

PART IV

Ву

Margaret R. Brittan

Department of Statistics and Research Unviersity of Denver

> Bureau of Economic Research University of Colorado Boulder, Colorado

October, 1961

TA7

CER 61-53-C

C.6

CODY 2

CER61RAS-VMY53C

CHEDITONIC POSTATIO

TABLE OF CONTENTS

Introduction 1
Applicability of the Selected Synthetic Hydrology Studies to the Colorado River 3
Leopold Approach 4
Thomas Approach 11
Hurst Approach 14
Synthetic Hydrology for the Colorado River 16
Probability Distribution of Streamflow 17
Time period for Probability Distributions 18
Synthetic Hydrology 21
Comparison of Synthetic Hydrologies with Hurst and Leopold Studies 26 Hurst Study 27 Leopold Study 27
Markoff Chain 28
Summary and Recommendations 30
APPENDICES
Appendix I – Synthetic Hydrologies Using Probability Distributions –––––– 33
Appendix II – Synthetic Hydrologies Using Markoff Chain ––––– 78
Bibliography 99

LIST OF TABLES

1. Text Tables

1. Rod (c)	Flow of the Colorado River at Lees Ferry, Arizona, Water Year, 1912–1958 –				
2.	Percentage Distribution of Five Year Means of Flow of the Colorado River at Lees Ferry, Arizona, 1912–1958				
3.	Serial Correlation Parameters of Monthly Flows, Colorado River at Lees Ferry, Arizona, 1912–1958				
4.	Fourier Analysis of Flow of Colorado River at Lees Ferry, Arizona, 1912–1958–––––––––––––––––––––––––––––––––––				
5.	Probability of Average Annual Inflow to Glen Canyon Reservoir by Time Periods 2				
	2. Appendix Tables				
ι.	Percentage Distributions of Means and Ratios of Mean to Range of Flow of the Colorado River at Lees Ferry, Arizona. 1912–1956 and Gain to Lake Mead, 1922–1956 3				
н.	One Hundred Randon Samples of Five-Year Sequences of Inflow to Glen Canyon Reservoir and Gain to Lake Mead 3				
III.	One Hundred Random Samples of Six Sequences of Inflow to Glen Canyon Reservoir and Gain to Lake Mead5				
IV. Summer	Frequency Distribution of Means of Simulated Inflows to Glen Canyon Reservoir, Five-Year Period, 1962–1966 76				
y.	Simulated Annual Flows of the Colorado River for a Fifty Year Period Generated by Markoff Chain 78				

LIST OF FIGURES

a le lest

1 Appandin Tol

Repended Contact of Print of the

Service and a service of the service

en Germania - Centra Anna - Centra - Ce

Ofelmines: Foren Sonnes ef S Glen Zon Stukese rainent Golmton.

Cementatan di Filiphias ya pi

Simulated efficient of the size of a Renab Generation - severit for the

1.

Annual Flow of Colorado River at Lees Ferry, Arizona, Water Years, 1912–1958 -----

5

ACKNOWLEDGEMENTS

It has been my privilege to work closely with the other members of the project research staff in preparing this report. I especially wish to thank Mr. Paul Julian and Mr. Leslie Fishman for their numerous criticisms and suggestions. My debt to Mr. Garnsey is even more extensive. His collaboration might well extend to that of co-authorship of the study. Mr. George Bardwell, Associate Professor of Statistics at the University of Denver, has been very helpful. The staff of the Computer Center of the Denver Research Institute have been most cooperative in assisting with the programming and computation of the synthetic hydrologies.

PROBABILITY ANALYSIS APPLIED TO THE DEVELOPMENT OF SYNTHETIC HYDROLOGY FOR THE COLORADO RIVER

In the development of river basins one of the crucial problems encountered by the planners is that of estimating future streamflow. The shortness of the streamflow records for the Colorado River, as well as for other rivers, contributes to reduced precision of estimated future streamflow if such estimation is based solely on historical data. One way of dealing with this problem of inadequate historical data is to simulate the flow of the river by mathematical techniques, thereby creating a "synthetic hydrology" on the river. A synthetic hydrology is a hypothetical series of streamflows. These streamflows did not occur historically, but are developed by statistical methods in such a way that they could have occurred (i. e. are statistically probable).

Measurements of the flow of the Colorado River at Lees Ferry, Arizona, are available from 1912. This flow is extremely erratic, varying from 4 million to 22 million acre-feet of water annually, with a tendency for high years and low years to be grouped. (See Table I.) Because of the shortness of the streamflow record, however, the critical patterns of high and low runoff are relatively scarce. By means of a mathematical model representing the flow of the Colorado River, patterns can be created which would be expected to be part of an annual record if a record of sufficient length were available. Since future flows are not deterministic, a logical approach is to consider runoff as a stochastic process.

^IA stochastic process can be defined as "any process running along in time controlled by probability laws." See J. L. Doob, <u>Stochastic Processes</u> (New York: John Wiley and Sons, 1953), p. 46.

Water Year ¹	Runoff Millions of Acre-Feet of Water	Water Year ¹	Runoff Millions of Acre–Feet of Water
1912	17.6	1937	11.9
1913	12.7	1938	15.4
1914	19.3	1939	9.4
1915	12.5	1940	7.1
1916	17.3	1941	16.0
1917	21.9	1942	17.0
1918	13.6	1943	11.2
1919	10.8	1944	13.2
1920	19.7	1945	11.5
1921	20.7	1946	8.7
1922	16.3	1947	13.5
1923	16.2	1948	13.7
1924	12.5	1949	14.3
1925	11.3	1950	11.0
1926	14.0	1951	9.8
1927	16.5	1952	18.0
1928	15.3	1953	8.8
1929	19.2	1954	6.1
1930	13.0	1955	7.3
1931	6.4	1956	8.7
1932	15.2	1957	17.3
1933	9.7	1958	14.2
1934	4.4		
1935	9.9		
1936	11.9		

FLOW OF THE COLORADO RIVER AT LEES FERRY, ARIZONA Water Year, 1912–1958

¹Runoff for years ending September 30 for each year shown.

Source: U. S. Geological Survey, <u>Water Supply Papers</u>, 1313, 1343, 1393, 1443, 1513, and 1563.

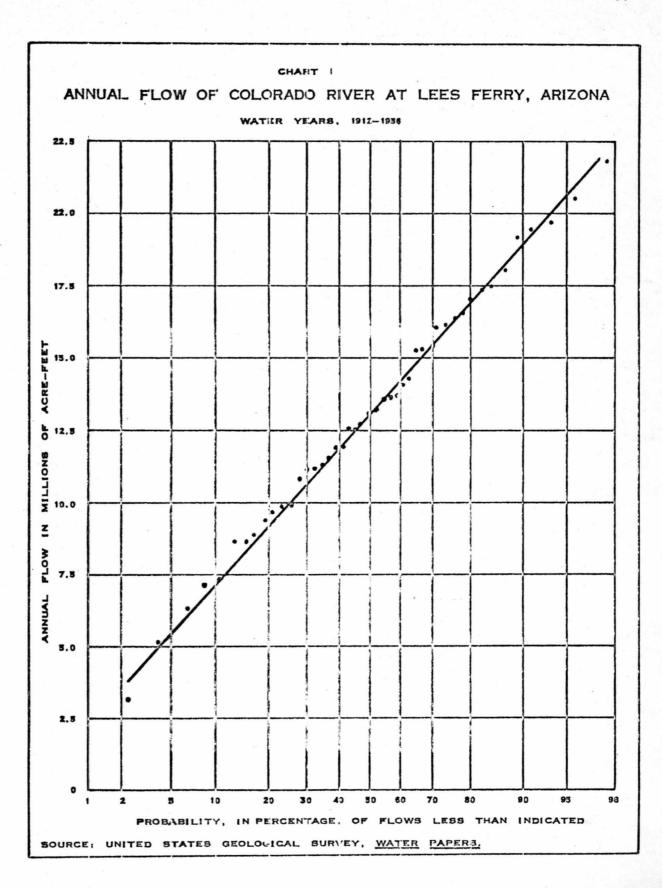
model of flow sequences represents the flow of the river in all respects, it would be impossible to distinguish between real and synthesized hydrographs by the usual statistical tests of significance. Hence synthetic hydrology provides a large number of possible runoff sequences that could obtain on the river whose flow is described by the probability model.

The problem of developing synthetic hydrologies is one which has absorbed the attention of engineers, statisticians, and economists in recent years. While no attempt is made to review in this paper all the research done on the problem, three studies representative of current thinking on development of synthetic hydrologies are discussed. Two of the studies, those by Thomas and Hurst, are concerned primarily with storage problems rather than with the problem of runoff, but because storage depends upon runoff, the methods suggested for generating inputs available for storage are deemed to be worthy of study. The third report, by Luna Leopold, deals directly with runoff and his data are streamflows of the Colorado River. The three approaches are discussed in the following section of this paper in terms of their applicability to the Colorado River. Synthetic hydrologies are then developed by probability methods and are evaluated in light of the foregoing works.

Applicability of the Selected Synthetic Hydrology Studies to the Colorado River

Leopold, Thomas, and Hurst apply probability analysis to the problem of forecasting runoff. Because of the differences in approach, each of the studies is

3.


evaluated in terms of its applicability to the Colorado River data. Since the synthetic model must conform to known characteristics of the streamflow data, observed runoff of the Colorado River is used to test the feasibility of each of the approaches.

Leopold Approach

The <u>virgin</u> flow of the Colorado River (reconstructed record of annual discharge -- reconstructed to adjust for depletions) measured at Lees Ferry, Arizona, from 1896 through 1956 was examined by Luna Leopold in <u>Probability Analysis Applied</u> to a <u>Water-Supply Problem</u>.¹ He demonstrated that the flow of the Colorado River is normally distributed when no account is taken of order of occurrence of the flow; and that there is greater variability in groups of streamflow means in their natural order of occurrence than if the same mean flow values occurred in random sequence.

The <u>historical</u> flow of the Colorado River at Lees Ferry, Arizona for the water years 1912–1958 is plotted on normal probability paper in Chart 1. When a normal distribution is plotted on such paper, the distribution plots as a straight line. Since the plotted values of the historical flow approximate a straight line, the distribution of the historical flows (when no account is taken of order of occurrence of the flow) appears to be normally distributed). (It should be noted that the Leopold study was concerned with virgin flow, not historical flow, for the period 1896–1956.)

^ILuna B. Leopold, <u>Probability Analysis Applied to a Water-Supply Problem</u>, U. S. Department of the Interior, Geological Survey Circular 410, Washington, D. C., 1959.

5.

The mean <u>virgin</u> flow of the Colorado River for the 61-year period 1896-1956 is 15.18 million acre-feet of water with a standard deviation¹ of 4.2 million acre-feet of water, while the mean <u>historical</u> flow for the 47-year period 1912-1958 is 13.23 million acre-feet of water with a standard deviation of 4.1 million acre-feet of water. The measurements of annual flow represent a sample of flow data from a universe consisting of annual flows covering an indefinitely long time period. Since the distribution of sample flows examined tends to be normally distributed, then the means of groups of data in the sample will also be normally distributed. Means of various time periods were considered by Leopold. His minimum period was ten years, whereas this paper shows that the use of a five-year period is valid.

When items are selected at random from a normal universe large values are equally as likely as small values so that the variability of the means of groups of streamflow in natural order of occurrence is larger than if the same flow values occurred in random sequence. If group means were made up of randomly chosen individuals then variability of the group means would decrease as the square root of the number of individuals making up the groups. Thus if annual values of streamflow occurred in a random sequence, variability of the means of a group, e.g. 5 years, would decrease inversely as the square root of the number of individual items making up the group. Hence, for a random sequence, if the

¹The standard deviation is a measure of the variability or dispersion from the mean. In the case of a normal distribution one standard deviation on either side of the mean would include approximately 68 percent of the items in the distribution.

standard deviation for 1-year means is 4.1 million acre-feet of water then the variability of means of 5-year groups should be 1 of 4.1 or 1.8 million acre-feet $\sqrt{5}$

of water (i.e. 0.45 as variable). The standard deviation of the 5-year means of the historical flow of the Colorado River was 2.5 million acre-feet of water or 0.61 times the annual variation.¹

If one were to assume that the mean historical flow for the 47 years is the true mean, then one could conclude that 75 percent of the 5-year means would be expected to be equal to, or less than 13.23 + (0.61) (2.77) or 14.92 million acre-feet of water.² Table 2 presents a frequency distribution of 5-year moving averages of historical flow of the Colorado River from 1912 through 1958 and it can be noted that approximately 75 percent of the 5-year mean flows were equal to or less than 14.92 million acre-feet, with the mean of the 5-year means being equal to 13.08 million acre-feet. With an infinite number of samples the mean of the 5-year means would be equal to the population mean (the distribution in Table 2 is based on 43 means).

¹The ratio of the standard deviation of the five-year means to the standard deviation of the annual flow was 0.64 for the virgin flow.

²Because the sampling distribution of means of samples of size 5, taken from the approximately normal distribution of runoff, will be a normal distribution, then tables giving the area under the normal curve can be used to determine 75 percent of the area under the curve. The mean lies at the center of the distribution and 25 percent of the area to the right of the mean will be .6745 standard deviations away from the mean. If the assumption of randomness were tenable then the standard error of the mean for samples of size 5 would be 0.45 as large as the standard deviation of the "population". The ratio of the standard deviation of the 5-year means to that for 1-year means was 0.61 as used above.

TABLE 2

PERCENTAGE DISTRIBUTION OF FIVE YEAR MEANS¹ OF FLOW OF THE COLORADO RIVER AT LEES FERRY, ARIZONA 1912–1958

Mean Annual Runoff Millions of Acre–Feet	Percent	
8.0 and under 10.0	14	
10.0 and under 12.0	19	
12.0 and under 14.0	32	
14.0 and under 16.0	19	
16.0 and under 18.0	16	

¹Five-year moving averages of historical flow.

Source: Adapted from U. S. Geological Survey, Water Supply Papers, 1313, 1343, 1393, 1443, 1513, and 1563.

The distribution of sample means provides a guide as to the true limits within which the true mean might be expected to lie. Therefore recognizing that the mean of the 47-year period may not be the true mean, it is possible to approximate the standard deviation of a sampling distribution of 47-year means. Since the mean historical flow for the 47-year period was 13.23 million acre-feet, the probable error of the mean is equal to 0.26×2.77 which equals 0.72 million acre-feet of water;¹ or one can say there is a 50 percent chance that the true mean flow of the Colorado River for an indefinitely long time period (with no change in the universe or in the "basic conditions") will lie between 13.23 ± 1.44 or between 11.79 and 14.67 million acre-feet of water.

On the basis of the above analysis it is possible to estimate what the probable "average" streamflow--lowest mean value and highest mean value--for the next five years is likely to be. Because the historical data are merely one sample and the mean of this sample may differ from the population mean (mean flow for an indefinitely long time period) in order to estimate future means the possible variation from the population mean must be included in setting confidence limits for an estimate. Therefore, total variability of future five-year periods would be computed by taking the statistical sum of the variability for the 47-year means and for five-year means as follows

$$(.26)^2 + (.61)^2 = \sqrt{.4397} = 0.66$$

9.

¹Leopold develops ratios of standard deviations of means for records of flow from 1 to 200 years to 1-year standard deviations on page 8 of his report cited above. The 0.26 is taken from this long-term record study.

Therefore one can say there is an 82 percent chance (corresponding to twice the probable error¹) that the mean runoff for the next five years will be between the mean of the historical sample and 1.349 standard errors or

13.23 \pm (1.349 x .66 x 4.1) or 13.23 \pm (2 x .66 x 2.77) =

13.23 ± 3.66 = 9.57 - 16.89 million acre-feet of water.

Thus, there is only a 9 percent chance (9 times out of 100 years of flow) that the next five-year mean flow of the Colorado River will be less than 9.57 million acre-feet of water; and only 9/100 chance that the flow will be greater than 16.89 million acre-feet of water. It should be emphasized that these figures all assume that past conditions will apply to the future.

The above analysis enables one to make statements about the mean flow for the next five years with certain degrees of confidence, but in terms of planning this is not a guide as to the sequence of flows which would yield a mean between 9.57 and I6.89 million acre-feet of water. Therefore the Thomas approach will be considered in an attempt to discover some method which can be used to develop possible sequences of future runoff of the Colorado River.

¹Leapold uses the "probable error" of the mean rather than the standard error of the mean in making his comparisons. One probable error of the mean is equal to .6745 standard errors of the mean. Therefore, forty-one percent of the area of a normal curve is included between an ordinate erected at the mean and ordinates at a distance of 1.349 standard errors of the mean from the mean. Hence, the mean \pm 1.349 $\sigma_{\overline{x}}$ will include 82 percent of the area under the normal curve.

Thomas Approach

Harold A. Thomas' study entitled "Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation"¹ is concerned with monthly and hourly data on runoffs. His approach deals with determination of serial correlation which, of course, is present to a great extent in monthly data. The mathematical expression developed by Thomas characterizes a circular random walk, a model in which the discharge in a given month is comprised of a component linearly related to that in the preceding month and a random additive component.

Application of the serial correlation method suggested by Thomas to the <u>historical</u> runoff data for the Colorado River resulted in the parameters presented in Table 3. The correlation coefficients in the table are statistically significant for a sample of 47 years except for the September-October coefficient where r = .0877. A minimum value of .288, with 45 degrees of freedom, is required for r to be significant at the 95 percent level of probability.² This r measures the correlation between one month's runoff and the runoff of the preceding month, i.e. r = .3699 for February indicates the correlation of February with January.

²R. A. Fisher, <u>Statistical Methods for Research Workers</u> (New York: Hafner Publishing Company, 1950), p. 209.

^IHarold A. Thomas, Jr., and Myron D. Fiering, "Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation," Chapter XII in <u>Design for Water Resource Systems</u> by Arthur Maass and others (Harvard University Press, February, 1962).

SER	AL-CORRELATION PARAMETERS OF I	MONTHLY FLOWS
	COLORADO RIVER AT LEES FERRY,	ARIZONA
	1912-1958	

	Thousands of Acre-Feet of Water-					
	Correlation	Regression	Standard	Mean	Standard	
1	Coefficient	Coefficient	Deviation ¹	Flow	Error	
Month	r	Ь				
January	. 3521	. 4550	59.1	329.7	72.3	
February	. 3699	.9147	76.4	374.7	177.5	
March	. 3552	.9327	188.9	607.4	469.0	
April	.5175	1.1614	496.0	1,204.4	963.5	
May	.6532	.9287	1,113.6	2,954.7	1,212.3	
June	.8009	.4223	1,582.0	3,608.6	505.5	
July	.6753	. 3436	834.9	1,530.5	316.8	
August	.5650	.4607	424.8	729.0	289.0	
September	0877	0798	346.4	518.7	317.6	
October	.7396	. 3227	318.7	552.1	93.6	
November	.7511	. 3907	137.5	453.5	47.8	
December	.5258	. 4345	71.6	361.6	50.8	

¹Standard deviation for indicated month. The standard deviation for the y variable, or predicted variable, would be the standard deviation shown in the column for the next month. That is, the standard deviation of the forecast value, using January as a forecast, would be that shown for February. Hence, the degree of relationship can be appraised by comparing the standard error for January with the standard deviation for February, etc.

Source: Adapted from U. S. Geological Survey, Water Supply Papers, 1313, 1343, 1393, 1443, 1513, and 1563.

The estimating equation for a linear regression model by the method of least squares is:

Y = Y + b (X; - X). This equation would be applied to the data in Table 3 for the January-February relationship as follows:

Februs

The mean flow for January would be X, 329.7 thousand acre-feet of water; while the mean flow for February, 374.7 thousand acre-feet of water, would be Y. The regression coefficient b, .4550 thousand acre-feet of water, would then be applied to the difference between a given X value and the mean.

As can be noted from Table 3 the standard errors (which measure the scatter about the regression line and can be interpreted in the same way as the standard deviation which measures the variation from the arithmetic mean) as well as the standard deviations are relatively large in all months. Thus it appears that this method of developing a synthetic hydrology for the Colorado River is less effective than for the Clearwater River (the river used in the study by Thomas). However, since all but one of the correlation coefficients are significant at the 95 percent level, even though they are small, it is advisable that the Thomas technique, using the above regression equation and including a random variable, be applied to the Colorado River and that the synthetic hydrologies which will result be studied. Since the constants for the equations have been derived above, this could be readily done by means of an electronic computer.

Hurst Approach

H. E. Hurst's study on "A Suggested Statistical Model of Some Time Series Which Occur in Nature,"¹ deals with an attempt to solve the problem of regulating outflow from a reservoir in such a way as to meet deficiencies of low runoff and to determine the required capacity of the reservoir necessary to guarantee a minimum discharge in the years of low runoff.

Hurst analyzed many time series of natural phenomena such as rainfall, river levels, temperature and pressure, annual growth of tree rings, etc.² The relationship used by Hurst was:

$$\frac{R}{\sigma} = \left(\frac{N}{2}\right)^k \qquad \text{where} \qquad \qquad$$

R = range, from maximum to minimum, of the cumulative totals of departures

from the mean annual value taken in order of occurrence;

 σ = standard deviation of the individual values;

N = number of annual measurements (or total number of years);

$$K = an index = \frac{R/\sigma}{\log N/2}$$

The mean value of k for all the natural time series examined by Hurst was 0.73 with a standard deviation of 0.09. He concluded that in random events groups of high and low values do occur, but that the tendency for such grouping is greater in natural events than in random events. If the distribution is considered

¹H. E. Hurst, "A Suggested Statistical Model of Some Time Series Which Occur in Nature," Nature, Vol. 180, No. 4584, September 7, 1957, p. 494.

²H. E. Hurst, "Long-Term Storage Capacity of Reservoirs", <u>Transactions</u> of the American Society of Civil Engineers, 116,770 (1951).

to be one of independent events then:

 $\frac{R}{2} = \sqrt{1/2 N} \quad \text{or } 1.25 \quad \sqrt{N}. \quad \text{This means that the limiting value}$ of k in the equation used by Hurst for natural time series, i.e. $\frac{R}{2} = \left(\frac{N}{2}\right)^{k}$, will be 0.5 for random occurrences.¹

The Hurst thesis that natural series (for which limited time series data are available) have a tendency to exhibit grouping of high and low values was examined using the historical runoff of the Colorado River from 1912 through 1958 as measured at Lees Ferry, Arizona. The k value resulting from the relationship above was 0.82 i.e. $\frac{54.11}{4.1} = \left(\frac{47}{2}\right)$. It should be noted that for a random series with N equal

to 47 the k value would be 0.68. Hence, with a standard deviation of 0.09 for k, there is reason to believe that the runoff of the Colorado River does not differ significantly from that which would be obtained if the runoff followed the natural phenomena model of Hurst's. However, if additional samples of 47 years were available the distribution of k might be such that the 0.82 would lie within the range of expected values for a random series, since the 0.82 is only 1.56 standard deviations away from the Hurst expected value of 0.62.

The Leopold study also was concerned with the departure of the flow of rivers from that of a purely random series and he demonstrated this phenomenon by using mean flows for different time periods. The departure of the Colorado River mean (virgin) flow data from a random sequence is illustrated in Figure 4 of the Leopold report.

¹The asymptotic sampling distribution of R See W. Feller, <u>Annals of Mathematical Statistics</u>, 22,427. 15.

Synthetic Hydrology for the Colorado River

The analysis of the historical flow of the Colorado River using the techniques described above has demonstrated that the theses set forth in each of the studies has some application to the Colorado River. However, the foregoing methods do not yield a technique for generating a synthetic hydrology which is usable for establishing operating criteria for the control of the River. Methodology is developed in this section which can be used to simulate sequences of runoff which are statistically possible and which can be used in a model to test operating criteria.

If observed streamflows are used as inputs to a model which attempts to simulate the flow of the river, the short length of record available (47 years in the case of the Colorado River) constitutes a very small sample from an indefinitely large population. In addition, the order of the flows is a crucial variable in formulating decision rules with respect to release or storage of the water. Since future streamflows are not known, but must be estimated, reasonable estimation logically involves the theory of probability. From a study of the actual flow record probability models of future flows can be developed.

Synthetic hydrologies are developed in this paper using two different probability methods. The first method develops a model for generation of sequences of possible flow of the Colorado River by determining the probability distribution of mean flows in relation to the range, while the second method uses a Markoff chain model.

المعقاق الشمامية والمعاد والمراف

Probability Distribution of Streamflow

The observed flows of the Colorado River standing alone are restricted in their significance to the particular observations recorded, i.e., observed frequencies of streamflows of different magnitudes apply only to flows actually observed. However, if the observed flows can be used to describe the shape of the distribution of all possible flows then theoretical frequencies can be developed. Theoretical frequencies are not limited to magnitudes actually observed, but they apply generally to the entire population. In so far as one is assured of the representative character of the sample, one has a basis for inference about the population.

Probability of flows of different magnitudes may be thought of as relative frequency of occurrence of flows of given sizes in the long run. One does not use probability theory to predict the outcome of any one trial or the order of the outcome of several trials, but to predict what will happen in the long run or "on the average" in a large number of trials. The relative frequency of occurrence of flows of different magnitudes in an actual long-run series can be used to estimate a frequency distribution of future flows. Since the shape of the frequency distribution of actual flows of the Colorado River is approximately normal, the mean and variance can be used to completely describe a theoretical distribution of annual flows. The mean and variance of the population (all possible annual flows) can be estimated in an unbiased manner from the samples (actual flows), assuming that the 47-year period is a representative sample. <u>Time Period for Probability Distributions</u>. If the streamflows are purely random phenomena then one is hardly in a position to meaningfully predict what will happen in the future as any magnitude of streamflow is equally as likely as any other. If on the other hand our data have certain peculiar characteristics, e.g. exhibit periodicity, etc., one is in a much better position to get at the problem of predicting streamflows. Therefore, a search for hidden periodicities in Colorado River streamflow was undertaken using a Fourier analysis. Periods, or cycles, of two, three, four, and five years duration were analyzed. These results are presented in Table 4.

TABLE 4

FOURIER ANALYSIS OF FLOW OF THE COLORADO RIVER AT LEES FERRY, ARIZONA 1912–1958

					Ratio of squared amplitude
Period P	Fourier A P	Coefficients B _p	(A ² + B ²) Squared Amplitude R ² _p	Number of Observations N	to mean squared amplitude k
2	3130	1652	.1253	46	.0877
3	1.1250	6634	1.1706	45	1.1691
4	-1.4455	.9045	2.9076	44	1.9490
5	.2043	1.9029	3.6615	45	2.5100

Source: Computed from basic data presented in Table I.

The assumption is that

$$Y_{t} = \frac{1}{2} A_{o} + \sum_{j=1}^{N/2} (A_{p} \cos \frac{360}{T} + B_{p} \sin \frac{360}{T})$$

where

Y_t's are estimates of the values of streamflow if periods of given sizes are present.

The constants A_p and B_p (amplitudes) are obtained as follows:¹

$$A_{p} = \frac{2\left[\sum_{i=1}^{p} U_{i} & \cos\left(\frac{360}{p}i\right)\right]}{N}$$
$$B_{p} = \frac{2\left[\sum_{i=1}^{p} U_{i} & \sin\left(\frac{360}{p}i\right)\right]}{N}$$

Where

U_j = sum of the deviations from the arithmetic straight line trend for the period selected, j = 1, 2_j . . . , p.
 P = periodicity, in years.
 N = number of years used in the analysis.

Gerhard Tinter, Economics, (New York: John Wiley and Sons), p. 219.

If there are no periodic fluctuations (i.e. the series is a random one following the normal distribution) the mean squared amplitude of the series is:

$$R_{M}^{2} = \frac{4\sigma^{2}}{N}$$

where σ^2 = the variance of the series of flows.

The sum of the coefficients derived from the Fourier analysis (Table 4) can be tested to see if it differs from that derived from a random series by means of the Schuster test.¹ According to Schuster the probability, P_s , that an empirical squared amplitude, R_p^2 , is k times the mean squared amplitude, R_M^2 , is:

$$P_s = e^{-k}$$

Therefore $k = \log_e P_s$.

The Schuster test is used to determine whether the series differs significantly from a random series. Therefore, the higher the probability the mare likely that the series is random since the hypothesis being tested by means of the Schuster test is that the series is random.

The probabilities (P_s) for the periods indicated in Table 4 are as follows:

Period	k	Ps
2	0.0877	.916
3	1.1691	.311
4	1.9490	.143
5	2.5100	.081

Gerhard Tintner, <u>loc</u>. <u>cit</u>., p. 223.

The k value for the five-year period is significant at the 8 percent level while all of the other k values are not significant even at the 10 percent level. Hence, there is a possibility of a hidden periodicity of five years in the flow data for the Colorado River.

Synthetic Hydrology. If one were to predict annual flows on the basis of their being normally distributed this would mean that extremely high and extremely low amounts of runoff would be equally probable with runoff of the magnitude of the mean most probable; this approach would give no clue as to the sequence in which flows of varying magnitudes would occur. The order of flows is of utmost importance in the development of a synthetic hydrology, but, as stated earlier, probability analysis is hardly applicable in predicting the outcome of any one trial or order of the outcome of several trials but is used to predict what will happen in the long run. Hence, by generating a number of equally probable sequences of runoff, one can examine the effect which these sequences would have on storage, and ultimately on the amount of energy which could be generated by releasing given amounts of water. The apparent five-year periodicity in the flow data enables one to develop a sampling distribution of five-year means, so that sequences of five years can be generated in such a way as to give an idea of the order of flows.

Development of a synthetic hydrology for the Colorado River necessitated selecting samples of possible runoff. If the historical values were considered to be the population from which the sample was to be drawn there would be only 47 different amounts of runoff which would be possible even though there would be many different sequences of runoff possible. Hence, the Monte Carlo method (a technique used to simulate experience through statistical sampling) was used to generate runoff values for the synthetic hydrology.

In order to simulate streamflow, 100 random samples of 5 each (corresponding to a five-year runoff sequence determined on the basis of the Fourier analysis and Schuster test described above) were selected from a table of random numbers. In order to determine possible order of the five runoff values to be selected at random, the historical runoff data were analyzed by five-year periods. The distribution of five-year means (five-year moving averages) approximated a normal distribution (Table 2). However, since there are many different combinations of five which will yield the same mean, the samples were chosen subject to the following restraints:

(1) Annual runoff should range between 4.4 and 21.9 million

acre-feet of water--limits set by historical experience (Table 1);

(2) Five-year sequences of runoff should be distributed according to the distributions of (a) the mean and (b) the ratio of the range to the mean (of the historical data).¹

The ratio of the range to the mean is used instead of the ratio of the square root of the second moment about the mean to the mean (coefficient of variation) because the sample size (5) is so small. In the case of small samples the range is almost as efficient an estimate of the distribution as the standard deviation when sampling from a normal population. (For a sample size of 5, the efficiency of the range in relation to the standard deviation for estimating the dispersion is .955) See Wilfred J. Dixon, and Frank J. Massey, Introduction to Statistical Analysis (New York: McGraw-Hill Book Company, Inc., 1957), p. 404. Appendix Table I presents the distributions resulting from the five-year moving averages and ranges of the historical data.

One hundred samples of thirty-year inflows¹ (six samples of five-year sequences) were chosen at random from the samples presented in Appendix Table II². These simulated flows exhibit the same statistical characteristics as the historical flows, as required by the restraints. The simulated flows presented in Appendix Table III have been adjusted for estimated depletion considering past experience and anticipated future depletions.³

¹According to the Department of the Interior "the filling period . . . is considered to be the time it takes to fill Glen Canyon . . . (content 28.0 million acrefeet of water total surface storage) or May 31, 1987, whichever occurs first." U.S. Department of the Interior, Release of February 12, 1960, "Proposed General Principles to Govern, and Operating Criteria for Glen Canyon Reservoir and Lake Mead during the Glen Canyon Reservoir Filling Period."

The Hoover Dam power contracts expire in 1987, so this period (1962–1987) has been used in studies made by the Bureau of Reclamation and others in attempting to develop operating criteria for use during the period of the initial filling of Glen Canyon Reservoir. The thirty-year period was used because the samples were selected in clusters of five years; hence, either a twenty-five or a thirty-year period could have been used.

²It should be noted that in order to evaluate operating criteria for the Colorado River inflow to Glen Canyon Dam as well as inflow to Hoover Dam must be considered. The inflow to Hoover Dam (Lake Mead), once Glen Canyon is completed, would consist of the water released from Glen Canyon Dam plus any additional gain to Lake Mead beyond this. Hence, the Monte Carlo method was also used to select samples of gain to Lake Mead which could be used in a model simulating operating conditions when both reservoirs are available for use.

³It was assumed that depletion would increase by 0.09 million acre-feet of water each year for the first nine years, i.e. in 1970 depletion would be 0.72 million acrefeet of water. From 1971 through 1990 depletion would increase by 0.03 million acrefeet, so that in 1990 the anticipated depletion would be 1.42 million acre-feet of water. Average annual inflows to Glen Canyon Reservoir for the first five years of the simulated experience (considered to be 1962–1966) of the one hundred synthetic hydrologies range from a low of 8 million (simulations 6, 21, 40, 43, and 56) acre-feet of water to a high of 17.5 million acre-feet of water (simulation 10). The five-year moving averages of historical flows of the Colorado River from 1912 through 1958 range from a low of 9.1 to a high of 17.3 million acre-feet of water.

The mean was computed for each of the 100 simulated hydrologies for the first five years, the first ten years, the first fifteen years, the first twenty years, the first twenty-five years, and the first thirty years of the sequence. From the Pearsonian system of curves an appropriate theoretical curve was fitted to the distribution of means.¹ In each case the curve used to develop the probabilities for runoff was the Type I Pearson curve, a curve of limited range and generally bell shaped.

The frequency distribution of means of the five-year simulated inflows (period 1962-1966) is presented in Appendix Table IV. A probability table, developed from the 100 simulated hydrologies to which the Pearson curves were fitted, is presented in Table 5. In interpreting Table 5 caution should be used when considering the zeros and the one hundreds appearing in various columns. The interpretation of these zeros should be that it is highly unlikely that an average annual runoff of the indicated size or smaller would occur rather than that it is impossible that an average annual runoff of such size would occur. The one hundreds should be interpreted within the same probability framework and not that it is certain that the runoff will be the given amount or less.

¹W. Palin Elderton, <u>Frequency Curves and Correlation</u> (third edition; London: Cambridge University Press, 1938).

Average chave infects to GTABLE 5 to faces of for the firm f

호텔 (Martine Caller) (Martine Caller) - 이 이 나는 바람이 있는 다음 (1997) 다.

PROBABILITIES OF AVERAGE ANNUAL INFLOW TO GLEN CANYON RESERVOIR BY TIME PERIODS

Probabili	Probability (Percent chance) of Average Annual Inflow					
5 Year	1991 - 1997 - 1992 - 1997 - 19				30 Year	
Period	Period	Period	Period	Period	Period	
*	0	0	0	0	0.	
T	*	0	0	0	0	
4	*	*	0	0	0	
9	2		*	*	0	
16	7	4	3	T	*	
-25	19	15	17	12	10	
37	41	37	40	42	52	
50	64	65	68	78	85	
65	84	88	92	96	97	
80	97	98	100	100	99	
95	100	99	100	100	100	
100	100	100	100	100	100	
	5 Year Period * 1 4 9 16 25 37 50 65 80 95	Being Ind 5 Year 10 Year Period Period * 0 1 * 4 * 9 2 16 7 25 19 37 41 50 64 65 84 80 97 95 100	Being Indicated Amoun 5 Year 10 Year 15 Year Period Period Period * 0 0 1 * 0 4 * * 9 2 1 16 7 4 25 19 15 37 41 37 50 64 65 65 84 88 80 97 98 95 100 99	Being Indicated Amount or Less Du 5 Year 10 Year 15 Year 20 Year Period Period Period Period * 0 0 0 1 * 0 0 4 * * 0 9 2 1 * 16 7 4 3 25 19 15 17 37 41 37 40 50 64 65 68 65 84 88 92 80 97 98 100 95 100 99 100	Being Indicated Amount or Less During 5 Year 10 Year 15 Year 20 Year 25 Year Period Period Period Period Period Period * 0 0 0 0 0 0 0 4 * * 0 0 0 0 9 2 1 * * 16 7 4 3 1 12 17 12 37 41 37 40 42 50 64 65 68 78 65 84 88 92 96 80 97 98 100 100 95 100 99 100	

Reare a contract of the set of the

and the preindrofess exception is the control of the interview of the state of the state did

والمجاجعا والالالة متعاوية جراجه معادي جنمج محدور والأسوسية فألار المتعادم والجرو

*Less than 0.5 percent chance.

25.

It is apparent from Table 5 that the variation of the sampling distributions become smaller as the sample size becomes larger. Hence, the probability distribution using a sample size of 5 years (using only the discrete probability values between 1 and 100) ranges from a low of 7 million acre-feet of water to a high of 17 million acre-feet of water. When a sample size of 30 years is used, however, the range of the probability distribution is from 11 million acre-feet to 16 million acrefeet of water. The standard deviation of the means of the five-year groups is 2.51 million acre-feet of water while the standard deviation for the thirty-year means is only .96 million acre-feet.

While there is greater accuracy, or stated another way there is less variability from the population mean, when larger samples are used, still the availability of probability distributions by the smaller grouping (5 years) gives an idea of the situations which may be met in the next five years, and hence, becomes a help in planning for criteria to be used in terms of the release rules to be applied to Glen Canyon and Hoover Dams.

<u>Comparison of Synthetic Hydrologies with Hurst and Leopold Studies</u>. The Hurst and Leopold techniques were applied to the annual historical runoff data for the Colorado River in an earlier section of this report. Since these techniques revealed certain characteristics of the historical data it was felt that the synthetic hydrologies should be examined generally to determine whether the simulations conformed in these respects. Hurst Study. The first twenty simulated hydrologies (generated for a thirtyyear period) were analyzed to determine the value of k from the equation

$$\frac{R}{\sigma} = \left(\frac{N}{2}\right)^k$$

described in an earlier section of this report. The values of k for the synthetic hydrologies range from 0.50 to 0.79 with mean, 0.64, and standard deviation, 0.08. For a random series with N = 30 the value of k would be 0.71. The mean k derived by Hurst for 8 cases of discharge and runoff for a period of 35 years each was 0.68.¹ This evidence tends to indicate that the synthetic hydrologies presented in Appendix Table III simulate those of a natural time series.

Leopold Study. The probabilities presented in Table 5 are consistent with the probability statements developed using the Leopold approach and presented in an earlier section of this report. It should be noted that the statement was made there that there were only 9 chances out of 100 that the next five-year mean flow of the Colorado River will be less than 9.57 million acre-feet of water and Table 5 shows there are 9 chances in 100 that the mean flow for a given five-year period will be 9 million acre-feet of water or less. One of the advantages of the approach developed here over that presented by Leopold is that possible sequences of flow, which would give a mean flow consistent with historical experience, are generated and can be used to study how inflow pattern affects operating rules.

¹H. E. Hurst, <u>Transactions</u>, American Society of Civil Engineers, 116, 785, (1051).

Markoff Chain

On the assumption that runoff can be described by a Markoff process, twenty synthetic hydrologies of fifty years each were developed (Appendix Table V). A Markoff Chain model of a physical system characterizes the system as being in one of several possible "states" at a given point in time. The state of the system does not remain constant but changes from period to period. In a Markoff process the present state uniquely determines future stochastic behavior.

The twenty hydrologies presented in Appendix Table V were developed using the following relationship

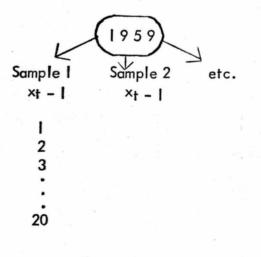
$$x_{t} = 4.07 \left[1 - (0.25)^{2} \right]^{-\frac{1}{2}} \left(+ 9.89 + 0.25 (X_{t-1}) \right)$$

where

 X_t = runoff for year t, t = 1, 2, 3, ... N. Where N = 20, conceptually N would go from 1 to ∞ .

4.07 = standard deviation of the historical runoff of the Colorado River (adjusted for transmountain diversion etc.)

0.25 = Markoff Chain coefficient


 ϵ = random variate normally distributed with mean X = 0, standard deviation = 1. 9.89 = mean flow (13.19) multiplied by .75. The mean flow of the Colorado River, 1912-1958 (adjusted for transmountain diversions) was 13.19. The expected value of ϵ for an infinite series will be zero (mean of the distribution of standard normal deviates). Hence, the mean of all X_t should equal 13.19. The summation of the first term, 4.07 $\left[1-(0.25)^2\right]^{\frac{1}{2}}\epsilon = 0$, therefore the summation of the remaining terms on the right should equal 13.19. Whence

$$0.25X + d = 13.19$$

Where d is a constant.

It should be noted that each flow is generated by adding a random component ϵ to a constant times the preceding flow value. The random or stochastic component is thus combined with a predictive element which attempts to reproduce the persistence effect present in historical Lees Ferry data. The 0.25 Markoff coefficient has been obtained from the predictive element estimated to be present in the historical data.¹

Each of the twenty synthetic hydrologies was generated by using the historical flow for 1959 as the X_{t_0} value, t = 1, 2, ..., N values. The different random deviates chosen for each hydrology resulted in X_{t-1} values ranging from 5.49 million acre-feet of water to 18.81 million acre-feet of water. These twenty values were then used in the Markoff chain as the starting values, i.e. X_{t-1} when t = 1, for the given synthetic hydrology presented in Appendix Table V. For example:

^ISee Paul Julian, "A Study of the Statistical Predictability of Stream Runoff in the Upper Colorado River Basin." Hence, 51 X_t values were generated, but only the last 50 were used for the hydrologies so that while each chain was generated from the historical value (7.3 million acre-feet of water, 1959 historical flow of the Colorado River measured at Lees Ferry, Arizona, adjusted for transmountain diversion) only X_t values, t = 1, 2, ...50, are presented in Appendix Table V.

The sequences generated using the Markoff Chain show considerable variation, with Simulation 2 ranging from 0.9 million acre-feet of water to 25.06 million acre-feet; Simulation II ranged from -4.35 million acre-feet of water to 22.27 million acre-feet. Two of the simulated hydrologies contained negative flows which, of course, are not realistisc. These resulted from the fact that high negative values for ϵ dominated other terms in the equation for X_t.⁴ It must be noted that the model used in this report assumes that streamflow at Lees Ferry is normally distributed which, of course, cannot be so since negative flows are not possible. The mean of the means of the 20 simulations was 12.93 with a standard deviation of 0.61 million acre-feet of water.

Summary and Recommendation

The problem of estimating future runoff of the Colorado River has been attacked through the application of probability analysis. Difficulties were encountered in application of the theory because natural time series tend to exhibit more persistence -- high values or low values occurring together -- than does a purely random series. Two approaches have been suggested for dealing with this problem.

IBM cards prepared from the Rand Corporation normal random deviates were used; the values range from -4.417 to +4.417.

The first technique developed in this paper, whereby the characteristics of the observed historical flow are used as restraints or parameters for the probability distributions from which the samples are selected at random, adjusts for the departure of natural time series from a purely random one. A periodicity of five years was statistically significant at the eight percent level so the random selection of values, in groups of five, restricted by the historical parameters of the 5-year means and 5-year means to range, is feasible. The synthetic hydrologies developed in Appendix Table IV are in basic agreement with the characteristics of the historical data on the flow of the Colorado River at Lees Ferry, Arizona. Moreover our experience is pretty much in accord with the results of other investigations in this area.

It should be pointed out that it is not anticipated that any one of the one hundred simulations of inflow to Glen Canyon Reservoir generated by using the probability approach based on the distribution of mean flows in relation to the range, nor any of the twenty generated by the Markoff Chain Model will occur. However, the probability distributions developed from the Pearson curves and fitted to the observed synthetic sample data (synthetic hydrologies) permit one to draw conclusions regarding what may reasonably be expected to occur in the future if the same general inflow pattern observed in the past obtains in the future.

The synthetic hydrologies generated by the Markoff Chain Model do not completely describe flow patterns, since in two of the synthetic hydrologies negative flows result from the use of the model.

31

The probability techniques presented here do not yield a final solution to the problem of predicting streamflow of the Colorado River but they do offer a fruitful direction of attack on the problem. In the light of the experience drawn from these investigations the following recommendations are made:

- Additional hydrologies, using the techniques presented in this paper, should be generated and studied.
- Various operating criteria should be applied to the synthetic hydrologies so that release rules for the dams could be evaluated.
- The use of five-year clusters for the Markoff Chain Model should be further explored with a transformation applied to the model to bring it more in line with actual experience.
- Application of monthly serial correlation coefficients to streamflow generation should be explored further. This approach was used by Thomas for the Stillwater River and may have application to the Colorado River.

¹This was done in "A Probability Model for Integration of Glen Canyon Dam into the Colorado River System" by Margaret R. Brittan. This report can be obtained from the Bureau of Economic Research at the University of Colorado in Boulder.

APPENDICES

The prove

÷.

APPENDIX I

Synthetic Hydrologies Using Probability Distributions

APPENDIX TABLE |

PERCENTAGE DISTRIBUTIONS OF MEANS AND RATIOS OF MEAN TO RANGE¹ OF FLOW OF THE COLORADO RIVER AT LEES FERRY, ARIZONA, 1912-1956 AND GAIN² TO LAKE MEAD, 1922-1956

1. MEANS OF FLOW OF COLORADO RIVER AT LEES FERRY

Mean Annual Runoff	
Millions of Acre-Feet	Percent
8.0 and under 10.0	12
10.0 and under 12.0	17
12.0 and under 14.0	34
14.0 and under 16.0	20
16.0 and under 20.0	17
10.0 and under 12.0 12.0 and under 14.0 14.0 and under 16.0	34 20

11. RATIOS OF RANGE TO MEAN - FLOW AT LEES FERRY

Ratio		Percent
0.3 and under	0.5	29
0.5 and under	0.7	27
0.7 and under	0.9	20
0.9 and under	1.1	12
1.1 and under	1.4	12

III. MEANS OF GAIN² TO LAKE MEAD

Mean Annual Gain in	
Millions of Acre-Feet	Percent
0.4 and under 0.6	31
0.6 and under 0.8	44
0.8 and under 1.0	19
1.0 and under 1.4	3
1.4 and under 1.8	3

IV. RATIOS OF RANGE TO MEAN - GAIN² TO LAKE MEAD

Ratio		Percent
0.3 and under	0.5	22
0.5 and under	0.7	19
0.7 and under	0.9	28
0.9 and under	1.1	19
1.1 and under	1.7	12

¹Five-year moving averages used.

²Basic data were derived by the Colorado Water Conservation Board by taking the release from Lake Mead plus the alegebraic storage difference plus the evaporation from Lake Mead plus diversions from Lake Mead.

Source: Adapted from U. S. Geological Survey, <u>Water</u> Supply Papers, 1313, 1343, 1393, 1443, and 1563.

APPENDIX TABLE !!

12220

Sample Number	Inflow to Amount	Millions of Glen Canyon Mean	Acre-Feet of Water Gain to Amount	r 5 Lake Mead ¹ Mean
Mulliper	Allount	nean	Amount	nean
1	10.40		0.84	
	9.40		0.73	
	10.30		0.84	
	7.10		0.63	
	7.00	8.84	0.59	0.726
2	15.60		0.54	
	15.00		0.60	
	6.90		0.39	
	14.30		0.38	
	12.70	12.90	0.45	0.472
3	4.80		0.88	
	18.80	ar 1	0.73	
	6.90		0.36	
	20.40		1.20	
	16.60	13.50	1.20	0.874
4	7.90		0.74	
	10.20		0.54	
*	8.10		0.66	
	9.90		0.66	
	14.30	10.08	0.36	0.592
5	7.30		0.66	
	12.90		0.65	
	7.30		0.36	
÷ • • • • • •	7.80		0.36	
	6.10	8.28	0.65	0.536
6	18.80		0.65	
· -	17.40		0.84	
	9.10		0.39	
	13.30		0.36	
	19.70	15.66	0.37	0.522

ONE HUNDRED RANDOM SAMPLES OF FIVE-YEAR SEQUENCES OF INFLOW TO GLEN CANYON RESERVOIR AND GAIN TO LAKE MEAD¹

			e-Feet of Water	
Sample Number	Inflow to Gle Amount	n Canyon Mean	Gain to La Amount	ke Mead' Mean
NUMBER	Amount	nean	Anount	nean
7	18.90		0.66	
	20.40		0.46	
	14.80		0.74	
	10.50		0.48	
	16,30 1	6.18	0.84	0.636
8	20.90		0.60	
	18.10		0.84	
	13.90		0.85	
	16.30	-	0.67	
	19.80 1	7.80	1.39	0.870
9	11.30		0.62	
	14.10		0.54	
	18,70		3.20	
	5.80		0.63	
	17,60 1	3.50	3.20	1.638
10	6.60		0.39	
	6.90		0.38	
	14.70		0.48	
	12.60		0.63	
· · · · · · · · · · · · · · · · · · ·	15.40 1	1.24	0.72	0.520
11	14.30		0.48	
	17.20		0.62	
	20.90		0.38	
	14.10	- (0	0.73	0 (10
	21.90 1	7.68	0.88	0.618
12	18.40		0.95	
	16.40		0.61	
	12.20		0.88	
	21.50	7 10	0.73	0 901
	17.00 1	7.10	0.95	0.824

		of Acre-Feet of Water	
Sample	Inflow to Glen Can		
Number	Amount Mean	Amount	Mean
13	10,30	0.85	
	13.30	0.36	
	19.60	0.73	
	19.10	0.47	
	19.60 16.38	0,85	0.652
14	00.10	0.27	
14	20.10	0.37	
	14,20	0.46	
	14.70	0.38	
	10,60	0.84	
	5.50 13,02	0.45	0,500
15	18.50	0.66	
	5.90	0.45	
	18.20	2.31	
	7.80	0.62	
	12.70 12.62	2.31	1.270
16	9.00	0.84	
	16.10	0.60	
	21.40	0.61	
	21.50	0.73	
• ••••	11.50 15.90	0.54	0.664
17	19.40	0.45	
	12.40	0.64	
	8.00	0.83	
	21.10	0.37	 A
	5.20 13.22	0.57	0.576
			0,0,0
18	6.40	0.72	
	14.30	1.72	
	15.60	0.59	
	5.50	0.65	
	14.30 11.22	0.72	0.880
	11.50 11.22	0172	0.000

1	Millions of Acre		
Sample	Inflow to Glen Canyon	Gain to La	
Number	Amount Mean	Amount	Mean
19	16.20	0.73	
19	4.70	0.73	
	15.00	0.95	
	5.30	0.74	
	20.90 12.42	0.65	0.760
20	17.90	0.54	
	5.80	0.51	
	10.50	0.61	
	19.40	0.72	· · · · ·
	21.50 15.02	0.51	0.578
	21.50 15.02	0.51	0.5/0
21	13.50	0.54	×.
	7.10	0.46	
	7.70	0.48	
	12.10	0.46	
	15.30 11.14	0.62	0.512
22	17.00	0.72	
22	17.00	0.73	
		0.37	
	14.90	0.59	
· · · · · · · · ·	21.40	0.39	
	13.00 15.70	0.59	0.534
23	17.30	0.37	
	15.60	0.84	
	4.50	0.65	
	21.80	0.39	
	5.40 12.92	0.48	0.546
	5110 12152	•••••	0.9.0
24	9.50	0.36	9 - QQ
	8.60	0.54	
	16.40	0.60	
	15.70	0.65	
	11.90 12.42	0.46	0.522

Sample Number		Millions of Acre-Fee Glen Canyon Mean	t of Water Gain to Lake Amount	_{Mead} 1 Mean
25	16.70		0.84	
25	12.80		0.51	
	14.10		0.84	
	17.30		0.65	
	12.50	14.68	0.37	0.642
26	16.80		0.65	
	9.50		0.37	
	15.00		0.46	
	12.10		0.84	
	21.30	14.90	0.67	0.598
27	10.10		0.84	
	8.10		0.66	
	16.40		0.67	
	13.50		0.85	
	16.10	12.84	0.54	0.712
28	9.00		0.46	
	12.90		0.67	
	18.70		0.64	
	9.90		0.67	
	5.60	11.22	0.47	0.582
29	16.50		0.45	
	16.40		0.39	•
	13.40		0.84	
	5.10		0.84	
	21.20	14.52	0.38	0.580
30	10.80		0.64	
	8.20		0.36	
	15.80		1.72	
	12.80	1	0.72	0.010
	15.30	12.58	0.65	0.818

		re-Feet of Water	
Sample Number	Inflow to Glen Canyon Amount Mean	Gain to Lake Amount	Mead ¹ Mean
Mullioer	Amount hean	Allount	nean
31	13,10	0.83	
	7.90	0.38	
	15.40	0.48	
	15.80	0.74	
	14.10 13.26	0.59	0.604
32	11.00	0.60	
	12.60	0.85	
	12.50	0.60	
	18,50	0.65	
	8.30 12,58	0.67	0.674
33	17.60	1.20	
	6.20	0.60	
	19.60	0.67	
	4.80	0.84	
	12,50 12.14	0.85	0.832
34	8.90	0.85	
	5.90	0.84	
	15.90	1.72	
•	14,90	0.47	
	12.10 11.54	0.84	0.944
35	15.10	0.65	
	9.40	0.51	
	11,60	0.83	
	18.00	0.83	
	16.20 14.06	0,85	0.734
36	8.90	0.65	
	14.80	0.47	
	15.40	1.72	
	14.10	0.39	
	15.80 13.80	0.85	0.816

Sample Number	Inflow to Amount	Millions of Acre- Glen Canyon Mean	Feet of Water Gain to La Amount	ake Mead ¹ Mean
37	21.20		0.73	
	19.60 11.90 17.90	16.26	0.54 0.83 0.84	0.764
38	18.30 14.20 15.70		0.47 0.84 0.62	
	14.60 12.70	15.10	0.62	0.686
39	8.00 13.70 7.50 19.30		1.39 0.73 1.20 0.65	
	17.40	13.18	0.65	0.924
40	12.00 11.70 11.40 20.90		0.60 0.83 0.61 0.54	0.608
41	9.70 20,60 18.10 21.30	13.14	0.46 0.83 0.73 0.37	0.608
	13.90 11.00	16.98	0.65 0.62	0.640
42	16.20 7.90 18.10 10.40		0.84 0.36 0.60 0.65	
	11.90	12.90	0.73	0.636

APRENS : TRELL

Sample		Millions of Acre- o Glen Canyon	Gain to La	
Number	Amount	Mean	Amount	Mean
43	14.40		0.73	
	12.20		0.64	
	12.90		0.88	
	17.50		0.64	
	19.30	15,26	0.64	0.706
44	5.30		0.66	
	13.00		0.73	
	13.20		0.73	
	13.10		0.45	
-	10.00	11.28	0.64	0.642
45	5.80		0.46	
	15.20		0.66	
	10.20		0.46	
	11,20		0.74	
	11.40	10.76	0.74	0.612
46	16.30		0.51	
	7.40		0.95	
	19.30		0.60	
·	10.90		0.54	
	7.30	12.24	0.73	0.666
47	18.40		0.84	
	18.30		0.54	
	13.90		0.84	
	14.50		1.72	
	12.40	15.50	0.83	0.954
48	10.10		0.54	
	8.10		0.59	
	16.40		0.95	
	13.50		0.38	
	16.10	12.84	0.61	0.614

	1	Millions of	Acre-Feet	of Water		
Sample	Inflow to	o Glen Canyon		Gain to	Lake	
Number	Amount	Mean		Amount		Mean
lio.	12.00			0.00		
49	13.20			0.83		
	20.60			0.59		
	10.20			0.88		
· · · · ·	21.20			0.88		-
	15.50	16.14		0.73		0.782
50	13.20			1.39		
	7.40			0.74		
	15.40			0.83		
	19.00			0.67		
	10.90	13.18		0.46		0.818
	10.90	13.10		0.40		0.010
51	12.00			0.36		
Col	15.60			0.74		
	20.70			0.65		
	13.30			0.54		
	7.40	13.80		0.37		0.532
	7.40	15.00		0.57		0.772
52	7.40			0.60		
	7.70			0.54		
	17.10			1.39		
	5.60			1.39		
	10.00	9.56		0.73		0.930
		2.25				
53	9.70			1.72		
*	5.80			0.47		
	9.00			0.73		
	7.60			0.74		
	14.50	9.32		0.66		0.864
r 1.	10.00			0.64		
54	19.80			0.64		
	8.60			0.60		
	8.40			0.84		
	12.60	10.00		0.54		
	17.50	13.38		1.20		0.764

			Acre-Feet		1	
Sample		Glen Canyon		Gain to Lake		
Number	Amount	Mean		Amount	Mean	
55	17.80			0.54		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.40			0.45		
	17.80		1. Sec. 19. 19.	0.45		
	15.60			0.95		
	13.50	17 02		0.74	0.626	
	13.50	17.02		0./4	0.020	
56	11,50		· · · · · · · · ·	2.31		
	21.50			0,84		
	9.30			1.20		
	16.00			0.66	· · ·	
	11.30	13.92		0.61	1,124	
57	10.20			0.59		
	7.70			0.74		
	15.30			0.67		
	15.70			0.38		
	10.20	11.82		0.39	0.554	
-						
58	10.60			0.61		
	21.30			0.74		
	21.80			0.69		
	8.30			0.60		
·	19.90	16.38		0.46	0.620	
59	17.40			0.48		
22	6.10			0.48		
	4.70			0.54		
	21.60			0.95		
	17,60	13.48		0.36	0.562	
	17,00	13.40		0.30	0.502	
60	13.20			0,85		
	6,80			0.60		
	13.30			0.83		
	4.40			0.62		
· · ·	7.70	9.08		0.54	0.688	

£	·····	Millions of	Acre-Feet		u .1
Sample Number	Amount	Glen Canyon Mean		Gain to Lake Amount	Mead' Mean
61	6.80	the set of all is made a second participant of the	and an and the second	0.65	
2.	6.80			0.74	
	13.80		1.1.1	0.61	
	4,50			0.36	
	9.50	8.28		0.39	0.550
62	12.10			0.54	
	8.60			0.84	
	8.20			0,66	
	9.40			0.65	
*	10.50	9.76		1.20	0.778
63	16.70		,	0.62	
2	13.00			0.61	
	16.30			1.39	
	7.00			1.72	
	18.10	14,22		0.74	1.016
64	16.30			0.37	
a.•	8.90			0.72	
	15.90			0.59	*
	5.40	12.00		0.48	0.556
· · · · · · · · · · · · · · · · · · ·	19.50	13.20		0.62	0.556
65	9.90			0.88	
	17.20			0.51	
	13.30			0.63	
	13.70	10 11		0.59	0 (00
	8.10	12.44		0.39	0.600
66	15.40			0.73	
	15.70			0.38	
	15.70			0.47	
	16.10 9.10	14.40		0.63	0.576
	9.10	14,40		0.67	0.5/0

		Millions of	Acre-Feet		1. S. 1. S. 1.
Sample		Glen Canyon		Gain to Lake	
Number	Amount	Mean		Amount	Mean
47	17 10			0.61	
67	17.10			0.64	
	15.90			0.59	
	16.20			0.38	
	16.60			0.73	
	12.00	15.56		0.63	0.594
68	10.30			0.45	
	13.50			0.39	
	20.80			0.73	
	16.50			0.62	
	19.80	16.18		0.61	0.560
69	12.40			0.73	
	14.80			0.37	
	8.20			0.37	
-	11.90			0.61	
	10.10	11.48		0.37	0.490
70	10.80		8 ×	0.39	
/0	8.20			0.73	
	15.80			0.61	*
	12.80			0.51	
		10 50		0.46	0.540
	15.30	12.58		0.40	0.540
71	8.10			0.62	
	11.40			0.65	
· · ·	9.60			0.72	
	13.40			0.46	- Pa
	6.70	9.84		0.66	0.622
72	14.10			0.48	
/-	12.40		1	0.62	
	19.20			0.64	
	19.20			1.20	
	20.50	17.08		0.74	0.736
	20.50	17.00		0./4	0.750

Sample Number	Inflow to Amount	Millions of Glen Canyon Mean	Acre-Feet of Water Gain to Lake Amount	Mead ¹ Mean
73	11.30		0.84	
	18.90		0.88	
	14.80		0.51	
	4.90		0.39	
	12,50	12.48	0.37	0.598
74	8.50		0.48	
	10.90		0.72	
	12.60		0.73	
	12.20		0.51	
	8.30	10.32	0.63	0.614
75	21.00		0,62	
	17.50		0.84	
	14.90		0.73	
	8.50		0.64	
	19.70	16.32	0.74	0.714
76	6.00		0.47	
•	13.10		0.64	
· · ·	10.50		0.62	•••
	9.40		0.85	
	5.70	8.94	0.66	0.648
77	17.70		0.60	
•	21.40		0.46	
	8.50		0.95	
	15.00	an Milan	0.61	
	20.50	16.62	0.72	0.668
78	20.30		1.20	
	19.30		0.48	
	11.60		1.20	
	14.00	3	0.64	¥
	20.10	17.06	0.64	0.832

Sample Number	Inflow to Amount	Millions of Glen Canyon Mean	Acre-Feet	of Water Gain to Amount	Lake	Mead ¹ Mean
79	5.60 10.00			3.20 0.67		
	8.70 11.30			0.61 3.20		
	10.50	9.22	-	0.95		1.726
80	9.50 8.30 9.40 14.20 8.20	9.92		0.59 0.84 0.39 0.51 0.67		0.600
81	19.00 13.60 16.70 19.30 11.90	16.10		0.73 0.65 0.36 0.64 0.72		0.620
82	18.60 16.70 14.40 10.70 20.60	16.20		1.20 0.88 0.46 0.54 0.65		0.746
83	7.90 9.00 14.30 11.80 13.80	11.36		0.54 0.67 0.83 0.45 0.85		0.668
84	4.80 7.10 8.70 13.20 11.50	9.06		0.39 0.46 0.45 0.84 0.64		0.556

	Millions of Acre-	
Sample	Inflow to Glen Canyon	Gain to Lake Mead ¹
Number	Amount Mean	Amount Mean
85	11.90	0.74
0)	9.80	0.62
	15.40	0.45
	13.30	0.74
	14.90 13.06	0.65 0.640
86	9.80	0.85
	20.20	3.20
	18.50	3.20
	13.00	0.67
	7.60 13.82	0.54 1.692
87	13.80	0.45
	11.40	0.67
	16.40	0.73
	16.90	0.84
	18.10 15.32	0.37 0.612
88	11.00	0.65
00	14.60	
	14.80	1.39
	12.10	0.74
		0.73 0.83 0.868
• ••••• 2	17.40 13.98	0.83 0.868
89	18.00	0.36
	19.10	0.84
	11.60	0.54
	16.30	0.65
N.	12.60 15.52	0.65 0.608
90	11.80	0.37
	10.80	0.60
	14.40	0.85
	12.10	0.74
.5	17.10 13.24	0.95 0.702
	17.10 13.24	0.95 0.702

.	Millions of Acre-		
Sample	Inflow to Glen Canyon	Gain to Lake Mead	
Number	Amount Mean	Amount Mean	
91	17.20	0.83	
<i>J</i>	17.80	0.62	
	14.90	0.95	
	10.60	0.36	
	13.50 14.80	0.63 0.678	3
92	10.40	0.46	
-	9.20	0.84	
	10.00	0.36	
	10.30	0.59	
	12.60 10.50	0.38 0.526	5
93	17.20	0.95	
	13.40	0.36	
	17.80	0.73	
	11.80	0.54	
	19.10 15.86	0.67 0.650	D
94	13.40	0.84	
	15.30	0.46	
	9.70	0.45	
	11.10	0.37	
• • • • • • •	9.80 11.86	0.45 0.51	+
95	9.80	0.38	
	10.60	0.46	
	14.00	0.46	
	11.70	0.84	
	12.80 11.78	0.38 0.50	4
96	13.40	1.39	
	12.70	0.84	
	17.10	0.65	
	12.10	0.51	*
	17.20 14.50	0.72 0.82	2

APPENDIX TABLE [] (Concluded)

		Millions of	Acre-Feet	of Water			
Sample	Inflow t	o Glen Canyon		Gain to	Lake	Mead ¹	
Number	Amount	Mean		Amount	<u> </u>	Mean	
97	13.90			0.73			
*	10.00			0.84			
	9.60	8		1.39			
	11.90			0.51			
	13.20	11.72		1.20		0.934	
09	14.00			0 27			
98	14.90			0.37			
	11.50			0.39			
<	14.40			0.38			
	15.80			0.48			
	10.60	13.44		0.83		0.490	
99	16.30			0.39			
22	14.80			1.20			
	9.80			1.39			
	13.20			1.20			
	16.50	14.12		0.51		0.938	
	10.50	14.12		0.51		0.930	
100	13.30			0.74			
	10.40			0.64			
	12.10			1.39			
	14.20			0.46			
•	9.20	11.84		1.39		0.924	
	5.20	11.04				0.924	

ONE HUNDRED RANDOM SAMPLES OF FIVE-YEAR SEQUENCES OF INFLOW TO GLEN CANYON RESERVOIR AND GAIN TO LAKE MEAD¹

 $^{1}Represents$ gain to Lake Mead beyond the amount of water released from Glen Canyon reservoir.

		Millions of Acr	e-Feet of Water	1.1.2.2.2.2.2
	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	1	2	3	4
1962	13.31	18.81	16.11	19.71
1963	15.12	20,22	7.72	8.42
1964	8.43	14.53	17.83	8.13
965	10.74	10.14	10.04	12.24
966	9.35	15.85	11.45	17.05
967	7.56	6.76	17.86	17.26
968	10.77	12.27	17.67	19.77
969	8.88	6.58	13.18	17.08
970	12.65	7.05	13.75	14.85
971	5.92	5.32	11.62	12.72
972	16.48	18.08	20.18	9.28
973	14.75	19.55	16.65	7.25
974	3.62	13.92	14.02	15.52
975	20.89	9.59	7.59	12.59
976	4.46	15.36	18.76	15.16
977	5.62	12.92	3.82	11.42
978	5.89	8.99	17.79	13.79
979	13.66	8.56	5.86	7.16
980	11.53	10.83	19.33	10.83
981	14.30	12.10	15.50	9.00
982	9.66	16.86	17.36	16.76
983	7.03	17.93	4.73	4.63
984	14.60	10.40	17.00	9.30
985	11.57	15.07	6.57	18.17
986	14.04	11.34	11.44	20.24
987	8.20	11.10	10.80	4.30
988	7.27	13.47	7.27	8.67
989	15.04	6.84	6.84	7.34
990	14.31	10.51	8.01	9.91
1991	10.48	8.68	9.08	9.08

		Millions of Acre	-Feet of Water	
	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	5	6	77	8
1962	8.81	6.71	15.31	18.31
1963	5.72	6.62	15.52	18.12
1964	15.63	13.53	15.43	13.63
1965	14.54	4.14	15.74	14.14
1966	11.65	9.05	8.65	11.95
1967	18.46	16.66	15.06	9.26
1968	12.97	17.17	14.37	19.57
1969	15.98	14.18	6.18	17.78
1970	18.55	9.85	13.55	12.25
1971	11.12	12.72	11.92	6.82
1972	15.48	11.18	4.98	18.18
1973	13.95	10.85	14.35	12.75
1974	8.92	10.52	9.32	15.82
1975	12.29	19.99	10.29	18.39
1976	15.56	8.76	10.46	10.96
1977	10.32	16.32	5.82	17.52
1978	17.89	14.59	5.79	4.89
1979	13.76	3.46	12.76	17.16
1980	3.83	20.73	3.43	6.73
1981	11.40	4.30	8.40	11.60
1982	10.16	7.86	15.16	13.16
1983	17.73	14.93	13.63	16.03
1984	13.60	20.20	8.60	19.70
1985	3.67	20.27	11.97	12.87
1986	11.24	10.24	15.24	20.64
1987	19.00	19.30	9.30	10.20
1988	17.97	16.77	19.97	20.17
1989	10.24	19.94	20.44	7.94
1990	12.61	12.51	6.91	14.61
1991	18.68	9.58	18.48	9.88

المحادية المحاج المحاج المحاد

277

	Millions of Ac	re-Feet of Water	. an or allow
Simulated	Simulated	Simulated	Simulated
Flow	Flow	Flow	Flow
9	10	11	12
			10.31
			9.22
			10.03
			6.74
	19.35		6.55
	17.96		9.36
14.97	5.27	17.47	16.57
3.78	17.48	20.58	12.58
21.05	7.05	13.15	12.95
4.62	11.92	10.22	7.32
17.78	11.58	17.58	14.28
15.85	13.95	15.55	8.55
			10.72
			17.09
			15.26
			7.02
			12.69
			6.46
			18.23
			16.30
			10.66
			9.63
			13.20
			10.87
			15.84
			9.70
			11.27
			11.14
			17.11
			6.88
20.00	11,10	10.00	0.00
	Flow 9 10.01 7.92 16.13 13.14 15.65 16.76 14.97 3.78 21.05 4.62	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FlowFlowFlow9101110.0120.8120.517.9217.9217.9216.1313.6321.0313.1415.9413.5415.6519.3510.5516.7617.9620.0614.975.2717.473.7817.4820.5821.057.0513.154.6211.9210.2217.7811.5817.5815.8513.9515.5513.527.3211.329.7910.9920.5919.669.1616.0614.4215.2216.8214.693.6919.3914.6613.9616.7615.034.2314.538.0019.8012.4011.264.8616.2613.6311.934.937.009.303.5010.678.1720.378.844.4416.3416.609.1019.004.477.8717.979.148.6410.2418.018.9112.61

		Millions of Acre-Feet of Water			
<i>k</i>	Simulated	Simulated	Simulated	Simulated	
	Flow	Flow	Flow	Flow	
Year	13	14	15	16	
1962	7.81	18.31	15.31	13.81	
1963	8.82	16.22	15.52	9.82	
1964	14.03	11.93	15.43	9.33	
1965	11.44	21.14	15.74	11.54	
1966	13.35	16.55	8.65	12.75	
1967	15.76	15.76	7.96	11.26	
1968	14.17	8.27	10.27	10.17	
1969	9.08	15.18	11.88	13.68	
1970	12.45	4.65	11.45	11.35	
1971	15.72	18.72	7.52	16.32	
1972	10.18	18.58	18.98	12.28	
973	11.75	11.55	7.75	7.05	
1974	11.62	7.12	7.52	14.52	
1975	17.59	20.19	11.69	14.89	
1976	7.36	4.26	16.56	13.16	
1977	10.32	19.62	14.12	5.82	
1978	13.09	17.09	8.39	5.79	
1979	17.66	20.26	10.56	12.76	
980	4.73	12.83	16.93	3.43	
981	16.50	9.90	15.10	8.40	
982	8.36	16.66	19.46	17.26	
1983	7.13	19.23	16.93	17.13	
984	8.20	16.60	20.10	12.70	
985	12.97	14.37	12.67	13.27	
986	6.94	12.24	9.74	11.14	
987	6.10	16.60	16.10	8.40	
988	6.37	4.47	4.77	4.47	
989	15.74	9.14	3.34	7.64	
1990	4.21	18.01	20.21	6.21	
1991	8.58	20.08	16.18	13.08	

		Millions of Acr	e-Feet of Water	
	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	17	18	19	20
1962	10.51	5.71	9.71	16.21
1963	21.12	15.02	10.42	14.62
1964	21.53	9.93	13.73	9.53
1965	7.94	10.84	11.34	12.84
1966	19.45	10.95	12.35	16.05
1967	10.76	19.26	16.16	10.96
1968	13.47	7.97	12.17	20.87
1969	17.98	7.68	13.38	8.58
1970	5.05	11.85	16.55	15.25
1971	16.82	16.72	11.72	10.52
1972	11.18	8.98	20.08	11.18
1973	10.85	9.75	17.25	14.75
1974	10.52	13.12	13.02	19.82
1975	19.99	10.79	15.39	12.39
1976	8.76	11.86	18.86	6.46
1977	7.12	8.82	9.32	19.32
1978	10.39	19.19	12.49	18.29
1979	8.56	17.46	19.76	10.56
1980	12.33	11.93	15.43	12.93
1981	5.60	6.50	18.70	19.00
1982	16.56	8.96	18.66	10.86
1983	20.23	6.93	7.43	10.53
1984	7.30	15.20	7.20	10.20
1985	13.77	12.27	11.37	19.67
1986	19.24	14.84	16.24	8.44
1987	15.40	17.50	10.50	15.00
1988	11.47	16.07	9.47	7.57
1989	12.74	7.74	13.04	14.54
1990	15.91	11.91	10.71	4.01
1991	11.08	18.28	15.68	18.08

ACCURATE A CONTRACTOR OF A CONTRACTOR A CONTRACT			Millions of Acr	e-Feet of Water			
į		Simulated	Simulated	Simulated	Simulate		
		Flow	low Flow Flo	Flow Flow	Flow		
Year		21	22	23	24		
1962		6.71	17.21	18.21	16.91		
1963		6.62	15.42	14.02	12.02		
1964		13.53	4.23	15.43	14.63		
1965		4.14	21.44	14.24	21.04		
1966		9.05	4.95	12.25	12.55		
1967		10.46	7.36	12.86	12.66		
1968		11.97	8.37	14.67	6.17		
1969		11.78	13.58	8.98	12.58		
1970		17.75	11.05	10.35	3.65		
1971		7.52	13.02	9.02	6.92		
1972		11.18	11.28	13.58	19.48		
1973		14.75	7.75	11.35	18.45		
1974		19.82	7.32	12.02	10.72		
1975		12.39	8.49	16.59	13.09		
1976		6.46	9.56	18.36	19.16		
1977		4.62	9.12	16.62	6.42		
1978		8.99	7.09	5.19	6.69		
1979		7.66	15.36	18.56	16.06		
1980		10.23	12.43	3.73	4.53		
1981		9.40	15.00	11.40	8.90		
1982		10.86	16.86	6.26	9.26		
1983		14.43	17.93	6.53	8.23		
1984	1979 A. 1971 B.	19.50	10.40	15.90	9.10		
1985		12.07	15.07	4.37	5.87		
1986		6.14	11.34	8.74	5.74		
1987		6.00	16.10	14.30	9.00		
1988		11.57	4.77	13.67	11.97		
1989		5.94	3.34	5.54	18.24		
1990		6.41	20.21	12.91	17.71		
1991		4.68	16.18	11.28	18.18		

	Millions of Acre-Feet of Water				
	Simulated	Simulated	Simulated	Simulated	
	Flow	Flow	Flow	Flow	
Year	25	26	27	28	
1962	16.61	14.31	20.01	20.21	
1963	12.82	12.02	14.02	19.12	
1964	16.03	12.63	14.43	11.33	
1965	6.64	17.14	10.24	13.64	
1966	17.65	18.85	5.05	19.65	
1967	4.26	13.36	5.06	18.46	
1968	18.17	9.37	9.37	12.97	
1969	6.18	8.88	7.98	15.98	
1970	19.65	11.15	10.55	18.55	
1971	15.82	12.42	9.72	11.12	
1972	15.48	9.28	13.48	18.08	
1973	8.05	7.25	16.35	19.55	
974	15.02	15.52	20.02	13.92	
1975	4.49	12.59	13.19	9.59	
1976	18.56	15.16	20.96	15.36	
1977	8.52	17.32	8.52	3.82	
1978	7.29	13.19	7.59	17.79	
1979	8.36	14.66	15:36	5.86	
1980	13,13	13.53	14.63	19.33	
1981	7.10	11.60	10.80	15.50	
1982	19.76	15.06	10.36	8.36	
1983	16.93	3.53	20.33	7.43	
1984	12.70	13.80	8.10	15.20	
1985	15.07	4.07	14.77	14.47	
986	18.54	19.64	10.04	10.64	
987	19.70	10.70	9.70	13.80	
1988	16.17	10.37	11.27	8.07	
1989	13.54	10.04	11.14	10.24	
1990	7.11	19.51	17.11	16.61	
1991	18,28	8.28	6.88	14.78	

	nan ang kanalang kan Kanalang kanalang kana	Millions of Acr	e-Feet of Water	an a
	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	29	30	31	32
1962	7.81	16.61	11.21	15.51
1963	10.02	12.62	18.72	14.82
1964	7.83	-13.83	14.53	6.63
1965	9.54	16.94	4.54	13.94
1966	13.85	12.05	12.05	12.25
1967	17.26	17.36	13.56	17.96
1968	19.77	5.17	11.77	5.27
1969	17.08	9.78	18.48	17.48
1970	14.85	18.65	18.45	7.05
1971	12.72	20.72	19.72	11.92
1972	14.58	9.48	5.18	11.58
1973	14.85	12.45	12.25	13.95
1974	14.82	18.72	9.62	7.32
1975	15.19	18.19	8.49	10.99
1976	8.16	18.66	4.76	9.16
1977	11.02	10.82	9.62	7.52
1978	14.59	9.79	20.29	9.89
1979	19.66	13.36	20.76	11.56
1980	12.23	11.03	7.23	11.13
1981	6.30	16.00	18.80	7.20
1982	8.36	8.56	5.46	14.46
1983	7.43	4.63	5.73	13.83
1984	15.20	7.80	13.50	5.70
1985	14.47	6.37	11.37	13.07
1986	10.64	13.24	14.14	11.44
1987	12.20	12.00	14.90	10.00
1988	5.77	9.07	3.37	17.57
1989	6.34	10.74	13.64	13.44
1990	10.71	12.81	3.91	3.51
1991	13.88	7.78	19.48	11.08

į.		Millions of Acre-Feet of Water		
	Simulated	Simulated	Simulated	Simulated
Need	Flow	Flow	Flow	Flow
Year	33	34	35	36
1962	10.21	17.51	17.11	14.21
1963	13.32	6.02	17.62	17.02
1964	20.53	19.33	14.63	20.63
965	16.14	4.44	10.24	13.74
966	19.35	12.05	13.05	21.45
967	5.46	13.26	7.36	14.36
968	12.47	10.77	8.37	10.87
969	9.78	15.68	13.58	13.68
970	8.65	16.15	11.05	15.05
971	4.92	17.32	13.02	9.82
972	10.48	9.58	15.68	3.98
973	18.05	8.35	15.55	17.95
974	13.92	9.12	12.52	6.02
975	3.99	9.39	4.19	19.49
976	11.56	11.66	20.26	15.66
977	8.82	12.22	7.52	12.42
978	9.59	19.59	9.89	11.69
979	12.96	9.16	11.56	16.06
980	10.63	20.13	11.13	11.03
981	11.70	14.40	7.20	16.10
982	4.16	13.76	14.26	10.96
983	11.83	10.33	14.53	7.43
984	12.00	13.20	14.50	7.00
985	11.87	14.57	14.87	8.17
986	8.74	9.34	7.84	9.24
987	18.50	6.60	14.90	17.30
988	7.27	8.87	6.57	15.37
989	7.04	6.74	16.74	13.04
990	11.21	8.51	9.01	9.31
1991	16.08	12.88	10.48	19.18

		Millions of Acr	e-Feet of Water	
	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	37	38	39	40
1962	18.91	16.41	11.21	7.21
1963	13.42	16.22	13.92	12.72
1964	16.43	13.13	18.43	7.03
1965	18.94	4.74	5.44	7.44
1966	11.45	20.75	17.15	5.65
1967	13.76	8.46	12.76	5.86
1968	16.57	12.27	9.77	13.67
1969	20.18	17.98	11.38	14.88
1970	13.35	9.15	13.45	4.75
1971	21.12	4.82	8.42	13.52
1972	7.68	7.68	10.48	17.58
1973	10.05	10.05	18.05	17.45
1974	11.72	11.72	13.92	13.02
1975	11.29	11.29	3.99	13.59
1976	7.36	7.36	11.56	11.46
1977	9.82	7.52	14.12	15.32
1978	7.19	9.89	8.39	7.89
1979	14.76	11.56	10.56	14.86
1980	11.73	11.13	16.93	4.33
1981	14.20	7.20	15.10	18.40
1982	7.36	16.56	12.06	3.66
1983	9.73	20.23	19.43	17.63
1984	11.40	7.30	9.00	5.70
1985	10.97	13.77	19.97	19.17
1986	7.04	19.24	14.24	15.34
1987	9.70	10.20	3.50	15.00
1988	11.27	20.17	17.47	7.57
1989	11.14	7.94	5.54	14.54
1990	17.11	14.61	19.01	4.01
1991	6.88	9.88	15.18	18.08

	Millions of Acre-Feet of Water				
ger der har	Simulated	Simulated	Simulated	Simulated	
	Flow	Flow Flow	Flow		
Year	41	42	43	44	
1962	17.01	16.21	6.71	20.51	
1963	15.72	7.22	6.62	17.92	
1964	15.93	19.03	13.53	21.03	
1965	16.24	10.54	4.14	13.54	
1966	11.55	6.85	9.05	10.55	
1967	18.06	8.96	5.26	7.36	
1968	16.07	7.67	14.57	9.57	
1969	13.68	8.68	9.48	7.38	
1970	9.95	13.45	10.45	9.15	
1971	19.82	7.42	10.62	13.52	
1972	10.98	5.18	8.18	16.58	
1973	9.95	12.25	12.05	5.25	
1974	13.52	9.62	17.82	3.82	
1975	11.19	8.49	8.99	20.69	
1976	16.16	4.76	4.66	16.66	
1977	10.02	16.82	12.42	12.92	
1978	13.59	19.39	14.29	8.99	
1979	13.76	16.76	8.66	8.59	
1980	11.03	14.53	10.03	10.83	
1981	16.30	12.40	8.70	12.10	
1982	16.76	12.36	9.66	9.46	
1983	4.63	5.93	7.03	20.13	
1984	9.30	6.50	14.60	20.60	
1985	18.17	10.87	11.57	7.07	
1986	20.24	14.04	14.04	18.64	
1987	6.60	19.60	17.50	10.50	
1988	8.87	16.77	16.07	9.47	
1989	6.74	12.54	7.74	13.04	
1990	8.51	14.91	11.91	10.71	
1991	12.88	18.38	18.28	15.68	

	1	Millions of Acre-	-Feet of Water	
	Simulated	Simulated	Simulated	Simulate
	Flow	Flow	Flow	Flow
Year	45	46	47	48
1962	5.91	7.81	18.81	17.71
1963	12.92	8.82	20.22	20.22
1964	10.23	14.03	14.53	17.53
1965	9.04	11.44	10.14	15.24
1966	5.25	13.35	15.85	13.05
1967	7.36	10.76	12.66	19.76
1968	9.57	18.27	19.97	18.67
1969	7.38	14.08	9.48	10.88
1970	9.15	4.15	20.45	13.25
1971	13.52	11.72	14.72	19.32
1972	9.28	8.08	17.18	12.68
1973	7.25	5.05	18.25	6.25
1974	15.52	15.02	10.72	6.82
1975	12.59	13.99	15.39	11.19
1976	15.16	11.16	11.66	14.36
1977	9.82	12.52	15.82	8.82
1978	7.19	6.09	8.49	19.19
1979	14.76	6.66	13.96	17.46
1980	11.73	11.03	11.03	11.93
1981	14.20	14.20	20.20	6.50
1982	12.06	7.76	6.96	3.66
1983	19.43	4.73	10.23	5.93
1984	9.00	14.70	8.40	7.50
1985	19.97	13.67	12.17	11.97
1986	14.24	10.84	5.44	10.24
1987	5.30	16.70	5.30	12.60
1988	5.57	17.77	5.57	8.67
1989	13.34	10.24	13.34	8.24
1990	11.21	14.91	11.21	10.51
1991	13.98	11.18	13.98	11.78

		Millions of Acr	e-Feet of Water	
a language as a restrict of high and have a set	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	49	50	51	52
1. p. 1. p.			· · · ·	
1962	8.01	20,91	5.71	11.41
1963	11.22	17.32	15.02	21.32
1964	9.33	14.63	9.93	9.03
1965	13.04	8.14	10.84	15.64
1966	6.25	19.25	10.95	10.85
1967	9.76	17.16	9.56	13.26
1968	12.87	20.77	7.47	10.77
1969	20.08	7.78	15.68	15.68
1970	15.75	14.25	12.75	16.15
1971	19.02	19.72	15.32	17.32
1972	18.58	10.18	9.38	16.88
1973	11.55	11.75	6.85	20.55
1974	7.12	11.62	14.42	7.62
1975	20.19	17.59	14.79	14.09
1976	4.26	7.36	9.26	19.56
1977	16.22	9.32	8.52	15.82
1978	12.39	12.49	7.29	8.49
1979	16.76	19.76	8.36	13.96
1980	10.73	15.43	13.13	11.03
1981	18.00	18.70	7.10	20.20
1982	19.76	16.06	20.06	9.16
1983	16.93	12.23	9.53	12.13
1984	12.70	16.60	18.40	18,40
1985	15.07	10.57	10.67	17.87
1986	18.54	17.84	16.64	18.34
1987	12.10	13.00	8.80	5.10
1988	11.37	15.87	6.77	12.97
1989	15.74	19.54	15.04	14.24
1'990	10.71	12.71	12.11	4.11
1991	15.78	20.48	14.68	12.88

1	-	1962 1991		
S. C. March				
1			re-Feet of Water	
	Simulated	Simulated	Simulated	Simulated
1	Flow	Flow	Flow	Flow
Year	53	54	55	56
1962	20.51	7.81	20.91	7.21
1963	17.92	8.82	17.32	12.72
1964	21.03	14.03	14.63	7.03
1965	13.54	11.44	8.14	7.44
1966	10.55	13.35	19.25	5.65
1967	6,86	6.26	9.56	6.06
1968	7.07	6.17	7.47	6.27
1969	16.38	13.08	15.68	13.98
1970	4.85	3.75	12.75	11.85
971	9.22	8.72	15.32	14.62
972	8.98	17.58	13.48	4.48
973	19.35	17.45	16.35	12.15
1974	17.62	13.02	20.02	12.32
1975	12.09	13.59	13.19	12.19
1976	6.66	11.46	20.96	9.06
1977	7.92	10.02	19.12	16.72
1978	13.79	11.59	13.19	20.39
979	14.36	11.46	13.66	7.46
1980	13.03	17.43	9.53	13.93
1981	14.70	7.20	4.40	19.40
1982	8.66	15.56	15.96	9.16
983	9.43	11.63	14.73	12.33
1984	12.80	12.90	15.00	19.60
985	10.47	16.07	15.37	15.27
986	11.54	11.24	10.74	18.54
1987	6.70	7.60	9.00	9.00
1988	12.37	4.57	12.17	12.17
1989	6.14	14.54	19.44	19.44
1990	17.91	13.51	15.11	15.11
1991	15.98	10.68	18.38	18.38

Manufacture and a second second second	an a	Millions of Acr	e-Feet of Water			
	Simulated	Simulated	Simulated	Simulated		
	Flow	Flow	Flow	Flow		
Year	57	58	59	60		
1962	5.71	18.51	13.81	19.71		
1963	15.02	16.52	9.82	8.42		
1964	9.93	14.13	9.33	8.13		
1965	10.84	10.34	11.54	12.24		
1966	10.95	20,15	12.75	17.05		
1967	9.26	12.86	15.66	18.06		
1968	9.97	14.67	4.07	16.07		
1969	13.28	8.98	14.28	13.68		
1970	10.95	10.35	4.55	9.95		
1971	12.02	9.02	20.12	19.82		
1972	3.98	12.68	15.38	5.78		
1973	17.95	6.25	3.85	6.05		
1974	6.02	6.82	14.12	13.82		
1975	19.49	11.19	4.39	11.69		
1976	15.66	14.36	19.96	14.46		
1977	7.52	9.82	20.02	9.22		
1978	9.89	7.19	16.49	6.69		
1979	11.56	14.76	13.86	14.26		
1980	11.13	11.73	7.43	14.63		
1981	7.20	14.20	18.60	9.10		
1982	9.06	6.76	9.66	15.56		
1983	6.53	7.83	7.03	11.83		
1984	14.10	13.10	14.60	15.10		
1985	14.47	10.57	11.57	5.77		
1986	8.94	12.54	14.04	16.84		
1987	8.50	9.00	8.50	15.70		
1988	18.87	12.17	9.27	10.87		
1989	17.14	19.44	12.64	13.54		
1990	11.61	15.11	10.31	20.01		
1991	6.18	18.38	11.38	11.58		

APPENDIX TABLE []] (Continued)

	 	Millions of Acr	e-Feet of Water	
1	Simulated	Simulated	Simulated	Simulated
î.	Flow	Flow	Flow	Flow
Year	 61	62	63	64
1962	13.21	15.01	17.01	13.11
1963	10.22	9.22	15.72	6.62
1964	11.83	11.33	15.93	13.03
1965	13.84	17.64	16.24	4.04
1966	8.75	15.75	11.55	7.25
1967	7.36	17.26	4.76	9.26
1968	8.37	19.77	12.37	19.57
1969	13.58	17.08	12.48	17.78
1970	11.05	14.85	12.35	12.25
1971	13.02	12.72	9.22	6.82
1972	17.18	18.58	12.38	19.78
1973	18.25	11.55	5.95	17.25
	10.72	7.12	12.42	20.42
1974			3.49	
1975	15.39	20.19		12.99
1976	11.66	4.26	6.76	10.06
1977	17.32	8.52	15.22	17.02
1978	13.19	7.59	3.69	18.09
1979	14.66	15.36	13.96	10.56
1980	13.53	14.63	4.23	15.23
1981	11.60	10.80	19.80	11.50
1982	15.66	9.66	9.86	18.66
1983	8.33	7.03	11.43	7.43
1984	13.80	14.60	11.30	7.20
1985	10.87	11.57	17.27	11.37
1986	20.04	14.04	7.04	16.24
1987	12.20	15.40	17.70	16.50
1988	5.77	11.47	12.27	19.07
1989	6.34	12.74	15.34	16.44
1990	10.71	15.91	17.91	14.21
1991	13.88	11.08	10.48	12.08

APPENDIX TABLE []] (Continued)

		Millions of Ac		
•	Simulated	Simulated	Simulated	Simulated
	Flow	Flow	Flow	Flow
Year	65	66	67	68
1962	10.01	9.41	18.71	6.31
1963	7.92	8.42	17.22	14.12
1964	16.13	16.13	8.83	15.33
1965	13.14	15.34	12.94	5.14
1966	15.65	11.45	19.25	13.85
1967	19.56	18.06	10.96	14.36
1968	13.57	16.07	20.87	10.87
1969	13.98	13.68	8.58	13.68
1970	9.85	9.95	15.25	15.05
1971	4.72	19.82	10.52	9.82
1972	20.18	11.18	9.28	18.08
1973	16.65	14.75	7.25	19.55
1974	14.02	19.82	15.52	13.92
1975	7.59	12.39	12.59	9.59
1976	18.76	6.46	15.16	15.36
1977	8.52	16.92	16.22	16.72
1978	7.29	4.79	16.79	20.39
1979	8.36	9.46	13.86	7.46
1980	13.13	18.33	9.53	13.93
1981	7.10	20.40	12.40	19.40
1982	13.16	15.16	11.96	11.96
1983	16.03	13.63	6.73	6.73
1984	19.70	8.60	14.20	14.20
1985	12.87	11.97	14.57	14.57
1986	20.64	15.24	12.84	12.84
1987	12.80	17.70	15.00	6.80
1988	11.07	12.27	7.57	10.07
1989	17.84	15.34	14.54	8.24
1990	17.81	17.91	4.01	12.01
1991	19:08	10.48	18.08	5.28

SIMULATED FLOWS¹ OF THE COLORADO RIVER INTO GLEN CANYON RESERVOIR 1962 - 1991

SIMULATED FLOWS	OF THE	COLORADO	RIVER	INTO	GLEN	CANYON	RESERVOIR	
		1962 -	- 1991				. X	

		e-Feet of Water		
	Simulated	Simulated Simulated		Simulated
	Flow	Flow	Flow	Flow
Year	69	70	71	72
1962	12.01	16.91	4,71	11.91
1963	8,42	12.02	18.62	15.42
1964	7.93	14.63	6.63	20.43
1965	9.04	21.04	20.04	12.94
1966	10.05	12.55	16.15	6.95
1967	8.46	9.26	10.96	10.46
1968	12.27	19.57	20.87	13.97
1969	17.98	17.78	8.58	14.08
1970	9.15	12.25	15.25	11.35
1971	4.82	6.82	10.52	16.62
1972	12.38	7.68	11.58	16.78
1973	19.75	10.05	13.95	5.35
1974	9.32	11.72	7.32	18.72
1975	20.29	11.29	10.99	3.89
1976	14.56	7.36	9.16	11.56
1977	15.22	16.02	8.52	19.62
1978	3.69	11.19	7.29	17.09
1979	13.96	13.86	8.36	20.26
1980	4.23	20.33	13.13	12.83
1981	19.80	11.90	7.10	9.90
1982	7.86	13.96	16.86	4.66
1983	14.93	8.23	17.93	14.03
1984	20.20	10.40	10.40	ġ.00
1985	20.27	16.77	15.07	9.97
1986	10.24	14.94	11.34	10.14
1987	14.90	17.30	15.90	17.30
1988	3.37	15.37	12.07	15.37
1989	13.64	13.04	16.44	13.04
1990	3.91	9.31	10.41	9.31
1991	19.48	19.18	17.68	19.18

		Millions of Acre-Feet of Water					
		Simulated	Simulated	Simulated	Simulated		
5 C		Flow	Flow	Flow	Flow		
Year		73	74	75	76		
1962		4.71	18.91	13.01	7.91		
1963		18.62	13.42	7.72	13.52		
1964		6.63	16.43	15.13	7.23		
1965		20.04	18.94	15.44	18.94		
1966		16.15	11.45	13.65	16.95		
1967		10.46	12.86	12.86	8.46		
1968		13.97	12.07	14.67	15.47		
1969		14.08	16.38	8.98	20.68		
1970		11.35	11.35	10.35	20.75		
1971		16.62	16.42	9.02	10.72		
1972		7.68	16.28	19.78	7.68		
1973		10.05	15.05	17.25	10.05		
1974		11.72	15.32	20.42	11.72		
1975		11.29	15.69	12.99	11.29		
1976		7.36	11.06	10.06	7.36		
1977		12.82	15.82	17.52	3.82		
1978		10.39	8.49	4.89	17.79		
1979		15.36	13.96	17.16	5.86		
1980		15.83	11.03	6.73	19.33		
1981		17.00	20.20	11.60	15.50		
1982		15.36	16.56	3.66	17.16		
1983	1940	15.23	20.23	17.63	13.03		
1984	2	12.20	7.30	5.70	14.50		
1985		3.87	13.77	19.17	13.37		
1986		19.94	19.24	15.34	11.44		
1987		4.50	14.30	9.50	7.70		
1988		13.87	13.67	6.87	11.57		
1989		8.84	5.54	14.44	17.34		
1990		9.81	12.91	11.41	8.51		
1991		9.98	11.28	13.88	4.18		

SIMULATED FLOWS¹ OF THE COLORADO RIVER INTO GLEN CANYON RESERVOIR 1962 - 1991

1							
	Millions of Acre-Feet of Water						
	Simulated	Simulated	Simulated	Simulated			
and the second	Flow	Flow	Flow	Flow			
ear	77	78	79	80			
962	13.11	18.71	8.91	5.21			
963	20.42	17.22	15.92	12.82			
964	9.93	8.83	21.13	12.93			
965	20.84	12.94	21.14	12.74			
966	15.05	19.25	11.05	9.55			
967	9.26	7.36	15.76	19.76			
968	19.57	8.37	14.17	18.67			
969	17.78	13.58	9.08	10.88			
970	12.25	11.05	12.45	13.25			
971	6.82	13.02	15.72	19.32			
972	4.78	18.58	10.68	17.58			
973	9.15	11.55	20.65	17.45			
974	7.82	7.12	8.42	13.02			
975	10.39	20.19	15.09	13.59			
976	9.56	4.26	10.36	11.46			
977	16.92	7.92	10.02	8.02			
978	4.79	13.79	13.59	11.89			
979	9.46	14.36	13.76	17.66			
980	18.33	13.03	11.03	8.83			
981	20.40	14.70	16.30	4.50			
982	10.76	10.76	15.06	9.86			
983	8.63	8.63	3.53	13.43			
984	14.20	14.20	13.80	13.60			
985	12.07	12.07	4.07	10.87			
986	13.64	13.64	19.64	16.14			
987	12.00	17.00	8.40	7.60			
988	9.07	12.87	4.47	13.47			
989	10.74	14.34	7.64	14.04			
990	12.81	13.21	6.21	12.71			
1991	7.78	11.28	13.08	14.38			

70

APPENDIX TABLE []] (Continued)

	Millions of Acre-Feet of Water						
	Simulated	Simulated	Simulated	Simulated			
	Flow	Flow	Flow	Flow			
Year	81	82	83	84			
1962	16.21	10.11	20.51	17.01			
1963	8.72	7.52	17.92	15.72			
1964	15.63	15.03	21.03	15.93			
1965	5.04	15.34	13.54	16.24			
1966	19.05	9.75	10.55	11.55			
1967	8.96	14.86	9.66	16.26			
1968	7.97	15.07	7.07	8.87			
1969	15.68	14.98	14.58	14.28			
1970	14.95	15.35	14.95	11.35			
1971	11.12	8.32	9.42	20.52			
1972	20.38	15.88	19.78	9.28			
1973	9.85	11.95	17.25	7.25			
1974	18.72	13.22	20.42	15.52			
1975	10.99	16.39	12.99	12.59			
1976	16.96	11.56	10.06	15.16			
1977	19.62	16.72	12.42	8.02			
1978	17.09	20.39	11.69	15.09			
1979	20.26	7.46	16.06	20.36			
1980	12.83	13.93	11.03	20.43			
1981	9.90	19.40	16.10	10.40			
1982	12.06	4.46	7.86	15.16			
1983	5.63	8.83	14.93	13.63			
1984	12.10	7.50	20.20	8.60			
1985	3.17	10.07	20.27	11.97			
1986	6.44	9.24	10.24	15.24			
1987	12.10	8.20	10.60	8.90			
1988	13.97	7.27	8.47	6.37			
1989	8.34	15.04	14.04	13.94			
1990	9.71	14.31	11.91	14.31			
1991	8.38	10.48	13.48	8.78			

APPENDIX TABLE ||| (Continued)

	Millions of Acre-Feet of			e-Feet of Water	of Water		
1.3		Simulated	Simulated	Simulated	Simulated		
- 1 ²		Flow	Flow	Flow	Flow		
Year		85	86	87	88		
1962		18.31	18.51	15.01	9.71		
1963		18.12	16.52	9.22	20.02		
1964		13.63	14.13	11.33	18.23		
1965		14.14	10.34	17.64	12.64		
1966		11.95	20.15	15.75	7.15		
1967		11.26	6.76	17.96	11.46		
1968		10.17	12.27	5.27	11.07		
1969		13.68	6.58	17.48	10.68		
1970		11.35	7.05	7.05	20.15		
1971	2 m *	16.32	5.32	11.92	8.92		
1972		18.08	14.08	18.18	20.38		
1973		19.55	10.65	12.75	9.85		
1974		13.92	13.52	15.82	18.72		
1975		9.59	14.89	18.39	10.99		
1976		15.36	9.66	10.96	16.96		
1977		8.52	17.42	5.42	13.42		
1978		7.29	17.29	13.29	11.19		
1979		8.36	12.86	14.56	11.86		
1980		13.13	13.43	4.43	16.43		
1981		7.10	11.30	13.20	18.20		
1982		9.26	9.16	10.86	19.46		
1983		8.23	12.33	10.53	16.93		
1984		9.10	19.60	10.20	20.10		
1985		5.87	15.27	19.67	12.67		
1986		5.74	18.54	8.44	9.74		
1987		15.00	3.50	6.60	11.80		
1988		13.47	5.77	8.87	6.57		
1989		8.44	7.34	6.74	14.04		
1990		11.81	11.81	8.51	14.41		
1991		15.08	10.08	12.88	12.68		

APPENDIX TABLE []] (Continued)

and the second se		Millions of Acre-Feet of Water						
	Simulated	Simulated	Simulated	Simulated				
	Flow	Flow	Flow	Flow				
Year	89	90	91	92				
1962	21.11	16.91	13.01	17.11				
1963	10.52	12.02	7.72	17.62				
1964	19.33	14.63	15.13	14.63				
1965	11.54	21.04	15.44	10.24				
1966	17.45	12.55	13.65	13.05				
1967	10.76	10.96	15.66	16.66				
1968	18.27	20.87	7.27	12.77				
1969	14.08	8.58	17.38	17.08				
1970	4.15	15.25	9.65	11.05				
1971	11.72	10.52	11.12	18.32				
1972	8.68	15.48	17.58	12.38				
1973	7.75	8.05	15.55	6.55				
1974	15.52	15.02	11.32	14.52				
1975	14.79	4.49	20.59	18.09				
1976	10.96	18.56	16.06	9.96				
1977	12.22	11.02	12.22	16.02				
1978	19.59	10.69	6.39	11.19				
1979	9.16	10.36	14.36	13.86				
1980	20.13	19.83	17.93	20.33				
1981	14.40	8.60	9.80	11.90				
1982	15.16	10.96	18.26	20.06				
1983	6.23	7.43	11.23	9.53				
1984	18.10	7.00	6.80	18.40				
1985	9.67	8.17	19.87	10.67				
1986	6.04	9.24	3.94	16.64				
1987	4.30	4.50	12.60	3.50				
1988	8.67	13.87	8.67	17.47				
1989	7.34	8.84	8.24	5.54				
1990	9.91	9.81	10.51	19.01				
1991	9.08	9.98	11.78	15.18				

·	Millions of Acre-Feet of Water						
	Simulated	Simulated	Simulated	Simulated			
	Flow	Flow	Flow	Flow			
Year	93	94	95	96			
1962	8.41	8.81	13.11	5.51			
1963	10.72	14.62	7.22	9.82			
1964	12.33	15.13	15.13	8.43			
1965	11.84	13.74	18.64	10.94			
1966	7.85	15.35	10.45	10.05			
1967	12.96	12.66	16.66	18.36			
1968	6.47	6.77	12.77	19.77			
1969	6.98	14.68	17.08	14.08			
1970	11.35	18.25	11.05	9.75			
1971	14.52	10.12	18.32	15.52			
1972	16.58	9.78	11.18	3.98			
1973	5.25	20.45	14.75	6.25			
1974	3.82	20.92	19.82	7.82			
1975	20.69	7.39	12.39	12.29			
1976	16.66	18.96	6.46	10.56			
1977	5.62	16.22	5.42	10.02			
1978	5.89	12.39	13.29	13.59			
1979	13.66	16.76	14.56	13.76			
1980	11.53	10.73	4.43	11.03			
1981	14.30	18.00	13.20	16.30			
1982	16.86	9.16	4.66	16.46			
1983	17.93	12.33	14.03	5.03			
1984	10.40	19.60	9.00	18.40			
1985	15.07	15.27	9.97	3.57			
1986	11.34	18.54	10.14	11.24			
1987	17.30	15.50	6.70	4.50			
1988	15.37	8.17	12.37	13.87			
1989	13.04	13.64	6.14	8.84			
1990	9.31	10.71	17.91	9.81			
1991	19.18	19.88	15.98	9.98			

APPENDIX TABLE []] (Concluded)

12		Millions of Acre-Feet of Water					
1	Simulated	Simulated	Simulated	Simulated			
1	Flow	Flow	Flow	Flow			
Year	97	98	99	100			
1962	14.31	10.91	17.31	10.71			
1963	12.02	14.42	5.92	8.02			
1964	12.63	14.53	4.43	15.53			
965	17.14	11.74	21.24	12.44			
966	18.85	16.95	17.15	14.85			
967	12.86	6.06	18.46	16.86			
968	14.67	6.27	12.97	5.47			
969	8.98	13.98	15.98	3.98			
970	10.35	11.85	18.55	20.85			
971	9.02	14.62	11.12	16.82			
972	17.08	18.18	15.88	17.78			
973	4.95	12.75	12.15	15.85			
974	9.62	15.82	15.42	13.52			
975	18.49	18.39	6.09	9.79			
976	20.56	10.96	17.16	19.66			
977	18.42	17.32	10.52	9.22			
978	11.39	13.19	20.49	6.69			
979	6.96	14.66	8.26	14.26			
980	20.03	13.53	14.93	14.63			
1981	4.10	11.60	10.20	9.10			
982	15.06	7.36	12.16	8.66			
1983	3.53	9.73	9.23	9.43			
984	13.80	11.40	10.90	12.80			
985	4.07	10.97	12.97	10.47			
986	19.64	7.04	7.94	11.54			
987	10.00	9.70	12.50	6.60			
988	17.57	11.27	10.07	7.67			
1989	13.44	11.14	15.04	12.94			
1990	3.51	17.11	15.51	10.41			
1991	11.08	6.88	16.68	12.38			

SIMULATED FLOWS¹ OF THE COLORADO RIVER INTO GLEN CANYON RESERVOIR 1962 - 1991

 $^{1}\mbox{Adjusted}$ for anticipated depletion.

APPENDIX TABLE IV

Average An		served		oretical	$(f-f_c)^2$	
Inflow in Mill Acre-Feet of	ions of Fr	equency (f)	Frequency ¹ (f _c)		(f _c)	
5.2 and under 7.0 and under 8.8 and under 10.6 and under 12.4 and under 14.2 and under 16.0 and under	8.8 10.6 12.4 14.2 16.0	0 7 9 17 28 26 13		0.750 > 5.425 4.675 > 5.425 11.400 18.500 24.875 27.425 15.475	.457 .505 .122 .393 .074 <u>.396</u> 1.947	
	u ₁ = 0		в	= 0.243715		
	$u_2 = 1.855067$		^B 2	= 2.458910		
	$u_3 = -1.247328$		к	=-0.109977		
	u ₄ = 8.461783		x ² ₉₅ (1)	= 3.841		

FREQUENCY DISTRIBUTION OF MEANS OF SIMULATED INFLOWS TO GLEN CANYON RESERVOIR Five-Year Period, 1962-1966

¹Type 1 Pearson Curve fitted where

$$y = 24.9 \left(1 + \frac{x}{4.227}\right)^{1.643} \left(1 - \frac{x}{2.203}\right)^{.378}$$

APPENDIX II

Synthetic Hydrologies Using Markoff Chain

APPENDIX TABLE V

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow I

	Flow in Millions	 	Flow in Millions
Year	of Acre-Feet of	Year	of Acre-Feet of
	Water	 10 ⁻¹	Water
1	10.18	26	14.57
2	7.29	27	23.10
3	12.90	28	14.95
3 4	24.56	29	17.89
	15.47	30	15.04
5 6	11.77	31	17.97
7	13.89	32	19.50
8	12.59	33	13.57
9	7.85	34	14.55
10	10.03	35	18.91
11	6.97	36	19.28
12	8.01	37	9.35
13	17.84	38	11.60
14	9.82	39	16.53
15	11.64	40	15.33
16	14.72	41	9.15
17	15.76	42	12.06
18	9.21	43	10.97
19	12.49	44	11.92
20	14.26	45	13.79
21	8.23	46	12.68
22	13.82	47	16.84
23	14.56	48	13.92
24	8.78	49	18.26
25	13.46	50	11.44

 $\overline{X} = 13.59$ $\overline{0} = 3.87$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 2

	Flow in Millions			Flow in Millions
Year	of Acre-Feet of		Year	of Acre-Feet of
	Water			Water
1	9.57		26	14.99
2	13.66		27	12.50
3	5.98		28	12.80
4	14.91		29	15.06
5	18.35	× *	30	12.40
6	17.55		31	15.60
7	13.81		32	12.52
8	18.03		33	16.02
9	14.12		34	14.92
10	1.00		35	10.04
11	13.19		36	13.89
12	16.81		37	9.67
13	8.59		38	12.82
14	2.05		39	17.02
15	10.63		49	15.26
16	16.28		41	25.06
17	4.17		42	18.99
18	8.91		43	7.66
19	13.08		44	11.96
20	12.90		45	15.82
21	12.45		46	9.40
22	12.15		47	12.51
23	11.82		48	12.01
24	12.53		49	12.48
25	19.52		50	6.87

 $\bar{X} = 12.81$

σ[−] = 4.33

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 3

	Flow in Millions		Flow in Millions
Year	of Acre-Feet of	Year	of Acre-Feet of
	Water		Water
1	10.68	26	11.07
2	14.88	27	15.83
2 3	13.34	28	14.21
4	14.11	- 29	12.62
5	17.78	30	15.26
6	6.54	31	12.68
7	2.42	32	10.53
8 9	15.70	33	19.18
9	16.24	34	17.48
10	14.31	35	9.64
11	8.26	36	11.02
12	9.80	37	14.41
13	14.89	38	10.32
14	19.25	39	12.21
15	12.56	40	9.44
16	14.58	41	17.94
17	10.20	42	13.68
18	9.80	43	11.98
19	7.79	44	4.79
20	12.59	45	8.98
21	18.97	46	11.28
22	2.07	47	9.17
23	7.24	48	24.19
24	12.47	49	17.54
25	13.66	59	15.94

 $\overline{X} = 12.63$ $\overline{\sigma} = 4.28$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 4

.	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	12.11	26	9.47	
2	9.70	27	12.92	
2 3	6.63	28	9.89	
4	13.67	29	10.62	
5	18.32	30	11.84	
6	17.19	31	6.90	
6 7	16.30	32	14.16	
8	8.73	33	20.36	
9	6.77	34	17.38	
10	14.17	35	12.28	
11	17.35	36	7.56	
12	20.78	37	10.62	
13	14.85	38	17.07	
14	14.35	39	15.13	
15	6.75	40	21.56	
16	14.38	41	12.88	
17	4.14	42	14.79	
18	5.50	43	15.55	
19	11.55	44	10.38	
20	6.72	45	13.81	
21	10.86	46	12.99	
22	11.03	47	15.79	
23	13.46	48	17.65	
24	8.86	49	17.89	
25	14.95	50	11.82	

 $\bar{X} = 12.81$ $\bar{C} = 4.10$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 5

	Flow in Millions	· · · · · ·	Flow in Millions
Year	of Acre-Feet of	Year	of Acre-Feet of
	Water		Water
1	12.21	26	14.53
2	13.40	27	15.45
2 3	16.00	28	10.99
4	15.52	29	7.36
5	12.19	30	6.27
6	16.19	31	18.16
7	13.96	32	14.49
8	24.00	33	7.20
9	16.42	34	17.66
10	17.61	35	13.91
11	15.32	36	12.58
12	11.71	37	9.38
13	14.08	38	18.64
14	16.70	39	15.46
15	14.51	40	13.96
16	15.70	41	5.54
17	14.78	42	11.51
18	11.32	43	16.38
19	12.23	44	12.57
20	16.31	45	9.26
21	19.44	46	12.82
22	9.51	47	12.48
23	14.13	48	9.10
24	11.65	44	18.31
25	22.14	50	14.88

X = 13.92

 $\sigma = 3.71$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD. GENERATED BY MARKOFF CHAIN

	Flow in Millions		Flow in Millions	·
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	13.94	26	11.38	
2	16.95	27	9.75	
2 3	9.50	28	12.39	
4 5	9.74	29	13.30	
5	13.58	30	4.23	
6	13.63	31	6.83	
7	6.58	32	13.14	
8	21.46	33	11.12	
9	14.46	34	15.03	
10	7.55	35	14.90	
11	13.97	36	11.57	
12	20.02	37	14.54	
13	14.95	38	13.87	
14	17.18	39	15.01	
15	8.52	40	11.99	
16	5.85	41	12.03	
17	14.65	42	13.39	
18	17.72	43	9.96	
19	9.05	44	9.04	
20	11.77	45	15.50	
21	9.14	46	10.75	
22	9.96	47	8.80	
23	18.02	48	9.90	
24	14.61	49	16.34	
25	9.96	50	12.20	

Simulated Flow 6

X = 12.39

ॼ = 3.57

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 7

	Flow in Millions		Flow in Millions		
Year	of Acre-Feet of	Year	of Acre-Feet of		
-	Water		Water		
1	13.82	26	10.55		
2	13.45	27	7.92		
3	12.23	28	15.03		
4	13.42	29	14.46		
5	13.17	30	16.84		
6	13.64	31	13.68		
7	16.31	32	18.34		
8	11.47	33	12.16		
9	6.75	34	6.07		
10	9.04	31	8.27		
11	5.31	36	13.77		
12	11.04	37	13.58		
13	8.95	38	13.28		
14	17.67	39	19.27		
15	15.58	40	9.89		
16	9.87	41	12.66		
17	11.49	42	10.13		
18	14.62	43	10.01		
19	12.47	44	1082		
20	6.66	45	9.75		
21	6.22	46	18.45		
22	13.85	47	13.81		
23	22.16	48	10.56		
24	21.98	49	8.46		
25	15.98	50	9.35		

X = 12.49

 $\sigma = 3.86$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 8

v - 41 T	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	111
1	18.43	26	16.85	
2 3	12.71	27	12.50	
3	12.28	28	7.65	
4	9.85	29	9.79	
4 5	17.31	30	19.38	
-6	11.19	31	17.13	
7	15.19	32	10.93	
8	21.46	33	16.60	
9	15.80	34	20.20	
10	5.55	35	17.00	
11	15.49	36	5.67	
12	8.07	37	12.46	
13	7.17	38	16.58	
14	10.49	39	6.36	
15	13.95	40	14.99	
16	13.40	41	5.48	
17	12.87	42	8.07	
18	5.95	43	13.52	
19	6.01	44	14.35	
20	12.02	45	13.35	
21	13.08	46	18.89	
22	16.08	47	15.16	
23	7.91	48	12.12	
24	9.85	49	15.07	
25	10.53	50	9.73	

X = 12.65

 $\sigma = 4.17$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 9

	Flow in Millions		Flow in Millions
Year	of Acre-Feet of	Year	of Acre-Feet of
	Water		Water
	in the second second part of the second seco		
1	12.50	26	15.44
2	11.73	27	11.55
2 3	11.81	28	19.86
4	13.73	29	12.38
4 5 6 7 8	8.97	30	16.40
6	13.29	31	11.53
7	20.16	32	12.49
	11.75	33	20.66
9	13.22	34	18.46
10	7.05	35	11.55
11	6.51	36	15.12
12	7.45	37	12.22
13	14.52	38	17.65
14	8.63	39	14.20
15	4.33	40	10.82
16	12.03	41	7.76
17	11.37	42	8.32
18	10.52	43	13.58
19	11.69	44	9.41
20	18.74	45	10.75
21	13.11	46	7.70
22	9.25	47	9.88
23	13.12	48	11.20
24	13.37	49	10.46
25	6.26	50	3.89

X = 11.97

O'= 3.79

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 10

	Flow in Millions		Flow in Millions
Year	of Acre-Feet of	Year	of Acre-Feet of
	Water		Water
1	17.11	26	4.59
	8.04	27	7.06
2 3	17.01	28	16.14
4	16.12	29	14.03
5	18.04	30	11.88
6	22.38	31	14.09
7	11.21	32	14.84
8	14.56	33	12.38
9	14.34	34	17.74
10	11.59	35	12.62
11	17.49	36	11.36
12	8.98	37	13.20
13	14.65	38	15.20
14	19.46	39	18.84
15	13.79	40	14.42
16	11.21	41	8.25
17	14.95	42	14.29
18	15.92	43	10.11
19	8.69	44	7.78
20	21.13	45	12.80
21	13.61	46	12.07
22	7.76	47	17.08
23	11.05	48	19.02
24	10.97	49	4.75
25	15.18	50	14.57

X = 13.49

 $\sigma = 3.93$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	12.21	26	8.17	
	14.54	27	15.47	
2 3	14.27	28	11.25	
4	15.70	29	13.93	
5	13.68	30	9.82	
6	10.20	31	12.05	
7	10.18	32	12.39	
8	11.00	33	17.64	
9	15.52	34	12.69	
10	13.47	35	14.00	
11	15.36	36	11.58	
12	18.82	37	13.36	×
13	7.38	38	19.23	
14	15.42	39	11.15	
15	14.43	40	11.25	
16	18.74	41	9.67	
17	21.24	42	17.20	
18	11.53	43	14.27	
19	9.93	44	11.42	
20	17.37	45	16.59	
21	12.08	46	22.27	
22	10.40	47	14.89	
23	12.70	48	11.59	
24	15.00	49	3.73	
25	14.56	50	- 4.35	

Simulated Flow 11

X = 13.14

 $\sigma = 4.25$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 12

	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Verm	of Acre-Feet of	
rear		Year		
	Water		Water	
1	14.90	26	7.14	
2	7.38	27	10.30	
3	8.61	28	7.86	
4	4.99	29	2.20	
	14.85	30	11.06	
5 6	8.42	31	6.48	
7	11.43	32	12.80	
8	13.67	33	12.83	
9	15.63	34	14.42	
10	13.99	35	12.38	
11	12.07	36	8.54	
12	21.22	37	12.46	
13	15.30	38	16.57	
14	21.94	39	8.74	
15	11.92	40	16.53	
16	12.68	41	10.26	
17	17.07	42	10.00	
18	12.94	43	4.32	
19	7.79	44	14.15	
20	13.01	45	10.63	
21	9.85	46	12.00	
22	21.74	47	6.79	
23	19.11	48	7.22	
24	13.84	49	12.04	
25	10.15	50	8.90	

X = 11.82

89

 $\sigma = 4.25$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

15

Simulated Flow 13

	Flow in Millions	Flow in Millions		
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	17.21	26	11.05	
2	9.87	27	12.00	
3	15.79	28	8.07	
4	13.28	29	19.18	
5	13.44	30	18.40	
6	11.32	31	12.67	
7	14.01	32	17.60	
8	27.28	33	11.72	
9	18.08	34	9.60	
10	13.50	35	10.25	
11	12.99	36	18.93	
12	18.67	37	20.62	
13	18.04	38	16.62	
14	20.35	39	13.86	
15	12.58	40	10.57	
16	15.98	41	8.58	
17	14.84	42	1.98	
18	12.06	42	5.12	
19	11.27	44	15.12	
20	16.53	45	7.07	1
21	19.13	46	6.56	
22	17.88	47	7.82	
23	8.67	48	6.46	
24	8.80	49	13.49	
25	10.34	50	21.81	

 $\bar{X} = 13.54$ $\sigma = 4.86$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	9.28	26	15.37	
2	9.50	27	15.35	
2 3	16.78	28	9.95	
4	13.29	29	13.11	
5	11.19	30	5.00	
6 -	10.57	31	10.01	
7	11.64	32	13.65	
8	7.16	33	5.88	
9	18.71	34	7.08	
10	20.11	35	18.01	
11	10.96	36	17.39	
12	5.03	37	11.84	
13	18.56	38	17.25	
14	20.50	39	19.17	
15	10.71	40	16.94	
16	9.91	41	18.00	
17	13.58	42	16.32	
18	10.28	43	13.07	
19	13.35	44	12.75	
20	15.12	45	14.98	
21	17.00	46	15.82	
22	17.92	47	16.76	
23	12.14	48	9.02	
24	16.26	49	9.05	
25	22.82	50	8.99	
~	16 mm	1.4		

Simulated Flow 14

Service Fil

X = 13.46

𝕶 = 4.23

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 15

	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	5.18	26	13.20	
2	5.86	27	10.12	
2 3	14.53	28	12.95	
4	12.26	29	13.30	4
5	10.11	30	11.23	
6	16.21	31	17.08	
7	20. 87	32	18.33	
8	3.45	33	12.22	
9	9.49	34	12.53	
10	10.41	35	12.59	
11	21.23	36	12.31	
12	17.41	37	11.93	
13	11.78	38	8.72	
14	11.13	39	11.70	
15	12.80	40	17.44	
16	6.14	41	7.82	
17	16.61	42	9.71	
18	11.03	43	10.54	
19	12.04	44	17.31	
20	8.59	45	16.49	
21	19.99	46	12.74	
22	16.08	47	18.29	
23	19.37	48	10.04	
24	6.02	49	15.05	
25	13.22	50	7.46	

 $\overline{X} = 12.66$ $\sigma = 4.17$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

	Flow in Millions			
Year	of Acre-Feet of	Year	of Acre-Feet of	1
	Water		Water	
1	21.68	26	8.93	
2	17.49	27	17.01	
3	13.53	28	10.37	
4	10.61	29	14.62	
5	15.76	30	8.19	
6	10.25	31	11.88	
7	14.73	32	11.81	
8	13.15	33	8.68	
9	8.76	34	10.17	
10	-0.88	35	10.02	
11	10.50	36	13.97	
12	15.20	37	11.77	
13	12.55	38	17.09	
14	11.90	39	12.26	
15	9.68	40	8.78	
16	10.65	41	7.23	
17	7.27	42	12.38	
18	6.94	43	14.65	
19	17.56	44	6.83	
20	17.10	45	12.17	
21	13.29	46	11.80	
22	10.50	47	10.46	
23	11.77	48	19.74	
24	13.43	49	18.08	
25	16.33	50	14.54	

Simulated Flow 16

X = 12.26

 $\sigma = 3.89$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

14 2

	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	8.15	26	9.75	
2	7.70	27	9.92	
3	23.10	28	12.80	
4	13.23	29	16.83	
5	17.24	30	14.60	
6	15.35	31	14.37	
7	14.12	32	10.04	
8	7.72	33	11.39	
9	17.31	34	15.35	
10	17.21	35	6.61	
11	9.82	36	15.87	
12	14.44	37	15.82	
13	16.56	38	10.15	
14	21.84	39	15.93	
15	15.10	40	14.68	
16	16.89	41	14.40	
17	13.32	42	20.67	
18	13.69	43	7.64	
19	18.00	.44	3.98	
20	17.91	45	9.68	
21	7.25	46	12.63	
22	5.97	47	6.40	
23	5.79	48	9.80	
24	10.26	49	20.56	
25	16.03	50	24.49	

Simulated Flow 17

X = 13.37

 $\sigma = 4.73$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 18

	Flow in Millions		Flow in Millions
Year	of Acre-Feet of	Year	of Acre-Feet of
	Water		Water
1	15.88	26	14.93
2	12.94	27	13.64
3	16.94	28	8.25
4	8.32	29	10.77
5	15.38	30	9.23
6	21.13	31	10.80
7	14.22	32	11.63
8	8.84	33	8.78
9	10.23	34	15.18
10	25.27	35	8.45
11	18.10	36	15.36
12	11.23	37	13.32
13	8.30	38	8.97
14	12.87	39	16.93
15	15.76	40	18.47
16	9.67	41	12.85
17	5.51	42	13.97
18	3.20	43	18.05
19	7.86	44	12.21
20	17.13	45	13.73
21	10.26	46	13.17
22	20.74	47	11.07
23	18.80	48	13.73
24	16.16	49	13.35
25	14.69	50	10.08

 $\overline{X} = 13.13$ $\sigma^{*} = 4.19$

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

Simulated Flow 19

	Flow in Millions		Flow in Millions
Year	of Acre-Feet of Water	Year	of Acre-Feet of Water
1	11.43	26	13.32
2	5.07	27	14.54
23	7.54	28	10.14
4	9.69	29	21.93
5	18.53	30	16.71
6	12.40	31	20.62
7	9.67	32	26.58
8	11.22	33	20.48
9	11.60	34	15.01
10	9.13	35	14.63
11	12.86	36	12.42
12	13.39	37	11.11
13	14.97	38	7.07
14	8.02	39	9.08
15	11.90	40	6.47
16	7.42	41	9.91
17	12.16	42	7.54
18	13.47	43	11.09
19	11.19	44	11.25
20	14.13	45	13.62
21	12.95	46	3.03
22	10.70	47	11.77
23	13.16	48	17.42
24	12.63	48	14.64
25	13.73	50	17.81

X = 12.54

o = 4.31

APPENDIX TABLE V (concluded)

SIMULATED ANNUAL FLOWS OF THE COLORADO RIVER FOR A FIFTY YEAR PERIOD GENERATED BY MARKOFF CHAIN

APPENDUCTABLES

Simulated Flow 20

	Flow in Millions		Flow in Millions	
Year	of Acre-Feet of	Year	of Acre-Feet of	
	Water		Water	
1	8.03	26	1.53	
2	15.82	27	14.15	
2 3	17.16	28	14.44	
4	16.11	29	9.85	
5	12.32	30	18.07	
6	11.10	31	10.06	
7	11.01	32	12.29	
8	13.44	33	9.97	
9	16.90	34	13.55	
10	21.69	35	15.11	
11	22.13	36	15.18	
12	20.26	37	15.64	
13	19.00	38	15.56	
14	19.45	39	14.30	
15	14.06	40	15.10	
16	12.52	41	12.10	
17	13.76	42	14.02	
18	12.47	43	5.97	
19	15.45	44	12.80	
20	9.63	45	9.73	
21	10.82	46	13.04	
22	12.27	47	15.68	
23	11.16	48	21.83	
24	16.72	49	18.43	
25	11.56	50	18.62	

 $\overline{X} = 14.04$ $\overline{O} = 3.97$ BIBLIOGRAPHY

BIBLIOGRAPHY

- Anis, A. A. and E. H. Lloyd, "On the Range of Partial Sums of a Finite Number of Independent Normal Variates," Biometrica, 40: 35, 1953.
- Doob, J. L., Stochastic Processes, New York: John Wiley and Sons, Inc., 1953.
- Feller, W., "The Asymptotic Distribution of the Range of Sums of Independent Random Variables," Annals of Mathematical Statistics, 22: 427, 1951.
- Hurst, E. H., "Long-Term Storage Capacity of Reservoirs," <u>Transactions of the</u> American Society of Civil Engineers, 116: 770, 1951

__, "A Suggested Statistical Model of Some Time Series Which Occur in Nature," Nature, 180: 494, September 7, 1957.

- Langbein, W. B. and A. M. Asce, "Queuing Theory and Water Storage," <u>Proceedings of the American Society of Civil Engineers</u>, 84: No. HY3, 1958.
- Leopold, Luna B., Probability Analysis Applied to a Water-Supply Problem, United States Department of Interior, Geological Survey Circular 410. Washington: United States Government Printing Office, 1959.
- Takacs, Lajos, <u>Stochastic Processes</u>. New York: John Wiley and Sons, Inc., 1960.
- Thomas, Harold A., and Myron D. Fiering, "Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation," Chapter XII, Design for Water Resource Systems by Arthus Maass et al. Cambridge: Harvard University Press, February, 1962.

Tintner, Gerhard, Econometrics. New York: John Wiley and Sons, Inc., 1952.

United States Department of Interior, United States Geological Survey, Water Supply Papers, 1313, 1343, 1393, 1443, 1513, and 1563. Washington: United States Government Printing Office.