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ABSTRACT

MATHEMATICAL MODELING OF GROUNDWATER ANOMALY DETECTION

Public concerns about groundwater quality have increased in recent years due to the mas-

sive exploitation of shale gas through hydraulic fracturing which raises the risk of ground-

water contamination. Groundwater monitoring can fill the gap between the public fears

and the industrial production. However, the studies of groundwater anomaly detection are

still insufficient. The complicated sequential data patterns generated from subsurface water

environment bring many challenges that need comprehensive modeling techniques in math-

ematics, statistics and machine learning for effective solutions. In this reseach, Multivariate

State Estimation Technique (MSET) and One-class Support Vector Machine (1-SVM) meth-

ods are utilized and improved for real-time groundwater anomaly detection. The effectiveness

of the two methods are validated based upon different data patterns coming from the historic

data of Colorado Water Watch (CWW) program. Meanwhile, to ensure the real-time respon-

siveness of these methods, a groundwater event with contaminant transport was simulated

by means of finite difference methods (FDMs). The numerical results indicate the change

of contaminant concentration of chloride with groundwater flow over time. By coupling

the transport simulation and groundwater monitoring, the reliability of these methods for

detecting groundwater contamination event is tested. This research resolves issues encoun-

tered when conducting real-time groundwater monitoring, and the implementation of these

methods based on Python can be easily transfered and extended to engineering practices.
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CHAPTER 1

INTRODUCTION

1.1 Groundwater Anomaly

Public concerns about the groundwater quality have increased with the fast-growing of

shale oil and gas extraction activities in the United States. Shale gas extraction activities

have grown exponentially since 2008 [46]. The transformed energy market results from the

development of hydraulic fracturing technique that involves drilling deep wellbores into the

earth and injecting high-pressure fracking fluid (mixture of water, sand and chemicals) to

create cracks in the shale-rock formations through which the oil and gas flow back to the

ground surface. Figure 1.1 illustrates the hydraulic fracturing.

Figure 1.1: Hydraulic fracturing and simplified pathways of potential pollutants (A: stray gas; B:
fracking fluid) into the groundwater aquifer from adjacent faulty oil-gas wells[26]

.

However, the hydraulic fracturing technique is controversial. The critics argue that

drilling and fracking can cause uncertain environmental issues. As shown in Figure 1.1,

the risks brought by the oil-gas well drilling include the natural gas escaping from pro-

ducing wells through circumferential fractures and/or from improperly sealed casing strings
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along the wellbore, and fracking fluid leakage along casing breaches into the groundwater

aquifer [26]. The natural gas become explosive and flammable when the methane concen-

tration in water is greater than its solubility, and the produced fluids are full of hazardous

compounds. Both of them will bring severe contamination to the shallow groundwater in

regional areas[46, 48]. Recent studies have shown elevated levels of chloride and potassium

in wells around extensive shale gas operation in Pavillion, Wyoming[13, 47].

To bridge the gap between fears about public health impacts caused by oil and gas devel-

opment and the assumption that industry environmental and health practices are reliable,

Colorado Water Watch (CWW) designed by Colorado State University (CSU) has started to

serve as a platform to support the states regulatory agency and provide real-time groundwa-

ter quality information to both industry and the public in the northern area of Wattenberg

field. Wattenberg field locates north Denver Basin of Colorado and was historically one of

the largest oil and gas production fields in the United States, owning more than 22,000 pro-

ducing wells according to Colorado Oil and Gas Conservation Commission (COGCC), 2014.

At first decades, petroleum companies started with oil production, but recently massive

hydraulic fracturing was performed for natural gas routinely on thousands of wells.

Figure 1.2: Left : the monitoring locations in Wattenberg field. Right : the sensor facility of one
monitoring station [10]

.
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CWW adopts contaminant-surrogate sensing technology to gather and provides ground-

water information at intervals of one hour. The surrogate parameters include temperature,

pH, conductivity, oxidation reduction potential (ORP), and dissolved oxygen (DO). These

five parameters fall into two categories: fracturing fluid surrogates and natural gas surro-

gates. The surrogates are designed based on the correlation between conductivity and total

dissolved solid (TDS), and the expected close relationship between ORP, DO, pH and dis-

solved methane gas in water under certain conditions. Normally, the surrogate parameters

are kept in their reasonable ranges, but sometimes will get changed dramatically due to some

external reasons. The sequence observations with anomalies are shown in Table 1.1.

Table 1.1: Observation Samples with Anomalies

Measurement Datetime Temperature pH Condutivity ORP DO

2015-08-12 09:00:00 10.34 7.17 2.41 581 2.58

2015-08-12 10:00:00 10.34 7.17 2.4 581 2.6

2015-08-12 11:00:00 10.34 7.18 2.41 581 2.63

2015-08-12 12:00:00 16.51 7.95 0.001 551 8.26

2015-08-12 13:00:00 11.31 7.28 2.38 542 3.35

2015-08-12 14:00:00 10.61 7.14 2.4 572 3.2

2015-08-12 15:00:00 10.44 7.15 2.4 579 3.05

2015-08-12 16:00:00 10.4 7.15 2.4 581 2.9

Here, we firstly clarify two concepts following in this context.

Definition 1. Groundwater event is particularly refered to the event which leads to the

significant change of water quality, with a duration one or more time steps.

Definition 2. Groundwater anomaly refers to all phenomena of surrogate parameter’s de-

viation from the normal signal tracks of sequential observations.

All groundwater events are groundwater anomalies, but not all anomalies are groundwater

events. For instance, the baseline change triggered by seasonal shifts and sensor calibration,
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or the dramatic fluctuation of monitoring parameters resulted from the occurrences of pre-

cipitation and stream charging. In Table 1.1, the parameter values change dramatically and

become abnormal at 12:00 pm. This anomaly results from sensor failure or some uncertain

transmission error. As mentioned above, the hydraulic fracturing during oil and gas produc-

tion operations may cause natural gas or fracking fluid leakages which bring disaster events

to groundwater. No matter whatever the event is, CWW should get response to it and raise

alarm in a real-time if the surrogate parameters are out of normal range, just in case the

events result from stray gas or fracking fluid contamination which needs to take actions im-

mediately. Therefore, anomaly detection plays an essential role in groundwater monitoring

work in the oil and gas production fields. Mathematical methods for detecting anomalies in

the non-stationary time series should be developed and adapted to the complex monitoring

environment. Event discrimination from different anomalies is out of this research’s scope.

1.2 Anomaly Detection

In general, anomaly refers to the abnormal observation or pattern which does not con-

firm with most of the behaviors in a system [39]. The anomalies can be translated to failure

observations [17], system intrusions [35, 40], back frauds [34], structural defects [31] or envi-

ronment pollutants [14] in specific application domains. Anomaly detection aims to find such

anomalies by means of mathematical approaches. The analysts have great interest about the

unusual and useful information behind the anomalous behaviors all the time [5], and give

extensive attention to anomaly detection in recent years. Different models or methods have

been employed based on diverse techniques, including statistical, clustering, support vector

machine, neural network, as well as information and spectral theoretic[5, 39].

First, statistical approaches traditionally employ parametric or non-parametric models to

describe the data distributions, where normal observations occur in high probability regions,

but anomalies appear in low probability ones. These methods heavily rely on the assumption

that the data is generated from a particular distribution, like the chi-square based approach
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[40]. Normally, it’s not a straightforward task to choose a good hypothesis test statistic,

especially for complex distributions.

Second, typical machine learning approaches, like neural networks (NNs) [12, 22] and

support vector machines (SVMs) [16, 44], have been reported for detection anomalies in many

applications. These techniques perform either supervised or unsupervised anomaly detecting

operations. The supervised methods usually consists of a training phase and a testing phase.

Normal and abnormal instances are used to train a model in the training phase, based on

which the state of newly coming observations are tested in the testing phase. In contrast,

the unsupervised methods don’t require the training dataset to be labeled or depend on any

human intervention, and detect anomalies based on the similarity of internal structures or

relationships between different observations in data. For example, one-class SVM proposed

by Schölkop [43] only needs the one class (normal class) information for detecting anomaly

and ignore the diversity of anomalies. Normally, the learning phases usually need sufficient

data, and appears to be slow and expensive [35].

Third, data mining is another area which have proposed several methods for anomaly

detection. Bayesian networks (BNs)[23] generally estimates the posterior probability of ob-

serving both normal and abnormal classes, then labels the test instance with largest posterior.

Decision tree [33] requires to learn rules from the training dataset and then test whether the

new instance is covered by such rules or not. Clustering methods [7, 52] do not require

human beings to provide information about the normal or anomaly status of observations.

Distance between data instances are important for measuring their similarity.

Besides, Multivariate State Estimation Technique (MSET) is an advanced pattern recog-

nition technique developed and patented by Argonne National Laboratory (ANL) for fault

monitoring applications in nuclear plant system [20, 45]. This method has been applied to

detect anomaly for satellite components [37], video stream [51], enterprise server [19], et.al.

All studies stated above provide possible directions for anomaly detection in groundwater.
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1.3 Motivation and Objectives

CWW system collects groundwater information through surrogate technique at intervals

of one hour, hence generating a multivariate time series which include temperature, pH,

conductivity, ORP and DO. Figure 1.3 shows the historic surrogate parameter values.

Figure 1.3: Historic surrogate parameters and anomalies patterns in black boxes

Due to the complexity of the groundwater environment, monitoring signals appear to be

non-stationary which means the mean and/or variance are changing over time, and generate

various anomaly patterns during this process, as shown in Figure 1.3. The characteristics

during the monitoring process throw up many challenges to this research.

(i) The monitoring process is non-stationary which means the mean and/or variance of

the signals are changing over time. Anomaly detection methods should be suitable

for non-stationary process.

(ii) The anomalies patterns appear to be various, which implies the anomaly detection

methods should be flexible enough to capture all anomaly patterns, instead of just

only one or two situations.
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(iii) The boundary between normal and anomaly is not precise locally. Some noisy data, as

circled in figure, may appear to be anomaly in local. To avoid this, anomaly detection

methods should have the capability to discriminate them.

(iv) The anomaly detection methods should also be adapted to the baseline changes over

time. Baseline changes are not groundwater events.

(v) All observations have no ”normal” or ”anomaly” label, which implies the anomaly

detection methods need to tell the anomaly observations from the majority normal

ones based on their prior knowledge.

(vi) Anomaly detection methods must be implemented in real-time.

As a decision-making platform target at groundwater quality in the oil and gas field,

CWW system continuously transmits the real-time monitoring data into CANARY which is

an open-source software for water quality event detection developed by Environmental Pro-

tection Agency (EPA) associated with Sandia National Libraries (SNL). CANARY provides

two algorithms named Linear Prediction Coefficient Filter (LPCF) and Multivariate Nearest

Neighbor (MVNN) for prediction which is an essential step for anomaly detection. Based

on the characteristics of surrogate parameters, CANARY shows some drawbacks. Firstly,

LPCF, commonly known as Autoregression (AR), is an traditional statistical model whose

performance highly relies upon the choice of data distribution [39], and it employs the sta-

tistical inference test to detect the observations whether they do or do not belong to this

model. However, when the data generation process is more complex, like non-linearity or

non-Gaussianity, than the model used, then the model’s performance would be poor during

the anomaly detection process. Secondly, MVNN is distribution free and measure the similar-

ity between observations based on Euclidean distance. However, it may not be appropriate

since the distance becomes complicated in high dimensions. Third, various anomaly pat-

terns couldn’t be captured by only one method due to the complexity of anomaly patterns.

Multiple anomaly detection methods are expected to incorporate into CWW.
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Due to the limitations stated above, the algorithms in CANARY couldn’t solve the chal-

lenging problems effectively, which therefore motivates us to develop new anomaly detection

methods for this particular groundwater monitoring application. The potential methods we

studied including two methods: Multivariate State Estimation Technique (MSET) and One-

class Support Vector Machine (1-SVM) which have not been applied to real-time groundwa-

ter anomaly detection. MSET is a general technique that can estimate both stationary and

non-stationary states. 1-SVM detect anomaly based on observation density in feature space,

even the distribution is unknown. In the particular context of groundwater monitoring,

they are introduced for exploration by this research. The historic dataset with anomalies

will be used for method testing. Meanwhile, as we can see in Figure 1.3, there actually no

groundwater contamination events happened before. In order to validate the sensitivity of

newly-developed methods to groundwater contamination, we will simulate an groundwater

contamination event based on flow and transport equations and test the effectiveness of these

methods for capturing the environmental anomalies.

1.4 Contributions of This Thesis

This thesis contributes to the area of groundwater monitoring. Specifically, it introduces

novel thinking and methods to the field of real-time groundwater anomaly detection. Chapter

1 begins with the description about the current conditions of CWW, states the shortcomings

of LPCF and MVNN algorithms used for groundwater anomaly detection, and points out the

corresponding challenges encountered in this real world application. Chapter 2 explores and

explains two potential methods, i.e. MSET and 1-SVM, with detailed procedures, as well

as the related techniques such as Sequential Probability Ratio Test (SPRT), cross validation

and grid search. Chapter 3 gives a MSET-based real-time anomaly detection framework

and a 1-SVM-based real-time anomaly detection framework for practical implementation.

The corresponding results are shown and discussed. Chapter 4 introduces flow and trans-

port equations, finite element methods for simulating groundwater contamination event that
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is used to test the robustness of MSET and 1-SVM algorithms for groundwater anomaly

detection. Finally, we give the concluding remarks about the research.

The main contributions of this thesis can be identified as follows.

(i) We introduce two methods for real-time groundwater anomaly detection, including

MSET and 1-SVM, solving the challenging problems with expectations.

(ii) According to the practical engineering application, two real-time groundwater anomaly

detection frameworks are constructed with implementation details.

(iii) The groundwater contamination event is simulated based on transport and flow equa-

tions, and finite element methods. This experiment is used to validate the effectiveness

of the two anomaly detection models.

As a final remark, the considerations with respect to MSET-based and 1-SVM-based

real-time anomaly detection are likely to be applicable to other domains. Thus, even though

the thoughts are motivated from real-time groundwater anomaly detection, its impact is

possibly to transcend beyond that specific environment.
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CHAPTER 2

METHODS FOR REAL-TIME ANOMALY DETECTION

2.1 Spaces, Mappings and Pseudo-inverse

In order to reveal the hidden information behind the dataset, many pattern recognition

algorithms will employ mappings (or transformations) about the data, such as novelty fil-

tering, dimensional reduction and so on. The mapping generalizes the idea of a function

that maps the data from one space into another. The nature of the mapping depends on

the mathematical representation of the data [51]. In this section, it gives some formal look

definitions about the data, the space, the mapping and the operation.

Generally, a time series data can be expressed as a set of time-ordered infinite measure-

ments, noted as χ

χ = { 〈t1,x1〉, 〈t2,x2〉, ..., 〈ti,xi〉 ... }, i ∈ N
+ (2.1)

and we call 〈ti,xi〉 as a measurement, where ti is a timestamp, and xi is an observation,

mathematically a vector.

xi =



















xi1

xi2

...

xim



















(2.2)

Definition 3. Input space is defined as an inifite space X which contains all possible obser-

vations xi from a certain process, such that

X = {x1, x2, ..., xi, ...}, i ∈ N
+ (2.3)

where xi ∈ R
m.
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Definition 4. Let Φ be the mapping from X to H, i.e. Φ : X → H, H is so-called the

feature space which contains the points mapped from the data elements of the input space,

such that

H = {Φ(x1), Φ(x2), ..., Φ(xn)} (2.4)

where xi ∈ X, i = 1, 2, ..., n.

For any two points Φ(x) and Φ(x′) in H,

(i) 〈Φ(x),Φ(x′)〉 is defined as the dot product.

(ii) The norm ‖Φ(x)‖ is defined as
√

〈Φ(x),Φ(x)〉.

(iii) The distance between Φ(x) and Φ(x′) is defined as

dΦ(x,x
′) =

√

〈Φ(x)− Φ(x′),Φ(x)− Φ(x′)〉

For example, Φ(x1,x2) = (x1,x2,
x1

x2
) is a mapping from R

2 to R
3. In practice, however,

it’s impossible to compute the feature space H and find the mapping Φ explicitly, especially

when the dimension becomes large [17]. The practical approach is to deal with the mapping

Φ implicitly via a kernel function.

Definition 5. A kernel function k has the form as below,

k(x,x′) = 〈Φ(x),Φ(x′)〉 (2.5)

where x,x′ ∈ X, with Φ being the mapping from X to H.

Typically the feature space is a real vector space with some high dimension d, Rd, or more

generally a Hilbert space, in which the kernel function has the following properties[15, 38]:

(i) Symmetric, k(x,x′) = 〈Φ(x),Φ(x′)〉 = 〈Φ(x′),Φ(x)〉 = k(x′,x).

(ii) Cauchy-Schwarz Inequality, k(x,x′)2 = 〈Φ(x),Φ(x′)〉2 ≤ ‖Φ(x)‖2 ‖Φ(x′)‖2 =

〈Φ(x),Φ(x)〉〈Φ(x′),Φ(x′)〉 = k(x,x)k(x′,x′).

(iii) Positive semi-definite, the symmetry of kernel function guarantees that k(x,x′) ≥ 0.
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There are many kernel functions in research, like the linear kernel, polynomial kernel,

Gaussian (or radius basis function, i.e. rbf) kernel, et.al. The Gaussian kernel is most

common for choice,

Kγ(x,y) = 〈Φ(x),Φ(x′)〉 = exp

(

−‖x− y‖2
γ

)

(2.6)

where γ is the bandwidth. After mapping the data points from the input space X into the

feature space H via the kernel, then people can formalize the problem of anomaly detection

easily, for example, by detecting some point is distant from the most other points in the

feature space, or is living in the non-sparse region as a normal one.

Definition 6. In mathematics, a pseudo-inverse (or Moore-Penrose pseudo-inverse) A+ of

a matrix A is the generalization of the inverse matrix [3], and can be expressed from the

singular value decomposition (SVD) of A = UΣV T ,

A+ = V Σ−1UT (2.7)

where U, V are orthogonal matrices, and Σ is a diagonal matrix.

The real world data is not always consistent and might contains many repetitions. For

instance, the observations of groundwater quality might keep constant during a period time.

In this situation, the singular matrix generated and has no inverse matrix. To deal with this

problem, pseudo-inverse takes an effect, since A+ exists for any matrix and is unique. For

instance, to solve the least square problem

min
x

‖Ax− y‖2 (2.8)

The pseudo-inverse A+ can be applied if A−1 does not exist, having the solution x∗ =

A+y. In practice, many softwares, like Matlab, R and Python package NumPy, provide the

calculation of pseudo-inverse. Take NumPy as an example,
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import numpy as np

A = np.random.randn (11, 8)

B = np.linalg.pinv(A)

2.2 Sequential Probability Ratio Test

The Sequential Probability Ratio Test (SPRT) was introduced by Wald [49] by com-

bining the classical hypothesis test process and Neyman-Pearson theorem [30]. It tests the

alternative hypothesis against the null hypothesis through examining the random variables

sequentially, and makes a decision about the acceptance between these verified hypothesis, or

if extra-samples are required before giving an answer that the current observation is behav-

ing normally or abnormally [9, 21]. The SPRT is an quantitative approach which constructs

a conventional Logarithmic Likelihood Ratio (LLR) which permits the decision to be made.

Notice that the probability density function, i.e. pdf, of the investigated variable should be

known, and the type I error α and type II error β should be pre-assigned as well. Type I

error refers to rejecting the null hypothesis while it’s true, and type II error is to accept the

null hypothesis while it’s wrong, as shown in Figure 2.1.

Figure 2.1: The null hypothesis, alternative hypothesis, type I error, and type II error

13



The SPRT works as follows. Given the successive random variable generated from a

discrete process Y ∈ R
n, so

Yn = {y1, y2, ..., yn} (2.9)

where yi presents a sample from the process Y at time ti, and they are independent and

identically distributed (i.i.d). Without loss generality, assume the variable follows the normal

distribution, informally ”the bell curve”.

f(y | µ, σ) = 1√
2πσ2

exp

(

−(y − µ)2

2σ2

)

(2.10)

Therefore, the mean µ and/or the variance σ would be the parameters for statistical testing

here. The binary hypothesis of SPRT contains the null hypothesis and one or more alter-

native hypotheses. The null hypotheses of SPRT is H0 : Yn ∼ N(0, σ2), which the healthy

states have zeros mean and σ standard deviation. The alternative hypothesis have four

instances, as shown in Figure 2.2.

Figure 2.2: The null hypothesis and the alternative hypotheses; M and V are pre-determined
thresholds by the user.
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Literally, the four alternatives are stated as:

• H1 : Yn ∼ N(M,σ2), the mean of states shifts toM with unchanged standard deviation.

• H2 : Yn ∼ N(−M,σ2), the mean of states shifts to −M with unchanged standard

deviation.

• H3 : Yn ∼ N(0, V σ2), the standard deviation changes to V σ with non-shifted mean.

• H4 : Yn ∼ N(0, σ2/V ), the standard deviation changes to σ/V with non-shifted mean.

Based upon the null hypothesis and one alternative hypothesis, the SPRT index, i.e.

LLR, is calculated for checking the state of observations. Let’s take H0 and H1 for example,

I1 = log
P (y1, y2, ..., yn | H1)

P (y1, y2, ..., yn | H0)
= log

∏n

i=1 f1(yi)
∏n

i=1 f0(yi)
=

M

σ2

n
∑

i=1

(yi −
M

2
)2 (2.11)

Similarly, for the other three alternative hypotheses, we can obtain the following equations

for SPRT index [21]:

I2 =
M

σ2

n
∑

i=1

(−yi −
M

2
)2 (2.12)

I3 =
1

2σ2
(1− 1

V
)

n
∑

i=1

y2i −
n

2
ln(V ) (2.13)

I4 =
1

2σ2
(1− V )

n
∑

i=1

y2i +
n

2
ln(V ) (2.14)

Then according to the user-defined type I error α and type II error β, two stopping

boundaries are formulated, and the approximations by Wald [49] are:

A ∼= log
β

1− α
(2.15)

B ∼= log
1− β

α
(2.16)

15



The hypothesis test operates as below while making a decision, as shown in Figure 2.3.

Figure 2.3: SPRT Procedure

• If In <= A, then accept H0. mark the observing state as normal.

• If In >= B, then accept H1, mark the observing state as anomaly and raise alarm.

• If A < In < B, additional sampling is required, set n = n+ 1.

The SPRT framework provides great advantages for continuous surveillance work. On

the one hand, it attains high sensitivity to the subtle changes of the monitoring signal, no

matter whether the signal follows normal distribution or not. On the other hand, it allows

the user to define the probability of missed alarm and false alarm, and to interpret the result

without depending on the expert knowledge. Apparently, the SPRT method described above

is a promising algorithm for quick anomaly determination.

2.3 Multivariate State Estimation Technique (MSET)

In short, Multivariate State Estimate Technique (MSET) comprises two essential mod-

ules named the estimation module and the anomaly detection module [8]. It firstly uses

the non-linear and non-parametric technique to train a group of weighting values over the
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historic observations, and then applies the SPRT for the residual mean and variance test.

Mathematically, the MSET method operates as follows.

In MSET’s estimation module, the time series data of sensor readings are generally

organized in a matrix form denoted by X ∈ R
m×n, where the number of rows m equals to

the number of sensor signals, and the number of columns n is the number of observations

over time. Each column vector of the matrix, i.e. an observation xobs, lists the values of

all sensor parameters x1, x2, ..., xM and represents a particular state. For a series of time

t1, t2, ..., tj, ..., the matrix X takes the shape.

X =



















x11 x21 ... xj1 ...

x12 x22 ... xj2 ...

... ... ... ... ...

x1m x2m ... xjm ...



















(2.17)

where xji is the value of the ith sensor signal at time j. The observation at time j can be

represented as

X(tj) =



















xj1

xj2

...

xjm



















(2.18)

So there are numerous of observations in X whose states are labeled as normal or anomaly,

only the states with normal labels can be selected as members of the training dataset.

For the training dataset T ∈ R
m×n, where T ⊂ X. since it just contains the observations

with healthy state.

T =



















x11 x21 ... xn1

x12 x22 ... xn2

... ... ... ...

x1m x2m ... xnm



















(2.19)
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The selection of observations used for training is decided by the researchers. While doing

the training work, the training dataset T would be split into two datasets: the memory

dataset D and the remaining dataset L, i.e. T = D ∪ L, where D ∈ R
m×nd, L ∈ R

m×nl and

nd+ nl = n.

The memory dataset D can be regarded as the dataset where to learn experience. The

selection of observations from T to create D is essential. The rules obeyed here include two

parts. On the one hand, the observations with extreme features should be included, that

is, selecting the states with maximum or minimum signal value. This rule ensures that the

memory dataset D covers the whole healthy range of each sensor signal. On the other hand,

the additional selection based on the norm of the observations. After calculation and sorting

the norm of observations, the left states are selected with an equally spaced interval. The

remaining dataset L is composed by the non-selection observations of training dataset T .

This dataset is used for calculating the healthy estimates and healthy residuals for validating

the state of the new observation.

The estimate of xest ∈ R
m is based the memory dataset D and current observation xobs.

The equations take the form below.

xest = D ·Wx (2.20)

Wx =
(

DT ⊗D
)−1 ·

(

DT ⊗ xobs

)

(2.21)

where the weight vector Wx ∈ R
nd can be regarded as the measurement of similarity between

the estimate and the memory dataset. Similarly, the estimate of remaining dataset Lest ∈

R
m×nl can be calculated based on the following equations.

Lest = D ·WL (2.22)

WL =
(

DT ⊗D
)−1 ·

(

DT ⊗ L
)

(2.23)
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where the weight matrix WL ∈ R
nd×nl, and each column vector is a weight vector for the

corresponding observation in L. Pseudo-inverse is applied for calculating
(

DT ⊗D
)−1

in

order to solve the general problem similar with least square, see section 2.1 for more details.

In the equations 2.21 and 2.23, they have the form of least square minimization, i.e.
(

DT ·D
)−1 ·

(

DT · L
)

, but with a non-linear operator ⊗ termed a kernel function, instead of

the linear operator - dot product. The non-linear operator ⊗ chosen here is used for fitting

the input data, and therefore expected to preserve the properties of the linear operator

[19, 32]. First,
(

DT ⊗D
)−1

should be non-singular. Second, the difference between xest

and xobs should be minimized. Third, if xobs is equal to the column vector in D, then the

difference must be zero. Forth, if xobs falls out the range of signal in D, then the estimate

should be optimal. Many non-linear operators exist [4, 37, 51], but the choice of the non-

linear operator does not have major impact on the performance of MSET [24]. The common

choice is Gaussian kernel.

kγ(x,x
′) = 〈Φ(x), Φ(x′)〉 = exp

(

−‖x− x′‖2
γ

)

(2.24)

where the kernel takes an effect on the observations x ∈ R
m and x′ ∈ R

m for comparison,

and γ is the bandwidth. A narrow bandwidth leads to an over-fitting solution for depending

only on a few extreme states, but a large bandwidth will bring over-smooth solution which

is also not good [24].

In MSET’s SPRT module, the procedure uses the residuals of estimates to validate sensor

signals. The residuals include the actual residual Rx and the healthy residual RL, which will

be used as the input of SPRT for anomaly detection.

rx = ‖xest‖ − ‖xobs‖ , RL = { rx1
, rx2

, ..., rxnl
} (2.25)

RLX = { rx, rx1
, rx2

, ..., rxnl
} (2.26)
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where rxi
is the healthy residual of the ith remaining observation, and i ≤ nl. Then, the

null hypothesis and alternative hypotheses can be constructed with the assumption that the

residuals follow the normal distribution.

• H0 : RLX ∼ N(0, σ2), where the healthy residual RL has mean = 0 and standard

deviation = σ, which is the expected distribution.

• H1 : RLX ∼ N(M,σ2), the distribution pattern of residuals will be changed and the

mean shifts to M after adding in the actual residual.

• H2 : RLX ∼ N(−M,σ2), the distribution pattern will be changed and the mean shifts

to −M after adding in the actual residual.

• H3 : RLX ∼ N(0, V σ2), the standard deviation of the residuals will be changed to V σ2

after adding in the actual residual.

• H4 : RLX ∼ N(0, σ2/V ), the standard deviation of the residuals will be changed to

σ2/V after adding in the actual residual.

Please refer to the previous section for the detailed SPRT procedure based upon these

hypotheses, the final SPRT index gives indication about the state of the new observation, i.e.

normal or anomaly. This procedure is triggered whenever a new observation is coming, which

we call real-time anomaly detection. Since the training dataset is constructed according to

current observation, the system works dynamically to adapt to the changing sensor signals

and ensures the prediction to be accurate with time going.

2.4 Cross Validation and Grid Search

2.4.1 Cross Validation

In general, all pattern recognition algorithms have one or more free parameters which need

to be optimized for a given classification problem. Cross validation is a popular technique for

model selection and performance estimation. Given the values of parameters, then the model

can be determined through training and the corresponding performance can be evaluated

based upon the classification error rate on the entire population. The easiest way is to divided
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the dataset into two subsets randomly: the training subset and used to fit the model and the

test subset used to estimate the error rate of the trained model. This is also known as Hold-

out method. However, the error estimate of this method can be highly variable, depending

precisely on observations while dividing groups. And, just a part of the observations are

utilized for model training, the validation error may tend to overestimate the error for the

model fit on the entire observations. To overcome the limitations, some other validation

techniques are developed like K-Fold cross validation and Leave-one-out cross validation.

K-Fold cross validation is such a technique that estimate the performance of a classifier

after dividing the training dataset into k subsets. A single run of K-fold cross validation has

the following steps:

(i) Given a training dataset with n observations, so to arrange them in an random order.

(ii) Divide the training dataset into k folds, each fold has approximately n/k observations.

(iii) Cross-over the k folds in successive rounds, take one fold as the validation set and the

left k − 1 folds as the training sets, and count the wrongly classified observations ni.

(iv) Estimate the error rate of the classifier, such that e = (
∑k

i=1 ni)/n.

To obtain an accurate estimate about the error rate, the K-folds cross validation may need

to run several times.

Leave-one-out cross validation is the degenerate case of K-folds cross validation, where

K is the total number of observations, the steps as below:

(i) Given a training dataset with n observations, the method will perform n times of

experiments.

(ii) For each experiment, use n− 1 observations for training and the left one for testing.

If the test passes, then ni = 1, otherwise ni = 0.

(iii) Estimate the error rate of the classifier, such that e = 1− (
∑n

i=1 ni)/n
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How many folds should we divide? It depends on the number of observations in the

training dataset. In practice, 5-folds or 10-folds are the common choices. To obtain the

highest accuracy estimate, Leave-one-out cross validation should be the best choice, but will

pay price for the large computation.

2.4.2 Grid Search

Model selection is actually the problem of selecting optimal parameters for the desired

algorithm. To perform parameter optimization, the common technique for choice is grid

search which is an exhaustive searching through a manually specified a subset of the pa-

rameter space and is guided by the cross validation on the training dataset. The specified

parameter intervals of manually input should be investigated for performing valid searching

which is usually conducted in the log-space. The final outputs of grid search is the settings

that achieved the highest performance in the validation procedure. To ensure that the op-

timized parameters do not over-fit the training dataset, a tuning trick plays the role, i.e.

regularization.

2.5 One-class Support Vector Machine (1-SVM)

One-class Support Vector Machine (1-SVM) is an unsupervised anomaly detection tech-

nique. The basic idea behind is that it maps the data into a higher dimensional space,

estimates the high density regions of the data sample, constructs a decision boundary or

hyperplane which is maximumly distant from the origin, and finally labels one side of the

boundary as positive (normal) and other side as negative (anomaly).

Mathematically, the 1-SVM has the following procedures. Consider a training dataset X

which belongs to a single class.

X = { x1,x2, ...,xn }, xi ∈ R
m, m, n ∈ N (2.27)

The data points are distributed in the input space under some unknown probability
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distribution P . For any test sample x, how do people know whether x follows such a

unknown distribution or not? It can be determined through a decision function f : Rm → R

which returns +1 for the most data points that falls in the decision boundary D, and −1 if

the point falls out of the boundary [44], as shown in Figure 2.4.

f(x) =















+1 if x ∈ D

−1 if x /∈ D

(2.28)

Figure 2.4: Decision Boundary

However, it’s hard to directly find such a function with the desirable region in the input

space. The strategy is to map the input space into a feature space via a kernel function, and

to separate them from the origin with maximum margin. Define a mapping Φ : X → H,

where H is the Reproducing Kernel Hilbert Space (RKHS) with kernel k : Rn × R
m → R,
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let’s say if Gaussian kernel, then

k(x,x′) = 〈Φ(x), Φ(x′)〉 = exp

(

−‖x− x′‖2
γ

)

(2.29)

where γ is the bandwidth. Since k(x,x′) = 1, ∀x ∈ X, all data points are mapped onto the

unit-radius hypersphere centered at the origin of H. Then the hyperplane is defined as

h(x) = wTΦ(x)− ρ (2.30)

where w ∈ H is the weight vector and ρ ∈ R is the bias (or offset). This hyperplane

characterized by w and ρ is used to separate the mapped vectors {Φxi}ni=1 in H, and we

hope the margin ρ

‖w‖
is maximum, as illustrated in Figure 2.5.

Figure 2.5: 1-SVM illustration
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To find the maximum margin, we need solve to the following quadratic equation,

min
w,ξ,ρ

1

2
‖w‖2 − ρ+

1

νn

∑

i
ξi

s.t. 〈w,Φ(w)〉 ≥ ρ− ξi,

ξi ≥ 0

(2.31)

where ξi ∈ R, ν ∈ (0, 1]. In this equation, ξi is the slack variables which penalizes the

objective function and tolerant the error of data points that appears on the wrong side of

the hyperplane, as the green point shown in Figure 2.5. And, ν has the meaning of an

upper bound on the fraction of outliers or training examples regarded out-of-class, and the

meaning of a lower bound on the number of training examples used as the support vectors.

Let (α1, α2, ..., αn) be the Lagrangian multipliers associated with the constraints, the solution

to problem 2.31 will be:

max
α

1

2

n
∑

i,j=1

αiαjk(xi,xj)

s.t. 0 ≤ αi ≤
1

νn
n
∑

i=1

αi = 1

(2.32)

Once we got the optimized parameter ν and γ through grid search, we are able to calculate

the optimal solution α. After α is obtained, the constant ρ can be achieved by ρ = 〈w,Φ(xi)〉,

where w =
∑n

i=1 αiΦ(xi) and xi is some sample whose corresponding αi ∈ (0, 1
νn
). By using

kernel function for dot-product calculations, the decision function in input space becomes:

f(x) = sign (〈w,Φ(x)〉 − ρ) = sign

(

n
∑

i=1

αik(xi,x)− ρ

)

(2.33)

All training data that has f(x) ≤ 0 are so-called support vectors (SVs): margin SVs with

f(x) = 0 and non-margin vectors with f(x) < 0, as shown in Figure 2.5. We can finally

obtain two group of points: normal points if f(x) > 0, then normal, otherwise, anomalies.
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CHAPTER 3

APPLICATIONS TO GROUNDWATER MONITORING

3.1 Dataset Description

The dataset used for testing both MSET and 1-SVM comes from the monitoring station

named Gilcrest, as shown in Figure 1.2. This monitor has been working for two more years

gathering surrogate parameter values at intervals of one hour. We organize the observations

in a matrix form as the inputs, see Table 3.1.

Table 3.1: Actual Observations with timestamps

Time t1 t2 t3 t4 t5 t6 t7 t8 t9 ...

Temperature 9.591 9.581 9.6 9.588 9.591 9.591 9.596 9.598 9.6 ...

pH 7.273 7.273 7.273 7.273 7.274 7.275 7.276 7.277 7.277 ...

Conductivity 2.282 2.282 2.282 2.282 2.282 2.282 2.282 2.282 2.282 ...

ORP 65.329 72.308 73.14 73.295 73.346 73.166 73.385 73.29 73.413 ...

DO 1.838 1.841 1.807 1.831 1.831 1.831 1.805 1.817 1.816 ...

In this dataset, some surrogate parameter values are missing due to the sensor problems

and appear to be NaN. We did some data cleaning work and replaced the NaN with its previous

observed value. It’s reasonable, since the groundwater environment keep nearly unchanged

within one hour interval, except for big groundwater events.

3.2 MSET Implementation and Results

MSET for real-time groundwater anomaly detection is implemented under the Linux en-

vironment by using Python language. As a high-level language, Python is a widely used since

it supports multiple programming paradigms like object-oriented and procedural styles. It

provides a comprehensive standard libraries and rich third-party libraries. Two fundamental

scientific computing packages, NumPy and SciPy, are adopted in this implementation.
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Figure 3.1: MSET-based framework for real-time groundwater anomaly detection
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3.2.1 MSET-based Real-time Anomaly Detection Framework

This framework (Figure 3.1) contains two core modules: estimation module and SPRT

module. Since it’s real-time, the estimation module starts to work whenever the new ob-

servation comes in, calculating the estimates for the new observation and the reamining

observations. And, SPRT module take the healthy residuals and the actual residual as input

to validate the state of the new observation.

3.2.2 MSET Estimation

Suppose at time tj, a new observation xobs generates, then the latest n normal observa-

tions whose timestamp is smaller than tj are selected from the historic data to compose the

training data matrix T ∈ R
m×n, here n = 720, about one month. This guarantees that T

covers the whole healthy range of each parameter. Since the magnitudes of these surrogate

parameters are different, so matrix T should be normalized at first. Here, the values of each

parameter are scaled into [0, 1] according to the formulate below,

x′ =
x− xmin

xmax − xmin

(3.1)

The following table shows an example, i.e. normalized training data matrix.

Table 3.2: Normalized observations for model training

Time t1 t2 t3 t4 t5 t6 t7 t8 t9 ...

Temperature 0.269 0.200 0.331 0.248 0.270 0.270 0.303 0.317 0.331 ...

pH 0.000 0.000 0.000 0.000 0.005 0.011 0.016 0.021 0.021 ...

Conductivity 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 ...

ORP 0.000 0.286 0.320 0.326 0.329 0.321 0.330 0.326 0.331 ...

DO 0.651 0.665 0.502 0.617 0.617 0.617 0.492 0.550 0.545 ...

Then, the memory dataset D is created based on the two rules: i) the observations with

extreme values in T are selected and put into D, and ii) the left observations in T are

sorted based on their norms, and selected with equal-spaced interval 2. The non-selected
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observations in T forms the remaining data matrix L. Based on D and L, the weight vectors

Wx and WL are calculated for xobs and L respectively by using Gaussian kernel, as wells

the xest and Lest. Next, we calculate estimates for observations which appears in different

data patterns, including the normal pattern, single-anomaly pattern, baseline change, and

continuous-anomaly pattern.

First, normal patterns contain observations with normal state. The result shows that the

estimates are very close to the true observation values, as shown in Figure 3.2, which implies

that the series observations are normal and consistent with the fact.

Figure 3.2: Left: normal pattern with 24 continuous actual observations; Right: observation
estimates are calculated based on normalized observation data.
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Second, a single-anomaly pattern contains only one anomaly observation during a pe-

riod time. We send such observations into MSET for estimation sequentially, and get the

estimates of these observations as shown in Figure 3.3.

Figure 3.3: Left: single-anomaly pattern happens in 24 continuous actual observations; Right:
observation estimates are calculated based on normalized observation data.

The anomaly occurs due to the sensor or data transmission fault, which brings serious

error to the estimate, since the calculation of weight vector Wx =
(

DT ⊗D
)−1 ·

(

DT ⊗ xobs

)

is closely related to the observation, and so forth the estimate. So the error is large when

anomaly happens at 13:00:00. For the normal observations, the estimates are still good.
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Third, baseline changes are common phenomenon while monitoring groundwater, which

are caused by the season shifts, perceptions or stream charges. Commonly, the estimates

based upon observations in old baseline will be inaccurate, as shown in Figure 3.4.

Figure 3.4: Left: baseline change happens in 24 continuous actual observations; Right: observation
estimates are calculated based on normalized observation data.

When MSET encounters baseline changes, these new observations may appear to be

anomalies according to the old observations, but they are not in fact. How to deal with

this situation? Event recognition methods should be developed based on the knowledge of

groundwater hydrology, which is out the scope of this research.
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Forth, continuous-anomaly patterns appear due to groundwater contamination or some

other events and will last for a period of time, an example is shown in Figure 3.5.

Figure 3.5: Left: continuous-anomaly pattern happens in 170 continuous actual observations;
Right: observation estimates are calculated based on normalized observation data.

Baseline change is one kind of continuous-anomaly patterns, but they have some differ-

ences. Typically, the estimates in baseline change are nearly equals to each other, since the

baselines are normally parallel. However, the estimates of continuous-anomaly observations

appears to be various, because the observations along with the event looks like a wave.

MSET has high sensitivity to these changes and generate different estimate results.
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3.2.3 SPRT Anomaly Detection

After obtaining the estimates xest and Lest, we can calculate the actual residual rx, the

healthy residuals RL, and their combination RLX . The distribution of RL is RL ∼ N(µ, σ2),

where µ 6= 0 is the mean of RL and σ > 0 is the standard deviation of RL. The distribution

of RLX is RLX ∼ N(µ′, σ′), where µ′ 6= 0 is the mean of RLX and σ′ > 0 is the standard

deviation of RLX . For example, an observation comes in at 2015-06-01 03:00:00 and the

residuals are obtained as shown in Figure 3.6.

Figure 3.6: Top: the healthy and actual residuals distribute around 0; Middle: the histogram of
healthy residuals and the fit appear to be nearly normal; Bottom: the histogram of all residuals
and the fit are both nearly normal.

Based on these statistical information, we can construct the hypotheses, as follows.

• H0 : RLX ∼ N(0, σ2), the null hypothesis.

• H1 : RLX ∼ N(M,σ2) where M = µ+ 3σ with µ > 0.

• H2 : RLX ∼ N(−M,σ2) where M = −µ+ 3σ with µ < 0.

• H3 : RLX ∼ N(0, V σ2) where V = σ′2/σ2 with σ′ > σ.

• H4 : RLX ∼ N(0, σ2/V ) where V = σ′2/σ2 with σ′ < σ.
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Based on these hypotheses, the SPRT index is calculated respectively. For this example,

SPRT index I1 based on H0 and H1, and SPRT index H4 based on H0 and H2 are employed,

having I1 = −8.088 and I4 = −3.980. Next, according to the user-defined type I error α =

0.01 (false alarm) and type II error β = 0.05 (missing alarm), consequently the boundaries

A = ln( β

1−α
) = −2.986 and B = ln(1−β

α
) = 4.554. Since both I1 and I4 are smaller than the

lower boundary A, therefore H0 is accepted and this observation is normal.

For anomalous observations, however, the situation will be different. It cause the mean

and the standard deviation to change. Take the anomaly at 2014-07-14 10:00:00 for example,

the residual result is shown in Figure 3.7.

Figure 3.7: Top: the healthy residuals distribute around 0, but the actual residual is nearly 15;
Middle: the histogram of healthy residuals and the fit appear to be nearly normal; Bottom: the
histogram of all residuals and the fit are obviously different with the middle ones.

Here, SPRT I2 based on H0 and H2, and I3 based on H0 and H3 are calculated, having

I2 = −69083.924 < A = −2.986 but I3 = 212613908.322 > B = 4.554. Therefore, the

standard deviation appears to be obviously different with σ. Therefore H3 is accepted and

this observation is anomaly.

34



Table 3.3: State estimation of observations in baseline change based on SPRT index

Measurement Datetime Temperature pH Condutivity ORP DO SPRT Index State

2014-09-19 10:00:00 10.796 7.725 2.401 105.352 2.403 -5.871 Normal

2014-09-19 11:00:00 10.796 7.725 2.401 105.352 2.403 -4.495 Normal

2014-09-19 12:00:00 10.796 7.725 2.401 105.352 2.403 -3.405 Normal

2014-09-19 13:00:00 10.796 7.725 2.401 105.352 2.403 -4.985 Normal

2014-09-19 14:00:00 10.796 7.725 2.401 105.352 2.403 -7.096 Normal

2014-09-19 15:00:00 10.796 7.725 2.401 105.352 2.403 -5.900 Normal

2014-09-19 16:00:00 10.796 7.725 2.401 105.352 2.403 -4.898 Normal

2014-09-19 17:00:00 10.796 7.725 2.401 105.352 2.403 -4.478 Normal

2014-09-19 18:00:00 10.796 7.725 2.401 105.352 2.403 -3.578 Normal

2014-09-19 19:00:00 10.61 7.27 2.2 139 2.61 2940353.983 Anomaly

2014-09-19 20:00:00 10.61 7.29 2.19 138 2.65 2068941.436 Anomaly

2014-09-19 21:00:00 10.61 7.28 2.19 139 2.69 2681018.974 Anomaly

2014-09-19 22:00:00 10.6 7.27 2.19 139 2.7 3433809.698 Anomaly

2014-09-19 23:00:00 10.6 7.27 2.19 144 2.77 6307929.153 Anomaly

2014-09-20 00:00:00 10.6 7.28 2.2 146 2.75 4865273.893 Anomaly

2014-09-20 01:00:00 10.6 7.28 2.2 146 2.73 4707069.328 Anomaly

2014-09-20 02:00:00 10.6 7.28 2.2 146 2.73 2593224.241 Anomaly

2014-09-20 03:00:00 10.6 7.29 2.2 145 2.73 4999670.978 Anomaly

2014-09-20 04:00:00 10.6 7.29 2.2 145 2.7 5157422.7236 Anomaly

2014-09-20 05:00:00 10.6 7.29 2.2 145 2.77 6706972.022 Anomaly

2014-09-20 06:00:00 10.6 7.29 2.21 145 2.68 2628710.126 Anomaly

2014-09-20 07:00:00 10.6 7.29 2.2 144 2.72 4260414.562 Anomaly

2014-09-20 08:00:00 10.6 7.29 2.21 144 2.69 3116289.917 Anomaly

2014-09-20 09:00:00 10.6 7.29 2.21 143 2.6 3361050.703 Anomaly
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The continuous observations can contain both normal and anomalous observations, the

SPRT index values will be smaller than A = −2.986 or larger than B = 4.554. Without lose

generality, we gives the SPRT index result of baseline change here, as shown in Table 3.3.

The result shows that MSET-based anomaly detection method works well.

3.3 1-SVM Implementation and Results

The implementation of 1-SVM for groundwater real-time anomaly detection is under the

support of Libvsm (version 3.11) package [6]. Libvsm which was developed by National

Taiwan University (NTU) is a C++ library for Support Vector Machines (SVMs) with a

Python interface. This library has gained world-wide popularity for data classification and

regression in the area of machine learning and data mining.

3.3.1 1-SVM based Real-time Anomaly Detection Framework

As shown in Figure 3.8, the 1-SVM framework for real-time anomaly detection is also

divided into two modules: training module and detecting module. The former is used for

training a classifier based the normal historic data, and the free parameters ν and γ need

to be optimized by means of cross validation before training a model with expectation. The

later is used for classify the new observation based on the trained classifier, the output is

just the state information: normal +1 or anomaly −1.

3.3.2 Parameter Optimization

The accuracy of the 1-SVM classifier highly depends on free parameters ν and γ. To

obtain an effective model, we need to find the optimal ν and γ as the training input. The

basic procedure contains selecting normal observations from historic data and grid searching

based on k-folds cross validation. Suppose a new observation xobs generates at time tj, then

n = 720 normal observations whose timestamp is smaller than tj are selected for model

training, and we give each of these observations a label +1 indicating its normal state. Then

a mesh-grid is created based on the range of ν parameter (0, 1] and the self-defined range
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Figure 3.8: 1-SVM based framework for real-time groundwater anomaly detection
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of γ parameter [log(10e − 4), log(10e + 4)] in the log-space with the mesh size n × n, here

n = 50. Since we can get a trained classifier regarding to each pair of ν and γ, 5-folds cross

validation technique is applied to test the accuracy of this classifier. Finally, the pair of ν

and γ based on which the trained classifier has the highest classification accuracy are taken

as the optimal ν and σ. Here, we gives several examples of optimized parameter ν and σ, as

shown in Figure 3.9.

(a) (b)

(c) (d)

Figure 3.9: Grid search for 1-SVM parameter optimization: the colorbar indicates the accuracies
of models trained based on different pairs of ν and γ, the dark point contains the optimal µ and γ.

Grid search generates similar result for parameter ν and γ each time. On the one hand,
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the range of the parameters are valid, especially for γ range [log(10e − 4), log(10e + 4)] in

which the validated model shows high classification accuracy by combining a desirable ν.

Otherwise, the accuracy of the classifier will be nearly zero. On the other hand, due to

the randomness of fold-dividing, the subsets used for training and testing will be different

when performing cross validation each time. Therefore, the optimal parameter values are not

exactly identical even that the training data is the same. However, the randomness might

cause that the final parameters are not optimal. In this situation, we need to perform k-folds

cross validation several times or use Leave-one-out cross validation as the alternative.

3.3.3 Model Training

With the optimal parameters ν and γ obtained through grid search, then a 1-SVM

classifier will be trained based on the training dataset in which all observations are normal.

The observations are mapped from the input space R5 into a feature space H through

Gaussian kernel in order to find a hyperplane which maximize the margin. The process of

producing a model is easy to be implemented under Libsvm, like this:

from libsvm.python import svmutil

def train(observations , labels , optimal_gamma , optimal_nu):

# -s 2: one -class svm

# -t 2: gaussian kernel

# -n : nu

# -g : gamma

prob = svmutil.svm_problem(labels , observations)

param = svmutil.svm_parameter("-s 2 -t 2 -n 0.1 -g 0.1")

param.gamma , param.nu = optimal_gamma , optimal_nu

model = svmutil.svm_train(prob , param)

return model

For example, with ν = 0.32 and γ = 0.0061, the train function returns the model below,

optimization finished , #iter = 12

obj = 6.267336 , rho = 2.880065

nSV = 6, nBSV = 2
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where obj is the optimal objective value (equation 2.33). rho is the bias term in the decision

function sign(wTxobs−ρ). nSV and nBSV are number of support vectors and bounded support

vectors.

3.3.4 Anomaly Detecting

Whenever a new observation generates, a model will be trained based upon the historic

normal observations for predicting the label, i.e. the state, of the new observation. The

prediction process performs like this:

from libsvm.python import svmutil

def predict(model , observation):

# model : the trained model

# observation: a single observation

pred_label = svmutil.libsvm.svm_predict(model , observation)

One should notice that since the model is trained based on normalized data, the input

observation for prediction should also be normalized. The pred label will be either +1 or

-1. The former indicates that the tested observation is normal, but the later implies the

tested observation is anomalous. Unlike MSET, 1-SVM doesn’t provide any estimate for

each single surrogate parameter, and generate only a state label for a whole vector.

As what we do for MSET, four main data patterns (normal pattern, single-anomaly

pattern, baseline change, and continuous-anomaly pattern) with the same observations are

used to test the capability of 1-SVM for abnormal behavior detection while conducting

groundwater monitoring. Similarly, 1-SVM here can only predict the state of the single

observation sequentially, and has no ability of recognizing event patterns. Event recognition

algorithm should be developed independently based on the type of events defined in the

groundwater field. However, that development has close relationship with the sequential

states of observations. Event recognition is beyond the scope of this research and won’t be

discussed much in this paper. Here, we focus on the real-time anomaly detection of 1-SVM

as stated below.
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First, for the normal pattern with 24 continuous normal observations, the performance

of 1-SVM is good and all states of these observations are indicated as normal without wrong

classification, as shown in Figure 3.10.

Figure 3.10: Left: normal pattern with 24 continuous actual observations; Right: the observation
states are predicted orderly based upon the normalized training observation and marked with
symbols (normal: dark circle, anomaly: red square).

From the result we can see that all states are marked with dark circle, implying the

predicted states are same with their own status, therefore 1-SVM works well in regular

mode.
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Second, single-anomaly pattern contains 24 observations with an abnormal one. These

observation is normalized and sent to 1-SVM algorithm in order. Finally, we get the predicted

state as shown in Figure 3.11.

Figure 3.11: Left: single-anomaly pattern appears in 24 continuous actual observations; Right:
the observation states are predicted orderly based upon the normalized training observation and
marked with symbols (normal: dark circle, anomaly: red square).

From the two plots, we can see that only state at 13:00:00 is marked as anomaly, which

is consistent with the actual observation. All other states are marked with dark circles

indicating that these observations are normal.
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Third, when baseline change happens among 24 observations, 1-SVM can also give correct

indications. The results are shown in Figure 3.12.

Figure 3.12: Left: baseline change pattern appears in 24 continuous actual observations; Right:
the observation states are predicted orderly based upon the normalized training observation and
marked with symbols (normal: dark circle, anomaly: red square).

From the result, we can see that the baseline change happens at 19:00:00. The each

surrogate parameter on new baseline are obviously different with the one on the old baseline.

This change is detected by 1-SVM, the observations on the new baseline are labeled as

anomalies. The left normal observations are marked with dark circles.
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Forth, the group of observations with continuous anomalies is used to test 1-SVM, gen-

erating a series of predicted states. The results are shown in Figure 3.13.

Figure 3.13: Left: continuous-anomaly pattern happens among 170 continuous actual obser-
vations; Right: the observation states are predicted orderly based upon the normalized training
observation and marked with symbols (normal: dark circle, anomaly: red square).

1-SVM generates accurate prediction of states, marking normal state with dark circles

and anomaly states with red squares. However, unlike MSET, one hardly tell the continuous

anomaly happens due to baseline change or some other event, since 1-SVM only gives a

binary state indication. Overall, the performance of 1-SVM on various data patterns is

good.
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3.4 Discussion

In the previous two sections, we implemented two anomaly detection methods: MSET

and 1-SVM. Based on the test results, these two methods can adapt to different circumstances

and have good capability of real-time groundwater anomaly detection. However, these tests

are based on piecewise observations and these data patterns are typical. How can we know

their overall performance on routine monitoring work? Due to the complexity of underground

environment, the daily monitoring data are always full of noise. Can these methods perform

as good as they do above? To answer these questions, we test MSET and 1-SVM based on

1000 continuous observations and get the state estimation result, as shown in Figure 3.14.

Figure 3.14: From top to bottom, subplot 1-5 shows the actual surrogate parameters; subplot
6 shows the state estimation result generated from MSET; subplot 7 shows the state estimation
result generated from 1-SVM. Current state is normal if +1, otherwise anomaly if -1.
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This series of observations are full of noisy points, but all of the 1000 observations are

normal in fact, i.e. all state should be labeled with +1. However, the noisy observations

have great negative effects on the anomaly detection algorithms and cause false alarms.

Based on their limited prior knowledge (n = 720 historic observations for training), they

might wrongly consider the noisy observation as an abnormal observation. That’s why the

estimated states from MSET and 1-SVM have -1 label (or anomaly state). The statistical

results are shown in Table 3.4. MSET performs a little better than 1-SVM, but both have

high classification accuracies.

Table 3.4: MSET and 1-SVM state estimation statistical results

Method Number of Observations Number of Normal States Number of Anomaly States Accuracy

MSET 1000 989 11 98.90%

1-SVM 1000 965 35 96.50%

The inaccurate parts might results from the limitations of themselves. For MSET, it as-

sumes that the training dataset covers the whole healthy range of the surrogate parameters.

Otherwise, the estimation will be inaccurate and considered as anomaly if the new observa-

tion falls out the range of the training dataset. For 1-SVM, the biggest challenge is to find

the optimal parameters ν and γ, a subtle change might lead to totally different estimation

result. Grid search K-folds cross validation randomly divide the training dataset into K folds

which will be used for training and testing in turn. However, the optimized parameter we

get might not be the optimal ones due to the randomness. Leave-one-out cross validation

may be a better choice, but it’s a time-consuming and resource-consuming method if the

training dataset is large. To overcome these limitations, one possible way is to enlarge the

training dataset to widen the surrogate parameters’ ranges, and to reduce the probability of

finding non-optimal parameters, but we need to afford the computational cost.

To sum up, the two methods are suitable for real-time groundwater anomaly detection

based on their overall performances over the historic dataset.
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CHAPTER 4

GROUNDWATER TRANSPORT SIMULATIONS AND MONITORING

The anomaly detection algorithms studied in the previous chapters are expected to get

response when a groundwater contamination event happens. To validate their effectiveness,

we simulate the groundwater flow and contamination transport in a rectangular domain

through numerical methods. During the process, we monitor the contaminant concentra-

tion change along with the groundwater flow over time, and send the collected data into

anomaly detection algorithms in real-time. The MSET and/or 1-SVM should be sensitive

to such a groundwater event and raise alarm at a certain point if these algorithms are valid.

Additionally, Python language and NumPy package are employed for the simulations.

4.1 Flow and Transport in Groundwater

Darcy’s law is the fundamental principle which governs how groundwater moves in the

subsurface porous medium. In general terms, groundwater movements controls the contam-

inant transport. So groundwater modeling refers to the mathematical representation of the

Darcy flow system with specific hydrogeological conditions. In general, the groundwater

flow and contaminant transport in the porous medium domain are three-dimensional [2].

However, groundwater flow in the saturated thickness of an unconfined aquifer is practically

horizontal. In this context, all the models are built on the assumption that the aquifer flow

is essentially horizontal, i.e. 2-dimensional

To describe the groundwater flow through porous medium, the Darcy problem is used in

a bounded polygonal area as below [29]











∇ · (−K∇p) ≡ ∇ · u = f, x ∈ Ω,

p = pD, x ∈ ΓD, u · n = uN , x ∈ ΓN ,

(4.1)

where Ω ⊂ R
2 is the polygonal domain, K is the horizontal hydraulic conductivity, f is the
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specific discharge, p is an unknown pressure, pD is a Dirichlet boundary condition, and uN

is Neumann boundary condition, n is a unit outward normal vector on ∂Ω = ΓD ∪ ΓN .

The transport process can be prototyped by the convection-diffusion equation,



























∂tc+∇ · (vc−D∇c) = f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ),

c(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ),

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω.

(4.2)

where c(x, y, t) is the unknown contaminant concentration to be solved, v is the fluid velocity,

D > 0 is the diffusion coefficient of specified pollutant, f is the source term. Generally

speaking, the mechanisms of transport include convection, diffusion and reaction. When

there is no reaction, and the diffusion can be safely ignored, we have a pure convection

problem which takes the form:

∂tc+∇ · vc = f(x, y, t). (4.3)

4.2 Numerical Methods for Simulations of Flow and Transport

Usually, the analytical forms for exact solutions do not exist for flow and transport

equations discussed in the previous section. Numerical methods for approximate solutions are

expected. There’re abundant of numerical methods for the two equations. For rectangular

domains, finite difference methods (FDMs) are easier to use. When the geometry of domain

becomes complicated, finite element methods (FEMs) work better. In this section, three

different numerical methods are described.

4.2.1 Finite Difference Method for Darcy Velocity

To solve the Darcy equation 4.1 and obtain Darcy velocity u, FDM can be applied if the

domain is rectangular and discretized. As is known, the Darcy velocity is calculated based
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on the equation,

u = −K∇p (4.4)

where ∇p = (∆hx

∆lx
, ∆hy

∆ly
) is the gradient of water level in 2-dim, h hydraulic head (unit m)

and lx, ly flow path along x, y directions, as shown in Figure 4.1

Figure 4.1: A schematic diagram of finite difference scheme for solving Darcy equation

The hydraulic conductivity K is defined by the following tensor:

K =







Kxx Kxy

Kyx Kyy






(4.5)

It is a common practice to assume that the principal directions of anisotropy can be

aligned with the x, y coordinate axes such that Kxy = Kyx = 0 and Kx = Kxx, Ky = Kyy

[18]. Therefore, Darcy velocity equation 4.4 takes the form

u =

(

−Kx

∂hx

∂lx
,−Ky

∂hy

∂ly

)

. (4.6)
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If the hydraulic conductivity is homogenous in the grid cell, then Kx = Ky = K. The

derivative ∂hx

∂lx
and ∂hy

∂ly
can be obtained in three different ways: forward difference ∂h

∂l
=

hk+1−hk

∆l
, backward difference ∂h

∂l
= hk−hk−1

∆l
and central difference ∂h

∂l
= hk+1−hk−1

2∆l
. At the

boundary of the domain, forward or backward difference at cells might be the choice, the

inner cells can take any of them, central difference is adopted in this thesis.

4.2.2 Upwind Finite Difference Method for Transport Simulations

With the Darcy velocity u, we can solve the convection-diffusion equation for contaminant

transport through the discretized area by using FDMs. Based on equation 4.2, we can get

∂c(x, y)

∂t
+ v(x, y)∇ · c(x, y) + c(x, y)∇ · v(x, y)−D∇ · ∇c(x, y) = f(x, y, t) (4.7)

We apply the 1st order upwind scheme to the convection problem with flow v(x, y) =

(vx, vy). If vx > 0 in x direction and vy > 0 in y direction, then the scheme will be:

c
(n+1)
i,j − c

(n)
i,j

∆t
+

(

vx
c
(n)
i,j − c

(n)
i−1,j

∆x
+ vy

c
(n)
i,j − c

(n)
i,j−1

∆y

)

+

(

ci,j
vx

(n)
i,j − vx

(n)
i−1,j

∆x
+ ci,j

vy
(n)
i,j − vy

(n)
i,j−1

∆y

)

−D

(

c
(n)
i+1,j − 2c

(n)
i,j + c

(n)
i−1,j

(∆x)2
+

c
(n)
i,j+1 − 2c

(n)
i,j + c

(n)
i,j−1

(∆y)2

)

= f
(n)
i,j

(4.8)

The resulting scheme takes the form:

c
(n+1)
i,j =c

(n)
i,j −∆t

(

vx
c
(n)
i,j − c

(n)
i−1,j

∆x
+ vy

c
(n)
i,j − c

(n)
i,j−1

∆y

)

−∆t

(

ci,j
vx

(n)
i,j − vx

(n)
i−1,j

∆x
+ ci,j

vy
(n)
i,j − vy

(n)
i,j−1

∆y

)

+D∆t

(

c
(n)
i+1,j − 2c

(n)
i,j + c

(n)
i−1,j

(∆x)2
+

c
(n)
i,j+1 − 2c

(n)
i,j + c

(n)
i,j−1

(∆y)2

)

+ f
(n)
i,j

(4.9)
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If vx < 0 in x direction and vy < 0 in y direction, then the resulting scheme will be:

c
(n+1)
i,j =c

(n)
i,j −∆t

(

vx
c
(n)
i+1,j − c

(n)
i,j

∆x
+ vy

c
(n)
i,j+1 − c

(n)
i,j

∆y

)

−∆t

(

ci,j
vx

(n)
i+1,j − vx

(n)
i,j

∆x
+ ci,j

vy
(n)
i,j+1 − vy

(n)
i,j

∆y

)

+D∆t

(

c
(n)
i+1,j − 2c

(n)
i,j + c

(n)
i−1,j

(∆x)2
+

c
(n)
i,j+1 − 2c

(n)
i,j + c

(n)
i,j−1

(∆y)2

)

+ f
(n)
i,j

(4.10)

Similarly, we can get the combination equations when vx > 0, vy < 0 and vx < 0, vy > 0.

For solving this partial differential equation, the Courant-Friedrichs-Lewy (CFL) condition

is necessary for stability, that is,

∆t ≤ min(∆x,∆y)

||v||max

(4.11)

4.2.3 Upwind Finite Volume Method for Transport Simulations

The explicit Euler (EE) and Upwind Finite Volume Method (UFVM) can be used for

solving a pure convection problem [25, 28, 29]. Let c be the concentration of the transport

substance. In the simplest case, the transport equation takes the following form:

∂tc+∇ · cu = s, x ∈ Ω, t ∈ (0, T ], (4.12)

along with some boundary conditions and an initial condition

c(x, 0) = c0(x), x ∈ Ω. (4.13)

We discretize the time interval [0, T ] as 0 = t0 < t1 < · · · < tn−1 < tn < · · · < tN = T ,

where ∆tn := tn − tn−1. Let Eh be a mesh for Ω, and assume a numerical velocity uh on

Eh is already obtained with continuous normal fluxes and mass conservative property. The
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contaminant concentration could be approximated by element-wise constant C
(n)
h on Eh at

time tn. For a typical element E ∈ Eh, we have the equation:

C(n) − C(n−1)

∆tn
+

∫

∂E

C
(n−1)
E uh · n =

∫

E

s

and hence a time-marching scheme

C(n) = C(n−1) −∆tn C(n−1)

∫

∂E

uh · n+∆tn

∫

E

s(·, tn). (4.14)

On the right-hand side of the scheme, the 2nd term should be handled by UFVM accord-

ing to the in-out fluxes related to the element E. For a rectangular element E with each

edge e among the four sides (bottom, right, top, left), the sign of

flux =

∫

e

uh · n (4.15)

will be checked. For instance, let e be the left edge. If the sign is negative, then the element

has an in-flux and C(n−1) is calculated based on the value associated with the left-neighbor

element. If the sign is non-negative, then the element has an out-flux and C(n−1) is calculated

based on the value associated with the element itself.

To compute the contaminant concentration at a new time step, the numerical scheme uses

the physical information of upwinding (convection direction). Therefore, the computation is

mass-conservative and maintains the positivity of concentration.

4.2.4 Weak Galerkin Finite Element Method for Transport Simulations

The newly developed weak Galerkin (WG) FEMs [27, 29, 50] have advantages in solving

partial differential equations, compared to traditional numerical methods. To solve numeri-

cally the unknown pressure in the Darcy equation, we discretize the domain Ω into rectangu-

lar meshes Eh and set pressure unknowns both in element interiors and the edges (known as

constants in the lowest WG (Q0, P0, RT0)), and specify their discrete weak gradients in the
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Ravariat-Thomas RT[0] space. For each rectangular element E, we have dim(RT[0](E)) = 4.

The following four vector-valued functions

w1 =







1

0






, w2 =







0

1






, w3 =







X

0






, w4 =







0

Y






,

span RT[0](E), where X = x − xc, Y = y − yc. The Gram matrix of this basis is diagonal

matrix, as below:

GM = diag

(

|E|, |E|, 1

12
(x2 − x1)

2|E|, 1

12
(y2 − y1)

2|E|
)

.

Then we solve a linear system with Gram matrix as the coefficients, and get their discrete

weak gradients in the above RT[0](E) basis. The linear system can be represented as the

following form:

























∇w,dφ0

∇w,dφ1

∇w,dφ2

∇w,dφ3

∇w,dφ4

























=

























0 0 −12
(x2−x1)2

−12
(y2−y1)2

0 −1
y2−y1

0 6
(y2−y1)2

1
x2−x1

0 6
(x2−x1)2

0

0 1
y2−y1

0 6
(y2−y1)2

−1
x2−x1

0 6
(x2−x1)2

0











































w1

w2

w3

w4



















.

The discrete weak gradients are used for the approximation of classical gradients in the

Darcy equation. We use the FEM scheme to seek ph = {p◦h, p∂h} ∈ Sh(l,m) such that

p∂h|ΓD = Q∂
hpD, and

Ah(ph, q) = F(q), ∀q = {q◦, q∂} ∈ S0
h(l,m), (4.16)

Ah(ph, q) :=
∑

E∈Eh

∫

E

K∇w,nph · ∇w,nq, F(q) :=
∑

E∈Eh

∫

E

fq◦ −
∑

γ∈ΓN
h

∫

γ

uNq
◦. (4.17)
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The Darcy velocity could be computed based on the solved pressure ph and the following

framework:

uh = Rh(−K∇w,nph), (4.18)

where Rh is the local L2-projection onto V (E, n).

Based on the assumption that Ω is rectangular with rectangular mesh Eh, we can solve

the transport equation by using a similar idea. Let C
(n)
h (n ≥ 1) be an approximation at

discrete time tm, then there holds for n ≥ 1,

∑

E∈Eh

(C
(n)
h , w)E −∆t

∑

E∈Eh

(uhC
(n)
h ,∇w,dw)E +∆t D

∑

E∈Eh

(∇w,dC
(n)
h ,∇w,dw)E

=
∑

E∈Eh

(C
(n−1)
h , w)E +∆t

∑

E∈Eh

(f, w)E.
(4.19)

On the left side of the scheme, the 2nd term represents the interaction of the flow (Darcy

velocity) and the concentration (discrete weak) gradient. On the right side, the 1st term

represents the mass at previous time moment, and 2nd term depicts the source/sink con-

tribution during the time period [tn−1, tn]. Then we can obtain an initial approximantion

C
(0)
h through the local L2-projection of c0(x, y) into the WG finite element space. This

scheme has two nice properties: i) On each element E, C
(n)
h |E◦ represents the cell average of

concentration; ii) It is locally and hence globally conservative.

4.3 Coupling of Groundwater Monitoring and Transport Simulations

We will simulate a groundwater contamination event resulting from the fracking fluid

leakage. Chloride (Cl) is abundant inorganic chemical that transports along with the ground-

water flow and passes through the monitor station. Installed sensors collect the groundwater

quality information in real-time and send them into a system to perform anomaly detection.

MSET and 1-SVM should get response to the new coming data, estimate their states and

finally raise alarm if anomaly appears. This scenario gets further explanation by Figure 4.2.

The purpose of this coupling is to validate the effectiveness of anomaly detection methods.
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Figure 4.2: Coupling of transport simulation and groundwater monitoring

Normally, the concentration of chloride (Cl) in groundwater is around 150 mg/L, but the

concentration in fracking fluid is around 20, 000 mg/L. The concentration directly influences

the groundwater conductivity Cond. A linear relationship exists between them [36], i.e., Cl =

k · Cond, where k is a scalar coefficient. The diffusion coefficient of chloride in groundwater

is very small, around 2.03e−11 m2/s [42]). Therefore, we ignore the diffusion here and just

consider a convection problem.
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4.4 Gilcrest/LaSalle Project

4.4.1 Dataset Discription

To simulate the contaminant transport in groundwater, we select a study area with suf-

ficient hydraulic and geologic data, see Figure 4.3, located in the south rural area of Greeley

city, CO. This area is one part of the Wattenberg filed with activate oil and gas production

operations and covered by the groundwater monitoring system - CWW. Therefore, we can

couple the transport simulation with groundwater monitoring process.

Figure 4.3: The rectangular area for study, 21,000 meters (13.048 miles) from A to B and 19,000
meters (11.806 miles) from A to D. The coordinates of A, B, C and D are listed below.

Table 4.1: The corner coordinates of the study area

Corner Longitude Latitude X (meters) Y (meters)

A -104.844 40.228 513296.815 4453116.455

B -104.597 40.228 534296.815 4453116.455

C -104.597 40.399 534296.815 4472116.455

D -104.844 40.399 513296.815 4472116.455

Projected Coordinate System: NAD 1983 UTM Zone 13N
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According to Colorado Oil & Gas Conservation Commission (COGCC), nearly 3500

producing wells were built in the study area by 2014. Two monitoring stations named

Gilcrest and Platteville were built among the thousands of producing wells, see Figure 4.4.

Figure 4.4: The oil-gas producing wells and two monitoring stations in the study area

To calculate the Darcy velocity, the groundwater elevation from Colorado Geological

Survey[1] and the horizontal hydraulic conductivity from the SPDSS [11] are discretized by

19× 21 cells, each cell is 1000m× 1000m. as shown in Figure 4.5.

Figure 4.5: Left: Groundwater elevation, unit: ft, 1m = 3.281ft; Right: Horizontal hydraulic
conductivity, unit: ft/day. Cells with high values are rendered with red, and cells with low values
are rendered with blue.
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4.4.2 Flow and Transport

Based on groundwater elevation and horizontal hydraulic conductivity data, we can cal-

culate Darcy velocity u = (−K ∂hx

∂lx
,−K ∂hy

∂ly
) which has a close relationship with the fluid

velocity v, i.e.,

v =
u

ρ
(4.20)

where ρ is the effective porosity of the medium. In this area, the medium (named the

Laramie-Fox Hills aquifer) has porosity range [0.21, 0.44] and mean 0.32 according to the

USGS report [41]. Here, we assume that the porosity in this relatively small area is homoge-

nous and use the mean value ρ = 0.32. The results of Darcy velocity and fluid velocity are

shown in Figure 4.6.

Figure 4.6: Left: Darcy velocity; Right: Fluid velocity. The background color map is rendered
based on the groundwater elevation, where red color represents high levels and the blue represents
low levels. The arrow goes along the terrain from high to low.

Then the solved fluid velocity can be input into the convection equation to simulate the

chloride transport. Given two contamination sources at time t0, and the concentrations of

chloride respectively are c10(7, 7) = 20, 000 mg/L, c20(18, 4) = 20, 000 mg/L. The diffusion

effect of chloride is ignored, i.e. D = 0. And, set f = 0, and time step ∆t = 3600 s (1 hour).

Based on the initial conditions, we simulate the chloride’s transport process within a period

of time. The results are shown in Figure 4.7.
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(a) initial conditions (b) after 1 year

(c) after 2 years (d) after 3 years

(e) after 4 years (f) after 5 years

Figure 4.7: The change of contaminant concentration with time. Red color represents high
concentration, and blue color represents low concentration. Two green points represent the location
of monitor stations.
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4.4.3 Groundwater Monitoring

From the transport simulation results, we can see that the contaminant chloride transport

with groundwater flow, the contaminant concentration reduces with time going. After 5

years, the concentration drops to 1, 900 mg/L from 20, 000 mg/L. To extract a series of

chloride concentration over time at where the monitor station - Platteville locates, we get

the result shown in Figure 4.8. The concentration increases at the first 4 years (48 months)

and reaches a peak, then it will decrease in the following time, also see Table 4.2.

Figure 4.8: Chloride concentration and groundwater conductivity change at Platteville over time.

Table 4.2: Concentration of chloride and corresponding groundwater conductivity over time

Months t = 0 t = 1 t = 2 t = 4 t = 6 t = 12 t = 24 t = 48 t = 60 t = 72

Cl 21 28 50 126 235 732 1518 2041 1928 1705

Cond 2.3 3.1 5.4 13.7 25.5 79.4 164.7 221.5 209.1 184.9

Suppose the relationship between groundwater conductivity and the concentration of

chloride is linear, Cl = k∗Cond with k = 9.222 [36]. The change of groundwater conductivity

is also shown in Figure 4.8. During the transport, anomaly detection system will take the

simulated conductivity and other surrogates as input to validate the performance of MSET
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and 1-SVM. Assume that the other surrogates do not affected by this event and keep as

healthy constants. The baseline data is used to estimate the state of simulated observations.

Baseline data describes the groundwater quality in specific area and used for water quality

control. 720 samples are selected from the baseline dataset which cover the whole healthy

ranges. MSET and 1-SVM learn experience from the sample instances and get response

to the change after a period of time. The results of coupling of transport simulations and

groundwater monitoring are shown in 4.9.

Figure 4.9: From top to bottom, subplot 1-5 shows the simulated surrogate parameters; subplot
6-7 show the estimated states of MSET and 1-SVM respectively.

We suppose the event happens at 2015-12-31 00:00:00. The monitoring result shows that

MSET get response to the raising level of conductivity after 11 days, when conductivity is

higher than 3.82 S/m. For 1-SVM, it raises alarm after 9 days, when conductivity is higher

than 3.56 S/m. 1-SVM takes a little shorter time to respond the change of groundwater
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quality, but the difference is not obvious. The distance between the contaminant source and

monitor station predominantes the time when the system gets response. What’s more, the

conductivity level at which the anomaly detection algorithms get response highly depends

on the range of baseline data. Mathematically, these two methods are sensitive to the change

of groundwater conductivity, and they can capture the contaminant event when the chloride

concentration reaches up to some level.

4.5 Discussion

In this section, we simulated an groundwater event with contaminant transport by using

FDM and used it to test the real-time responsiveness of MSET and 1-SVM to groundwater

contamination. Compared with FEM, FDM are easy to implement on rectangular domain,

and also generates reliable Darcy velocity and transport result in this application. The

coupling of transport simulation and groundwater monitoring provide sound evidence that

MSET and 1-SVM have the ability of detecting groundwater event in real-time.

But the simulated model is still idealistic at some extent, and need to be improved further.

For instance, we assume that the porosity in this area is homogenous, but it’s not in the

real environment. Thus, more detailed hydraulic data should be collected to improve this

model. And, the cell size (1000m × 1000m) is relatively large, the groundwater elevation

and horizontal hydraulic conductivity are not homogenous, too, but varies a lot within it,

especially for the shallow groundwater. To improve the accuracy of this model, discretized

study area with smaller cells should be tried.

However, even though there are some shortcomings in this model, the trial of this ex-

periment still generates much useful experience when promoting the mathematical model

into reality life, the sketched model could get improve with further studies. For example,

WGFEMs might be used to enhance the performance.
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CHAPTER 5

CONCLUDING REMARKS

5.1 Summary

In this study, we presented the background of groundwater anomaly detection in the

oil and gas fields, the problems and challenges encountered, and the potential methods for

exploration in the literature. Then we focused on two anomaly detection methods: MSET

and 1-SVM. Their mathematical principles behind the equation were explained in detail

at first, and then they were applied into the real world project Colorado Water Watch

(CWW) and implemented through Python. CWW uses surrogate technique and gathers

groundwater quality information hourly. To adapt this characteristic, we designed real-time

anomaly detection frameworks based on MSET and 1-SVM respectively. The test results

showed that the performance of the two methods were good, especially for MSET. First,

both of them had good responses to various typical data patterns and generated anomaly

indications in real-time. Second, they all had good performance when encountering noisy

data, their classification accuracies were above 96%. They satisfied our initial requirements.

We can safely conclude that they are suitable for groundwater monitoring.

To ensure the solidness of the two methods, we then simulated a groundwater event,

i.e. fracking fluid contamination, and couples it with CWW groundwater monitoring. The

simulation was based on the Darcy equation and the convection-diffusion equation. We

presented three numerical methods: finite difference method (FDM), finite volume method

(FVM) and finite element method (FEM), for solving these two partial differential equations.

We adopted FDM for the rectangular study area here and implemented by using Python,

too. On the one hand, Darcy velocity on this area were calculated based on field geologic

and hydraulic datasets, which was consistent with the real world terrain. On the other

hand, contaminant chloride transport in groundwater were explored, the numerical results

showed the change of chloride concentration along with groundwater flow over time. Based
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on the linear relationship between the concentration of chloride and surrogate parameter

conductivity, we then combined the anomaly detection methods developed previously with

the transport simulation here. The result indicated the sensitivity of MSET and 1-SVM to

this simulated groundwater contaminant event.

This research bring MSET and 1-SVM into this area. The complexity and uncertainty of

underground environment make the groundwater anomaly detection problem very compli-

cated, which leads to the comprehensiveness of this research. Diverse modeling techniques

from mathematics, statistics and machine learning are explored to resolve this issue. The

originality of this study is ensured by its application to the groundwater monitoring in oil

and gas fields. Further, the implementation of the methods in Python makes our work ac-

cessible. The code for MSET, 1-SVM and transport simulations can be easily transfered and

extended to engineering practices.

5.2 Further Work

Still, we can go further in the area of groundwater anomaly detection. Based on the work

presented in this thesis, some interesting directions for further study are outlined.

• To apply MSET and 1-SVM based anomaly detection methods to multiple monitoring

stations and test their robustness through various data obtained from various environ-

ment, which can ensure the engineering quality in practical implementation.

• To develop predictive mathematical models, which can enable the monitoring system

to forecast the trend of groundwater quality, and provide guidance for human being

activities in advance. Right now, MSET and 1-SVM can only watch the current state,

having no capability of prediction.

• To further explore FEMs for groundwater event simulations. FEMs are capable of

incorporating intrinsic geometrical properties into computational fluid dynamics, since

they are more flexible for complicated domains and boundary conditions.

All further studies can make the groundwater anomaly detection system more powerful.
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