
THESIS

A PERFORMANCE EVALUATION OF THE COUPLING INFRASTRUCTURE WITHIN THE

COMMUNITY EARTH SYSTEM MODELTM

Submitted by

Sheri A. Mickelson

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2018

Master’s Committee:

Advisor: Louis-Noel Pouchet

Sanjay Rajopadhye

David Randall

Copyright by Sheri A. Mickelson 2018

All Rights Reserved

ABSTRACT

A PERFORMANCE EVALUATION OF THE COUPLING INFRASTRUCTURE WITHIN THE

COMMUNITY EARTH SYSTEM MODELTM

Earth System models (ESMs) are complex software packages comprised of millions of lines of

code used to simulate many different Earth processes. ESMs simulate the dynamical and physical

states of the atmosphere, land, ocean, sea ice, rivers, and glaciers and coordinate the interactions

between them. Many computational challenges exist within these models and future systems are

putting more pressure on these challenges. In order to alleviate some of the pressure, it is impor-

tant to study the performance challenges that exist within the models in order to understand the

optimizations that need to be performed as we move to exascale systems. This work studies the

performance of the coupling infrastructure between the modeling components within the Commu-

nity Earth System Model. The coupler is responsible for the data exchanges between the different

modeling components and while it has a small computational footprint, it has the potential to have

a large impact on performance if the component resources are dispersed in incorrect proportions.

This work explains and addresses this issue and provides easy solutions for users to save thousands

of core cpu hours.

ii

ACKNOWLEDGEMENTS

I would like to thank the Computer Science Department at Colorado State University for their

support in this work, my advisor Louis-Noel Pouchet, and my Master’s committee. I would also

like to thank the National Center for Atmospheric Research (NCAR) for the support they have

given to me while attending CSU and the support for this work. I would like to thank John Dennis

at NCAR for his encouragement, support, and for his advice reviewing this document.

I would like to acknowledge high-performance computing support from Yellowstone provided

by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Sci-

ence Foundation.

I would like to acknowledge high-performance computing support from Cheyenne provided by

NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science

Foundation.

iii

DEDICATION

I would like to dedicate this thesis to my family for all of their support.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1

1.1 State of Practice . 1

1.2 Contributions . 3

Chapter 2 Background . 4

2.1 The Community Earth System Model . 5

2.2 Model Coupling . 10

2.3 Future Model Plans . 11

Chapter 3 Coupling Between the Model Components 13

3.1 Coupling Interface . 13

3.2 Sequencing of the Components . 14

3.3 Communication Pattern . 16

Chapter 4 Computing Platforms and Problem Size . 18

4.1 Computing Platforms . 18

4.1.1 Architectures . 18

4.2 Problem Sizes . 18

4.2.1 Model Configuration . 18

4.2.2 Grid Sizes . 20

4.2.3 Output . 21

Chapter 5 Performance Results . 23

5.1 CESM Timers . 23

5.2 IPM Results . 24

5.3 Coupler Performance . 25

Chapter 6 Automated Load Balancing . 26

6.1 Load Balancing Tool using MINLP formulation 29

6.2 Load Balancing Tool using MILP (linear) formulation 32

6.2.1 Improved Performance Results Using the Load Balancing Tool 34

6.2.2 Testing a New Set of Constraints . 37

6.2.3 Cost Efficient Solution . 41

6.3 A Comparison of Both Versions of the Load Balancing Tool 42

Chapter 7 Related Work . 44

v

Chapter 8 Future Work . 48

Chapter 9 Conclusions . 49

Bibliography . 51

Appendix A Network Maps . 57

Appendix B Coupler Timings . 66

vi

LIST OF TABLES

3.1 The coupling frequencies of the CESM components. 13

3.2 The MPI ranks used in Figure 3.3 and Figures A.1–A.8. 16

4.1 Some of the common combinations of prognostic and data models that can be run in

CESM. If a model type is not listed, a data or stub model is used instead. 19

4.2 The different grid sizes used by both the atmosphere and land models. FV refers to the

finite volume grid and SE refers to the spectral element grid. 21

4.3 The different grid sizes used by both the ocean and sea ice models. 21

6.1 The variables used within Table 6.2 and Equations 6.4 and 6.3. All of the variables

must be positive integers or positive real numbers. These were taken from [1]. 31

6.2 Constraints used for the the MINLP. These were taken from [1]. 31

6.3 The variables used within Table 6.4 and Equation 6.8. These were taken from [2]. . . . 33

6.4 Constraints used for the MILP. These were taken from [2]. 34

6.5 The production layout timing results versus the MILP layout chosen by the load bal-

ancing tool. Both sets use 2,160 tasks. The only difference is the proportion of re-

sources given to the different components. 37

6.6 The variables used within Table 6.7 and Equations 6.7 and 6.8. 38

6.7 The new set of constraints tested. 38

6.8 The results of the existing constraints verses the new constraints implemented as part

of the validation. The timings represent the time it takes to simulate 10 days of climate.

Both produced the same results. 39

6.9 The predicted start and end times for each of the components, as determined by the

new set of constraints. The timings represent the time it takes to simulate 10 days of

climate. 39

6.10 The actual versus predicted results from both the MINLP and the MILP version of

the load balancing tool. The MINLP tool’s timing numbers were from a simulation

that simulated 5 days of climate. While the MILP tool’s timing numbers were from a

simulation that simulated 10 days of climate. 43

B.1 The minimum and maximum times in seconds to complete each task for a full day

simulated for a 1 degree simulation and a 1/4 degree simulation. The missing high

resolution timers for the wave and glacier models were not captured because these

components were not available in the version of the model used to collect these tim-

ings.The label column in the table matches the labels found within Figure 3.2 in order

to add reference to these timings. 67

vii

LIST OF FIGURES

1.1 The complexity of climate modeling has been increasing for the last forty years [3].

Image credit: https://www.giss.nasa.gov/research/briefs/puma_02 1

2.1 The complexity of climate modeling and the processes that are modeled. Image credit:

https://www2.ucar.edu/news/backgrounders/complexity-climate-modeling. 6

2.2 The hub and spoke communication between the coupler and all of the modeling com-

ponents. 11

3.1 The recommended CESM component layout across processors. 14

3.2 The calls within the cimecompmod.F90 code that communicate to and from compo-

nents and the coupler and the running of each of the components. Boxes indicate tasks,

while arrows indicate communication. The blue color represents the coupler sending

information to a model component. The purple color represents a component sending

data to the coupler. Aqua represents a running component. The number and letter

labels should be used to identify the timing results in Table B.1 and Figure B.1. 15

3.3 Destination ranks and source ranks communicated to and from the coupler. 17

4.1 Some of the different grids used in CESM. Grid (a) is the Spectral Element Grid and

is one of the grids used by the atmosphere and land models. Grids (b) and (c) are the

Dipole grid and the Tripole grid, respectively, and both are used by the ocean and sea

ice models. Image credit: https://www.earthsystemcog.org/projects/dcmip-2012/cam-

se and http://www.cesm.ucar.edu/. 20

6.1 CESM component layout across MPI ranks. The size of the boxes indicates to what

proportion of the total number of MPI ranks that should be given to each component

for a one degree atmosphere, one degree ocean fully coupled simulation. The black

sections show the idle time spent waiting for another component. 26

6.2 An unbalanced CESM layout. The size of the boxes indicates to what proportion of

the total number of MPI ranks that should be given to each component for a one degree

atmosphere, one degree ocean fully coupled simulation. The black sections show the

idle time spent waiting for another component. 28

6.3 The initial scaling results that were used to generate load balanced layouts. 35

6.4 The results per component comparing the load balancing tool’s predicted performance

versus the actual performance. 36

6.5 CESM component layout across MPI ranks, as determined by the new set of con-

straints. The timings represent the time it takes to simulate 10 days of climate. 40

6.6 The scaling curve of the results from the load balancing tool’s total timings are plotted

out and the start of the elbow is shown as the most cost efficient solution. 42

A.1 Communication to the coupler. 58

A.2 Atmosphere communication with the coupler. 59

A.3 Land communication with the coupler. 60

viii

A.4 Sea Ice communication with the coupler. 61

A.5 Ocean communication with the coupler. 62

A.6 River Runoff communication with the coupler. 63

A.7 Glacier model communication with the coupler. 64

A.8 Wave model communication with the coupler. 65

B.1 The proportion of time spent in each of the communication steps for the 1 degree

simulation. The letter of each subplot corresponds to lettering scheme in Figure 3.2. . . 68

ix

Chapter 1

Introduction

1.1 State of Practice

Earth System Models (ESMs) are used to study complex interactions within Earth’s systems.

They are used to model processes present in the atmosphere, ocean, land, sea ice, rivers, and

glaciers. The software behind these models are complex, containing equations to compute dynam-

ics within all of the models, as well as handling the laws of physics.

Figure 1.1: The complexity of climate modeling has been increasing for the last forty years [3]. Image

credit: https://www.giss.nasa.gov/research/briefs/puma_02

As seen within Figure 1.1, ESMs have been growing more complex as they are able to take

advantage of technological advances in computing. During the last forty years, climate science

was able to take advantage of clock speeds doubling almost every two years [4] and it has allowed

1

for more physical processes to be modeled and the simulations to be run at finer resolutions. In

order to enable more processes to be modeled, the time is takes to complete a simulation must

not degrade. Any degradation in performance increases time to solution and starts to hinder the

progress of the science being done. In the past, we’ve relied on Moore’s law to counter the cost of

doing the extra calculations, but today we can no longer rely on processor speeds increasing at that

same rate. Therefore, to enable more science within the ESMs at a similar cost, we need to take

a closer look at model performance, looking for greater concurrency and memory management

within the models [5].

We are also seeing new architectures being developed and we must adapt ESMs in oder to take

advantage of these new hardware designs [6]. This is a difficult problem because it will require

a lot of work to port these models to different architectures and will require even more work to

optimize the code once ported.

As part of this effort, it is important to understand the model’s performance on current plat-

forms in order to determine the problems they may encounter on these new types of platforms as

we approach exascale computing. The work presented here explores the performance within the

coupling layer of the well known ESM, the Community Earth System Model (CESM) [7] [8].

CESM is composed of separate model components that simulate the atmosphere, land surface,

ocean, sea ice, glaciers, river runoff, and waves. These different model components are connected

to each other through a coupling interface. The coupler within CESM coordinates the data transfers

within the different component models, coordinates the model time stepping, and synchronizes the

running of the model components. While the computational cost of the coupler is small compared

to the cost of running the model components, a lot of time can be spent in the coupler within

MPI barrier calls if resources are not balanced correctly between the component models. If CESM

is to meet the challenges of exascale computing, the performance of the coupler will need to

be improved and the idle time caused by the synchronization between the components must be

eliminated.

2

Load balancing CESM in order to reduce coupler idle time is a difficult task because the model

can be run in different configurations and each configuration has different performance character-

istics. When a scientist sets up an experiment with CESM, it will give each model a default number

of resources. Different resolutions, component model combinations, physics options, output fre-

quencies, and different versions of the code base all have an impact on model performance. If the

scientists changes any of these from the default, which is usually the case, the model will become

imbalanced and will need to be rebalanced by an expert. If this is not done, the model run can

be about 50% more expensive to run due to the idle time in the coupler. This work explains and

addresses this issue and provides easy solutions for users to save thousands of core cpu hours.

1.2 Contributions

The contributions from this work include the following:

1. A detailed performance analysis of CESM.

2. A detailed performance analysis of CESM in production.

3. The evaluation and validation of optimal model component layouts for CESM.

Chapters 2 and 3 discuss the performance of the CESM modeling components and the coupler.

Chapters 4 and 5 discuss the performance analysis of CESM and the coupler in production. Chap-

ter 6 discusses the evaluation and validation of optimal model component layouts and resource

allocations. Chapter 7 includes related work in regards to load balancing climate models. Finally

Chapter 8 discusses future work that can be done and concluding remarks are noted in Chapter 9.

3

Chapter 2

Background

Earth System Models (ESMs) are some of the most complex scientific software packages [9]

and are amongst the most computationally challenging scientific codes [10]. The size of the source

codes of some of the most widely used models from around the world range from forty thousand

lines of code all the way to 1.5 million lines of code [9]. While each ESM looks to model the same

Earth processes, each vary in the amount of code complexity. For example, some climate models

simulate biogeochemistry in the soil or volcanic eruptions, while other models use prescribed

values for these processes. The more processes that are derived versus prescribed increases the

complexity of the model and increases the cost of running the model.

About every five years, modeling centers from around the world participate in Coupled Model

Inter comparison Projects (CMIPs). The goal of these exercises are to have different modeling

centers run the same set of experiments in order to get a better understanding of past, present, and

future climates. These experiments range from predicting climates under different CO2 mitigation

strategies, to the impacts of deforestation, to hind casting paleoclimates. The current iteration,

CMIP6 [11], will contain results from about forty-four unique climate models from around the

world. While these experiments give valuable scientific information, they can also give us the

opportunity to compare the computational performance of different climate models performing the

same experiment, providing a fair comparison between them. Balaji, et al. [10] found that the

variability in the computational performance of different ESMs is quite large. The performance

differences extends from being able to simulate roughly one year of climate per wallclock day all

the way to 36 years of climate per wallclock day for the same experiment setup. The variants

are a factor of code complexity, differences in the total number of grid points, the computational

resources given to the problem (node counts and processor speeds), and the efficiencies of the

different codes.

4

Most coupled climate models suffer from load balance problems where the different component

models couple together to pass boundary conditions to each other [10]. Belaji, et al. found that

across different climate models, the coupling between different modeling components could be as

little as 1% of the total runtime all the way to 62% of the total runtime. The percentage of time

includes the time it takes to interpolate between different physics grids and computing fluxes, but

it also includes any idle time from load imbalance between the components. The authors note that

some of the high coupler costs are likely due to load imbalance and performance improvements

could be seen if compute tasks were proportioned differently between the modeling components.

2.1 The Community Earth System Model

CESM version 2 is a general circulation model that is used to predict and understand the Earth’s

climate [7] [8]. It is composed of separate model components that each model a separate Earth

system and each have unique performance characteristics. CESM contains an atmosphere, ocean,

land, sea ice, glacier, river runoff, and wave model. All of these models are connected by a cou-

pling interface, where flux values and state information are interpolated and passed between the

modeling components. Figure 2.1 shows an overview summary of the different processes that are

modeled within CESM.

CESM is one of the most complex climate models of the world [9]. The code for CESM

consists of 1.5 million lines of Fortran with a user interface and framework written in Python.

CESM uses a hybrid parallelization approach which uses both MPI and OpenMP to handle the

parallelization within each model component and for the communication between components.

The use of GPU’s is currently an exploratory topic and, thus, not available in the current released

version of the code.

The CESM user community is very broad and, thus the model is required to run on everything

from Supercomputers down to laptops. This requires it to contain different model setups that

can run in a single column mode on one processor and to also run high resolution, fully coupled

model setups that can run on thousands of nodes. The vast user community also requires CESM

5

Figure 2.1: The complexity of climate modeling and the processes that are modeled. Image credit:

https://www2.ucar.edu/news/backgrounders/complexity-climate-modeling.

to support a variety of compilers that the community uses. Currently, the model supports builds

using the Intel, PGI, GNU, NAG, and XL compilers.

CESM uses the Community Atmosphere Model (CAM) [12] as its atmosphere model. The

CAM model is used to simulate several physical properties. These include moist turbulence, shal-

low and deep convection, precipitation, cloud microphysics and macrophysics, aerosols, vertical

phases, radiative transfer, and surface exchanges [12].

At experiment setup time, CAM allows users to select additional package options in addition to

its default configuration. One option is to run with an atmospheric chemistry model which solves

and tracks different chemical species and the reactions that happen within the atmosphere [7].

Adding this option slows down the overall model performance as it traces each of the species

through its lifetime.

6

CAM can also be configured with the Whole Atmosphere Community Climate Model (WACCM).

WACCM provides CAM the ability to model up to the lower thermosphere, or up to 140 km [7].

The increased number of vertical layers within WACCM reduces the performance of the model by

a factor of five.

CAM consists of two different computational phases, dynamics and physics. The dynamics

updates the flow of the atmosphere while the physics computes precipitation, clouds, radiation, and

mixing [13]. These phases are currently being computed sequentially in order to ensure numerical

stability, but there are ongoing efforts to compute these phases in parallel.

The physics calculations are decomposed in the horizontal direction, with a set number of ver-

tical columns given to each MPI rank. The set number is based on the total number of cores given

to the atmosphere by the user at run time. OpenMP is then used to parallelize the computations

within the column [13].

The dynamic calculations are computed on either a finite volume or spectral element grid. Both

of these grids decompose the domain in the horizontal direction and assign MPI ranks to blocks, but

they differ in how they parallelize using OpenMP. The finite volume grid is a latitude, longitude,

and level grid that converges at the poles. For this grid, OpenMP is used at a loop-parallel level.

The spectral element grid is a cubed-sphere grid where all grid spaces are homogeneous. The

elements are arranged in a two-dimensional data structure with horizontal element and level being

the two dimensions. For this grid OpenMP is used to parallelize over the vertical level [13].

The physics and dynamic phases are computed on separate grids. Ideally, when each phase is

decomposed, the grid cell assignments are aligned closely between the phases in order to reduce

the communication time, but this is not always the case and it has an impact on the performance of

the model [13]. This poses a problem particularly for the physics model because it is prone to load

imbalance due to geographic location and time of day. This presents a challenge to decompose

the physics grid to be load balanced as well as aligned with the dynamics grid. This problem

has existed within the atmosphere model for a long time [14] and has been a difficult problem to

address.

7

The land model within CESM is the Community Land Model (CLM) [15]. CLM is a single

column model that models the terrestrial ecosystem, which includes transfers of energy, water, and

ecosystems, the carbon-nitrogen cycle, urban areas, irrigation, and dynamic land uses [7].

CLM is decomposed over the horizontal direction and MPI ranks are assigned a block of grid

cells. Each grid cell is composed of multiple landunits. Landunits are composed of snow and soil

columns which also contain multiple plant functional types. OpenMP is used to parallelize over

these smaller elements within the blocks [13].

CLM uses MOSART for its river runoff model. MOSART is used to model river water transport

of freshwater to the oceans [16]. It is a smaller component and has a small impact on performance.

The ocean model within CESM is the Parallel Ocean Program version 2 (POP2) [17]. POP2

models the ocean dynamics by using a set of primitive equations which solve tracer transports and

momentum. It also computes temperature, salinity, and age throughout all levels.

POP consists of two computation phases, the baroclinic and barotropic phases. The baroclinic

phase is more computational bound and is embarrassingly parallel. The barotropic phase is com-

munication bound. This is because it uses an iterative solver that requires a large amount of high

latency communication [13].

The three dimensional ocean grid is decomposed in the horizontal direction, with each MPI

rank getting a group of blocks to operate on. OpenMP parallelization is then used over the blocks

within each group given to the rank.

There are two different decomposition strategies used with POP, Cartesian and Spacecurve.

The Cartesian method works well for smaller core counts. This is because it results in a large

amount of halo updates, especially at larger core counts. For medium to large core counts, the

Spacecurve method is preferred. The Spacecurve method first eliminates all of the land points. It

then calculates a specific ordering of the remaining blocks and then they are assigned to MPI ranks.

This gives the Spacecurve method an advantage of balancing computational load better than the

Cartesian method [13].

8

Both POP2 and CLM have the ability to model biogeochemistry [7]. When used within POP2,

it is able to model nutrient distributions, the plankton functional types, and the carbonate chemistry

of the ocean. When used within CLM, it is able to model the full soil chemistry including both the

carbon and nitrogen cycles by simulating photosynthesis, the plant and soil respiration, and litter.

The POP model uses the WAVEWATCH III model to model the Langmuir mixing process in

the ocean [18]. This helps improve the mixing of the shallower levels of the ocean. This particular

modeling component has been shown to have poor scaling, but it has little effect on the overall

performance of CESM if it is run concurrently with CLM and CICE models. This is because it

typically takes less time than the CLM and CICE models to run.

The CESM model uses the Community Ice Code (CICE) [19] model to model sea ice. The

CICE model calculates the thickness and the extent of sea ice based on the external forcings it

receives [7].

The CICE calculations are usually calculated on the same grid as the ocean grid, with the

exception that the vertical coordinate represents the thickness of the ice. The grid is decomposed in

the horizontal dimension into different blocks, of which groups of blocks are assigned to MPI ranks

[13]. The CICE model has several different decomposition strategies and choosing the correct

strategy is essential because the CICE model is prone to load imbalance. The load imbalance is

a result from almost all calculations being computed only in places on the Earth where there is

sea ice and most of the heavy computation is done only where the sun is shining. Therefore it is

important to choose the correct strategy that load balances the calculations and reduces the amount

of communication for the user selected core count. The different strategies and their strengths and

weaknesses are documented in [20].

The land ice model used within CESM in the Community Ice Sheet Model (CISM). CISM

models the energy, mass, and momentum of ice sheets on Greenland. It also simulates the flow of

the ice sheet and the calving of icebergs [7]. This model is coupled to the land model and is setup

through configurations at compile time. CISM is not a computationally heavy model and does not

have a large effect on the performance of CESM.

9

CESM has the ability to output the current state of the model through time slice output files. It

also has the ability to write checkpoint restart files. Both output and checkpoint files are written

at frequencies specified by the user. Output files are usually written at a monthly frequency, but

depending on the type of experiment ran, users may want daily, hourly, and sub-hourly output files.

Restart files are usually outputted once every 6-12 compute wallclock hours.

CESM uses the Parallel I/O (PIO) [21] library to output files. PIO provides an interface for

users to write data in the NetCDF format using different libraries with one interface. The objective

of PIO is to provide better write performance. The PIO library uses the same compute nodes to

write as it does to run the model. Therefore, the CESM model component must pause each time

output is written. This is a problem when writing high temporal and spatial data as it can take just

as long to write output as it does to run the model.

2.2 Model Coupling

Within CESM, all of the modeling components interact with each other through a coupling

interface, CPL7 [22] [23]. The CPL7 contains a top level driver which controls the sequencing,

time stepping, and communication between the components.

As the CESM simulation timesteps, the individual components receive data from the coupler,

run, and then send data to the coupler. This process repeats until the simulation is complete. The

general concept is depicted in Figure 2.2 and shows the hub and spoke communication pattern

between the coupler and the components. This synchronization is controlled by the CPL7’s driver.

The parallelism between all of the components is determined by the discretization of the individual

components across the available cores, the physical constraints between the components, and the

dependencies between certain components.

While the CPL7 driver controls the synchronization, communication, and time stepping of

the modeling components, it uses the Model Coupling Toolkit (MCT) [24] to translate the data

between the components. One common problem of multiphysics models is that the computations

are performed on different grids and different processor sets. Before data is exchanged between

10

Figure 2.2: The hub and spoke communication between the coupler and all of the modeling components.

different components, MCT must interpolate the data values to the destination grid and correct

processor mappings must be created in order to send data to the correct ranks of the destination

component.

2.3 Future Model Plans

The model developers of CESM are currently working towards version 3 of the model. In this

version, they are expected to replace the POP ocean model with the Modular Ocean Model (MOM)

version 6.0 [25]. MOM was developed at the Geophysical Fluid Dynamics Laboratory (GFDL) at

the National Oceanic and Atmospheric Administration (NOAA). The work of incorporating MOM

into the coupling infrastructure is currently underway [26].

Another large change planned for version 3 of CESM is replacing MCT with the Earth System

Modeling Framework (ESMF) [27] as its primary coupling software. While ESMF has been an

option within CESM for several years, more emphasis is being put into its development and it will

become the default coupling infrastructure within CESM for this upcoming version.

Even though the work in this paper used MCT, the results reported should be similar to what

will be seen with ESMF. The coupling idle times will still be a performance bottleneck with ESMF

11

and the load balancing techniques used in this work will be able to be used with the new ESMF

coupling infrastructure.

12

Chapter 3

Coupling Between the Model Components

3.1 Coupling Interface

The coupler is tasked with providing a means for component sequencing, communication be-

tween components, and providing the coupling interface. This includes interpolating fields be-

tween different model grids, rearranging the data to map to different core counts, calculating the

fluxes that are passed between the models, and creating diagnostic fields [22].

As stated above, as the CESM simulation timesteps, the individual components receive data

from the coupler, run, and then send data to the coupler. The default frequencies in which the

components communicate this information to the coupler for a one degree simulation is show

within Table 3.1. When the component model simulates that much time, the model then pauses

and passes certain fields to the coupler. It does not continue running until it receives data from

specified components via the coupler.

These timings change depending on the resolution the model is run at. Higher resolution sim-

ulations couple more frequently in order to help resolve the physics correctly.

Table 3.1: The coupling frequencies of the CESM components.

Component Frequency in model simulated time

Atmosphere 30 min

Land 30 min

Sea Ice 30 min

Ocean 1 hour

Glacier 1 year

River Runoff 3 hour

Wave 30 min

13

3.2 Sequencing of the Components

The execution sequence of the different components is constrained by where the components

are layed out across the available cores and by scientific requirements. The largest scientific con-

straint that prevents all of the components from running concurrently is that the atmosphere has to

run sequentially from the land, sea ice, and river models. This is done in order to better resolve

the diurnal cycle [23]. Particularly, this is done in order to pass surface albedo, atmospheric radi-

ation, and boundary layer stability at the correct times in between these models to ensure numeric

stability within the simulation [22].

Figure 3.1: The recommended CESM component layout across processors.

Because of these requirements, Figure 3.1 shows the optimal layout that the model components

should placed on the available MPI ranks. At this particular layout, all of the components that can

be run in parallel do not share any MPI ranks.

14

As CESM steps through time, each of the components are run in a set sequence. This sequence

is shown in Figure 3.2. This sequence is hard coded in the model and cannot be changed through

user configurations.

Figure 3.2: The calls within the cimecompmod.F90 code that communicate to and from components and

the coupler and the running of each of the components. Boxes indicate tasks, while arrows indicate commu-

nication. The blue color represents the coupler sending information to a model component. The purple color

represents a component sending data to the coupler. Aqua represents a running component. The number

and letter labels should be used to identify the timing results in Table B.1 and Figure B.1.

The sequencing shows that a given model must first receive specified fields from the coupler.

After this, it runs until a specified amount of time has been simulated. It then passes specified fields

back to the coupler. The coupler then passes these fields to other components that are waiting for

them. The original component continues to pause until it receives all of the fields it needs before it

can continue on. This pattern continues until the simulation completes.

15

3.3 Communication Pattern

In order to capture which component MPI ranks communicate with which coupler MPI ranks,

a test simulation was run where all components were run on unique MPI ranks and communication

patterns were outputted and mapped. This simulation was run at the lowest production layout,

which is a two degree atmosphere grid, with a one degree ocean grid, in order to make the mappings

easier to manage because of the lower MPI rank counts. Table 3.2 shows which set of unique ranks

each of components was run across.

Table 3.2: The MPI ranks used in Figure 3.3 and Figures A.1–A.8.

Component Range of MPI Ranks

Coupler 0–179

Atmosphere (CAM) 180–359

Land (CLM) 360–434

Ice (CICE) 435–539

Ocean (POP) 540–659

River Runoff (ROF) 660–734

Glacier Model(CISM) 735–749

Wave (WAV) 750–879

As seen within Figure 3.3, each of the components have unique communication patterns with

the coupler. Some components communicate with all coupler ranks and their own ranks while

others communicate with less ranks. Each pattern is influenced by how the data is decomposed on

the model component’s native grid.

These patterns can also be seen in the network maps found in the Appendix A.1 though A.8. In

each map, for a given rank assigned to a particular component, you can see which nodes within the

coupler it communicates with. In some cases, the component must communicate with other ranks

assigned to this component in order to collect all data that is needed to send to the coupler.

16

Figure 3.3: Destination ranks and source ranks communicated to and from the coupler.

17

Chapter 4

Computing Platforms and Problem Size

4.1 Computing Platforms

4.1.1 Architectures

The work described in this research was performed on two separate machines. This was be-

cause the first machine was retired and replaced by the second while this research was being con-

ducted.

The first architecture was yellowstone [28] [29], a 1.5 petaflops IBM iDataPlex cluster. It

consisted of 4,662 nodes, each with a dual socket Intel Sandy Bridge EP connected by a Mel-

lanox FDR InfiniBand full fat-tree network. The system was connected to a GPFS storage system.

Yellowstone was used in production from 2012 until the end of 2017.

The second architecture used for this research was cheyenne [30], a 5.35 petaflops SGI ICE

XA cluster. It consists of 4,032 nodes, each with a dual socket Intel Broadwell connected by a

Mellanox EDR Infiniband 9-D enhanced hypercube topology network. The system is connected

to the same GPFS storage system that yellowstone was connected to. The system has been in

production since the beginning of 2017 and had a year overlap with the yellowstone system.

4.2 Problem Sizes

4.2.1 Model Configuration

The model configuration is determined by the type of science to be explored. CESM is designed

to be flexible enough to allow data models to be substituted in the place of any of the component

models. In this case, prescribed values are read from an input file at coupling time, instead of

passing computed values. In some setups, only one prognostic component model is used with the

remaining being data models. In the other extreme, all of the prognostic components models can

18

be run. Stub models are also used, but these do not provide data to the system. Instead, they are

only there to satisfy an interface requirement.

In addition to considering which components are ran, different components have different sci-

ence options that affect the performance. The different science options use different calculations,

that can be used as an addition to or replace standard calculations. Other options add grid cells in

the vertical direction and add extra calculations.

This presents a very large combination of different ways the model performs. CESM uses

specific component set names to in order to replicate specific model combinations and science

options. Specific component model and data model combinations are identified by the first letter

in the name and the remaining characters in the name specify the science objective. Some of the

commonly used first letters for the model combinations are shown in Table 4.1.

Table 4.1: Some of the common combinations of prognostic and data models that can be run in CESM. If a

model type is not listed, a data or stub model is used instead.

First Letter Category

A All data models

B All active components

C Active ocean model

D Active ice model

E Active atmosphere and ice models

F Active atmosphere and land models

G Active ocean and ice models

I Active land model

The performance testing presented here used the CESM model combination name B1850. Be-

cause it starts with the letter B, this indicates that it uses all of the model components and no

data models. This simulation is a hindcast that simulates a pre-industrial climate, holding the cli-

mate at 1850 conditions. It uses the standard number of model levels and uses the out-of-the-box

component configurations.

19

4.2.2 Grid Sizes

The different CESM grids being run in production are shown in the Tables 4.2 and 4.3. In both,

tables a degree refers to a degree in longitudinal and latitudinal space and the spatial distance is

dependent on the type of grid and a grid point’s location on the Earth.

(a) The Spectral Element Grid (b) The Dipole Grid (c) The Tripole Grid

Figure 4.1: Some of the different grids used in CESM. Grid (a) is the Spectral Element Grid and

is one of the grids used by the atmosphere and land models. Grids (b) and (c) are the Dipole grid

and the Tripole grid, respectively, and both are used by the ocean and sea ice models. Image credit:

https://www.earthsystemcog.org/projects/dcmip-2012/cam-se and http://www.cesm.ucar.edu/.

Some of these grids are shown in Figure 4.1. Grid (a) is the spectral element grid used by the

atmosphere and land models. This is a cubed sphere grid where all points are homogeneous. Grid

(b) is the dipole grid used by the ocean and sea ice models. This grid relocates the poles to be over

Greenland and Antarctica to avoid performing calculations at the convergence points. Grid (c) is

the tripole grid used by the high resolution ocean and sea ice models. This grid relocates the poles

to be over Russia, Alaska, and Antarctica. As with the dipole grid, this is done to avoid performing

calculations of the convergence points.

The most popular grids being used in production are the one degree finite volume grid, f09, for

the atmosphere and land models and the one degree dipole grid, g17, for the ocean and ice models.

These grids are more commonly run because the throughput of the model is sufficient and it does

not sacrifice some science that is not resolved on the courser grid. The quarter degree spectral

20

element grid, ne120, and the tenth degree tripole grid, t12, are considered high resolution are run

sparingly depending on allocations awarded because it is considerably more expensive to run.

Table 4.2: The different grid sizes used by both the atmosphere and land models. FV refers to the finite

volume grid and SE refers to the spectral element grid.

Short Name Nickname Grid Type # of Lat # of Lon # of Horiz

Points Points Points

f19 2 degree FV Finite Volume 96 144

f09 1 degree FV Finite Volume 192 288

ne30 1 degree SE Spectral Element 48602

ne120 1/4 degree SE Spectral Element 777602

Table 4.3: The different grid sizes used by both the ocean and sea ice models.

Short Name Nickname Grid Type # of Lat Points # of Lon Points

g17 1 degree Irregular Dipole 320 384

t12 1/10 degree Irregular Tripole 3600 2400

Unless otherwise noted, the performance work done in this document was simulated with the

one degree finite volume and one degree dipole grid. This was chosen because it is the most

commonly used grid in production runs and, thus it was important to study and improve the per-

formance of it in order to make the largest impact.

4.2.3 Output

The amount of output generated by the model is configurable by the user. By default, each

modeling component outputs a file for each month that it simulates. The files contain several

output climate variables that each consist of a single floating point value for each grid point in the

vertical and horizontal directions, for each time.

21

The user has the option to vary the number of variables outputted by each component model

and well as the time frequency that is outputted. By default, the output is outputted at the end of

every month simulated, but users have the additional option to output variables on yearly, daily,

hourly, and sub-hourly frequencies.

Outputting data on a monthly basis has a small impact on performance, but higher frequency

data can have a high negative impact on performance. The time it takes to output data is recorded

in the overall component run time because PIO uses the compnenet’s ranks to write out its data.

This causes the simulation to pause every time data is written to disk. Some output configurations

have the possibility to double the time it takes for a modeling component to run.

The performance results within this work have all output turned off in order to capture true

model performance. In reality, the time it takes for a given model component to run should be

higher depending on the amount of output the user specifies.

22

Chapter 5

Performance Results

5.1 CESM Timers

When evaluating the performance of CESM, a first step is to evaluate the timing numbers from

the model. With each CESM simulation, a set of default timings are outputted within two timing

output files. The first file is a summary file with higher level timers. The second file contains timers

that are found deeper within the code and provide a higher resolution of timing results. In order

to get more timers, CESM provides a timer depth variable that allows users to output more or less

timers based on the function call depth they are interested in.

The timings numbers shown in Table B.1 have been gathered from two separate CESM sim-

ulations at different resolutions in order to show the performance impact of varying resolutions.

The 1 degree atmosphere, 1 degree ocean results were from a fully coupled run that ran with all of

the component models. The 1/4 degree atmosphere, 1 degree ocean results were also from a fully

coupled simulation. The higher resolution results were run with CESM version 1.3, which was

the previous release of the current release. The model run did not contain the wave model nor the

glacier model, and thus these numbers are missing in the Table.

In order to interpret the timing results better, Figure 3.2 contains labels have been added to

each line. The labels match the Label column in Table B.1.

When comparing the coupler timing results (labels 1-14) against the component run times (la-

bels 15-21) in Table B.1, you can see that only a small fraction of the total run time is actually

spent within the coupler interpolating values and calculating the fluxes. Where we see more vari-

ance within the results is within the labels a-n. These timing results have a portion of the barrier

wait times within them and you can see that some of the timings can be quite large compared to

the total run times of the components.

23

The largest differences between the 1 degree and 1/4 degree simulations are seen in the atmo-

sphere and ocean communication back to the coupler. A closer evaluation of the timing numbers

showed that a majority of the difference in the timing numbers were spent in barriers. This is a

result of the components being less balanced in the higher resolution experiment than in the lower

resolution experiment. These timing numbers can be improved by modifying the number of MPI

ranks the components are run on in order to load balance the run.

5.2 IPM Results

In order to better understand the coupler’s communication performance, Integrated Perfor-

mance Monitoring (IPM) [31] was used to profile a one degree atmosphere, one degree ocean

model simulation. Only the lower resolution model was profiled because the overhead of IPM is

very high. The cost of IPM is correlated with the number of MPI ranks it has to collect data on,

which made collection on the highest resolution very difficult. While the profiling only occurred

at a lower resolution, anything discovered in coupler performance found at this resolution can be

transfered to the higher resolution.

Figure B.1 shows the proportion of time spent in each of the communication steps within the

coupler. In this figure, each of the pie charts are labeled to match the labels within Figure 3.2.

In each of the steps, a majority of the time was spent in synchronization calls because of load

imbalance between the different model components. This happens when the components are not

given adequate resources in order to synchronize at similar times. Instead, components are left

idling, waiting for other components to catch up.

The performance of this particular simulation could be improved by properly load balancing

the component models. This is done by balancing the resources between the components based on

their overall run times. This requires expert user knowledge and an understanding of the scalability

of each of the components.

24

5.3 Coupler Performance

The performance of the coupler is bounded by the communication barriers and the computa-

tional time to regrid and map the values sent between the modeling components. More often than

not, the time spent in the coupler is dominated by the communication barriers, as indicated by the

two performance capturing methods described above. The communication barriers where the most

time is spent are the barrier calls in between different component calls. At a given time, a compo-

nent pauses and has to wait for another component to get to the same timestep. At this time, values

are passed between the models and each model can then continue. Ideally this process would hap-

pen close in time, but it is difficult to achieve a perfect load balance between all components within

CESM.

25

Chapter 6

Automated Load Balancing

As noted in Chapter 5, a majority of the time spent in the coupler was spent in synchronization

calls. This happens when modeling components have to wait for other modeling components to

catch up. Therefore, it is important to allocate the correct number of resources to each component

in order to have each component call the coupling interface at the correct times.

Figure 6.1: CESM component layout across MPI ranks. The size of the boxes indicates to what proportion

of the total number of MPI ranks that should be given to each component for a one degree atmosphere,

one degree ocean fully coupled simulation. The black sections show the idle time spent waiting for another

component.

Figure 6.1 is shown to demonstrate how to align the modeling components in order to load

balance the system. The figure shows a layout that is very close to being load balanced because

26

the black areas are relatively small. It is very difficult to have perfect load balance between the

components because of the nonlinear scaling of some of the models and node alignment.

(ATM +max((LND +ROF), ICE,WAV)) == OCN (6.1)

Load balancing the fully coupled CESM involves following the rules defined in Equation 6.1

using the above model alignment in Figure 6.1. In order to load balance a fully coupled CESM

experiment, the ocean model must couple at the same time as the atmosphere model plus the

maximum component run time between the land plus river, or the ice, or the wave model.

Along with the timing numbers that report specific times for subroutines, full component run

times are also reported within the timing files. The timing results are outputted into a timing

directory that is placed in the CESM experiment case directory and is named cesm_timing*. A

sample is shown below:

Runs Time in total seconds, seconds/model-day, and model-years/wall-day

CPL Run Time represents time in CPL pes alone, not including time associated

with data exchange with other components

TOT Run Time: 263.167 seconds 13.158 seconds/mday 17.99 myears/wday

CPL Run Time: 4.733 seconds 0.237 seconds/mday 1000.26 myears/wday

ATM Run Time: 205.649 seconds 10.282 seconds/mday 23.02 myears/wday

LND Run Time: 28.776 seconds 1.439 seconds/mday 164.52 myears/wday

ICE Run Time: 31.759 seconds 1.588 seconds/mday 149.07 myears/wday

OCN Run Time: 38.042 seconds 11.902 seconds/mday 19.89 myears/wday

ROF Run Time: 0.401 seconds 0.020 seconds/mday 11806.10 myears/wday

GLC Run Time: 0.008 seconds 0.000 seconds/mday 591780.82 myears/wday

WAV Run Time: 21.169 seconds 1.058 seconds/mday 223.64 myears/wday

ESP Run Time: 0.000 seconds 0.000 seconds/mday 0.00 myears/wday

CPL COMM Time: 2.657 seconds 0.133 seconds/mday 1781.80 myears/wday

To load balance the model, it is best to evaluate the timing numbers in the first column. These

timings numbers are the total seconds it took to run each of the different components. By in-

27

putting them into Equation 6.1, users can experiment with different core counts in order to find a

combination that makes the equation true.

Figure 6.2: An unbalanced CESM layout. The size of the boxes indicates to what proportion of the total

number of MPI ranks that should be given to each component for a one degree atmosphere, one degree

ocean fully coupled simulation. The black sections show the idle time spent waiting for another component.

As an example, an unbalanced layout is shown in Figure 6.2. As you can see, there is a lot of

black which indicates idle time where the components are waiting for other components to catch

up. In this example, too many resources where given to the ocean model and it is completing too

quickly. This is also the case for the ice and wave models compared to the land model. In order to

load balance this case, more resources need to be given from the ocean model to the atmosphere

model. And in order to load balance the land and ice components, some of the ice resources need

to be shifted to the land model.

28

Load balancing CESM requires expert knowledge of the coupling infrastructure as well as the

scaling performance of all of the components. A typical scientist running the model does not have

this knowledge and they must rely on a software engineer to provide them with a component layout

before any experiment is run. As noted earlier, this is a common problem with all coupled climate

models [10]. Creating a tool that automates this process would allow the scientists to discover

optimal component layouts for their experiment, potentially saving hundreds of thousands of core

hours per experiment. This would also have the potential to save many core hours around the world

because similar component layouts are used in other coupled climate models as well [10].

6.1 Load Balancing Tool using MINLP formulation

At the beginning of 2013, an automated load balancing tool was created by Alexeev, et al

in [1] [32]. In this work, we developed a two stage static load balancing process to help find

optimal component layouts.

The first step in the process collected benchmark results through running the model at different

core counts. While doing this work, we stated that this was the weakest part of the process because

it relied on the user to select core counts that accurately depict the full scaling curve of the modeling

components. It was also the most time consuming process because it requires several model runs to

collect this data. In the paper we suggested running, at a minimum, four model runs. This included

one with the fewest number of cores a component can run on, a second with the most number of

cores a component can run on, and two other counts that reside in the middle of this range.

The second step involved solving for the optimal component layout across a set total number

of cores. In order to solve for the complex relationship between the number of cores and the run

times, a mixed-integer nonlinear optimization (MINLP) problem was formulated. In order to solve

the MINLP problem, both a mathematic model of the CESM component layout constraints and a

performance model must be formulated that describe the problem.

29

The MINLP problem was written in AMPL [33] and was run using the toolkit MINOTAUR

[34]. The particular MINOTAUR solver we used was the LP/NLP branch-and-bound solver [35]

which performs a search, partitioning and sampling the search space, finding the optimal solution.

The results from the first step were used within the mathematical model and solved for a target

task count. The results included both the recommended core counts for each component and the

estimated run times for each component.

The variables used in the objective function are defined in Table 6.1. The objective function

used to solve the MILP are shown in Equation 6.3. This function contains three pieces that repre-

sent the scalable, serial, and missing time contributions and looks to minimize Equation 6.4. This

function is subject to the constraints listed within Table 6.2. These are the same constraints that

are depicted in Figure 6.1. All of these variables, constrains, and functions are found within [1].

max(max(ice, lnd) + atm, ocn) (6.2)

When the paper by Alexeev, et al. [1] was written, an additional constraint was needed to

account for the ocean model needing to be run at specific core counts. This was because the

decomposition strategies were hard coded into the model and users were required to run the ocean

model at these specific core counts or it would create a compile time error.

Tj(nj) = T sca
j (nj) + T nln

j (nj) + T ser
j =

aj
nj

+ bjn
cj
j + dj (6.3)

min(aj, bj, cj, dj)

Dj∑

j=0

(yji −
aj
nji

− bjn
cj
ji − dj)

2 (6.4)

30

Table 6.1: The variables used within Table 6.2 and Equations 6.4 and 6.3. All of the variables must be

positive integers or positive real numbers. These were taken from [1].

Variable Description

i component core count

j component model

C {i, l, a, o} set of components {ice, lnd, atm, ocn}

T total wall clock time to run the model

N total number of cored

Ticelnd wall clock time to balance the lnd and ice models

Tsync synchronization tolerance to balance the lnd and ice models

nj number of cores to allocated per model

Tj(nj) performance function that models the time to run a component on nj

zk{0,1} binary variables used to model the selection of the number of cores

Tj
sca time spent in scalable code

Tj
ser time spent in serial code

Tj
nln time spent in initialization, communication, synchronization code

Dj total number of data points available for the fitting function

aj,bj,cj,dj fitting parameters used in the performance function for each model

nji number of cores allocated to that model

yji time taken to run a component with nji cores

Table 6.2: Constraints used for the the MINLP. These were taken from [1].

Subject to these constraints:

Ticelnd >= Ti(ni)

Ticelnd >= Tl(nl)

T >= Ticelnd+Ta(na)

T >= To(no)

Tl(nl) >= Ti(ni)-Tsync

Tl(nl) <= Ti(ni)+Tsync

na+no <= N

ni+nl <= na

The parameters aj,bj,cj,dj used within the objective function shown in Equation 6.3 are esti-

mated by evaluating the benchmarking data that contained the time to run each component model

at the different node counts. As we note in the paper [1], there are two main factors that effect the

quality of these estimated parameters. First, the estimated parameters are heavily influenced by the

benchmarking core counts used. If the benchmark fails to fully capture the characteristics of the

performance curve, the estimates will not be accurate. Second, the benchmarking results create a

rough scalability curve that does not account for load imbalances within the modeling components.

31

This type of imbalance occurs when the individual model component’s decomposition is poorly

auto-selected. While the cost of the imbalance is represented within the cost of the component

model that is fed into the objective function, the total cost of the imbalance is not always linear and

thus may create inaccuracies within the predicted run times.

The original version of the load balancing tool did a good job predicting the run times per

component and was able to find better component layouts than were being used at that time. It

did have problems predicting the performance of the sea ice model, though. This is because the

performance of the sea ice model is not linear and is highly susceptible to intra-component load

imbalance. This behavior in the CICE model is documented in [36], [20], and [37].

6.2 Load Balancing Tool using MILP (linear) formulation

The usage of MINOTAUR in the original version introduced the dependency of the load bal-

ancing tool having to run on a special server located at Argonne National Laboratory and this

limited the usablility and lifetime of the tool. Therefore, a new version of the tool [2] was written

by Jason Sarich in Python to help with portability and to fit within the CESM infrastructure.

As with the original version of the load balancing tool, the newer version of the tool is also a

two step process. The user is still required to run a series of benchmarks to collect performance

results from all of the components. The second step again collects the results, processes them, and

feeds them into a solver. This new version uses the COIN-CBC solver within the library PuLP [38]

to solve for the mixed integer linear optimization problem (MILP).

The newer version of the code uses a linear solver, unlike the original which used a nonlinear

solver. This has the benefit of being a simpler model which runs faster, but it provides only an

approximate solution. This type of model makes an assumption that each component has perfect

scalability, which is not the case. To compensate for this, the time it takes to run each component

is computed as the sum of a factor determined by the drop in efficiency and the original time. This

becomes the new cost of running the model.

32

The MILP version of the load balancing tool looks to minimize the total cost, or time to run

CESM. This is described within Equation 6.5. In order to approximate the total cost for the full

model, each component model’s cost must also be approximated. This is done by evaluating the

slope between two data points, which is calculated from the cost of the model over the number of

nodes. In order to complete the range, the tool must extrapolate a cost value for just one task for

each of the components. This presents a weak point in the prediction model because the estimation

is usually incorrect.

max(max(ice, lnd, wav) + atm, ocn) (6.5)

The variables used in the objective function are defined in Table 6.3. The objective function

used to solve the MILP are shown in equation 6.8. This function is subject to the constraints listed

within Table 6.4. These are the same constraints that are depicted in Figure 6.1. All of these

variables, constrains, and functions are found within the load balancing tool documentation found

at [2].

Table 6.3: The variables used within Table 6.4 and Equation 6.8. These were taken from [2].

Variable Description

c component

i timing data instance

N[c] number of cores for component c

NB[c] the requested core count multiple for component c

C[c]_i time (or cost) to run each component at each timing data i

N[c]_i number of cores used to run each component at each timing data i

T[c] total cost for component c

T1 the maximum cost between the lnd, ice, and wav models

T the maximum cost between T1+atm and the ocn model

33

Table 6.4: Constraints used for the MILP. These were taken from [2].

Subject to these constraints:

T[ice] <= T1

T[lnd] <= T1

T[wav] <= T1

T1 + T[atm] <= T

T[ocn] <= T

NB[c] >= 1 for c in [ice, lnd, ocn, wav, atm]

N[ice] + N[lnd] <= N[atm]

N[atm] + N[ocn] <= TotalTasks

N[c] = blocksize * NB[c], for c in [ice, lnd, ocn, wav, atm]

T [c] >= C[c]_{i} −N [c]_{i} ∗ (C[c]_{i+ 1} − C[c]_{i})/(N [c]_{i+ 1} −N [c]_{i})+

N [c] ∗ (C[c]_{i+ 1} − C[c]_{i})/(N [c]_{i+ 1} −N [c]_{i}),

for i = 0...

c in[ice, lnd, ocn, wav, atm]

(6.6)

Once the equation has been fully iterated over all components (c) and all timing data (i), the

resulting MILP data is passed to the linear solver. The solver then returns the estimated times to

run each of the components as well as the number a tasks to run each component on, equal to or

less than the total number of tasks the user specified.

6.2.1 Improved Performance Results Using the Load Balancing Tool

The MILP version of the load balancing tool was tested to see how close it could approximate

the solution. As a first step, five CESM simulations were run on varying core counts in order to

capture the scaling curves for each of the components. The results are shown in Figure 6.3.

After the benchmarks were collected, the second step was run to solve for the MILP. In Figure

6.4, you can see the predicted timing results versus the actual timing results.

34

Figure 6.3: The initial scaling results that were used to generate load balanced layouts.

Overall, the model performed well, but it had difficulty predicting the performance of the ice

and ocean component models. Performance prediction of the sea ice was also a problem of the

original tool. This is due to the intra-component load imbalance within this model caused by poor

choices made by the dynamic decomposition strategy that was chosen for those core counts. The

MILP version of the load balancing tool is having a problem predicting the performance of the

ocean model because it no longer contains the set decompositions that were in the CESM code at

the time of the original load balancing tool. The set decompositions allowed the performance of

the ocean model to be more predictable. Instead it now uses a similar automated strategy as to

what is found within the sea ice model and is now more susceptible to creating load imbalanced

decompositions.

35

Figure 6.4: The results per component comparing the load balancing tool’s predicted performance versus

the actual performance.

The difficulty in predicting the performance of the ocean and ice component models has little

influence over the overall predicted cost of the model, though. This is because in the tested cases,

the ocean model always ran faster than the atmosphere plus the land model and the ice model

always ran faster than the land model. Thus neither were the dominate cost and they did not affect

the total predicted run time of CESM.

The extrapolated cost value for running each of the model components on one core creates a

weak point in the performance model because, in most cases, there are no near data points creating

large errors in the resulting value. This contributed to the large error seen approximating the the

lowest core counts for the total and atmosphere. Because the atmosphere’s benchmarking used

36

higher core counts, there were no near point to one core, creating a large error in the approximate

cost of the model at lower node counts.

Table 6.5: The production layout timing results versus the MILP layout chosen by the load balancing

tool. Both sets use 2,160 tasks. The only difference is the proportion of resources given to the different

components.

CESM Timing Information Production Layout New Layout

Total Time to Simulate One Day (seconds) 13.6 13.2

All Coupler Idle Time for

Each Model Day Simulated (seconds) 6.0 5.1

System Idle Time for

Each Model Day Simulated (seconds) 1.7 1.5

Simulated Years/Day 17.42 17.99

Total Cost in Core Hours to Simulate One Year 2975.28 2881.68

Despite these problems, the MILP version of the tool was able to find a better load balanced

component layout using a total of 2,160 tasks. The better results are shown in Table 6.5. The new

layout found by the tool reduced the system idle time by 0.2 seconds per model day simulated and

by 0.9 seconds when all coupler idle time from all components are added together. The reduction

in idle time allows scientists to create an extra 6 months of simulation per computer wall clock day

and saves approximately 93 core hours for every year that is simulated. Since the model is usually

used to simulate around 100 years of climate per experiment, this performance improvement has

the potential to save 9,300 core hours for every simulation that will be run.

6.2.2 Testing a New Set of Constraints

In order to validate that the current constraints are optimal, we tested a new set of constraints.

The new variables are shown in Table 6.6 and are used to solve for the minimal of the maximum

end time for each component as shown in Equation 6.7. The new objective function used to solve

the MILP is shown in Equation 6.8 and is subject to the constraints shown in Table 6.7.

37

Table 6.6: The variables used within Table 6.7 and Equations 6.7 and 6.8.

Variable Description

c component

i timing data instance

Ts[c] component start time

Te[c] component end time

C[c]_i cost to run each component at each timing data i

N[c] number of cores for component c

N[c]_i number of cores for component c at each timing data i

T the maximum cost between all models

min(max(Te[atm], T e[ocn], T e[lnd], T e[ice], T e[wav])) (6.7)

Table 6.7: The new set of constraints tested.

Subject to these constraints:

Ts[river] <= Te[land]

Ts[atm] <= Te[river]

Ts[atm] <= Te[ice]

Ts[atm] <= Te[wav]

Te[ocn] >=Ts[ocn]

Te[atm] >=Ts[atm]

Te[ice] >=Ts[ice]

Te[lnd] >=Ts[lnd]

Te[wav] >=Ts[wav]

Ts[c] >=1

Te[c] >=1

N[c] = blocksize * NB[c], for c in [ice, lnd, ocn, wav, atm]

Te[c] >= Ts[c] + (C[c]_{i+ 1} − C[c]_{i})/(N [c]_{i+ 1} −N [c]_{i})+

N [c] ∗ (C[c]_{i+ 1} − C[c]_{i})/(N [c]_{i+ 1} −N [c]_{i}),

for i = 0...

c in[ice, lnd, ocn, wav, atm]

(6.8)

38

In order to make this modification, the wrapper code that generates the constraints that are

fed into the MILP were modified. It included modifications to both the constraints and additional

variables to include the start and end times for each of the components.

Even though the constraints fed into the model were different, they both produced the same

load balanced layouts and the same approximate costs for a 1024 total task count. These results

are shown in Table 6.8 and Table 6.9.

Table 6.8: The results of the existing constraints verses the new constraints implemented as part of the

validation. The timings represent the time it takes to simulate 10 days of climate. Both produced the same

results.

Result Type Existing Constraints New Constraints

Cost ATM 446.0 446.0

Cost ICE 62.0 62.0

Cost LND 62.2 62.2

Cost OCN 508.1 508.1

Cost WAV 53.8 53.8

Cost Total 508.2 508.2

NTASKS ATM 849 849

NTASKS ICE 118 118

NTASKS LND 676 676

NTASKS OCN 175 175

NTASKS WAV 55 55

NTASKS TOTAL 1024 1024

Table 6.9: The predicted start and end times for each of the components, as determined by the new set of

constraints. The timings represent the time it takes to simulate 10 days of climate.

Component Start Time End Time

ATM 0.0 446.0

ICE 466.0 508.1

LND 466.0 508.2

OCN 0.0 508.2

WAV 466.0 499.7

39

Figure 6.5: CESM component layout across MPI ranks, as determined by the new set of constraints. The

timings represent the time it takes to simulate 10 days of climate.

As seen both within Table 6.9 and Figure 6.5, the component end times for the ocean, land, and

ice models are all very close in time, with the wave model finishing about 1.5 seconds sooner for

every 10 days simulated. If the prediction is fairly accurate, this should produce a load balanced

configuration because these results match the results that used the original set of constraints as seen

within Table 6.8.

The original constraints are validated by these results, proving that they are able to find the same

optimal solution. Proving that the new constraints provide the same optimal solution provides more

generality because the particular layout is no longer hard coded into the MILP. This allows it to be

more easily adapted to other climate models as well as other types of multi-physics grid problems.

40

6.2.3 Cost Efficient Solution

The current version of the load balancing tool is able to solve for the best layout given a specific

target total task count. This is ideal if you are familiar with the scaling of the application and have

a good idea of where your target task count lies on the scaling curve. In order to pick this target

task count, a user must consider if it is more important to increase the throughput of the model

regardless of the cost efficiency or pick a node count with a descent throughput, but a low cost.

Since there is not perfect scaling of CESM, there exists a particular point in the scaling curve

where doubling the number of tasks no longer cuts the run time in half and the cost of core hours

of running the model increases. This is where the most cost efficient solution resides.

While running long simulations it may be ideal to pick a target task count where you can

achieve the best throughput regardless if it will cost more node hours to run. In this case, it is

best to pick any total task count on the tail of the scaling curve and pass this directly to the load

balancing tool.

On the other hand, if you are limited on your core hours, you may want to run at the most cost

efficient layout for a longer simulation. Because this task count is not known at the run time of

the load balancing tool, a new feature was implemented that finds the most cost efficient total task

count and provides the user with its optimal layout. This option is also handy for users who are

not familiar with the scalability of CESM because it will provide a reliable first guess.

This was implemented as a naive algorithm within the current version of the tool. As a first step,

the algorithm picks evenly spaced total task counts that range from the lowest to the highest total

task counts that were run within the performance collection step. All of the total task counts are

then solved for using the original algorithm, with only the NTASKS_TOTAL and COST_TOTAL

values being saved. After all total task counts have been solved for, the timing results are traversed,

finding the elbow of the curve. The elbow of the curve is determined to be the most cost efficient

task count because it is after this point, the cost of the model begins to increase. This is shown

within Figure 6.6.

41

Figure 6.6: The scaling curve of the results from the load balancing tool’s total timings are plotted out and

the start of the elbow is shown as the most cost efficient solution.

Once the elbow has been found, this becomes the total task target to solve for. It is passed to

the solver and the optimal component layout for the most cost efficient solution is then outputted

for the user. In Figure 6.6, the most cost efficient task count was estimated at 527 MPI tasks.

6.3 A Comparison of Both Versions of the Load Balancing Tool

Ideally we would have liked to directly compare the results between the MINLP version of the

tool versus the MILP version of the tool, but this was not possible. This is because the hardware

and software required to run the MINLP version is no longer available. The best comparison that

can be made is to compare the reported predicted versus actual total timings from the one degree

timings in [1] to the timings that were used in Figure 6.4.

As seen from the timings in Table 6.10, there are large differences in the timing numbers be-

tween the MINLP tool verses the MILP tool. The main cause for this difference in the timing

numbers are because the timings represent differing simulation lengths. The MINLP tool’s timing

results captured the total time to simulate 5 days of climate while the MILP tool’s timings num-

bers captured the total time to simulate 10 days of climate. Differences beyond the simulation

length are because CESM version 2.0 is more expensive to run than version 1.0. This is because

42

the components themselves are more expensive to run. By comparing the percentage difference

of the actual verses predicted timings from both of the tools, we can better understand the accu-

racy of each of these versions. The comparison shows that the MILP version of the tool had a

difficult time predicting the performance at lower node codes. It was pointed out in Subsection

6.2.1 that this is because the linear solver requires an extrapolated point at one core and this is es-

timated poorly. At higher node counts, the results between the two versions show roughly similar

prediction capabilities.

Table 6.10: The actual versus predicted results from both the MINLP and the MILP version of the load

balancing tool. The MINLP tool’s timing numbers were from a simulation that simulated 5 days of climate.

While the MILP tool’s timing numbers were from a simulation that simulated 10 days of climate.

Total Time in Seconds Differences

MINLP Tool Predicted Timings Actual Timings Actual-Predicted % Difference

128 Nodes 410.623 425.171 +14.548 3.5%

2048 Nodes 84.484 86.471 +1.987 2.3%

MILP Tool Predicted Timings Actual Timings Actual-Predicted % Difference

432 Nodes 1190.817 1049.787 -141.03 11.8%

864 Nodes 510.716 540.650 +29.934 5.9%

1728 Nodes 314.763 307.096 -7.667 2.4%

2160 Nodes 257.6 263.167 +5.567 2.2%

43

Chapter 7

Related Work

Load balancing climate models has been of importance for the last several decades. This in-

cludes studying both the load balance between components as well as within the components them-

selves. This section explores contributions by other authors who have worked on this problem.

One of the earlier studies was performed by Foster and Toonen in 1994 [14]. In this work, the

authors looked at load balancing the first parallel implementation of an NCAR climate model. The

model in which they studied, the Community Climate Model 2(CCM2), is a predecessor of CESM

described in this document. This version of the model only contained an atmosphere model [39],

therefore, the type of load balancing used would be considered inter component load balancing

today.

Load imbalance within the atmosphere model occurs because of the diurnal cycle, where ra-

diation calculations are only performed where it is daylight. In this work, the authors explored

a dynamic load balancing approach by reassigning processor ranks at every radiation time step,

assigning more resources to where it was daylight. One of the methods explored is similar to a

method that is still present in the current version of CAM. In this case, the algorithm swaps data

columns with another column at the same latitude, but on the opposite side of the Earth. This

creates enough of a load balance of where the radiation calculations are performed and is able to

increase the overall performance of the model.

The current version of CAM is much more complex and this type of load balancing only goes

so far. A more dynamic approach is needed to fully load balance the atmosphere model, such as

increasing the core count over the locations of clouds or for mesh refinement.

In 2009, Sundari, Vadhiyar, and Nanjundiah [40] also looked to improve the performance of

atmospheric model, but they used a different dynamic load balancing approach. Their approach

would offload expensive calculations done within the atmosphere model to the ranks of other com-

ponents that were typically idle. This work was performed using the Community Coupled System

44

Model version 3 (CCSM3), which contained an atmosphere, ocean, sea ice, and land model cou-

pled together. CCSM3 was also a predecessor of CESM.

As the model first starts to run, their algorithms look to identify typical idling periods of the

other components. As the model advances, the profiling period switches off and the processor

layout of the atmosphere model is switched to use these idle processes from other components.

Periodically, the model switches back to a profiling mode and if an imbalance is detected, the

atmospheric model’s processor layout is altered again. Through this process, the authors stated

that they were able to reduce the simulation time by 15%.

In 2007 Koenig and Kale [41] explored the use of dynamic load balancing on the Grid, where

computational resources are distributed geographically. In this case, it is critical that the commu-

nication latency across resources be minimized in order to achieve better performance results.

The authors developed a load balancing algorithm based on Charm++ and Adaptive MPI that

seeks to reduce all communication. The first phase of the algorithm evaluates the amount of com-

munication that will be done by determining the number of messages that will be sent between the

different sites. A graph is created based on this communication pattern and a number of partitions

are drawn from this graph based on the computation patterns. The second phase looks to load bal-

ance across the nodes on the local cluster in which a similar graph is developed and it is partitioned

in a similar way.

Keonig and Kale tested their algorithm on the molecular dynamics code, LeanMD. During

their test, they used a simulated Grid environment where they introduced artificial latencies that

they were able to adjust manually. In all of their tests, their load balancing algorithm was able to

reduce the over all cost of running LeanMD. These results look very promising and they mention

that it could work on climate codes as well. In this case they suggest running each of the modeling

components on separate clusters, but it would take a lot of work to integrate CESM into this type

of framework.

In 2013, Kim, Larson, and Chiu explored the use of dynamic load balancing within CESM

[42]. They developed the Malleable Model Coupling Toolkit (MMCT), which was an extension

45

to the MCT used to couple the modeling components within CESM. MMCT looks to minimize

the idle time spent by a component waiting for another component within the coupler. This is

done by predicting the performance of each component and then adjusting the core counts of each

component accordingly.

This method is ideal for a couple of reasons. Even with the creation of the load balancing tool,

it is still a static, hands on method, that requires a metric collection step as well as a solver step. It

would be ideal if the model could adjust internally and it would ensure that a load balancing step

is always performed, potentially saving thousands of node hours be simulation. Second, it is hard

to load balancing the model when higher frequency output is desired. An internal dynamic method

would make this process easier.

While ideal, the method of dynamically load balancing CESM is not possible. As noted by the

authors, this process was simulated in order to test the methods. At this time, core counts within

some component models cannot be dynamically allocated. This is because they are determined at

compile time, not run time and, therefore, this type of dynamic allocation would require large code

changes.

In 2014, Nan, Wei, Xu, Haoyu, and Zhenya [43] developed a load balancing interface called

CESMTuner. They used a similar approach as to what was described in the original CESM load

balancing tool within this document. The authors’ interface first requires the users to collect perfor-

mance metrics. These metrics are then passed to an MINLP solver which uses similar constraints

that were used in our original tool and balance layout is reported back to the user.

Overall they were able to improve the performance greater than what we reported [1], but their

results are slightly misleading. In their results, they compared their improvement to a serial execu-

tion of CESM, where all components are executed sequentially. As discussed earlier, it is best to

run certain components concurrently with other components in order to maximize the paralleliza-

tion within the coupler calls. This particular component layout has been known to produce the best

performance since 2011 [13] and has been the default component configuration for a fully coupled

46

simulation since that time. Because of the poor choice in their initial layout, they were able to

produce a better overall performance improvement.

In 2018, the authors extended the work to include a process layout generator [44]. This work

looks to determine which component layout will yield the best performance results. In their exam-

ple, this new feature confirmed that the optimal layout described in this document would yield the

best performance. While this is known to be the optimal layout, this new feature could be helpful

in predicting new optimal component layouts when running one of the data components instead

of the fully coupled model. In this case, the model reads in prescribed values for a component

instead of running the full component. This creates a new load balancing problem in which the

model usually runs all of the components sequentially. This extension might be able to point to

better configurations for this type of model setup that could increase its performance.

47

Chapter 8

Future Work

Load imbalance continues to be a problem with ESMs. Somewhere between 1% to 62% of

the total time to run ESMs are spent in synchronization calls waiting to couple with other model

components [10]. While this work provides a static load balancing method to improve model

performance, it would be ideal if the model could be load balanced dynamically as the model is

running. This would ensure that long simulations are run with load balanced configuration and

performance would be improved.

Dynamic load balancing would be challenging to implement within CESM. This is because

certain CESM modeling components require that decompositions be set at compile time and cannot

be changed at runtime. This requirement would have to be removed from the ocean and sea ice

models before work on dynamic load balancing could be implemented.

This work focused mostly on load balancing between the components, but the individual com-

ponent models also suffer from load imbalance. Finding the correct decompositions for each model

can be tricky because workload is not always predictable. For example, the performance of the

physics code in the atmosphere can change if clouds are present in a certain region. Another ex-

ample is found in the sea ice model where the most expensive calculations are only done where

there is sea ice and where there is sunlight. While the decomposition of the sea ice grid is global,

calculations are typically done at the North Pole for half the year and then at the South Pole for

the other half of the year. Having the ability to dynamically load balance calculations within a

particular model would help reduce idle time further.

48

Chapter 9

Conclusions

CESM is a complex model that presents many computational challenges as we approach ex-

ascale systems. Each component model presents different performance challenges and they will

need to be addressed separately to meet these challenges. As we look to these types of systems, it

will critical to ensure that communication times are kept low and close consideration of memory

management will be essential.

In this work we evaluated the performance of CESM, provided a performance analysis in pro-

duction, and evaluated and validated optimal component layouts for CESM.

While the coupler’s computational time is small relative to the model components’ run times,

it has a potential to slow down the entire CESM if the components are not load balanced. There-

fore, when looking to optimize the full model’s performance, it is important to verify that the

components are balanced and idle times between components are kept to a minimal. This type of

optimization is essential now and can save several thousands of core hours for one simulation, but

it will be critical as we move to exascale systems.

Load balancing CESM is a difficult task to do and it requires expert knowledge in order to

accurately load balance all of the components. The automatic load balancing tool uses this expert

knowledge to provide users with a balanced layout. Given a set of constraints, performance data,

and a target total core count, it is able to solve the MILP and provide users with predicted run time

estimates as well as the amount of resources to give each component to be load balanced within

the system.

The MILP version of the tool has the benefit of being more portable and the time to solution

is faster than the MINLP version, while predicting performance with the same degree of accuracy

for medium to high core counts. As a result of using the tool, we were able to provide the CESM

user community with a new layout that has the potential to save thousands of CPU core hours on a

popular model configuration.

49

This work also provided the load balancing tool a new feature, giving it the ability to provide

the most cost efficient layout to the user. This is handy if the time to solution is not as important

as the overall cost of the simulation or if the user is unfamiliar with the application’s scaling and

is unsure on a good target task count. This extension evaluates the predicted performance and

estimates where the performance starts to slow down and the cost starts to increase.

The load imbalance problems reported in this work exist in all other coupled climate models

from around the world. The work done to validate the current constraints by removing the layout

constraints from the MILP, allow for the possibility that the tool could be more easily used to load

balance other models that do not follow the same layout as CESM. This has the potential to save

many millions of core hours world wide by allowing coupled climate models to be more easily

balanced before simulations are done.

As we move towards exascale, the model’s performance will have to be constantly evaluated

and this work is only one piece to help move the CESM in that direction. Being a community

code, many people contribute to its development and it is important to educate code contributors

about good coding practices for future architectures. We can no longer count on a "free lunch" and

expect new generation hardware to increase the model throughput or compilers to optimize our

code. It will be hard work optimizing the model for future architectures, but a necessary step to

ensure that the model will be able to run efficiently on future platforms.

50

Bibliography

[1] Yuri Alexeev, Sheri Mickelson, Sven Leyffer, Robert Jacob, Anthony Craig. The heuristic

static load balancing algorithm applied to the Community Earth System Model. 2014 IEEE

International Parallel and Distributed Processing Symposium Workshops, pages 1581–1590,

2014.

[2] Sarich. CIME load balancing tool. https://github.com/ESMCI/cime/tree/master/tools/load_

balancing_tool, March 2018.

[3] Puma. Climate modelers and the moth. https://www.giss.nasa.gov/research/briefs/puma_02,

December 2012.

[4] Gordon E. Moore. Moore’s law at 40. Understanding Moore’s Law: Four Decades of Inno-

vation, pages 67–84, March 2016.

[5] John Dennis, Christopher Kerr, Allison Baker, Brian Dobbins, Kevin Paul, Richard Mills,

Sheri Mickelson, Youngsung Kim, Raghu Kumar. Preparing the Community Earth System

Model for exascale computing. Exascale Scientific Applications Scalability and Performance

Portability, pages 207–227, November 2017.

[6] Bryan Lawrence, Michael Rezny, Reinhard Budich, Peter Bauer, Jorg Behrens, Mick Carter,

Willem Deconinch, Rupert Ford, Christopher Maynard, Steven Mullerworth, Carlos Osuna,

Andrew Porter, Kim Serradell, Sophie Valcke, Nils Wedi, Simon Wilson. Crossing the chasm:

how to develop weather and climate models for next generation computers? Geoscientific

Model Development, pages 1799–1821, May 2018.

[7] James W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, Jennifer E. Kay, P. J. Kushner, J.

-F. Lamrque, W. G. Large, D. Lawrence, K. Lindsay, W. H. Lipscomb, M. C. Long, N.

Mahowald, D. R. Marsh, R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D.

Collins, J. J. Hack, J. Kiehl, S. Marshall. The Community Earth System Model: A framework

51

for collaborative research. Bulletin of the American Meteorological Society, pages 1339–

1360, September 2013.

[8] CESM 2.0. http://www.cesm.ucar.edu/models/cesm2/, June 2018.

[9] Mariano Mendez, Fernando G. Tinetti, Jeffrey L. Overbey. Climate models: Challenges for

Fortran development tools. 2014 Second International Workshop on Software Engineering

for High Performance Computing in Computational Science & Engineering, pages 6–12,

November 2014.

[10] Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp,

Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-

Alice Foujols, Grenvill Lister, Silvia Macavero, Seth Underwood, Garret Wright. CPMIP:

measurements of real computational performance of earth system models in CMIP6. Geosci-

entific Model Development, 10:6–34, January 2017.

[11] Veronika Eyring, Sandrine Boyn, Gerald A. Meehl, Catherine A. Senior, Bjorn Stevens,

Ronald J. Stouffer, Karl E. Taylor. Overview of the Coupled Model Intercomparison Project

Phase 6 (CMIP6) experimental design and organization. Geoscience Model Development,

9:1937–1958, 2016.

[12] Richard B. Neale, Andrew Gettelman, Sungsu Park, Chih-Chieh Chen, Peter H. Lauritzen,

David L. Williamson, Andrew J. Conley, Doug Kinnison, Dan Marsh, Anne K. Smith, Francis

Vitt, Rolando Garcia, Jean-Francois Lamarque, Mike Mills, Simone Tilmes, High Morrison,

Phillip Cameron-Smith, William D. Collins, Michael J. Iacono, Richard C. Easter, Xiaohong

Liu, Steven J. Ghan, Phillip J. Rasch, Mark A. Taylor. Description of the NCAR Commu-

nity Atmosphere Model (CAM 5.0). http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/

description/cam5_desc.pdf, November 2012.

[13] Patrick H. Worley, Arthur A. Mirin, Anthony P. Craig, Mark A. Taylor, John M. Dennis,

Mariana Vertenstein. Performance of the Community Earth System Model. Proceedings of

52

2011 International Conference for High Performance Computing, Networking, Storage and

Analysis, November 2011.

[14] I. T. Foster, B. R. Toonen. Load-balancing algorithms for climate models. Proceedings of

IEEE Scalable High Performance Computing Conference, pages 674–681, 1994.

[15] Keith Oleson, David Lawrence. Technical description of version 4.5 of the Community

Land Model (CLM). http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.

pdf, July 2013.

[16] CESM2.0: River runoff models. http://www.cesm.ucar.edu/models/cesm2/river/, June 2018.

[17] R. Smith, P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, J. Dukowicz, C. Eden,

B. Fox-Kemper, P. Gent, M. Hect, S. Jayne, M. Jochum, W. Large, K. Lindsay, M. Maltud, N.

Norton, S. Peacock, M. Vertenstein, S. Yeager. The Parallel Ocean Program (POP) reference

manual ocean component of the Community Climate System Model (CCSM) and Commu-

nity Earth System Model (CESM). http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/

POPRefManual.pdf, 2010.

[18] Ging Li, Adrean Webb, Baylor Fox-Kemper, Anthony Craig, Gokhan Danabasoglu, William

G. Large, Mariana Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH

III in CESM. Ocean Modelling, 103:145–160, July 2016.

[19] David Bailey, Marika Holland, Elizabeth Hunke, Bill Lipscomb, Bruce Briegleb, Cecilia

Bitz, Julie Schramm. Community Ice CodE (CICE) users guide version 4.0. http://www.

cesm.ucar.edu/models/ccsm4.0/cice/ice_usrdoc.pdf, 2010.

[20] Anthony P. Craig, Sheri A. Mickelson, Elizabeth C. Hunke, David A. Bailey. Improved

parallel performance of the CICE model in CESM1. The International Journal of High

Performance Computing Applications, 29(2):154–165, 2015.

[21] Jim Edwards, John M. Dennis, Mariana Vertenstein, Edward Hartnett. Parallel I/O library

(PIO). http://ncar.github.io/ParallelIO/, 2018.

53

[22] Anthony P. Craig, Mariana Vertenstein, Robert Jacob. A new flexible coupler for earth system

modeling developed for CCSM4 and CESM1. International Journal of High Performance

Computing Applications, pages 26–31, 2012.

[23] CIME documentation. http://esmci.github.io/cime/index.html, June 2018.

[24] Jay Larson, Robert Jacob, Everest Ong. The model coupling toolkit: A new Fortran90 toolkit

for building multiphysics parallel coupled models. International Journal of High Perfor-

mance Computing Applications, 19(3):277–291, 2005.

[25] Recommendations for the ocean model dynamical core for CESM3. http://www.cesm.ucar.

edu/working_groups/Ocean/files/20160505-RFI/recommendations.pdf, May 2016.

[26] Improving vertical mixing parameterizations in MOM6. http://www.cesm.ucar.edu/events/

workshops/ws.2018/presentations/omwg/marques.pdf, June 2018.

[27] ESMF: Community infrastructure for building and coupling models. https://www.

earthsystemcog.org/projects/esmf/, March 2018.

[28] Richard D. Loft, Aaron H.Anderson, Frank O. Bryan, John M. Dennis, Thomas M. Engel,

Pam Gillman, David L. Hart, Irfan Elahi, Siddartha S. Ghosh, Rory Kelly, Anke Kamrath,

Gabriele Pfister, Matthias Rempel, R. Justin Small, William Skamarock, Michael Wiltberger,

Bryan L. Shader, Po Chen, Benjamin Cash. Yellowstone: A dedicated resource for earth

system science. Contemporary High Performance Computing: From Petascale Toward Ex-

ascale, 2:185–220, 2015.

[29] David L. Hart. NCARs data-centric supercomputing environment yellowstone. http://www.

cesm.ucar.edu/management/SSC/Presentations/yellowstone.pdf, November 2011.

[30] David L. Hart. Cheyenne NCARs next-generation data-centric supercomputing en-

vironment. https://www2.cisl.ucar.edu/sites/default/files/Cheyenne_Briefing_MesaLab_

20160624e.pdf, June 2016.

54

[31] Integrated performance monitoring. http://ipm-hpc.sourceforge.net/overview.html, October

2009.

[32] Yuri Alexeev, SheriMickelson, Sven Leyffer, Robert Jacob, Anthony Craig. The heuristic

static load-balancing algorithm applied to CESM. http://sc13.supercomputing.org/schedule/

event_detail.php-evid=post216.html, November 2013.

[33] Robert Fourer, David M. Gay, Brian W. Kernighan. AMPL: A Modeling Language for Math-

ematical Programming. Duxbury Press, 2002.

[34] Leyffer. MINOTAUR: Toolkit for mixed integer nonlinear optimization problems. https:

//wiki.mcs.anl.gov/minotaur/index.php/Minotaur_Documentation, May 2017.

[35] Roger Fletcher, Sven Leyffer. Solving mixed integer nonlinear programs by outer approxi-

mation. Mathematical Programming, 66(1):327–349, 1994.

[36] Hunke, Lipscomb, Turner, Jeffrey, Elliot. CICE: the Los Alamos sea ice model documenta-

tion and software user’s manual version 5.1. http://oceans11.lanl.gov/trac/CICE/attachment/

wiki/WikiStart/cicedoc.pdf, March 2015.

[37] Prasanna Balaprakash, Yuri Alexeev, Sheri A. Mickelson, Sven Leyffer, Robert Jacob, An-

thony Craig. Machine-learning-based load balancing for Community Ice CodE component in

CESM. International Meeting on High Performance Computing for Computational Science,

2014.

[38] Stuart Mitchell, MichaelO’Sullivan, Iain Dunning. PuLP: A linear programming toolkit

for Python. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.4985&rep=rep1&

type=pdf, September 2011.

[39] The NCAR Community Climate Model. http://www.cgd.ucar.edu/cms/ccm3/history.shtml,

June 1999.

55

[40] Sundari M. Sivagama, Sathish S. Vadhiyar, Ravi S. Nanjundiah. Dynamic component ex-

tension: A strategy for performance improvement in multicomponent applications. The In-

ternational Journal of High Performance Computing Applications, 23(1):84–98, February

2009.

[41] Gregory A. Koenig, Laxmikant V. Kale. Optimizing distributed application performance

using dynamic grid topology-aware load balancing. 2007 IEEE International Parallel and

Distributed Processing Symposium, Long Beach, CA, 2007, pages 1–10, 2007.

[42] Daihee Kim, J. Walter Larson, Kenneth Chiu. Automatic performance prediction for load-

balancing coupled models. 2013 13th IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing, 2013.

[43] Ding Nan, Xue Wei, Ji Xu, Xu Haoyu, Song Zhenya. CESMTuner: An auto-tuning frame-

work for the Community Earth System Model. 2014 IEEE Intl Conf on High Performance

Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Secu-

rity, 2014 IEEE 11th Intl Conf on Embedded Software and Syst, pages 282–289, 2014.

[44] Nan Ding, Wei Xue, Zhenya Song, Haohuan Fu, Shiming Xu, Weimin Zhenga. An automatic

performance model-based scheduling tool for coupled climate system models. Journal of

Parallel and Distributed Computing, 2018.

56

Appendix A

Network Maps

Figures A.1 through A.8 show the communication pattern between the components to the cou-

pler for a two degree finite resolution atmosphere and land grid and a one degree ocean and sea

ice grid fully coupled CESM simulation run on 880 MPI ranks. Each of the bubbles indicates a

separate MPI task and they are organized into 15 columns because the simulation used 15 MPI

ranks per compute node. The bubbles are color coded to indicate the different components. Red

bubbles are for the coupler, white for the atmosphere model, green for the land model, purple for

the sea ice model, blue for the ocean model, yellow for the river runoff model, black for the glacier

model, and aqua for the wave watch model.

57

Figure A.1: Communication to the coupler.

58

Figure A.2: Atmosphere communication with the coupler.

59

Figure A.3: Land communication with the coupler.

60

Figure A.4: Sea Ice communication with the coupler.

61

Figure A.5: Ocean communication with the coupler.

62

Figure A.6: River Runoff communication with the coupler.

63

Figure A.7: Glacier model communication with the coupler.

64

Figure A.8: Wave model communication with the coupler.

65

Appendix B

Coupler Timings

The letter codes used in both Table B.1 and Figure B.1 match the labels used in Figure 3.2. It

is recommended that Figure 3.2 is used to interpret these results correctly.

66

Table B.1: The minimum and maximum times in seconds to complete each task for a full day simulated

for a 1 degree simulation and a 1/4 degree simulation. The missing high resolution timers for the wave and

glacier models were not captured because these components were not available in the version of the model

used to collect these timings.The label column in the table matches the labels found within Figure 3.2 in

order to add reference to these timings.

1 Degree Resolution 1/4 Degree Resolution

Label Task Min Time Max Time Min Time Max Time

1 ATM/OCN Setup 0.001 0.003 0.0 0.001

2 LND Setup 0.004 0.023 0.161 0.316

3 ICE Setup 0.008 0.014 0.103 0.178

4 WAV Setup 0.026 0.045 – –

5 ROF Setup 0.003 0.005 0.006 0.029

6 LND Post 0.008 0.012 0.029 0.059

7 GLC Setup 0.0 0.0 – –

8 ROF Post 0.004 0.015 0.015 0.035

9 ICE Post 0.004 0.022 0.025 0.049

10 ATM Setup 0.071 0.099 0.528 0.80

11 WAV Post 0.004 0.01 – –

12 GLC Post 0.004 0.009 – –

13 ATM Post 0.006 0.016 0.06 0.09

14 OCN Post 0.002 0.004 0.0 0.0

15 Run ICE 1.463 1.591 1.204 4.125

16 Run LND 0.951 1.447 30.62 32.97

17 Run ROF 0.017 0.12 0.904 1.162

18 Run WAV 0.77 1.06 – –

19 Run OCN 11.84 11.915 8.483 8.564

20 Run ATM 9.586 10.289 122.963 137.53

21 Run GLC 0.006 0.025 – –

a Coupler->OCN 0.007 0.028 0.0 0.002

b Coupler->LND 0.009 0.013 0.109 0.16

c Coupler->ICE 0.015 0.033 0.115 0.229

d Coupler->WAV 0.011 0.021 – –

e Coupler->ROF 0.007 0.011 0.019 0.035

f LND->Coupler 0.183 1.066 0.223 0.409

g Coupler->GLC 0.0 0.0 – –

h ROF->Coupler 0.004 0.009 0.004 0.012

i ICE->Coupler 0.012 0.031 0.049 0.096

j Coupler->ATM 0.024 0.047 0.223 0.488

k WAV->Coupler 0.24 0.929 – –

l GLC->Coupler 0.0 0.0 – –

m ATM->Coupler 0.013 0.029 6.535 21.114

n OCN->Coupler 0.404 1.199 0.0 78.504

67

(a) Coupler -> OCN (b) Coupler -> LND (c) Coupler -> ICE (d) Coupler -> WAV

(e) Coupler -> ROF (f) LND -> Coupler (g) Coupler -> GLC (h) ROF -> Coupler

(i) ICE -> Coupler (j) Coupler -> ATM (k) WAV -> Coupler (l) GLC -> Coupler

(m) ATM -> Coupler (n) OCN -> Coupler

Figure B.1: The proportion of time spent in each of the communication steps for the 1 degree simulation.

The letter of each subplot corresponds to lettering scheme in Figure 3.2.

68

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	State of Practice
	Contributions

	Background
	The Community Earth System Model
	Model Coupling
	Future Model Plans

	Coupling Between the Model Components
	Coupling Interface
	Sequencing of the Components
	Communication Pattern

	Computing Platforms and Problem Size
	Computing Platforms
	Architectures

	Problem Sizes
	Model Configuration
	Grid Sizes
	Output

	Performance Results
	CESM Timers
	IPM Results
	Coupler Performance

	Automated Load Balancing
	Load Balancing Tool using MINLP formulation
	Load Balancing Tool using MILP (linear) formulation
	Improved Performance Results Using the Load Balancing Tool
	Testing a New Set of Constraints
	Cost Efficient Solution

	A Comparison of Both Versions of the Load Balancing Tool

	Related Work
	Future Work
	Conclusions
	Bibliography
	Network Maps
	Coupler Timings

