
DISSERTATION

AVOIDING SINGULARITIES DURING HOMOTOPY CONTINUATION

Submitted by

Timothy E. Hodges

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2017

Doctoral Committee:

Advisor: Daniel J. Bates

A. P. W. Böhm
Alexander Hulpke
Chris Peterson



Copyright by Timothy E. Hodges 2017

All Rights Reserved



ABSTRACT

AVOIDING SINGULARITIES DURING HOMOTOPY CONTINUATION

In numerical algebraic geometry, the goal is to find solutions to a polynomial system

F (x1, x2, ...xn). This is done through a process called homotopy continuation. During this

process, it is possible to encounter areas of ill-conditioning. These areas can cause failure

of homotopy continuation or an increase in run time. In this thesis, we formalize where

these areas of ill-conditioning can happen, and give a novel method for avoiding them. In

addition, future work and possible improvements to the method are proposed. We also

report on related developments in the Bertini software package. In addition, we discuss new

infrastructure and heuristics for tuning configurations during homotopy continuation.

ii



ACKNOWLEDGEMENTS

I would not be here without the help of my Ph.D. advisor, Dan Bates. Dan was infinitely

patient and understanding throughout my tenure as his student, for which I am forever

grateful. Many students may know Dan, and seek him for guidance, but I am one of the

lucky that has been able to call him my advisor. Dan, thank you for all the opportunities

and experiences you have given me.

In addition, I would like to thank my committee: A.P. Bohm, Alexander Hulpke, and

Chris Peterson. All three of you have been instrumental in my education, undergraduate

and graduate, and cannot be thanked enough. I appreciate all the challenges and discussions

you have put before me. I truly have been lucky to have a committee filled with professors

who helped shape who I am.

To my parents, Glen and Sue Hodges, thank you so much for support that is uncountable.

You have assuredly been waiting for my departure from school! (Don’t worry I am ready to

leave.) I could write an entire essay on the ways you both have helped me. Just know I am

the luckiest guy to have you both as my parents.

To my friends, thank you all for keeping me sane, being there at the hardest of times,

and giving me some amazing memories. Our friendships are priceless, and I look forward to

growing our friendships as we scatter across the world. All of you are more important to me

than I can ever explain, especially in an acknowledgements section.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Chapter 1. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. CLASSICAL ALGEBRAIC GEOMETRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. SYSTEMS OF POLYNOMIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. HOMOTOPY CONTINUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. BRANCH POINTS AND RAMIFICATION POINTS . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2. AVOIDING SINGULARITIES DURING HOMOTOPY CONTINUATION 11

2.1. LOCAL OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. CHOOSING A BOX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. FINDING BRANCH POINTS IN RECTANGLE R . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4. CREATING WAYPOINT W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5. PSEUDOCODE AND DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6. OUT PROOF-OF-CONCEPT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7. EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1. NEURAL NETWORK EXAMPLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.2. ADJACENT MINOR SYSTEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8. DISCUSSION OF METHOD OF AVOIDING BRANCH POINTS. . . . . . . . . . . . . 25

2.8.1. TIMING AND SCALING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9. OTHER METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3. OTHER PROJECTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



3.1. BERTINI 2.0 DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. AUTO TUNING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1. AUTO-TUNING AWAY FROM T = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2. CONCLUSIONS AWAY FROM T = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3. OPEN QUESTIONS IN AUTO-TUNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. THE NEAREST SINGULARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2. ESTIMATING THE ENDGAME BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 5. APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1. APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1. ILLUSTRATIVE EXAMPLE INPUT FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2. LAGRANGE POINTS INPUT FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



Chapter 1

BACKGROUND

This section gives a historical context to the reader for why we consider a set of polyno-

mials and the corresponding set of solutions. For this reason, if the reader does not wish to

read Section 1.1 they can skip to Section 1.2 where we start to define the necessary objects.

1.1. CLASSICAL ALGEBRAIC GEOMETRY

Given a set of polynomial equations, can we find the set of common solutions? This

question fueled the development of classical algebraic geometry. On one side, we have a

set of algebraic objects called polynomials. On the other is the corresponding geometric

object, the set of common solutions. Given a system of polynomials {f1, f2, ...fn} in variables

{x1, x2, ..., xn}, one may define the ideal, I = 〈f1, f2, ..., fn〉, generated by f1, f2, ...fn. An

ideal is a fundamental object in the area of Abstract Algebra [13]. For our discussion we will

consider a finite set of polynomials that generate an ideal.

For the purposes of this thesis, we choose to have our coefficients lie in the field of complex

numbers, denoted C. The field of complex numbers is algebraically closed. This ensures that

all solutions to a polynomial with coefficients in C will also be in C [13]. Below is an example

of why the real numbers, R, are not algebraically closed.

Example 1.1.1. The polynomial f = x2+1 has no solutions over the field of real numbers

R. If we instead choose the algebraically closed field of complex numbers, C, then f has two

solutions x = ±i.

1



If we consider a finite subset of elements f1, f2, ..., fk in a polynomial ring C[z1, z2, ..., zn],

can we find the set of points (z1, z2, ..., zn) that satisfy all polynomials f1, f2, ..., fk simulta-

neously? These points may be isolated or may lie on a higher dimensional set of solutions,

such as a curve or a surface. The object these points make is called a variety. To learn

more about varieties, refer to [11, 13, 17, 18].

Example 1.1.2. Consider the set of bivariate polynomials with complex coefficients. The

set of all such polynomials is denoted C[x, y]. The ideal I =< y− x2, y2 − 1 > consists of all

polynomial combinations of y − x2 and y2 − 1 i.e., f(x, y)(y − x2) + g(x, y)(y2 − 1) for any

f, g ∈ C[x, y].

For the first generator, y − x2, the solution set is the complex parabola y − x2 = 0, or

y = x2. For the generator y2 − 1, we see that y = ±1.

Since we seek to solve these two polynomials simultaneously, we must consider the inter-

section of their solution sets.

If y = 1, then y = x2 gives us x = ±1. For y = −1, we see that x = ±i.

Intersecting the solution sets gives us all possible solutions because we are working over

the complex numbers. Our variety, or solution set, is thus the set of four points,

{(1, 1), (−1, 1), (i,−1), (i,−1)}. This example illustrates why we must be careful not to visu-

alize in R, because we risk missing the solutions in complex space.

The computation of varieties and ideals has a rich history but is still a very active area.

How to compute these varieties when the ideals are nontrivial is the subject of the next

section.

2



1.2. SYSTEMS OF POLYNOMIALS

Going back to the 1960’s, there are algebraic methods for finding the common solutions of

a polynomial system. We cover them briefly for context before moving to a modern geometric

method, homotopy continuation. We reduce the notation of z1, z2, ..., zn to z. Consider now

a system of polynomials:

F (z) = {f1(z), f2(z), ..., fk(z)}, z ∈ C
n

The system F (z) has k equations in n unknowns. We can always take random linear combi-

nations of the fi to create a square system, thus making both the number of equations and

the number of variables n. At most, this will add solutions that do not solve the original

f1, f2, ..., fk, but these points can be removed easily [8].

How would we go about finding solutions that make f1 = f2 = · · · = fk = 0? One method

developed by Sylvester can be used to find the common roots to two univariate polynomials.

Sylvester’s use of resultants required the use of determinants of matrices that are filled with

the coefficients of the polynomials [11, 16]. This method was extended to more than one

variable but rapidly becomes more computationally expensive because of the determinant

calculations needed [15].

Another idea of how to solve this problem comes from how we normally solve linear

equations. Can we solve for one of the variables and back substitute to solve for the others?

This may not be entirely possible given the original set of polynomials. The idea behind

Gröbner bases is to make this method work.

Gröbner basis methods create a different set of polynomials p1, ..., pm with the same

solutions. This set has the property of having a unique remainder, given a particular ordering

3



on the monomials. This method is the right tool for many applications in Algebraic Geometry

[11–14, 16]. When the number of equations or variables grows too high, though, this method

also becomes computationally expensive [26].

We move to a modern geometric method of computing solutions. This method requires

that we design another polynomial system G = {g1, g2, ...gk} that has at least as many

solutions as F (z). We can then construct a homotopy to deform the solutions of G(z) to

the solutions of F (z) with extraneous solutions going off to ∞. This method is known as

homtopy continuation.

1.3. HOMOTOPY CONTINUATION

Homotopy continuation is a technique for approximating solutions of a system F(z;p) = 0

of n general nonlinear equations in variables z ∈ C
N and parameters p ∈ C

k. In this setting,

known solutions of system F(z;p0) = 0 at an initial parameter value p = p0 vary as p moves

along parameter space path η ⊂ C
k from p0 to a final parameter value p1. The m solutions

z
(ℓ)
0
, ℓ = 1, . . . ,m, of F(z;p0) = 0 are the starting points of solution paths in C

N that we may

follow to the solutions of F(z;p1) = 0. These m paths are followed approximately (tracked)

via numerical methods, described in great detail in [1].

By specializing to the case of systems of polynomial equations with n equations and n

variables, we can give names to a few members of this family of polynomials. The system

we wish to solve, F(z;p1) = 0, we call the target system. The starting points of our solution

paths, are the solutions the start system, F(z;p0) = 0

In basic homotopy continuation, k = 1, so we change our notation to H(z; t), with H

reflecting the fact that we now have a homotopy function.The canonical choice of homotopy

4



function is the straight-line homotopy [2],

(1.3.1) H(z; t) = f(z)(1− t) + tg(z)

This choice of homotopy glues together a start systemH(z; 1) = g(z) withm known solutions

and a target system H(z; 0) = f(z) that we wish to solve.

There are many well-known methods for choosing g(z) [8]. For example, we could do

this by defining:

gi(z) := z
deg(fi)
i − 1, i = 1, ..., n

Then the polynomials in f(z) and g(z) have the same degree. The definition of gi(z) gives us

the roots of unity around the circle in the complex plane defined by the complex variable zi.

The number of roots of unity is determined by the degree of fi(z). With this construction

we have a start system, g(z), that has the maximum number of distinct solutions that f(z)

could possibly have. This number is known as the total degree bound or Bézout bound [8].

This bound is one of many upper bounds, some of which may be lower. These various types

of bounds yield different choices of g(z) that may be easier or harder to solve. For more

options on start systems and their bounds, see [8].

The homotopy function

H(z; t) = f(z)(1− t) + tg(z)

is defined by the variables z ∈ C
N and t ∈ C, the latter of which is called the path variable.

The name path variable is appropriate because as we deform the solutions of g(z) into

solutions of f(z) we will be carving a path in the complex plane C. This path will be random

so as to avoid issues that will be discussed in Section 1.4. At values of t away from 1 and 0,

5



we have a combination of the solutions of F and G, and with probability one they will all

be distinct.

Basic numerical continuation amounts to a combination of numerical linear algebra and

some bookkeeping. The atomic procedure is the predictor-corrector step. Briefly, given a

point z(t1) on (or very near) a solution path where t = t1, there is a two-phase procedure

to compute an approximation z(t2) to a point on the solution path, for t2 = t1 − ∆t. A

prediction (e.g., from t1 to t2 along the tangent direction from z(t1), as in Euler’s method) is

followed by a correction phase, typically consisting of one or more steps of Newton’s method

with t frozen at t2. A schematic of one step is given in Figure 1.1. Such computations involve

only numerical linear algebra, i.e., solving a linear system Jx = y for various vectors x,y

and the Jacobian matrix J, consisting of all first partial derivatives of the polynomials of

H(z, t) with respect to variables z. If all goes well, this process will continue to t = 0.1, at

which time specialized algorithms, called endgames, are used to finish the deformation for

reasons described in section 1.4

predicition step

t
1t2

Δt

N
e
w

to
n
's

 m
e
th

o
d

Figure 1.1. One step in the predictor-corrector scheme.

A prediction can be done multiple ways varying from an Euler prediction to higher order

predictors that include an error estimate, e.g., Runge-Kutta-Fehlberg45 [23]. These meth-

ods are numerical ODE (ordinary differential equations) methods. A myriad of prediction

methods can be used in the Bertini software package [8, 5]. All work in this dissertation

6



uses Bertini [5], a numerical algebraic geometry software package, with MATLAB [25] and

BertiniLab [9], a module to help use MATLAB and Bertini together. There are other soft-

ware packages using homotopy continuation, see [10, 34].

What can go wrong during homotopy continuation? There may be numerical issues that

cause predictions to be outside of the basin of convergence for Newton’s method. These

issues occur when two paths are near each other, or if they collide at a singularity. These

collisions almost always occur at our target system if anywhere, but can occur outside of

t = 0. In this thesis, we will be attempting to avoid these singularities. In the next section,

we formalize what it means to be a singularity.

1.4. BRANCH POINTS AND RAMIFICATION POINTS

By virtue of the construction of H(z; t), for almost all choices of t ∈ C, the fiber of

projection π : CN×C → C onto the last component consists of the same number of points.The

solution set in this case will have ℓ distinct solutions that all have multiplicity one1. However,

there does exist a finite exceptional set of points in C where there is at least one solution

of multiplicity greater than one. More precisely, the set B ⊂ C consisting of points with

fewer than ℓ solutions is the solution set of a polynomial system. B is a solution set for

a polynomial system with n + 1 equations and n variables. This structure will make the

dimension of B a lower dimension than the ambient space C. Hence, dim(B) = 0 and there

are only finitely many points in the t-plane at which the number of solutions of H(z; t) = 0

is less than ℓ. It is for this reason that a randomly-chosen path η ⊂ C will contain no points

of B with probability one.

1More specifically, there is a Zariski open, dense subset of C for which this is true, the complement of
which is a finite set of points.

7



Points b ∈ B are called branch points. The corresponding solution z∗ of H(z, b) is called

a ramification point. In the picture below, the X represents the location of a branch point

in the plane defined by the path variable. Above the branch point is the ramification point

denoted by a star. Notice that only the dashed path has a ramification point. The black

path downstairs and corresponding solution curves upstairs do not encounter a singularity.

t
0 1

Figure 1.2. A 3-D depiction of homotopy continuation. The dotted path on
the bottom represents a curve traveled where no branch points are encountered.
The dashed path has a branch point at the X. The star above denotes the
corresponding ramification point. The colors of the paths above are on the
sheets created by homotopy continuation.

Upon choosing a random path from t = 1 to t = 0 in the complex plane, there is a

probability one gurantee of avoiding these branch points while doing homotopy continuation.

One method to achieve this randomness in η is the gamma trick [30], where a random γ ∈ C

is multiplied into the second term of homotopy H(z; t) in (1.3.1).

However, with numerical approximations, we are working in finite precision and can move

close enough to one of these points to encounter numerical issues. This is vastly more likely

to happen than encountering the actual branch point. These ill-conditioned zones around

8



branch points cause multiple issues. Using adaptive precision can counter this numerical

ill-conditioning and is described briefly below.

Given a matrix A ∈ C
n×n and vector b ∈ C

n, suppose we wish to approximate the

solution x ∈ C
n of Ax = b so that the computed solution x̂ satisfies |x − x̂| < δ for some

specified tolerance δ ∈ R
+ for some choice of norm. Working with P digits of precision,

a well-known result of Wilkinson [35] gives us that the number of accurate digits of x̂ is

approximately

P− log(κ(A)),

where κ(A) is the condition number of A [8, 21, 23]. Thus, to retain a desired accuracy

during continuation, one may actively adapt precision P during each predictor-corrector

step, based on approximations of the condition number of the Jacobian matrix, κ(J) [6, 7].

Newton’s method uses the Jacobian matrix, denoted J(z; t). This matrix includes all

first partial derivatives of the polynomials in our homotopy H(z; t). At a branch point, the

Jacobian matrix becomes singular. This is a condition that does not allow the Jacobian

matrix to be inverted. For Newton’s method, the Jacobian matrix must be invertible so if

we are at a branch point, Newton’s method is not possible.

If we are very near a branch point, the Jacobian matrix will be ill-conditioned, some-

times called nearly singular. Being ill-conditioned is defined by the condition number, κ(A),

becoming increasingly large in magnitude. For instance, at a branch point the condition

number is infinite. Ill-conditioning can lead to undesirable behavior and possibly divergence

of Newton’s method. This is caused by the instability when inverting a nearly singular

matrix.

Second, the use of prediction methods using the Jacobian may not be able to accurately

predict the next step if they are near a branch point. This is caused by the geometry near

9



a ramification point. When two distinct solutions are approaching each other, this occurs

very rapidly. These quick changes in the geometry make predictions difficult.

Currently, the program Bertini will adaptively change step size and increase precision

of approximations to combat the ill-conditioned zones near branch points. This is a good

solution given the work done by Wilkinson [35]. Shortening the step size allows for better

predictions to occur, and increasing precision of approximations decreases the size of ill-

conditioned zones. However, using adaptive multiple precision requires a significant increase

in run time. For example, an example with 8 equations and 8 variables causes a 13.3-fold

increase in run time when we move from fixed precision to adaptive multiple precision in 64

digits [7]. We wish to design a process that allows us to avoid singularities, thus decreasing

the need to adaptively change precision and perhaps step size during a run.

10



Chapter 2

AVOIDING SINGULARITIES DURING HOMOTOPY CONTINUATION

Given a set of polynomials f = {f1, f2, ..., fk} ∈ C[z], we want to find the common

solutions to the polynomials of f . To do so, we construct a start system, g, as in Section

1.2. We can then construct the homotopy, H, as in Section 1.3, i.e.,

H(z; t) = f(z)(1− t) + tg(z)

Consider the example,

h1(x, y, t) = (x3 − 1) · t+ (x3 + 2) · (1− t)

h2(x, y, t) = (y2 − 1) · t+ (y2 + 0.5) · (1− t)

(2.0.1)

This example first appeared in [31]. For almost all values of t ∈ C, there are six solutions.

There are at least two branch points, though. In particular, there are two triple roots at

t = 2
3
and three double roots at t = 1

3
. We assume that we are unaware of these branch

points a priori.

Our goal is to step through parameter space C from t = 1 to t = 0.1 along a path η

that avoids as many branch points as possible.1 There are several variants of this problem.

For example, one could seek the shortest possible path that stays at least ǫ from each

branch point for some small positive real number ǫ selected by the user or determined by

the characteristics of the homotopy. Since the determination of such an ǫ is a very difficult

1We seek to reach t = 0.1, not t = 0, as endgames [4, 28, 29] begin operating at t = 0.1 or some other
value of t away from 0, defined by the user.

11



problem (see Chapter 4), we instead seek to find as many branch points as we can in a

reasonable amount of time and choose a piecewise linear path that avoids all discovered

branch points by as far as possible.

2.1. LOCAL OPTIMIZATION

We employ the use of local optimization to find possible branch points. The particular

method we use is called gradient descent [23, 24] though many alternatives would suffice. To

use the method of gradient descent, we need to define an objective function. We introduce

an objective function that has a minimum at branch points. We construct the objective

function by taking all the polynomials in homotopy H and adding a few more homotopy

polynomials that indicate when our Jacobian is singular. These additional polynomials come

from the method in [3]. The matrix A in [3] will be our Jacobian matrix. In particular, we

have the system

(2.1.1) H̃ :=




H(t; z)

J(H(t; z)) · B ·




1

ξ2

...

ξn







.

This addition has added n equations since our Jacobian is an n × n matrix and we have

also added n− 1 new indeterminants, denoted ξi for i = 2, ..., n. These new indeterminants

will not increase the number of paths to track, since each equation added is linear in the

ξi. The matrix B is restricted to be a random unitary matrix so that B is numerically well

conditioned.

12



If the determinant of J is zero, J is singular. Recall from Section 1.4 that when the Jaco-

bian is near singular we may be near a branch point. Adding a single homotopy polynomial

that is the determinant of the Jacobian may seem better than adding n homtopy polyno-

mials in n new determinants. This is actually false as the determinant is usually a high

degree polynomial that can be hard to compute, especially for large examples. In contrast,

the method introduced in [3] adds n new equations, but they are all degree 1 in the new

indeterminants and lower degree than the original equations in the original variables.

The entire set of polynomials is then

{h1(z; t), h2(z; t), ...hn(z; t), j1(z, ξ; t), ..., jn(z, ξ; t)},

where hi are the original homotopy polynomials and ji are the additional homotopy poly-

nomials in the system (2.1.1), ξ is a set of new indeterminants. We may then construct our

objective function

(2.1.2) OF (z; ξ; t) =
1

2

(
h2
1 + h2

2 + · · ·h2
n + j21 + j22 + · · ·+ j2n

)
.

Near a branch point of H(z; t), OF (z; ξ; t) will have a minimum of 0. The converse is

not true, we may find minima of OF (z; ξ; t) that are not solutions to H(z; t) = 0.

2.2. CHOOSING A BOX

We first choose a rectangle R in the complex plane having t = 1 as the midpoint of the

right side, height ∆ti, and width ∆tr, as depicted in Figure 2.1. The choice of rectangle

dimensions is heuristic; we set ∆tr = 0.1, and ∆ti = 0.2 for now. Our goal is to rapidly find

as many branch points as possible within this box. To do so, we shift the solutions at t = 1

by a user-defined factor µ∆tr into the box, to a point we call t′, and run local optimization

13



methods from each of those solutions in an attempt to find nearby ramification points, which

are easily projected to branch points in C. The central idea is that for t′ ≈ 1 (i.e., ∆tr and

γ not too large), the solutions of H(z, t) at t = 1 should be near the solutions at t = t′.

Figure 2.1. Rectangle in which branch points are sought.

2.3. FINDING BRANCH POINTS IN RECTANGLE R

We can use local optimization methods along with the objective function (2.1.2) created

in Section 2.1 to search for branch points within box R. We constrain our optimization

problem to the interior of R; minimizers of OF (z; ξ; t) outside R are irrelevant in this step.

Notice that this optimization step could produce false positives. Indeed, a minimum

(z∗; ξ∗; t∗) of objective function OF (z; ξ; t) need not satisfy H(z∗, t∗) ≈ 0. Any computed

potential minima could be checked for this condition as well.

14



It is important to remember that this method is intended as a fast heuristic, not a

complete algorithm. There is no guarantee that all branch points within R will be found.

In fact, it is possible for there to be more branch points inside R than start points for

optimization. However, if we can avoid some ill-conditioned zones, time may be saved during

path tracking. Since not all branch points may be found, it is advisable that this method be

paired with an adaptive precision method to work through any undetected ill-conditioned

zones.

2.4. CREATING WAYPOINT W2

Once local optimization has terminated, we have a (possibly empty) collection of ap-

proximations of branch points within the rectangle R. The task now is to choose a new

waypoint w2 to be connected to the first waypoint w1 = 1 while avoiding as many of these

potential branch points as possible. It is obvious that the length of the path for t contributes

to longer runtime, so it is best not to stray farther than necessary from the real line. To

partially mitigate this concern, we set up two guards that ensure that we only move to the

left, in the general direction of t = 0.1. Figure 2.2 shows two such guards. In the case that

the optimization phase produces no approximate branch points, w2 should be chosen in the

direction of t = 0.1, the ultimate target of path η.

Figure 2.3 illustrates how we choose to navigate through the box from waypoint wi to

waypoint wi+1. If ∆ti = .2,∆tr = .1, then our guards are ±π
4
radians from the horizontal

line extending to the left from the waypoint. Once the guards are in place, we can compute

angles between the guards and the nearest branch point. We continue this process for nearest

neighbors of possible branch points, decided by the line segment from the current waypoint

to the possible branch point. Once this is done, we can compute the largest angle between

15



Figure 2.2. Rectangle R after optimization with minima (dots) and guards
(labeled line segments).

nearest possible branch points. In Figure 2.3 we see that θ3 is the largest angle. We take

this largest angle and bisect it. We move to the next waypoint by following all solutions

from the previous waypoint, using standard continuation.

How far do we wish to move in this direction? The width of the box, ∆tr, is not optimal

because we do not know if there are branch points right outside of the box. For this reason,

we move a fraction of the width, µ∆tr where µ < 1. This is a user defined tolerance, with

default set to µ = 3
4
. We call this new point, waypoint w2. We can now repeat the process

going from waypoint wi to waypoint wi+1 until we get to t = 0.1.

What if our path does not lead to t = 0.1? This is a valid concern. If we find no branch

points in a box, we move in the direction of t = 0.1. At the end, when the real part of t is

0.1, we can always take one more piecewise linear step from t = 0.1 + ai, where a ∈ R, to

16



Figure 2.3. We start with solutions at the waypoint w1. We shift them and
use local optimization to find the green points that are possible branch points.
We next want to find a way to avoid the branch points. Starting with making
the left and right guards to make sure we move toward t = 0.1, we compute
the angles between nearest neighbors and the guards. We take the maximal
angle θ3 and bisect that angle. This angle will stay as far as possible from
detected possible branch points.

t = 0.1. An alternative method would be to weight the decision to move towards t = 0.1 as

more desirable as we progress through the procedure. At the current time are details that

are left to future work.

17



2.5. PSEUDOCODE AND DETAILS

As described above, the point of avoiding ill-conditioned zones around branch points is

to save computational resources, with the aim of making the whole run more efficient. Of

course, it would be counterproductive to use massive computational resources to construct

path η. A guiding principle is thus to choose η on the fly as rapidly as possible. Naturally,

one must weigh efficiency against certainty. A rapid, careless search saves η construction

time but may miss branch points; a slow, careful search takes more η construction time but

will also catch more branch points. Finding the optimal balance remains an open problem,

and is surely problem and user dependent.

This heuristic contains various choices that can easily be replaced. For example, it might

be beneficial to choose segments of η differently, to use a different objective function, to

use different optimization methods, etc. Also, the various tolerances of the heuristic are all

user-defined and could possibly be made adaptive. The choices in the pseudocode seemed

reasonable, if not optimal, as we investigated this technique.

On a similar note, our method synchronizes the tracking of all paths. It might be better

to choose η for one path or a small batch of paths at a time. In that case, one must be

careful of handling monodromy appropriately.

In this section, we provide a formal statement of our method in pseudocode, followed by

remarks about various details.

18



Heuristic to determine path η

Input: Homotopy H(z; t); m solutions S of h(z; 1) = 0; (optionally) parameters ∆tr,∆ti
defining search boxes.
Output: Piecewise linear path η from t = 1 to t = 0.1, given as a sequence of waypoints wi,
i = 1, . . . , k.

1: Set w1 = 1.
2: Set k = 1.
3: Set ∆tr = 0.1,∆ti = 0.2 if not provided. ⊲ Fixed here; could be made adaptive.
4: while t 6= 0.1 do

5: Set t = wk −
1
2
∆tr. ⊲ t is the midpoint of the box.

6: Set b = 0. ⊲ Counts branch points discovered.
7: for i = 1, . . . ,m do

8: Run optimization problem, ⊲ OF (z; ξ; t) defined in equation 2.1.2

minimize
z,ξ,t

OF (z; ξ; t)

subject to t ∈ X

starting from ith point of S. ⊲ Box X constructed from wk,∆tr,∆ti
9: if Convergence to a branch point within the box determined by ∆tr,∆ti then

10: Store minimum in B, increment b.
11: end if ⊲ Ignore runs that leave the box.
12: end for ⊲ Now have some branch points within the box.
13: Order B based on imaginary part.
14: for j = 1, . . . , b− 1 do

15: Find angle αj between B[j] and B[j + 1], measure from wk.
16: end for

17: Set J = j such that αj > αi∀i 6= j. ⊲ Max angle between branch points.
18: Let vJ be the vector that makes the angle αJ with the horizontal.
19: Increment k.
20: Set wk = wk−1 +

µ∆tr
cos(αJ )

vJ

21: ⊲ If B = φ then vJ is the vector from wk−1 to 0.1
22: Reset B = φ.
23: end while

2.6. OUT PROOF-OF-CONCEPT IMPLEMENTATION

We implemented this heuristic using a combination of MATLAB [25] and Bertini [5].

To interface between these, we used the MATLAB package BertiniLab [9]. In addition, all

settings, e.g., rectangle dimensions, shifting factor, and start systems, are controllable by

the user. The use of Matlab and BertiniLab significantly adds to the computation time,

compared to a Bertini-only run. In particular, each time a set of paths is tracked, there is

19



mathematically unnecessary significant overhead with the reading and writing of files. With

the ongoing redevelopment of Bertini as Bertini 2.0, we intend to implement this technique

natively, surely giving much better run times. The implementation of this heuristic is part

of a bigger project that will be discussed in Section 3.1.

2.7. EXAMPLES

Recall Example 2.0.1 from Chapter 2.





h1(x, y, t) = (x3 − 1) · t+ (x3 + 2) · (1− t)

h2(x, y, t) = (y2 − 1) · t+ (y2 + 0.5) · (1− t)

(2.7.1)

There are at least two branch points, in particular, there are two triple roots at t = 2
3
and

three double roots at t = 1
3
.

One run of an implementation of our heuristic yielded Figure 2.4. Notice that we pick

up two minima around t = 2
3
. This pushes our piecewise linear path below the real axis.

Once we are beyond the minima, we start moving toward t = 0.1. Around t = 1
3
we do

not encounter any minima. This may be a sign that we are too far from the minimum to

notice the ill-conditioned zone around t = 1
3
. One must keep in mind that this heuristic has

a random unitary matrix in the construction of the objective function 2.1.2. For this reason,

another run of our heuristic would give us a different path.

20



2.7.1. NEURAL NETWORK EXAMPLE. Another example comes from [32]. Ex-

plicitly, the homotopy is,





h1(x, y, z, t) = (xy2 + xz2 − 11
10
x+ 1) · t+ (x3 − 1) · (1− t)

h2(x, y, z, t) = (yx2 + yz2 − 11
10
y + 1) · t+ (y3 − 1) · (1− t)

h3(x, y, z, t) = (zx2 + zy2 − 11
10
z + 1) · t+ (z3 − 1) · (1− t).

(2.7.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t real

t 
im

a
g
in

a
ry

Figure 2.4. A run using Example 2.0.1.

This system has at most 42 points according to a run using Bertini. This system should

cause a more turbulent path to be constructed, and indeed it does. In fact, the solution set

at t = 1
2
has a multiplicity 84 solution. If we look at Figure 2.5 we see that there is definitely

a detection of minima around t = 1
2
. Once beyond t = 1

2
, we attempt to move back towards

t = 0.1, and encounter one more minimum before being able to construct a path straight to

t = 0.1.

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t real 

t 
im

a
g
in

a
ry

Figure 2.5. Illustration of path formation for Example 2.7.2 using our heursitic.

2.7.2. ADJACENT MINOR SYSTEMS. A final example to illustrate the procedure

outlined in Chapter 2 is the set of adjacent minor systems. To construct an adjacent minor

system, we first consider a matrix of size 2×n. Let this matrix be filled with indeterminants,

as shown below.




x1 x2 x3 . . . xn

xn+1 xn+2 xn+3 . . . x2n




We take as our polynomials the 2× 2 adjacent minors of this matrix, using only columns

adjacent to each other. This yields n − 1 equations in the 2n variables explicitly stated in

equation 2.7.3. Notice that this construction has given us a non-square system, particularly

an underdetermined system with more variables than constraints. This therefore has a

positive dimensional solution set. Adding random linear equations, we can make this system

square. This reduces our solution set to isolated solutions.

22







f1 = x1xn+2 − x2xn+1

f2 = x2xn+3 − x3xn+2

f3 = x3xn+4 − x4xn+3

...

fn−1 = xn−1x2n − xnx2n−1

(2.7.3)

This system has been studied and has a complete intersection with codimension is n− 1

and degree is 2n−1 [22]. The linear equations we add are in the same variables and are

denoted L1, L2, ..., Ln+1. For ease, we will consider x =< x1, x2, ...., x2n >.

We can now construct a homotopy system,





h1(x) = f1(x) · t+ (x2
1 − 1) · (1− t)

h2(x) = f2(x) · t+ (x2
2 − 1) · (1− t)

h3(x) = f3(x) · t+ (x2
3 − 1) · (1− t)

...

hn−1(x) = fn−1(x) · t+ (x2
n−1 − 1) · (1− t)

hn(x) = L1(x) · t+ (xn − 1) · (1− t)

hn+1(x) = L2(x) · t+ (xn+1 − 1) · (1− t)

...

h2n(x) = Ln+1(x) · t+ (x2n − 1) · (1− t)

(2.7.4)

23



Figures 2.6 and 2.7 are runs where the matrix we consider is 2× 3. The output in Figure

2.7 shows that there is a consistent area near t = 0.8 that is causing us to change our path.

We also encounter a possible singularity that was not detected during our first run. Notice

that we do not avoid this one as well. This could be because it was near a waypoint that we

had moved to in a previous step.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t real 

t 
im

a
g
in

a
ry

Figure 2.6. Adjacent minor run using a 2× 3 matrix of indeterminates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t real

t 
im

a
g
in

a
ry

Figure 2.7. A second run of the adjacent minor system using a 2× 3 matrix
of indeterminates.

24



2.8. DISCUSSION OF METHOD OF AVOIDING BRANCH POINTS

The primary benefit of this new method is the ability to avoid some ill-conditioned zones

during homotopy continuation. Ill-conditioning leads to higher precision or, alternatively,

inaccuracy. The former can be expensive; the latter is dangerous.

As the number of variables increases, it may become harder to find minima that may be

branch points. This is caused by the fact that even if all but one of the coordinates match

a branch point exactly, we still will have issues converging to that point. This can be seen

looking at Example 2.6 compared to Example 2.7. The method finds points to avoid, but

seems to find fewer in Example 2.6. As the number of variables increases, we are then trying

to converge in a larger space. Also, as the number of variables and the number of equations

increase we will see a slow down in run time, as is the case with any method. Much of this

has to do with the synchronization of all the paths to a specific t value. The more paths

there are to move, the longer it will take to move all of the paths.

Another slow down is the interfacing between Bertini [5] and MATLAB [25]. Much of the

interfacing currently requires the use of reading and writing to files. This is unnecessarily

slow. In Section 3.1 we discuss a plan to allow all interfacing to be done in Bertini. This

would eliminate the use of MATLAB and will allow us to streamline all the heuristics into

a seamless package. With the work described in Section 3.1, it may also be feasible to avoid

synchronizing paths.

25



Problem Tot. Time Optim. Time Bertini/Communication Time
Noon3 428 270 154
Noon4 637 114 517

Adjacent Minor (2x3) 136 40 92
Adjacent Minor (2x6) 1098 45 1026
Adjacent Minor (2x9) 16985 2253 14658

Figure 2.8. Average run times for running our proof-of-concept implemen-
tation on five examples several times each, in seconds.

2.8.1. TIMING AND SCALING. Figure 2.8 shows us that the overall time is domi-

nated by two operations: optimization and communication time between Bertini and MAT-

LAB. Optimization time is the time added by the new method of this paper. Notice that it

seems to scale relatively well, especially in comparison to the inescapable Bertini run times.

Bertini run times are also expected to decrease significantly with the development of Bertini

2.0. Communication time will be cut to 0 when this method is implemented natively within

Bertini 2.0. Thus, comparison of these run times to existing packages is misleading; this new

method, as currently implemented, cannot compete.

The question of how useful this method will be once it is fully operational cannot be

decided until Bertini 2.0 is completed in the coming years. For now, this method is in-

tentionally left at the proof-of-concept stage, to be more carefully studied, modified, and

optimized once a thorough implementation is feasible.

26



2.9. OTHER METHODS

There are currently four methods for handling branch points during homotopy continu-

ation related to this method: Using adaptive precision (the current default in Bertini), not

using adaptive precision (the default in all other numerical algebraic geometry software pack-

ages), finding all branch points, and the monodromy technique of [31]. This thesis proposes

a fifth.

Finding all branch points for a homotopy H(z, t) is a harder problem than finding the

solutions of H(z, t) itself. Indeed, one can write down a polynomial system that has among

its solutions all branch points of H(z, t). In Section 2.1 we discuss one way to create such a

polynomial system. However, this system has more polynomials and variables than H(z, t)

and comes with the intrinsic problem that it, too, requires the handling of branch points in

some way. Furthermore, not all branch points are needed! We care only about those near

the real line, between t = 0 and t = 1, at least for a standard, straight-line homotopy.

Instead of relying on homotopy continuation to solve a problem related to homotopy con-

tinuation, one could employ exact methods, e.g., those based on resultants, to find all branch

points. In fact, we first experimented with this approach but found it to be prohibitively

inefficient, though we admittedly used black box methods in a relatively näıve way. Once

we realized that we don’t even care to know about branch points in the vast majority of C,

we abandoned this method in favor of local methods.

Finally, as in [31], one could use the condition number as a signal for the presence of an

ill-conditioned zone. The method of this paper and the method of [31] are both heuristics,

with various benefits and limitations, and the optimal method might be some combination

of the two. A decision on this can be made only after a careful implementation of all options

has been completed.

27



Chapter 3

OTHER PROJECTS

All software reaches a point where redevelopment becomes desirable. Reasons can include

limitations resulting from language choice, inflexibility of the original design, or external

forces such as demands beyond the scope of the original design. Bertini is currently under

redevelopment for many reasons, some of which are mentioned above.

3.1. BERTINI 2.0 DEVELOPMENT

For my professional development, I decided to become a developer for the software Bertini

2.0. The skill set gathered by becoming a developer is diverse and has helped me start a

career in software development after my degree is completed. Also, by directly implementing

algorithms that I use on a daily basis, I am allowing myself to see possible optimizations.

These algorithm and software optimizations are aimed at making homotopy continuation as

computationally efficient and robust as possible.

Before redeveloping or creating any software package there should be clear preparations

to reduce the risk of wasting time and resources [27]. Clearly defining the requirements of the

software will make sure you are solving the correct problem when constructing the software.

The Bertini 2.0 team has clearly defined requirements for redevelopment. The main goal is to

allow Bertini 2.0 to be flexible, modular, and extendable for the foreseeable future. We must

allow backwards compatibility and ensure that Bertini 2.0 is user friendly. Also, a developer

goal is to reduce the duplicate code that exists inside of the original implementation. I

redeveloped the endgame algorithms inside of Bertini with these goals in mind.

28



The two endgames in particular are the Cauchy endgame and the Power Series endgame.

There are many references that explain these two algorithms; see [8, 28, 29]. To achieve

flexible, modular code, we use object-oriented programming and make the Cauchy Endgame

and Power Series Endgame into derived classes of a general endgame class. For more on

object oriented programming, see [33].

In the original implementation of Bertini the endgames are responsible for tracking a

path from t = 1 to the endgame boundary, before actually executing the endgame. To be

modular and flexible, we remove the tracking to the endgame boundary from the endgames.

This makes the endgames a modular unit that is specifically used for the end of homotopy

continuation. In addition, the original implementation had duplicate code to allow for double

precision arithmetic or multiple precision arithmetic. In the redevelopment, the different

endgame classes are templated based on the type of numbers that have been used to track

to the endgame boundary. This reduces the duplicate code and also increase readability for

the users and developers. It should be noted that templating increases compile time but is

a one time compilation step. The Bertini 2.0 team has agreed that this is acceptable.

The use of classes and object-oriented programming allows there to be specific objects

that hold all the algorithms needed for computation. Then, using the idea of inheritance,

there are derived classes that are specific for certain types of endgames. Specifically, the

fixed precision endgames and the adaptive precision endgames. These changes in structure

allow the endgames to hold their “state” in member variables, and can allow for outside

functions to observe and trigger events outside of the endgames. The use of observers and

events is crucial for the problem stated in Section 3.2.

Up to this point, we have discussed how to reduce duplicate code to make Bertini 2.0

flexible. To allow user friendliness and backwards compatibility, the Bertini 2.0 team has

29



adopted the paradigm of test driven development (TDD). This paradigm requires a developer

to design test cases for every function that they create. This allows for stable development.

If a change to the code causes a set of cases to fail, either the tests are no longer correct or

the change has altered existing functionality. In addition, a new user can look at the test

cases to find out how to use the functions. The use of test cases also allow Bertini 2.0 to be

checked against Bertini 1.0 and make sure we have backward compatibility.

The implementation of the endgames in Bertini 2.0 has been an invaluable experience to

me. I have realized I enjoy computer programming and would like to have a career where

my mathematics background and joy of programming allow me to help create unique algo-

rithms and implementations to solve challenging problems. In particular, the application

of local optimization to avoid branch points during homotopy continuation can be directly

implemented into Bertini 2.0. Many of the issues concerning this method of avoiding branch

points comes from the use of files and that the handling of data is clumsy due to imple-

mentation diffiiculties using MATLAB [25, 9]. Both of these issues will be overcome by

implementing my heuristic in Bertini 2.0. In Bertini 2.0, all data can be held in memory

and can be handled appropriately to streamline the use of homotopy continuation. I look

forward to implementing the heuristic in this manner and comparing the resulting capability

of my heuristic.

3.2. AUTO TUNING

When running Bertini, there are many warnings and messages that one can encounter.

Bertini will warn about potential path crossings and will remark on path failures. These

path failures can happen by reaching maximum precision while tracking a path or by tracking

to a minimum time value. As a user, these warnings and messages can be frustrating and

30



difficult to remedy. Along with warnings, users can encounter slow performance and wish to

increase the speed at which Bertini solves their particular problem.

Fortunately for the Bertini user, there are user-defined settings to mitigate any issues

that arise. The unfortunate aspect is a user may not know which settings to alter to alleviate

a specific warning/problem they are encountering. In Appendix E of [8] there is a list of 69

user-defined settings. Nineteen of these settings come with a finite number of choices, for

example predictor choice, leaving the user with around 1.2 billion combinations to choose

from. The other 50 settings are floating point tolerances or other discrete settings that are

theoretically infinite in their number of combinations.

The problem of picking user defined settings can be daunting one the inexperienced user.

A user’s best solution is to consult with an expert, but there are very few experts and their

time is limited. This causes a major bottleneck and the user is left waiting to hear back from

an expert. It would be extremely useful if Bertini could decide some settings to be more

optimal for the given problem a user wishes to solve. There is, however, no analysis on the

possible settings or heuristics that would best suit a certain problem. Some users try their

best to choose settings, but whether or not these choices are optimal (or even reasonable) is

impossible to know.

The problem is more complex than just finding the optimal settings for a polynomial

system. First, not all polynomial systems are created equally. Depending on the structure of

the system, and how the user wants to solve the system, the settings that are optimal for one

problem may be completely different than those from another problem. Different users may

prefer speed over security. The sheer amount of combinations of settings makes it not entirely

clear which settings to choose. Also, there are many other aspects of solving polynomial

31



systems that need to be considered. How does one certify an answer or validate/verify the

solving of a polynomial system?

We have started to build an auto-tuning tracker to solve this complex problem. It is clear

that many decisions must be made. What data should be used in decision making for an

auto-tuning tracker? What problem sets would this be best used on? Are there user defined

settings that are negligible? We are starting by collecting data and analyzing condition

numbers during tracks to best sort singularity issues. An auto-tuning tracker could use the

method from Chapter 2 to decide on what direction to move during homotopy continuation.

The implementation of an auto-tuning tracker also ties back to the project in Section

3.1. During redevelopment, we can create an infrastructure of observers to watch for certain

events during homotopy continuation. Observers are objects that can watch and react to

events.This will allow for seamless interfacing during homotopy continuation to determine

when settings should be changed.

3.2.1. AUTO-TUNING AWAY FROM T = 0. This project is split into two parts,

the study of homotopy continuation away from t = 0 and that around t = 0. These two

areas are studied independently because each of these areas use different algorithms. For

instance, homotopy continuation around t = 0 uses the endgames [8]. Most data collection

and work has been done on homotopy continuation away from t = 0.

My collaborators and I decided to look at a subset of settings that a user can set dur-

ing a Bertini run, namely: prediction method, tracking tolerance, and number of Newton

iterations. These settings are commonly-adjusted and serve as a basis to start our analysis.

In Section 1.3 we discussed basic homotopy continuation and how you need to choose a

prediction method. By using prediction method as one of our settings, we can see how lower

and higher order predictors perform. Tracking tolerance is a setting that allows us to choose

32



how small our Newton residual must be to say that a predictor-corrector step is successful.

Number of newton iterations is how many times we are allowed to run newton iterations

to try to correct back to the path. The dependence of run time on the choice of random

numbers prompts us to run each set of settings five times with different random seeds inside

of Bertini. This allows us to look past minor inconsistencies that may be due to picking a

bad random seed.

We have so far used two polynomial systems in particular. These systems are smaller

and have been used to calibrate the settings we will use in the future to study larger systems.

The first system has been coined the “illustrative example.” It illustrates the different types

of solution sets one can find in numerical algebraic geometry as its solution set consists of

an isolated point, a curve, and a surface. This system, in input file format, can be seen in

the Appendix A.

The second system is discussed in detail in [8]. This system is known as the “Lagrange

points problem.” This is because it originates from Lagrange’s paper that gives the exact

solution to the three-body problem of gravitation. The input file format of this problem can

be seen in Appendix A. The Lagrange points problem has been observed to be more sensitive

to settings in Bertini than the illustrative example.

These two systems are the starting point for our data collection in the Auto-Tuning

project for Bertini 2.0. The plots in Figure 3.1 and Figure 3.2 display the data collection on

both systems described above.

33



P
re

d
ic

ti
o
n
 M

e
th

o
d

-1

0

7

5

2

1

1e-4

14,238

10,237

16,235

1,240

0,240

3,240

0,240

0,240

0,240

7,240

1,240

4,240

1,240

1,240

1,240

1,240

2,240

14,63

1e-5

14,228

13,237

21,234

10,240

5,240

1,240

1,240

0,240

1,240

0,240

3,240

3,240

1,240

2,240

3,240

0,240

1,240

15,5

Illustrative Example With Random Seed 0938475172

1e-6

18,214

17,197

15,236

20,238

Tracking Tolerance

1,240

5,240

2,240

1,240

1,240

4,240

1,240

2,240

5,240

1,240

1,240

1,240

2,240

16,5

1e-7

20,235

31,238

29,112

1,240

0,240

4,240

3,240

1,240

9,240

1,240

1,240

1,240

26,97

1,240

6,240

3,240

1,240

14,5

1e-8

17,240

42,231

25,235

11,240

2,240

1,240

1,240

4,240

1,240

3,240

1,240

1,240

1,240

33,17

31,24

5,240

2,240

15,5

1e-9

18,240

44,214

31,233

28,238

2,240

4,240

4,240

1,240

1,240

1,240

1,240

7,240

1,240

1,240

3,240

31,6

14,5

34,5

47,159

37,226

34,240

11,240

11,240

44,234

1,240

4,240

2,240

2,240

6,240

3,240

2,240

2,240

2,240

14,5

34,5

30,5

1e-10

3

2

1

N
e
w

to
n
 I
te

ra
ti
o
n
s

Figure 3.1. Lattice where each point in the lattice corresponds to a run with
a different group of settings. The color depicts how many solutions we have
correct up to the tracking tolerance we picked. The two numbers by each
lattice point depict run time and number of solutions that were not affected
by path crossings respectively.

3.2.2. CONCLUSIONS AWAY FROM T = 0. There are some conclusions drawn

from the data collected from the illustrative example and Lagrange points problem. First,

we should keep the number of newton iterations below 3. From our discussion in Section 1.3,

Newton iterations are used to correct back to the path in homotopy continuation. It may

seem beneficial to let Newton’s method run until it converges or diverges, but this can be

risky. If we happen to take a prediction step into a different Newton convergence basin and

we take too many Newton iterations, we can get a path crossing. For this reason it is better

to allow failure of our predictor-corrector scheme. Allowing failure will reduce the possibility

to path crossings to the case when paths are very close to each other. In Section 1.4 the

idea of adaptive stepsize is mentioned, and is another feature to reduce the likelihood of

34



P
re

d
ic

ti
o
n
 M

e
th

o
d

-1

0

7

5

2

1

1e-4

137,389

144,381

173,379

14,392

57,392

15,392

36,392

77,392

7,392

7,392

7,392

6,392

5,391

5,391

4,391

5,392

8,392

60,0

1e-5

178,357

160,381

203,365

39,392

24,392

89,392

63,392

12,392

26,392

6,391

7,391

6,392

9,392

6,391

7,392

9,392

6,392

59,0

Lagrange Point With Random Seed 0938475172

1e-6

115,242

190,391

200,379

Tracking Tolerance

98,174

51,392

45,392

12,392

54,392

19,392

45,392

13,392

9,392

8,392

9,392

8,392

8,391

8,392

59,0

1e-7

232,378

414,384

111,103

11,392

13,392

33,392

49,392

11,392

99,392

11,392

18,392

19,392

102,97

88,392

30,392

9,392

9,392

56,0

1e-8

202,391

336,375

160,392

27,392

16,392

17,392

15,392

40,392

21,392

61,392

1488,0

17,392

13,392

22,392

50,392

110,0

116,0

56,0

1e-9

556,266

305,392

113,392

538,374

104,392

464,388

39,392

33,392

62,392

29,392

35,392

30,392

39,392

28,392

53,392

109,0

116,0

57,0

1245,147

1019,350

1119,376

741,392

101,392

208,392

234,392

275,392

59,392

59,392

70,392

79,392

63,392

57,392

53,392

455,0

561,0

224,0

1e-10

3

2

1

N
e
w

to
n
 I
te

ra
ti
o
n
s

Figure 3.2. Each point in this lattice corresponds to a run with a different
group of settings. The color depicts how many solutions we have correct up to
the tracking tolerance we picked. The two numbers by each lattice point depict
run time and number of solutions that were not affected by path crossings,
respectively.

path crossings. However, when we allow only one Newton step we have many issues. It can

be very slow, because with only one Newton iteration we will quite often fail to converge.

Failing to converge means we take shorter steps with adaptive stepsize, and this will cause

many paths to fail from reaching maximum number of steps allowed.

Also, from Figures 3.1 and 3.2, we see that the constant predictor is inefficient. Most

predictors like Runge-Kutta and its variants use information from the Jacobian matrix at

a certain point. For more on the specifics of these prediction methods, please consult [23].

The constant predictor does not use this information and instead attempts to move only

the t value and leave all other values constant. One caveat is that the constant predictor

is still a very useful option if a user wishes to use certification methods [19, 20]. To certify,

35



the algorithm must be able to assert validity at each step of the homotopy continuation

algorithm. This is only achieved with the constant predictor at the current time.

If we tighten our tracking tolerance and use lower order predictors, we see that we fail

many paths. This has to do with the maximum number of steps we are allowed to use on any

given path. A quick conclusion is that if you wish to use lower order predictors but strict

tracking tolerance, you should increase the number of steps allowed for any given path. This

will increase the success rate but will also increase run time.

The current analysis shows that using a loose tolerance with a higher order predictor

with limited number of Newton iterations appears to be optimal, at least for these examples.

This can be seen from Figures 3.1 and 3.2. We see a high rate of success with limited

path crossings, and our run time is small. We must consider more examples with various

structures and contexts to see if this is more generally the case.

3.2.3. OPEN QUESTIONS IN AUTO-TUNING. The analysis done so far is a good

start but leaves many open questions.

(1) Are there other settings that we should look at with or without those that we have

already explored?

(2) Are there other metrics of success that we should monitor?

(3) What problems should be considered for the next set of analysis?

36



Chapter 4

FUTURE WORK

This section details two problems to consider in the future. The author would encourage

any reader to suggest ways of progressing on either project.

4.1. THE NEAREST SINGULARITY

The heuristic discussed in this paper has given a way to navigate during homotopy

continuation in order to avoid branch points. After working on this heuristic, a decision that

has to be made is how far to travel in a particular direction before doing another round of

searching for singularities. The inverse of the condition number gives a relative distance to

the nearest singular matrix [21]. However, it is not known how to find the direction to this

nearest branch point. If this direction could be found, it would allow path determination

from Section 2.4 to be more informed as it would provide nearest singularity to avoid.

4.2. ESTIMATING THE ENDGAME BOUNDARY

In Bertini, the default value for the endgame boundary is t = 0.1. This is the radius of

the disk centered at the origin inside which we assume there are few or no branch points.

Heuristically, this value is fine, but in practice, it turns out that there are usually branch

points inside this disk. Convergence of the endgames requires that we be inside the endgame

boundary [8]. For this reason, it would be desirable to know a better value, computed or

heuristically found, for the endgame boundary.

37



The method for avoiding singularities may be of use for this application. Searching for

singularities inside the disk could reduce the amount of computation needed to reach the

actual endgame boundary for a specific run. In fact, if run on an application with a large

number of paths, we may be able to discern a “best” endgame boundary for most paths. Not

much is known about how large or small the endgame boundary can be. This project could

produce a new way of looking at how the endgame boundary is chosen and may significantly

decrease run time by avoiding useless endgame iterations.

38



BIBLIOGRAPHY

[1] E. L. Allgower and K. Georg. Introduction to Numerical Continuation Methods. SIAM,

Philadelphia, 2003.

[2] M.A. Armstrong. Basic Topology. Springer-Verlag, third edition, 1983.

[3] D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese. Numerical decomposition

of the rank-deficiency set of a polynomial matrix. Approximate Commutative Algebra,

1:1–22, 2010.

[4] D.J. Bates, J.D. Hauenstein, and A.J. Sommese. A parallel endgame. Contemp. Math.,

556:25–35, 2011.

[5] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Bertini : Software for

numerical algebraic geometry. Available at betini.nd.edu.

[6] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Adaptive multipreci-

sion path tracking. SIAM Journal on Numerical Analysis, 46:722–746, 2008.

[7] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Stepsize control for

adaptive precision path tracking. In Interactions of Classical and Numerical Algebraic

Geometry, volume 496 of Contemporary Mathematics, pages 21–31. American Mathe-

matical Society, 2009.

[8] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Numerically Solving

Polynomial Systems with Bertini. SIAM, 2013.

[9] D.J. Bates, A. Newell, and M. Niemerg. Bertinilab: A matlab interface for solving

systems of polynomial equations. Numerical Algorithms, 71:229–244, 2016.

39



[10] Tianran Chen, Tsung-Lin Lee, and Tien-Yien Li. Hom4PS-3: A Parallel Numerical

Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continu-

ation Methods. In Hoon Hong and Chee Yap, editors, Mathematical Software – ICMS

2014, number 8592 in Lecture Notes in Computer Science, pages 183–190. Springer

Berlin Heidelberg, January 2014.

[11] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer Verlag, 1998.

[12] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-6 — A computer

algebra system for polynomial computations, 2012. http://www.singular.uni-kl.de.

[13] D.S. Dummit and R. Foote. Abstract Algebra. John Wiley and Sons, Inc., 2004.

[14] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Spinger,

2004.

[15] B. Grenet, P. Koiran, and N. Portier. On the complexity of the multivariate resultant.

Journal of Complexity, 29:142–157, 2012.

[16] G-M Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer,

2008.

[17] R. Hartshorne. Algebraic Geometry. Springer Science Business Media, 1977.

[18] B. Hassett. Introduction to Algebraic Geometry. Cambridge University Press, 2007.

[19] J.D. Hauenstein and A. Jr. Liddel. Certified predictor-corrector tracking for newton

homotopies. Journal of Symbolic Computation, 38:239–254, 2016.

[20] J.D. Hauenstein and F. Sottile. alphacertified: Certifying solution to polynomial sys-

tems. ACM Transactions on Mathematical Software, 74:28:1–28:19, 2012.

[21] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New York,

2010.

40



[22] S. Hosten and S. Sullivant. Ideals of adjacent minors. Journal of Algebra, 277:615–642,

2004.

[23] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific Computing.

Brooks/Cole, Pacific Grove, 2002.

[24] D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Spinger, New York,

2008.

[25] MATLAB. 8.5.0.197613 (R2015a). The MathWorks Inc., Natick, Massachusetts, 2015.

[26] E.W. Mayr and A.R. Meyer. The complexity of the word problems for commutative

semigroups and polynomial ideals. Advances in Mathematics, 46:305–329, 1982.

[27] S. McConnell. Code Complete. Microsoft Press, 2 edition, 2004.

[28] A. P. Morgan, A. J. Sommese, and C. W. Wampler. Computing singular solutions to

polynomial systems. Adv. in Appl. Math., 13(3):305–327, 1992.

[29] A. P. Morgan, A. J. Sommese, and C. W.Wampler. A power series method for computing

singular solutions to nonlinear analytic systems. Numer. Math., 63(3):391–409, 1992.

[30] A.P. Morgan and A.J Sommese. A homotopy for solving general polynomial systems that

respects m-homogeneous structures. Journal of Applied Mathematics and Computing,

1987.

[31] M. Niemerg and D.J. Bates. Using monodromy to avoid high precision in homotopy

continuation. Mathematics in Computer Science, 8(2):253–262, 2014.

[32] V. W. Noonburg. A neural network modeled by an adaptive Lotka-Volterra system.

SIAM Journal of Applied Mathematics, 49:1779–1792, 1989.

[33] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 2013.

[34] J. Verschelde. Phcpack: a general-purpose solver for polynomial systems by homotopy

continuation. ACM Transactions on Mathematical Software (TOMS), 25:251–276, 1999.

41



[35] J.H. Wilkinson. Rounding errors in algebraic processes. Dover, 1994. Reprint of the

1963 original [Prentice-Hall, Englewood Cliffs, N.J.].

42



Chapter 5

APPENDICES

The following appendices are describing two important input files used in the auto tuning

section.

5.1. APPENDIX A

5.1.1. ILLUSTRATIVE EXAMPLE INPUT FILE.

INPUT

variable_group x,y,z;

function f1,f2,f3;

f1 = (y - x^2)*(x^2 + y^2 + z^2 - 1)*(x - 2);

f2 = (z - x^3)*(x^2 + y^2 + z^2 - 1)*(y - 2);

f3 = (z - x^3)*(y - x^2)*(x^2 + y^2 + z^2 - 1)*(z - 2);

END;

43



5.1.2. LAGRANGE POINTS INPUT FILE.

% LagrangePoints.input

% Equilibria for a 3rd small body rotating with two large

% ones in circular orbit

INPUT

function fma1,fma2,dist13,dist23,fma3x,fma3y;

% definition: w = omega^2 d12^3/(G m2)

% The remaining variables are nondimensionalized as

% ratio to d12.

variable_group w;

variable_group r1;

variable_group x,y,d13,d23;

constant mu;

% choose value for the mass ratio

mu = 9;

% the following eliminates r2

r2 = 1-r1;

% f=ma on mass 1

fma1 = w*r1 - 1;

% f=ma on mass 2

fma2 = w*r2 - mu;

% distance m1 to m3

dist13 = (x-r1)^2 + y^2 - d13^2;

% distance m2 to m3

44



dist23 = (x+r2)^2 + y^2 - d23^2;

% f=ma on m3

a = w*d13^3*d23^3; b1 = mu*d23^3; b2 = d13^3;

fma3x = a*x + b1*(r1-x) + b2*(-r2-x);

fma3y = a*y + b1*(-y) + b2*(-y);

END;

45


	Abstract
	Acknowledgements
	Chapter 1. BACKGROUND
	1.1. CLASSICAL ALGEBRAIC GEOMETRY
	1.2. SYSTEMS OF POLYNOMIALS
	1.3. HOMOTOPY CONTINUATION
	1.4. BRANCH POINTS AND RAMIFICATION POINTS

	Chapter 2. AVOIDING SINGULARITIES DURING HOMOTOPY CONTINUATION
	2.1. LOCAL OPTIMIZATION
	2.2. CHOOSING A BOX
	2.3. FINDING BRANCH POINTS IN RECTANGLE R
	2.4. CREATING WAYPOINT W2
	2.5. PSEUDOCODE AND DETAILS
	2.6. OUT PROOF-OF-CONCEPT IMPLEMENTATION
	2.7. EXAMPLES
	2.7.1. NEURAL NETWORK EXAMPLE
	2.7.2. ADJACENT MINOR SYSTEMS

	2.8. DISCUSSION OF METHOD OF AVOIDING BRANCH POINTS
	2.8.1. TIMING AND SCALING

	2.9. OTHER METHODS

	Chapter 3. OTHER PROJECTS
	3.1. BERTINI 2.0 DEVELOPMENT
	3.2. AUTO TUNING
	3.2.1. AUTO-TUNING AWAY FROM T = 0
	3.2.2. CONCLUSIONS AWAY FROM T = 0
	3.2.3. OPEN QUESTIONS IN AUTO-TUNING


	Chapter 4. FUTURE WORK
	4.1. THE NEAREST SINGULARITY
	4.2. ESTIMATING THE ENDGAME BOUNDARY

	Bibliography
	Chapter 5. APPENDICES
	5.1. APPENDIX A
	5.1.1. ILLUSTRATIVE EXAMPLE INPUT FILE
	5.1.2. LAGRANGE POINTS INPUT FILE



