
DISSERTATION 

 
RELIABILITY-BASED LIFETIME PERFORMANCE ANALYSIS OF LONG-SPAN 

BRIDGES 

 
 
 
 
 

Submitted by 

Jun Wu 

Department of Civil and Environmental Engineering  

 

 

 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Fall 2010 

Doctoral Committee:  

Department Head: Luis Garcia                                                                                                                                         

Advisor: Suren Chen 

John W. van de Lindt 
Paul R. Heyliger 
Hiroshi Sakurai 



 

 

 

 

 

 

 

Copyright by Jun Wu 2010 

All Rights Reserved 

 



 ii

ABSTRACT  

 

RELIABILITY-BASED LIFETIME PERFORMANCE ANALYSIS OF LONG-SPAN 

BRIDGES 

            Long-span bridges generally serve as the significant hub in the transportation 

system for normal transportation and critical evacuation paths when any disaster happens. 

Thus, the safety and serviceability of long-span bridges are related to huge economic cost 

and safety of thousands of lives. The objective of this research is to establish a general 

framework to evaluate the lifetime performance of long-span bridges through taking 

account of more realistic load situations, such as traffic flow and wind environment. 

After some background information is introduced in Chapter 1, Chapter 2 covers the 

modeling of stochastic traffic flow for the bridge infrastructure system in a more realistic 

way by using the Cellular Automaton model. Based on the detailed information of 

individual vehicles of the stochastic traffic flow, the general framework to study 

Bridge/Traffic/Wind dynamic performance is developed in Chapter 3. Chapter 3 and 

Chapter 4 also report the results of the bridge’s serviceability under normal and extreme 

loads events, respectively. In Chapter 5, the scenario-based fatigue model is further 

developed based on the dynamic framework developed in Chapter 3. Finally, the 

reliability-based analysis is conducted in Chapter 6 to study the fatigue damage caused by 

the coupling effects among bridge, traffic flow and wind throughout the bridge’s service 

life.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In the United States, over 800 long-span bridges are categorized as fracture-critical (Pines and 

Aktan 2002). Although the amount of long-span bridges is relatively small compared with the 

short and medium bridges, the importance of the continued integrity in both normal and extreme 

conditions for these critical infrastructures are easily justified by the critical role in the national 

and regional transportation network. Generally, long-span bridges accommodate a large volume 

of traffic and its functionality is critical to local economy during normal service conditions. 

During some natural disasters like hurricane, flood and earthquake, these long-span bridges may 

often serve as important evacuation routes. However, according to the special report by the sub-

committee on the performance of bridges of ASCE (ASCE 2003), “… most of these [long-span] 

bridges were not designed and constructed with in-depth evaluations of the performance under 

combination loadings, under fatigue and dynamic loadings and for the prediction of their response 

in extreme events such as wind and ice storms, floods, accidental collision or blasts and 

earthquakes” . Therefore, a reasonable lifetime performance prediction of slender long-span 

bridges under complex service loads becomes crucial. 

1.2 Literature Review and Scope of the Dissertation 

1.2.1 Service loads of long-span bridge 

Long-span bridges (e.g. span length > 152.4m or 500 ft) usually accommodate a number of 

vehicles simultaneously and are subjected to strong bridge/vehicle dynamic interactions. In 

addition to traffic loads, slender long-span bridges (e.g. cable-stayed and suspension bridges) are 
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also susceptible to wind excitations as compared to conventional long-span bridges (e.g. arch or 

truss bridges). A slender long-span bridge usually experiences complicated dynamic loads from 

the bridge, stochastic traffic and wind (Guo and Xu 2001; Chen and Cai 2007). The stochastic 

nature of wind and traffic, as well as the dynamic interactions, makes a realistic estimation of 

fatigue damage of the bridge over time very challenging (Chen and Cai 2007). The research on 

bridge dynamics interacted with traffic and wind has experienced three stages: (1) bridge/vehicle 

interaction; (2) bridge/wind interaction and vehicle/wind interaction; (3) bridge/wind/vehicle 

interaction. Those three phases of the research will be introduced briefly in the following.  

1.2.1.1 Traffic load on bridge  

Daily traffic is the main live load which has significant impact on the strength and serviceability 

of bridges. Bridge/vehicle interactions have been studied since the middle of 20th century 

(Blejwas et al.1979; Olsson 1985). The impact of a vehicle on a bridge was initially assumed to 

be a moving load without considering the inertia effect. Later, a vehicle was simplified as a 

moving mass which can consider the inertia effect on bridges (Sadiku and Leipholz 1987). In 

recent years, the commonly-used analytical model for vehicle is a dynamic system consisting of 

mass, spring and damping parts, which have significant effects on dynamic analysis of vehicles 

and interactions with other systems. Thus, the interaction analysis of bridge and vehicles is to 

investigate the coupling nature of multiple dynamic systems. By numerically solving the coupled 

equations in the time domain, the dynamic response (displacement, acceleration and stress) of the 

bridge and vehicles can be obtained, respectively (Guo and Xu 2001; Kim et al. 2005; Chen and 

Cai 2006).   

 

The evolution of traffic flow is complicated in terms of vehicle number, vehicle type combination 

and drivers’ behavior such as lane-changing, acceleration or deceleration. AASHTO code (2007) 

specifies the design truck or tandem to investigate the bridge’s strength and fatigue capacity 
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regarding short and medium bridges. Nevertheless, the current code does not provide the 

specifications on vehicular load regarding long-span bridges whose main span is more than 

152.4m (500 feet). Most existing research did not adopt an appropriate model for traffic flow 

which is close to the realistic situation on bridge. Only the simplified models of traffic flow were 

used, such as a uniform fleet or statistical distributions with assumed patterns. Some researchers 

use WIM (Weigh-In-Motion) data to define the traffic load, but they cannot provide the useful 

and detailed information like the instantaneous speed and location at each time step. Such 

simplifications may be applicable for short and medium span bridges as fewer vehicles running 

on them at a time. But it is hard to apply on long-span bridges as well because long-span bridges 

accommodate large volume of traffic which is substantially more complex as compared to short 

and medium ones.  

 

Although oversimplified by structural engineers, the traffic flow models have been studied 

extensively in the field of transportation engineering and can be categorized into three scales: 

macroscopic, mesoscopic and microscopic. The former two scales are based on continuous time 

and space, which are suitable for traffic studies typically focusing on physical characteristics of 

the whole traffic flow in a large scale (Nagel et al. 1998, Barlovic et al. 1998, Cheybani et al. 

2000). The microscopic traffic simulation is based on discrete time and space which can capture 

the detailed time-variant information of individual vehicles. Cellular Automaton (CA) model 

proposed in 1992 by Nagel and Schreckenberg belongs to microscopic traffic flow model. The 

advantage of CA model is to reproduce the basic features of traffic flow through defining the 

basic data: vehicle density, speed limit, number of lanes and acceleration rate. This time-discrete 

and space-discrete traffic model can be integrated into the time-history analysis of bridge very 

well as it can offer the detailed information of individual vehicles.  
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Despite being a relatively new technology, CA simulation technique has shown its promising 

future through applications in the actual transportation management. For example, TRANSIMS, a 

commercial software developed by Las Alamos National Laboratory, is based on the concept of 

CA model (TRANSIMS Travelogue 1996). In Germany, CA model is used for online traffic 

simulation in North Rhein Westphalia (http://www.autobahn.nrw.de./) (Schadschneider 2006). 

The CA model has strong capability of replicating major traffic phenomena on highways 

including both normal and incident (partial lanes are blocked due to natural disaster, construction, 

maintenance and accidents) situations with different level of services, i.e. free traffic or busy 

traffic. Thus it becomes an ideal technology to be integrated into the advanced bridge dynamic 

analysis considering live load in a more accurate manner.  

1.2.1.2 Wind load on bridge and vehicle  

Slender long-span bridges are such a type of structure being sensitive to wind which has been 

proved by several noteworthy collapse accidents due to bridge/wind interaction. The bridge/wind 

dynamic interaction can be traced back to the failure of Tacoma Bridge in 1940. That striking 

accident aroused the serious concerns of engineers to study bridge aerodynamics. Generally, the 

wind-induced force on bridge can be classified into two types: one is the aerodynamic instability 

problem including the phenomena of flutter and galloping. The occurrence of flutter and 

galloping solely appear when some conditions are met. Another one is the wind-induced vibration 

problems including buffeting and vortex shedding. The primary wind-induced phenomena for 

long-span bridges are flutter and buffeting. When the critical wind speed is achieved, the 

vibration of bridge becomes self-feeding and divergent which is called flutter. Currently, most 

slender long-span bridges have been carefully designed to avoid flutter occurrence. Buffeting is 

the turbulence-induced vibration on bridges and theoretically exists whenever wind turbulence 

exists. Hence, buffeting can happen over a large range of wind speed (from low to high wind 
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speeds), and potentially cause serviceability and fatigue problem (Xu et al. 2009; Virlogeux 1992; 

Gu et al. 1999).  

 

Inspired by the overturned vehicles and other accidents caused by high speed wind, the 

vehicle/wind interaction analysis started in the 1980s through wind tunnel test and numerical 

computation (Baker 1986, 1991a, 1991b; Hucho 1987; Cooper 1981; Coleman and Baker 1990; 

Chen and Cai 2004; Guo and Xu 2006). Wind effect on vehicles is composed of two parts: static 

wind force and quasi-static turbulent wind force (Baker 1986). Baker developed the basic 

functions in terms of the aerodynamic coefficient, vehicle speed and wind direction to quantify 

the wind force on running vehicle (Baker 1986).  

1.2.1.3 Bridge/Traffic/Wind dynamic interaction  

The comprehensive consideration of coupling effects among bridge, wind and vehicle started 

around 2003 by using the time-history analysis of the coupled finite element model (Xu and Guo 

2003; Cai and Chen 2004; Chen and Cai 2006; Chen et al. 2007). In those studies, both the bridge 

and vehicle are taken as a completed dynamic system composed of mass, spring and damping 

matrix. The force exerted by wind on a bridge and vehicles as well as the interaction between the 

bridge and the vehicles considering the roughness of the pavement were included in those 

analytical models.  

 

As the preliminary study on Bridge/Traffic/Wind interaction, those models successfully 

investigated the mechanism of dynamic interactions and identified the most significant 

parameters influencing the dynamic performance of bridges and can expose the effect of the main 

factors such as the wind speed, vehicle speed, vehicle type and road roughness. However, there 

are two major problems remaining in those early studies. Firstly, as the first step to study the 

complicated Bridge/Traffic/Wind interaction, those studies have considered only one or several 
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vehicles distributed in an assumed (usually uniform) pattern on a bridge. As stated in the previous 

section, the movement of traffic flow is necessary to taken into account of for accurate estimation 

of long span bridges’ performance. Secondly, the fully-coupled Bridge/Traffic/Wind analysis 

considering the realistic traffic flow leads to matrices of mass, stiffness, damping and force 

vectors with extremely large sizes. The computation cost will be considerably high, if not 

practically acceptable at all.  

1.2.2 Fatigue of bridge 

Fatigue damage is one of the most common damage types for current bridges (Li and Chan 2006). 

The bridge members fail with the development of cracks under repeated range of stress. Traffic 

loads and wind force are inherently repeated loads and occur throughout the whole life of bridges. 

Both wind and traffic can be regarded as the main factors causing fatigue problem of long span 

bridges. In addition to the serviceability issue and damage to some local members, the fatigue 

problem can also cause the collapse of a whole bridge in some situation. For example, the Point 

Pleasant Bridge in West Virginia failed in 1967 without warning is an example of fatigue damage. 

The collapse is caused by the facture at the pinhole of an eye-bar of the bridge (White et al. 1992).  

 

At present, the research on fatigue damage is generally classified into two categories. One is the 

theoretical research on the mechanism of fatigue damage based on crack growth concepts, the 

continuous damage mechanics models, the energy-based theories and etc. This branch of research 

is on small scale and focus mostly on lab work about engineering materials. Another branch is the 

research on fatigue analysis for large-scale engineering structures such as bridges. Systematic 

study on fatigue analysis of bridges has been implemented by National Cooperative Highway 

Research Program like Schilling et al. (1978); Fisher et al. (1980, 1983) and Moses et at. (1986). 

Among those proposed fatigue models, Miner’s rule is still the most popular approach especially 

for large civil structures. Miner’s rule is to use S-N curve (S: stress range, N: number of cycles to 
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failure) to form a linear damage rule which simplifies the prediction of fatigue life by the 

assumption of linear accumulation of fatigue damage over time (Rao and Talukdar 2003). As the 

S-N curve is based on the assumption that the loading is constant while the realistic load is 

random in nature, the Rainflow Counting Method should be applied to calculate the equivalent 

stress range and cycles before the application of Miner’s rule. In addition to Miner’s rule, there 

are numerical methods which assume the complicated nonlinear damage propagation process, but 

the steady improvements of the accuracy of those methods over Miner’s Rule, a simple linear 

damage rule, was not observed (Laman 1995).  

  

In most current specifications, a typical fatigue design procedure includes two steps: (1) 

calculating the stress variation under fatigue design loads; and (2) comparing the calculated stress 

amplitude and frequencies with the designed one to check if the design is safe. In the first step, 

the fatigue design load is defined as one design truck per bridge with 15% dynamic allowance in 

the AASHTO LRFD (AASHTO 2007) for short and medium span bridges yet not applicable for 

long-span bridges. Existing studies on the fatigue performance of long-span bridges were limited 

to those only considering wind loads but not traffic loads at the same time (Pourzeynali and Datta 

2005; Gu et al. 1999). All these underscore the significance and need for the study in this 

dissertation.   

1.2.3 Application of reliability theory on long-span bridges 

Most existing long-span bridges were designed based on deterministic methods (Catbas et al. 

2008). However, the loadings (traffic flow, wind, earthquake, wave and etc.) are innately random 

and the capacity of bridge (mechanical property, material corrosion, structural deformation) is 

also time-dependent (Torres and Ruiz 2007). Accordingly, it is necessary to use the reliability 

method to quantify the performance of bridges to consider those uncertainties.  
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During the last thirty years, there has been numerous reliability research concerning structures. 

For bridges, a large amount of research effort on reliability-based analyses has been put forth on 

short and medium bridges (Caprani and O’Brien 2006; Akgul and Frangopol 2004; Akgul and 

Frangopol 2005a; Akgul and Frangopol 2005b; Czarnecki and Nowak 2008). For the reliability-

based analysis of long-span bridges, there were some studies on aerodynamic performance such 

as flutter instability (Cheng et al. 2005; Pourzeynali and Datta 2002; Ge et al. 2000; Jakobsen and 

Tanaka 2003) and some studies using the field-monitored stress data to analyze the performance 

of existing bridges (Frangopol and Imai 2004; Frangopol et al. 2008; Catbas et al. 2008; Imai and 

Frangopol 2002). However, the study on reliability-based prediction of the performance of long-

span bridges considering Bridge/Traffic/Wind interaction has rarely been conducted.  

 

The general reliability analysis include three steps: (1) Defining the limit state function about the 

concerning capacity of bridges; (2) Determining the basic random variables which are the main 

parameters on the limit state function such as the mechanical properties of material and the load 

factor; (3) Computing the reliability index through the reliability method. For the third step, there 

are several reliability methods (FORM, SORM, RSM, Monte Carlo and etc) to choose from. 

FORM and SORM are the two basic reliability methods which use first-order and second-order 

approximation at the minimum distance point to the limit state curve, respectively. Compared to 

FORM, SORM is usually more accurate for a better approximation of the reliability index, while 

at the same time with more computational cost. For the large-scale structures such as bridges, 

FORM has been found to be commonly applied. The Monte Carlo Simulation (MCS) method is a 

traditional approach which can generate accurate results, but it can be extremely time-consuming 

(Frangopol 1999). The response surface method (RSM) is a useful and efficient technique to 

solve the problem of the implicit limit state equation (Frangopol 1999; Bucher and Bourgund 

1990). To compute the reliability analysis in an efficient way, the hybrid method which is the 

combination of the available methods which can take advantage of each method’s advantages is 
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applied to complicated problems on bridge such as bridge/wind interaction (Cheng et al 2005). 

Based on investigating the existing reliability-based methods, a hybrid method involving the 

Response Surface Method (RSM) and First Order Reliability Method (FORM) will be applied to 

study the reliability index of life-time fatigue damage of long-span bridges in my research. 

1.3 Summary of Dissertation  

This dissertation aims to propose a reasonable reliability-based framework to evaluate lifetime 

serviceability performance of long-span bridges. More specifically, the objectives of this 

dissertation include:  

(1) Developing a general semi-deterministic Bridge/Traffic/Wind dynamic interaction analysis 

methodology which can be used by any medium- and long-span bridges with stochastic traffic 

along with various wind conditions;  

(2) Based on the Bridge/Traffic/Wind interaction model, extensive numerical analyses will be 

conducted to evaluate the safety performance of bridge under normal and extreme conditions;  

(3) With the established interaction model, the scenario-based fatigue analytical framework is 

developed to investigate the fatigue damage of bridge under normal and extreme conditions;  

(4) Based on the fatigue model considering coupling effects among bridge, traffic and wind, the 

reliability-based fatigue assessment model of long-span bridges is proposed to investigate the 

reliability index of bridge during its service life.  

 
The contents of this dissertation are based on the relevant papers which have already been 

published, accepted, under review or are to be submitted to referred journals. The dissertation is 

divided into seven chapters. Chapter 1 herein is to describe the current problem in the related 

field and introduce the objective and scope of this study. 
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Chapter 2 explains the application of Cellular Automaton (CA) traffic model on the study of 

traffic loads on the bridge. Taking a typical long-span cable-stayed bridge as an example, several 

parameters such as the length of the approaching way, the speed limit, the level of service (free 

traffic or busy traffic) and the road conditions (normal road condition or incident condition such 

as the blockage of the partial road) will be taken account of and their influence on the variation of 

traffic flow like static traffic loads on bridge and average movement speed will be investigated.  

 

Based on the traffic flow model introduced in Chapter 2 and the equivalent dynamic wheel load 

(EDWL) approach proposed by Chen and Cai (2007), Chapter 3 is to develop the scenario-based 

Bridge/Traffic/Wind interaction framework under normal road condition. Three typical vehicle 

types (car, light truck and heavy truck) are studied firstly with different driving speed under 

breeze and moderate wind speed to quantify the dynamic impact of single vehicle on the bridge. 

Then, the EDWL approach is performed to compute the collective impacts of traffic flow on 

bridge. Representative scenarios of different level of road service (free, moderate and busy traffic 

flow) have been researched to gain more realistic understanding of the structural performance 

under probabilistic traffic and dynamic interactions.  

 

Chapter 4 is to study the probabilistic dynamic behavior of long-span bridges under extreme 

events with the help of the analytical framework established in Chapter 3. The extreme events 

include the partial-block road conditions, the extreme high wind speed and the bumper-to-bumper 

case (the bridge is fully occupied by vehicles with the maximum capacity) due to evacuation. The 

baseline model is defined as the normal road condition under breeze. Through comparison of 

extreme cases with the baseline model, the better understanding of extreme events of long-span 

bridges from the perspectives of strength and serviceability design is achieved, which may 

contribute to future design specification about long-span bridges.  
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Chapter 5 is to develop the scenario-based fatigue analytical framework of bridges considering 

Bridge/Traffic/Wind interaction. The proposed approach starts with identifying the site-specific 

wind and traffic conditions for the bridge, including local traffic volume, vehicle combinations, as 

well as variations in a typical day and a typical week. The cumulative dynamic stress levels and 

cycles under each representative combination of loadings are calculated and accordingly the 

fatigue damage is obtained through the input of the stress history to the fatigue analytical model. 

The parametric study of a typical long-span cable-stayed bridge will give some insights of the 

fatigue mechanism.  

 

Chapter 6 is about the reliability-based fatigue life analysis of long-span bridges. The limit state 

function is set as the difference between the accumulated fatigue damage factor of the studied 

member of bridge and unit according to Miner’s rule. By considering uncertainties associated 

with the basic data of the traffic flow, wind and structural properties of a typical bridge, the 

reliability analysis can integrate the common scenarios of bridge and considering each scenario’s 

occurrence chance during the bridge’s life, which can render a more realistic estimation on the 

reliability index of fatigue.  

 

Finally, Chapter 7 concludes the whole dissertation and some discussions about future studies 

will also be reported. 
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CHAPTER 2: PROBABILISTIC TRAFFIC FLOW SIMULATION FO R BRIDGE 

2.1 Introduction 

Long-span bridges are usually the key linkages of the transportation network in normal conditions 

as well as critical evacuation paths in emergency conditions. As critical infrastructures 

experiencing frequent and complex interactions with passing traffic, bridges exhibit unique 

characteristics which distinguish themselves from traditional civil structures (e.g. buildings). A 

long-span bridge experiences time-dependent live loads from traffic, which may vary 

significantly due to the stochastic nature of the traffic flow and its interactions with the bridge, 

approaching roadways and various incidents. The rational quantification of the traffic load in both 

normal and extreme conditions becomes very crucial in structural analysis and design of these 

critical bridges.  

 

Traffic loads have been traditionally evaluated with the data from weight-in-motion (WIM) or 

traffic spectrum collected from the site (Oh et al. 2007; Broquet et al. 2004; Mullard and Stewart 

2009). Neither of these approaches, however, provides instantaneous information of individual 

vehicles such as velocity and position at any time, which is essential to the assessment of 

dynamic loads for long-span bridges. Due to the historical gap existing between traditional 

structural and traffic engineering, little work has been conducted on simulating the bridge, 

roadways and traffic flow in a systematic context. During the past decades, most existent studies 

about bridge’s dynamic performance under traffic have considered only one or several vehicles 

distributed in an assumed (usually uniform) pattern on long-span bridges with a focus on 

demonstrating the methodology (Xu and Guo 2003; Cai and Chen 2004; Chen et al. 2007; Chen 
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and Cai 2007). Some researchers adopted white noise fields (Ditlevsen 1994; Ditlevsen and 

Madsen 1995), Poisson distribution (Chen and Feng 2006) and Monte Carlo approach (Nowak 

1993, Moses 2001, O’Connor and Obrien 2005) to simulate the traffic flow to obtain the 

characteristic load effects primarily on short- and medium-span bridges. In those studies, realistic 

traffic rules or the incidental conditions were not considered. Besides, the detailed information 

(e.g. instantaneous velocity and location) in the scale of individual vehicles was not available.  

 

Traffic flow simulation techniques have gained rapid development in the field of traffic 

engineering during the past decades, which provides some useful tool to model traffic loads. 

Generally speaking, traffic flow can be simulated with three scales: macroscopic, mesoscopic and 

microscopic (TRB 2000). The former two scales are based on continuous time and space, which 

are suitable for traffic studies focusing on physical characteristics of the whole traffic flow in a 

large scale (e.g. meta-stable state, the relationship between traffic occupancy and flow, traffic 

occupancy and average velocity) (Nagel et al. 1998, Barlovic et al. 1998, Cheybani et al. 2000). 

Microscopic scale traffic simulation is, however, based on discrete time and space which can 

provide detailed time-variant information of individual vehicles.  

 

In this chapter, a general framework to model the stochastic traffic load for a long-span bridge 

will be developed based on the microscopic traffic flow simulation. The Cellular Automaton (CA) 

traffic flow simulation technique will be adopted to develop the analytical basis of the framework. 

Based on the traffic flow simulation results, the live load on the bridge from the stochastic traffic 

will be also studied with a focus on the static component. Some discussions about the static traffic 

load as compared to the current AASHTO LRFD traffic loads will be made. Finally, parametric 

studies of major variables, such as the length of the connecting roadways, the speed limit, and the 

vehicle combination, will be conducted.  
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2.2 Theoretical Formulations 

2.2.1 Background of Cellular Automaton (CA) traffic flow simulation 

Cellular Automaton (CA), a microscopic scale traffic flow simulation model, can generate 

probabilistic traffic information by simulating individual vehicle’s behavior. The CA traffic 

model has been widely used in the transportation field since it was firstly proposed by Nagel and 

Schreckenberg (1992). After the model was initially introduced, various studies have been 

conducted on improving the models for more realistic traffic flow simulations (Benjamin et al. 

1996; Barlovic et al. 1998; Chowdhury et al. 2000). The CA simulation technique has been 

adopted in some actual transportation management around the world. For example, TRANSIMS, 

a commercial software developed by Las Alamos National Laboratory, is based on the concept of 

the CA model (TRANSIMS Travelogue 2008). In Germany, the CA traffic model is used for 

online traffic simulation in North Rhein Westphalia (Schadschneider 2006). The CA model is 

able to provide detailed instantaneous information of each vehicle through replicating major 

traffic phenomena on highways. Thus it becomes an ideal technology to be integrated into the 

advanced bridge analysis considering live load in a more accurate manner. In the following 

sections, the theoretical basis of the proposed simulation framework for long-span bridges with 

the CA traffic simulation technology will be briefly introduced. 

2.2.2 Rules of CA traffic flow  

The CA traffic model is based on the assumption that both time and space are discrete and each 

lane is divided into cells with an equal length as shown in Fig. 2.1 (a). Each cell can be empty or 

occupied by at most one vehicle at a time. The velocity of a vehicle can be decided by the number 

of cells a vehicle can move in one time step. The maximum velocity a vehicle can achieve is 

defined based on the actual speed limit on the road. At each time step, a vehicle moves, 

accelerates, decelerates or changes lanes based on some predefined rules. The rules are typically 
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established according to the actual traffic rules with some reasonable assumptions of the driver 

behavior (Nagel and Schreckenberg 1992). With all the predefined rules which are illustrated as 

follows, the CA traffic models can thus be used for both normal and incidental conditions.  

 

 
 

a. CA traffic model 
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b. NaSch Model rules ( 5max =v ) 

 
Fig. 2.1 CA-based traffic model 

 

The rules of a typical CA traffic model include: 1) rules for vehicles moving forward on the 

original lane, i.e. single-lane CA model; and 2) rules for changing lane, i.e. multiple-lane CA 

model.   

 

The rules of the single-lane CA model (Fig. 2.1(b)) include (Nagel and Schreckenberg 1992):  

(1) Acceleration: if the velocity of Vehicle v is smaller than vmax (maximum velocity a vehicle is 

allowed to achieve) and if the distance to the next vehicle ahead is larger than v+1, the velocity is 

advanced by one; (2) Deceleration: if the vehicle at site i finds the next vehicle at site i + j with j ≤ 
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v, it reduces its velocity to j−1; (3) Randomization: with the probability of pb, the velocity of each 

vehicle is decreased by one if the velocity is greater than zero; (4) Vehicle motion: each vehicle 

advances v sites.  

 

The conditions for lane changing (Fig. 2.2 (a)) are shown as follows (Rickert et al. 1996; Li et al., 

2006):  

(1) The distance (described as “gap”) between one vehicle and the vehicle right ahead on the 

same lane is less than v+1, i.e. the vehicle cannot accelerate in the current lane; (2) The distance 

(described as “gapo”) between one vehicle and the vehicle ahead on the target lane (i.e. the 

neighboring lane) is more than v+1, i.e. the vehicle can accelerate if it changes lane; (3) The 

distance (described as “gapo, back”) between the vehicle and the behind vehicle on the target lane is 

more than vmax, i.e. the vehicle will not crash with the vehicle on the target lane; (4) With the 

probability of pch, a vehicle changes lane if all the three above conditions are satisfied.  

 

To fulfill the lane-changing simulation, the location and the velocity of Vehicle i will be updated 

through two sub-steps: 1) Vehicle i moves to the target lane transversely without moving forward; 

and 2) Vehicle i moves forward obeying the single-lane rule as introduced above after moving 

into the target lane.  

 

When there is ongoing construction or a serious accident happening on the bridge or on the 

approaching roadway, one lane of the bridge or one portion of a lane of the approaching roadway 

may be closed for a certain period of time. As a result, the bridge and the approaching roadways 

may have different numbers of available lanes. Fig. 2.2(b) shows a general case that a portion of 

the highway (either bridge or approaching roadway) has fewer lanes than the remaining portions. 

As shown in Fig. 2.2(b), the head vehicle on Lane 1 can simply regard Lane 3 as the extension of 

lane 1, so vehicles on Lane 1 do not need to consider the variation of available lanes. But the head 
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vehicle on Lane 2 will be affected by the difference of the lane numbers. The head vehicle 

intending to enter Lane 3 at next time step should obey the corresponding rules. More details 

about the traffic rules of these incidental conditions can be found in Refs (Xiao et al. 2005; Wu 

and Chen 2010). 

2
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Fig. 2.2 Lane-changing and road bottleneck rules 
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2.3 Traffic Load Modeling of Long-Span Bridge  

2.3.1 A long-span bridge infrastructure system (BIS) 

As interrelated components of a whole transportation network, the actual traffic flow through a 

long-span bridge is also affected by the traffic on the connecting roadways. Therefore, a bridge 

infrastructure system (BIS), consisting of a long-span bridge and two stretches of approaching 

roadways, is to be studied rather than the bridge alone. The “roadway-bridge-roadway” setup 

makes it possible to more realistically capture the major characteristics of the traffic flow. For 

typical interstate systems in the US, four-lane bridges (i.e. two lanes in each direction) and two-

lane bridges (i.e. one direction) are the most popular types. Since the traffic flow on both 

directions of a bridge is usually independent, the traffic flow simulations on these two types of 

bridge are essentially the same.  

 

To facilitate the following presentation, a typical four-lane long-span bridge, with approaching 

roadways connected on both sides, will be chosen as the basic scenario for the study (Fig. 2.3). 

All the lanes on the bridge and the connecting roadways share the same width on both driving 

directions (from east to west and from west to east) and each lane is divided into equally-spaced 

cells. In the present study, the total length of this four-lane prototype bridge (LB) is 840m and the 

approaching roadway has the length of 1,005m (LR=1,005m) at the each end of the bridge. The 

length of the approaching roadway, too short or too long, will affect the accuracy of the results or 

the simulation efficiency, respectively. The length of the approaching roadway in the present 

study was decided based on some preliminary analysis and the validity of the length of the 

approaching roadway adopted will be discussed in the following parametric study.  
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Fig. 2.3 Bridge infrastructure system  

 

The length of each cell is set as 7.5m, which is the typical distance between the centers of two 

vehicles when the road is in a complete congestion (Nagel and Schreckenberg 1992). The speed 

limit V max is assumed to be 113km/h (70mph), which is the typical speed limit on interstate 

highways in the US. So vmax in the CA model can be computed accordingly:  
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where vmax is the maximum vehicle velocity in the unit of cell/s;  Vmax denotes maximum absolute 

velocity of vehicles (km/h), which is assumed to be the same as the speed limit in the present 

study; Lc is the size of each cell.   

 

In the CA-based traffic flow simulation, the initial velocities of all the vehicles are typically set to 

be zero. The CA traffic simulation rules will decide the velocity of each individual vehicle 

according to the maximum vehicle velocity adaptively. The observation of the traffic flow will 

start after t0=10L (L is the number of all cells in one lane, here L=134×2+112=380) when the 

traffic flow is typically believed to become steady (Nagel and Schreckenberg 1992). Thus, the 

traffic flow results starting from 3,800s in this study will be presented in the following sections. 

 

Two boundary conditions are often used in the CA simulations. One is the periodic boundary 

condition which regards the road as a ring. Vehicles move out of one end and come in from 

LR LB LR 
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another end in the next time step. The other one is the open boundary condition, which sets two 

parameters α andβ  as the probability of vehicles moving in and moving out the simulation 

boundaries, respectively (Cheybanin et al. 2000). In this study, with the assumption that the 

traffic occupancy does not fluctuate significantly during the period of time for the simulation, the 

periodic boundary condition is used. Therefore, the traffic occupancy in the whole system keeps 

constant for each simulation. Transportation Research Board classifies the Level of Service (LOS) 

from A to F based on the range of the traffic occupancy in the Highway Capacity Manual (TRB 

2000). Three occupancies (ρ ) are considered in the present study: 1) “free flow”, ρ =0.07 

corresponding to level B (9veh/km/lane), 2) “moderate flow”, ρ =0.15 corresponding to level D 

(20veh/km/lane) and 3) “busy flow”, ρ =0.24 corresponding to level F (32veh/km/lane). Various 

vehicles on highways are grouped into three categories of vehicles: v1- heavy multi-axle truck; 

v2- light truck and bus; v3- light passenger car. The proportions of vehicles in category 1, 2 and 3 

among all the vehicles are assumed to be 0.2, 0.3 and 0.5, respectively. All the parameters of the 

CA traffic model are summarized in Table 2.1. Due to the independent nature of the traffic flow 

on two driving directions on the bridge, only the results of the two lanes from west to east will be 

given in the following sections. The traffic flow simulation for both “normal condition” and the 

“incidental conditions” will be introduced in the following, respectively. 

Table 2.1 Parameters of CA traffic model for “roadway-bridge-roadway” system 
 

Parameters Value Definition 
Lc 7.5m Length of each cell 
dt 1s The period of each time step 

L-road 134(1005m) Number of cells (absolute length) of one lane of 
approaching roadway in one end 

L-bridge 112(840m) Number of cells (absolute length) of one lane of bridge 
ρ  0.07,0.24 Traffic occupancy of the system(occupied cells/ all cells) 

vtype {0.2 0.3 0.5} Percentage of three types of vehicles(v1, v2 and v3) 
vmax 4 The maximum cells a vehicle can pass per second 
pb 0.5 The probability of braking 
pch 0.8 The probability of changing lane 
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2.3.2 Traffic flow simulation-“normal condition” 

Different from the traditional understanding of “normal” and “incidental” traffic, the normal 

traffic condition in the present study refers to the situation that the bridge and the approaching 

roadways have the same number of available lanes. For the “normal condition”, both the vehicle-

following and lane-changing rules as introduced in the section of “traffic rules” will be applied. 

The same traffic rules can simulate various traffic conditions, including congestions, as long as 

the available lanes of the bridge and the approaching roadways are the same. So some unusual 

traffic events, such as recurrent congestion during rush hours or non-recurrent congestion due to 

some incidents, are still attributed to the “normal condition” when the available lanes do not 

change.  

 

The typical two-lane traffic simulation (in one direction) of a “roadway-bridge-roadway” system 

under the “normal condition” is conducted and the results are shown in Fig. 2.4. As shown in Fig. 

2.4, the time versus space information of the simulated traffic on the outer lane (i.e. far from the 

median barrier) is given. The x axis shows the physical location of each vehicle on the BIS 

(“roadway-bridge-roadway”). The y axis shows the time range after 3,800 seconds of simulation 

have elapsed. At any time instant on the y axis, the information of the physical distribution of 

each vehicle along the spatial simulation region (x axis) can be found by drawing a line 

horizontally. Similarly, at any spatial location on the x axis, the time-variant information of 

vehicles at one particular location can also be retrieved by drawing a line vertically. For the high 

traffic occupancy (ρ =0.24), the congestion is formed which is evidenced by the black belts in 

Fig. 2.4 (a). The congestion results are found to be consistent with the phenomenon observed 

from the real traffic flow photo collected on an American freeway (Fig. 2.4 (b)) (Treiterer et al. 

1965). 



 26

 
                                     a) CA result                                         b) Video from an American Freeway  
                                                                                                                (Treiterer et al. 1965) 

 
Fig. 2.4 Comparison of simulated and monitored traffic flow ( ρ =0.24) 

 

In addition to the information such as vehicle type and location of each vehicle at any time, the 

simulated microscopic traffic flow also includes the information of the instantaneous driving 

velocity of each vehicle at any time. The driving velocities of all the vehicles remaining on both 

inner and outer lanes of the bridge are statistically analyzed for each time instant, respectively. 

Due to the probabilistic nature of the traffic flow through the bridge, the mean value of the 

velocities of all vehicles on the bridge at one moment is different from that at the next moment. 

The mean velocities versus time in the “free flow” and “busy flow” conditions are plotted in Fig. 

2.5a and Fig. 2.5b, respectively. A statistical analysis of the mean velocity curves in Fig. 2.5a 

shows that the mean values of the two curves are 93.7 km/h and 93.9 km/h and the standard 

deviations are 4.8 km/h and 4.3 km/h for the inner and outer lanes, respectively for the “free 

flow” condition. When the traffic occupancy is high (i.e. “busy flow”), the mean values of the 

two curves in Fig. 2.5b are 55.8 km/h and 56.1 km/h and the standard deviations are 7.1 km/h and 

7.4 km/h for the inner and outer lanes, respectively. It is found that in the “normal condition”, 

traffic flow characteristics between the inner and outer lanes are pretty similar under both “free 
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flow” and “busy flow” conditions. When the traffic occupancy gets higher, slightly more 

difference between the results on the two lanes were observed.  

 
a. Free flow (ρ =0.07) 

 

 
b. Busy flow (ρ =0.24) 

Fig. 2.5 Time history of mean velocity for normal condition 
 

Compared to those under the low traffic occupancy (“free flow”), the mean values of the curves 

of mean velocity vs. time (Fig. 2.5b) under the high traffic occupancy (“busy flow”) decrease by 

40% and the standard deviations increase by 50%, respectively. When the traffic occupancy is 

low (Fig. 2.5(a)), sparsely distributed vehicles are able to achieve the optimal velocities through 

changing lanes with fewer chances to be forced to reduce velocities than congested vehicles. 

When the traffic occupancy is high (i.e. vehicles are densely populated), the empty space on the 

two lanes is not as much as that with sparse traffic, which allows for moving forward and lane 

changing easily. As a result, larger fluctuations of vehicle velocities over time are observed when 

the traffic occupancy is high. It is known that large fluctuations of the vehicle velocities can cause 

more variations of the dynamic impacts on the bridge from the traffic, higher risks of rear-end 

crashes and more chances of accelerating and braking operations (TRB 2000; Chen and Cai 
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2007). Besides, existing studies also suggested that higher driving velocity will cause more 

significant dynamic impacts on the bridge from the vehicles (Chen and Wu 2010). So for a 

critical long-span bridge which often experiences busy traffic, the results confirm that a realistic 

simulation of traffic flow with appropriate traffic rules is necessary in order to quantify time-

dependent live loads on long-span bridges.  

2.3.3 Traffic flow simulation-“incidental conditions” 

In addition to the normal traffic condition (i.e. bridge and roadway share the same number of 

available lanes), some incidents, such as work zones or traffic accidents on the bridge or on the 

approaching roadways, may cause some portion of the lanes, either on the bridge or on the 

roadways, being closed to traffic. Therefore the “incidental conditions” in the present study refer 

to the situations that the numbers of the available lanes on the bridge and the approaching 

roadways are different. Depending on whether the lane on the bridge or the roadway is blocked, 

the incidents are called “bridge block” and “road block”, respectively.  

 

The “bridge block” condition may be formed as a result of several possible scenarios, such as a 

renovation project on the bridge or a serious accident happening on the bridge. As a result, the 

bridge may become a “bottleneck” due to the difference between the numbers of available lanes 

on the bridge and approaching roadways. On the other hand, the “road block” condition may 

represent two typical scenarios: there is a work zone or an accident happening on the connecting 

roadway either downstream or upstream of the bridge. Based on the preliminary analysis, it is 

found that the situation that one lane of approaching roadways upstream of the bridge is closed is 

not critical to the traffic loads on the bridge. So in the following section, it is only assumed that 

one lane of the roadway downstream of the bridge (from west to east) is closed for the “road 

block” condition. For the incidental conditions, the corresponding simulation rules for different 
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available lanes as introduced in the previous section will be applied in addition to those used in 

the “normal condition”. 

 

The mean velocities for both incidents (i.e. “bridge block” and “road block”) under two different 

occupancies are shown in Fig. 2.6 (a-b). It is found that the mean value of the mean velocity 

curves for the “bridge block” condition is around 75.1 km/h (ρ =0.07) and 24.9 km/h (ρ =0.24), 

which are significantly lower than 93.7 km/h (ρ =0.07) and 55.8 km/h (ρ =0.24) in the “normal 

condition” (Fig. 2.5), respectively. The standard deviations of the mean velocity curves under the 

low and high traffic occupancies are 7.7 km/h and 7.0 km/h, respectively. It is found that the 

standard deviation of the mean velocities in the “bridge block” condition is much higher than that 

in the “normal condition” when the traffic occupancy is low. In fact, the fluctuation of mean 

velocities of the traffic flow (as indicated by the standard deviation) under the low traffic 

occupancy is larger than that under the high traffic occupancy, which suggests more fluctuations 

of the dynamic impacts from vehicles.  

 
a. Free flow (ρ =0.07) 

 
b. Busy flow (ρ =0.24) 

 
Fig. 2.6 Mean velocity of traffic on bridge versus time for incidental conditions 
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For the “free flow” condition (ρ =0.07) (Fig. 2.6a), the mean values of the mean velocity curves 

for the “road block” condition are 94.5 km/h and 94.1 km/h and the standard deviations of the 

curves are 4.5 km/h and 4.9 km/h for both inner and outer lanes, respectively. Compared to the 

“bridge block” condition, the mean values of the mean velocity curves of the “road block” 

condition under the low traffic occupancy are much higher, which are close to those in the 

“normal condition”. The high mean velocities suggest high mobility and relatively larger dynamic 

impacts of vehicles on the bridge in the “road block” condition when the traffic occupancy is low. 

When the traffic occupancy is low, the standard deviations of the vehicle velocities in the “road 

block” condition on both lanes are close to those in the “normal condition”, which are much 

lower than those in the “bridge block” condition.  

 

For the “busy flow” with the higher traffic occupancy (ρ =0.24)(Fig. 2.6b), the mean values of 

the mean velocity curves for the “road block” condition are 35.2 km/h and 29.1 km/h and the 

standard deviations of the curves are 4.9 km/h and 3.7 km/h for both the inner and outer lanes, 

respectively. When the traffic occupancy gets higher, the mean velocities of the vehicles on the 

bridge for the “road block” condition significantly decrease, but are still slightly higher than those 

in the “bridge block” condition. However, the standard deviations are much smaller than those for 

both the “bridge block” and the “normal condition”. The high standard deviation of the velocities 

of the vehicles on the bridge suggests high velocity fluctuations. As discussed earlier, the high 

velocity fluctuations may cause more variations of the dynamic impacts of the traffic load and 

more chances of accelerating and braking operations on the bridge. The observations from both 

Figs. 2.6(a-b) suggest that the “road block” condition has less impact on the traffic flow in terms 

of velocity fluctuations than the “bridge block” condition.   
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2.3.4 Traffic loads on the bridge  

From the perspective of a bridge engineer, the actual traffic loads applying on the bridge is of the 

most concern. Based on the stochastic traffic flow simulated for normal and incidental conditions, 

the cumulative static loads from all the vehicles on the bridge for the (a) normal, (b) “bridge 

block”, and (c) “road block” conditions can be calculated for any instant. The time-history results 

for the three traffic conditions are shown in Figs. 2.7 (a-c), respectively. The x-axis shows the 

time period starting after 3,800 seconds have elapsed. It can be found that the total static load 

(weight) from the traffic on the bridge generally has some variations over time due to the 

stochastic nature of the traffic flow. Among the three different traffic conditions, the “bridge 

block” condition (Fig. 2.7 (b)) is found to cause the minimum mean static traffic loads on the 

bridge, while the “road block” condition causes the largest mean static traffic loads.  

 
Comparatively, the total static traffic load has larger variations when the traffic occupancy gets 

higher in the normal and “bridge block” conditions. For the “road block” condition, the total 

static traffic load has the least fluctuations over time, which is likely because of the limited 

mobility due to serious congestions (Wu and Chen 2010). Due to the significantly lower static 

loads for the “bridge block” condition, the “bridge block” condition will not be further discussed 

in this chapter.   

 

The statistical results on the time histories of the static traffic load can provide useful information 

to evaluate the actual traffic loads. Before rational statistics of any time-history results are 

conducted, the required time duration in order to get the converged statistical result has to be 

studied. Therefore, the convergence analysis is conducted on the time history of the total static 

load of the traffic. The mean value of the total static load from the beginning up to the current 

instant was calculated for different traffic conditions and occupancies. Fig. 2.8 shows the mean 

values versus time for both the normal and “road block” conditions with different traffic 
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occupancies. It is found from the results that 300-second simulation currently used can lead to 

stable results. The results also suggest that the statistical results of the time history of the static 

load are not very sensitive to the length of the simulation time period.  

 

 
 

a. Normal condition 
 

 
 

b. Bridge block 

 
 

c. Road block 
 

Fig. 2.7 Time history of static load 
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a. Normal case 

 
b. Road block 

 
Fig. 2.8 Convergence of mean static load vs. time 

 
AASHTO LRFD specification uses HL-93 live load for both short and medium-span bridges. In 

AASHTO LRFD specification (AASHTO 2007), the HL-93 live load includes the uniform lane 

load 0.64 kip/ft (9.3 kN/m) and the HS-20 design truck load or the tandem load for most limit 

states. Since the design truck load is more common to control the design, the following discussion 

will only consider the truck loads. For the purpose of a preliminary comparison, the static traffic 

load derived from the present study is compared with the equivalent HL-93 live loads. The lane 

load will be applied as the uniformly distributed load all through the bridge. The number of the 

equivalent design trucks can be estimated which, along with the lane load, will lead to the same 

total static load as that obtained from the stochastic traffic flow simulation in the present study. It 

is found that the lane load alone has provided sufficient static load for the “free flow” and 

“moderate flow” situations. When the traffic occupancy is high (“busy flow”), there will be 
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equivalently 2-3 design trucks in each direction along with the lane load which can generate the 

same total static load as the simulated traffic load on the bridge.  

2.4 Parametric Studies 

Parametric studies are conducted to further investigate the sensitivity of several parameters on the 

simulation results. Three parameters include: length of approaching roadway, driving speed limit 

and vehicle combination.  

2.4.1 Approaching roadway length  

For the traffic simulation of the “roadway-bridge-roadway” system, the approaching roadways 

are actually the extended boundaries of the bridge within the system. Taking the long-span bridge 

analyzed in the previous section as the example, the parametric studies are carried out with 

various lengths of approaching roadways (LR). Fig. 2.9 shows mean velocities of the vehicles on 

the BIS with different lengths of approaching roadways. The dimensionless length ratio is defined 

as the ratio of the approaching roadway length (LR) to the length of the bridge (LB) (Fig. 2.3). Fig. 

2.9 suggests that LR/LB does not have significant impact on the mean velocities of the vehicles on 

the bridge for the “free flow” condition. For higher traffic occupancies (“moderate flow” and 

“busy flow”), the fluctuations of the mean velocities of the traffic on the bridge over different 

approaching roadway lengths become larger as compared to those under the low traffic 

occupancy (“free flow”). The results suggest that when the traffic occupancy is low, the details of 

the approaching roadways (e.g. length) are not very critical to the results of the simulated traffic 

on the bridge. When the traffic occupancy is high, however, an accurate description of the actual 

boundary conditions of the bridge (i.e. the approaching roadways) is critical in order to accurately 

simulate the traffic flow. As discussed earlier, it is known that larger variations of the velocities 

usually will cause more variations of the dynamic impacts of the traffic load on the bridge. 
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a. Vmax=81 km/h 

 

 
b. Vmax=108 km/h 

 
Fig. 2.9 Mean velocity vs. length ratio 

 
Fig. 2.10 gives the results of the mean value of the total static load under different length ratios 

(LR/LB). Fig. 2.10(a) and Fig. 2.10(b) show the results when the speed limit equals to 81 km/h and 

108 km/h, respectively. In each subplot, the results for the three different traffic occupancies are 

plotted together. Similar to the impacts on the mean velocity as shown in Fig. 2.9, it is found from 

Fig. 2.10 that the mean static load is not sensitive to the length ratio LR/LB when the traffic 

occupancy is low or moderate. When the traffic occupancy becomes high (i.e. “busy flow”), the 

mean static load has limited fluctuations around the mean value over the different length ratios. 

The results show that the “roadway-bridge-roadway” system with LR/LB =0.5 or above is 

normally sufficient to provide stable static load of the traffic flow as long as the traffic occupancy 

is not very high. For the “busy flow”, longer approaching roadways in the BIS may help on 

further improving the accuracy.   
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a. Vmax=81km/h 

 

b. Vmax=108km/h 

Fig. 2.10 Mean static load vs. length ratio  

2.4.2 Speed limits  

The relationship between the mean velocity and the speed limit is studied under various traffic 

occupancies (Fig. 2.11). For “free flow” condition, the mean velocity increases in a nearly linear 

way with the increase of the speed limit for two different length ratios (Fig. 2.11a and Fig. 2.11b). 

When the traffic occupancy is high (“busy flow”), the mean velocity increases in a nonlinear way 

and may even decrease when the speed limit is around 110 km/h for both length ratios of the 

approaching roadway (Fig. 2.11(a-b)). It is known that vehicles cannot move faster when traffic 

congestion exists even with a higher posted speed limit. The results numerically confirm a 

common observation that densely distributed vehicles may move slowly on the bridge during rush 

hours regardless of the posted speed limit. Therefore, to avoid heavy traffic remaining on the 

bridge for extended time, some traffic control measures in addition to the speed limits should be 

applied during rush hours.  
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a. LR/LB =1.2 

 

 
b. LR/LB =3 

 
Fig. 2.11 Mean velocity vs. speed limit  

The mean static load of traffic under different speed limits was also studied. As shown in Fig. 

2.12, the mean static load remains almost the same for different speed limits when the traffic 

occupancies are low or moderate. When the traffic occupancy becomes high (“busy flow”), the 

mean static load has some fluctuations with the speed limits. For the typical range of speed limits 

of long-span bridges, the impact from the speed limit on the static traffic load is found to be very 

limited. Since the mean velocity of the traffic has pretty significant change over the different 

speed limits (Fig. 2.11), the dynamic impacts of the traffic, however, can be considerably affected 

by the speed limits. The detailed quantification of the dynamic loads considering interactions 

needs to be studied separately.   
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a. LR/LB =1.2  
 

 

b. LR/LB =3 

Fig. 2.12 Mean static load vs. speed limit 

2.4.3 Vehicle combination 

In the present study, the combination ratio of different types of vehicles is assumed to be vtype 

={0.2 0.3 0.5} for the three categories of vehicles: “heavy multi-axle truck”, “light truck and bus” 

and “light passenger cars”, respectively. In order to study the impact of the different vehicle 

combinations, another vehicle combination ratio vtype ={0.2 0.2 0.6} is also studied and the results 

are shown in Fig. 2.13. “Combination I” and “Combination II” in Fig. 2.13 refer to vtype ={0.2 0.3 

0.5} and {0.2 0.2 0.6}, respectively. The mean static load of the vehicles for the “free flow” and 

“moderate flow” seem to simply increase with the increase of the percentage of heavier vehicles. 

The mean static load of all the vehicles for the “busy flow” condition shows a complicated trend. 

This is probably due to the congestion and more turbulent traffic flow when the traffic occupancy 

gets high. For various traffic occupancies, the mean static load of all the vehicles on the bridge 
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seems to be pretty sensitive to different vehicle combinations. So for an accurate traffic load 

characterization, the specific vehicle classification information should be used, if available. 

 
a. Free flow 

 
   b. Moderate flow 

 
  c. Busy flow 

 
Fig. 2.13 Mean static load vs. vehicle combination (LR/LB =1.2) 

2.5 Conclusions 

A general framework of modeling the stochastic live load from traffic for a long-span bridge was 

developed. Depending on the site-specific information of the bridge, different approaching 

roadway lengths, traffic occupancies, speed limits and combinations of vehicle types for both the 

normal and incidental conditions can be considered. Following the development of the 
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methodology, parametric studies were conducted for several critical parameters used in the 

simulation. Major findings are summarized as follows:  

(1) Larger fluctuations of vehicle velocities over time were observed when the traffic occupancy 

is high for both normal and incidental conditions. For a critical long-span bridge which 

often experiences busy traffic, a rational simulation of the traffic flow with realistic traffic 

rules was confirmed to be necessary in order to quantify time-dependent traffic load on the 

bridge. 

(2) The “road block” traffic condition has less impact on the traffic flow in terms of the velocity 

fluctuations than the “bridge block” or normal traffic conditions. Large fluctuations of the 

vehicle velocities can cause more variations of the dynamic impacts of the traffic load, higher 

risks of rear-end crashes and more chances of accelerating and braking operations.  

(3) Among the three different traffic conditions, the “bridge block” condition is found to cause 

the minimum mean static traffic load on the bridge, while the “road block” condition causes 

the largest mean static traffic load, but with the least fluctuations of the static traffic load over 

time. 

(3) When the traffic occupancy is low, the boundary conditions of the bridge (i.e. details of 

approaching roadways) are not very critical to the simulated traffic. The “roadway-bridge-

roadway” system with LR/LB =0.5 or above is normally sufficient to provide stable static load 

of the traffic flow as long as the traffic occupancy is not very high. When the traffic 

occupancy on a bridge is high, an accurate description of the site-specific details of the 

approaching roadways connecting the bridge becomes critical in order to accurately quantify 

the traffic load on the bridge.  

(4) For the typical range of speed limits of long-span bridges, the impact from the speed limit on 

the static traffic load from the stochastic traffic is found to be very limited. Since the mean 

velocity of the traffic has pretty significant change over the different speed limits, the 

dynamic traffic load, however, could be considerably affected by the speed limits. 
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(5) The mean static load of all the vehicles on the bridge is pretty sensitive to different vehicle 

combinations. For an accurate load characterization, the site-specific vehicle classification 

information should be used, if available. 

(6) A simple comparison between the simulated static traffic load and the AASHTO LRFD HL-

93 design load was made. It was found that the lane load of HL-93 can provide sufficient 

static load for the “free flow” and “moderate flow” conditions. When the traffic occupancy is 

high (“busy flow”), there will be equivalently 2-3 design trucks along with the lane load 

which can generate the same total static load as the simulated traffic loads. Since it was only 

about the static load, more detailed and rigorous comparison of the live load considering 

dynamic impacts with AASHTO LRFD design loads, which require extensive interaction 

analysis, should be conducted in the future.    
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CHAPTER 3: DYNAMIC PERFORMANCE SIMULATION OF LONG-S PAN 

BRIDGES UNDER COMBINED LOADS OF STOCHASTIC TRAFFIC AND 

WIND 

3.1 Introduction 

Slender long-span bridges exhibit unique features not present in short-span bridges, such as 

simultaneous presence of multiple trucks, and significant sensitivity to wind. The performance 

assessment under service loads has been primarily focused on traffic and wind loads for slender 

long-span bridges. Wind-induced buffeting analysis is the common approach to estimate the 

dynamic behavior of slender long-span cable-stayed or suspension bridges under turbulent wind 

excitations. No traffic load was typically considered simultaneously with wind (Simiu and 

Scanlan 1996; Jain et al. 1996), assuming that the bridges will be closed to traffic at relatively 

high wind speeds or the excitations from vehicles are negligible. However, recent studies of 

Bridge/Vehicle/Wind interaction analyses showed that there is a considerable difference in the 

predicted bridge response between the case where several trucks were considered and the case 

where no vehicle was considered (Xu and Guo 2003; Cai and Chen 2004; Chen et al. 2007), and 

such a difference exists over a wide range of wind speeds. Furthermore, long-span bridges are 

rarely closed even when wind speeds exceed the commonly-quoted criterion for long-span bridge 

closure [e.g. 55 mph (AASHTO 2004)]. For slender long-span bridges, the governing (most 

severe) case of stress and potential damage is when the collective effects from wind and the real 

traffic loadings are the largest, not necessarily when wind is the strongest or when the traffic 

volume is the highest.  
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Even for conventional long-span bridges which are not sensitive to wind excitations, such as 

those with slab & beam girder, arch and truss (Huang 2005; Calcada et al. 2005; Shafizadeh and 

Mannering 2006), wind dynamic effects on fast-moving vehicles are still significant. The results 

from the preliminary study suggested that the wheel load applied by one standard truck on a long-

span bridge without considering wind dynamic impacts on the vehicle will be underestimated by 

about 6% to 11% compared to the case considering wind impacts on the vehicle when wind speed 

is between 10 m/s to 20 m/s. With busy traffic flow and moderate wind on a long-span bridge, the 

cumulative dynamic impacts on the bridge transferred from wind through many vehicles can be 

significant and some critical scenarios with excessive stress or response for the bridge may not be 

captured appropriately by ignoring the dynamic wind effects on vehicles.   

 

In recognizing the significance of dynamic interactions of a long-span bridge, vehicles and wind 

as a coupled system, people have recently started working on dynamic behavior of 

Bridge/Vehicle/Wind coupled system (Xu and Guo 2003; Cai and Chen 2004; Chen and Cai 2006; 

Chen et al. 2007). As a first step to demonstrate the methodology, these studies have considered 

only one or several vehicles distributed in an assumed (usually uniform) pattern on a bridge. For a 

bridge with a long span, there is a high probability of the simultaneous presence of multiple 

vehicles including several heavy trucks on the bridge. Such an assumed pattern obviously differs 

from reality that vehicles actually move probabilistically through the bridge following some 

traffic rules. Although white noise fields (Ditlevsen 1994; Ditlevsen and Madsen 1995), Poisson 

distribution (Chen and Feng 2006) and Monte Carlo approach (Nowak 1993, Moses 2001, 

O’Connor and Obrien 2005) have been used to simulate the traffic flow to obtain the 

characteristic load effects for short- and medium-span bridges, these approaches have not been 

used on long-span bridges to address relatively complicated traffic loading, especially with wind 

load simultaneously. For example, the traffic flow is more complicated in terms of vehicle 

number, vehicle type combination and drivers’ operation such as lane-changing, acceleration or 
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deceleration on long-span bridges compared to short-span bridges. In Chapter 2, a framework of 

probabilistic bridge dynamic analysis is introduced which considers the dynamic interactions 

between bridge, stochastic traffic and wind. The stochastic traffic flow on the bridge is simulated 

with the Cellular Automata (CA) traffic flow model. The equivalent dynamic wheel load (EDWL) 

approach (Chen and Cai 2007) is incorporated into the model to make the simulation of the 

coupled system in time domain practically possible. A case study of a slender cable-stayed bridge 

is conducted based on the proposed methodology. 

3.2 Theoretical Basis of Bridge/Traffic/Wind Interaction Analysis 

As illustrated in Fig. 3.1, the proposed analytical model has three parts: the first one is to simulate 

the stochastic traffic flow; the second one is to obtain time-dependent equivalent dynamic wheel 

load (EDWL) information for each vehicle from the developed EDWL database; and the third one 

is the interactive simulation framework in the time domain to obtain statistical results of the 

bridge performance. The theoretical basis of these three parts is introduced in the following.  

CA traffic flow Simulation 
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model using EDWL 

(Eq. (4))

Veh. 1 Veh. j Veh. nv
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Interaction analysis
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Fig. 3.1 Flow chart of the analytical method 
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3.2.1 Probabilistic traffic flow simulation with CA model 

As introduced in Chapter 2, the Cellular Automaton (CA) traffic simulation model, a type of 

microscopic traffic flow simulation techniques, is based on the assumption that both time and 

space are discrete and each lane is divided into cells with an equal length (Nagel and 

Schreckenberg 1992). Each cell can be empty or occupied by at most one vehicle at a time. The 

instantaneous speed of a vehicle is determined by the number of cells a vehicle can advance 

within one time step. The maximum speed a vehicle can achieve is decided by the legal speed 

limit of the highway. For each time step, operations such as accelerating, decelerating or lane-

changing of any vehicle are automatically decided based on some algorithms established 

according to some actual traffic rules as well as some reasonable assumptions of the driver 

behavior. For instance, it is assumed that drivers intend to achieve the maximally allowable 

driving speed without having traffic conflicts with other vehicles or breaking any traffic rule.  

 
The rules of a typical multi-lane CA traffic model include: (1) those for vehicles moving forward 

on the original lane, i.e. single-lane CA model (Nagel and Schreckenberg, 1992); and (2) those of 

lane-changing. For any vehicle i, lane-changing will happen if the following conditions are all 

met (Rickert et al. 1996; Li et al., 2006). A detailed introduction of the CA-based traffic 

simulation model and the simulation results on a long-span bridge can be found in Ref. (Wu and 

Chen 2008).   

3.2.2 Equivalent dynamic wheel load (EDWL) 

Beginning with the finite element modeling of a bridge, the bridge dynamic model is developed. 

Each vehicle is modeled as a multi-degree-of-freedom, and mass-spring-damper system. Once the 

road roughness and wind loading acting on a bridge as well as on the vehicles are simulated in the 



 48

time domain, the general Bridge/Vehicle/Wind interaction model can be expressed as (Chen 2004; 

Cai and Chen 2004):  

{ } { }
{ } { } { }

V V
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  (3.1) 

where M , C and K  are the matrices of mass, damping and stiffness, respectively; γ is the 

displacement; the subscripts and superscripts B and V refer to the bridge and vehicles, 

respectively; F is the force vectors; subscripts R, W and G refer to the forces induced by road 

roughness, wind and the gravity of the vehicles on the right hand side of equations, respectively.  

 

The vehicle models in Eq. (3.1) can be used to simulate various types and numbers of vehicles at 

any location on the bridge. By removing wind-related terms in Eq. (3.1), the coupled equations 

will reduce to the traditional Bridge/Vehicle interaction model without considering wind for 

conventional long-span bridges (Huang 2005; Calcada et al. 2005). Theoretically, when real 

traffic flow is considered, each vehicle dynamic model with corresponding actual vehicle 

properties (e.g. driving speed and location) of the traffic flow can be brought into Eq. (3.1) to 

formulate a “fully-coupled” Bridge/Traffic/Wind dynamic interaction analysis with detailed 

vehicle dynamic models with Eq. (3.1). The “ fully-coupled”  analysis in an “exact” manner 

obviously can provide the most accurate simulation results, but requires extremely high 

computational costs as the number of degree-of-freedom of the matrices in Eq. (3.1) increases 

proportionally with the number of vehicles remaining on the bridge at any time. When the bridge 

span is long, traffic is busy or an extended simulation time is required, a “fully-coupled” 

interaction analysis of a Bridge/Traffic/Wind system increases the number of degree-of-freedom 

too dramatically to be realistic for practical simulations (Chen and Cai 2007).  
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In order to provide a more computationally practical option for engineering analyses, the 

equivalent dynamic wheel load (EDWL) approach has been proposed by Chen and Cai (2007) to 

significantly improve the efficiency of the analysis by avoiding solving the “fully-coupled” 

Bridge/Multi-vehicle/Wind interaction equations. Each EDWL, which is obtained from the 

dynamic interaction analysis of the Bridge/Single-vehicle/Wind system in the time domain, is 

essentially a time-variant moving force representing the actual wheel loading applied by each 

moving vehicle on the bridge deck considering essential dynamic interactions. The EDWL varies 

with time and is specific to vehicle type, driving speed and other environmental conditions.  

 

The EDWL and the dimensionless variable EDWL ratio R for the j th vehicle are defined in Eq. 

(3.2) and Eq. (3.3), respectively (Chen and Cai 2007).  

( ) ( )
1

an
i i i i

j vl vl vl vl
i

EDWL t K Y C Y
=

= +∑ &                                            (3.2) 

where i
vlK  and i

vlC  are the spring stiffness and damping terms of the suspension system of 

vehicle, respectively. i
vlY  and i

vlY&  are the relative displacement and velocity of the suspension 

system to the bridge in vertical direction, respectively. na is the axle number of the j th vehicle 

model. Since the vehicle moves in a constant speed, any specific time after the vehicle gets on the 

bridge corresponds to a spatial location along the bridge. As a result, the time-variant EDWLj(t) 

can be easily translated to spatially-variant EDWLj(x) by using a simple relationship 

( ( ) ( ) ( )
1

1
t

t
x t x t V t dt

−
= − + ∫ ), where x is the longitudinal position along the bridge, V(t) is the 

instantaneous driving speed of the vehicle at time t.   

 

The equivalent dynamic wheel load ratio (R) for the jth vehicle can be defined as (Chen and Cai 

2007): 
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 ( ) ( ) /j j jR t EDWL t G=                                                            (3.3) 

where Gj is the weight of the j th vehicle.  

3.2.3 Bridge/Traffic/Wind interaction model using EDWL 

By introducing EDWL to replace physical moving vehicles on the bridge, the “fully-coupled” 

equations (Eq. (3.1)) can be simplified to Bridge/Wind coupled model under excitations of many 

moving forces- EDWLs, at the corresponding locations of the physical vehicles on the bridge 

(Chen and Cai 2007). Accordingly, the “fully-coupled” Bridge/Traffic/Wind model as shown in 

Eq. (3.1) will be simplified to: 

  { } { } { } { } { }+ + = +b wheels s
b b b b b b w Eq

M γ C γ K γ F F&& &                            (3.4) 

where { }wheel

Eq
F  is the cumulative equivalent dynamic wheel load (EDWL) of all the vehicles 

existing on the bridge at a time, as defined in Eq. (3.5); matrices s
bC  and  s

bK  are the damping 

and stiffness matrices of the bridge which have included the wind-induced aeroelastic damping 

and stiffness components, respectively (Simiu and Scanlan 1996); { }b

w
F denotes the wind-induced 

buffeting force acting on the bridge. It is easy to find Eq. (3.4) will be reduced to the traditional 

wind-induced buffeting analysis equations after removing the { }wheel

Eq
F  term.  

 

The cumulative EDWL { }wheel

Eq
F  acting on the bridge in Eq. (3.4) can be defined as: 
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where Rj, Gj , xj, and dj are the dynamic wheel load ratio, self-weight of the j th vehicle, longitudinal 

location, and transverse location of the gravity center of the j th vehicle on the bridge, respectively.  

hk, and αk are the vertical and torsion mode shapes for the kth mode of the bridge model. nv is the 

total number of vehicles on the bridge at a time. Since there may be different numbers of vehicles 
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on the bridge at different time, nv changes with time depending on the simulation results of the 

stochastic traffic flow.  

 

The feasibility study conducted by Chen and Cai (2007) compared the bridge response 

estimations using EDWL and the “fully-coupled” bridge/multi-vehicle/wind interaction analysis. 

Very close results of both displacement and acceleration responses can be obtained with the 

EDWL approach and the computational errors compared to the “fully-coupled” analysis results 

were around 1-7%. As shown in Eq. (3.4), the degrees of freedom of Eq. (3.4) equal to those of 

the bridge model, and thus do not change with the number of vehicles on the bridge. As a result, 

the computation efficiency of busy traffic flow moving through a long-span bridge with the 

EDWL approach by using Eq. (3.4) , even for an extended time period, can be significantly 

improved compared to the “fully-coupled” equations (Eq. (3.1)).  

3.3 “Semi-deterministic” Bridge/Traffic/Wind Interactio n Analysis   

Fig. 3.1 gives the flowchart of the simulation process in the time domain: based on the input data 

of simulation at any time step, the corresponding EDWL value of each vehicle of the simulated 

traffic will be obtained from the EDWL database. The dynamic interaction analysis of the 

Bridge/Traffic/Wind system is then carried out, based on which the statistical assessment of 

bridge performance can be conducted. Details of the whole simulation process in Fig.3.1 are 

illustrated in the following sections.   

3.3.1 Input data of simulation 

After the theoretical basis of the traffic flow simulation and the equivalent dynamic wheel load 

approach have been introduced in the above section, the probabilistic simulation of the bridge 

dynamic behavior in the time domain will be conducted with following basic input data: 
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Bridge – basic geometric and material parameters; bridge finite element model and critical modes 

selected for the interaction analysis; surface roughness of bridge deck, which can be the 

actual measurements or from simulations based on the spectrum of surface roughness 

profiles (Huang and Wang 1992; Xu and Guo 2003).  

Traffic – vehicle occupancy (or traffic density); vehicle classifications (i.e. percentage of each 

category of vehicles) and speed limit. 

Wind – wind speed; static wind force coefficients and flutter derivatives of the bridge; static wind 

force coefficients of various high-sided vehicles which are typically obtained from wind 

tunnel testing (Baker 1991).    

 

With all the required data, the EDWL database associated with a particular bridge will be 

developed which will be introduced in detail in the following “EDWL database”. 

3.3.2 EDWL database 

A comprehensive EDWL database is to provide EDWL for any possible combination of vehicle 

properties (e.g. vehicle type, driving speed), wind speed and road surface roughness condition. 

Existing studies have already identified some key factors affecting the values of EDWL (Chen 

and Cai 2007) such as wind speed, vehicle type, vehicle driving speed, vehicle instantaneous 

position on the bridge and surface roughness profiles of the bridge deck. For a particular bridge, 

all common vehicles of the traffic flow on the bridge can be classified into several categories. For 

each category of vehicles, some typical variables are selected such as mass, stiffness, damping 

and wind force coefficients. Wind speeds, vehicle driving speeds and road roughness are also 

described with some typical discrete values with reasonable intervals (e.g. 5m/s interval of wind 

and driving speeds). Comprehensive collections of possible combinations of variables, such as 

vehicle variables, wind speed, vehicle driving speed and road roughness level, are made. Under 

each combination of variables, Bridge/Single-vehicle/Wind interaction analysis is conducted and 
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the corresponding EDWL(t) and  EDWL(x) in both time and spatial domains respectively, are 

obtained (Chen and Cai 2007). Depending on the intervals of discrete values for each input 

variable, appropriate interpolation techniques may be applied when the actual input value is 

between two predefined discrete values for each variable. In the present study, a simple linear 

interpolation is adopted due to pretty dense intervals adopted. 

3.3.3 Statistical assessment of bridge dynamic performance   

Since the objective of the present study is to develop the framework of Bridge/Traffic/Wind 

interaction analysis, uncertainties of variables about bridge, wind, and roughness excitations will 

not be considered in this study. The only randomness is from the stochastic nature of the traffic 

flow which is simulated based on the CA model. So the proposed Bridge/Traffic/Wind simulation 

model is actually a type of “semi-deterministic approach”  as the instantaneous distributions of 

positions and speeds of the vehicles of the CA-based traffic flow at any time are probabilistic, but 

the basic traffic input (e.g. vehicle occupancy (or traffic density) and vehicle classifications) for 

the CA simulation is still deterministic. Because of the “semi-deterministic” nature of the 

proposed model, a convergence analysis of the time-history results over time will be necessary in 

order to get stable statistical descriptions over time (e.g. mean and standard deviation) of bridge 

responses under stochastic traffic. The basic traffic input varies in a typical day (e.g. rush hour 

and normal hours) and a typical week (e.g. weekdays and weekend). These uncertainties, along 

with uncertainties associated with other variables of bridge, wind and vehicle models, will be 

considered in a comprehensive reliability-based lifetime analysis model in Chapter 6 based on the 

present model.      

 

The whole simulation process, as shown in the flowchart in Fig. 3.1, is summarized as the 

following steps:  
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(1) With the deterministic values of the basic traffic input (e.g. traffic density and vehicle 

classifications), the CA traffic flow simulation model will be used to simulate the stochastic 

traffic flow, among which each vehicle carries detailed time-variant (or spatially-variant) 

information such as instantaneous driving speed and position at each time step as well as 

time-invariant information (e.g. vehicle type);  

(2) The information of each vehicle, along with the instantaneous wind data and roughness profile 

data, will be fed into the EDWL database to obtain the corresponding instantaneous EDWL(t) 

value at each time step based on the corresponding instantaneous spatial position identified 

for each vehicle. EDWLs of all the vehicles of the traffic flow will be articulated to form the 

external loading term { }wheel

Eq
F  on the right-hand side of Eq. (3.4) at the moment;   

(3) The differential equations of Eq. (3.4) will be solved at each time step with the external 

loading term { }wheel

Eq
F  updated. Time-dependent response, such as dynamic displacement, 

shear force, moment and stress, of each member of the bridge can be obtained;  

(4) Repeat steps (1)-(3) for each time step, time-history of response/shear-force/moment/stress at 

any point on the girders along the bridge can be obtained;  

(5) Due to the stochastic nature of the traffic loads carried over from the simulated traffic flow, a 

convergence analysis is required in order to get a rational estimation of the statistical 

performance of the bridge. For any point of interests along the bridge, statistical analyses 

over the time period from the starting time of the simulation to the current time will be 

conducted repeatedly with the increase of time steps until the mean and standard deviation of 

the interested bridge response both converge. The converged mean and standard deviation of 

the bridge response will become the final statistical descriptions of the bridge behavior (e.g. 

mean and standard deviation) under stochastic traffic flow and wind for a specific traffic 

density and vehicle classification.  
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3.4 Case Study 

A case study will be made to demonstrate the proposed approach on the bridge behavior study of 

a slender long-span cable-stayed bridge. 

3.4.1 Bridge and vehicle model 

The long-span cable-stayed bridge (Fig. 3.2) with a total length of 836.9m is adopted as the 

prototype bridge. The same bridge has been selected as the prototype bridge in several previous 

studies (e.g. Chen et al. 2007). The approaching roadway at each end of the bridge is assumed to 

be 1005m. The speed limit of the highway system is 70 mph which is converted to vmax=4 in the 

CA model as shown in Eq. (3.6).  

( )
( )

( )
( ) ( ) ( )max

max

113 km / h 1000 m km
4.19 cell s 4 cell s

3600 s h 7.5 m cellc

V
v

L
= = × = ≈

              (3.6) 

   

    

 

 
Fig. 3.2 Cable-stayed bridge and CA-based traffic flow simulation on the bridge  

 

In order to develop the EDWL database, all the vehicles are classified as three types: 1) v1-heavy 

multi-axle trucks 2) v2-light trucks & buses and 3) v3-sedan car. Please be noted different 
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categories may be classified based on the specific vehicle classification characteristics of traffic 

on other bridges. According to the existing studies (Xu and Guo 2003; Cai and Chen 2004), 

heavy trucks, which are critical to bridge dynamic behavior, require more detailed vehicle 

dynamic modeling. It was also found in the feasibility study (Chen and Cai 2007) that the quarter 

vehicle models can give reasonable estimations of EDWL for light trucks. Therefore, in present 

study, only heavy trucks are modeled with the detailed vehicle dynamic model and light trucks 

and sedan cars use the quarter vehicle model to be computationally efficient. Both the detailed 

vehicle dynamic model and the quarter vehicle model are shown in Fig. 3.3 and the parameters of 

the vehicle models are summarized in Tables 3.1 and 3.2. The vehicle classifications (i.e. 

percentage of each type of vehicles) are defined in Table 3.3 as the variable vtype. The 

Transportation Research Board classifies the “Level of Service (LOS)” from A to F which ranges 

from driving operation under desirable condition to operation under forced or breakdown 

conditions (NRC 2000). Three traffic occupancies (ρ ) are computed: 1) ρ =0.07 (9 veh/km/lane) 

corresponding to level B, 2) ρ =0.15 (20 veh/km/lane) corresponding to level D and 3) ρ =0.24 

(32 veh/km/lane) corresponding to level F. Also based on the existing studies, wind loadings on 

vehicles are considered for heavy and light trucks, but are ignored for sedan cars due to the 

insignificance of dynamic impacts from wind. In this chapter, in order to study the normal service 

condition of long-span bridges, only two wind speeds are considered in this study: breeze (wind 

speed =2.7 m/s) and moderate wind (wind speed =17.6 m/s).  

Table 3.1 Parameters of vehicle model (quarter-model) 
 

Parameters Unit Sedan car Light truck 
Sprung mass (m1) kg 1460 4450 

Unsprung mass (m2) kg 151 420 
Stiffness of suspension system (k) N/m 434920 5e5 

Stiffness of tire (kt) N/m 7.02e5 1.95e6 
Damping (c) N/(m/s) 5820 2e4 
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a. Full vehicle model 

 

 
b. Quarter vehicle model 

 
Fig. 3.3 Vehicle models  

 
Table 3.2 Parameters of vehicle model (full-model) 

 
Parameters Unit Heavy truck 

Mass of each rigid body 
(M_v_i) 

kg [3930,15700] 

Inertial moment of each rigid body in zy plane 
(I_v_i) 

m4 [17395,29219] 

Inertial moment of each rigid body in xz plane 
(J_v_i ) 

m4 [10500,147000] 

Mass of each axle 
(M_a_L or M_a_R) 

kg [220,1500,1000] 

Coefficient of upper vertical spring for each axle 
(K_u_L or K_u_R) 

N/m [2e6 4.6e6 5e6] 
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Coefficient of upper vertical damping for each axle 
(C_u_L or C_u_R) 

N/(m/s) [5e3 3e4 4e4] 

Coefficient of lower vertical spring for each axle 
(K_l_L or K_l_R) 

N/m [1.73e6 3.74e6 4.6e6] 

Coefficient of lower vertical damping for each axle 
(C_l_L or C_l_R) 

N/(m/s) [2e4 2e4 2e4] 

 
Table 3.3 Parameters of CA model 

 
Parameters Value Definition 

Lc 7.5m Length of each cell 
dt 1s The period of each time step 

L-road 134 cells 
(1005m) 

Number of cells (absolute length) of one lane of approaching 
roadway in one end 

L-bridge 112 cells (840m) Number of cells (absolute length) of one lane of bridge 
ρ  0.07,0.15,0.24 Occupancy of the system(occupied cells/ all cells) 

vtype {0.2 0.3 0.5} Percentage of three types of vehicles(v1, v2 and v3) 
vmax 4 The maximum cells a vehicle can pass per second 
pb 0.5 The probability of braking 
pch 0.8 The probability of changing lane 

 

3.4.2 Traffic flow simulation results 

The traffic flow simulation results with CA technique usually become stable after a continuous 

simulation with a period which equals to 10 times the cell numbers (380 cells totally) of the 

highway system (Nagel and Schreckenberg 1992). Accordingly, in the present study, only the 

traffic flow simulation results between the range of 3,800 seconds and 4,100 seconds (totally 5 

minutes) are used. The periodic boundary condition is applied which assumes the vehicle 

occupancy is constant for the highway system throughout the 5-minute period of simulation. For 

a comparison purpose, three different vehicle occupancies are considered: smooth traffic (vehicle 

occupancy ρ =0.07), median traffic (vehicle occupancy ρ =0.15) and busy traffic flow (vehicle 

occupancy ρ =0.24). All the basic parameters of the traffic flow simulation are summarized in 

Table 3.3. 

 

Due to the symmetric nature of traffic flow, only the traffic flow results in the direction from west 

(left) to east (right) of the bridge are displayed. Fig. 3.4(a-b) shows the simulated traffic flow on 
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both the inner and outer lanes of the bridge when vehicle occupancies equal to 0.07 and 0.24. It 

can be found that the simulated traffic flow on both the inner and outer lanes under the same 

vehicle occupancy is similar. The x-axis and y-axis represent the coordinates in both spatial 

(along the bridge) and time domains, respectively. Each dot on the figure represents a vehicle 

(Fig.3.4). By picking any time (y value) and drawing a horizontal line, one can get a snapshot of 

the spatial distribution of vehicles along the bridge at that moment. Similarly, by picking any 

location on the bridge and drawing a vertical line, the time history of different vehicles passing 

the same spot on the bridge can be obtained. For the low traffic occupancy, the traffic flow is like 

laminar flow. With the increase of the traffic occupancy, local congestions may be formed at 

some locations as indicated by black belts in Fig. 3.4. Detailed statistical properties of the traffic 

flow on the bridge are presented in Table 3.3. It is easily found from Table 3.4 that the mean 

speed of the traffic flow decreases while the standard deviation of the vehicle speeds increases 

with the increase of the vehicle occupancy. In reality, with more vehicles moving on the same 

road, available spaces for vehicles to accelerate or decelerate are decreased and the mean speed of 

the whole traffic flow will decrease accordingly. A higher standard deviation of the vehicle 

driving speeds suggests higher speed variations among vehicles, which imply relatively higher 

potentials of traffic congestion and possible traffic conflicts (TRB 2007).  

Table 3.4 Statistical property of traffic flow on bridge 
 

Occupancy Lane Average speed µ (km/h) Standard deviation σ (km/h) 

0.07 Inner lane 93.89 14.04 
Outer lane 93.89 14.05 

0.15 Inner lane 86.58 22.07 
Outer lane 86.70 22.09 

0.24 Inner lane 55.14 36.84 
Outer lane 54.23 36.80 
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a. Occupancy ρ =0.07 

 
b. Occupancy ρ =0.24          

                
Fig. 3.4 Simulated traffic flow on bridge with CA model 

* – Heavy multi-axle truck 
O – Light truck and bus 
∆  – Sedan Car 
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3.4.3 Equivalent dynamic wheel load factor (R) 

Three types of different representative vehicle models: heavy truck, light truck and bus and sedan 

car (Tables 3.1 and 3.2) are considered to investigate respective equivalent dynamic wheel load 

factors (R). Fig. 3.5 gives the time history of the equivalent dynamic wheel load factor R on the 

inner lane when the wind speed U equals to 2.7m/s and 17.6 m/s, respectively. The vehicle travels 

with a speed of 7.5m/s from west (left) to east (right). Labels of “on bridge” and “on road” show 

the spatial locations of the vehicle corresponding to time in the x axis. Under both wind velocities, 

when a vehicle is on the road and heading to the bridge, R is very small as the vibration is 

primarily caused by the excitation of the pavement surface roughness. Much higher equivalent 

dynamic wheel loads are observed when the vehicles are on the bridge due to the dynamic 

interactions. After the vehicle leaves the bridge, R decreases slowly as the vibration excited by 

the bridge requires some time to be damped out. The comparisons of the results for the heavy 

trucks and light trucks under both weak and moderate wind speeds suggest that heavy trucks will 

cause much larger R than the light trucks. For heavy trucks, R is considerably amplified when the 

trucks are close to the middle point of the bridge compared to those at other locations on the 

bridge. It is understandable that the strongest dynamic interactions of large trucks have been 

observed at the middle point region of long-span bridges in previous studies (Xu and Guo 2003; 

Chen et al. 2007). The increase of the wind speed from 2.7 m/s to 17.6 m/s will increase R for the 

heavy truck considerably and will also increase R mildly for the light truck.  
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              a. U=2.7m/s  

 
               b. U=17.6 m/s 

 
Fig. 3.5 Time history of R on inner lane under different wind speeds  

 
The mean values of R for different types of vehicles with different driving speeds on the bridge 

under both breeze and moderate wind conditions are presented in Fig. 3.6. When the wind is very 

weak (U=2.7m/s), R for all the three types of vehicles are pretty close under a low vehicle driving 

speed (V < 15 m/s). The differences of R among different types of vehicles become larger when 

On road On road On bridge 

On road On road On bridge 

On road On road On bridge 

On road On road On bridge 

On road On road On bridge 



 63

the vehicle driving speed gets higher. The heavy truck has the largest R among all types of 

vehicles under the same driving and wind speeds. When the wind is moderate (U=17.6 m/s), the 

comparison of R between those of the light truck and the heavy truck shows that the heavy truck 

has a considerably larger mean value of R than that of the light trucks under the same wind and 

driving speeds. With the increase of the driving speed when the wind is moderate, the heavy truck 

also shows higher sensitivity to different driving speeds than the light truck. For both breeze and 

moderate wind conditions, with the increase of vehicle driving speeds, R of all types of vehicles 

has a “jump” when the vehicle driving speed increases from 15m/s to 22.5m/s. It suggests that 

although the EDWL factor R generally increases with the vehicle driving speed, the driving speed 

of 22.5m/s seems to be a critical threshold which will trigger a substantial increase of wheel 

loading on the bridge when the driving speed further increases in the present example. This 

critical value is probably related to the specific dynamic properties of the bridge and more 

insightful studies of different bridges may be needed in the future.  

 

a. U=2.7 m/s 
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b. U=17.6 m/s 

 
Fig. 3.6 Comparison of mean value of R under different wind speeds 

 

3.4.4 Statistical bridge dynamic behavior 

With the equivalent dynamic wheel load (EDWL) approach, time histories of displacement at any 

point along the bridge can be obtained by solving Eq. (3.4). As discussed above, statistical 

analyses of the bridge response are required in order to obtain converged statistical predictions of 

the bridge behavior. Statistical analyses of the time-history response after the simulation starts are 

conducted continuously to check the convergence. Fig.3.7 shows the mean values of bridge 

displacement and stress at the middle point of the main span under different averaging time when 

the wind speed is 17.6m/s. It is found that both the displacement and the stress results can 

gradually converge when the simulation time increases. In the present study, the 5-minute (300 

seconds) simulation time is enough to generate stable results of the bridge response (e.g. 

displacement and stress) as the relative difference is constantly lower than 4% beyond the 5-

minute averaging time. Under breeze, it has been found it takes even shorter time for the bridge 
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response to converge (results not shown here). Therefore, in following sections, all the statistical 

results are those obtained from a convergence analysis with a time period of 5 minutes (300 

seconds). 

 
a. Mean displacement 

 

 
b. Mean stress 

 
Fig. 3.7 Convergence analysis results of displacement and stress  

 
The midpoint of the main span of a long-span bridge is usually the critical location which 

typically has the largest bridge response. Time histories of the vertical response at the midpoint of 
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the bridge under different traffic flow occupancies ( ρ =0.07, 0.15, 0.24) and wind speeds (U=2.7, 

17.6m/s) are presented in Fig. 3.8. The mean value as well as the absolute value of coefficient of 

variance |COV| of the vertical displacement is given in Fig.3.9 under different combinations of 

traffic occupancy and wind speed. It is found that the mean value of the bridge displacement at 

the midpoint generally increases with wind speed and vehicle occupancy (Fig. 3.9(a)). Under both 

breeze and moderate wind conditions, the vehicle occupancy plays a more significant role than 

the wind speed on the bridge displacement. For example, the mean value of the bridge 

displacement increases from 0.04 m to 0.11 m when the vehicle occupancy increases from 0.07 to 

0.24 (wind speed is 17.6 m/s). This phenomenon, for one more time, justifies the importance of 

including traffic load into the bridge buffeting analysis especially when the wind speed is not 

very high. The |COV| increases with the increase of wind speeds, while decreases with the 

increase of vehicle occupancy (Fig. 3.9(b)). It is found that the |COV| becomes the maximum 

when the occupancy is 0 (i.e. no traffic flow on the bridge). When the road is densely occupied by 

vehicles, as indicated by higher values of the vehicle occupancy, the randomness level of the 

traffic flow (e.g. variations of speeds) on the bridge is reduced as reflected by lower |COV| of the 

bridge displacement.  

 

Mean stress values at the bottom and top fibers of the girder along the whole bridge are presented 

in Fig. 3.10 and the x axis is the spatial position along the bridge. It can be found the largest stress 

level happens at the midpoint of the bridge. The mean stress shows a slight increase when wind 

speed increases from 2.7 m/s to 17.6 m/s. Under the same wind speed, the mean stress value 

increases with the increase of vehicle occupancy considerably. The extreme tension stress on both 

the bottom and the top of the fibers of the girders during the 5-minute simulation are displayed in 

Fig. 3.11. It is obvious that the largest tension stress happens on the bottom fiber of the girder at 

the midpoint of the bridge. The top fiber of the girder may experience tension stress in some 

situations with much lower amplitudes compared to the bottom fibers. Significant increase of 
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stress can be observed at the higher wind speed and higher vehicle occupancies compared to that 

under breeze and under low vehicle occupancy, respectively.  

 

 
a. Wind speed =2.7m/s 

 

 
b. Wind speed =17.6m/s 

 
Fig. 3.8 Time history of vertical displacement at midpoint  
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a. Mean value comparison 

 
b. |COV| comparison 

 
Fig. 3.9 Statistical results of vertical displacement at midpoint of the bridge 
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a. Wind speed =2.7m/s 

 
b. Wind speed =17.6m/s 

 
Fig. 3.10 Mean stress contour along the bridge 
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a. Wind speed =2.7m/s 

 
b. Wind speed =17.6m/s 

 
Fig. 3.11 Extreme tension stress contour along the bridge 

 

Since the tension stress at the midpoint of the bridge is the highest along the whole bridge, the 

mean value, COV and extreme value of the tension stress at the bottom fiber of the midpoint of 

the bridge are further studied under different vehicle occupancies (Fig. 3.12). The mean stress at 
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the midpoint of the bridge increases almost linearly with the vehicle occupancy under the same 

wind speed (Fig. 3.12(a)). It is found the vehicle occupancy has larger impacts than the variation 

of wind speeds (i.e. from breeze to moderate wind) has on the mean stress level. For example, 

when the vehicle occupancy is 0.07, the mean stress under the 17.6m/s wind speed is about 0.83 

MPa larger than that under the 2.7 m/s wind speed. When the vehicle occupancy is 0.24 and other 

conditions remain the same, the difference of mean stress levels increases to 1.74 MPa. As shown 

in Fig. 3.12(b), the coefficient of variation (COV) of stress decreases with the increase of vehicle 

occupancy under both wind speeds. It is probably because more densely occupied road will have 

limited flexibility for vehicles to change lanes or accelerating. As a result, the fluctuations of 

spatial distributions of the vehicles on the bridge are reduced, which in turn reduce the 

fluctuations of stress on the bridge under both wind and traffic. It is also found that the COV 

under moderate wind is larger than that under breeze, which suggests that stronger wind may 

reinforce the fluctuations of stress along with impacts from traffic (Fig. 3.12 (b)). Fig. 3.12(c) 

gives the results of extreme stress and it suggests that higher wind speeds will cause larger 

extreme stress on the bridge. When the vehicle occupancy is 0.24 and the wind speed is 17.6 m/s, 

the extreme stress can be around 45.32 MPa at some time instances. 

3.5 Discussion and Conclusion  

An innovative “semi-deterministic” Bridge/Traffic/Wind interaction analysis model considering 

stochastic traffic flow and wind was developed. The approach adopts the cellular automaton (CA) 

traffic flow simulation technique and the equivalent dynamic wheel load approach (EDWL) to 

consider the stochastic traffic flow and dynamic interactions, respectively. As a result of adopting 

the proposed model, the performance of long-span bridges can be predicted in a more realistic 

way by considering the combined load of stochastic traffic and wind integrally. A case study with 

a prototype cable-stayed bridge was conducted with the proposed analytical approach. Although 

the proposed approach was demonstrated through a slender long-span bridge, it actually can also 
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be applied to other conventional long-span bridges which are not sensitive to wind and even 

pavement-traffic-wind interactions. The detailed applications on conventional long-span bridges 

and pavement-traffic interaction analysis, however, are beyond the scope of the present study and 

will be investigated separately. The proposed “semi-deterministic” interaction analysis model will 

also serve an important basis to develop a reliability-based model to consider uncertainties of 

many variables associated with bridge, traffic and wind.  

 
 

a. Mean stress 

 
 

b. Coefficient of variation (COV) 

        
 

c. Extreme stress 
 

Fig. 3.12 Comparison of statistical value of stress at bottom fiber at midpoint of the bridge 
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In the case study, the traffic flow on the bridge as well as the approaching roadways with four 

lanes was simulated. Based on the simulated traffic flow, the statistical dynamic responses such 

as displacement and stress of the bridge under both the low and moderate wind speeds in normal 

service conditions were studied. In the present study, it took a common personal computer about 

2 hours to conduct the Bridge/Traffic/Wind interaction analysis after the EDWL database was 

developed. The reasonable efficiency of the proposed model allows for the adoption into typical 

engineering analyses.  

 

The developed approach in the present study has been partially validated on the EDWL approach 

by comparing the results considering several vehicles (Chen and Cai 2007). A full validation of 

the proposed model considering stochastic busy traffic, however, still remains a challenge as a 

comparison of statistical results, other than deterministic results, should be made. Due to the 

extremely time consuming nature of “fully-coupled” analysis, to get a converged statistical result 

(e.g. 5 minutes in the case study using EDWL) will be extremely hard, if not impossible at all. It 

is expected that the developed model can be validated and calibrated by comparing the 

predictions with actual bridge response measured by health monitoring techniques in the future. 
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CHAPTER 4: PROBABILISTIC DYNAMIC BEHAVIOR OF LONG-S PAN 

BRIDGES UNDER EXTREME EVENTS 

4.1 Introduction 

Long-span bridges usually support a large volume of traffic and locate on oceans, grand rivers or 

valleys where the wind speed at the typical height of the bridge decks can be considerably high. 

In addition to moderate wind and normal traffic scenarios, it is known that some extreme (or 

adverse) events may also occur. These extreme events may include complex traffic congestion on 

the bridge, coupled with moderate or even strong wind. For example, severe traffic congestions 

may be formed on the bridge or connecting roadways as a result of an evacuation or a partial 

blockage of driving lanes due to traffic accidents, construction or maintenance. For hurricane 

evacuations, there is usually a lot of traffic passing through the bridge before the landfall while 

the wind speed may become pretty high already (Chen et al. 2009).  

 

It is known that the excessive dynamic response and stress level of the bridge under these rare but 

critical scenarios, even for a very short period, may cause critical damage initiation or 

accumulation on some local bridge members. In addition to accelerating damage, the extreme 

events (e.g. heavy traffic) may even trigger the hazardous collapse of a whole bridge by breaking 

the “weakest link” in some rare cases, especially when some hidden damage or design flaw has 

not been detected. One recent example is the Minnesota bridge failure which occurred during 

rush hours with heavy traffic. For slender long-span bridges, strong wind may also cause threats 

by working interactively with heavy traffic loads. Therefore, even though the extreme cases 

associated with congested traffic and/or windy weather may be relatively rare and the durations 
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could be short, it is still important for bridge engineers to appropriately look into these unusual 

extreme events during structural design and life-time management of these critical infrastructures.   

 

In the AASHTO LRFD specification (2007), the only limit state similar to the scenarios discussed 

above is “Strength V”, which is descriptively defined as “a load combination relating to normal 

vehicular use of the bridge with wind of 55 mph velocity.” No detailed information about how the 

“normal vehicle use” has been defined in the specification, except for adopting the standard 

design vehicles as live loads. It is usually understandable as the specification was developed from 

and also primarily for short and medium-span bridges. For long-span bridges, it is known that 

multiple presence of heavy vehicles are very likely on long-span bridges and the simple 

assumption of single design truck plus lane load, or two trucks spaced at 50 ft, used in the LRFD 

specification (AASHTO 2007), may not capture the worst case scenarios of long-span bridges 

(Chen and Cai 2007; Wu and Chen 2009). As a result, it is not clear to which extent the worst-

case scenarios of long-span bridges are actually representative from the perspective of identifying 

critical dynamic response and stress. To understand and further capture the worst case scenarios 

of dynamic response, strength and serviceability for a long-span bridge, an analytical platform, 

which is able to be used to appropriately replicate the extreme situations and further investigate 

the performance of long-span bridges, is desirable. However, to the knowledge of the writer, little 

study about critical scenarios of long-span bridges under extreme events can be found in 

literatures. 

 

By applying the general Bridge/Traffic/Wind coupled analysis methodology developed in 

Chapter 3, the present study focuses on (1) conducting the CA-based traffic flow simulation of a 

long-span bridge and connecting roadways under incidental situations; (2) defining representative 

scenarios for the extreme events, and (3) numerically studying the bridge performance under 

these possible extreme events. Through conducting studies of a comprehensive set of typical 
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scenarios, it is anticipated that better understanding of extreme events of long-span bridges from 

the design perspectives of strength and serviceability can be achieved, which may eventually 

contribute to the future design specification for long-span bridges. The methodology introduced 

here will also offer a general methodology for researchers and engineers to define probabilistic 

traffic flow, characterize dynamic interaction and assess structural performance in those rare but 

critical situations for long-span bridges.   

4.2 Bridge Performance under Extreme Events  

4.2.1 Bridge/Traffic/Wind interaction analysis using CA model and EDWL approach 

The analytical framework on Bridge/traffic/Wind interaction integrated Cellular Automaton (CA) 

traffic model and equivalent dynamic wheel loading approach has been already described in 

detail in Chapter 3. Thus, the basic information of the interaction model is briefly introduced for 

the sake of completeness. 

 

The cellular automaton (CA)-based traffic flow model of the “roadway-bridge-roadway” system 

was introduced in Chapter 2. The normal situation in this chapter refers to the scenarios when the 

lane numbers of the approaching roadways and the bridge are the same. In reality, the typical 

incidental cases for traffic flow simulation is that part of a lane may be closed either on the bridge 

or on the approaching roadway due to traffic accidents, regular maintenance or construction. As a 

result, one lane of the bridge or one portion of a lane of the approaching roadway may be closed 

for a certain period of time. Accordingly, the bridge and the approaching roadways will have 

different numbers of available lanes. In contrast to the normal situation, these scenarios are 

referred as the “blockage situation”. The specific CA traffic rule for both “normal” and 

“blockage” situation can be referred to Chapter 2. 
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When the traffic flow information is obtained, the EDWL approach is applied. Firstly, the fully-

coupled bridge/single-vehicle/wind analysis considering road roughness is conducted to find the 

equivalent dynamic wheel loadings for each specific type of vehicle with certain speed under the 

concerned wind speed. Then, the collective dynamic wheel loadings on bridge induced by vehicle, 

wind on vehicle and road roughness at any moment combining the traffic information from CA 

model can be obtained. The Bridge/Traffic/Wind analysis is thus converted into the problem of 

bridge under moving loads and wind speed which can be solved quickly as the dimension of mass, 

stiffness, damping and force matrices has been largely reduced.   

4.2.2 Prototype bridge and extreme events  

A four-lane highway system consisting of a long cable-stayed bridge with the length of around 

840 m and the approaching roadway of 1008 m at each end of bridge is studied as an example. 

Two typical scenarios of road incidents are defined. Incident I is that one lane of the approaching 

way on the downstream side of the bridge is blocked (hereafter refer to “road blockage”) and 

Incident II is that one lane of the bridge is closed (hereafter refer to “bridge blockage”) (Fig.4.1). 

The reason to select the downstream side of roadways is due to the relatively larger impacts on 

the traffic congestion on the bridge than those of the upstream side based on a preliminary 

analysis. These two incidents represent the lane closure due to work zone or serious accidents 

happening on the bridge or on the approaching roadways, respectively. Two wind speeds, 

including “normal wind” (U= 2.7 m/s) and “strong wind” (U=32.8 m/s), are selected to represent 

the breeze situation and the strong wind situation, such as a severe wind storm or before the 

landfall of hurricane.  
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Fig. 4.1 Bridge elevation and roadway layout 

 
The different combinations of possible scenarios include (1) normal wind and “road blockage”; (2) 

normal wind and “bridge blockage”; (3) normal wind and bumper-to-bumper traffic; (4) strong 

wind and normal traffic; (5) strong wind and “road blockage”; (6) strong wind and “bridge 

blockage”; and (7) strong wind and bumper-to-bumper traffic. The first two extreme events (1) 

and (2) are to simulate the case when the lane-blockage occurs along with normal wind condition. 

The extreme event (3) is to study the general evacuation scenario for any emergency or the early 

evacuation stage of hurricane when the wind speed is still normal. The extreme event (4) is to 

simulate the case with a severe wind storm, but no evacuation. The extreme events (5-7) represent 

several rare cases in the late evacuation stage of hurricane when wind speed is already pretty high 

and the blockage or serious traffic jam may occur simultaneously.  

4.2.3 Stochastic traffic flow and live loads on bridge under extreme events 

For different long-span bridges, the traffic volumes as well as the composition of vehicle types on 

the bridge vary from one place to another. In order to provide some general insights in the present 

study, the representative values of traffic density and vehicle type composition will be adopted. 
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According to the Highway Capacity Manual (2000), the traffic densities of 9, 20 and 32 

vehicle/km/lane, represent comfortable, medium and severe driving conditions, respectively. The 

percentages of heavy trucks, light trucks and sedan cars among all the vehicles in the traffic flow 

are chosen as 0.5, 0.3 and 0.2, respectively. The speed limit is set as 4 cells/s which is equivalent 

to 113 km/h (Chen and Wu 2009). The probabilities for braking and lane changing are assumed to 

be 0.5 (pb) and 0.8 (pch), respectively.  

 

The difference between the inner lane and the outer lane for one driving direction is typically 

insignificant for the normal condition as the lane-changing rule decrease the difference between 

the traffic flow on the two lanes (Wu and Chen 2008). So only the results of the inner-lane traffic 

flow in the normal condition will be used to compare with the results of traffic flow on the 

available lane for the incidental situations, as shown in Fig. 4.2. The subplots on the left, middle 

and right side stand for the “normal” case, the “road blockage” case and the “bridge blockage” 

case, respectively. The 5-mininute simulation period is sufficient to consider the randomness of 

the traffic flow in order to obtain stable mean stress and displacement results of the bridge for one 

specific traffic density as well as vehicle composition (Chen and Wu 2009). With the increase of 

the traffic density, it can be found in Fig. 4.2 that traffic congestion gradually becomes severer 

(shown as thick black belts) under the “road blockage” case compared with the “normal” case. In 

a contrast, the congestion is moderate for the “bridge blockage” case even with the increase of the 

vehicle density. This is due to the fact that severe congestion has already been formed on the 

approaching roadway before the vehicles enter the bridge. As a result, there is only limited 

number of vehicles which are able to actually move onto the bridge (Wu and Chen 2008). 
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a. Vehicle density=9 veh/km/lane 

 
b. Vehicle density=20 veh/km/lane 

Normal condition Road blockage Bridge blockage 
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c. Vehicle density=32 veh/km/lane 

 
Fig. 4.2 Comparison of traffic flow for each road condition 
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It has been found that the vehicle density has significant impacts on the overall velocity of the 

traffic flow, which is closely related to the dynamic impacts on bridges (Chen and Wu 2009). 

From Fig. 4.3, it can be observed that the mean velocity drops dramatically with the increase of 

the vehicle density. For the normal road condition, the mean velocity decreases from 93.89 km/h 

to 55.14 km/h when the traffic density varies from 9 vehicle/km/lane to 32 vehicle/km/lane. The 

mean velocity decreases from 94.93 km/h to 30.78 km/h for the “road blockage” condition and 

from 85.24 km/h to 21 km/h under the “bridge blockage” condition. Thus, the mean velocity 

under the “bridge blockage” condition is the minimum among all the cases and the normal road 

conditions is the maximum when vehicle density is medium and large.  

 
 

Fig. 4.3 Mean velocity vs. vehicle density 
 

In contrast, the coefficient of variation (COV) of the driving speeds increases with the increase of 

the vehicle density (Fig. 4.4). It is because that the traffic flow becomes smoother when the 

vehicle density is small as more space is available to enable relatively constant speed with fewer 

stops or lane-changing maneuvers. The COV of the mean speed is the largest under the “bridge 

blockage” condition and is the smallest under the normal road condition. Fig. 4.5 gives the mean 
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values of the total static weight of all the vehicles on the two lanes of the bridge over time under 

different road conditions (i.e. “normal”, “road blockage” and “bridge blockage”). When the 

traffic density is low, there is little difference of the cumulative weight of the vehicles remaining 

on the bridge for all the three cases. It is found that the “road blockage” scenario becomes more 

critical among all the three cases with the increase of the traffic density. Comparatively, the 

“bridge blockage” is found to be the least critical one among all the three cases when the traffic 

density is high.  

 
 

Fig. 4.4 COV of velocity vs. vehicle density  
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Fig. 4.5 Mean static weight of all vehicles moving through bridge over time 
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4.2.4 Bridge dynamic response under extreme events 

Once the traffic flow in time history is simulated, the equivalent dynamic wheel loading (EDWL) 

approach can be applied to predict the bridge response. The EDWL ratio for each type of vehicles 

with specific driving speeds is calculated firstly through fully-coupled Bridge/Vehicle/Wind 

analysis. The properties of each type of vehicle are listed in Table 3.1-3.2 (Chapter 3). 

Subsequently, the bridge response is calculated by incorporating the CA traffic flow information 

and the corresponding EDWL ratios. 

4.2.4.1 Bridge dynamic displacement 

The time history of displacement and stress can be obtained by incorporating the results of traffic 

flow and the database of EDWL ratio into the interaction analysis of the bridge. Due to the 

limitation of space, only the time history of vertical displacement at midpoint of the bridge under 

the normal situation is displayed in Fig. 4.6. It is found that the displacement varies significantly 

with vehicle density and wind speed. When the traffic density is low (Fig. 4.6(a)), the dynamic 

displacement increases significantly while the wind speed increases from 2.7 m/s to 32.8 m/s. 

This observation is similar to that in traditional buffeting analysis of long-span bridges, for which 

traffic load were typically not considered. With the increase of the traffic density, the difference 

between the displacement results under the low and high wind speeds gradually become smaller 

(Fig. 4.6(b-c)). This phenomenon is obviously due to the growing contribution of traffic to the 

total displacement as a result of the increase of the traffic density. For the case of “bumper-to-

bumper” when the traffic density is as high as 133 vehicle/km/lane, the dynamic response under 

the low and high wind speeds becomes nearly identical, except for some local difference (Fig. 

4.6(d)). So, for the “bumper-to-bumper” situation, it is easy to find the contribution from the 

heavy traffic to the bridge displacement has considerably outweighed that from wind excitation.    
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Fig. 4.6 Time history of vertical displacement at midpoint under “normal” road condition  
 

4.2.4.2 Bridge dynamic stress 

Bridge dynamic stress provides critical information for evaluating bridge performance, such as 

strength, fatigue, damage assessment, and remaining service life. Extreme stress values, although 

not occurring all the time, may cause initiation of cracks which will further propagate under 

repeating loads or even strength problem for some local members. Fig. 4.7(a) and Fig. 4.7(b) 

show the extreme stress envelops for different traffic densities along the whole bridge of both the 

bottom and the top fiber of the bridge girder, respectively. Each profile is to record the maximum 

values which have ever occurred at each location along the bridge through the time-domain 

simulation. It can be found that the midpoint of the main span still exhibits the largest extreme 
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stress levels at both the bottom and top fibers along the bridge. Comparatively, the bottom fiber 

experiences higher extreme stress level than the top fiber, and the largest tension stress is about 

115 MPa in the “bumper-to-bumper” scenario when the wind speed is low (i.e. traffic 

density=133 veh/km/lane and U=2.7 m/s). The extreme stress levels along the bridge vary 

considerably. In addition to the largest stress levels at the mid-point of the bridge, several other 

locations along the bridge also have pretty large stress levels (Fig. 4.7).  

 
Fig. 4.7 Extreme stress profile of bridge under “normal” road condition (U=2.7 m/s) 

 

Fig. 4.8 shows the results of extreme stress when the wind speed is high. It can be found from Fig. 

4.8 that the extreme stress values only increase slightly with the increase of the vehicle density. 

For the “bumper-to-bumper” case when the wind speed is also high, the largest extreme tension 

stress is around 130 MPa, which is a just little higher than that under mild wind (Fig. 4.7). This 

phenomenon confirms again that the interaction effects between the bridge, traffic and wind are 

more complicated than a linear superposition of stress contributions from individual loads.    
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Fig. 4.8 Extreme stress profile of bridge under “normal” road condition (U=32.8 m/s) 

 

Figs. (4.9-4.10) illustrate the mean and COV values of the stress level over time at the midpoint 

of the main span for different traffic densities. Results of three cases are compared, including the 

“normal” traffic case, the “road blockage” and the “bridge blockage” cases. In Fig. 4.9, it is found 

that the mean stress generally increases with the wind speed. Compared to different wind speeds, 

the increase of the mean stress over different traffic densities seems to be more significant. By 

comparing the results of the three traffic conditions (i.e. “normal”, “road blockage” and “bridge 

blockage”) under low traffic density, people can find that the mean stress values for the three 

cases are similar. With the increase of the traffic density, the “road blockage” case has relatively 

higher mean stress value. For the “bridge blockage” case, the mean stress levels seem not 

changing considerably with different traffic densities.  
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Fig. 4.9 Comparison of mean stress at bottom fiber of midpoint of bridge 
 

 
 

 Fig. 4.10 Comparison of COV of stress at bottom fiber of midpoint of bridge 
 

When the traffic density keeps increasing to 133 veh/km/lane for the “normal case” (i.e. “bumper-

to-bumper” situation), the mean stress value will become as high as 30 MPa (Fig. 4.9). It is 

interesting to find that the mean stress value for the “bumper-to-bumper” traffic actually 

decreases with the increase of the wind speed, which can also be found for the “bridge blockage” 

case when the traffic density is high. As discussed in several previous studies (Chen and Cai 2007; 

Chen and Wu 2009), the dynamic interactions between the bridge, traffic and wind exhibit 

complex manner. For example, the controlling case which causes the highest mean stress may not 

always be the case when the traffic density and wind speeds are both the highest, as people 

usually assume.   
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As shown in Fig. 4.10, for both normal and incidental cases, the COV of dynamic stress increases 

with wind velocity considerably, but decreases with the traffic density. This is understandable 

since the variation of vehicle velocities is usually lower for higher traffic density due to fewer 

chances to freely change lane or accelerate/decelerate (Chen and Wu 2009). When the wind speed 

is low, the COV values for different traffic densities as well as different traffic situations are all 

similar. When the wind speed is high, the “road blockage” case with the low traffic density is 

found to have the relatively higher COV value. But when the wind speed is high and the traffic 

density is moderate or high, the “bridge blockage” case will have the highest COV value. 

Different from the observation of the mean stress values for the “bumper-to-bumper” case, the 

COV value for the “bumper-to-bumper” case is not critical, especially when the wind speed is 

high. 

 

Fig. 4.11 gives the extreme stress values at the bottom fiber of the midpoint of the span for 

different cases. The extreme stress values generally increase with the wind speed, but they vary 

slightly under different traffic density for the same scenario. For both the “normal” and the “road 

blockage” case, the highest extreme stress occurs when both the wind speed and traffic density 

are the highest. For the “bridge blockage” case, however, the extreme stress becomes the highest 

when the traffic density is moderate. This phenomenon suggests that the most critical scenario in 

terms of extreme dynamic stress exhibits unique and complicated patterns for incidental cases. 

This interesting observation shows that the most critical scenario of incidental cases is not always 

straightforward, which may require specific analysis on a case-by-case basis. For the normal case, 

“bumper-to-bumper” traffic will cause the highest extreme stress levels among all the traffic 

densities.  
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Fig. 4.11 Comparison of max. stress at bottom fiber of midpoint of bridge 
 

4.3 Conclusions 

In this chapter, the bridge dynamic performance under extreme cases considering dynamic 

coupling of the Bridge/Traffic/Wind system was studied by applying the analytical framework 

integrating the CA traffic model and the EDWL approach. The major findings are summarized in 

the following:  

 (1) The bridge dynamic displacement generally increases with the increase of the traffic density 

and wind speed. With the increase of the traffic density, the dynamic displacement response 

will be gradually dominated by the component contributed by the traffic load. For the 

“bumper-to-bumper” case, the dynamic displacement under the low and high wind speeds 

becomes nearly identical; 

(2) The extreme dynamic stress of the bridge in the “bumper-to-bumper” case for both the low 

and high wind speeds is about 115 MPa and 130 MPa, respectively. This phenomenon of 

insignificant difference confirms again that the interaction effects among the bridge, traffic 

and wind are more complicated than linear superposition of stress contributions from 

individual loads (i.e. traffic and wind); 

(3) The mean stress values generally increase with both the wind speed and traffic density. When 

the traffic density is low, the mean stress values for the “normal”, “road blockage” and 
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“bridge blockage” conditions are all similar. With the increase of the traffic density, the “road 

blockage” condition has a relatively higher mean stress value;  

(4) The COV of stress increases with the wind speed, but decreases with the vehicle density. 

When the wind speed is low, the COV values for different traffic densities as well as different 

traffic situations are all similar. When the wind speed is high, the “road blockage” case with 

the low traffic density is found to have the relatively higher COV value. But when the wind 

speed is high and the traffic density is moderate or high, the “bridge blockage” case will have 

the highest COV value; 

(5) In terms of extreme stress values, the most critical case is not always at the time when both 

the wind speed and traffic density become the highest under different road conditions. For 

both the “normal” and the “road blockage” case, the highest extreme stress occurs when both 

the wind speed and traffic density are the highest. For the “bridge blockage” case, however, 

the extreme stress becomes the highest when the traffic density is moderate. Specific analysis 

is therefore required to identify the most critical scenario of the extreme events for a 

particular long-span bridge. 
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CHAPTER 5: SCENARIO-BASED INVESTIGATION OF FATIGUE DAMAGE 

OF LONG-SPAN BRIDGES 

5.1 Introduction 

Fatigue damage, which results from repetitive stress cycles accumulated under dynamic loads 

over time, is critical for the serviceability as well as safety of any bridge. A slender long-span 

bridge (e.g. span length > 152.4m or 500 ft) usually experiences complicated dynamic loads from 

the bridge, stochastic traffic and wind (Guo and Xu 2001; Chen and Cai 2007). The stochastic 

nature of wind and traffic, as well as the dynamic interactions, makes a realistic assessment of 

fatigue damage of a long-span bridge over time very challenging (Chen and Cai 2007).  

 

For short- and medium-span bridges, the fatigue design load defined in the AASHTO LRFD 

(AASHTO 2007) specification includes one design truck per bridge with 15% dynamic allowance. 

Other than using the single design vehicle from the specification, there are some existing studies 

that estimated the traffic load with statistical traffic spectrum data, such as truck gross weight on 

the bridge over a certain period of time (Oh et al. 2007; Broquet et al. 2004; Mullard and Stewart 

2009). Traffic spectrum, however, does not provide instantaneous information of individual 

vehicles such as speed and position at any time, which is essential to the assessment of 

bridge/vehicle interactions for long-span bridges. In recent years, some researchers adopted white 

noise fields (Ditlevsen 1994; Ditlevsen and Madsen 1995), Poisson distribution (Chen and Feng 

2006) and Monte Carlo approach (Nowak 1993, Moses 2001, O’Connor and Obrien 2005) to 

simulate the traffic flow to obtain the characteristic load effects primarily on short- and medium-

span bridges. These approaches did not provide time-dependent information of individual 
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vehicles (e.g. instantaneous speed, position) by following realistic traffic rules and driving 

behavior. Although they may not be critical for short or medium-span bridges, the realistic traffic 

rules and driving conditions can be significant for long-span bridges accommodating extended 

length of stochastic traffic flow (Wu and Chen 2008). To solve that problem, Wu and Chen (2008) 

adopted the cellular-automaton (CA) based traffic flow simulation scheme to simulate the 

stochastic traffic flow through a long-span bridge. The CA-based model can replicate the actual 

traffic situations in both normal and incidental conditions by following some realistic traffic rules 

(Nagel and Schreckenberg 1992). Based on the results of the stochastic traffic as well as the 

“equivalent dynamic wheel load (EDWL)” approach (Chen and Cai 2007), the “semi-

deterministic” analysis model is developed in Chapter 3 and 4 to predict the dynamic 

performance of long-span bridges under stochastic traffic and wind in both normal and extreme 

conditions.  

 

In addition to the challenges on simulating stochastic traffic flow on long-span bridges, existing 

studies on the fatigue performance of slender long-span bridges were limited to those only 

considering wind load but without traffic load at the same time (Pourzeynali and Datta 2005; Gu 

et al. 1999). To date, there is no study so far that incorporates the contributions from stochastic 

traffic, wind and dynamic interactions integrally into the fatigue performance assessment of long-

span bridges. It is thus the goal of the present study to develop an analytical basis of fatigue 

analysis of long-span bridges considering both traffic and wind loads. The proposed scenario-

based deterministic fatigue damage assessment of long-span bridges involves improvements over 

the existing methodologies by integrating the characterization of site-specific loads, advanced 

bridge dynamic analysis based on representative scenarios, and fatigue damage assessment. 

Moreover, such a model will also become the critical basis for the reliability-based fatigue life 

prediction of long-span bridges, which will be introduced in the next chapter. 
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5.2 Analytical Methodology 

As compared to the analytical model of a conventional long-span bridge that is not sensitive to 

wind, the dynamic model of a slender long-span bridge actually represents a more general 

situation as it includes the most complicated Bridge/Traffic/Wind interaction (Chen and Cai 

2007). The model of a slender long-span bridge can easily be reduced to that of a conventional 

long-span bridge by simply removing the wind-related loads on the bridges (Chen and Cai 2007). 

Therefore the methodology for a slender long-span bridge will be developed in this chapter in 

order to keep the maximum generality. It is thus obvious that although the formulation and the 

example in this chapter are about a slender long-span bridge, the fatigue analysis of any 

conventional long-span bridge in the future can also benefit from the proposed methodology 

easily. 

 

As shown in Fig. 5.1, the proposed scenario-based fatigue analysis framework for 

Bridge/Traffic/Wind system consists of three components: (1) Defining site-specific traffic and 

wind conditions; (2) Conducting scenario-based dynamic simulations; and (3) Carrying out the 

fatigue damage assessment. These three components will be introduced in the following sections, 

respectively. 

 
Fig. 5.1 Flowchart of semi-deterministic fatigue analysis methodology 
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5.2.1 Defining site-specific traffic and wind conditions 

5.2.1.1 Basic traffic information 

For any long-span bridge connecting roadways in different regions, the vehicle density, speed 

limit and vehicle classifications (i.e. combinations of different vehicle types) are usually specific 

to the bridge site. In order to simulate the probabilistic traffic load applied by all vehicles moving 

simultaneously through the bridge every day, realistic and site-specific information, such as 

instantaneous speed, vehicle type and position of each vehicle at any time is required. The 

stochastic traffic flow in the microscopic scale will be simulated using the advanced cellular 

automaton (CA) traffic flow simulation technique. Cellular Automaton (CA), a microscopic 

traffic flow simulation model, can generate probabilistic traffic information by simulating 

individual vehicles’ behavior (Nagel and Schreckenberg 1992; Wu and Chen 2008).  

 

In order to conduct the CA-based traffic flow simulation, some basic traffic data specific to the 

bridge site is needed, such as traffic volume, vehicle classifications and highway data: speed 

limits and number of lanes etc. Among all the basic data of traffic flow, the traffic volume 

through a specific bridge (or highway) has the largest variation that usually follows some trend in 

normal driving conditions, such as rush hours or off-peak hours, weekdays or weekends. The 

variation of traffic volume over years can also be considered based on the historical data or 

reasonable predictions. The basic traffic data may be obtained from traffic spectrums or weigh-in-

motion data near the bridge site or the connecting roadways that share the similar traffic as the 

bridge.  

 

In addition to normal traffic conditions, there are some incidental traffic events, which may have 

impacts on the traffic load applying on the bridge. These incidental events may include (1) lane 

closure of the bridge or the approaching roadways for construction, maintenance or repair; and (2) 
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major accidents or evacuation on the bridge or the approaching roadways (Wu and Chen 2010). 

The durations of these incidental events may be short (from several hours to several months). But 

serious congestion (e.g. bumper-to-bumper) may be formed on the bridge and/or connecting 

roadways as a result of these incidents, which will cause excessive dynamic response (e.g. stress 

levels) and in turn contribute to possible initiation of fatigue cracks or damage accumulation.  

5.2.1.2 Wind environments 

It is known that wind exists in nature all the time, from breeze to wind storm like hurricane. 

Similar to basic traffic information, wind environments of a particular slender long-span bridge, 

such as wind speeds and wind directions, can be typically obtained from historical wind velocity 

data collected at nearby weather stations. Wind rose maps have been commonly used to define 

the site-specific wind velocity for bridges, including the probability of combinations of wind 

speed and direction typically in each month. It is assumed in the present study that wind 

speed/direction does not change within any hour. Such an assumption is made based on the fact 

that more refined wind velocity data measurements over the lifetime of a bridge may not always 

be available. It should be noted, however, that shorter period than 1 hour can be easily adopted 

within the present framework if more accurate wind velocity data is available for a particular 

bridge.  

 

In this chapter, the total hours in a month will be randomly assigned with different combinations 

of wind-speed/direction, which follow the overall statistics from the wind rose map. For 

conventional long-span bridges that are not sensitive to wind, wind load characterization may still 

be required in order to consider wind loads on vehicles (Chen and Wu 2008) although the wind 

loads on the bridge may be trivial enough to be omitted. In addition to common wind conditions, 

some extreme wind conditions also need to be considered throughout the lifespan of a slender 

long-span bridge, such as strong wind from hurricane or severe windstorm. These extreme wind 
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conditions can be considered on a case-by-case basis by estimating possible occurrence within a 

certain period of service time of the bridge.  

5.2.2 Scenario-based dynamic analysis 

5.2.2.1 Categorization of representative scenarios 

Traffic and wind, as the main service loads for a slender long-span bridge, can be approximated 

to be mutually independent in the normal traffic condition. Only in some extreme conditions such 

as under a severe windstorm, the traffic volume and wind speed may have some correlation 

especially when traffic control is in place (Chen et al. 2009). Different combinations of wind and 

traffic conditions will generate many different scenarios of service loads on a bridge. According 

to the existing studies (Chen and Cai 2007; Chen and Wu 2010), the dynamic response of a long-

span bridge subjected to traffic and wind loads has to be considered in a coupled way rather than 

superimposing the respective contributions from individual loads. The number of the 

representative scenarios should be selected carefully to provide a comprehensive coverage of 

possible combinations of wind and traffic conditions while maintaining reasonable computational 

efficiency at the same time. In order to comprehensively capture the most representative scenarios, 

both normal service conditions and extreme events should be considered. 

  

According to the Highway Capacity Manual (National Research Council 2000), the typical 

highway traffic has six levels of service (LOS) from A to F, which represent all typical traffic 

conditions, from “free flow” to “breakdown flow”. Similarly, according to the Beaufort wind 

scale, the wind speed is typically categorized into scales from 1-12, which correspond to the wind 

speed increasing from 0 to over 73 mph (hurricane). In reality, the number of the total 

combinations can be reduced by merging similar categories of traffic and/or wind conditions. The 

number of total representative scenarios and the categorization process also depend on the 

required accuracy and the available computational resources.  
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In addition to normal service conditions, there are some incidental traffic conditions when some 

lanes of the bridge or approaching roadways may be closed to traffic (Wu and Chen 2010). 

Therefore, there will be several additional scenarios for extreme events, such as the road-block 

condition (i.e. one lane on the approaching roadway is closed) or the bridge-block condition (i.e. 

one lane on bridge is closed). Although these scenarios are usually rare, it has been found that 

significant stress level may exist on the bridge in these situations (Wu and Chen 2010) and the 

potential impacts on fatigue damage are not clear.  

5.2.2.2 Semi-deterministic dynamic analysis of representative scenarios 

In Chapter 3, a semi-deterministic simulation framework has been developed to consider the 

bridge response subjected to the combined effects from stochastic traffic and wind. Such a semi-

deterministic model will predict dynamic displacement and stress level using the basic traffic and 

wind conditions as inputs. The detailed model can refer to Chapter 3 and Chapter 4. 

5.2.3 Deterministic fatigue damage assessment 

Although the randomness of traffic flow itself has been partially considered in the CA-based 

simulation, the uncertainties associated with wind, traffic volume and structural properties of the 

bridge are not considered in the present model. Therefore, the proposed approach is essentially a 

deterministic approach as compared to traditional reliability-based simulation models for 

structures. In order to demonstrate the deterministic approach, the fatigue damage assessment will 

be conducted for a typical year. A full estimation of the fatigue performance through the service 

life of a long-span bridge will rely on the rational consideration of uncertainties of major 

variables over years, which will be discussed in the reliability-based work in the next chapter.  
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5.2.3.1 Time-progressive prediction of cumulative dynamic stress cycles in a typical year 

As discussed earlier, the possible variations of traffic volume within an hour, a day, a week, and a 

month can be obtained either from the local traffic statistical data or the generic data in the 

specification. Vehicle classification for a particular bridge may actually vary slightly over time. 

In lieu of the data, constant vehicle classification data can be assumed for all weekdays and all 

weekends, respectively. Wind rose map can give the probability of each wind velocity 

(speed/direction) in a month. By considering the actual site-specific wind and traffic data in 

weekdays, the combination of different values of the vehicle density and wind-speed/direction is 

conducted randomly in any day based on the reasonable assumption that wind and traffic 

conditions are usually independent from one to the other. 

 

It is assumed that the traffic or wind condition does not change within any single hour, and 

therefore each hour has its unique combination of wind and traffic conditions. So based on the 

hourly distributions of traffic volume in one weekday or weekend as well as the wind velocity 

data, people can assign each hour in a weekday or weekend with a representative scenario, 

respectively. By continuing progressively over five weekdays and two weekend days following 

the weekly distributions of traffic volume and wind velocity, the corresponding representative 

scenario can be assigned to each day in a week. Similarly, the corresponding representative 

scenarios of one month and finally one year can be identified based on the monthly and yearly 

distributions of traffic and wind data, respectively. The total hours being assigned to each 

representative scenario in a year will be calculated. For each representative scenario, semi-

deterministic analysis will be conducted to find out the dynamic stress results. Based on the 

respective total hours assigned to each representative scenario throughout a typical year, the 

cumulative stress cycles in one typical year will be finally obtained. 
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5.2.3.2 Fatigue damage assessment 

There have been many different fatigue theories that can be applied to bridges (e.g. Schilling et al. 

1978; Fisher et al. 1980, 1983; Moses et al. 1986). Among all the fatigue theories, the traditional 

Miner’s law (Miner 1945) is still the most popular one, which has been widely used in large-scale 

engineering structures (Laman 1995). In the Miner’s law, the S-N curve (S: stress range, N: 

number of cycles to failure) is applied to form a linear damage rule which simplifies the 

prediction of fatigue life by the assumption of linear accumulation of fatigue damage over time 

(Miner 1945). In order to consider the dynamic stress amplitudes, the Rainflow Counting Method 

is applied to get the number of cycles for each stress-amplitude (Laman 1995).  

 

The quantification of fatigue damage here is referred as “damage index” (DI), defined as the 

fraction of the total fatigue life. With the adoption of the linear fatigue theory, the “damage 

index” (DI) is also the ratio of accumulated cycles out of the total allowable cycles that will cause 

fatigue damage, which is defined as follows:  
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where nt is the number of all stress cycles in a particular period of time (e.g. one day). iD  denotes 

the incremental damage due to the i th stress cycle and n is the total number of stress cycles in the 

stress history;  Ni is the total number of cycles to failure for constant amplitude stress level, Si 

(Miner 1945). 

5.3 Demonstrative Example  

The scenario-based fatigue analysis framework proposed above will be illustrated with a 

hypothetical cable-stayed bridge with steel girders in the New Orleans area of Louisiana. The 

hypothetical cable-stayed bridge shares the same structural parameters with the prototype bridge 

which has been studied in the previous chapters (Chapter 3 and 4). The traffic and wind data used 
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for this hypothetical bridge was obtained from public resources, such as wind data in the nearby 

areas or from generic traffic records given in the specification. Therefore, the simulation results 

or findings of the hypothetical bridge do not necessarily reflect the actual fatigue performance of 

any existing bridge. 

5.3.1 Site-specific load conditions  

5.3.1.1 Wind data 

In the dynamic interaction model (Eq. (3.4)), wind is assumed to be perpendicular to the bridge 

all the time. Natural wind can come at any direction. Therefore, the natural wind speed, along 

with specific wind direction, will need to be converted to the “representative wind speed” which 

is always perpendicular to the bridge in order to be used in the simulation models. According to 

the Beaufort wind scale and the findings from the existing studies on Bridge/Traffic/Wind 

interaction analysis, totally eight “representative wind speeds” (2, 5, 8, 10, 15, 20, 25 and 32.8 

m/s) are selected in Table 5.1 to represent eight segments of wind speeds (W1-W8). In Table 5.1, 

each of the “representative wind speed” was selected around the mean value of each wind speed 

range. Therefore, eight “representative wind speed” (W1-W8) in Table 5.1 represent the whole 

range of typical wind conditions, which span from “breeze” (W1) to “hurricane” (W8).  

Table 5.1 Definition of “representative wind cases” 
 

Representative 
wind cases 

Representative 
wind speed (m/s) 

Corresponding 
wind speed range 

(m/s) 
Description 

W1 2 ≤3.5 calm to light breeze 
W2 5 [3.5, 6.5] gentle breeze to moderate breeze 
W3 8 [6.5, 9] moderate breeze to fresh breeze 
W4 10 [9, 12.5] fresh breeze to strong breeze 
W5 15 [12.5, 17.5] strong breeze to gale 
W6 20 [17.5, 22.5] gale to strong gale 
W7 25 [22.5, 28.5] strong gale to whole gale 
W8 32.8 >28.5 storm to hurricane 
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The natural wind speed data, including both wind speed and direction, can be obtained through 

the local monthly wind rose maps in Year 2008 for the area of New Orleans 

(http://mesonet.agron.iastate.edu/sites/locate.php?network=LA_ASOS). Considering the angle (θ) 

between the transverse direction of the bridge and the direction of natural wind on the wind rose 

map, the corresponding “representative wind speed” for each natural wind velocity (both speed 

and direction) shown on the rose map will be obtained. Therefore, one “representative wind 

speed” (W1-W8) will be assigned to each combination of natural wind speed and direction (Table 

5.2). By adopting the wind rose map for each month of 2008, the cumulative hours of each 

“representative wind speed” (W1-W8) in Year 2008 can be found out. Fig. 5.2 shows the 

percentage of occurrence of the eight “representative wind speeds” in Year 2008 for the prototype 

bridge.  

Table 5.2 Representative wind cases based on natural wind data 

Natural wind Speed (knot) 2-5 5-10 10-15 15-20 20-100 
(m/s) 1-3 3-5 5-8 8-10 10-51 

Natural wind Direction Angle θ 
(degree)  Corresponding “representative wind cases” 

N -60 W1 W1 W2 W2 W7 
NNE -37.5 W1 W2 W2 W3 W8 
NE -15 W1 W2 W3 W4 W8 

ENE 7.5 W1 W2 W3 W4 W8 
E 30 W1 W2 W3 W3 W8 

ESE 52.5 W1 W1 W2 W2 W8 
SE 75 W1 W1 W1 W1 W5 
SSE 97.5 W1 W1 W1 W1 W3 

S 120 W1 W1 W2 W2 W7 
SSW 142.5 W1 W2 W2 W3 W8 
SW 165 W1 W2 W3 W4 W8 

WSW 187.5 W1 W2 W3 W4 W8 
W 210 W1 W2 W3 W3 W8 

WNW 232.5 W1 W1 W2 W2 W8 
NW 255 W1 W1 W1 W1 W5 

NNW 277.5 W1 W1 W1 W1 W3 
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Fig. 5.2 The percentage of occurrence for different wind speeds in 2008 

5.3.1.2 Traffic data 

The semi-deterministic interaction analysis model of Bridge/Traffic/Wind (Chen and Wu 2010) 

requires two inputs for basic traffic conditions: one is vehicle density and the other is vehicle 

classification (i.e. ratios of different types of vehicles in the traffic flow). Based on the existing 

studies (Chen and Wu 2010), it has been found that to choose three typical traffic volume 

conditions can give reasonable representations of normal traffic conditions. Therefore, in the 

present study, the six levels of service (LOS) as defined in the Highway Capacity Manual 

(National Research Council 2000) are classified as three representative traffic conditions each of 

which covers two LOS:  

“Free flow”: LOS A ~B, 1120 / / lnN veh hr<  

“Moderate flow”: LOS C~D, 1120 / / ln 2015 / / lnveh hr N veh hr≤ <  

“Busy flow”: LOS E~F, 2015 / / lnN veh hr≥ . 
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The AADT of the bridge is assumed to be 40,000 vehicles for Year 2008 based on the data of the 

nearby highways. The traffic volume is assumed to be the same for any single hour. The generic 

data of variations of traffic volume over time provided by the Highway Capacity Manual 

(National Research Council 2000) will be used in the present study. Fig. 5.3 gives the hourly, 

weekly and monthly variations of the traffic volume provided by the Highway Capacity Manual 

(National Research Council 2000). By using the generic variation data, the traffic volume at 

different hours, days and months can be obtained. From the perspective of bridge dynamic 

analysis, various vehicle types are classified into three categories: sedan car, light truck and heavy 

truck (Chen and Wu 2010).  

 
a. Hourly traffic volume distribution 

 
b. Weekly average daily traffic (ADT) variation 

 
c. Monthly average daily traffic (ADT) variation 

 
Fig. 5.3 Basic traffic data over time (National Research Council 2000) 
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Without the site-specific vehicle classification data, the percentages of sedan car, light truck and 

heavy truck are assumed to be 0.5, 0.3 and 0.2, respectively for the weekdays. While for 

weekends, the percentages are assumed to be 0.6, 0.2 and 0.2, respectively.  

 

Based on the traffic-volume variation as shown in Fig. 5.3, the total vehicle number (N) through 

the bridge in any single hour of the simulation can be calculated with the following formula: 

m w hN AADT K K K= × × ×                                                        (5.2) 

where N is the flow rate in one hour (No. of vehicles/hour). AADT is the annual average daily 

traffic. Km, Kw and Kh are the parameters to convert the AADT of a month, week and hour to the 

flow rate of a particular hour, respectively. These parameters can be obtained from simple data 

analysis of Fig. 5.3. 

 

Depending on the value of N at any given hour, the traffic volume of a typical year for the 

prototype bridge has been categorized into one of the three representative traffic conditions (i.e. 

“free flow”, “moderate flow” and “busy flow”) according to the criteria of LOS introduced above. 

Fig. 5.4 gives the values of the percentages of the total hours for each “representative traffic 

condition” in each month. As expected, it can be found that the “busy flow” occurs very rare as 

compared to the other two categories.  

 

5.3.2 Numerical study of fatigue damage index for representative scenarios  

As discussed earlier, vehicle classifications are different on weekdays and weekends. Therefore, 

the normal traffic conditions include three representative traffic conditions on weekdays and 

weekends, respectively. In addition to normal traffic conditions, some extreme events, such as 

bridge-block and road-block conditions, will also be considered. For wind conditions, eight 

representative wind speeds will be considered. By combining different representative wind and 
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traffic conditions, the representative scenarios can be developed. Some numerical analysis results 

of several representative scenarios are given in the following. 

 
 

Fig. 5.4 The percentage of occurrence for different traffic conditions in 2008 
 

Fig. 5.5 (a-b) shows the time-history response of the dynamic stress at the bottom of the girder at 

the middle point of the bridge in weekdays when the representative wind speed Uw=10 m/s and 

25 m/s, respectively. For each wind speed, the time-history results of the “free flow” and “busy 

flow” are shown in the figure. As found in the previous study (Chen and Wu 2010), the dynamic 

stress levels are stochastic in nature subjected to the joint excitations from wind and traffic. With 

the increase of the wind speed, the dynamic stress amplitude increases significantly. When the 

wind speed gets higher (25 m/s), It is found that the difference between the results of “free flow” 

and “busy flow” becomes less significant as compared to that when the wind speed is low. The 

dynamic stress level has significant increase when the wind speed increases. When the wind 

speed equals to 25 m/s and the traffic flow is “busy”, the dynamic stress level is around 180-200 

MPa. Similar observations can be made from those results on weekends as well (Fig. 5.6).  
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a. Uw=10 m/s 

 

 
b. Uw=25 m/s 

 
Fig. 5.5 Stress at the bottom of the girder at the midpoint of the prototype bridge  

(normal traffic condition, weekday) 
 

 
a. Uw=10 m/s 

 

 
b. Uw=25 m/s 

 
Fig. 5.6 Stress at the bottom of the girder at the midpoint of the prototype bridge 

(normal traffic condition, weekend) 
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In order to assess the possible contribution to potential fatigue damage, the damage index (DI) for 

each scenario is studied. By considering normal traffic conditions, the cumulative damage index 

in one hour for various scenarios (with different traffic and wind conditions) is shown in Fig. 5.7. 

Fig. 5.7(a-b) shows the results of the accumulated damage indices (per hour) under different 

combinations of representative wind and traffic conditions in weekdays and weekends, 

respectively. When wind is mild (wind speed lower than 15 m/s), it is found that the fatigue 

damage index is very small for all the different traffic conditions. With the increase of the wind 

speed, the damage index gradually increases. When the wind speed increases from 25 m/s to 32.8 

m/s, the damage index dramatically increases by 4-6 times for all different traffic conditions. 

Since U=32.8 m/s is the starting wind speed for hurricane, the results suggest that strong wind 

may cause significant fatigue damage accumulation although the duration may be short. When the 

wind speed is higher than 15m/s, different traffic conditions may contribute to the damage indices 

in a complicated manner. For example, when the wind speed is at 20 m/s or 25 m/s on weekdays 

(Fig. 5.7(a)), busy traffic flow will cause the largest damage index while the moderate traffic flow 

will cause the largest damage index when the wind speed reaches 32.8 m/s. In weekends, 

however, busy traffic flow always causes the largest damage index when the wind speed is 25m/s 

or 32.8 m/s (Fig. 5.7(b)).  

 
 

a. Weekday 
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b. Weekend 

 
Fig. 5.7 Damage index under different vehicle densities (normal traffic condition)  

 
In addition to normal traffic conditions, extreme events may also cause fatigue damage 

accumulation. The comparison between normal, bridge-block and road-block conditions in 

weekdays is made and the results are shown in Fig. 5.8 (a-c), respectively. In order to better 

demonstrate the results, only the wind speeds from 15m/s to 25 m/s are shown. The x-axis in Fig. 

5.8 shows the traffic densities corresponding to the representative traffic conditions. When the 

wind speed is moderate (15m/s), it is found that the accumulated damage index gradually 

increases in a positive way with the vehicle density (Fig. 5.8(a)).  Compared to the normal service 

condition, the road-block condition causes higher damage accumulation while the bridge-block 

condition usually causes less. When the wind speed gets higher (20m/s), the accumulated damage 

index value in one hour significantly increases as compared to that when the wind speed is 15 m/s 

(Fig. 5.8(b)). When the wind speed further increases to 25 m/s (Fig. 5.8(c)), the damage index 

values only have limited increase with the vehicle density as compared to those when the wind 

speed is 20 m/s. All these observations confirm that the fatigue accumulation is not linear to the 

external load. Once the level of stochastic dynamic stress reaches some threshold, fatigue 

accumulation will start. When the number of cycles of dynamic stress that contributes to such 

accumulation becomes relatively stable, the fatigue damage accumulation becomes relatively 

constant despite the changes of the service loads. It is also found that extreme conditions exhibit 

complicated patterns in terms of fatigue damage accumulation as compared to normal condition. 

For example, bridge-block condition has the least fatigue damage accumulation among the three 
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traffic conditions. The road-block condition will cause more fatigue accumulation than that by 

normal traffic condition when the wind speed is moderate and high, especially when the vehicle 

density is relatively high (Fig. 5.8).  

 
 

a. Uw=15m/s 
 

 
 

b. Uw=20m/s 

 
 

c. Uw=25m/s 

Fig. 5.8 Damage index comparison between normal and incidental traffic conditions (weekday) 

 

Fig. 5.9 (a-c) shows the fatigue damage index results for weekends. Similar to Fig. 5.8, bridge-

block condition gives the lowest accumulation of fatigue damage index. The road-block condition 

causes more fatigue damage index accumulation than the normal condition when the vehicle 

density is high and the wind speed is 20 m/s. Although extreme events have been found to cause 
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considerably larger dynamic response than the normal conditions in many situations (Wu and 

Chen 2010), the results show that they are not very critical to the fatigue damage accumulation.  

 
a. Uw=15m/s 

 
b. Uw=20m/s 

 
c. Uw=25m/s 

 
Fig. 5.9 Damage index comparison between normal and incidental traffic conditions (weekend) 

5.3.3 Fatigue damage assessment of a typical year 

Based on the site-specific wind and traffic data specified in 5.3.1, the total hours for each 

representative scenario can be obtained for Year 2008. Table 5.3 and 5.4 list the detailed results 

of the damage index per hour, and total hours for each representative scenario in weekdays and 

weekends, respectively. Because of the lack of the data about possible extreme events, only 

normal traffic conditions were considered for the results shown in Table 5.3 and 5.4. It is easy to 

find that most accumulated hours in a year belong to the scenarios when the wind speed is low 

(breeze) and the traffic condition is “free” or “moderate”. But for these scenarios, the fatigue 
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damage accumulation is very small and can be ignored. The scenario, which causes the largest 

damage accumulation in an hour, is when the wind speed is the highest (32 m/s) and the 

“moderate traffic flow” (3.56E-03 in Table 5.3) for weekdays. Based on the site-specific traffic 

and wind data used in the present study, such a scenario actually did not happen in 2008 (i.e. 0 

hour). The largest cumulative damage contribution (9.46E-03) actually happened in 2008 is made 

by the scenario (U=32 m/s and free traffic flow) and the second largest (5.31E-03) comes from 

the scenario (U=2 m/s and busy traffic flow). As shown in Table 5.3-5.4, the total cumulative 

damage index in weekdays and weekends in Year 2008 are 1.82E-02 and 3.40E-03, respectively.  

 

Table 5.3 Cumulative damage index for Year 2008 (weekday) 

Case 
No. 

Representative wind 
speed Uw (m/s) 

Representative 
traffic condition 

Damage 
index/ hour 

Accumulated 
hours ∑D 

1 
2 

Free 0.00E+00 1876 0.00E+00 
2 Moderate 0.00E+00 1806 0.00E+00 
3 Busy 1.82E-05 291 5.31E-03 
4 

5 
Free 0.00E+00 950 0.00E+00 

5 Moderate 0.00E+00 824 0.00E+00 
6 Busy 1.49E-05 36 5.36E-04 
7 

8 
Free 0.00E+00 214 0.00E+00 

8 Moderate 5.99E-07 189 1.13E-04 
9 Busy 3.80E-05 5 1.90E-04 
10 

10 
Free 0.00E+00 43 0.00E+00 

11 Moderate 3.47E-06 43 1.49E-04 
12 Busy 3.26E-05 0 0.00E+00 
13 

15 
Free 3.35E-05 1 3.35E-05 

14 Moderate 2.26E-05 2 4.51E-05 
15 Busy 3.61E-05 0 0.00E+00 
16 

20 
Free 3.41E-04 0 0.00E+00 

17 Moderate 5.53E-04 0 0.00E+00 
18 Busy 6.73E-04 0 0.00E+00 
19 

25 
Free 5.93E-04 4 2.37E-03 

20 Moderate 7.46E-04 0 0.00E+00 
21 Busy 7.68E-04 0 0.00E+00 
22 

32 
Free 2.36E-03 4 9.46E-03 

23 Moderate 3.56E-03 0 0.00E+00 
24 Busy 2.96E-03 0 0.00E+00 
∑  1.82E-02 
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Table 5.4 Cumulative damage index for Year 2008 (weekend) 

Case 
No. 

Representative 
wind speed 
Uw (m/s) 

Representative 
traffic condition 

Damage index/ 
hour 

Accumulated 
hours ∑D 

1  
2 
 

Free 0.00E+00 706 0.00E+00 
2 Moderate 5.03E-07 785 3.95E-04 
3 Busy 8.75E-06 295 2.58E-03 
4 

5 
Free 0.00E+00 357 0.00E+00 

5 Moderate 1.15E-06 219 2.51E-04 
6 Busy 1.18E-05 0 0.00E+00 
7 

8 
Free 0.00E+00 68 0.00E+00 

8 Moderate 0.00E+00 33 0.00E+00 
9 Busy 1.58E-05 0 0.00E+00 
10 

10 
Free 0.00E+00 20 0.00E+00 

11 Moderate 9.30E-06 10 9.30E-05 
12 Busy 2.96E-05 0 0.00E+00 
13 

15 
Free 2.02E-05 1 2.02E-05 

14 Moderate 2.78E-05 2 5.57E-05 
15 Busy 9.77E-05 0 0.00E+00 
16 

20 
Free 3.48E-04 0 0.00E+00 

17 Moderate 3.96E-04 0 0.00E+00 
18 Busy 3.46E-04 0 0.00E+00 
19 

25 
Free 5.90E-04 0 0.00E+00 

20 Moderate 7.56E-04 0 0.00E+00 
21 Busy 8.93E-04 0 0.00E+00 
22 

32 
Free 3.59E-03 0 0.00E+00 

23 Moderate 3.11E-03 0 0.00E+00 
24 Busy 3.90E-03 0 0.00E+00 
∑  3.40E-03 

 

Although the data about the time percentage of possible incidental conditions is not available, 

several assumed situations are studied in order to give some insights. Fig. 5.10 shows the 

cumulative damage indices in 2008 with different percentages of the time associated with 

incidental conditions out of the total time. With the increase of the time percentage of incidental 

conditions, the bridge-block condition causes decreasing damage index accumulation while the 

road-block condition causes increasing damage index accumulation. The results of Fig. 5.10 show 

that the incidental conditions only make considerable impacts on the fatigue damage when the 

time durations of the road-block conditions are pretty significant.  
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Fig. 5.10 Damage index comparison with different time percentage of incidents 
 

5.4 Conclusions  

In this chapter, a scenario-based deterministic fatigue analysis model for long-span bridges was 

proposed. In order to capture the unique dynamic interactions critical for long-span bridges, site-

specific traffic and wind conditions were characterized. In addition to normal traffic condition, 

some incidental conditions were also considered.  

 

Representative scenarios with different combinations of traffic and wind conditions were then 

categorized from a typical hour, day, week, month and year progressively. In order to reach a 

balance point among the sufficient coverage of representative scenarios, reasonable simulation 

efforts and limited data, some necessary assumptions and approximations were made in order to 

be able to develop the approach. These assumptions and approximations include: 

(1) The wind and traffic conditions within an hour are assumed to be constant. This assumption 

is primarily due to the limited details available for typical data. More refined data can be 

applied once it becomes available in the future; 

(2)  In normal conditions, wind and traffic are deemed as mutually independent. So the 

combination of different wind and traffic conditions to form each representative scenario was 

made randomly herein. This can be improved if the detailed record is available or substituted 

by other reasonable combination rule. 
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(3)  The continuous range of wind speeds is approximated into eight representative wind speeds 

and different traffic densities are represented by three representative traffic conditions.  

 

By using the advanced Bridge/Traffic/Wind interaction analysis model, the dynamic response for 

each representative scenario was calculated. In this chapter, a linear fatigue theory was applied to 

assess fatigue damage. It is advisable that more advanced fatigue theory can be easily applied to 

the proposed framework. The fatigue damage index for each representative scenario was 

calculated and the cumulative damage index for a typical year was also assessed. A prototype 

bridge was used only for demonstration purposes of the proposed methodology. The deterministic 

model introduced in the present study will become the important basis for the reliability-based 

fatigue analysis methodology, which will be introduced in the next chapter. 
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CHAPTER 6:  FATIGUE ASSESSMENT OF SLENDER LONG-SPAN BRIDGES: 

A RELIABILITY APPROACH  

6.1 Introduction  

A bridge starts the deterioration process from the first day it goes into service. Rational evaluation 

of the fatigue performance of a bridge is a key to assessing its lifetime performance including 

general planning such as maintenance and associated costs. A fatigue analysis is different from a 

strength or aerodynamic stability problem (e.g. flutter) which focuses on the worst-case scenario, 

in that it is examined over an extended time period, which can be as long as the design lifetime of 

the bridge. As a result, realistically simulating time-variant service loads and the response of a 

slender long-span bridge throughout its lifetime becomes essential for an accurate prediction of 

the fatigue performance.  

 

It is known that stochastic wind and traffic loads, dynamic interaction and fatigue accumulation 

for a slender long-span bridge vary over time and are inherently uncertain. In the several decades, 

reliability theory has been applied in the field of structural engineering to consider the 

uncertainties associated with structures, the environment and resulting loads (Ellingwood et al. 

1980; Nowak 1999). Most existing reliability-based research on bridges focused on short and 

medium span bridges (Caprani and O’Brien 2006; Akgul and Frangopol 2004; Akgul and 

Frangopol 2005a; Akgul and Frangopol 2005b; Czarnecki and Nowak 2008). For slender long-

span bridges, only a few studies have been completed on aerodynamic performance such as 

flutter or buffeting (Cheng et al. 2005; Pourzeynali and Datta 2002; Ge et al. 2000; Jakobsen and 

Tanaka 2003). In addition, several researchers have studied the reliability of long-span bridges 
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through the analysis of field monitoring data (Frangopol and Imai 2004; Frangopol et al. 2008; 

Catbas et al. 2008; Imai and Frangopol 2002). To date, no study has focused on reliability-based 

fatigue analysis, considering traffic and wind loads as well as their dynamic interactions, for 

slender long-span bridges. 

 

In this chapter, a framework for the reliability-based fatigue assessment of a slender long-span 

bridge is presented. Initially, a scenario-based deterministic fatigue damage analytical model is 

introduced. Then, the reliability-based fatigue life prediction is conducted. Finally, using the 

proposed model, the reliability index for fatigue damage of the main component of a typical 

slender long-span bridge is assessed for demonstrative purposes. 

6.2 Scenario-Based Fatigue Damage Model for a Typical Year -Deterministic Basis 

The basic deterministic scenario-based fatigue damage model for a long-span bridge has already 

been described in Chapter 5. For the sake of completeness and some different points with Chapter 

5, the deterministic fatigue analysis model will be presented briefly. As shown in Fig. 6.1, the 

fatigue model consists of two major parts: (1) categorization of representative scenarios; and (2) 

deterministic fatigue damage assessment for a typical year. More details of each part will be 

introduced in the following sections. 
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Fig. 6.1 Flowchart of scenario-based deterministic fatigue analysis 
 

6.2.1 Part I- Categorization of representative scenarios 

6.2.1.1 Representative scenarios 

Representative scenarios are defined to cover the typical load combinations of the stochastic 

traffic and wind acting on a slender long-span bridge. According to the Highway Capacity 

Manual (HCM) (National Research Council 2000), the traffic flow on a freeway is typically 



 124

classified into six levels of service (LOS) from A to F, ranging from free flow to severe 

congestion. To maintain acceptable numerical simulation effort in the following analysis, some 

reasonable simplifications are needed. In the present study, six LOS will be reduced to three 

representative traffic conditions (Ti, i=1-3) by combining similar LOS: (a) Free (T1): A~B LOS; 

(b) Moderate (T2): C~D LOS; (c) Busy (T3): E~F LOS. The Beaufort wind scale is often used to 

define the severity of wind effects with respect to wind speed from Scale 1 to Scale 12. Similar to 

LOS, “representative wind speeds” are defined by combining similar categories of wind 

conditions. In this study, eight representative wind speeds (Wj, j=1-8) are defined as 2m/s (W1), 

5m/s (W2), 8m/s (W3), 10m/s (W4), 15m/s (W5), 20m/s (W6), 25m/s (W7) and 32m/s (W8) which 

correspond to the ranges of wind speeds between [0 - 3.5], (3.5 - 6.5], (6.5 - 9], (9 - 12.5], (12.5-

17.5], (17.5-22.5], (22.5-28.5] and (28.5-32] (m/s), respectively. As a result, the combination of 

one representative traffic condition and one representative wind speed will eventually generate 

twenty-four possible representative scenarios (RS) of wind/traffic conditions as shown in Table 

6.1. 

Table 6.1 Representative scenario 
 

Wind condition  
(Wi) 

Wind speed  
(m/s) 

Traffic flow condition (Ti) 
Free (T1) Moderate (T2) Congested (T3) 

W1 2 RS1 RS2 RS3 
W2 5 RS4 RS5 RS6 
W3 8 RS7 RS8 RS9 
W4 10 RS10 RS11 RS12 
W5 15 RS13 RS14 RS15 
W6 20 RS16 RS17 RS18 
W7 25 RS19 RS20 RS21 
W8 32 RS22 RS23 RS24 

 

6.2.1.2 Categorization process from local traffic and wind record to representative scenario 

Traffic flow 
 
The traffic flow varying over hours, weeks, and months will generally follow similar trends 

among different highways (National Research Council 2000). For example, the daily traffic flow 
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may reach two peaks in the morning and evening, respectively, when most people commute 

between home and work or school. In this study, an hour is taken as the basic time period during 

which the traffic flow rate and wind velocity are both assumed to be constant. When the 

continuous long-term traffic monitoring data for a particular bridge is available, theoretically the 

flow rate for each hour can be statistically obtained, as long as the records are sufficiently long. In 

reality, long-term and continuous traffic monitoring data specific to the bridge may not always be 

available, and the data from nearby highways as well as generic data are then considered as an 

acceptable alternative. In this case, the flow rate (N) for a certain hour can be calculated through 

the transformation from the AADT to the monthly, weekly and hourly variation of the flow rate 

by applying Eq. (5.2). Once the flow rate (N) for any hour is obtained, one of the representative 

traffic conditions (Ti) will be assigned based on the definitions of LOS. Cumulatively, the 

occurrence probability of any representative traffic condition Ti during the study period (e.g. one 

year) can be identified. 

 

Wind environment 
 
The representative wind speeds (Wj, j=1-8) are classified based on the equivalent wind velocity 

(Ueq) perpendicular to the longitudinal direction of the bridge. The natural wind velocity, 

including both wind speed and direction, can be linked with the corresponding Ueq by considering 

the angle between the direction of natural wind and the transverse direction of the bridge as:  

coseq nU U θ=                                                       (6.1)  

where θ  is the angle between the bridge’s transverse direction and the direction shown on the 

wind rose map. Un and Ueq are the natural and equivalent wind velocities, respectively.  

 

For some critical long-span bridges, long-term wind velocity monitoring data may be available. 

In this case, the actual historical wind data can be adopted to define the natural wind velocities 
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over time. If the long-term monitoring data is not available, the local wind rose maps close to the 

site of the bridge can provide the probability of occurrence for each natural wind velocity 

(including wind speed and direction) in a certain period of time (e.g. a month or a year).  

Accordingly, the equivalent wind speed Ueq can be obtained using Eq. (6.1), which will be 

checked against the classification criteria of representative wind speeds as introduced earlier to 

finish the categorization. As a result, the probability of each representative wind speed Wj (j=1-8) 

for each month is obtained. By repeating the process for the wind rose maps for each month 

within a year, the cumulative probability of occurrence for each representative wind speed in a 

year can be obtained. 

 

Combination of traffic flow and wind  

Traffic and wind can be typically regarded as two mutually independent random processes most 

of the time, except some rare cases such as when extremely strong wind events (e.g. hurricane) 

exists and the bridge may be closed to traffic for very short periods of time. Due to the negligible 

time periods of these extreme events as compared to normal situations, wind and traffic load 

modeling are treated as independent from one another in the present study.  

 

Therefore the probability of the kth “representative scenario (RSk)” can be easily computed 

through the following equation. 

    ( ) ( ) ( )k i jP RS P T P W=                                                  (6.2) 

where P(RSk) is the occurrence probability of the kth representative scenario, P(Ti) and P(Wj) are 

the occurrence probability of the representative traffic condition i and the wind condition j, 

respectively. In the present study, i=1-3, j=1-8 and k=1-24(=3×8). 
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So the total hours of the kth representative scenario H(RSk) that occurred in the duration period 

(e.g. one year) can be easily calculated by using the following equation: 

( ) ( )k study kH RS T P RS= ⋅                                                      (6.3) 

where Tstudy is the time length (in hours) of the study period (e.g. one year). 

6.2.2 Part II- Fatigue damage assessment in a typical year 

For each representative scenario (RSk), the time-variant stress levels at a particular location of the 

bridge member in an hour will be calculated through the bridge/traffic/wind interaction analysis 

(Chen and Wu 2010). The stress history in a typical year can be computed by linearly 

superimposing the hourly stress results.  

 

In the present study, Miner’s rule (Miner 1945) is used to evaluate the fatigue performance based 

on the results of the stress calculations and the S-N curve (S: stress range, N: number of cycles to 

failure). It is known that S-N curve is based on the assumption that the loading is constant. The 

realistic load is random in nature and the equivalent stress range and cycles will be derived from 

the Rainflow Counting Method (Matsuishi and Endo 1968).  The Rainflow Counting Method, 

which has been widely used in fatigue damage assessment, is based on the stress cycle 

identification to consider the segment of a stress-time history between any two subsequent local 

extremes (from peak to a valley or from valley to a peak) (Matsuishi and Endo 1968). Modified 

Goodman Equation (Eq. (6.4)) is used to transfer the stress range unless the cycle is fully reversed, 

i.e., the mean stress is non-zero since the S-N (stress-life) curve corresponds to the fully-reversed 

cycle (Smith 1942; Stephens et al. 2001): 

1a m

f u

S S

S S
+ =                                                                 (6.4) 
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where aS  is the alternating stress. mS  is the mean stress. fS  is the corresponding stress 

amplitude for the fully reversed ( 0mS = ) fatigue limit of smooth specimens and uS  is the 

ultimate tensile strength.  

 

The hourly fatigue damage factor (DF) for the kth representative scenario (DFk) caused by the 

combined loads is computed through Eq. (6.5) following Miner’s Law (Miner 1945):  

j
k

j

n
DF

N
=∑                                                                   (6.5) 

where kDF is the damage factor per hour caused by the stress cycles of the representative 

scenario k. jN  is the fatigue life corresponding to stress amplitude jS . jn  is the number of the 

cycles at the stress amplitude jS . 

 

The yearly cumulative fatigue damage factor (DFy) can be calculated as 

( )
1

kn

y k k
k

DF DF H RS
=

= ⋅∑                                                       (6.6) 

where nk is the total number of representative scenarios (k=24 in this study).  

6.3 Reliability Model for Fatigue Life Assessment  

6.3.1 Uncertainties of major parameters used in fatigue life prediction 

There are uncertainties related to the structural modeling, wind environment and traffic loads for 

slender long-span bridges. For example, climate change has resulted in variations in wind 

environment over time (Sterr et al. 2003). The expansion of the population in coastal areas has 

also led to an increase in traffic volume on major highways (Farahmand 1997). As discussed 

earlier, the fatigue performance of a long-span bridge is actually a lifetime serviceability issue 
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which may range from 50 to 100 years, depending on the design life of the bridge. Therefore, the 

traffic growth during the lifespan of a long-span bridge should be considered. Wind flutter 

derivatives have been considered as random variables in past studies related to flutter analysis 

(Cheng et al. 2005). A buffeting analysis encompasses a collection of different values of flutter 

derivatives corresponding to a wide range of different wind speeds. As a result, to consider flutter 

derivatives as random variables in buffeting analysis may require prohibitively high 

computational effort. Since the present study focuses on developing a framework of fatigue 

analysis subjected to the combined loads of wind and traffic, the flutter derivatives will be treated 

as deterministic variables to avoid excessive computational costs in the present study. As a result, 

the uncertainties related to the growth factor of AADT, wind velocity and mechanical properties 

of a long-span bridge are those considered in this study.  

6.3.1.1. Growth factor of AADT 

To evaluate the fatigue life, AADT is an important variable which directly affects the specific 

traffic loads on the bridge. AADT varies over years and is influenced by numerous factors like 

local birth rate and local gross domestic product (GDP) (National Research Council 2000). Local 

traffic departments often adopt a growth factor (gf) to predict future traffic flow, which is 

typically calculated using Eq. (6.7) (Sliupas 2006): 

1t
k

t k

E
gf

E −

= −                                                                 (6.7) 

where k is the number of the total years in which AADT data is available, t is the most recent year 

with the available AADT data, tE  denotes the AADT of the tth year, and t kE −  denotes the AADT 

of the (t-k)th year.  

 

In the present study, the Cellular Automaton (CA) traffic flow model (Nagel and Schreckenberg 

1992) is used to simulate each representative traffic condition (Ti), in order to determine the 
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instantaneous information of each vehicle for the stochastically modeled traffic, such as its speed 

and location.  

6.3.1.2 Wind velocity data  

As discussed earlier, the actual wind speeds on a long-span bridge are random in nature and may 

vary over years. In situations when long-term wind velocity monitoring data on a long-span 

bridge is available, the actual wind velocity data for all the service years can be adopted directly. 

If the actual wind monitoring data is not available, it will be also straightforward to repeat the 

characterization process of wind velocity for each year if the wind rose maps of all the service 

years are available. However, if wind rose maps of only a few years are available, some 

reasonable assumptions on the typical statistical distributions will be needed in order to rationally 

extrapolate to the whole service time period of the bridge. This is especially critical for coastal 

long-span bridges which may experience a few extreme wind events (e.g. hurricanes) each year, 

while the trend of hurricanes each year is hard to be modeled with a standard distribution. Given 

the substantial difference and the complex nature of wind environments on different long-span 

bridges in different regions (e.g. coastal, inland), a bridge-specific characterization process, rather 

than a generic assumption, is necessary to accurately consider the yearly difference of wind 

velocities on a slender long-span bridge.  

 

In addition to yearly difference, the wind velocities also bear inherent uncertainties due to the 

random nature and possible errors from data measurements and processing. Rather than taking the 

wind velocity as a random variable directly, the present study considers the uncertainties 

associated with wind speeds through a derived variable - “the occurrence probability of each 

representative wind speed (P(Wj))” as the random variable.  
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As discussed above, please be noted that various refined characterizations of wind velocity data 

can be made within the proposed framework for any particular long-span bridge, depending on 

the availability of the bridge-specific data and the location of the bridge. Since the present study 

focuses on developing a general methodological framework, the characterization of the wind 

velocity for a specific long-span bridge deserves a separate case study.   

6.3.1.3. Mechanical properties of bridge 

A long-span bridge is a complex three-dimensional structure which consists of a number of 

components with different mechanical properties. From the perspective of dynamic response and 

fatigue analysis, the elastic modulus, the moment of inertia of the girder and the damping ratio are 

especially important according to the observations from previous studies (Cheng et al 2005, 

Pourzeynali and Datta 2002). Therefore, in the present study, these variables will be treated as 

random variables. 

6.3.2 Reliability method 

Recall the scenario-based fatigue damage model introduced earlier. This fatigue model 

formulation results in an implicit limit state function which can be expressed as:  

1

1
yn

y
y

g DF
=

= −∑                                                                (6.8) 

where 
1

yn

y
y

DF
=
∑  is the cumulative damage factor during the total ny years of the service for the 

concerned component. When the cumulative damage factor reaches one, the member is regarded 

as failure due to fatigue damage (Stephens, et al. 2001). 

 

The flowchart depicting the proposed reliability analysis framework is shown in Fig. 6.2. Because 

the limit state function defined in Eq. (6.8) is an implicit function, the response surface method 
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(RSM) (Bucher and Bourgund 1990) is applied as it can approximate an implicit function with a 

polynomial explicit function expressed as Eq. (6.9) through regression analysis.  

( ) 2
0

1 1

ˆ
n n

i i i i
i i

g x a b x c x
= =

= + +∑ ∑                                           (6.9) 

where ( )ĝ x is the approximated limit state function. , ,o i ia b c  are the coefficients to be calculated. 

ix  is the i th basic random variable and n is the total number of random variables.  

 

Fig. 6.2 Reliability analysis framework 
 

To form the approximated limit state function ( )ĝ x , the mean value (µ), low value (µ-lσ) and 

high value (µ+lσ) (σ is the standard deviation) for each random variable as defined in Table 6.2 

will be used, where l is set as 3.0 for the first iteration and 0.99 for the second (also final) 

iteration (Bucher and Bourgund 1990). The combination of the mean, low and high values for 

each variable will form 2n+1 initial sets of input parameters. The coupled bridge/traffic/wind 

analysis (Chen and Wu 2010) and the scenario-based fatigue analysis will be conducted for each 

set of the random variables. After obtaining the approximate limit state function ( )ĝ x , the first-

order reliability method (FORM) is applied to estimate the reliability indexβ .  
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Table 6.2 Statistical properties of random variables 
 

Random variables Unit Mean Std Distribution 
type Description Source 

Mechanical properties 

ξ  / 0.005 0.001 Normal Damping ratio Assumed 

E GPa 200 20 Normal Elastic modulus 
of girder Cheng et al. (2005) 

I m4 3.0856 0.30856 Normal Moment of 
inertia of girder Cheng et al. (2005) 

Traffic volume gf / 0.05 0.015 Normal AADT growth 
factor Assumed 

Occurrence probability of 
representative wind speeds 

P(Wi)*  

P(W1) % 53.6 
(195.64 days) 5.36 Normal P(Ueq=2m/s) Assumed 

P(W2) % 27.2 
(99.28days) 2.72 Normal P(Ueq=5m/s) Assumed 

P(W3) % 5.80 
(21.17days) 0.58 Normal P(Ueq=8m/s) Assumed 

P(W4) % 1.31 
(4.78days) 0.131 Normal P(Ueq=10m/s) Assumed 

P(W5) % 0.07 
(0.26days) 0.007 Normal P(Ueq=15m/s) Assumed 

P(W6) % 0 0 N/A P(Ueq=20m/s) Assumed 

P(W7) % 0.23 
(0.84days) 0.023 Normal P(Ueq=25m/s) Assumed 

P(W8) % 0.81 
(2.967days) 0.081 Normal P(Ueq=32m/s) Assumed 

* The mean value of P(Wi) is derived from local wind rose map. The std value and distribution type are assumed.
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6.4 Illustrative Example  

6.4.1 Prototype long-span bridge and service loads 

A typical long-span cable-stayed bridge in costal Louisiana with steel girders shares the same 

structural parameters which has been studied in the previous chapters is used to illustrate the 

proposed model. The random variables, such as the mechanical variables, growth factor (gf) of 

AADT and the occurrence probability of each representative wind speed for this illustrative 

example are shown in Table 6.2. All the variables are assumed to follow the normal distribution. 

Regarding mechanical properties, the mean values of random variables as listed in Table 6.2 were 

determined based on the prototype bridge data and the standard deviation is assumed to be 10% 

(E, I) or 20% (ξ ) of the respective mean values. The mean value of the probability of any 

representative wind speed j P(Wi) is derived from local wind rose maps and the stand deviation 

value is assumed to be 10%. 

 

The prototype bridge was opened to traffic in 1983 with a design life of 75 years and the AADT 

of this bridge in 2008 was 40,000. Since the AADT for other years are not available for the 

prototype bridge, the AADT for other years is calculated based on Eq. (6.7). The mean (µ) and 

the standard deviation (σ) for the growth factor (gf) are assumed to be 0.05 and 0.015, 

respectively (Table 6.2). The variation of AADT caused by different values of the growth factor 

used in the reliability model during the service life (75 years) was plotted in Fig. 6.3. As 

discussed earlier, due to the lack of site-specific traffic monitoring data, the variations of the 

traffic flow rate with respect to AADT will be derived from the generic data of ADT provided in 

the Highway Capacity Manual (National Research Council 2000) (Fig. 5.3). The vehicle flow rate 

N (veh/hr) is then categorized into one of the predefined three representative traffic conditions (Ti) 

“Free”, “Moderate” or “Busy” as introduced earlier. In the CA traffic model, the representative 
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traffic density of 9veh/km/ln, 20veh/km/ln and 32veh/km/ln are chosen respectively to compute 

for the three traffic conditions. The combination of vehicle types is set as 50%, 30% and 20% for 

cars, light trucks and heavy trucks (Chen and Wu 2010), respectively. Due to the lack of the 

relevant data, no maintenance or repair is assumed during the 75 years of service. In reality, any 

maintenance or repair can be considered later by adjusting the fatigue damage factors and 

associated reliability index accordingly.  

 
Fig. 6.3 The variation of AADT 

 
As discussed earlier, typically the multi-year wind velocity data can be either characterized by 

long-term actual wind monitoring on a bridge or wind rose maps during the period of the service 

time. Obviously, when the full records of wind velocity data over years are available, regardless 

from actual monitoring data or the whole sets of wind rose maps, it is pretty straightforward to 

characterize the cumulative probability of occurrence for each representative wind speed simply 

by repeating the process for each year. In order not to lose generality of the proposed framework, 

the limited number years of wind rose maps which are available in the public domain, will be 
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used for the demonstrative purpose. Specifically, the wind rose maps in the New Orleans area 

close to the location of the bridge (IEM 2010) will be used to characterize the wind data for the 

prototype bridge. Only three years of wind rose maps (Year 2007-2009) were found to be 

available in the public domain (IEM 2010). As discussed earlier, for a coastal slender long-span 

bridge which experiences frequent hurricanes, bridge-specific wind velocity data, either from 

long-term monitoring or the comprehensive wind rose maps covering all the service years, is 

critical to any rational prediction of fatigue performance. Therefore, the fatigue assessment of this 

prototype slender long-span bridge based on wind rose maps in only three years is merely for 

demonstrative purpose, rather than a realistic case study.  

 

By repeating the characterization process of representative wind velocities for all the three years 

(Year 2007-2009), the probability of each representative wind speed (Wj) can be derived. The 

probability values of different representative wind speeds are shown in Fig. 6.4. These probability 

values will be adopted as the mean values which are assumed to be the same for all the service 

years of the prototype bridge because of the lack of the actual wind velocity data of each year. 

Such an approximation is probably the most reasonable way given the limited available wind data. 

However, the hurricane records in Louisiana showed that there were four noteworthy hurricanes 

(i.e. Humberto (2007), Gustav (2008), Ike (2008) and Ida (2009)) happening between Year 2007-

2009. While within seven years (Year 2000-2007), there were only three noteworthy hurricanes 

(i.e. Lili (2002), Katrina and Rita (2005)). Therefore although this is just a demonstrative example, 

it should also be noted that such an approximation for this particular bridge in Louisiana may 

cause overestimated wind velocities over the service lifespan due to considerably more frequent 

occurrence of hurricanes between Year 2007-2009.  
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Fig. 6.4 The occurrence percentage of representative wind speeds (Wj) 
 

According to the AASHTO LRFD specification (AASHTO 2007), the members of a bridge are 

categorized into different types with respective S-N curves and threshold values. In this study, the 

main member of Type B (an unpainted weathering plain member or the well-prepared welded 

connections in a built-up member without attachments) is selected to study the fatigue 

performance. Its stress-life relationship can be expressed as (AASHTO 2007): 

( ) 11 339.3 10 /N S S= ×                                                        (6.10) 

where S  is the stress cycle range (MPa), N  is the total number of  cycles for working stress. 

The fatigue threshold of a type B member is 110MPa (AASHTO 2007).  

 

Based on the deterministic scenario-based fatigue damage analysis, it was found that the 

representative wind speeds of W1~W6 do not cause any fatigue damage for the main bridge 

member examined herein regardless of the traffic condition. Thus, only the probabilities of the 

representative wind speeds W7 and W8 are eventually taken as random variables in the reliability 

study.  
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6.4.2 Fatigue analysis result- deterministic-based  

Fig. 6.5 (a-c) shows the extreme stress comparison of the bottom fiber at the midspan of the 

bridge (the critical location) under the minimum (µ-3σ), mean (µ) and maximum (µ+3σ) values 

of the damping ratio, elastic modulus and moment of inertia of the girder, respectively. Two wind 

speeds, W7 (25m/s) and W8 (32 m/s), are studied. The complex coupling effect of traffic density 

and wind can be observed from Fig. 6.5. For example, it is found that strong wind can cause 

larger extreme stress. However, the extreme stress does not always increase with traffic density 

such as the case with heavy traffic, Ueq=32m/s and the mean value of moment of inertia (right 

window in Fig. 6.5(c)). As shown in Fig. 6.75, lower damping ratios, higher elastic modulus and 

lower moment of inertia of the main girder generally result in higher dynamic stress.  

 
a.ξmin vs ξmax 

 
b. Emin vs Emax 
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c. Imin vs Imax 

 
Fig. 6.5 Extreme stress comparison  

 
As introduced in Section 6.2.1, the Rainflow Method is employed to count cycles for each stress 

range from the stress history. The cycle-counting results for the variables being set as the 

respective mean values are shown in Fig. 6.6(a-c) for different traffic conditions when the wind 

speeds are 25m/s (W7) and 32m/s (W8), respectively. As shown in Fig. 6.6, the amplitude of the 

stress generally increases with wind speeds. However, the counts for different stress ranges vary 

in a complicated manner with different traffic conditions (densities). Based on the rainflow matrix 

and Miner’s law, the fatigue damage factors for the member type B are derived for different wind 

and traffic conditions and the results are shown in Table 6.3. When the wind speed is 25m/s, the 

damage factor per hour does not always increase with the density of traffic flow, similar to the 

stress results. It was found that the damage factor is more sensitive to the change in wind speeds 

than the change in traffic conditions.  

Table 6.3 Damage factor per hour for critical cases 

Variable 
Ueq=25m/s (W7) Ueq=32m/s (W8) 

Free flow 
(T1) 

Moderate 
flow (T2) 

Congested 
flow (T3) 

Free flow 
(T1) 

Moderate 
flow (T2) 

Congested 
flow (T3) 

Mean 0.00E+00 0.00E+00 2.36E-06 5.94E-05 1.57E-04 1.17E-04 
ξmax 0.00E+00 0.00E+00 0.00E+00 4.81E-05 7.31E-05 3.78E-05 
ξmin 6.95E-05 7.79E-05 7.99E-05 1.04E-04 2.11E-04 4.93E-04 
Emax 6.54E-06 0.00E+00 2.15E-06 1.69E-04 3.02E-04 2.31E-04 
Emin 5.51E-06 2.08E-06 1.12E-05 6.39E-05 7.18E-05 1.21E-04 
Imax 0.00E+00 0.00E+00 0.00E+00 2.55E-06 8.55E-05 6.74E-05 
Imin 1.80E-05 1.01E-05 5.11E-05 4.59E-04 4.78E-04 6.60E-04 
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a. Free traffic flow 

 
b. Moderate traffic flow 

 
c. Congested traffic flow 

 
Fig. 6.6 Rainflow matrix for critical cases 

 
The results of the cumulative hours for each representative scenario with the minimum, mean and 

maximum values of the growth factor of AADT are all similar. The cumulative hours of the 

critical scenarios (RS19~RS24 as defined in Table 6.1) are shown in Table 6.4. From Table 6.4, it 

can be seen that the case of heavy traffic (T3) becomes more dominant with the increase of the 
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service life. As shown in Fig. 6.7, the cumulative yearly damage factor ( yDF ) gradually 

increases throughout the lifespan of the bridge and can reach 0.5452 at the 75th year of the service 

when all the variables remain as their respective mean values. 

Table 6.4 Accumulated hours for critical cases  

Case Service life (year) 
15 30 45 60 75 

RS19 (T1+W7) 298 480 552 555 554 
RS20(T2+W7) 4 109 187 232 232 
RS21(T3+W7) 0 16 168 421 722 
RS22(T1+W8) 1052 1684 1940 1951 1950 
RS23(T2+W8) 13 382 653 819 820 
RS24(T3+W8) 0 64 601 1489 2553 

 

 
Fig. 6.7 Cumulative damage factor vs. service life 

 

6.4.3 Reliability index  

In order to study the fatigue performance at different stages in the lifespan of the prototype bridge, 

the reliability indices β are calculated for different service lives of the type B member located at 

the bottom of the midspan of the bridge. As seen in Fig. 6.8, the reliability index β for fatigue 

damage decreases dramatically with the increase of the service life. β for the service life of 75 

years reduced about 65% from that  for the service life of 45 year. It can clearly be seen that the 
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reliability index for a design life of 75 years of the prototype bridge is quite low. As discussed 

earlier, because the bridge-specific records of wind velocities are not available, the results are 

more for illustrative purposes, rather than actual assessment results. In fact, there are two 

approximations which may contribute to the relatively low reliability index: (1) no maintenance 

or repair was assumed during the design life; and (2) the wind speed conditions were extrapolated 

with the wind data from the wind rose maps in New Orleans only between Year 2007-2009, when 

more frequent hurricanes occurred. In order to demonstrate the impact of high wind speeds on the 

fatigue reliability index, a simple trial analysis is conducted. By simply reducing the current 

cumulative time period for W8 (2.967 days) to around 1.5 days, the reliability index for the 

service life of 75 years will increase by 3.4 times of the current value. It is obvious the reliability 

index is very sensitive to the cumulative time duration of high wind speeds. It has also confirmed 

that the accuracy of the bridge-specific wind velocity data, especially high wind speed data, is 

very critical to the fatigue life prediction of a slender long-span bridge, especially in hurricane-

prone areas. Long-term wind monitoring data on slender long-span bridges, especially coastal 

bridges, is desired in order to rationally characterize the lifetime wind conditions.   

 
 

Fig. 6.8 Reliability index ratio vs. service life 
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6.5 Conclusions  

The goal of the study presented in this chapter was to develop and propose a reliability-based 

framework to account for the main impacts on the fatigue damage of slender long-span bridges 

that are susceptible to cumulative damage from wind and traffic loads. By adopting the proposed 

framework, the reliability index for fatigue performance of any member of a long-span bridge can 

be obtained. The following conclusions can be reached as a result of this work: 

(1) The fatigue assessment for the critical scenarios discloses that the hourly fatigue damage 

factor (DF) is more sensitive to changes in the wind condition than changes in the traffic 

conditions. 

(2) The dynamic analysis of bridge/traffic/wind interaction for each scenario requires substantial 

computational time. In order to make the fatigue analysis practically possible for various 

combinations of traffic and wind conditions, limited representative scenarios must be selected for 

a particular bridge. Such a simplification is necessary to enable the assessment of the lifetime 

fatigue performance of a major bridge both rationally and efficiently. The accuracy can be further 

improved by selecting more refined representative scenarios, if necessary.  

(3) Although Miner’s Rule is the most common model applied in fatigue analysis of large 

structures, the proposed framework is flexible enough to accommodate other nonlinear fatigue 

models, if needed.  

(4) The study also suggests that the fatigue reliability index is quite sensitive to the high wind 

velocity data. For coastal bridges which frequently experience hurricanes, long-term wind 

monitoring data on the bridge of interest would be ideal for this type of analysis. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATION FOR FUTUR E 

STUDY 

7.1 Summary and Conclusions 

The dissertation aims to propose a general framework to quantify the performance of long-span 

bridges through the rationalized dynamic model of Bridge/Traffic/Wind interaction. To achieve 

this goal, the cellular automaton (CA) traffic flow model was introduced. The CA traffic flow 

model was integrated with the equivalent dynamic wheel loading approach to study the bridge 

dynamic response under normal and incidental traffic condition and different wind environment. 

The serviceability of the long-span bridge under both normal and extreme load conditions was 

studied. The scenario-based fatigue model was further developed based on the developed 

Bridge/Traffic/Wind dynamic framework. The reliability-based analysis was finally applied to 

assess the fatigue damage caused by the coupling effects among bridge, traffic flow and wind 

throughout the bridge’s service life. The main conclusions of this dissertation research are 

summarized in the following. 

 

(1) A framework of microscopic probabilistic traffic flow simulations for bridge infrastructure 

system (BIS) using the Cellular Automaton (CA) simulation technique was developed. The 

framework can adapt to different local conditions such as the traffic densities, speed limits, bridge 

spans and the length of approaching way as well as some special events such as the partial 

blockage of lanes due to construction, maintenance or accident. The results of the BIS calculation 

can offer detailed traffic flow information for various bridge-related studies, such as the time-

dependent position, velocity and vehicle type of each individual vehicle through replicating the 
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main traffic rules. The parametric study on the BIS framework was also conducted and some 

guidelines on carrying out appropriate CA traffic simulation for different bridges were also given.  

 

(2) Through integrating the CA traffic flow model and EDWL approach, a novel and efficient 

“semi-deterministic” Bridge/Traffic/Wind interaction analysis model considering stochastic 

traffic flow and wind was developed to predict the performance of long-span bridges in a more 

realistic way.  The proposed approach was demonstrated through a long-span cable-stayed bridge 

and can be expanded to other types of long-span bridges without problems. In the case study, the 

statistical dynamic responses such as displacement and stress of the bridge under normal 

condition (wind speed is not high and all the lanes are open) and extreme conditions were studied.  

 
(3) The scenario-based deterministic fatigue analysis model was proposed by taking account of 

the Bridge/Traffic/Wind framework developed for long-span bridges. This was the first 

simulation model so far that considers the contributions from both traffic and wind loads in 

bridge fatigue performance. Representative scenarios were defined with different combinations of 

traffic and wind conditions. Each hour in a typical day, week, months and a year can be 

categorized with the appropriate representative scenario progressively. The fatigue damage index 

of the concerned member of a prototype bridge for each representative scenario was calculated 

and the cumulative damage index for a typical year was assessed. Such a scenario-based fatigue 

model can served as the basis for the reliability-based model introduced later.   

 

(4) The reliability approach for the fatigue assessment of the long-span bridge was finally 

proposed based on the above scenario-based fatigue analysis model. Firstly, the representative 

scenarios of traffic flow and wind loads on bridge during its service life were identified through 

incorporating the local information of AADT and the wind rose map. Secondly, the fatigue 

assessment of the concerned member of the bridge subjected to the bridge/traffic/flow interaction 
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was conducted over years. Finally, the reliability indices of fatigue damage were obtained based 

on rational considerations of uncertainties. The reliability index results can help prioritize the 

inspection and renovation of critical members for all the bridges. Through providing more 

rational predictions of possible damage, the study will also help the transportation authorities to 

improve the new bridge design and implement effective prevention strategies to avoid any severe 

fatigue damage on the main components.  

7.2 Future Work 

Based on the research experience from this study, the writer believes that the following issues can 

be addressed in the future work to improve the design and reliability analysis of long-span 

bridges. 

 

(1) The quantification of live load and its dynamic impacts are critical to the serviceability of 

long-span bridges. However, the current LRFD specification does not cover long-span bridges 

and very little research has been conducted for long-span bridges by considering rational load 

scenarios, such as the combination of wind and traffic loads. Based on the general framework of 

Bridge/Traffic/Wind dynamic interaction analysis developed in this dissertation, more 

comprehensive studies on the design loads can be carried out in the future, which may contribute 

to future addition to the specification.   

 

(2) In the dynamic analysis of bridges under normal and extreme situations, few cases were 

studied in the dissertation because of the limit of the time and scope of the study. More inclusive 

studies on various extreme events, including some events with other natural or man-made hazards, 

can be conducted. Moreover, the related studies on effective warning and prevention system for 

bridge management may also be conducted in the future.  
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(3) In the present study on fatigue damage assessment, the simple fatigue model, i.e. Miner’ law, 

was applied. The accuracy of the damage prediction can be further improved through adopting 

some advanced nonlinear fatigue models.  
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