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ABSTRACT 

 

 

 

CSU-MLP GEFS DAY-1 "FIRST-GUESS" EXCESSIVE RAINFALL FORECASTS: AGGREGATE EVALUATION AND 

SYNOPTIC REGIMES OF BEST- AND WORST-PERFORMING FORECASTS  

 

Forecasting excessive rainfall, particularly flash flood-producing rainfall, is an important problem 

that remains difficult due to the small spatial scales and varying temporal scales at which they occur. 

One important operational product that highlights areas for potential excessive rainfall and flash flood 

occurrences is the Excessive Rainfall Outlook (ERO) issued by the NOAA Weather Prediction Center 

(WPC), which provides outlooks for lead times of 1-3 days. To address the need for additional tools for 

WPC forecasters while forming a given ERO, the Colorado State University Machine Learning 

Probabilities (CSU-MLP) system, a probabilistic forecast system for excessive rainfall (and other 

convective hazards), was developed to produce forecasts to be used as a "first-guess" ERO. CSU-MLP 

employs the use of a random forest (RF) algorithm trained using NOAA’s Second-Generation Global 

Ensemble Forecast System Reforecast (GEFS/R) and precipitation observations, while using the 

operational GEFS with the trained model to produce real-time forecasts. Initially developed as a medium 

range guidance (2-3 day lead time), CSU-MLP has produced day-1 forecasts that have been evaluated 

favorably during the 4-week Flash Flood and Intense Rainfall Experiment (FFaIR) in the summer of 2020. 

However, CSU-MLP day-1 forecasts have been observed to have daily forecast skill that can vary widely 

between days. This work will include an aggregate evaluation of CSU-MLP day-1 forecasts over a longer 

period of study (3 March 2019 – 15 October 2020) than that of FFaIR, and an identification of synoptic 

regimes for which these forecasts tend to perform at their best and worst.    

Results show that CSU-MLP day-1 forecasts are reliable, provide adequate discrimination of 

excessive rainfall events (AuROC =0.819), and have comparable performance, evaluated by use of the 
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Brier skill score (BSS), to that of the ERO (CSU-MLP BSS = 0.081; ERO BSS = 0.085). However, CSU-MLP 

forecasts have a higher frequency of categorical probabilities (≥ 0.05) which results in larger variations of 

daily BSS. Synoptic regimes of best-performing daily forecasts reveal a tendency for these regimes to be 

characterized by moderate to strong large-scale forcing and relatively high low-level and column 

moisture. This would include warm-season regimes with moderate amplitude upper-level troughs, 

tropical cyclones, cut-off lows, and cool-season regimes where strong forcing is co-located near an 

abundant moisture source. Forecasts tend to perform worst when there is strong large-scale forcing and 

low-level and column moisture is relatively low, such as cool-season regimes with large amplitude 

troughs and surface cyclones but higher levels of atmospheric moisture are not present nor as 

widespread. This work has implications for WPC forecasters as they use the "first-guess" forecasts while 

developing the ERO for a given day, as well as implications for future CSU-MLP system model iterations 

and/or designs.  

  



iv 

 

TABLE OF CONTENTS 

  

ABSTRACT ...................................................................................................................................................... ii 

 

CHAPTER 1: INTRODUCTION ......................................................................................................................... 1 

 

CHAPTER 2: CSU-MLP DAY-1 GEFS/R RANDOM FOREST MODEL  ................................................................ 8 

2.1 Predictors: GEFS/R Forecasts  ............................................................................................................. 8 

2.2 Predictands: Excessive Rainfall from CCPA and Flash Flood Reports  ................................................ 8 

2.3 Generating Real-time Forecasts  ....................................................................................................... 10 

 

CHAPTER 3: AGGREGATE CSU-MLP EVALUATION  ...................................................................................... 12 

3.1 UFVS Verification Dataset and Climatology  ..................................................................................... 12 

3.2 Forecast Frequency  .......................................................................................................................... 13 

3.3 Forecast Reliability  ........................................................................................................................... 14 

3.4 Forecast Resolution/Discrimination  ................................................................................................. 17 

3.5 Forecast Skill  ..................................................................................................................................... 19 

 

CHAPTER 4: DAILY SKILL CHARACTERISTICS OF CSU-MLP AND THE ERO AT DAY-1 ................................... 23 

4.1 Distributions of Daily UFVS, CSU-MLP, and ERO Coverage ............................................................... 23 

4.2 CSU-MLP and ERO Daily Forecast Skill Comparison .......................................................................... 27 

4.3 Selecting Cases .................................................................................................................................. 29 

4.4 CSU-MLP and ERO Daily Forecast Skill Comparison .......................................................................... 34 

 

CHAPTER 5: SYNOPTIC REGIMES OF BEST- AND WORST-PERFORMING CSU-MLP FORECASTS ................. 35 

5.1 Synoptic Regime Classification .......................................................................................................... 35 

5.2 CONUS Worst-Performing Synoptic Regimes  .................................................................................. 39 

5.2.1 Warm-Season Regimes ......................................................................................................... 40 

5.2.2 Spring/Fall Regimes............................................................................................................... 48 

5.2.3 Winter Regimes ..................................................................................................................... 53 

5.3 CONUS Best-Performing Synoptic Regimes ...................................................................................... 55 

5.3.1 Warm-Season Regimes ......................................................................................................... 55 

5.3.2 Spring/Fall Regimes............................................................................................................... 64 

5.3.3 Winter Regimes ..................................................................................................................... 68 

5.4 Contrasting Typical Best- and Worst-Performing Forecasts ............................................................. 71 

 

CHAPTER 6: DISCUSSION AND CONCLUSIONS ............................................................................................ 73 

 

REFERENCES ................................................................................................................................................ 78 

 

 



1 

 

CHAPTER 1: INTRODUCTION 

 

 Excessive rainfall and flash flooding events can result in a loss of life, injury, and damage to 

property, infrastructure, and agriculture. From 1991-2020, flooding resulted in 85 fatalities per year in 

the United States, more than from any other convective weather hazard (NOAA 2022b). Over this same 

time period, the top 28 costliest flooding events resulted in an estimated $144.4 billion in costs (NOAA 

2022a). These statistics emphasize the importance of improving forecasting for flash floods to help 

mitigate the costly effects of these events. 

One of the first studies that identified general characteristics of flash flood-producing systems 

was that of Maddox et al. (1979). While distinguishing systems by different synoptic and mesoscale 

characteristics, they found several commonalities between the cases they analyzed:  

• Heavy rains were produced by convective storms 

• Surface dewpoint temperatures were very high (> 60° F) 

• Large moisture contents were present through a deep tropospheric layer (less than roughly  

5°F difference between temperature and dew point temperature at different layers) 

 

• Vertical wind shear was weak to moderate through the cloud depth (15-25 knots) 

Building upon these findings, Doswell et al. (1996) developed an "ingredients-based" approach for 

forecasting excessive precipitation using the following simple equation: 

 𝑃 = 𝑅̅𝐷 (1.1) 

where 𝑃 is total precipitation, 𝑅̅ is the average rain rate, and 𝐷 is the duration of the precipitation. 𝑅̅ 

can be equated as such: 

 𝑅̅ = 𝐸𝑤𝑞 (1.2) 

where 𝐸 is precipitation efficiency, 𝑤 is vertical velocity, and 𝑞 is water vapor mixing ratio. This involves 

identifying areas for potentially high rain rates, and thus, ingredients for deep moist convection: high 
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low-level moisture, steep mid-level lapse rates, lifting mechanisms for convective initiation. Increased 

moisture through the depth of the troposphere will also support greater 𝐸 and higher 𝑅̅, as less 

evaporation occurs due to both entrainment of environmental air at edges of the cloud and sub-cloud 

evaporation of precipitation. This means areas of high relative humidity throughout the troposphere is 

another ingredient for excessive rainfall events. Lastly, a long-lasting rainfall event will increase P, where 𝐷 is function of the size, shape, orientation, and movement of a precipitation system (Doswell 1996; 

Schumacher and Johnson 2005). This not only involves identifying areas with long duration low-level 

forcing and horizontal moisture transport for initiation and maintenance of convection, but also 

identifying areas where convection remains nearly stationary or repeatedly traverses a location.   

With ingredients for excessive rainfall in mind, forecasters must be able to recongnize the 

synoptic pattens that result in extreme rainfall and flash flooding. Maddox et al. (1979) identified some 

of the typical synoptic and mesoscale patterns that were associated with the flash floods in the CONUS. 

Among those are the "synoptic" and "frontal" patterns. "Synoptic" events (Figure 1.1; from Schumacher 

2017) are characterized by a slow moving upper-level trough with an associated quasi-stationary surface 

front. Ahead of the trough, there is a southerly low-level jet (LLJ) that results in northward advection of 

 

 
Figure 1.1. Illustration of Maddox et al. (1979) synoptic flash flood events from Figure 1 of Schumacher 

(2017), where a) depicts the environmental conditions during convective initiation and b) depicts 

conditions at a later time when convection as evolved into an MCS.  
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moisture and warmer temperatures roughly parallel to the surface front. Shaded in red are the areas 

where forcing for ascent is maximized due to differential cyclonic vorticity advection (DCVA) and low-

level warm air advection (WAA). It is at this location that convection is typically initiated and grows 

upscale into a mesoscale convective system (MCS) within the warm sector. Due to the typical slow 

evolution of the synoptic environnment, these events can last multiple days and affect a broad region. 

"Frontal" events (Figure 1.2; from Schumacher 2017) are characterized by a frontal boundary (usually an 

east-to-west orientated warm front or stationary front) where a southerly low-level jet (LLJ) flows over 

the front with locally maximized forcing for ascent (shaded in red in Figure 1.2a,b) via WAA and 

frontogenesis. This results in convective initation on the cool side of the front. Often there is an upper-

level ridge axis near convective inititation, with a weak mid-level shortwave upstream of maximum 

forcing and mid- to upper-level winds that flow nearly parallel to the surface boundary, resulting in a 

system where new convection is continuosly initiated upstream of mature convection.  

 

 
Figure 1.2. Illustration of Maddox et al. (1979) frontal flash flood events from Figure 2 of Schumacher 

(2017), where a) depicts environmental conditions preceding convection and b) depicts conditions at 

later time where an MCS has formed on the cool side of the front.  

 

Additional studies have investigated and categorized the synoptic regimes for excessive rainfall 

and/or flash floods within the CONUS, often looking at various regional domains (or sub-regions within) 

such as the southeast (Konrad 1997; Moore et al. 2015), the northeast (LaPenta et al. 1995; Marquardt 
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Collow et al. 2016; Agel et al. 2019), the central CONUS (Bradley and Smith 1994; Lavers and Villarini 

2013; Mullens 2021), east of the Rockies (Schumacher and Johnson 2005; Peters and Schumacher 2014), 

the west CONUS (Maddox et al. 1980; Ely et al. 1994; Warner et al. 2012; Neimann et al. 2013), and the 

entire CONUS (Kunkel et al. 2012; Barlow et al. 2019). Despite the various definitions of excessive 

rainfall used to identify event days, the different regions of the CONUS examined, and the different 

pattern identification techniques used, most identify synoptic regimes east of the Rockies that resemble 

those of the "synoptic" events and "frontal" events identified by Maddox et al. (1979. Many of these 

studies also categorize additional synoptic regimes that result in extreme rainfall. For example, 

extratropical cyclones (ETCs) are a common regime category east of the Rockies (e.g. Konrad 1997; 

LaPenta et al. 1997; Kunkel et al. 2012; Mullens 2021), where excessive rainfall is observed in close 

proximity to surface cyclones. Mullens (2021) also distinguishes regimes by considering forcing by fronts 

that are well removed from the parent surface cyclone. Tropical cyclones (TCs) and their inland 

remnants are another flood-producing identified regime (e.g. Schumacher and Johnson 2005; Kunkel et 

al. 2012; Mullens 2021), as their high moisture contents, strong dynamics, large size, and occasionally 

slow speed provide the necessary ingredients for extreme rainfall. Across the western CONUS, extreme 

rainfall producing synoptic regimes are dominated by the interaction of landfalling (and sometimes 

inland penetrating) atmospheric rivers (AR) and orography in the cool-season (e.g. Ely et al. 1994; 

Neiman et al. 2012; Rivera et al. 2014; Warner et al. 2012), and warm-season monsoon regimes 

associated with anomalous moisture and shortwaves occurring around the large-scale upper-level ridge 

typical across the region (e.g. Adams and Comrie 1997; Maddox et al. 1980). 

While ingredients for excessive rainfall are brought together by the synoptic conditions, extreme 

rainfall that produces flash floods typically occurs from MCSs which form and evolve as direct result of 

cold pool interactions with the surrounding environment. Maddox et al. (1979) identified these events 

as “mesohigh” events. MCSs can take on several different archetypes (Parker and Johnson 2000), 



5 

 

however, only a few are commonly responsible for flash flood-producing rainfall (Schumacher and 

Johnson 2005, Keene and Schumacher 2013). This means that forecasters must be able to anticipate the 

formation of MCSs and their structural evolution, in addition to synoptic regime recognition, to better 

identify regions most at risk for excessive rainfall for a given day. To add to this complexity, flash floods 

also depend on the relevant hydrology (e.g. Viterbo et. al 2020). This includes consideration of 

antecedent soil conditions, basin size, distribution of rainfall within a basin, soil type, land use, and 

terrain slope, to name a few.  

Although the overall environments and ingredients for excessive rainfall are generally well 

understood and can sometimes be identified days in advance, forecasting these events with precision 

remains a challenging problem due to the relatively small spatial and varying temporal scales at which 

excessive rainfall occurs. Forecasters must rely on numerical weather prediction (NWP) model output 

(especially at longer lead times) to construct quantitative precipitation forecasts (QPFs). However, NWP 

has limited predictability of convective systems (e.g. Melhauser and Zhang, 2012; Nielsen and 

Schumacher 2016) as well as observed biases for excessive rainfall (Herman and Schumacher 2016). As a 

result, accurate QPF for heavy rainfall in the warm season has been challenging (Fritsch and Carbone 

2004; Sukovich et al. 2014). Nonetheless, forecaster QPF has consistently improved and shown more 

skill compared to NWP (Novak et al. 2014). In recent years, the advent of convection-allowing models 

(CAMs) as well as statistical postprocessing methods (e.g. Hamill et al. 2015; Hamill and Scheuerer 2018; 

Whan and Schmeits 2018; Loken et al. 2019) have resulted in a plethora of additional tools to be used to 

enhance QPF forecasting. 

One important operational product that highlights areas for potential excessive rainfall and flash 

flood occurrences within the CONUS is the Excessive Rainfall Outlook (ERO; Erickson et al. 2021) issued 

by the NOAA Weather Prediction Center (WPC). These outlooks provide forecasts, at days 1-3 lead 

times, for the probabilities that rainfall will exceed Flash Flood Guidance (FFG; Schmidt et al. 2007) 



6 

 

within 40 kilometers of a point of interest. FFG is created by the River Forecast Centers and is an 

estimate of rainfall over a given time duration that may cause small streams to flood when the stream is 

at bankfull. Probabilities are displayed through four categories of risk: Marginal (MRGL; 5-10%), Slight 

(SLGT; 10-20%), Moderate (MDT, 20-50%), and High (HIGH; >50%). WPC issues three EROs around 0900 

UTC every day (with periodic updates), each valid 1200UTC – 1200 UTC for a given day 1-3 forecast 

period (corresponding to 3-27-, 27-51-, and 51-75-hour forecast times). Among some of the challenges 

of QPF forecasting mentioned in the previous paragraph, another challenge is that NWP and other 

postprocessing methods do not provide direct information about whether QPF is excessive for a given 

location. To address these challenges, a forecast system – the Colorado State University Machine 

Learning Probabilities (CSU-MLP) system- based on NWP model reforecasts, historical observations of 

excessive rainfall, and machine-learning algorithms- was developed to provide WPC forecasters with 

guidance to be used as a "first-guess" when developing their ERO (Herman and Schumacher 2018c). 

CSU-MLP uses the random forest algorithm (RF; Breimann 2001), which is composed of a set of decision 

trees that individually make a unique classification prediction based on inputs to the tree. RFs are used 

because of their capability to potentially correct for model forecast biases, such as QPF being 

systematically too high or too low, spatial biases in extreme QPF, and/or temporal biases in the initiation 

and evolution of extreme precipitation features (e.g. Herman and Schumacher 2016). 

As described in Schumacher et al. (2021), multiple versions of CSU-MLP have been iteratively 

improved upon. Initially developed in 2017 (CSU-MLP versions denoted by the year of model 

development) and designed to forecast for days 2-3 lead times (Herman and Schumacher 2018a,c), 

alterations to the CSU-MLP system have come from changes to the definition of excessive rainfall. 

Specifically, this involved the inclusion of flash flood local storm reports (LSRs), the use of the 

Climatology-Calibrated Precipitation Analysis (CCPA; Hou 2013) instead of Stage IV data, and the use of 

different 24-hr average recurrence interval (ARI) exceedances for different regions of the CONUS 
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(Schumacher et al. 2021). Another key addition to the CSU-MLP system was the production of day-1 

forecasts from the 2019 and 2020 versions, of which the most recent (2020 version) was objectively and 

subjectively evaluated at the Flash Flood and Intense Rainfall Experiment (FFaIR; Trojiniak et al. 2020) in 

the summer of 2020 and has since been incorporated as the most recent CSU-MLP version (along with 

day-2 and day-3 forecasts) into WPC operations (Schumacher et al. 2021).  

Although the CSU-MLP 2020 version (herein, CSU-MLP for brevity) forecasts have aggregate skill 

comparable to that of the ERO (Schumacher et al. 2021), individual forecast performance has been 

observed to range widely. It is hypothesized that, similar to NWP forecasts for extreme precipitation, 

CSU-MLP forecasts perform best on days with strong synoptic forcing associated with large-scale 

troughs and cyclones and worst on warm-season days where mesoscale and storm-scale interactions 

largely influence the locations of excessive rainfall and flash flood events. While previous work from 

Herman and Schumacher (2018a) investigated the spatial and temporal predictors with the most 

influence on the RF architecture (i.e. feature importance), this work will investigate those synoptic 

regimes for which CSU-MLP forecasts- specifically day-1 forecasts- perform best and worst. 

This thesis is organized as follows: Chapter 2 will provide some additional details about CSU-MLP 

model training and forecasts. Chapter 3 provides aggregate CSU-MLP forecast evaluation in comparison 

to the ERO for the period of study, which supplements findings from Schumacher et al. (2021). Chapter 4 

will investigate the characteristics of daily forecast skill across different regions and seasons. Chapter 5 

shows the different synoptic regimes of best- and worst-performing CSU-MLP day-1 forecasts. Lastly, 

discussion and conclusions from this work are in Chapter 6.  
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CHAPTER 2: CSU-MLP DAY-1 GEFS/R RANDOM FOREST MODEL 

 As introduced in Chapter 1, CSU-MLP is a forecast system that postprocesses NWP forecasts 

using a RF model to generate excessive rainfall outlooks designed to resemble the WPC ERO. The 

predictor and predictand datasets used for training the RF model are described in this chapter, along 

with the generation of real-time forecasts. 

2.1 Predictors: GEFS/R Forecasts  

Forecasts from NOAA's Second-Generation Global Ensemble Forecast System Reforecast 

(GEFS/R; Hamill 2013) are used to generate the predictor dataset to train the CSU-MLP Day-1 RF model 

(herein, RF model for brevity). The GEFS/R is a global, convection-parameterized 11-member ensemble 

with T254L42 resolution, corresponding to an effective horizontal grid spacing of ~55 km at 40° latitude. 

GEFS/R forecasts are initialized daily at 0000 UTC dating back to December 1984, with forecast fields 

every three hours out to 72 hours past initialization and every six hours after. The GEFS/R dataset was 

chosen for RF model training as the ensemble system used to generate these reforecasts is nearly static 

throughout its 30+ year period of coverage with only updates to the operational data assimilation 

system. This benefits RF model training by providing a larger forecast dataset (i.e. more data) as 

opposed to using other NWP models where more frequent updates limit the amount of forecasts during 

a static model system. 

The predictor dataset is assembled by using the day-1 1200 UTC – 1200 UTC forecast period, 

corresponding to forecast hours 12-36, which includes nine timesteps of forecast fields to capture 

temporal variations of these fields. In addition, spatial variations are included in the RF model. This is 

done by assembling forecast fields in a forecast gridpoint-relative sense, where forecast fields within a 

radius of three gridpoints are used to train the RF model at a specific gridpoint on the GEFS/R grid. This 

is fundamentally the same predictor assembly process used in Herman and Schumacher (2018a,c) and 

Hill and Schumacher (2021). The RF model is trained to learn relationships between these predictors and 
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occurrences of excessive rainfall for each gridpoint of the GEFS/R domain within the CONUS. Specific 

forecast fields used for the predictor dataset include the ensemble median of QPF, precipitable water, 

mean sea level pressure, CAPE, CIN, 2-m temperature and relative humidity, 10-m wind components, 

and vertical wind shear (e.g. Herman and Schumacher 2018a,c; Schumacher et al. 2021). Daily 

initializations from January 2003 through August 2013 are employed in the training dataset.  

2.2 Predictands: Excessive Rainfall from CCPA and Flash Flood Reports  

Excessive rainfall is defined, within the framework of RF model, using quantitative precipitation 

estimate (QPE) exceedances of average recurrence intervals (ARIs), which correspond to the expected 

duration (given the local climatology) between exceedances of rainfall of a given threshold, and local 

storm reports of flash floods (LSRs). QPE is used from CCPA which is a combination of Stage IV 

precipitation analysis (Lin and Mitchell 2005) and the NOAA Climate Prediction Center unified global 

daily gauge analysis (CPC; Xie et al. 2010). These two precipitation datasets are combined to create a 

daily 24-hour precipitation analysis that maintains the spatial patterns of Stage IV but statistically 

adjusted to have a long-term average and climate probability distribution close to that of CPC, which is 

generally considered more accurate due to rigorous quality control (Hou et al. 2014). Flash flood LSRs 

are recorded by NOAA National Weather Service Warning Forecast Offices, however, criteria for what to 

consider a flash flood vary between offices (Clark et al. 2014). 

Occurrences of excessive rainfall are defined as CCPA 24-hour precipitation from 1200 UTC – 

1200 UTC exceeding 1-yr or 2-yr (ARI), or the occurrence of a flash flood report in the same period. 

Either of these occurrences that fall within 40km of a GEFS/R gridpoint is considered an excessive rainfall 

event for a given day and location. These excessive rainfall events and non-events are aligned with their 

corresponding spatial and temporal day-1 GEFS/R predictors to produce a complete training dataset for 

each gridpoint on the GEFS/R grid. Each training gridpoint is additionally segregated into eight different 

training regions (e.g. Herman and Schumacher 2018a,c; Hill and Schumacher 2021; Schumacher et al. 
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2021), as shown in Figure 2.1. Due to some of the uncertainties in the CCPA/Stage IV datasets, and the 

varying correspondence of flash floods with different ARIs across different regions (e.g Herman and 

Schumacher 2018b; Hill and Schumacher 2021), the use of 1-yr or 2-yr ARI exceedances in the 

predictand dataset varies. Specifically, 1-yr ARI exceedances are used for the NE, NGP, SE, and SGP and 

2-yr ARI exceedances are used for MDWST, PCST, SW, and ROCK regions (Schumacher et al. 2021).  

2.3 Generating Real-time Forecasts  

Real-time forecasts, generated by the GEFS/R-based RF model (herein CSU-MLP), are produced 

using the forecasts from the operational GEFS ensemble median for each of the predictors described 

previously (QPF, precipitable water, mean sea level pressure, CAPE, CIN, 2-m temperature and relative 

humidity, 10-m wind components, and vertical wind shear). Probabilistic forecasts for excessive rainfall 

are made at each model gridpoint using the relative frequency of excessive rainfall predicted by all 

decision-trees in the RF. CSU-MLP forecasts from each region are merged into a single grid of 

probabilities across the CONUS, with smoothing applied across the regional boundaries to avoid sharp 

gradients in probabilities. Forecasts are then displayed graphically to appear similar to the ERO (Figure 

2.2), where probabilities are classified within each corresponding categorical risk for excessive rainfall. In  

 
Figure 2.1. Map depicting the eight training regions and the labels describing each. 
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Figure 2.2. Example of (a) WPC day-1 ERO and (b) CSU-MLP day-1 "first-guess" forecasts valid the 24-hr 

period from 1200 UTC 10 January 2020 through 1200 UTC 11 January 2020. 

 

 

total, daily forecasts used in this subsequent analysis include or consider 589 daily forecasts between 3 

March 2019 and 15 October 2020. Some forecasts were retrospectively generated, with a limit to 

availability of the operational GEFS to generate forecasts prior to 3 March 2019.  
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CHAPTER 3: AGGREGATE CSU-MLP EVALUATION 

 

This chapter will focus on evaluation of CSU-MLP frequency, reliability, discrimination, and skill 

using the same period of study from Schumacher et al. (2021) that includes 589 aggregated forecasts 

generated between 3 March 2019 through 15 October 2020. These characteristics will also be compared 

to those of the ERO.  

3.1 UFVS Verification Dataset and Climatology 

Verification is performed by use of the Unified Flood Verification System (UFVS; Erickson 2019, 

2021), developed by WPC. The UFVS includes flash flood observations that occur within a given 1200 

UTC – 1200 UTC timeframe, specifically, flash flood LSRs and U.S. Geological Survey (USGS) river gauge 

observations. Due to the spatial discontinuities of LSRs and the limited observational coverage of river 

gauges, UFVS also includes Stage IV precipitation exceeding FFG and Stage IV precipitation exceeding 5-

yr ARI thresholds. These are used as flash flood proxies that are intended to capture flash flood 

occurrences missed by the observational datasets. UFVS flash flood observations and proxies include a 

40-km neighborhood radius as to be consistent with the definition of the ERO (and CSU-MLP). Forecast 

grids from CSU-MLP are interpolated to the UFVS and ERO grid for a gridpoint-based verification. Figure  

 
Figure 3.1. Observations of excessive rainfall from UFVS from 3 March 2019 – 10 October 2020. 
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3.1 shows the total number of UFVS observations across the CONUS within the period of study. UFVS 

observations occurred at a higher frequency in the eastern two-thirds of the CONUS in contrast to the 

western third, where there were no UFVS observations in some locations. 

The UFVS is also used to construct a daily climatological forecast of excessive rainfall to be used 

as a baseline to calculate skill scores for CSU-MLP and the ERO forecasts, respectively. The daily 

climatological forecast is calculated using the frequency of UFVS observations from 1 October 2016 – 30 

September 2020. Due to limitations in the temporal extent of the UFVS observational dataset, this 

results in a relatively short climatology where there are many small areas that have a relatively high or 

low frequency of UFVS observations that may not be representative of the true climatology for excessive 

rainfall. Specifically, frequencies are categorized by day of the year for each gridpoint within the CONUS 

domain and subsequently smoothed by calculating a rolling 31-day mean centered about the day of 

interest and smoothed by a spatial Gaussian filter across the domain. Figure 3.2 (a) and (b) help to 

visualize the effect of the spatial filter for all UFVS observations during the period of study. 

 
Figure 3.2. Observations of excessive rainfall from UFVS for the climatological period of 1 October 2016 

– 30 September 2020 for (a) unfiltered gridded observations and (b) spatially smoothed gridded 

observations. 

 

 

3.2 Forecast Frequency 

Figure 3.3 shows CSU-MLP (left column) and ERO (right column) forecast fractional frequencies 

aggregated temporally and displayed spatially across the CONUS for forecast probabilities greater than 
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each categorical threshold (5% MRGL, 10% SLGT, 20% MDT, 50% HIGH). Both CSU-MLP and the ERO 

show high frequency of categorical forecasts across the central and eastern CONUS in contrast to the 

western CONUS. This not surprising given the higher frequency of UFVS observations during the 2016-

2020 period across these areas. Both forecasts also show decreasing frequency of forecast probabilities 

for increasing categorical thresholds. MRGL excessive rainfall probabilities are relatively common, 

particularly in the SE and MDWST border regions where roughly 1 in 5 days were forecasted as such. 

However, frequency of higher categorical thresholds decreases substantially, particularly for MDT and 

HIGH thresholds. Comparison between CSU-MLP and the ERO shows that CSU-MLP forecasts a higher 

frequency of forecasts for MRGL, SLGT, and MDT thresholds, particularly, SLGT and MDT frequencies are 

higher across nearly all regions of the central and eastern CONUS for CSU-MLP as well as in the SW 

region. Notable regions of highest forecast frequency differences are in the central CONUS, as well as in 

the southern portion of the NE region.  

3.3 Forecast Reliability  

An important characteristic of a probabilistic forecast is the reliability of the forecast, which 

measures the observed frequency of an event relative to a probabilistic forecast threshold. A 

probabilistic forecast is considered reliable when the observed relative frequency matches the 

probabilistic forecast of that event. For CSU-MLP and the ERO, probabilities of excessive rainfall are 

given by the four categorical risk contours, corresponding to a range of probabilities within each 

category. Reliability is assessed in a spatial sense, where given a certain gridpoint coverage of each 

category, the percentage of excessive rainfall gridpoint observations that overlap the forecasted 

category is calculated (Figure 3.4). For CSU-MLP, forecasted probabilities are reliable within the range of 

probabilities corresponding to each categorical risk, denoted by the green and red horizontal lines. 

Percent coverage area for CSU-MLP is lower across all four thresholds compared to the ERO, which is 

consistent with the higher frequency of forecasts at the MRGL, SLGT, and MDT categories forecasted by  
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Figure 3.3. Fraction of forecasts days for (left) CSU-MLP and (right) ERO with probability greater than 

(a),(b) 5%, (c), (d) 10%, (e), (f) 20%, and (g), (h) 50%. 
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Figure 3.4. Percent of probability area covered by UFVS observations for CSU-MLP and ERO forecast. 

Green (red) lines indicate the lowest (highest) percentage for which aggregated categorical forecasts are 

reliable.  

 

 

 
Figure 3.5. Percent of probability are covered by UFVS observations for forecasts in each region of 

CONUS and for (a) MRGL, (b) SLGT, (c) MDT, and (d) HIGH categorical risks. Green (red) bars indicate the 

lowest (highest) percentage for which aggregated categorical forecasts are reliable. 
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CSU-MLP (Figure 3.3). The ERO underpredicts the risk for excessive rainfall in its categorical forecast 

areas for MRGL, SLGT, and MDT thresholds, and is reliable within the threshold range for the HIGH 

category. Figure 3.5 shows the percent coverage area for forecasts subdivided by each of the eight  

training regions. CSU-MLP is reliable for most categorical thresholds in most regions, however, CSU-MLP 

underpredicts the coverage of excessive rainfall for MRGL forecasts in the PCST and ROCK regions, for 

SLGHT forecasts in the PCST and SE regions, and overpredicts coverage for HIGH forecasts in the SW. 

3.4 Forecast Resolution/Discrimination 

 Forecasts are also characterized by their ability to discriminate between excessive rainfall events 

and non-events. This is measured by probability of detection (POD; also known as sensitivity/true 

positive rate) and probability of false detection (POFD; also known as false alarm ratio which is 

equivalent to 1 – specificity). POD measures how often an event is correctly forecasted to occur given 

the total number of events that occurred. This can be written as Equation 3.1: 

 𝑃𝑂𝐷 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 = 𝑇𝑃# 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠 (3.1) 

where TP are true positives (event is correctly forecasted) and FN are false negatives (event is 

incorrectly not forecasted).  POFD measures how often a non-event is incorrectly forecasted to occur 

(false positives, FP) given the total number of non-events. This can be written as Equation 3.2: 

 𝑃𝑂𝐹𝐷 =  𝐹𝑃𝐹𝑃 + 𝑇𝑁 = 𝐹𝑃# 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑁𝑜𝑛 − 𝐸𝑣𝑒𝑛𝑡𝑠 (3.2) 

A perfectly discriminating forecast system would be able to identify all observed events (POD = 1) while 

avoiding instances of false detection (POFD = 0). For CSU-MLP and the ERO, the midpoint probability of 

each categorical threshold is used as the discriminating probability for events (forecasted probability 

above this threshold) and non-events (forecasted probability below this threshold). POD and POFD 

statistic pairs at each threshold for CONUS-wide forecasts are plotted graphically (Figure 3.6) in what is 

known as the Relative Operating Characteristic, or ROC curve. ROC curves for the daily climatological 
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forecast and that of no discriminating skill (dashed line) are also plotted. The area under the ROC 

(AuROC) is a measure of the total discrimination, where a perfectly discriminating forecast has an 

AuROC equal to 1 and a non-discriminating forecast has an AuROC equal to 0.5. AuROC values for each 

region for CSU-MLP and the ERO are shown in Figure 3.7. CSU-MLP and the ERO both display 

discriminating capabilities for CONUS and all eight regions within, particularly for the CONUS, SW, NGP, 

SGP, MDWST, NE, and SE where AuROC are greater than 0.74. Both PCST and ROCK regions have lower 

POD for lower probability thresholds where CSU-MLP AuROC scores are 0.666 and 0.716, respectively,  

 

 
Figure 3.6. ROC curves for CONUS and regional forecasts for CSU-MLP and ERO forecasts using midpoint 

probabilities to calculate POD and POFD.  
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Figure 3.7. AuROC for CSU-MLP and ERO forecasts for CONUS and each region 

 

 

and ERO AuROC scores are 0.630 and 0.666, respectively. This is due to the underconfident MRGL 

forecast areas (Fig. 3.5) where excessive rainfall events are missed due to smaller MRGL forecast areas. 

ERO AuROCs are smaller than all CSU-MLP AuROCs (except for SE region) owing to the ERO's 

underconfident SLGT and MDT probabilities which leads to a much lower POD compared to that of CSU-

MLP. 

3.5 Forecast Skill  

 CSU-MLP and ERO forecast skills are evaluated against the daily climatological forecast for 

excessive rainfall using the Brier skill score (BSS), which is a measure of the forecast Brier score (BS) to 

that of the climatological BS. BS measures the average squared differences between a probabilistic 

forecast value, 𝑃𝑖 , and the observed, 𝑂𝑖 (1 for an excessive rainfall event or 0 for non-event): 

 𝐵𝑆 =  1𝑛 ∑(𝑃𝑖 − 𝑂𝑖)2𝑛
𝑖=1  (3.3) 

where n is the total number of probability-observation pair samples. BSS is formulated as: 
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 𝐵𝑆𝑆 = 𝐵𝑆𝑐𝑙𝑖𝑚𝑜 − 𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐵𝑆𝑐𝑙𝑖𝑚𝑜 = 1 − 𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐵𝑆𝑐𝑙𝑖𝑚𝑜  (3.4) 

A forecast that performs well relative to climatology must have a 𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 that is low relative to 𝐵𝑆𝑐𝑙𝑖𝑚𝑜. This would mean the forecast has probabilities close to 1 or 0 for corresponding excessive 

rainfall events and non-events across an aggregate of forecast-observation pairs and/or climatology has 

probabilities far from 1 or 0 for corresponding excessive rainfall events and non-events. BSS is calculated 

using midpoint probabilities for each categorical forecast as well as for each daily climatological forecast. 

Daily climatology is below 5% across most locations through much of the year, so BSS is sensitive to 

probabilistic forecasts from CSU-MLP and the ERO. However, the daily climatological forecast is higher 

than 5% (sometimes 10%) in many locations across summer months when excessive rainfall events are 

more common. In these situations, BSS is sensitive to both the forecasted probabilities and climatology. 

BSS is calculated by aggregating samples in time for across the CONUS domain to evaluate 

spatial patterns in skill, as displayed in Figure 3.8. Skills for both (a) CSU-MLP and (b) ERO forecasts are 

greater than that of climatology across much of the central and eastern regions of the CONUS. Western 

regions show much more variability, especially for CSU-MLP, as a small number of forecasts and the 

occurrence or non-occurrence of individual UFVS observations greatly influence local BSS. Figure 3.9 

shows that BSS aggregated in time and space, where ERO forecasts show slightly greater aggregate skill 

across the CONUS as well as four of the eight regions. This contrasts with BSS for day-2 and day-3 

forecasts, where CSU-MLP demonstrates slightly higher skill than the ERO (Schumacher et al. 2021). 
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Figure 3.8. Temporally aggregated BSS for (a) CSU-MLP and (b) ERO calculated at each gridpoint. 
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Figure 3.9. Aggregate BSS for CSU-MLP and the ERO for each region and all forecasts. 
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CHAPTER 4: DAILY SKILL CHARACTERISTICS OF CSU-MLP AND THE ERO AT DAY-1 

 

 In the previous chapter, CSU-MLP (day-1) forecasts were shown to be reliable, with 

discrimination and skill comparable to that of the WPC ERO. However, CSU-MLP skill relative to 

climatology can vary between individual daily forecasts where days with widespread UFVS observational 

coverage result in higher BSS and days with minimal coverage result in lower BSS (Figure 4.1). Also, CSU-

MLP's higher forecast frequency for MRGL, SLGT, and MDT categorical thresholds compared to the ERO 

can be both beneficial and detrimental to daily skill. For example, Figure 4.1 shows two forecast 

examples where CSU-MLP forecasted both higher probabilities and a larger area of categorical risk 

compared to the ERO. In the top row, both CSU-MLP and the ERO performed well as UFVS observations 

were widespread across risk areas, but CSU-MLP had a much higher BSS (0.34) relative to the ERO (0.18). 

In the bottom row, UFVS observations are less numerous and displaced from highest probabilities which 

gives CSU-MLP a much lower BSS (-0.54) compared to the ERO (-0.01). Daily CSU-MLP forecasts in 

comparison with daily ERO forecasts will be briefly investigated. This will lead into the methodology for 

the identification of forecast cases of "interest" to be used when selecting best- and worst-performing 

forecast days for identifying synoptic regimes. 

4.1 Distributions of Daily UFVS, CSU-MLP, and ERO Coverage 

Daily observations of excessive rainfall from UFVS (Figure 4.2) takes the form of an exponential 

distribution. Days with zero UFVS observations are the most frequent for CONUS and all regions, 

although, these occurrences across the CONUS are much less common than for individual regions. 

Figure 4.3 shows daily forecast coverage of any categorical risk forecasted by CSU-MLP and the ERO, 

and, not surprisingly, the smallest coverage bin (0-400 gridpoints) has the highest frequency. Figure 4.4 

shows the same distributions as Figure 4.2 but excluding days with no UFVS observations. For each 

region, days with excessive rainfall observations tend to stay below 1000 gridpoints of coverage, while 
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Figure 4.1. Example forecasts days where CSU-MLP has (a) high and (c) low BSS along with ERO forecasts 

for those same days. Categorical risks for excessive rainfall are in contours (same color scale as Figure 

2.2) and UFVS observations are color-filled.  

 

for the entire CONUS, observations tend to stay below 4000 gridpoints. Likewise, Figure 4.5 shows 

distributions of CSU-MLP and ERO gridpoint coverage excluding days without any categorical risk. For all 

regions except NE and NGP, CSU-MLP forecasts have a higher frequency of forecasts in the lowest bin 

compared to the ERO, which contrasts with the ERO having higher frequency in the lowest bin for most 

regions considering all daily forecasts (Figure 4.3). This would suggest the tendency for CSU-MLP to 

forecast relatively small categorical risk areas when the ERO would have no coverage. 
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Figure 4.2. Frequency distributions of daily UFVS excessive rainfall gridpoint coverage for CONUS and all 

regions through the 589-day period of study, with bin widths of 100 gridpoints. 

 

 
Figure 4.3. Frequency distribution of daily CSU-MLP (blue) and ERO (orange) gridpoint coverage for 

CONUS and all regions through the 589-day period of study, with bin widths of 400 gridpoints. 
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Figure 4.4. Same as Figure 4.2 but excluding days with zero excessive rainfall observations for the given 

regional domain. 

 

 

Figure 4.5. Same as Figure 4.3 but excluding days with zero coverage of CSU-MLP and ERO categorical 

risk, respectively, for the given regional domain. 
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4.2 CSU-MLP and ERO Daily Forecast Skill Comparison 

To assess daily skill, a daily BSS is calculated for both CSU-MLP and ERO forecasts, where 

forecast-observation pairs are aggregated within the CONUS and each of the regional domains for a 

given forecast day. Figure 4.6 shows daily BSS distributions for CSU-MLP (blue) and ERO (orange) for all 

forecasts. Across the regional domains, most forecast days have equal skill relative to the climatological 

forecast (BSS close to zero) as these are predominantly days where the climatological forecast and CSU-

MLP/ERO forecasts do not have categorical risk within the region and no excessive rainfall observations 

occur. For CONUS and all regions, both CSU-MLP and the ERO have distributions centered slightly 

positive of zero considering only forecasts in which at least one UFVS observations occurred (Figure 4.7). 

This indicates that both forecasts have greater skill compared to the climatological forecast on these 

days. However, CSU-MLP has a larger tail towards negative BSS values (except for PCST) indicating the 

increased tendency for CSU-MLP to have poor individual forecast days compared to the ERO. Figure 4.8 

 
Figure 4.6. Daily BSS histograms by region for CSU-MLP (blue) and ERO (orange) day-1 forecasts for the 

period of study. Brown indicates overlap between CSU-MLP and the ERO. 
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directly compares daily BSS between CSU-MLP and the ERO by taking the BSS difference for each day, 

but only for days where a UFVS observation occurred in a given region. Although median differences are 

near zero for most regions, some regions have a noticeable negative skewness (NGP, SGP, MDWST, NE) 

indicating a relatively higher frequency of daily forecasts where CSU-MLP performs worse than the ERO. 

Looking at Figures 4.7 and 4.8 in conjuction, these negative BSS difference forecasts seem to be from 

days in which CSU-MLP has a large negative BSS relative to the ERO as opposed to days where the ERO 

has large positive BSS relative to CSU-MLP (such as the examples provided in Figure 4.1). Figure 4.8 also 

highlights the larger variance in skill performance within the MDWST, NE, and SGP regions, indicating 

that daily BSS from CSU-MLP and ERO forecasts are observed to be more dissimilar- mainly due to the 

larger negative tail.  

 
Figure 4.7. Same as Figure 4.6 but for forecast days where there was a UFVS observation within the 

given regional domain. 
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Figure 4.8. Daily BSS difference by region between CSU-MLP and ERO day-1 forecasts, only considering 

days with a UFVS observation within the given regional domain 

 

 

These plots show that CSU-MLP daily skill can vary substantially from day-to-day, and there is 

reason to investigate potential causes not only to improve upon future iterations of models within the 

CSU-MLP system but also to provide WPC forecasters additional guidance for when daily forecasts tend 

to perform best/worst. This will be done by selecting high/low daily BSS CSU-MLP forecasts, for CONUS 

and regional domains, and identifying the synoptic regimes among these forecasts. Daily forecasts to be 

considered in this analysis will be described in the next section.  

4.3 Selecting Cases 

 While it is important for CSU-MLP to be able to correctly forecast near-zero probability for 

excessive rainfall on quiescent days, these are not necessarily days where WPC forecasters would 

potentially utilize the CSU-MLP forecast, especially since CSU-MLP tends to forecast categorical 

probabilities more frequently than the ERO (Figure 3.4). This would lead one to only look at forecasts 
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where CSU-MLP has any categorical probabilities within a given domain to discard of quiescent forecasts 

from the distribution. Of course, CSU-MLP forecasts do not detect all excessive rainfall events either (see 

ROC curves from Figure 3.7) and case selection of this method could miss potential low daily BSSs, but 

these forecast days tend to be summer days where BSS > 0 due to a relatively low number of 

undetected UFVS observations and widespread high climatology probabilities (≥ 0.05) which result in a 

high 𝐵𝑆𝑐𝑙𝑖𝑚𝑜. However, this selection method also includes additional undesirable CSU-MLP forecasts, 

specifically, low BSS forecasts that are sensitive to small MRGL categorical areas that do not verify with 

UFVS observations. These small areas are a combination of small categorical objects (i.e. a closed 

contour) within a domain, or, for regional forecasts, small areas along the domain border that are a part 

of a larger contiguous object that extends through adjacent regions. To eliminate these kinds of 

forecasts, CSU-MLP must forecast at least a MRGL (≥ 0.05) categorical area of at least 400 gridpoints 

within a given domain to be used in the synoptic analysis. This 400-gridpoint size is designed to 

approximately resemble the smallest ERO categorical object that WPC might issue in an ERO (Figure 

4.9). This also ensures that regional cases only consider categorical areas that extend far enough into a 

region to be a forecast case of "interest". The CSU-MLP 400-gridpoint requirement still retains some 

undesirable forecasts in the distribution, specifically, quiescent forecasts where the daily climatology 

forecast has high values (≥ 0.05) across a given domain. This is similar to the quiescent summertime  

 
Figure 4.9. (Left) An example day-1 ERO with multiple categorical objects and (right) a map showing the 

size of 400 gridpoints. 
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forecasts eliminated by the 400-gridpoint threshold, however, in these forecasts, high climatology is 

widespread enough so that 𝐵𝑆𝑐𝑙𝑖𝑚𝑜 is still greater than 𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 which results in a positive (sometimes 

largely) BSS. To discard these undesirable cases, forecasts with high climatological forecasts (>0.05) 

within the domain must also have UFVS observational coverage of at least 5% percent the high 

climatological forecast gridpoint coverage. This eliminates summertime cases that are "quiescent" 

relative to the daily climatology. The remaining forecasts compose the distribution of forecasts cases of 

"interest" to be used to classify worst- and best-performing forecasts.  

Figure 4.10 shows box-and-whisker plots of daily BSS for all forecasts, with selected forecasts 

plots in Figure 4.11. Daily BSS through for all forecasts shows the same distribution as the histogram  

 
Figure 4.10. Box-and-whisker plots of daily BSS for CSU-MLP forecasts for all 589 forecasts during the 

period of study along with individual BSS shown with green markers. Boxes denote the 25th and 75th 

percentile BSS, with whiskers denoting the 10th and 90th percentile BSS. Orange lines denote the median 

daily BSS for each region.  
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Figure 4.11. Same as Figure 4.10 but for selected forecast cases of "interest". 

 

from Figure 4.6, but median and quantile thresholds are shown explicitly. All regions show median daily 

BSS close to zero as this is influenced by the large number of forecasts days with quiescent conditions. 

However, selected forecasts have quiescent days excluded and, as a result, median values shifted to 

slightly higher BSS for most of the regions. In addition, the width of the interquartile range (between 

25th and 75th percentile) increases, indicating that the distribution for forecasts of "interest" is relatively 

wide for a given region compared to daily skill aggregated across the CONUS. Five of the eight regions 

show large decreases in the 10th percentile threshold, without much change to the 90th percentile 

threshold. This is consistent with the types of forecasts that were discarded, as the large chunk of 

quiescent days removed would naturally broaden the distribution and removal of quiescent days with 

high climatology would reduce the number of high daily BSS forecasts. The best performing region is the 

PCST region, where the 25th and 75th percentile BSS are highest among all the regions (although with a 
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small number of forecasts of interest). Selected forecast daily BSS distributions are also displayed by 

meteorological season (Figure 4.12). For the CONUS, median values do not change between seasons, 

however, the width of the 10th to 90th threshold is wider for DJF and SON. Regional distributions have 

much broader interquartile ranges compared to CONUS. Many regions have extremely low 10th 

percentile thresholds for DJF and SON, while maintaining similar 90th percentile thresholds across 

seasons. While the larger spread in these seasons could be due to smaller samples of forecasts of 

"interest", the consistency of this spread across multiple regions would suggest that CSU-MLP forecasts 

are most vulnerable to low skill days in these seasons.  

 
Figure 4.12. Same as Figure 4.11 but with distributions of daily BSS among each meteorological season 

for each region. 
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4.4 Defining Best- and Worst-Performing Forecasts 

 Best- and worst-performing forecasts are defined as forecasts with daily BSS greater than or 

equal to 75th percentile thresholds and less than or equal to 25th percentile thresholds, respectively. This 

results in a total of 125 cases selected for each best- and worst-performing CONUS-wide forecasts (Table 

4.1) with BSS thresholds of 0.09 and 0.00, respectively. Among the regional forecasts, the greatest 

number of cases selected were for the SE (58) and the least number were for the PCST (7).  Best-

performing BSS thresholds ranged between 0.05 (SW) and 0.14 (PCST), whereas worst-performing BSS 

thresholds ranged between 0.03 (PCST) and -0.09 (NE). These selected cases are used for synoptic 

regime identification in the following chapter. 

 

Table 4.1. Daily BSS thresholds for best-performing forecasts (> 75th percentile) and worst-performing 

forecasts (< 25th percentile) by region along with number of cases selected to each performance group, 

respectively. 

 

Region No. Cases for 75th/25th 75th BSS Threshold 
25th BSS 

Threshold 

CONUS 125 0.09 0.00 

NGP 31 0.09 -0.09 

MDWST 51 0.08 -0.02 

NE 27 0.10 -0.07 

SE 58 0.11 -0.01 

SGP 49 0.09 -0.05 

SW 18 0.06 -0.06 

ROCK 19 0.07 -0.01 

PCST 7 0.14 0.03 
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CHAPTER 5: SYNOPTIC REGIMES OF BEST- AND WORST-PERFORMING CSU-MLP FORECASTS 

 

In this chapter, synoptic regimes are identified among the best- and worst-performing forecasts 

of "interest" from Chapter 4. These forecasts of "interest" are forecasts in a given domain where CSU-

MLP has a categorical risk area of at least 400-gridpoints and, if the climatological frequency is high 

(>0.05), the UFVS observational gridpoint coverage is at least 5% of the high climatological gridpoint 

coverage. In the following sections, the methodology for synoptic regime classification is explained 

along with the analysis of those identified synoptic regimes. 

5.1 Synoptic Regime Classification 

 For best- and worst-performing forecasts of interest, respectively, forecasts are subjectively 

categorized into groups of similar synoptic regimes using ERA5 reanalysis (Hersbach et al. 2020). This 

analysis is done by examination of 12, 18, 00, and 06 UTC synoptic charts within the day-1 timeframe  

corresponding to each forecast. These charts include fields of mean sea-level pressure (MSLP), 2-m dew  

point temperature, 500-hPa geopotential heights and winds, 250-hPa geopotential heights and winds, 

precipitable water (PWAT), 850-hPa dew point temperature and winds, standardized anomaly 500-hPa 

geopotential heights and PWAT. Subjective categorization attempted to consider not only the locations 

and evolutions of large-scale troughs, surface cyclones, and moisture fields, but also diagnosing the  

primary synoptic forcing mechanisms (if any) that lead to convective initiation using the synoptic charts 

(i.e. cyclones, fronts, orography) in conjunction with analysis of composite radar. Regime type is also 

categorized using the two event types described in Chapter 1 from Maddox et al. (1979), along with 

additional categories such as extratropical cyclone (ETC), tropical cyclone (TC), cold front/warm front 

(not to be confused with "frontal" from Maddox et. al 1979), atmospheric river (AR), and cut-off low 

(COL) that are discriminated in similar manners to Kunkel et al. (2012) and Mullens (2021). These events 

are categorized when the UFVS observations and/or maximum CSU-MLP categorical risk contours are 
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within close proximity (roughly within 200 km) to the synoptic feature of interest (i.e. surface cyclone, 

frontal boundary). ETC events are categorized as such when a developed surface cyclone (i.e. closed 

MSLP contour) moves closely (within roughly 200 km) over an area of excessive rainfall risk. This is 

separate from cold/warm front categories, where a swath of UFVS observations and/or CSU-MLP 

categorical risk area is located along a frontal boundary well removed (roughly 500km) from a parent 

surface cyclone. Cold front and warm front regimes, while also having some overlap with "synoptic" and 

"frontal" regime types, are distinguished by the total movement of the frontal boundary throughout the 

forecast period, where these boundaries move on the order of 1000 km through a forecast period. In 

contrast, "synoptic" and "frontal" events have boundaries that are relatively stationary (moving on the 

order of 100km through the forecast period). TC regimes are categorized as such when UFVS 

observations and/or CSU-MLP categorical risk are associated with rainfall from landfalling or inland 

moving TCs (as identified by the National Hurricane Center). COL regimes are defined as regimes where 

there is a closed 500-hPa geopotential height contour near the area of excessive rainfall and/or 

forecasted risk. Lastly, AR regimes are identified where there is an elongated local maximum (horizontal 

length of roughly 1000 km and horizontal width of roughly 100 km) of PWAT near the area of excessive 

rainfall and/or forecasted risk area.  

Composites charts are then created by averaging of each of the individual 00 UTC reanalysis 

fields within the regime, but only considering regimes with a minimum of four representative days. As a 

result, not all best- and worst-performing forecasts of "interest" were used in composite analysis as 

some did not belong in a regime containing at least three additional similar cases. Figure 5.1 and Figure 

5.2 provide an example group of forecasts days that were categorized under the same synoptic regime, 

where subplots of two different chart types are shown using reanalysis valid 00 UTC for each forecast 

period. In this example, most cases have a 500-hPa trough axis (Figure 5.2) that extends through the 

central and southern CONUS that results in large-scale ascent across the southeast along with a surface 
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Figure 5.1. ERA5 reanalysis at 00 UTC (middle of the forecast period) for each case of regime 7 of the 

best-performing CONUS regimes with contours of MSLP, 10-m wind barbs, 2-m surface dew point in 

shading, colored contours of categorical risk from the CSU-MLP forecast, and UFVS observations (dark 

gray shading). Daily BSS is shown in the bottom-left corner of each plot. 

 

 

cyclone (Figure 5.1). The surface cyclone has a moist sector to the southeast that quickly moves 

northward as a warm front, and a north-south oriented cold front to the south of the cyclone that 

moves eastward. A broad swath of UFVS observations and higher CSU-MLP probabilities occur near the 

path of the surface cyclone as these areas received sustained rainfall from lift of a conditionally unstable 

low-level airmass along and north of the surface warm-front as well as rainfall from a cold front passage. 

The regions of high CSU-MLP probabilities closely align with UFVS observations which results in a set of 

forecasts with relatively high BSS. 
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Figure 5.2. ERA5 500-hPa reanalysis at 00 UTC (middle of the forecast period) for each case of regime 7 

of the best-performing CONUS regimes with contours of geopotential height, wind barbs, standardized 

height anomaly in shading, colored contours of categorical risk from the CSU-MLP forecast, and UFVS 

observations (dark gray shading). Daily BSS is shown in the left corner of each plot 

 

Regime groups are identified using best- and worst-performing forecasts of CONUS-wide daily 

skill and regional daily skill. The following sections will examine the worst-performing (11) and best-

performing (9) regimes identified from CONUS-wide forecasts. Many of the of regimes identified from 

regional forecasts are analogous to one or more the CONUS regimes, so these will not be shown 

explicitly. Within the text, regimes will be referred to by their regime number (which is arbitrarily 

assigned) and percentile threshold (i.e. R1-25th corresponds to regime 1 of the worst-performing 

forecasts). 
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5.2 CONUS Worst-Performing Synoptic Regimes 

Table 5.1 shows average daily BSS statistics for worst-performing CSU-MLP forecasts evaluated 

for the CONUS, along with the ERO average for those given cases and the difference between CSU-MLP 

and the ERO. All regimes have CSU-MLP forecasts that performed worse than the daily climatological 

forecasts. Half of the regimes had average ERO BSS less than zero, indicating that WPC forecasters also 

struggled with these regimes. However, CSU-MLP skill was worse on average than that of the ERO, 

which is consistent with CSU-MLP forecasts having a larger negative tail in daily BSS distributions (see 

Figure 4.7). Listed in Table 5.1 are additional regions where the same synoptic regime was identified for 

worst-performing forecasts in those regions. Synoptic groups with multiple additional regions, like R9-

25th, provides a sense of the larger areal extent these synoptic regimes had for excessive rainfall threat. 

The season with the most frequent occurrence of cases within the regime are shown in the last column. 

 

Table 5.1. Characteristics of each identified worst-performing synoptic regime using CONUS-wide daily 

BSS. Number of cases comprising a regime is provided, along with the average CSU-MLP daily BSS among 

those cases (BSS Avg.), the average ERO daily BSS (ERO BSS Avg.), and the difference between CSU-MLP 

and ERO average daily BSS. Other regions indicate regions in which analogous regimes were identified 

using regional daily BSS (as defined in Chapter 4). The season with the most frequent occurrence of 

cases within the regime are shown in the last column 

 

Regime 
No. 

cases 

BSS 

Avg. 

ERO 

BSS 

Avg. 

BSS 

Diff. 
Other Regions Regime Type Season 

No. 

1 4 -0.03 0.02 -0.05 NE, SW cold front JJA 

2 4 -0.03 0.00 -0.03 MDWST, NE mesohigh JJA 

3 8 -0.05 0.05 -0.10 MDWST, NGP frontal JJA 

4 5 -0.07 0.04 -0.11 
NGP, MDWST, ROCK, 

SW 
Synoptic, frontal 

JJA 

5 7 -0.12 -0.03 -0.09 SE TC SON 

6 17 -0.11 -0.04 -0.07 SE, SGP Cold front MAM 

7 8 -0.11 -0.01 -0.10 SE, SGP Warm front MAM 

8 9 -0.16 -0.01 -0.15 
MDWST, NGP, ROCK, 

SGP 
ETC 

MAM 

9 6 -0.15 -0.01 -0.13 NE ETC MAM 

10 8 -0.06 0.01 -0.06 SE Cold front SON 

11 7 -0.24 0.00 -0.24 ROCK, SW Cold front DJF 
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5.2.1. Warm-Season Regimes 

Figures 5.3 and 5.5 show composite reanalysis fields for R1-25th and R2-25th, respectively, 

showing (a) composite heights and winds at 250-hPa, (b) composite 850-hPa winds and PWAT, (c) 

composite 500-hPa heights and winds, and (d) composite MSLP and 2-m dew point temperature. 

Additionally, the relative frequency of CSU-MLP forecasting at least a MRGL (≥ 0.05) categorical risk 

among the forecast days of the regime is displayed in (c) to highlight the area of risk for excessive 

rainfall. Both regimes feature a mid- and upper-level trough across the eastern CONUS, with PWAT 

between 30-40 mm in the areas of risk. Daytime convection increases within or near risk areas and 

 

 
Figure 5.3. ERA5 composite reanalysis for R1-25th showing (a) composite 250-hPa winds, isotachs, and 

geopotential heights, (b) composite 850-hPa winds and PWAT, (c) composite 500-hPa winds, 

geopotential heights, and frequency of CSU-MLP forecasting at least 0.05 probability at a given location 

among the regime cases, and (d) composite MSLP, 2-m winds, and 10-m dewpoint temperatures. All 

composites use the 00 UTC reanalysis during the forecast period of each case. 
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composite radar indicates that convective evolution is predominately controlled by mesoscale and 

storm scale interaction (see radar images of example cases from Figure 5.4 and 5.6). However, R1-25th 

has a higher amplitude trough-ridge pattern across the CONUS with a more distinct eastward moving  

 

 
Figure 5.4. Composite radar imagery with flash flood warning in green polygons (top two rows) and CSU-

MLP forecast contours and UFVS observations (bottom) for the 24-hr period forecast period spanning 12 

UTC 12 July 2020 – 12 UTC 13 July 2020. This forecast case was categorized to R1-25th. Radar images are 

from 18, 20, 22, 00, 02, and 04 UTC within the forecast time period (images obtained from the Iowa 

Environmental Meosnet at http://mesonet.agron.iastate.edu/GIS/radmap_api.phtml).   

 

http://mesonet.agron.iastate.edu/GIS/radmap_api.phtml
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Figure 5.5. Same as Figure 5.3 but for R2-25th. 

 

surface boundary (in contrast to R2-25th ) oriented north-south near the coast, denoted by the east-

west moisture gradient. In most of these cases, this boundary was a cold front with a weak parent 

surface low well north of the risk area. This led to R1-25th primary forcing for convection to be 

categorized as "cold front", much like one of the warm-season patterns identified and described in Agel 

et al. (2019). Additionally, R1-25th hints at a potential monsoon pattern in the southwestern CONUS 

associated with weak mid- and upper-level winds and increased moisture in southern Arizona, although 

excessive rainfall observations were variable between cases. R2-25th is different from R1-25th in that the 

gradual moisture gradient is oriented across a weak east-west boundary, and mid- and upper-level 

winds are generally weak in this area with little low-level synoptic forcing. In many cases, there was not 

a distinguishable surface boundary across the risk area, but composite radar indicated that convection 

was more organized than R1-25th, as convective complexes grew upscale with a wider coverage of 

precipitation. Figure 5.6 shows radar imagery of such an evolution from an R2-25th case, where there is 
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greater coverage of rainfall by larger thunderstorm complexes near and south of the categorical risk 

area in the lower Midwest. This is in contrast to that of the R1-25th case (Figure 5.4), where afternoon 

and evening convection associated with the frontal boundary is less widespread in the lower Midwest 

region. Thus, the primary forcing is categorized as "mesohigh" (Maddox et al. 1979) for R2-25th as 

convective organization is predominantly influenced by cold pool evolutions.  

 
Figure 5.6. Same as Figure 5.4 but for the 24-hr forecast period spanning 12 UTC 11 August 2020 – 12 

UTC 12 August 2020. This forecast case was categorized to R2-25th. 
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 Figure 5.7 and 5.9 shows composite reanalysis for R3-25th and R4-25th, respectively, where CSU-

MLP identifies risk areas in the northern plains and the upper Midwest. R3-25th is characterized by zonal 

mid- and upper-level flow across the CONUS, a weak east-west surface boundary across the upper 

Midwest associated with an occluded surface low pressure in southern Canada, a southerly to 

southwesterly low-level jet in the central CONUS, and 30-40 mm of PWAT. In most cases, convection 

forms at night on the cool-side of the weak surface boundary, where training of convective cells appears 

to occur at different locations. This is a typical pattern for nocturnal MCSs and "frontal" flash flood 

events (Maddox et al. 1979) resulting in a classification of "frontal" (Figure 5.8 provides an example 

radar evolution of a case of this regime). R4-25th (Figure 5.9) is characterized by a slow-moving large-

scale trough across the western CONUS and a ridge axis centered over the central CONUS. Associated 

with the southwesterly mid-level flow across the Rockies is relatively low surface pressure in the lee of 

the Rockies from Montana down through New Mexico. At low-levels, southeasterly flow results in a  

 
Figure 5.7. Same as Figure 5.3 but for R2-25th. 
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Figure 5.8. Same as Figure 5.4 but for the 24-hr forecast period spanning 12 UTC 2 June 2020 – 12 UTC 3 

June 2020. This forecast case was categorized to R3-25th. Radar images are from 22, 00, 02, 04, 06, and 

08 UTC within the forecast time period. 

 

 

narrow corridor of moisture through the central and northern plains, with a northwest-southeast warm 

front positioned in the upper Midwest. Although CSU-MLP forecasts categorical risk across a large 

swath, highest frequencies and probabilities are located along this warm front. In these cases, 

convection is often initiated along the cool-side of the warm front, as there is a slight perpendicular 

component to 850-hPa winds that would result in forcing associated with the "frontal" event type. There  
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Figure 5.9. Same as Figure 5.3 but for R4-25th. 

 

 

is also strong synoptic forcing associated with the large-scale trough, which provides an environment for 

convection initiation across the Rockies and upscale growth to MCSs across the warm sector in the 

plains. This slow-moving pattern also results in consecutive days of excessive rainfall potential, much like 

that of the "synoptic" events from Maddox et al. (1979). Due to the various forcing mechanisms for 

potentially excessive rainfall, this regime's forcing was classified as a hybrid between "synoptic" and 

"frontal". 

The last synoptic regime among the worst-performing warm-season forecasts is that of offshore 

TCs in the northern Gulf of Mexico (R5-25th; Figure 5.10). TCs in these regimes tend to be slow-moving 

and/or approaching landfall during the forecast period, with widespread PWAT values greater than 40 

mm and highest values around 55 mm to the east of the TC but offshore. A key feature of these events is 

the limited northward extent of inland moisture. This is in large part due to a relatively strong surface 

anticyclone across the eastern CONUS, with dry northeasterly low-level winds across the southeast.  
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Figure 5.10. Same as Figure 5.3 but for R5-25th 

 

 

Although CSU-MLP categorical probabilities are confined along the coastline, average forecast skill is the 

worst among the warm-season regimes. 

Among all five of these regimes categorized, three of them have relatively few cases (R1-25th, 

R2-25th, and R4-25th). This might suggest that these synoptic regimes rarely occur for poor CSU-MLP 

forecasts, however, this is only when considering CONUS-wide forecast skill. When considering skill 

among the different training region domains, these regimes occur more often. Table 5.2 compares 

average daily BSS for CSU-MLP and the ERO for the five warm-season worst-performing CONUS regimes, 

and the different regions in which the same regime was identified for either best- or worst-performance 

at the regional level. R1-25th, R2-25th, and R4-25th all show increase in the number of cases identified for 

each regime at the regional level, and performance among these regions can vary. This suggests that 

CSU-MLP forecasts in these regimes do not perform poorly across multiple regions simultaneously for a 

given day. Instead, CSU-MLP seems to identify a broad area of risk with higher categorical probabilities 
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with extreme rainfall usually occurring within a smaller area of the forecasted categorical risk. Except for 

R4-25th, this seems to be due to the lack of strong large-scale forcing. While Table 5.2 does not show R3-

25th and R5-25th to have inter-regional variability, they do have analogous best-performing regimes (R3-

75th and R4-75th, respectively) which suggests variable performance for those regimes as well. 

 

Table 5.2. Regional daily BSS average statistics for regimes analogous to worst-performing CONUS warm-

season regimes.  

 

CONUS Regime 
Region, Percentile No. cases BSS Avg. ERO BSS Avg. BSS Diff. 

No. 

1 CONUS 25th 4 -0.03 0.02 -0.05 

 NE 25th 9 -0.17 0.01 -0.19 
 SW 25th 5 -0.80 -0.01 -0.78 
 SW 75th 5 0.07 0.02 0.05 

2 CONUS 25th 4 -0.03 0.00 -0.03 
 NE 25th 9 -0.14 -0.07 -0.07 
 NE 75th 12 0.16 0.08 0.08 
 MDWST 25th 13 -0.30 -0.10 -0.19 

3 CONUS 25th 8 -0.05 0.05 -0.10 

 NGP 25th 4 -0.18 -0.01 -0.18 

 MDWST 25th 4 -0.26 -0.05 -0.20 

 MDWST 75th 6 0.11 0.13 -0.02 

4 CONUS 25th 5 -0.07 0.04 -0.11 

 NGP 25th 9 -0.34 0.02 -0.36 

 NGP 75th 8 0.14 0.11 0.03 

 MDWST 75th 4 0.13 0.17 -0.04 

 ROCK 75th 10 0.13 0.07 0.06 

 SW 25th 8 -1.01 -0.31 -0.70 

5 CONUS 25th 7 -0.12 -0.03 -0.09 

 SE 25th 9 -0.38 -0.20 -0.19 

 

 

5.2.2 Spring/Fall Regimes 

 Five regimes were identified that occurred during the transition seasons of spring and fall. 

Figure 5.11 shows reanalysis composites for R6-25th that resulted in poor CSU-MLP forecasts across the 

southern CONUS. It is characterized by a large-scale trough axis that extends through the southwestern 

CONUS and into northwest Mexico, PWAT ranging from 20-30 mm across the risk area, and a relatively 
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strong 250-hPa jet stream. There is also the presence of a positive tilt 500-hPa trough across the central 

CONUS. Associated with this trough is an anticyclone centered over the central CONUS with a cold front 

in southern Texas intersected with a PWAT maximum in southeast Texas. Among these cases, there was 

a cold front that was either moving southeastward or stationary, with southerly 850-hPa flow and 

rainfall to the north of the surface boundary. Typical cases of this regime included a broad area of  

moderate stratiform precipitation across the southern plains, with isolated instances of embedded 

convection. However, the progressive nature of the cold front and/or the relatively modest PWAT values 

(25-30 mm) limit the occurrence of excessive rainfall. Convection in these cases is clearly identifiable 

with the cold front with the parent surface low well removed from the area, thus, forcing is determined 

to be "cold front". A total of 17 cases were identified in R6-25th- this was the most numerous among 

worst-performing regimes. This regime will be revisited in the final section of this chapter where it will 

be contrasted to the most numerous best-performing regime.  

 
Figure 5.11. Same as Figure 5.3 but for R6-25th 
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R7-25th (Figure 5.12) is similar to R6-25th, except southerly low-level flow has strengthened and 

extended down to the surface due to lowering surface pressures in lee of the Rockies as the southwest 

mid-level trough is positioned slightly eastward. A warm front is often moving quickly to the north in 

these cases, and this is usually where convection forms (if any), thus, the forcing mechanism is 

determined to be "warm front". Dew point temperatures remain at or below 10°C around the area of 

risk, and PWAT is around 20-30 mm. Once again, it seems the modest moisture parameters are the 

primary inhibitors for excessive rainfall, as some cases have very little precipitation within and around 

CSU-MLP risk areas, let alone extreme precipitation.  

 

 
Figure 5.12. Same as Figure 5.3 but for R7-25th 

 

 Figure 5.13 shows the reanalysis composite for R8-25th, which is characterized by a strong large-

scale trough similar to that of R6-25th and R7-25th, but with a stronger downstream ridge. There is also a 

surface cyclone across the central plains, situated beneath the left exit region and right entrance region 
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of two separate jetstreaks, with an eastward extending warm front positioned across the Midwest. The 

strong cyclone induces a composite 20-30 kt southerly 850-hPa flow within a broad moist sector 

characterized by modest dew point temperatures (10-16 C) and PWAT (20-30 mm). This southerly flow 

impinges upon the warm front and turns westward, with the higher PWAT values north of the surface 

warm front and in the "wrap-around" region of the cyclone. In these cases, convection often formed 

along the warm front near the eastward moving surface cyclone, as this area was also the most frequent 

risk of excessive rainfall from CSU-MLP. Thus, forcing was categorized as "ETC". However, despite the 

very strong forcing associated with these ETCs of this regime, it seems the rather modest moisture fields 

played a role in the limited coverage of excessive rainfall observations.  

Figures 5.14 and 5.15 show reanalysis composite of R9-25th and R10-25th, respectively, which 

both highlight areas of risk for excessive rainfall along the east coast. R9-25th is characterized by a trough 

axis through the northeast, with a jetstreak located at the base of the trough. In correspondence with 

 
Figure 5.13. Same as Figure 5.3 but for R8-25th 
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the left exit region of the jetstreak is a surface cyclone off the coast. Higher dew point temperatures are 

removed from land, but southeasterly 850-hPa winds that wrap around the cyclone show elevated 

PWAT values (15-20 mm) that makes its way inland. Forcing for this regime is classified as "ETC", 

however, convective precipitation rarely occurred over land. R10-25th has a highly amplified pattern 

across the CONUS, with a trough axis across the east and an occluded surface cyclone in eastern Canada. 

Highest dew point temperatures and PWAT are located offshore, with PWAT less than 20 mm adjacent 

to the coast. A strong, eastward moving cold front is located across the risk area, which is well removed 

from the parent surface low. Thus, forcing is categorized as "cold front". Again, the lack of a broad area 

of higher low-level and column moisture despite strong forcing from large-scale troughs seems to be an 

inhibiting factor for excessive rainfall. 

 

 
Figure 5.14. Same as Figure 5.3 but for R9-25th 
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Figure 5.15. Same as Figure 5.3 but for R10-25th 

 

In contrast to some of the worst-performing warm-season regimes, all the spring/fall regional 

regimes corresponding to the CONUS-based regimes show poor average skill (Table 5.3). Even compared 

to the ERO, which does not perform well for each of these regimes, skill from CSU-MLP is much lower on 

average. Despite the strong synoptic forcing associated with all these events, modest low-level and 

column moisture appears to be the prohibiting factor for excessive rainfall. 

5.2.3 Winter Regimes 

 Among the worst-performing CONUS regimes, there was only one regime where most 

occurrences were in the winter. This regime is characteristic of an inland penetrating cold front with 

southwesterly moisture transport that affects the southwestern CONUS (e.g. Rivera et al. 2012). Figure 

5.16 shows this regime, with a large-scale trough axis centered across the western CONUS and 

southwesterly mid-level flow across the southwest CONUS. This composite was formed using the 12 UTC 

reanalysis among the cases, as the excessive rainfall threat was for rainfall that occurred during the first 
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Table 5.3. Regional daily BSS average statistics for regimes analogous to worst-performing CONUS 

spring/fall regimes. 

 

CONUS Regime 
Region, Percentile No. cases BSS Avg. ERO BSS Avg. BSS Diff. 

No. 

6 CONUS 25th 17 -0.11 -0.04 -0.07 

 SGP 25th 24 -1.81 -0.29 -1.52 
 SE 25th 9 -0.63 -0.77 0.15 

7 CONUS 25th 8 -0.11 -0.01 -0.10 

 SGP 25th 16 -1.6 -0.18 -1.42 

 SE 25th 9 -0.32 -0.26 -0.06 

8 CONUS 25th 9 -0.16 -0.01 -0.15 

 NGP 25th 11 -0.8 -0.07 -0.73 

 MDWST 25th 8 -1.35 -0.33 -1.02 

 SGP 25th 4 -1.13 0.00 -1.13 

9 CONUS 25th 6 -0.15 -0.01 -0.13 

 NE 25th 6 -1.77 -0.04 -1.73 

10 CONUS 25th 8 -0.06 0.01 -0.06 

 SE 25th 5 -0.03 0.01 -0.04 

 

 

  
Figure 5.16. Same as Figure 5.3 but for R11-25th 
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half of the day-1 time period.  Composite PWAT of 20-25 mm is located ahead of a mid-level front to the 

southwest of the Baja peninsula, and this moisture penetrates southern Arizona and New Mexico. 

However, inland PWAT values are below 20 mm which would appear to limit excessive rainfall in the 

area despite the strong trough and orographic ascent along the terrain in central Arizona. Table 5.4 

shows the skill statistics for this regime when identified looking at only regional forecasts, with CSU-MLP 

having much lower skill compared to ERO. There was a large enough sample of cases (4) of this regime 

where forecasts performed well, but these are largely outnumbered by worst-performing cases (15).  

 

Table 5.4. Regional daily BSS average statistics for regimes analogous to worst-performing CONUS winter 

regimes. 

 

CONUS Regime 
Region, Percentile No. cases BSS Avg. ERO BSS Avg. BSS Diff. 

No. 

11 CONUS 25th 7 -0.24 0.00 -0.24 

 SW 25th 15 -0.52 -0.18 -0.34 
 SW 75th 4 0.11 0.04 0.07 

 ROCK 25th 7 -0.21 0.00 -0.21 

 

 

5.3 CONUS Best-Performing Synoptic Regimes 

Table 5.5 shows average daily BSS statistics for best-performing CSU-MLP forecasts evaluated 

for the CONUS, along with the ERO daily BSS for those given cases. CSU-MLP forecasts have either equal 

or slightly greater skill than the ERO for each of the regimes. However, based on the daily BSS difference 

distributions from Figure 4.8, these regimes are not necessarily forecast regimes where CSU-MLP skill is 

greatest compared to the ERO (except for R7-75th where average daily BSS difference is 0.11).  

5.3.1 Warm-Season Regimes 

Figure 5.17 shows reanalysis composites for R1-75th, characterized by a slow-moving trough 

across the northern Rockies and a COL in the eastern CONUS. Although there are two areas that CSU-

MLP frequently forecasts for, this regime was composited to focus on the COL in the eastern CONUS, as 
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Table 5.5. Same as Table 5.1 but for best-performing synoptic regimes using CONUS-wide daily BSS. 

 

Regime 
No. 

cases 

BSS 

Avg. 

ERO 

BSS 

Avg. 

BSS 

Diff. 
Other Regions Regime Type Season 

No. 

1 7 0.13 0.10 0.03 NE, SE COL JJA 

2 11 0.17 0.14 0.02 NGP synoptic JJA 

3 9 0.12 0.12 0.00 MDWST frontal JJA 

4 8 0.25 0.23 0.02 SE, SGP TC JJA 

5 5 0.17 0.16 0.01 SE TC SON 

6 31 0.16 0.15 0.01 SE, SGP, MDWST, NGP synoptic MAM 

7 7 0.18 0.11 0.08 NE ETC MAM 

8 6 0.19 0.08 0.11 PCST AR, orography DJF 

9 14 0.23 0.19 0.04 SE, SGP, MDWST, NE ETC DJF 

 

 

 

 
Figure 5.17. Same as Figure 5.3 but for R1-75th 
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Figure 5.18. Same as Figure 5.4 but for the 24-hr forecast period spanning 12 UTC 7 June 2019 – 12 UTC 

8 June 2019. This forecast case was categorized under R1-75th. Radar images are from 12, 17, 22, 02, 07, 

and 12 UTC within the forecast time period. 

 

 

performance in the northern plains was variable for these cases. Associated with the COL, an inverted 

surface trough axis extends through North Carolina, with easterly upslope flow impinging upon the 

Appalachians. There is abundant low-level moisture adjacent to the surface trough, with widespread 

dew point temperatures greater than 18 C and PWAT ranging from 35-45 mm. The COL also provides  
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instability for widespread convection, as often happens with COL in the summer as they move over a 

moist low-level air mass (Nieto et al. 2008; Shepherd et al. 2011). Daytime convection increases  around 

the risk area, with cold-pool interactions playing a large role in the evolution of convection (Figure 5.18 

shows radar evolution of an example case of this regime). Thus, forcing is categorized as "COL ". R2-75th 

(Figure 5.19) is nearly identical to R1-75th, but cases are selected such that high skill forecasts occur on 

all days across the central and northern plains. This region is influenced by a slow-moving large-scale 

trough across the northern Rockies. Southerly low-level flow transports a corridor of 25-35 mm PWAT 

through the central and northern plains. In these cases, there is often a weak surface cyclone that 

develops in the northern plains, with a slow-moving front serving as focus for convective initiation. 

Multiple MCSs develop and propagate into the warm sector at various times of the day. This regime has 

close resemblance to the "synoptic" regime from Maddox et al. (1979) and is categorized as such. 

 

 

 
Figure 5.19. Same as Figure 5.3 but for R1-75th 
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Figure 5.20 shows R3-75th, which is analogous to R3-25th from the worst-performing cases (Figure 5.7). 

This is characterized by zonal mid- and upper-level flow across the CONUS, a weak boundary across the 

upper Midwest, a southerly to southwesterly low-level jet in the central CONUS, and PWAT approaching 

40 mm. Nocturnal convection is often initiated along the cool side of the surface front, with numerous 

excessive rainfall observations are across the forecasted risk area (see radar case example in Figure 

5.21). Differences in composite PWAT between the two show that the best-performing regime has 

higher PWAT across the central plains and upper Midwest (Figure 5.22). Geopotential heights are also 

higher across southern Canada for the best-performing regime, with a ridge in height difference 

implying a weaker zonal jet in the northern plains.  

 

 
Figure 5.20. Same as Figure 5.3 but for R1-75th 
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Figure 5.21. Same as Figure 5.4 but for the 24-hr forecast period spanning 12 UTC 25 July 2020 – 12 UTC 

26 July 2020. This forecast case was categorized under R3-75th.  

 

Figures 5.23 and 5.25 show landfalling TC regimes along the gulf coast (R4-75th) and inland 

moving TC's in the southeast (R5-75th), respectively. These regimes are separated amongst each other by  

whether landfall occurred during the forecast time period. The landfalling TCs are characterized by 

widespread PWAT above 40 mm, with a maximum over 50 mm in Louisiana. Similar to R5-25th from the 
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Figure 5.22. Difference plot of ERA5 reanalysis composite 500-hPa geopotential heights (contour) and 

composite PWAT (color fill) between R3-75th and R3-25th. 

 

 

 

 
Figure 5.23. Same as Figure 5.3 but for R4-75th 
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Figure 5.24. Same as Figure 5.16 but between R4-75th and R5-25th. 

 

 

 
Figure 5.25. Same as Figure 5.3 but for R4-75th 
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worst-performing forecasts, there is a strong surface anticyclone centered over the northeast CONUS.  

However, there is greater low-level moisture and PWAT to the north surrounding the TC (Figure 5.24) 

which results in a larger coverage of CSU-MLP risk that yields a high skill forecast. Inland moving TC's 

also have high skill as the associated large core of high PWAT is well inland which results in a broad area 

of excessive rainfall risk. 

Among all five of these regimes, CSU-MLP forecasts performed well for analogous regimes 

identified at the regional level (Table 5.6). R2-25th was the only one with a worst-performing group at 

the regional level (NGP), however, there were more than three times as many best-performing cases 

(16) than worst-performing cases (5). The ERO performed well in all the regional forecasts, especially for 

the R4-75th and R5-75th where the ERO outperforms CSU-MLP in the SGP and SE regions. In contrast to 

the worst-performing warm-season regimes, these regimes had either relatively stronger forcing among 

similar moisture (R1-75th, R2-75th, R4-75th, R5-75th vs R1-25th, R2-25th) or higher moisture among weaker 

forcing (R3-75th vs R3-25th). 

 

Table 5.6. Regional daily BSS average statistics for regimes analogous to best-performing CONUS warm-

season regimes. 

 

CONUS Regime 
Region, Percentile No. cases BSS Avg. ERO BSS Avg. BSS Diff. 

No. 

1 CONUS 75th 7 0.13 0.10 0.03 

 NE 75th 7 0.19 0.15 0.04 
 SE 75th 7 0.17 0.15 0.02 

2 CONUS 75th 11 0.17 0.14 0.02 
 NGP 75th 16 0.19 0.11 0.08 
 NGP 25th 5 -0.18 0.00 -0.18 

3 CONUS 75th 9 0.12 0.12 0.00 

 MDWST 75th 6 0.11 0.13 -0.02 

4 CONUS 75th 8 0.25 0.23 0.02 

 SE 75th 8 0.34 0.28 0.06 

 SGP 75th 7 0.25 0.35 -0.11 

5 CONUS 75th 5 0.17 0.16 0.01 

 SE 75th 10 0.2 0.26 -0.06 
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5.3.2 Spring/Fall Regimes 

 Figure 5.26 shows the reanalysis composite for R6-75th, which is a characterized by a slow-

moving large-scale trough axis over the central CONUS. Lower surface pressures are present across the  

central CONUS just ahead of the mid- and upper-level trough, denoting the average location of quasi-

stationary fronts among the cases in this regime. A corridor of PWAT ranging from 30-40 mm is in the  

warm sector ahead of the front, along with a southwesterly LLJ parallel to the surface boundary from 

east Texas up through the Great Lakes. In these cases, there is often a shortwave that travels northeast 

downstream of the trough axis that serves as a focus for convective initiation along and near the quasi-

stationary surface boundary. Convection forms into a variety of MCSs that traverse out into the warm 

sector to the south and/or east, with repeated episodes of heavy rainfall due to the slow-moving large- 

 

 
Figure 5.26. Same as Figure 5.3 but for R4-75th 
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Figure 5.27. Same as Figure 5.4 but for the 24-hr forecast period spanning 12 UTC 24 May 2019 – 12 UTC 

25 May 2020. This forecast case was categorized under R6-75th.  

 

scale pattern. Figure 5.27 and 5.28 show case examples in which MCSs from on consecutive days across 

the central CONUS, resulting in widespread flash flood warnings. This pattern resembles nearly exactly 

the "synoptic" type flash flood events from Maddox et al. (1979) and is categorized as such. This regime 

had the greatest number of cases (31) for any identified regime and represents a typical best-performing  
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Figure 5.28. Same as Figure 5.4 but for the 24-hr forecast period spanning 12 UTC 25 May 2019 – 12 UTC 

26 May 2020. This forecast case was categorized under R6-75th.  

 

 forecast scenario with moderate forcing and relatively higher moisture events (this regime will be 

compared to R6-25th at the end of the chapter). 

The other spring/fall regime of the best-performing forecasts is R7-75th (Figure 5.29), which is 

characterized by a large-scale trough axis across the eastern CONUS and a strong surface cyclone 

moving northeast across the northeast CONUS. Strong 850-hPa southwesterly flow transports a swath of 
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25-35 mm PWAT east surface cold front. This somewhat analogous to R10-25th from the worst- 

performing forecasts. However, this regime has the cyclone center much further west such that the 

attending warm and cold front are across land along with the moist sector. In addition, the mid- and 

upper-level trough-ridge pattern is more amplified, with the primary jetstreak residing across the top of 

the ridge axis. Forcing is categorized as "ETC" and is analogous to pattern "C2" from Agel et al. (2019).  

Performance for analogous spring/fall regimes categorized at the regional level all have slightly 

higher skill than the ERO (Table 5.7). There are numerous regional cases for R6-75th, particularly for SGP 

forecasts with 35. CSU-MLP average daily BSS is slightly higher compared to the ERO which is consistent 

with warm-season regimes. These spring/fall regimes also have more instances of excessive rainfall than 

worst-performing regimes seemingly due to the higher low-level moisture and PWAT across the 

forecasted risk areas despite comparable or greater synoptic forcing. 

 

 
Figure 5.29. Same as Figure 5.3 but for R4-75th 
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Table 5.7. Regional daily BSS average statistics for regimes analogous to best-performing CONUS 

spring/fall regimes. 

 

CONUS Regime 
Region, Percentile No. cases BSS Avg. ERO BSS Avg. BSS Diff. 

No. 

6 CONUS 75th 31 0.16 0.15 0.01 

 SGP 75th 35 0.21 0.18 0.03 
 SE 75th 16 0.21 0.20 0.01 

 MDWST 75th 10 0.22 0.22 0.00 

 NGP 75th 10 0.19 0.19 0.00 

7 CONUS 75th 7 0.18 0.11 0.08 

 NE 75th 8 0.21 0.13 0.08 

 

5.3.3 Winter Regimes 

 R8-75th and R9-75th (Figure 5.30 and 5.31, respectively) are the two regimes with most frequent 

case occurrence in DJF, although, these regimes were common in spring/fall months. R9-75th is that of 

landfalling AR in the northwestern CONUS (e.g. Warner et al. 2012). A large-scale ridge axis is anchored 

across the western CONUS, with a jet streak at the top of the ridge axis. A surface ridge is co-located  

 
Figure 5.30. Same as Figure 5.3 but for R8-75th 
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with the upper-level ridge, with westerly low-level flow and a relatively moist air mass impinging upon 

the terrain of the Washington. PWAT just offshore of the risk area is 20-25 mm, which is not particularly 

high for these events. However, this is largely due to slightly different orientations of the narrow ARs 

which cause the locally high PWAT values to be smoothed when composited.  

R10-75th is characterized by a strong large-scale trough across the central CONUS, with a low 

surface pressure across the southeast and northward moving warm front to the east of the low. 

Widespread PWAT of 30-40 mm are present across the southeast, with the 850-hPa southwesterly jet 

extending well north of the warm front position. In these cases, there is usually a surface cyclone that  

develops at various locations within the composite low-pressure region, and persistent convective 

initiation along the warm front with a broad shield of stratiform precipitation with embedded 

convection extending northward. In addition, some cases feature a squall line forced by the trailing cold  

 
Figure 5.31. Same as Figure 5.3 but for R8-75th 
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front that traverses some of the same regions that experienced precipitation from the warm front. Due 

to the strong forcing provided by the large-scale trough and surface cyclone and fronts, this regime is 

categorized as ETC. This regime resembles that of the "Strong IVT" regime identified by Moore et al. 

(2015).  

R8-75th does not have any analogous regimes identified at the regional level (Table 5.7). While 

the six cases identified at the CONUS-level showed a clear pattern for CSU-MLP to have high 

performance for these AR events, there was not a large enough sample of best-performing forecasts in 

the PCST (only 7 selected cases among the period of study) to create a group of at least four cases, as 

locations of the ARs varied latitudinally across the region. R9-75th shows a different regional pattern 

among some of the other large-scale regimes, where regional skill varies among the different regions 

affected. However, this seems to be largely due to the location of the system relative to the defined 

regional boundaries, as poor regional forecasts had small areas of risk near the SE, MDWST, and NE that 

did not observe excessive rainfall. ERO forecasts for these worst-performing regional forecasts do not 

perform well either, but they have greater skill than CSU-MLP which is largely from CSU-MLP forecasting 

greater categorical risk area into these adjacent regions. 

 

Table 5.8. Regional daily BSS average statistics for regimes analogous to best-performing CONUS 

spring/fall regimes 

 

CONUS Regime 
Region, Percentile No. cases BSS Avg. ERO BSS Avg. BSS Diff. 

No. 

8 CONUS 75th  6 0.19 0.08 0.11 

9 CONUS 75th  14 0.23 0.19 0.04 
 SE 75th  17 0.25 0.19 0.07 
 SGP 25th  5 -0.75 -0.04 -0.71 

 MDWST 75th  13 0.17 0.12 0.05 

 MDWST 25th  10 -1.05 -0.37 -0.68 

 NE 25th  4 -2.89 -0.18 -2.71 
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5.4 Contrasting Typical Best- and Worst-Performing Forecasts 

 A general pattern emerges when investigating best- and worst-performing CSU-MLP forecasts, 

particularly for regimes outside of the warm-season: both tend to be from strong synoptic forcing 

events, however, moisture levels and its areal extent seem to play a role in forecast performance. Two 

examples of these types of events are R6-75th (Figure 5.21) and R6-25th (Figure 5.8) with each regime 

containing the most numerous cases out of all the regimes (31 and 17, respectively). R6-75th was 

classified as a "synoptic" regime due to the widespread convective episodes across a broad area of the 

southern and central CONUS, and R6-25th was classified as a "cold front" regime due to strong forcing 

for precipitation along and north of a cold/stationary front in the southern plains. Figure 5.25 shows 

difference plots using the composite reanalysis from these two regimes. The position of the 250-hPa  

 
Figure 5.25. Difference plots of ERA5 reanalysis composite for (a) 250-hPa geopotential heights 

(contour) and zonal wind speed (color fill), (b) 500-hPa geopotential heights (contour) and PWAT (color 

fill), (c) 850-hPa geopotential heights (contour) and meridional wind speed (color fill), and (d) MSLP 

(contour) and 2-m dew point temperature (color fill) between R6-75th and R6-25th. 
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jetstream is much further north in R6-75th (as indicated by the positive zonal wind contour fill (a) across 

southeast Canada) due to a strong ridge across the eastern CONUS that forced the jet stream 

northeastward across the central CONUS. This places the central CONUS in the right entrance regions of 

the jet stream which favors upper-level divergence and low surface pressure. In contrast, the jet stream 

across the southeast CONUS places the central CONUS in the left entrance region which favors upper-

level convergence and high surface pressures. The difference in MSLP is evident in (d), where low MSLP 

in R6-75th are co-located with high MSLP in R6-25th, resulting in a broad warm/moist sector with 

southerly low-level moisture transport, as composite PWAT (b), 2-m dew point temperatures (d) and 

meridional component of 850-hPa winds (c) are much higher for R6-75th. CSU-MLP risk for excessive 

rainfall is confined to the southern plains for R6-25th, where PWAT is marginally less (0-5 mm) than R6-

75th with a similar 850-hPa meridional wind speed. However, the lower 2-m dew point temperatures 

and northerly winds for R6-25th (Figure 5.8) resulted in limited or non-existent instability for surface-

based convection among these cases.  

The contrast between these two most common regimes is apparent. The stronger ridging in the 

eastern CONUS in advance of a trough in R6-75th helps establish a broad warm sector and threat for 

excessive rainfall ahead of the trough which typically yield favorable forecasts for excessive rainfall. 

These would be conditions that occur during spring or fall where there is a common overlap between 

relatively high atmospheric moisture and larger amplitude troughs (e.g. R7-75th, R9-75th) or for large 

amplitude troughs in the summer that affect the northern regions of the CONUS (e.g. R1-75th, R2-75th). 

Whereas the jet stream positioned further south along with the strong surface anticyclone in the central 

CONUS in R6-25th confines moisture to the southern CONUS where excessive rainfall probabilities 

typically verify with minimal UFVS observations. These would be much like conditions during cooler 

months where forcing for ascent is prevalent but higher atmospheric moisture conditions are limited 

(e.g. R6-25th, R7-25th, R8-25th, R9-25th, R10-25th, R11-25th).  
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

 

 Aggregate results show that CSU-MLP day-1 forecasts are reliable, provide adequate 

discrimination of excessive rainfall events and non-events (AuROC =0.819), and have comparable skill to 

that of the ERO (CSU-MLP BSS = 0.081; ERO BSS = 0.085). However, CSU-MLP tends to forecast larger 

areas and higher probabilities of categorical risk compared to the ERO. This tendency results in daily BSS 

from CSU-MLP in having a larger variance compared to the ERO, where days with widespread UFVS 

observations rewards skill but day with little UFVS punishes skill. Given best- and worst-performing 

forecasts, consistent patterns were observed among different synoptic regimes during different times of 

the year (Table 6.1). For warm-season regimes, synoptic forcing for convection is generally weakest but 

instability and moisture for convection is widespread. Thus, extreme precipitation is influenced largely 

by MCS and cold-pool evolutions. Areas of CSU-MLP categorical risk were typically in the NGP, MDWST, 

and NE regions. Among these, forecasts that consistently perform best were the ones with strong 

synoptic forcing (e.g. R1-75th, R2-75th), whereas forecasts with weak synoptic forcing (e.g. R2-25th, R3-

25th, R3-75th) had inconsistency in their performance, particularly for large areas of forecasted risk 

where there was inter-regional variability. TC regimes were also among the warm-season regimes that 

performed well (R4-75th, R5-75th), but when the TC remained offshore with dry air inland (R5-25th), 

forecasts were among the worst-performing. For the rest of the year, strong synoptic forcing (e.g. ETCs 

and fronts) is omnipresent among the regimes but with more variable column moisture. Forecasts that 

consistently perform best have composite PWAT values that range from 25-45 mm across a large swath 

of CSU-MLP risk areas (e.g. R6-75th, R7-75th, R9-75th), whereas forecasts that perform worst have 

composite PWAT values ranging from 15-35 mm (e.g. R6-25th, R7-25th, R8-25th, R9-25th, R10-25th, R11-

25th) with limited extent of CSU-MLP risk area. These regimes occurred most frequently during spring 

and fall months (although winter occurrences were common) and across various regions east of the  
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Table 6.1. Regime identifier along with each regime type's synoptic forcing and strength classification, 

composite PWAT across the CSU-MLP excessive rainfall risk area, regions with analogous regimes, and 

season of most frequent occurrence of cases. 

 

Regime Regime Type 
No 

Cases 

Synoptic 

Forcing 

Strength 

Composite 

PWAT 

(mm) 

Other Regions Season 

R1-25th  cold front 4 strong 30-40  NE, SW JJA 

R1-75th  COL, orography 7 strong 35-45 NE, SE JJA 

R2-25th  mesohigh 4 weak 30-40  MDWST, NE JJA 

R3-25th frontal 8 weak 30-40 MDWST, NGP JJA 

R3-75th frontal 9 weak 35-45 MDWST JJA 

R4-25th Synoptic, frontal 5 
Strong, 

weak 
25-40 

NGP, MDWST, ROCK, 

SW 
JJA 

R2-75th  synoptic 11 strong 25-35 NGP JJA 

R5-25th TC 7 strong 35-45 SE SON 

R4-75th TC 8 strong 40-50 SE, SGP JJA 

R5-75th TC 5 strong 40-50 SE SON 

R6-25th Cold front 17 strong 20-40 SE, SGP MAM 

R7-25th Warm front 8 strong 20-30 SE, SGP MAM 

R6-75th synoptic 31 strong 25-40 SE, SGP, MDWST, NGP MAM 

R8-25th ETC 9 strong 20-30 
MDWST, NGP, ROCK, 

SGP 
MAM 

R9-25th ETC 6 strong 15-20 NE MAM 

R10-25th Cold front 8 strong 15-25 SE SON 

R7-75th ETC 7 Strong 25-35 NE MAM 

R9-75th ETC 14 strong 30-40 SE, SGP, MDWST, NE DJF 

R11-25th Cold front 7 strong 10-20 ROCK, SW DJF 

R8-75th AR, orography 6 Strong 20-25 PCST DJF 

 

 

Rockies. Among these, R6-75th and R6-25th stand out with the most frequent cases of occurrence (31 and 

17, respectively), where the former includes a broad warm/moist sector with a widespread threat for 

excessive rainfall whereas the latter has moisture confined to the southern plains with limited areal 

extent for excessive rainfall risk. An AR regime in the winter was also identified, where events in the 

northwestern CONUS had good performance (R9-75th). One regime that was rarely identified was that of 

the monsoon in the western CONUS, as this period of study only included the summers of 2019 and 

2020, both of which were two of the driest monsoon seasons on record for the southwestern CONUS 
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(NOAA 2020a; NOAA 2021). Thus, a period of study would need to include a more active monsoon 

season to determine if monsoon regimes would be among some of the best- or worst-performing 

forecasts. 

 Findings from this study can provide forecasters at WPC with additional assistance when using 

the CSU-MLP forecasts as a part of the forecasting process. In addition to a forecaster’s own experience 

with excessive rainfall and flash floods among the different regimes identified in literature, days with 

regimes analogous with best- and worst-performing CSU-MLP forecasts can also help guide forecasters 

in determining how much weight the first-guess forecast should have in their ERO construction, 

especially given the tendency for CSU-MLP forecasts to have a higher frequency of categorical risk. For 

example, if a day is forecasted to resemble R6-25th, perhaps WPC would be more confident in lowering 

the initial categorical risk and/or coverage area. Correspondingly, if a day is forecasted to resemble R6-

75th, perhaps forecasters would be more confident in issuing categorical risk and area more closely with 

the CSU-MLP first-guess. Given that best-performing CSU-MLP forecasts tend to score slightly higher 

than the ERO on average, the latter process poses the potential for increasing ERO skill. While this work 

specifically identifies synoptic regimes given best- and worst-performing CSU-MLP forecasts, it does not 

directly specify how CSU-MLP forecasts perform given a synoptic regime. For example, it could be that, 

given a regime such as R7-25th (8 cases), many CSU-MLP forecasts perform above the median daily BSS 

amongst CONUS or SGP forecasts, but none score above the 75th percentile. In this scenario, the average 

CSU-MLP BSS may be greater than the median but this regime in only identified for worst-performing 

forecasts. While beyond the scope of this study, the various synoptic regimes that occur among all 

forecasts of interest could be identified, and from these distributions of daily CSU-MLP BSS, investigate 

the performance among the regimes. However, the consistent pattern of regimes with strong forcing 

and lower moisture performing worse in comparison to those with slightly higher moisture, especially 
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regimes with larger samples of cases such as R6-75th (31), R6-25th (17), or R9-75th (14), provides 

confidence that these regimes do have these characteristics for CSU-MLP to perform well/poorly.  

 This regime identification also benefits forecasters by providing a visualization of the general 

kinds of patterns that the RF model learns and the general variables it uses for individual forecast days. 

This would work to build more trust in machine learning, which people often perceive as "black-box" 

models (e.g. McGovern et al. 2019). While Herman and Schumacher (2018a) examine some of the 

spatial and temporal feature importance's of the CSU-MLP RF model, this work helps to elucidate the 

kinds of predictors that may have more influence for a given regime. For example, most identified 

worst-performing regimes have strong synoptic forcing but modest moisture, so it may be that 

predictors associated with dynamics (e.g MSLP, 10-m winds, vertical wind shear) are the more frequent 

variables used to traverse the various decision-trees in the RF model, with less emphasis on instability 

and moisture variables (e.g. CAPE, PWAT). Additional work would be needed to investigate this directly 

to examine, at a given location and forecast, which variables and thresholds are used to generate a 

prediction. 

 Challenges remain for future development and implementation of CSU-MLP "first-guess" 

forecasts. Beginning in September 2020, the GEFS underwent a major upgrade (NOAA 2020) that 

includes a new dynamical core, the Finite Volume Cubed-Sphere (FV3; Lin et al. 2017). Despite training 

on the older version, real-time forecasts have not shown substantial differences in forecast output. In 

fact, the last few weeks of this period of study included forecasts run on the updated GEFS. However, 

future development of CSU-MLP forecasts will require retraining using the FV3-GEFS. Additionally, WPC 

has recently redefined categorical probability thresholds (MRGL ≥ 5%; SLGT ≥ 15%; MDT ≥ 40%; HIGH ≥ 

70%), so future CSU-MLP forecasts and evaluation would be needed using the new thresholds. CSU-MLP 

models have also been trained using forecast output from the NSSL-WRF (Hill and Schumacher 2021) 

and the HRRR (Trojiniak et al. 2021), both of which are convection-allowing models (CAMs). Although 
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these models have not been recommended for use in operations, they do pose the potential to useful, 

particularly for warm-season regimes where excessive rainfall is highly dependent on convective 

evolution. Lastly, future work would include training and developing models for assistance at longer lead 

times, as WPC has begun issuing experimental day-4 and day-5 ERO forecasts. 
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