irreversible mixing parameter Γ. A new parametric framework using

Frt and Rot is used to show how the relative magnitudes of rotation and stratification present in

geophysical flow regimes of the Earth’s ocean and atmosphere affect flow statistics. DNS data is

plotted within the framework using ReB and κ̂ as diagnostics of the degree of irreversible turbulent

mixing. The diffusivity ratio κ̂ in the simulations are realistic to physical values and is suggested as

a more robust parameter than ReB for evaluating the degree of mixing in DNS. Variations in ReB
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Figure 5.4: Irreversible mixing coefficient Γ as a function of turbulent Froude number Frt. The color bar at

right indicates values of ReB . Diamond: decaying RST DNS; star: decaying stratified turbulence (Garanaik

& Venayagamoorthy, 2019); circle: forced DNS (Maffioli et al., 2016a); square: sheared DNS data (Shih et

al., 2005)

and κ̂ for any given value of N/f clearly show that N/f does not have any unique relationship to

the amount of diapycnal mixing in stable decaying RST. Significant variations in the magnitude

of both Frt and Rot for any given N/f are also observed, supporting this conclusion. RST data

from this study plotted with non-rotating but stratified DNS data show remarkable agreement in the

scaling relationship between the irreversible mixing coefficient and the turbulent Froude number.

Rotation has been clearly observed to influence the large scale flow structures that develop

in some geophysical flows and simulations. The inclusion of rotation may also influence kinetic

and potential dissipation rates individually. However, rotation does not appear to have a direct

influence on their ratio, the irreversible mixing efficiency parameter in the absence of forcing (at

the intermediate scale). Additionally, it is clear from this analysis that existing parameterizations

between the irreversible mixing coefficient Γ and the turbulent Froude number Frt are applicable

to unforced RST.
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5.6 Summary

Diapycnal (irreversible) mixing is analyzed using thirty high resolution direct numerical sim-

ulations of homogeneous rotating stratified turbulence (RST) in the absence of imposed shear or

forcing. The influence of varied rotation and stratification on the energetics (in particular the

dissipation rates of kinetic and potential energies) is presented. Data is also presented in a new

parametric framework using the turbulent Froude and Rossby numbers Frt = ϵ/Nk, Rot = ϵ/fk,

where k is the turbulent kinetic energy, ϵ its rate of dissipation, N the buoyancy frequency and

f the Coriolis parameter. This framework is used to illustrate relative magnitudes of the stratifi-

cation and rotation in geophysical flows and provide a useful tool for explicating the relationship

between Frt and Rot. Results indicate that unforced rotation does not impact the magnitude of

the irreversible mixing coefficient (Γ = ϵP/ϵ) when compared to results without rotation, where

ϵP is the rate of potential energy dissipation. Moreover, it is shown that the recent scaling laws

for mixing efficiency in stably stratified turbulence in the absence of rotation, as exemplified in

Garanaik & Venayagamoorthy (J. Fluid Mech. 867, 2019, pp. 323-333), are applicable as well for

homogeneous and decaying RST. Results also highlight the ambiguity of the ratio N/f as a control

parameter for the classification of small-scale RST, and thus for evaluating diapycnal mixing.
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Chapter 6

Numerical simulations of internal wave interactions

with topographic ridges5

6.1 Introduction

In oceanography the study of the interactions of internal waves with topography is an area of

research that sees continual attention. Thought to be one of the main sources of sustained ocean

mixing, understanding the process and flow structures that develops as a result of this interaction

remains important (Munk & Wunsch, 1998). Surface tides and wind create sources of mechanical

energy that can convert to internal waves (St. Laurent & Garrett, 2002; Wunsch & Ferrari, 2004;

Garrett & Kunze, 2007). Field measurements have confirmed the significant amounts of turbulent

mixing occurs as a result of the internal wave field interacting with oceanic ridges and seamounts

(Munk & Wunsch, 1998; Kunze & Smith, 2004; Polzin, 2009; Ledwell et al., 2011). The dynamics

resulting from this interaction converts energy from the internal wave field and may be the main

source available for vertical mixing of the water column, resulting in flow gradients that drive

global oceanic circulation. Understanding of these processes has been bolstered by an increasing

knowledge of baroclinic tide generation (Althaus et al., 2003; Nash et al., 2004; Carter et al., 2005;

Garrett & Kunze, 2007) where low first-mode internal waves allow for propagation of energy

far from the source (Ray & Mitchum, 1996; Alford et al., 2007) as well theoretical modeling

(Bell, 1975; Balmforth et al., 2002; Llewellyn Smith & Young, 2002; St. Laurent & Garrett, 2002;

Khatiwala, 2003).

Non-linear internal waves (NLIWs) have been observed and measured near topographic fea-

tures (Scotti & Pineda, 2004; Carter et al., 2005; Klymak et al., 2006). Internal waves can be

5The research presented in this chapter is under preparation to be submitted to the Journal Journal of Fluid Mechanics

under the title “Numerical simulations of internal wave interactions with topographic ridges" by M. R. Klema and S.

K. Venayagamoorthy. This chapter is written to reflect and acknowledge the contribution of the other author.
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generated from wave-wave interactions (Nikurashin & Legg, 2011), lee-wave release resulting

from a changing internal tide (Gayen & Sarkar, 2011) and from the interaction of these first-mode

internal tides with topography (Klymak et al., 2006; Levine & Boyd, 2006). Despite having obser-

vations and measurement of these features questions remain about the development, evolution and

fate of internal waves due to the difficulty of field measurement and making direct observations

(Vlasenko & Hutter, 2002). Furthering our understanding of non-linear internal wave dynamics

has implications for our understanding of the processes that drive energy transport and mixing in

oceanography.

Theory describing NLIWs is almost entirely derived from weakly nonlinear wave formulations

based on the Korteweg-de Vries equation and asymptotic expansions (Thorpe & Haines, 1987;

Dauxois et al., 2004). Large amplitude turbulent overturns produced by internal wave interaction

with topography are not well represented by this approach. Breaking non-linear internal waves

occur when topography is encountered that has a slope that matches the internal wave group veloc-

ity as described by Phillips (1977). In addition to field observations, numerous laboratory studies

have been performed to observe and measure the interaction of an internal wave with topography

(Cacchione & Wunsch, 1974; Ivey & Nokes, 1989; Ivey et al., 2000). This process has also been

studied using computational fluid dynamics (CFD), direct numerical simulations that resolve the

turbulent processes (Slinn & Riley, 1998; Javam et al., 1999; Venayagamoorthy, 2006) and large

field scale simulations (Klymak et al., 2012; Legg, 2014; Jalali & Sarkar, 2017) that focus on the

bulk flow behavior.

Overturning that can result from such interactions in stratified flows lead directly to mixing and

the dissipation of energy. Studies using CFD to study the internal wave-topography interactions are

increasingly prevalent. Venayagamoorthy (2006) considered the generation of upslope propagating

bores leading directly to dissipation and mixing for a variety of wave forcing and slope steepness.

Legg & Adcroft (2003) completed Reynolds-averaged Navier-Stokes (RANS) simulation of field

scale topography with slopes of various monotonic shapes. Study using numerical modeling of

this interaction has be completed for subcritical and critical slope cases (Legg, 2014) as well as
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for critical and supercritical cases (Klymak et al., 2012; Hall et al., 2013). The majority of the

numerical simulations studying this interaction process have been completed at the field scale, a

scale that often does not directly produce the turbulent quantities or resolve the structure of the

flow.

This research presents the results of two-dimensional numerical simulations of the interaction

of a first-mode internal wave field with a topographic ridge meant to emulate oceanic ridges found

around the globe and are recognized hot-spots for turbulent mixing (Munk & Wunsch, 1998). The

emphasis is to investigate the partition and flux of energy from internal wave interaction with a

series of topographic ridges with varying height and slope steepness. Additionally these simula-

tions are completed at an intermediate simulations scale that allow for some flow structures that

develop as a result of the interaction to be resolved but at a much larger scale than they have been

simulated. This analysis aims to provide a needed bridge between the highly resolved direct numer-

ical simulations (DNS) of flows at the laboratory scale and the Reynolds-averaged Navier-Stokes

(RANS) simulations generally used for simulation of internal waves at the field scale. The numer-

ical method and simulations setup is discussed in Sec. 6.2, the energetics of the topography-wave

interaction in Sec. 6.3 and the conclusions in Sec. 6.4.

6.2 Formulation and Numerical Methods

The Navier-Stokes equations with the Boussinesq approximation and a constant kinematic vis-

cosity ν are given by

∂u

∂t
+ u · ∇u = −

1

ρ0
∇p+ ν∇2u−

g

ρ0
ρk, (6.1)

where u = (u, v, w) is the three dimensional velocity field, ρ0 is a reference density, p is the

pressure, g is gravitational acceleration and k is the unit normal vector in the vertical direction.

Solutions to Eq. (6.1) are subject to the continuity constraint given by Eq. (6.2),
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∇ · u = 0. (6.2)

In stratified flow the density field is coupled to the flow field and therefore Eqs. (6.1) and Eq. (6.3),

the scalar (density) transport equation, must be solved simultaneously

∂ρ

∂t
+∇ · (ρu) = κ∇2ρ, (6.3)

where κ is the thermal diffusivity (constant). Equations (6.1), (6.2) and (6.3) are computed using

Massachusetts Institute of Technology’s General Circulation Model (MITgcm) code within the

two-dimensional (x, z) domain depicted in Figure 6.1. This CFD code has been extensively used

and validated for simulations of stratified geophysical flows (e.g. Legg & Adcroft, 2003; Klymak

et al., 2012; Legg, 2014; Musgrave et al., 2016). The depth of the domain is 10m and the length of

the domain 100m. This size domain was chosen in order to fill a gap between the laboratory scale,

O(10 m), and full field scale simulations, O(1000 m), most often completed. Domain resolution

of ∆x = ∆z = 0.05 m in the horizontal and vertical directions, respectively, result in a total of

nx × ny = 2800 × 200, or 560, 000 total grid points. This resolution, while not resolving all

turbulent structures, allows for realistic turbulent flow structures to develop.

Initial stratification for all simulations is defined using a linear background distribution ρb given

by

ρ(z, t = 0)

ρ0
− 1 =

ρb(z)

ρ0
= −

∆ρ

ρ0

(z

d

)

, (6.4)

where ∆ρ/ρ0 = 0.002 results in a buoyancy frequency N = 0.01 s−1. At the left boundary of the

computational domain simulations are forced with a first-mode internal wave given by
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u(0, z, t) = U0cos(mz)sin(ωt), (6.5)

where U0 is the velocity amplitude of forcing, m is the vertical wave number corresponding to a

mode-1 baroclinic wave with m = π/d, ω is the forcing frequency, and u is the velocity com-

ponent. An Orlanski radiative boundary condition is applied at the right hand boundary to allow

the propagation of the internal wave energy out of the domain. Free slip boundary conditions are

applied on both sides of the computational domain. On the bottom boundary a no-slip bound-

ary condition is applied. At the top of the domain a linearized free surface boundary condition

is applied that allows nonzero vertical motions (denoted η), which results in a contribution to the

pressure from the boundary displacement. A Prandtl number of Pr = 1 for all simulations is set

by prescribing a kinematic viscosity of ν = 10−5 m2 s−1 and a thermal diffusivity of κ = 10−5 m2

s−1. Setting these values for the kinematic viscosity and thermal diffusivity near to the accepted

magnitude allow for the large energy containing flow structures to resolve similar to a CFD large

eddy simulation (LES).

6.3 Energetics

Internal waves contain phase-locked downward and upward propagating wave beams that are

characterized by both vertical and horizontal wave numbers, m and k respectively, where the wave

modes propagate horizontally. When an internal wave encounters topography the upward and

downward beams decouple and the beam individually interact with the topography and change the

dynamics of the flow. The dynamic interaction of the internal waves and topography is impacted

by both the slope of the topography, γ and the slope of the wave beam, s, defined by

s = tanθ =
k

m
=

(
ω2 − f 2

N2 − ω2

)1/2

, (6.6)
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where θ is the angle of the internal wave characteristic, ω is the wave frequency, f is twice the sine

of the latitude Coriolis parameter and N is the buoyancy frequency. It is common to see bottom

slope define by the ratio of γ and s (Phillips, 1977). When the topographic slope is steeper than

the wave characteristic slope γ/s > 1 and the slope is classified as supercritical. Subcritical slopes

correspond to γ/s < 1 and γ/s = 1 define critical slopes. Critical slopes mean that the wave’s

angle of propagation matches the slope of the topography.

In a uniformly stratified fluid linear first-mode internal waves propagate horizontally at the

speed defined by

cph =
ω

k
=

d

π

(
N2 − ω2

)1/2
, (6.7)

where d is the fixed depth. Table 6.1 give the details of the simulations completed for the this

analysis, where different values of the topographic slope for different simulations allowed for

variation of γ/s from 0 to 1.5 while holding N , ω and s at fixed values. The range of subcritical-to-

supercritical slopes was achieved by variation of γ using the topographic ridge height, ht, resulting

in a change to the corresponding width, Wt. Velocity amplitudes is varied between 0.3 cm s−1

and 2.5 cm s−1 resulting in Froude numbers (Fr = U0/cph) between 0.1 and 0.84. This parameter

space represents a wide range of wave energy conditions and allows for assessment of various

conditions resulting from linear to highly non-linear internal waves interacting with topography. A

schematic of the computational domain and the relevant parameters associated with the simulation

domain are shown in Fig. 6.1.

6.3.1 Temperature/Density And Velocity Fields

Time series snapshots of internal wave propagation through the computational domain is shown

in Fig. 6.2. Three simulation cases are shown in this figure, Fr = 0.1, Fr = 0.5 and Fr = 0.84.

Values for the relative slope γ/s = 1 and topography-to-depth ratio ht/d are consistent for the

simulations depicted. Also for all three simulations the frequency of the incoming internal wave is
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Table 6.1: Details of the 40 simulations, including the parameter space covered.

Runs γ/s Fr = U0/cph U0T/(πLs) ht/d Comments
1-5 0 0.1-0.84 - - No-slope cases

6-8 0.25 0.1-0.84 0.03-0.27 0.5 Subcritical cases

9-11 0.5 0.1-0.84 0.06-0.52 0.5 Subcritical cases

12-16 1 0.1-0.84 0.12-1.03 0.5 Critical cases

17-19 1 0.25-0.84 0.62-2.06 0.25 Critical cases

20-23 1 0.5-0.84 0.24-0.67 0.75 Critical cases

24-26 1.25 0.1-0.84 0.29-2.43 0.25 Supercritical cases

27-29 1.25 0.1-0.84 0.15-1.21 0.5 Supercritical cases

30-32 1.25 0.1-0.84 0.1-0.81 0.75 Supercritical cases

33-35 1.5 0.1-0.84 0.33-2.78 0.25 Supercritical cases

36-38 1.5 0.1-0.84 0.17-1.39 0.5 Supercritical cases

39-40 1.5 0.5-0.84 0.56-1.39 0.75 Supercritical cases

Figure 6.1: Schematic of the computational domain for the simulations presented. Lines (I), (II) and (III) are

the transects where the energy flux was calculated. The height, ht, and width, Wt, of the topography varied

between the simulations dependent on the topography-to-depth ratio, ht/d and the slope-wave criticality,

γ/s.

83



ω = 0.0035 rad s−1 and the wave period is defined by T = 2π/ω = 1800 s. Forcing of the internal

wave is modified by imposing varied velocity amplitude of forcing U0 at the inlet of the domain.

Each of the three cases in Fig. 6.2 show six snapshots of internal wave developing and propagating

over the topographic ridge, all normalized by the wave period T . The domain depicted starts at

x = 60m, ends at the computational domain outlet x = 150m and is colored by the stratification,

depicted using the temperature anomaly.

With Fr = 0.1 the six panels in Fig. 6.2a show the propagation of an internal wave forced by

U0 = 0.003 m s−1. The dynamics of this simulation are dominated by linear oscillations of the

flow field as the internal wave propagates to the ridge. Some minimal magnitude displacement is

visible in the flow field on the upstream side of the ridge as well as above the peak in topography.

While some dissipation and mixing is occurring most of the energy is either being reflected off the

topography or transmitting past the topography.

Fig. 6.2b shows a simulation with Fr = 0.5 set by U0 = 0.015 m s−1. Presence of non-

linear dynamics are visible in the snapshots of this simulation with dense fluid from the base of the

stratified profile propagating up and over the ridge. These flow structures have been both simulated

(Venayagamoorthy, 2006; Venayagamoorthy & Fringer, 2007) as well as observed (Cacchione &

Wunsch, 1974) and are know as tidal bores, or solibores. These flow structures generate as a result

of the internal wave creating a vortex core that advects dense fluid from low in the water column

up onto a continental shelf or over the top of topography. In addition to the advection of dense fluid

by bores larger magnitude displacements of fluid are visible relative to the case with Fr = 0.1.

Displacements of fluid, both on the upstream side of the ridge as well as above the topographic

peak, increase in magnitude. The drawdown of fluid on the upstream side of the ridge as the

internal wave advects toward the ridge, as well as the propagation of the bore to the downstream

side of the ridge creates regions of unstable stratification where denser fluid overlies less dense

fluid. Visible in the snapshots are the overturning structures that result from unstable stratification

and the advection of the bolus.
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A velocity amplitude of forcing U0 = 0.025 m s−1 sets a simulation with Fr = 0.84, depicted

in Fig. 6.2c. It is clear from the series of snapshots that the dynamics become highly non-linear

and unstable with the increase in energy. Fluid displacements, the size of the bore transporting

mass over the ridge as well as the magnitude of overturns resulting from unstable stratification are

all of greater magnitude when compared to the other two cases. In the previous case the bore is

ejected off the ridge creating an overturn and mixing. In this case the mass/magnitude of the bore

is sufficiently large that it returns down the backside of the ridge. This downslope advection of the

bore generates an overturning structure that is in the opposite direction as the ejected bore depicted

in Fig. 6.2bv. This final time series clearly show the complex dynamics that result from high wave

energy interaction with topography in a stratified flow.

Fig. 6.3 shows the normalized zonal velocity u, normalized vertical velocity w and normalized

density profiles for the same three cases discussed for Fig. 6.2. Fig. 6.3a shows profiles for

Fr = 0.1, Fig. 6.3b from Fr = 0.5 and 6.3c for Fr = 0.84. The profiles are from simulation

iteration t/T = 6.27 in case (a) or t/T = 6.25 for cases (b) and (c). Each row of normalized

plots correspond to section I, section II and section III as depicted in Fig. 6.1, respectively. The

zonal velocity, vertical velocity and density profiles at profile section I in the first row for each of

the cases shows a similar distribution but normalization of the velocities by U0 results in varied

magnitudes due to the differences in the velocity amplitude of forcing.

For the lowest energy case the profiles at section II show a zonal velocity distribution with

increased values near the bed as the the wave approaches the ridge. The vertical velocity magnitude

at section II has also increased as would be expected with the zonal flow being redirected vertically

over the ridge. The density profile steepens near the bed likely due to the energy of the internal

wave pushing the dense fluid near the bottom of the computational domain against the base of the

ridge and creating a slight increase in the density near the bottom of the profile. Row 3 of panel (a)

shows the distributions at section III, the downstream side of the ridge. Both the zonal and vertical

velocity magnitudes have decreased. On the lee side of the ridge the zonal velocity should decrease
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Figure 6.2: Time series snapshots of the fifth internal wave building and passing over the topographic ridge.

Color spectrum denotes the temperature gradient of the simulations.γ/s = 1, ht/d = 0.5 for (a) Fr = 0.1,

(b) Fr = 0.5 and (c) Fr = 0.84. As the the Froude number increases the dynamics of the internal waves’

interaction with the topographic ridge becomes more complex with more overturning and transport of high

density fluid from near the bottom boundary up and over the ridge when Fr = 0.84.
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Figure 6.3: Normalized zonal velocity (u), vertical velocity (w) and density (ρ) profiles for t/T = 6.25.

Grouping (a) is for simulation where Fr = 0.1, grouping (b) Fr = 0.5 and (c) Fr = 0.84. γ/s = 1
and ht/d = 0.5 are consistent between all three simulations. Within each grouping row 1 denotes profile

from transect I , row 2 profile from transect II and row 3 from transect III on the downstream side of the

topographic ridge.
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as it is sheltered from the incoming internal wave and the vertical velocity switches direction as

some of the flow moves down the back side of the ridge.

Figure 6.3b shows the normalized velocity and density profiles at sections I, II and II for sim-

ulation with Fr = 0.5 at t/T = 6.25. At section II the normalized zonal velocity shows a velocity

distribution representative of the drawdown on the upstream side of the slope just before the ar-

rival of an internal wave. This distribution is corroborated by the corresponding image from Fig.

6.2b(vi) showing the fluid being drawn downslope during the simulation at this instant, resulting in

the negative vertical velocity. The density profile also show the impact of the drawdown of lighter

fluid from higher in the stratified fluid column.

In Fig. 6.3c many of the same trends are observable for the simulation defined by Fr = 0.84 at

t/T = 6.25. The increased velocity of this simulation results in a zonal velocity distribution that is

already propagating up the ridge at section II. It had not yet arrived at the ridge in the previous case

resulting in the drawdown profile discussed above. The density profiles from section II and section

III show the result of the increase in energy of this simulation with more varied distributions of

density due to turbulence and mixing. Regions of unstable stratification are also observed in the

profile at section II.

6.3.2 Energy Flux

The governing equation for the energetics is derived by taking the dot product of Eqs. (6.1)

with u and adding the resulting equation to the product of Eq. (6.3) and gz to obtain

∂

∂t
(ρ0q + ρgz) +∇ · f = −ρ0ϵk − 2κ

∂

∂z
(ρg), (6.8)

where q = u · u/2 is the kinetic energy per unit mass, ϵk = ν∂ui/∂xj ∂uj/∂xi is the viscous

dissipation rate of kinetic energy and the local energy flux is given by

f = u(ρ0q + p+ ρgz)− µ∇q − κ(ρgz), (6.9)
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with µ denoting the dynamic viscosity. The change in time-integrated energy flux is given by

∆Eτ + (Eτ )III − (Eτ )II = −ϵ+ ϕi, (6.10)

where ϵ is the integrated kinetic energy dissipation rate and ϕi is the time-integrated energy flux

through the upper and lower domain boundary surfaces (ϕi = −2κg
∫ t

0

∫ L2

0
(ρtop − ρbottom)dxdτ ,

see Winters et al. (1995)). Change of total energy (units of J m−1) within the control volume is

∆Eτ =

∫ L2

0

∫ 0

−d

[ρ0q + g(ρ− ρb)z] dzdx, (6.11)

and the time integrated energy flux (also units of J m−1) is given by

Eτ =

∫ t

0

FE(τ)dτ, (6.12)

where the depth-integrated energy flux (units of W m−1) is given by

FE =

∫ 0

−d

[

u(ρ0q + ρgz + p)− µ
∂q

∂x
− κ

∂

∂x
(ρgz)

]

dz. (6.13)

Assuming that at t = 0 the density field is given by the imposed background density field ρb and

that the contribution of the diffusive terms to the energy flux is negligible the change in total energy

can be computed using the simplified depth-integrated energy flux

FE =

∫ 0

−d

p′udz (6.14)
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where p′ = ρ0q+ρgz+p. The pressure term, p can be split into two terms denoting its hydrostatic

(pH) and non-hydrostatic (pNH) components gives p′ = ρ0q+ρgz+ pH + pNH . If the total density

is defined by ρ = ρ0 + ρb + ρ′ Eq. (6.13) can be simplified to become

FE = g

∫ 0

−d

u

∫ 0

z

ρ′dz′dz′′

︸ ︷︷ ︸

(a)

+ ρ0

∫ 0

−d

u

∫ 0

z

Dw

Dt
dz′dz′′

︸ ︷︷ ︸

(b)

+ ρ0

∫ 0

−d

uqdz′

︸ ︷︷ ︸

(c)

+

∫ 0

−d

uρ′gzdz′

︸ ︷︷ ︸

(d)

+

∫ 0

−d

uρbgzdz
′

︸ ︷︷ ︸

(e)

+ g

∫ 0

−d

u

∫ 0

z

ρbdz
′dz′′

︸ ︷︷ ︸

(f)

. (6.15)

where each term in Eq. (6.15) can be described as follows:

(a) Energy flux due to the rate of work done by the hydrostatic pressure fluctuations.

(b) Energy flux due to the rate of work done by the nonhydrostatic pressure.

(c) Energy flux due to the advection of kinetic energy.

(d) Energy flux from the advection of potential energy due to density fluctuations.

(e) Energy flux from the advection of potential energy due to the mean background density field.

(f) Energy flux from the rate of work done by the hydrostatic pressure due to the mean back-

ground density field.

Using each term above the energy flux contributions can be determined from the numerical simula-

tion data. As discussed by Venayagamoorthy & Fringer (2006) over 50% of the energy flux should

result from hydrostatic pressure anomaly while approximately 30% of the energy flux should be

contributed by the nonhydrostatic pressure term, the two largest contributors to the energy flux

budget. Figure 6.4 shows both the depth integrated flux (solid blue lines) as well as the cumu-

lative energy flux (dashed magenta lines) for each of the terms in Eq. 6.15 for simulation where
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Figure 6.4: Normalized depth integrated (blue solid line) and time integrated energy (magenta dashed line)

fluxes as a function of t/T at x = 105m for simulation with where Fr = 0.5, γ/s = 1, and ht/d = 0.5
showing each of the terms in depth integrated energy flux equation.

Fr = 0.5, γ/s = 1 and ht/d = 0.5. For this particular simulation the hydrostatic pressure anomaly

term accounts for 56%, the nonhydrostatic pressure term 34% of the energy flux budget. Terms

(c), (d), (e) and (f) in Eq. 6.15 contribute 4%, 1%, 5% and 0% respectively. Each energy flux term

plotted in Fig. 6.4 is normalized using a base estimate of the energy flux of the incoming internal

wave computed using linear wave theory (Kundu et al., 2008)

FL =
ρ0ωU

2
0

2k
d, (6.16)

where ρ0 is the reference density, ω is the forcing frequency, U0 is the velocity amplitude of forcing,

d is the full flow depth, m is the vertical wave number and k is the horizontal wave number obtained

from the dispersion relation for internal waves. This energy flux is the integral of the product of

the velocity and pressure perturbations. The evident contribution of the nonhydrostatic pressure
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work term show the impact of vertical inertia and instantaneous importance of the nonhydrostatic

pressure.

If the slope of the internal wave group velocity characteristic, defined by Eq. (6.6), an absence

of Coriolis rotation is assumed, it can be shown

FL

ρ0
=

1

2
U2
0 c1d

1

(1 + s2)1/2
, (6.17)

where c1 is the mode-1 baroclinic wave speed for a linear hydrostatic (ω << N ) internal wave,

and can be derived from Eq. (6.7) to be Nd/π. In non-dimensional form Eq. (6.17) becomes

FL

F0

=
Fr2h

(1 + s2)1/2
, (6.18)

where F0 =
1
2
ρ0c

3
1d is constant for all simulations and Frh = U0/c1 is the Froude number derived

using the hydrostatic linear wave speed c1. This equation points to the fact that incident linear

flux grows quadratically with the Froude number for a given characteristic wave group velocity, s.

Conversely, for a given Froude number as the characteristic wave slope s increases the energy flux

should decrease.

In Eq. (6.10) the contribution from ϕi is commonly neglected (Fringer & Street, 2003) leading

to an energy budget approximated by

EI = ER + ET + ED, (6.19)

where EI is the incident energy, ER is the energy reflected back toward the inlet of the computa-

tional domain from the topography, ET is the energy transmitted past the topography and ED is the

energy dissipated in the control volume bounding the topography. Figure 6.5 shows a schematic

depiction of the components of the energy flux budget with the control volume centered over the
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Figure 6.5: Depiction of the energy budget for the control volume centered over the topographic ridge

between vertical transects II and III . Panel (a) shows the base case where no topography is present (γ/s =
0): panel (b) shows the typical topographic ridge case (γ/s > 0). Schematic (c) shows how the fluxes

determined from panel (a) and (b) to close the energy budget and determine the reflected and dissipated

energy. Subscript ‘nt′ denotes the no topography case and ‘wt′ denotes the case with a topographic ridge.

topography between the dashed lines denoting sections II and III. The reflected energy flux is de-

termined by taking the difference in the incident energy flux at section II of the simulation with no

topography present (Eτ )nt,II and the incident energy flux at section II in the simulation with the

topographic ridge being evaluated (Eτ )wt,II . Dissipation of energy is determined by the difference

between the cumulative energy flux incident at section II and the cumulative energy flux at section

III.

Analysis of how energy is distributed differently between these three components given simu-

lations across the wide range of parameters increases understanding of the dynamics. Figure 6.6

shows the cumulative transmitted, reflected and dissipated energy flux for each simulation as a

function of γ/s. All the fluxes are normalized by the cumulative incident energy flux EI . When

the ridge height is only one quarter of the the total flow depth, ht/d = 0.25, the majority of the in-

cident wave energy is transmitted through the domain. When the slope is supercritical the amount

of energy transmitted is reduced. The amount of energy reflected and dissipated is very small for
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Figure 6.6: Normalized cumulative energy fluxes for all simulations runs as a function of the topographic

steepness parameter. Rows denote the normalized transmitted energy flux, normalized reflected energy flux

and normalized dissipated energy flux, respectively. Columns group the results by the topography height-

total depth ratio, ht/d.

the critical slope cases but increases slightly when the slope becomes supercritical offsetting the

reduction in transmitted kinetic energy.

The second column of Fig. 6.6 shows the results with ht/d = 0.5. Subcritical slope simulations

allow for the majority of the energy to transmit up and over the topography but some energy is

dissipated by turbulence in the flows with higher Froude numbers. Amounts of reflected energy

is very small as would be expected as the internal wave beams forward reflect when the slope is

subcritical. For critical slopes approximately half of the energy is transmitted. Amount of reflected

energy remains the least significant of the three energy modes analyzed in the cases with critical

slopes. Dissipation magnitude varies as a function of Froude number with dissipation accounting

for approximately 50% percent of the energy difference at high Froude numbers but less than 25%

for the lowest Froude number simulation, Fr = 0.1.

As the height of the ridge increases the amount of transmitted energy also decreases as shown

in Fig. 6.6c. Approximately 25% of the energy is transmitted for a ridge defined by a critical slope

and the majority of the energy is reflected. For the least energetic simulations defined by Fr = 0.1

the amount of energy transmitted through the domain is very low with over 75% of the energy

being reflected off the topography and the majority of the difference being dissipated. Amounts
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Figure 6.7: Normalized cumulative time integrated energy fluxes Eτ plotted as function of t/T at transects

(a) I , (b) II and (c) III for Fr = 0.5, ht/d = 0.5. The different lines represent a different degree of

slope ratio criticality for the same Froude and depth ratio conditions. Solid blue lines: γ/s = 0 (no slope);

dashed orange lines: γ/s = 0.5 (subcritical); yellow solid lines: γ/s = 1 (critical); dash-dot purple lines:

γ/s = 1.25 (low supercritical); dashed green lines: γ/s = 1.5 (high supercritical); T = 1800 s.

of reflected energy vary significantly with Fr decreasing as the Froude number increases. Flows

defined by a larger Froude number lead to more non-linear dynamics and more of the energy being

captured by dissipation and mixing. The plots in Fig. 6.6 show how the partition of energy flux is

strongly dependent on all three non-dimensional parameters Fr, ht/d and γ/s.

Figure 6.7 shows the cumulative time integrated energy flux plotted as a function of t/T for

simulations with Fr = 0.5 and ht/d = 0.5, normalized by FL/ω. Each line in the figure represents

a different slope γ/s condition as denoted in the legend. Fig. 6.7a shows the cumulative flux at

section I, Fig. 6.7b at section II and Fig. 6.7c at section III. Observable from the time series is

the delay in visible energy flux at section II and section III. The initial delay before any energy

flux is noticed at section II and III is a function of the transit time of the internal wave energy

from the domain inlet. Lower magnitude cumulative time averaged energy flux at section II and

95



section III results from the dissipation of energy within the control volume as well as energy being

back reflected from the ridge. The trends are similar to the trends observed in Fig. 6.6 where

more energy is reflected for simulations with supercritical slopes, visible in the lower magnitude

cumulative energy flux registered at section III.

6.4 Summary/Conclusion

This analysis presents the results of two-dimensional numerical simulations of internal waves

encountering a topographic ridge. The parametric study analyzed covered variation in the relative

slope ratio γ/s, the height of the topography to the total flow depth ht/d, and magnitude of forcing

by the internal wave by variation in the velocity amplitude of forcing U0, creating a variation in

the Froude number of the the simulation. The Froude number space explored covers a range of

possible flow dynamics from conditions dominated by linear oscillations at low values to complex

non-linear dynamics at the high values. Differences in the flow dynamics of the simulations are

observable in plots of the domain stratification.

The majority of the internal wave energy available is transmitted for ridge topography with

a subcritical slopes. Upon encountering the ridge, the internal wave beams are forward reflected

for γ/s < 1. Differences in the amount of the energy transmitted is solely a function of the

internal wave amplitude. More energy is lost to dissipation in simulations with large amplitude

internal waves (Fr = 0.67 − 0.84) and the resulting dynamics then is lost in simulations with

smaller amplitude internal waves (Fr = 0.1− 0.25). Conversely, supercritical slope values where

γ/s > 1, the majority of the available energy is back reflected rather than transmitted. In this case

the internal wave beams are back reflected rather than forward reflected as in the subcritical case.

Magnitude of dissipation has a similar dependence on the amplitude of the internal wave forcing.

For low Froude numbers most of the wave energy is reflected though some is lost to dissipation.

At high Froude numbers more of the energy is lost to turbulent kinetic energy dissipation during

the wave-topography interaction process as the wave energy is back reflected. For both subcritical
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and supercritical cases more energy is transmitted when the ridge height is only 25% of the flow

depth then when the ridge height is that of half or 75% of the flow depth.

For critical slope cases with γ/s = 1 the rates of energy transmission, reflection and dissipation

are even more strongly correlated with the internal wave amplitude. The formation and propagation

of bolus structures as result of internal wave interaction with the ridge helps maintain some energy

transmission. Inherent flow instability at high Froude numbers leads to increased energy loss due

to dissipation as the wave breaks onto the ridge. This loss of energy in the interaction process

creates conditions where large masses of dense fluid is caught in the structure of the breaking wave

and the kinetic energy advects this mass of fluid onto the ridge. In some cases the available energy

is sufficient to move a large mass of fluid over the top of the ridge and back down the downstream

side.

These results describe the distribution of energy fluxes as a result of interaction with a sim-

ulated topographic ridge under a range of flow simulation conditions. From the results the dy-

namics of the process show that there is significant mixing processes that occur near this type

of topographic feature. These results reinforce that the structures simulated in laboratory scale

DNS are retained/verified in this larger scale simulations. Locations with topographic ridges in

the Earth’s oceans have been identified as hot spots for dissipation and mixing. The partition of

energy as a result of the ridge and analysis of the trends in energy flux are well described by these

simulations completed in two-dimensions. Completion of this type of parametric study allows for

future simulations in three-dimensions, that need significantly greater computational resources, to

focus on cases that will be the most informative for the simulation of overturning structures and

the resulting dissipation and mixing. Simulation in three-dimensions will allow investigation into

different types of topographic structures, such as seamounts or discontinuous ridges, allowing for

flow separation and more complex flow dynamics to be studied.

The final significant contribution of this analysis is the analysis at an intermediate scale. MIT-

gcm and other CFD codes have been used to study internal wave interactions with continental

slopes and mid-oceanic ridges. The majority of simulations completed using MITgcm have been
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completed for field scale topography. Computations domains can range from 1000 km to 10,000

km resulting in computational grid spacing of 100s or 1000s of meters. Useful information can

be learned from field scale simulations as the topographic features and domain are realistic to the

conditions being studied, but flow features smaller than the grid size can not be captured. This

analysis uses MITgcm as a tool validated and trusted by field scientists for simulations that are

much smaller in scale. DNS and LES simulations completed at the laboratory scales have a grid

size that is sufficiently small to resolve turbulent scales in some cases but do not simulate flow

realistic scales. In the simulations presented here the resolution is not fine enough to resolve the

turbulent scales but by careful choice of the parameters, grid resolution and increases in compu-

tation power we are able to show results that corroborate findings of studies using DNS without

resolving the finest of the flow scales. Flow structures such as overturns and bores are visible in vi-

sualizations of the simulation similar to those measured in the field or observed in laboratory scale

DNS. As the availability and computational power of available resources increase theoretically a

field scale simulations could be completed that resolves the turbulent scales. Simulations at the

intermediate scale, as presented here, are a necessary step to “bridge” modeling scales until fully

resolved field-scale simulations are realizable.
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Chapter 7

Flow Structures From Simulations Of Internal Wave

Interactions with Topography6

7.1 Introduction

Interaction of internal waves with bottom topographic features in the Earth’s oceans is an area

of study that has seen continual research over the past 20 years. Topographic features such as

ridges, seamounts and continental shelves are known to be locations where internal waves break.

The breaking of internal waves is thought to be one of the major sources of turbulence in the

oceanic setting (Munk & Wunsch, 1998). Turbulence leads to the transport and mixing of a fluid, a

critical process in the stratified ocean for the movement of nutrients, sediments and maintaining the

gradients that drive global oceanic circulation currents (Aguilar & Sutherland, 2006). There are a

variety of mechanisms that can generate turbulence as an internal wave interacts with topography

such as internal wave scattering, wave-wave interaction, lee-wave generation and internal wave

reflection (Kunze & Smith, 2004). Critical internal wave reflection and wave beam scattering

have been shown to be efficient and prevalent mechanisms generating transfer of wave energy to

turbulent dissipation (Nash et al., 2004; Kunze & Smith, 2004; Alford et al., 2013).

Internal waves in a linearly stratified fluid (i.e. constant buoyancy frequency, N ) can be de-

scribed by a pair of superimposed beams. If a wave is traveling in a domain with a finite depth the

the beams are initially phase locked with one beam that is upwardly propagating and the other that

is downwardly propagating. Each beam is characterized by a wave frequency ω and horizontal and

vertical wave numbers k and m (Thorpe, 1999). When the the internal wave encounters bottom

topography the beams decouple and are reflected based upon the criticality of the slope (Thorpe

6The research presented in this chapter is under preparation to be submitted to the Journal of Physical Oceanography

under the title “Flow Structures from Simulations of Internal Wave Interactions with Topography" by M. R. Klema

and S. K. Venayagamoorthy. This chapter is written to reflect and acknowledge the contribution of the other author.
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& Haines, 1987). Acoustic and optical waves obey Snell’s law and the angle of incidence and re-

flection is preserved with respect to the normal vector of the encountered surface. Upon reflection

internal waves maintain their angle with respect to gravity not normal to the surface of reflection

(Phillips, 1977). The angle of the internal wave characteristic from the horizontal is denoted by α

and the slope of the internal wave beam is given by

s = tanα =
k

m
=

(
ω2 − f 2

N2 − ω2

)1/2

, (7.1)

where f denoted Coriolis rotation. Incident wave beams preserve their frequency ω when reflected

off of topography. Both the slope of the internal wave beam and the slope of the bottom topography,

denoted by γ, must be considered in analysis of waves interacting with bottom topography in

stratified fluids. The most common method of classification is to account for both slopes by the

ratio of the topographic slope to the wave slope, or γ/s (Phillips, 1977). Subcritical slopes (γ/s <

1) are cases where the topographic slope is considered flat compared to the wave characteristic

slope and the internal wave beams are forward-reflected. When the topographic slope is greater

than the wave characteristic slope γ/s > 1 and are classified as supercritical. Internal wave beams

are back-reflected when encountering supercritical slopes. The critical slope case is defined by

γ/s = 1. In this case the angle of wave propagation matches the angle of the slope resulting in

a concentration of the internal wave energy upon interaction with the slope leading to increases

in mixing. Incident internal waves enter the domain and propagate toward the bottom topography

of a given simulation. As a result of this interaction some of the incident wave energy will be

reflected, some will be dissipated and some will transmit past the bottom topography. Figure 7.1

shows a simple schematic of the possible components of wave energy as a result of internal wave

- topography interaction.

In addition to field measurement in the ocean (e.g. Ray & Mitchum, 1996; Carter et al., 2005;

Klymak et al., 2006; Pétrélis et al., 2006; Gill, 2016), laboratory experiments have been conducted

to study internal wave interaction with sloping topography (e.g. Cacchione & Wunsch, 1974; Ivey
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Figure 7.1: Schematic of the computational domain setup used in the simulations presented including a

simple depiction of the possible components resulting from the interaction of an internal wave with bottom

topography (modified from Venayagamoorthy & Fringer, 2007).

et al., 2000; Dauxois et al., 2004; King, 2010). These experiments corroborate the principles of

internal wave reflection in a stratified fluid. Laboratory experiments are limited by their scale and

both laboratory experiments and field measurements are limited by the difficulty of making spa-

tially and temporally resolved measurements. Numerical simulations using computational fluid

dynamics (CFD) codes have become an important tool for study of stratified flows in the geophys-

ical setting. Direct numerical simulations (DNS) have been used to study stratified flow processes

at the laboratory scale, O(10 m), and are able to resolve turbulence and directly calculate turbu-

lent quantities (e.g. Mater & Venayagamoorthy, 2014b; Maffioli & Davidson, 2016; Garanaik,

2018; Pouquet et al., 2018). Slinn & Riley (1998); Venayagamoorthy (2006); Venayagamoorthy

& Fringer (2007) used large eddy simulations (LES) to model internal wave interaction with a

continental slope and shelf, showing the complexity of the interaction processes, quantifying esti-

mates of the energy flux and dissipation of the processes as well as corroborating the formation of

upslope-surging boluses that transport dense fluid onto the shelf. Jalali & Sarkar (2017) also used

LES to model stratified flow around actual topographic features found in the Luzon Strait, South

China Sea. Reynolds-averaged Navier-Stokes simulations (RANS) use turbulence closure models

and have been used in parametric CFD studies of bulk flow behavior in stratified fluids at the field

scale (e.g. Legg & Adcroft, 2003; Legg, 2004a,b; Klymak et al., 2012; Legg, 2014). These simu-
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lations aim to investigate flow structure resulting from internal wave-topography interaction at an

intermediate simulation scale (greater than the laboratory scale ∼ 10 m, but less than a full field

scale ∼ 1000 m). Investigations into observed changes in flow structure as simulations scale up

to larger scales and more simplifying assumptions and parameterizations are included is an open

line of inquiry. These simulations provide a first step in this analysis by not resolving the smallest

turbulent flow scales and comparing the resulting flow structures to DNS that resolve the turbulent

scales.

In this paper we present the results from nonhydrostatic simulations of the interaction of first-

mode internal waves with a topographic ridge. Modifications to both the amplitude of the internal

wave and the topographic features are explored according to a set of controlling parameters defin-

ing this study. The focus of this study is to present an analysis of the changes in flow behavior and

features as a result of modifications to the controls. Layout of the paper is as as follows: In Section

7.2 the governing equations, problem setup and modeling tool are introduced; In Section 7.3 the

results and analysis of the numerical simulations are presented.

7.2 Formulation and Numerics

The Navier-Stokes equations with the Boussinesq approximation are given by

∇ · u = 0, (7.2)

∂u

∂t
+ u · ∇u = −

1

ρ0
∇p+ ν∇2u−

g

ρ0
ρk (7.3)

∂ρ

∂t
+∇ · (ρu) = κ∇2ρ, (7.4)

where ρ is the density, p is the pressure, u is the velocity vector, ν is the kinematic viscosity (con-

stant) and κ is the molecular diffusivity of the scalar (also constant). Forty two-dimensional CFD
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Figure 7.2: Schematic of the computational domain setup used in the simulations presents. Decomposition

the internal wave beams is shown as a pair of upward (U ) and downward (D) propagation beams (modified

from Venayagamoorthy & Fringer, 2007).

simulations and 3 three-dimensional CFD simulations were completed using the Massachusetts

Institute of Technology General Circulation Model (MITgcm) to compute Eqs. (7.2)-(7.4) for the

domain depicted in Fig. 7.2. This research grade CFD code uses a finite volume formulation for

discretizing the computational domain and solving the equations. The total length of the domain is

x = 150m and the flow depth is z = 10m. Resolution of the 2D simulations is ∆x = 0.05m and

∆z = 0.05m in the horizontal and vertical directions respectively, a total of nx×nz = 2800×200

or 560, 000 grid points. The three-dimensional simulations have a lateral width of y = 8 m. Res-

olution of the 3D simulations is ∆x = 0.12 m, ∆y = 0.2 m and ∆z = 0.1 m in the horizontal,

lateral and vertical directions respectively with a total of nx × ny × nz = 1288 × 40 × 100 or

5, 152, 000 grid points.

Initial stratification is set over the entire domain using a linear background distribution ρb(z)

defined by

ρ(z, t = 0)

ρ0
− 1 =

ρb(z)

ρ0
= −

∆ρ

ρ0

(z

d

)

. (7.5)

At the left inlet boundary the internal wave is forced by prescribing a velocity amplitude of forcing

U0 defined by
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u(0, z, t) = U0cos(mz)sin(ωt), (7.6)

where ω = 0.035 rad s−1 for all simulations. Free-slip boundary conditions are prescribed on

the lateral boundaries and a no-slip condition is set at the bottom boundary. While the simulation

resolution is not fine enough to resolve the bottom boundary layer setting this condition allows for

friction to play a role in evolution of the flow. At the right hand outlet boundary an Orlanski ra-

diative condition is applied allowing for the internal wave energy to leave the computation domain

(Orlanski, 1976). At the top boundary a linearized free surface condition is applied allowing finite

displacement of the top surface. This oscillation results in a nonzero contribution to the pressure,

however, these boundary displacements η are very small relative to the flow depth so the top bound-

ary conditions are applied at z = 0 similarly to the classical textbook solution for linear surface

waves (Legg, 2014). The single topographic ridge is defined by a sine function providing a slope

that is close to the same maximum value over much the change in elevation as discussed by Legg

(2014). Wave reflected off of the topography will eventually contaminate the boundary forcing at

the left inlet so all simulations are terminated before any contaminated waves reach the slope from

the inlet. The topographic ridge is offset to allow for five internal wave periods to pass over the

topography before the analyzed waves become influenced by the reflected energy dynamics.

Grid resolution of the simulations is not sufficiently fine to resolve the turbulence down to the

dissipation scales. No sub-grid-scale mixing scheme is applied in these simulations, a constant

eddy viscosity and turbulent eddy diffusivity are prescribed ν = κ = 10−5 m s−1, resulting in

a Prandtl number Pr = ν
κ
= 1. This magnitude for the viscosity and diffusivity will result in

the below a certain energy/size threshold being dissipated but is sufficiently small to allow for the

majority of the flow structures larger than the grid scale to generate and evolve over the course of

the simulation.

Based on an advective length scale Lc = U0/ω = 0.42 m and a characteristic overturning

velocity U0 = 1.5 cm s−1 a rough estimate of the turbulent Reynolds number for the median sim-
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ulation is ReT = 620. Beside the slope ratio γ/s, other important non-dimensional parameters

in a finite depth domain include the non-dimensional measure of the incoming internal wave am-

plitude, or steepness, defined here as a Froude number, Fr = U0/cph. As denoted above U0 is

the maximum velocity amplitude and cph is the linear first-mode internal wave phase celerity in a

linearly stratified fluid defined by Kundu et al. (2008) as

cph =
ω

k
=

d

π

(
N2 − ω2

)1/2
, (7.7)

where N is the buoyancy frequency, k is the horizontal wave number, d is the off ridge depth. The

third non-dimensional parameter is the ratio of the topographic height ht to the off topography

domain depth d, ht/d. Variation of this parameter changes the area obstructed by the ridge. A

measure of the wave excursion to the topographic length scale is given by the excursion number

Ex = U0T/πLs. This parameter is also sometimes used as measure of barotropic tide generation.

Here T = 2π/ω defines the internal wave period and Ls = [h2
t + (W/2)2]

1/2
is the length of the

topographic slope where Wt defines the width of the ridge. By holding N and ω constant, s also

remains constant. Simulation variations in this parametric space were completed by iterating γ/s

between 0 and 1.5, ht/d between 0.25 and 0.75 and Fr between 0.1 and 0.84 by modification to

the velocity amplitude U0. Values of the excursion parameter were calculated for each simulation

for purposes of the analysis but this non-dimensional parameter was not explicitly varied as part of

the study but varied as a function of the changes to the other parameters. These non-dimensional

parameters comprise the set recognized for internal wave - topography interaction (Legg & Ad-

croft, 2003; Kunze & Smith, 2004; Venayagamoorthy & Fringer, 2007; Legg, 2014) and the full

list of simulation details are presented in Table 7.1. Ranges of parameters chosen in this space

give conditions that result in wave breaking and other non-linear dynamics over the course of the

evolution of the majority of the simulations.
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Table 7.1: Details of the 43 simulations, including the parameter space covered. Simulations 1-40 are

completed in two dimensions and runs 41-43 are completed in three-dimensions.

Runs γ/s Fr = U0/cph U0T/(πLs) ht/d Comments
1-5 0 0.1-0.84 - - No-slope cases

6-8 0.25 0.1-0.84 0.03-0.27 0.5 Subcritical cases

9-11 0.5 0.1-0.84 0.06-0.52 0.5 Subcritical cases

12-16 1 0.1-0.84 0.12-1.03 0.5 Critical cases

17-19 1 0.25-0.84 0.62-2.06 0.25 Critical cases

20-23 1 0.5-0.84 0.24-0.67 0.75 Critical cases

24-26 1.25 0.1-0.84 0.29-2.43 0.25 Supercritical cases

27-29 1.25 0.1-0.84 0.15-1.21 0.5 Supercritical cases

30-32 1.25 0.1-0.84 0.1-0.81 0.75 Supercritical cases

33-35 1.5 0.1-0.84 0.33-2.78 0.25 Supercritical cases

36-38 1.5 0.1-0.84 0.17-1.39 0.5 Supercritical cases

39-40 1.5 0.5-0.84 0.56-1.39 0.75 Supercritical cases

41-43 1 0.5-0.84 0.56-1.39 0.5 3D Critical cases

7.3 Results

In this section the results of the 43 numerical simulations are presented and discussed. Subsec-

tion 7.3.1 qualitatively outlines the parametric space and the impact of the individual parameters on

the flow features that develop over the course of a simulation. Subsection 7.3.2 presents a quantita-

tive assessment of bolus dynamics, one of the main features observed to develop in the simulations

enhancing mixing.

7.3.1 Flow Structures From Interaction And Generation Dynamics

Each of the simulations is run for the time it takes five internal waves to pass over the bot-

tom topography, approximately 6.5 wave periods (T = 2π/ω = 1800 s) since the initial internal

wave must travel the domain to the topography. This is a common criteria for setting the simula-

tion duration in stratified flow CFD simulations and is also considered a necessary condition for

a simulation to have reached steady state (Venayagamoorthy, 2006; Legg, 2014; Garanaik & Ve-

nayagamoorthy, 2019). Length of the domain is influenced by simulation duration. All simulations

are stopped before waves that have been contaminated by energy reflected from the topography,

impacts the inlet boundary condition, reach the control volume used in the analysis.
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As each internal wave reaches the start of the bottom topography, defined by vertical analysis

section II in Fig. 7.2, the dynamics of the flow change as a result of the internal wave-ridge

interaction. Figure 7.3 shows a series of plots depicting an internal wave arriving and passing

over the ridge, time sequenced in order from (a)-(g). This simulation plotted here is defined by

Fr = 0.67, ht/d = 0.5 and γ/s = 1. Each of the individual plots in this figure is also labelled

with the simulation time t normalized by the internal wave period T . The temperature difference

from the median profile temperature is used to visualize the stratification of the flow in the domain.

In Fig. 7.3a (t/T = 5.33) the oncoming internal wave can be seen near the left boundary of the

figure. Effects of the previous wave are visible in the figure including the entrainment of lighter

fluid from the fluid drawdown on the front side of the topography. This effect is created by the

oncoming wave. Some localized mixing above and on the backside of the ridge is also present.

Steepening of the wave front, with Kelvin-Helmholtz-like structures near the start of the ridge

from the drawdown of the lighter fluid are visible in Fig. 7.3b (t/T = 5.50). Some overturning

structures on the backside of the ridge remain from the previous internal wave. As the flow evolves,

in Fig. 7.3c (t/T = 5.58) clockwise rotation of the core of dense fluid starts to form a bolus starting

the advection of dense fluid from near the bottom of the ridge up the slope of the ridge. In Fig.

7.3d (t/T = 5.56) the bolus structure has clearly developed and is nearing the top of the ridge

clearly influencing the surrounding flow. Counter-clockwise circulations in the region above the

bolus core are notable as the bolus core progresses. The bolus reaches the top of the ridge and

it is clear from Fig. 7.3e (t/T = 5.83) that a significant amount of the dense bottom fluid has

been transported above its equilibrium position in the stratification to the top of the ridge. As the

bolus crests the ridge, Fig. 7.3f (t/T = 5.92), momentum creates a small ejection of the structure

where the core slightly loses contact with the boundary and lighter fluid is positioned between the

bolus and the ridge. In addition to kinetic energy once the bolus reaches the crest of the ridge

it now has potential energy. Because as a result of unstable stratification profile the bolus core

has more mass than the fluid surrounding the core. While the structure visible is still considered a

bolus because the mass of fluid is traveling downslope through less dense fluid it can be considered
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somewhat analogous to a gravity current. The bolus core has decreased in size by the time is has

travelled halfway down the backside of the ridge as shown Fig. 7.3g (t/T = 6.08). It is still visibly

rotating (clockwise) and generating reciprocating counter-clockwise circulations in the fluid above

the core. Mixing still visible in the final plot, Fig. 7.3h (t/T = 6.17) but the core is surrounded by

fluid of similar density as denser bottom fluid has been transport from the front to the backside of

the ridge as a result of the flow dynamics.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 7.3: Times series capturing the development and travel of an internal bolus for simulation Fr =
0.67, γ/s = 1 and ht/d = 0.5. The effect of the bolus on the surrounding fluid can also be observed

as the simulation evolves in time. Flow is colored by the difference in temperature from the mean profile

temperature, a measure of stratification used for this visualization.

Influence of Froude number

As discussed in Section 7.2 the Froude number is a measure of the steepness of the oncoming

internal wave. In these simulations the Froude number is also used as a measure of the magnitude of

108



forcing. The greater the magnitude of the Froude number the greater the energy of the internal wave

forced at the left boundary. Figure 7.4 presents simulation results with γ/s = 1 and ht/d = 0.5

held constant but three different values for the Froude number. The three subplots in Fig. 7.4, (a)-

(c), each have two panels. The first in each row are analogous to those shown in Fig. 7.3 visualizing

the computational domain and the stratification of the fluid as a function of temperature. Flow is

captured at the non-dimensional time step of t/T = 6 and isopycnals (lines of constant density)

have been added. Due to the resolution of the simulation quantities such as the kinetic energy

dissipation rate ϵk and potential energy dissipation rate ϵpe can not be calculated directly. Plots in

the second position of each row in Fig. 7.4 show the time-averaged tendency of the kinetic energy

dissipation rate. This quantity is an inexact proxy for the kinetic energy dissipation rate. Values

in these plots of the time integrated tendency are not directly useful for quantification of ϵk but are

useful as a comparison tool for the distribution and relative magnitudes of dissipation between the

cases studied in this analysis .

Figure 7.4a shows the results for Fr = 0.1. This case is the lowest energy and while the

reflected internal wave beams are influencing the isopycnals in the left plot no overturns or sig-

nificant mixing is occurring. Dissipation resulting from the internal wave beams reflecting off the

topographic ridge (as well as adjacent to the boundary) is visible in the right panel of Fig. 7.4a.

The pattern resulting from the beam reflection is a common distribution pattern resulting from the

reflection of internal waves. When the Froude number is increased to a magnitude of 0.5 there

is sufficient forcing to generate a bolus, visible on the backside of the ridge after being ejected

from the peak in the left panel of Fig. 7.4b. Also clearly visible in this figure is overturning of the

isopycnals and mixing of the stratified fluid. In the right plot of Fig. 7.4b the dissipation tendency

due the reflected beams is no longer clearly visible but clearly the amount and magnitude of dissi-

pation relative to the case with Fr = 0.1 is significantly greater. Plots in Fig. 7.4c show the case

with Fr = 0.84. The size of the overturns, magnitude of isopycnal displacement and the amount

and distribution of dissipation tendency increase. There is a noticeable increase near the start of

the ridge. Entrainment from drawdown as the wave amplitude increases is also more significant.
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Figure 7.4: Flow structure and time-integrated kinetic energy dissipation rate tendency for three simulations

at t/T = 6 for varied Froude numbers: (a) Fr = 0.1; (b) Fr = 0.5; and (c) Fr = 0.84. ht/d = 0.5 and

γ/s = 1 for all three simulations depicted. Flow is colored by the difference in temperature from the median

profile temperature, a measure of stratification used for this visualization.
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Figure 7.5: Flow structure and time-integrated kinetic energy dissipation rate tendency for three simulations

at t/T = 6 for varied slopes: (a) γ/s = 0.25, (b) γ/s = 1 and (c) γ/s = 1.5. ht/d = 0.5 and Fr = 0.5
for all three simulations depicted. Flow is colored by the difference in temperature from the median profile

temperature, a measure of stratification used for this visualization.

From these plots in this figure it is clear that as the Froude number increases so do the non-linear

dynamics.

Influence of slope

Figure 7.5 presents results in the same format as Fig. 7.4 but the simulations displayed are

defined with constant Fr = 0.5 and γ/s = 0.5. Effects of changes in slope γ/s on the flow are

visualized in this figure. In the first row of Fig. 7.5a γ/s = 0.25, in Fig. 7.5b γ/s = 1 and in Fig.

7.5c γ/s = 1.5. Note that the simulation in Fig. 7.5b is the same simulation presented in Fig. 7.4b.

111



For Fr = 0.5 dense fluid is transported over the ridge peak in each case. In condition (a) there

is no concentration of the reflected wave energy and the small bolus that is generated continually

decreases in size as it traverses the ridge. The advection of this fluid results in reciprocating

counter-clockwise overturns, concentrated above the peak in the ridge where the majority of the

bolus dissipation occurs. Dissipation tendency is concentrated near the boundary and above the

ridge peak from the reciprocating circulations. As discussed previously the case presented in

Fig. 7.5b depicts an ejected bolus, local overturns and increased distribution of energy dissipation

tendency. For the three cases visualized in this figure this second case generates the largest bolus

and greatest distribution of non-linear dynamics. For the supercritical case presented in Fig. 7.5c

there is some fluid mass passing over the ridge. Also visible are some overturning structures but

there is less impact on the isopycnals. There is reduced in the dynamics generated observable by

both the magnitude of isopycnal displacement and smaller region around the ridge where they are

significantly influenced. Distribution of dissipation tendency suggest that the mass coming over the

ridge is likely fluid transported from the middle of the profile as most of the dissipation tendency

is observed above the middle of the profile on the backside of the ridge. Little mixing appears to

be occurring near the bottom on the downstream side of the ridge.

Influence of height

Figure 7.6 is used to visualize the influence of ridge height. Fr = 0.5 and γ/s = 1 constant

for all three simulations presented. ht/d is set at 0.25, 0.5 and 0.75 in Fig. 7.6a, Fig. 7.6b

and Fig. 7.6c, respectively. Again, note that the simulation visualized in Fig. 7.6b is the same

simulation presented in Fig. 7.4b and Fig. 7.5b. With a ridge height that is one-quarter of the

flow depth more flow is able to transmit through the domain. While the internal wave-topography

interaction still influences the flow dynamics the reduced size of the ridge greatly reduces the

region of influence, which is concentrated within 20-meters and predominately downstream of the

ridge. The magnitude of mixing is also much more limited for the case where the ridge height is

75% of the flow depth. There is little energy or mass progressing much past the peak in the ridge.

Of most significance may be the increase in the non-linear dynamics on the upstream side of the
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Figure 7.6: Flow structure and time-integrated kinetic energy dissipation rate tendency for three simulations

at t/T = 6 for varied topographic ridge heights: (a) ht/d = 0.25, (b) ht/d = 0.5 and (c) ht/d = 0.75.

Fr = 0.5 and γ/s = 1 for all three simulations depicted. Flow is colored by the difference in temperature

from the median profile temperature, a measure of stratification used for this visualization.
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Figure 7.7: Visualization of density isosurfaces in three-dimensional simulation Fr = 0.67, γ/s = 1 and

ht/d = 0.5. Note surging and transfer of dense fluid over the topographic ridge.

ridge as the wave oscillations generate periodic drawdowns and surges that are mostly isolated on

the upslope of the ridge. In this case displayed in Fig. 7.6c the dissipation tendency is highest

along this upstream side of the ridge. The final figure in this section, Fig. 7.7, show isopycnal,

surfaces in three dimensions for simulation where Fr = 0.67, γ/s = 1 and ht/d = 0.5. From the

time series of images non-linear dynamics such as overturns and the surging of the red isopycnal

over the peak in topography can be observed.
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7.3.2 Bolus Analysis

The analysis above gives a broad qualitative analysis of the parametric space and the impact of

each of the parameters on the formation of boluses and non-linear dynamics. These simulations

can be used for a quantitative analysis of the internal boluses following the analysis presented by

Venayagamoorthy & Fringer (2007) in a DNS study of internal wave interaction with a continental

slope. Having completed simulations for a range of γ/s values, ridge heights ht as well as Fr

magnitudes allows for a wide ranging analysis focused on bolus dynamics and their evolution and

fate in internal wave-ridge interactions.

Using Eq. (7.8) the formation and vertical displacement ∆z of an an internal bolus containing

the densest fluid can be quantified as

∆z

d
=

zmax(ρ)onslope
− zeq

d
, (7.8)

where zmax(ρ)onslope
is the maximum elevation reached by the densest fluid traveling up the topo-

graphic ridge during the duration of the simulation. zeq denotes the off-ridge equilibrium elevation

of the maximum density contained with the bolus traveling up the slope of the ridge, max(ρ)onslope,

and is defined by

zeq = −
max(ρ)onslope − ρ0

∆ρ
d, (7.9)

where d is the off-ridge depth. Results plotted in Fig. 7.8 show the values calculated by applying

Eq. (7.9) for each simulation in γ/s−Fr space. Figure 7.8a gives the results for simulations with

ht/d = 0.25, Fig. 7.8b for simulations with ht/d = 0.5 and Fig. 7.8c for ht/d = 0.75. Contours

in each plot show the trends of the calculated ∆z/d values, plotted as colored circles. Many of

the qualitative observations from the previous section are quantified in this analysis. When the

Froude number is small the incoming internal waves are dominated by linear dynamics and there
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is minimal isopycnal distortion/displacement and no bolus formation. As the magnitude of Fr

increases more of the heavy fluid from low in the stratified fluid profile is displaced to a greater

magnitude. As was shown in the analysis of Venayagamoorthy & Fringer (2007), it is evident

that bolus formation and the resulting vertical displacement of fluid is strongly correlated with the

Froude number. For a given value of Fr the vertical displacements are higher for critical slopes,

as a result of the concentration of energy from the converging wave beams.

Application of linear wave theory can be used to analyze the wave reflection and to quantify

the lower bound for the formation of bores/boluses. The analysis of Legg & Adcroft (2003) uses

the criteria of advective velocity exceeding the phase velocity of the reflected internal wave for a

bore or density front to develop from the flow. A Fr value of greater than 1 for the reflected wave

would be needed using this criteria. As discussed in Section 7.2 the frequencies of incident internal

wave are maintained when the wave is reflected. As a result the angles of inclination of the incident

and reflected horizontal wave numbers (ki and kr, respectively) as measured from vertical/gravity

must be equal (Phillips, 1977). Written as a function of the incident horizontal wave number the

reflected horizontal wave number can be written as

kr = ki
sin(α + θ)

sin(|α− θ|)
, (7.10)

where α is defined by Eq. (7.1) is the angle of the wave characteristic with respect to horizontal and

θ is the topographic slope angle also from the horizontal. This formula implies that the horizontal

phase velocity of the reflected wave is less than that of the incident wave (for slopes meeting the

condition 0 < |α− θ| < π/2) and can be defined by

(cph)r =
ω

ki

sin(α + θ)

sin(|α− θ|)
. (7.11)
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For cases with topographic slope that are horizontal or vertical (i.e. θ = 0 or θ = π/2) it should be

noted that the reflection is regular with ki = kr. The energy density of the reflected wave increases

upon reflection resulting in an increase in the velocity amplitude

(U0)r = (U0)i
sin(α + θ)

sin(|α− θ|)
. (7.12)

Using Eqs. (7.10)-(7.12) the reflected Froude number is defined as

Frr =
(U0)r
(cph)r

=
(U0)i
(cph)i

(
sin(α + θ)

sin(|α− θ|)

)2

. (7.13)

If a condition Frr > 1 is needed for bores to develop a relationship can be written to define

this region in parametric space in terms of γ directly (Legg & Adcroft, 2003) or in terms of γ/s

(Venayagamoorthy & Fringer, 2007). Using γ/s as the second region to define the parametric

space results in the following two equations:

(γ/s)1 =
Fr

−1/2
i − 1

Fr
−1/2
i + 1

(γ/s)2 =
Fr

−1/2
i + 1

Fr
−1/2
i − 1

. (7.14)

The subcritical region is defined by (γ/s)1 < 1 and the supercritical region by (γ/s)2 > 1. The

boundary defined by this theory is plotted as the curved solid black line in Fig. 7.8 and predicts

the formation of boluses for conditions above the line. A bolus is not formed for all cases above

this line where for marginal cases there may only be some density oscillation on the wave front

surging up and down the slopes as the internal waves propagate through the domain. As noted in

Venayagamoorthy & Fringer (2007), this theory is derived assuming linear inviscid waves and a

finite viscosity will cause an increase in the critical Froude number for which boluses will form for

a given γ/s, a observation corroborated by this analysis.
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Figure 7.8: Contour plot interpolated from the simulation data points (filled circles) depicting the normal-

ized vertical displacement ∆z/d of the lowest density fluid onto the topographic ridge in γ/s-Fr space

calculated using Eq. (7.8). The black lines denote the lower boundary for the formation of propagating

boluses by the linear theory given by Eqs. (7.14).

Under conditions where boluses form, mass is transported up the ridge slope against the stratifi-

cation. Quantification of the quantity of mass transported provides a measure of the bolus strength

and is defined by Venayagamoorthy & Fringer (2007) as

m = max

(∫

V–
(ρ− ρb) dV– /

∫

V–
ρbdV–

)

, (7.15)

where ρ is the density of the fluid within a control volume during the passage of the bolus and ρb is

the background density of the ambient fluid within the control volume. In this analysis the control

volume is defined by a 0.25d × 0.25d (×8 m in the 3D case) with the base of the control volume

starting and centered over the peak of the topographic ridge. In this analysis the mass of the bolus

generated by the fifth internal is used to determine the bolus strength and correlates with the instant

the bolus is also centered on the ridge. The control volume is held constant in the analysis of all

the simulations. Performing the calculation in this manner preserves comparability between the

simulations with variation in the topographic parameters such as height and slope/width. While

this definition of the control volume has some impact on the analysis we believe it may be the best

way to compare the bolus strength while varying both ht/d and γ/s in addition to Fr. Figure 7.9

presents the results from the application of Eq. (7.15).
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Figure 7.9: Non-dimensional mass of the bolus core calculated with Eq. (7.15).

In Fig. 7.9 the plots show that the largest masses of fluid are transported in the bolus for critical

slopes. Variation of either ridge height or Fr influences the results but if these two parameters are

constant between simulations the mass transported in the bolus will be less for slopes other than

critical. These results give another example of how critical slopes concentrate the internal wave

energy and create conditions for increased mixing. In addition to the clear influence of slope the

plots in this figure reinforce the importance Froude number dependence discussed in the previous

sections. The amount of mass contained by the bolus cores is less for both of the shorter and tall

ridges. In the case of the smaller ridge this is likely a result of less ridge slope to interact with

the internal wave and concentrate the wave energy. Most of the internal wave simply passes over

the top of the ridge and less mass is transported as a result. Additional energy is needed for mass

to reach the top of the tallest ridge. If the slope and Froude number are held constant the same

amount of energy, or more, is directed on to the slope as in the case with ht/d = 0.5. The bolus

core generated must be transported to a location higher in the domain resulting in additional work

against gravity reducing the size of the bolus before the peak of the ridge.

Once the bolus reaches the peak of the ridge in addition to kinetic energy the bolus now has

potential energy. At the top of the ridge the dense core created by the internal wave interaction

on the upstream side of the topography is surrounded by fluid of lower density and will start to

progress down the backside of the ridge. The boluses analyzed by Venayagamoorthy & Fringer

(2007) were shown to slow and decrease in size as they traveled along the shelf once they had
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Figure 7.10: Distance travelled relative to the equilibrium position in the stratification of density of the

bolus core.

reached the top of the slope. Here, the boluses are essentially similar to gravity currents as they

travel down the back-slope of the ridge. These boluses have additional momentum then is consid-

ered in most analyses of gravity currents. Bolus cores will be composed by fluid of certain density

depending the flow conditions set by the parameters. As it travels down the back side of ridge it

will decrease in size, as shown by Venayagamoorthy & Fringer (2007) for a shelf. In the simplest

case presented here the bolus will be dissipated by eddies at the level of stratification that has the

same density of the bolus core. Additional momentum inherent to large boluses create conditions

where the bolus will pass the level of stratification equal to the bolus core, entraining lighter fluid

and generating mixing. This was qualitatively observed and discussed in Section 7.3.1. The two

main types of gravity currents are intrusive gravity currents (IGC) that travels through an ambient

fluid at the level of neutral buoyancy and bottom boundary gravity currents (BBGC) that travel

along a solid boundary. Both types of gravity currents can significantly contribute to turbulence

and mixing through entrainment flow. However, most studies of gravity currents on sloping bottom

topography have been conducted within a homogenous fluid Simpson (1999). In these simulations,

both types of classifications present.

Figure 7.10 plots the distance traveled by the bolus core relative to the equilibrium position

of the fluid in the bolus core as a function of the previously derived dimensionless mass. The

distance of travel of the bolus core was determined by taking a control volume surrounding the
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bolus core at the peak of the ridge, centering the control volume on the bolus and following it

as it plunges off of the ridge. Once the density contained within this control volume was with

20% of the density of the background stratification contained by the same volume the bore was

considered mixed. This threshold for determining destruction of the bore by the stratification

or the turbulence is inexact, but was confirmed qualitatively by observations of the state of the

bore at this threshold across the simulations analyzed. In Fig. 7.10 note that simulations with

Fr = 0.1 are not included as they did not create this structure for analysis. Distance traveled by

a bolus before mixing is strongly dependent on its mass where the larger the mass the further the

distance it is able to travel. If the dimensionless mass of the bolus is greater 0.25 the bore will

maintain sufficient momentum to pass its equilibrium position within the stratified fluid profile.

When the dimensionless mass of the bore is around 0.2 the bore will tend toward becoming an

intrusive gravity current and mixing at its equilibrium stratification level. Below this threshold

the bolus will maintain contact with the slope and be mixed by frictional and viscous processes

before it reaches its level of equilibrium stratification. While the previous sections of analysis have

shown the relative importance of parameters this figure quantifies a measure of the region around

a topographic ridge that will be impacted by bore propagation. In realistic topography many lesser

ridges and prominent topographic points off of the main ridge peak are likely impacted by these

types of structures in locations subjected to barotropic tides.

7.4 Summary/Conclusion

Observation and simulation of internal wave interaction with topography is an area of research

that has received significant recent attention. This research furthers the understanding of the dy-

namics of internal wave interaction with a single ridge through a parametric study using numerical

simulation. While imperative to understanding of ocean dynamics, field observation and measure-

ment are limited by temporal and spatial resolution. Laboratory simulations are limited by scale

and measurement limitations. With increases in computational power, numerical simulations have

become a very important tool for understanding the processes and dynamics internal to the ocean.
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A CFD simulation simply applies the governing equations derived from the salient physics. Up

until this point the majority of numerical simulations of these processes have been studied using

detailed DNS or LES simulations completed at the laboratory scale or very large scale LES or

RANS simulations focusing on the bulk flow at field realistic scales. Here we present a set of

detailed numerical simulations of internal wave-topography interactions at the intermediate scale

to further our understanding of the dynamics but also to show that the local flow dynamics seen in

the laboratory scale simulations translate to larger scales.

Qualitatively the range of results within the parametric framework are presented and discussed.

Increased amplitude of incident internal waves leads to more instability, mixing and a more sig-

nificant distribution of time integrated dissipation tendency. Importance of a critical slope in the

concentration of internal wave energy and the partition of the energy into higher wave modes is

also confirmed at the intermediated scale. Significant differences between the internal wave am-

plitude and the topographic amplitude, investigated by modification of ht/d and Froude number

influence the dynamics. Wave and topographic amplitudes of similar scale resulting in the most

dynamic flows and mixing.

Internal bolus structures that form by this interaction have been observed in the field and simu-

lated in detail at the laboratory scale (Venayagamoorthy & Fringer, 2007). In these simulations we

see an equivalent partition of internal wave modes and a similar concentration of energy leading to

the development of boluses that are ejected up and over the top of the topographic ridge. Strength

of the bolus is shown to be a function of the mass of the structure, which increases as a function of

increased Froude numbers. Within the parametric space, dynamics of flow leading to mixing and

fluid transport by these boluses is strongly correlated with critical slope topography. Conditions

allowing for the formation of boluses using linear theory is corroborated for these simulations at

the intermediate scale. Variations in the topographic ridge height decreased the amount of mixing

and the formation of bores. Smaller topography reduced the scale of interaction between the waves

and ridge and less dynamic flows developed. Larger ridges, with amplitudes greater than most of
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the internal waves, blocked the flow and confined the bulk of the mixing to the front side of the

ridge.

Analysis of bolus propagation past the ridge peak highlights a similarity to gravity currents,

both in scaling and in the propagation dynamics. Structures analogous to intrusive gravity currents

and bottom boundary gravity currents are observed to occur in the simulations. Formations of these

two different types of gravity current is shown to be dependent on the mass of the propagating

bolus core. Distance along the simulations boundary where mixing is influenced by the bolus

propagation is also determined to be a function of the bolus mass. This study provides a detailed

analysis of the interaction dynamics at the intermediate scale, providing a much needed bridge in

the gap of study between simulations at the laboratory scale and the field scale. Laboratory scale

simulations are the focus of theoretical analysis of the fluid mechanics and theory. Field scale

simulations are the focus of field scientists and engineers focused on realistic scale processes. By

maintaining simulation resolution that is able to resolve the majority of the flow dynamics and

structure with a tool used by field scale modelers we hope this research provides at least the start

of a bridge in the simulation scale gap. As the computational power of readily available resources

continues to increase we theorize that simulations investigating this intermediate space will also

see increased attention, eventually bridging the gap completely where detailed flow structures can

be solved for in full field scale models.
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Chapter 8

Summary & Conclusions

8.1 Investigation Summary

The work presented in this dissertation uses computational fluid dynamics to study turbulent

dynamics of internal waves in a stratified fluid. Simulations and analysis completed can be cat-

egorized into two distinct types: direct numerical simulations( DNS) at the laboratory scale and

pseudo large eddy simulations (LES) of internal wave interactions with bottom topography at an

intermediate scale. The DNS studies apply scalings of dimensionless parameters to illustrate and

inform the impact of common assumptions made in estimates of turbulent quantities from field

measurements and the impact of commonly applied assumptions in parametric analysis of strati-

fied flow turbulence. The pseudo-LES is used to analyze the structure and energy of internal wave

interactions with bottom topography.

Chapters 1 introduces the field of study and the objectives of the dissertation. Chapter 2 cov-

ers the governing equations, theoretical scales of turbulence and field measurement techniques.

Chapter 3 details past work through a literature review of stratified flow turbulence and internal

waves covering nomenclature, flow classification, relevant non-dimensional parameters and recent

relevant work that this dissertation analysis builds on.

In Chapter 4 DNS scaling analysis is used to illustrate the impacts of application of the Osborn

model to field measurements for estimates of the diapycnal diffusivity. Use of the Osborn model for

estimation of turbulent quantities has a clear impact on the scaling when DNS results are compared

to results as they would be derived from field measurements. While this widespread method of

estimating the diapycnal diffusivity using the Osborn model is not found to diverge entirely from

the values calculated directly from the DNS, this analysis for the first time comprehensively shows

that an assumption of Γ = 0.2 is in fact an artifact of error cancellation resulting from making

several nebulous assumptions.
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In Chapter 5 DNS results are used to evaluate the impact of Coriolis rotation f on the turbulent

scales in stratified flows. All internal waves have a frequency in between the Coriolis frequency

and the buoyancy frequency N . The ambiguity of the ratio of these two parameters is shown

clearly within a parametric space using scaling arguments to evaluate the degree of turbulence and

mixing. While the Coriolis rotation f clearly influences the dynamics and structure of inertial

gravity waves in this analysis no clear impact on the turbulent quantities and specifically on the

turbulent mixing coefficient.

Chapter 6 shows the detailed energetics of a 40 simulation parametric study of nonhydrostatic

internal wave interaction with a ridge in two dimensions. This study fills a gap in the simulation

space by completing the simulations at an intermediate scale, between the laboratory and field

scales. The energetics observed in detailed simulations at the laboratory scale are observed even

with the reduced resolution needed for these computations.

Chapter 7 focuses on the flow structure of the 40 simulations presented in Chapter 7 in addition

to 3 three-dimensional simulations. Conditions for the formation of propagating bolus structures

are observed and defined at the intermediate scales of the simulations. In addition, the height of

fluid displacement, mass and distance travelled by the boluses generated in the simulations are

all quantified and discussed showing the importance of these structures in stratified flows. These

simulations detail many of the flow structures seen at a higher resolution using MITgcm, a tool

predominantly used by and trusted by field scientists for field scale simulations.

8.2 Key Findings

The following summarizes the main contributions of this study as presented in Chapters 4-7.

1. The Osborn model Kρ = Γ(ϵ/N2) is commonly applied to estimate diapycnal eddy diffu-

sivity. Diapycnal diffusivity can not be directly measured in the ocean and must be inferred

from other measurements and assumptions. One of the most common assumptions is that the

irreversible mixing coefficient is constant Γ = 0.2. Comparing the impact of this assumption

as compared to the value calculated directly from the DNS show how the diffusivities will be
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severely over- or underestimated for strongly and weakly stratified flows. This analysis leads

to a better understanding of the relationship of irreversible process in stratified flow and what

flow conditions can result in an under- or over-estimate of Γ used in parameterizations for

mixing in larger models.

2. Inference of the kinetic energy dissipation rate ϵ using the Ellison scale and the Thorpe scale

result in overestimates of the diapycnal diffusivity by up to one-order of magnitude when

compared to the DNS values. This analysis shows for the first time that the common as-

sumptions that were assumed to be a constant function of the flow are in fact a result of error

cancellations. The results presented provide a tool, in conjunction with the analysis pre-

sented by Garanaik & Venayagamoorthy (2019), that can be used to obtain realistic values

for diapycnal diffusivity from quantities directly measured in the field without the simplify-

ing assumptions applied to the unmeasured turbulent quantities. These results will influence

the determination of the type flow quantities measured by field scientists and will improve

estimations of secondary quantities calculated from these measurements resulting in more

accurate and informed estimates of mixing.

3. The ratio of the buoyancy (N ) and Coriolis (f ) frequencies has been frequently used for

the flow classification of regimes in rotating-stratified-turbulence (RST). Analysis using a

framework comparing N and f shows a that definitively shows this ratio is ambiguous and

should not be used for flow classification. The framework is defined as a function of the

turbulent Froude number and the turbulent Rossby number and implements a regimes clas-

sification as a function of the relative strength of rotation and stratification, terminology

refined from Aluie & Kurien (2011). This analysis clearly shows that DNS defined by very

different magnitudes of the turbulent Froude number can have the same N/f ratio.

4. DNS of stratified turbulence (and rotating stratified turbulence) sometimes generate values

for certain quantities that are physically unrealistic. Through evaluation of calculated di-

apycnal diffusivity Kρ a parameter termed the diffusivity ratio κ̂ is proposed to ensure real
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values are being used in studies derived from DNS. This quantity is defined by the ratio of the

turbulent diffusivity to the molecular diffusivity and must be at least one order of magnitude

greater than one if the results are representative of actual flows. κ̂ > O(10) is a necessary

condition for realistic turbulent mixing to be produced in DNS results. This tool aims to help

set guidelines for realistic simulations and lead to more widespread acceptance of DNS as a

tool for gaining insights and developing parameterizations for turbulent mixing in stratified

flows. Ensuring that simulations reach realistically observable thresholds defined by κ̂ will

help build trust in theoretical models showing that the analysis is physically realistic.

5. DNS results show that inclusion of Coriolis rotation f as a forcing parameter does not influ-

ence the framework developed by Garanaik & Venayagamoorthy (2019) for determining the

irreversible mixing coefficient Γ. This result is important as it shows rotation plays limited

to no role at the scales of mixing. These findings show how simulations can be used as a

tool for improved estimates of ocean mixing quantities from measurements as well as how

DNS evaluation can be improved with direct consideration of applicability to the field or

laboratory setting.

6. Interaction of an internal wave with topography results in a percentage of a wave’s energy

being reflected, dissipated and transmitted past the topography. Detailed evaluation of en-

ergy using forty nonhydrostatic two-dimensional simulations show that differences in ridge

height, ridge slope and the velocity amplitude of forcing all influence the internal wave-

topography interaction. Similar analysis has been completed for shelf topography at the

laboratory scale. This analysis presents a detailed analysis for a ridge, varies ridge height

and shows similar results at a lower resolution and much larger scale simulation. Velocity

amplitude of forcing and slope criticality are shown to be the most influential parameters of

the partition of wave energy. This analysis also shows that models can obtain similar results

to DNS without resolving turbulence and works toward finding a modeling middle ground

where the level of flow resolution is sufficiently detailed to analyze flow structure without

resolution that resolves turbulent scales.
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7. Formation of bolus structures that form dense cores that advect fluid up and over the crest

of the ridge have been observed in the field, in the laboratory and in simulations. New

analysis detailing the bolus behavior after the crest of the ridge is presented for the first

time. Vertical displacement of fluid, core mass and distance travelled are all evaluated as a

function of simulation parameters. Increases in available computational resources have made

simulations at the intermediate scale that resolve significant portions of the flow structures

present in the flow possible and highlight how flow behavior observed at the laboratory

scale is realistic even with increased scale. This analysis increases our understanding of

the distribution of these flow structures and the dynamics they induce near the topographic

boundary where it is difficult to measure such phenomena. With these simulations targeted

measurement can be made near the boundary and compared to these results. This analysis

provides tools to help build a bridge in the understanding of stratified turbulence between

the theoreticians and field scientists.

8.3 Suggestions For Future Work

As the availability and power of computational resources increase, both resolution and scale of

simulations will also be able to increase. Simulations eventually will be able to resolve eddies and

turbulent structures at realistic field scales to refine our understanding of these processes. Due to

the complexity of field measurements of turbulence in oceanic flows, numerical simulations will

remain one of the most important tools for the study and understanding of stratified turbulent flows.

Field observation and validation would enhance the findings of this research.

Beside increases in resolution and scale of simulated flows, different topographic distribu-

tions could be simulated to increase our understanding of internal wave-topography interaction.

Many hotspots for internal wave breaking are situated near island/seamount chains or oceanic

ridges. These locations are more complex than the isolated ridge presented in this study. A single

Gaussian-type seamount, distributions of Gaussian type seamounts, multiple ridges with varied
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relative height and spacing as well as scaled real topography all represent realistic scenarios that

would benefit from further studies using eddy resolving simulations.

In this analysis DNS were examined and used as a tool to evaluate field measurement methods

and assumptions. Using the internal wave topography simulation data, ‘simulated’ field sampling

and analysis could be conducted. If data was extracted from these simulations as it would be in a

field campaign, analysis could be completed and compared to true data values from the simulation,

synthesizing the findings and methods presented in this dissertation.
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