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ABSTRACT 
 
 
 

LOW-COST EMBEDDED SYSTEMS FOR COMMUNITY-DRIVEN AMBIENT AIR QUALITY 

MONITORING 

  
 
 

Fine particulate matter (PM2.5) air pollution is a leading cause of death, disease and environmental 

degradation worldwide. Existing PM2.5 measurement infrastructure provides broad PM2.5 sampling 

coverage, but due to high costs (>10,000 USD), these instruments are rarely broadly distributed at 

community-level scales. Low-cost sensors can be more practically deployed in spatial and temporal 

configurations that can fill the gaps left by more expensive monitors. Crowdsourcing low-cost sensors is a 

promising deployment strategy in which sensors are operated by interested community members. Prior 

work has demonstrated the potential of crowdsourced networks, but low-cost sensor technology remains 

ripe for improvement. Here we describe a body of work aimed toward bolstering the future of community-

driven air quality monitoring through technological innovation. We first detail the development of the 

Aerosol Mass and Optical Depth (AMODv2) sampler, a low-cost monitor capable of unsupervised 

measurement of PM2.5 mass concentration and Aerosol Optical Depth (AOD), a measure of light extinction 

in the full atmospheric column due to airborne particles. We highlight key design features of the AMODv2 

and demonstrate that its measurements are accurate relative to standard reference monitors. Second we 

describe a national crowdsourced network of AMODv2s, in which we leveraged the measurement 

capabilities of the AMODv2 in a network of university students to analyze the relationship between PM2.5 

and AOD in the presence of wildfire smoke in the United States. Finally, we propose a cloud screening 

algorithm for AOD measurements using all-sky images and deep transfer learning. We found that our 

algorithm correctly screens over 95% of all-sky images for cloud contamination from a custom all-sky 

image data set. Taken as a whole, our work supports community-driven air pollution monitoring by 

advancing the tools and strategies communities need to better understand the air they breathe. 
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CHAPTER 1. INTRODUCTION 

The moment we step outside, we make immediate observations about our environment. Our 

perceptions of heat, cold, moisture, light, and (if we are near Greely) smell direct our plans and desires for 

the day ahead. Modern technology allows us to experience our environment with a level of foreknowledge 

and precision beyond what our natural faculties would allow. With a glance at a screen, we can know what 

conditions to expect on the top of a ski mountain 100 miles away, within a few degrees or miles-per-hour. 

With this foreknowledge we can make decisions to maximize not only our short-term comfort, but also our 

immediate safety and long-term health. We can avoid hypothermia by packing layers before a cold front 

moves in and travel safely by avoiding bi-planes in gale-force winds.  

But what of the air we breathe? People who live near a major industrial center or have been in the 

path of a wildfire smoke plume are familiar with the irritation, stench, and labored breathing that comes 

with poor air quality. Our instinctual revulsions toward dirty air are well founded. Polluted air is often 

partially composed of particulate matter smaller than 2.5 microns in diameter (PM2.5), which, when inhaled, 

can come to rest deep in our lungs, leading to acute and chronic disease (Feng et al., 2016; Janssen et al., 

2013; Kim et al., 2019; Pope & Dockery, 2006). Each year, millions of deaths are attributed to PM2.5 

exposure (Brauer et al., 2016; Forouzanfar et al., 2016). For most people on the planet, assessing risks posed 

by ambient air pollution in their area may not be as simple as checking the weather. The relative lack of 

accessible air pollution information has implications for individuals deciding if they ought to go for a 

morning run, all the way up to national and global regulatory agencies seeking to limit the adverse effects 

of air pollution on the populations they serve. In order to achieve a higher level of informational 

accessibility for air pollution, we need monitoring instruments that are accurate, scalable, and economically 

viable. 

Air pollution is measured using ground-based and satellite-based sensors. PM2.5 mass 

concentrations can be measured using a variety of methods. Some systems sample air at a controlled flow 

rate and mechanically partition particles into those above and below 2.5 microns (e.g. Kelleher et al., 2018; 
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Volckens et al., 2017). Mass from the flow stream containing PM2.5 is deposited on a filter. The average 

concentration over some period of time can be calculated based on the flow rate and the PM2.5 mass 

deposited. Other sensors (e.g. nephelometers and optical particle counters), measure how light emitted from 

a laser source is influenced by particles before it reaches a detector opposite a flow stream. Particle 

concentrations in a column of air spanning the atmosphere between the surface of the earth and outer space 

can be assessed by instruments known as sun photometers. Sun photometers measure the diminution of 

sunlight due to airborne particles, a quantity known as Aerosol Optical Depth (AOD).  

The last several decades have seen a proliferation of consumer microelectronics. Microelectronic 

devices today range from plug-and-play black-box products to open-ended hardware and software 

platforms for do-it-yourself projects. Platforms like Arduino® empower individuals to create their own 

circuits and write their own software for projects that interest them. What was once the purview of 

professional engineers is now open to everyone from elementary school students to retirees. The widespread 

availability of device development platforms has manifested in the emergence of citizen science as a 

practical means for community members of all backgrounds to participate in air pollution science. The 

result of emerging technological and philosophical innovation in citizen science has been a new paradigm 

of air pollution measurement featuring lower-cost devices that can be readily operated by people of all 

backgrounds. 

When air pollution monitors are sufficiently low-cost, they can be distributed at high spatial 

resolutions, providing local-scale air pollution information. Low-cost sensors are increasingly being 

distributed to citizen volunteers to form crowdsourced monitoring networks. Some crowdsourced networks 

are already in place and making valuable contributions to community air quality monitoring (Badura et al., 

2020; Chadwick et al., 2021; Ford et al., 2019; Gupta et al., 2018; Li et al., 2020; Lin et al., 2020; Y. Lu et 

al., 2021). However, low-cost measurements are typically limited to a single measurement modality (i.e. 

laser-light scattering) and are prone to bias (Kelly et al., 2017; Zheng et al., 2018; Levy Zamora et al., 2019; 

Sayahi et al., 2019; Ford et al., 2019; Tryner et al., 2020; Barkjohn et al., 2021). The shortcomings of 
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existing low-cost sensors highlight the need for innovative technology to power the future of community-

driven air quality monitoring.  

In this body of work, we describe three unique contributions toward community-driven air pollution 

measurement. First, we present the design and validation of a novel low-cost monitor capable of 

simultaneous measurement of PM2.5 and AOD known as the Aerosol Mass and Optical Depth (AMODv2) 

sampler. Second, we describe a deployment of AMODv2s in a crowdsourced network of university students 

in the contiguous United States in a study of the effects of wildfire smoke on the relationship between AOD 

and PM2.5. Finally, we develop a platform independent quality control procedure for AOD measurement 

based on images of the sky and machine vision techniques. 
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CHAPTER 2. A LOW-COST MONITOR FOR SIMULTANEOUS MEASUREMENT OF FINE 

PARTICULATE MATTER AND AEROSOL OPTICAL DEPTH: AUTOMATION AND DESIGN 

IMPROVEMENTS 

Reproduced (or 'Reproduced in part') with permission from “A low-cost monitor for simultaneous 

measurement of fine particulate matter and aerosol optical depth - Part 3: Automation and design 

imporvements”. Eric A. Wendt, Casey Quinn, Christian L’Orange, Daniel D. Miller-Lionberg, Bonne Ford, 

Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, 

Marilee Long, and John Volckens; Atmospheric Measurement Techniques 2021 14, 6023–6038; DOI: 

10.5194/amt-14-6023-2021; Copyright 2021 Copernicus Publications. 

Chapter Overview 

Atmospheric particulate matter smaller than 2.5 micrometers in diameter (PM2.5) has a negative 

impact on public health, the environment, and Earth’s climate. Consequently, a need exists for accurate, 

distributed measurements of surface-level PM2.5 concentrations at a global scale. Existing PM2.5 

measurement infrastructure provides broad PM2.5 sampling coverage, but does not adequately characterize 

community-level air pollution at high temporal resolution. This motivates the development of low-cost 

sensors which can be more practically deployed in spatial and temporal configurations currently lacking 

proper characterization. In part 1 of this series we described the development and validation of a first-

generation device for low-cost measurement of AOD and PM2.5: The Aerosol Mass and Optical Depth 

(AMODv1) sampler. Part 2 of the series describes a citizen-science field deployment of the AMODv1 

device. Here in part 3, we present an updated version of the AMOD, known as AMODv2, featuring design 

improvements and extended validation to address the limitations of the AMODv1 work. The AMODv2 

measures AOD and PM2.5 at 20-minute time intervals. The sampler includes a motorized sun-tracking 

system alongside a set of four optically filtered photodiodes for semi-continuous, multi-wavelength (current 

version at 440, 500, 675, and 870 nm) AOD sampling. Also included are a Plantower PMS5003 sensor for 
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time-resolved optical PM2.5 measurements and a pump/cyclone system for time-integrated gravimetric 

filter measurements of particle mass and composition. AMODv2 samples are configured using a 

smartphone application and sample data are made available via data streaming to a companion website 

(csu-ceams.com). We present the results of a nine-day AOD validation campaign where AMODv2 units 

were co-located with an AERONET (Aerosol Robotics Network) instrument as the reference method at 

AOD levels ranging from 0.02 ± 0.01 to 1.59 ± 0.01. We observed close agreement between AMODv2s 

and the reference instrument with mean absolute errors of 0.04, 0.06, 0.03, and 0.03 AOD units at 440 nm, 

500 nm, 675 nm, and 870 nm, respectively. We derived empirical relationships relating the reference AOD 

level with AMODv2 instrument error and found that the mean absolute error in the AMODv2 deviated by 

less than 0.01 AOD units between clear days and elevated-AOD days and across all wavelengths. We 

identified bias from individual units, particularly due to calibration drift, as the primary source of error 

between AMODv2s and reference units. In a test of 15-month calibration stability performed on 16 AMOD 

units, we observed median changes to calibration constant values of -7.14%, -9.64%, -0.75%, and -2.80% 

at 440 nm, 500 nm, 675 nm, and 870 nm, respectively. We propose annual recalibration to mitigate potential 

errors from calibration drift. We conducted a trial deployment to assess the reliability and mechanical 

robustness of AMODv2 units. We found that 75% of attempted samples were successfully completed in 

rooftop laboratory testing. We identify several failure modes in the laboratory testing and describe design 

changes we have since implemented to reduce failures. We demonstrate that the AMODv2 is an accurate, 

stable and low-cost platform for air pollution measurement. We describe how the AMODv2 can be 

implemented in spatial citizen-science networks where reference-grade sensors are economically 

impractical and low-cost sensors lack accuracy and stability. 

Introduction 

Fine particulate matter air pollution (PM2.5) is a leading cause of human morbidity and mortality, 

and also a significant contributor to radiative climate forcing (Myhre et al., 2013; Forouzanfar et al., 2016; 

Brauer et al., 2016; Vohra et al., 2021). Inhaled PM2.5 can penetrate deep into the lungs, leading to both 
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acute and chronic health impacts (Pope & Dockery, 2006; Janssen et al., 2013; Feng et al., 2016; Kim et 

al., 2019). Each year, millions of deaths worldwide are attributed to PM2.5 exposure (Brauer et al., 2016; 

Forouzanfar et al., 2016). In addition to public health, PM2.5 also contributes to visual degradation of the 

atmosphere and affects the climate by influencing Earth’s radiative budget (Myhre et al., 2013). Regions 

with the highest levels of air pollution often lack adequate ground level monitoring (Snider et al., 2015; 

Brauer et al., 2016). Thus, disease estimates for much of the world's population rely on exposure estimates 

where satellite data or model simulations are the best or only source of information on human exposure. 

Installing a global network of reference-grade surface monitors is not currently feasible due to the high 

installation and maintenance costs. 

Satellite remote sensing, supplemented with data from surface measurements and chemical 

transport models (CTMs), represents the state-of-the-art for global PM2.5 monitoring at relatively high 

temporal and spatial resolution (van Donkelaar et al., 2016, 2019; Hammer et al., 2020; Lee, 2020). 

Measurements from satellite instruments, such as the Moderate Resolution Imaging Spectrometer (MODIS) 

and the Multi-angle Imaging SpectroRadiometer (MISR) (Salomonson et al., 1989; Diner et al., 1998), are 

used to estimate surface-level PM2.5 concentrations (e.g Liu et al., 2005), which in turn have facilitated 

research on the health effects associated with PM2.5 exposure (Brauer et al., 2016; Forouzanfar et al., 2016; 

Li et al., 2018; X. Lu et al., 2019). Satellites equipped with aerosol remote sensing instrumentation retrieve 

aerosol optical depth (AOD), a measure of light extinction in the atmospheric column, which can then be 

converted to ground level PM2.5 using a CTM or statistical relationship (Y. Liu et al., 2005; van Donkelaar 

et al., 2006, 2010, 2012, 2016; Hammer et al., 2020). The relationship between AOD and PM2,5 can be 

expressed as follows (Y. Liu et al., 2005): 𝑃𝑃𝑃𝑃2.5 = 𝜂𝜂 ⋅ 𝐴𝐴𝑂𝑂𝑂𝑂 (2-1) 

where η is a conversion factor between PM2.5 and AOD. The uncertainty of surface-level PM2.5 

concentrations derived from satellite observations has two main components: 1) the uncertainty of the 

satellite AOD measurement and 2) the uncertainty of the modeled PM2.5 to AOD ratio (η) (e.g. Ford and 

Heald, 2016; Jin et al., 2019).  
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The error of the satellite AOD retrieval can be estimated using ground-level AOD measurements 

from instruments known as sun photometers (e.g., Sayer et al., 2012). The Aerosol Robotics Network 

(AERONET) provides reference-quality AOD measurements at hundreds of locations around the Earth; 

these data are used to constrain and reduce uncertainties in AOD values (Holben et al., 1998). AERONET 

instruments are rarely deployed at high spatial density (i.e. sub-city scale), outside of field campaigns (e.g. 

Garay et al., 2017), due to the high cost of the instrument and supporting equipment (>50,000 USD). 

Determining the uncertainty in the modeled PM2.5 to AOD ratio requires co-locating AOD and PM2.5 

measurements. The Surface PARTiculate mAtter Network (SPARTAN) was established to provide co-

located PM2.5 and AOD reference measurements and to evaluate uncertainties in both AOD and the PM2.5 

to AOD ratio; however, the number of SPARTAN sites worldwide is limited by number (~20 active sites), 

equipment, and operational costs (Snider et al., 2015). 

Networks of low-cost nephelometers (notably the Plantower PMS5003), have been suggested and 

deployed in large numbers as a means to provide surface PM2.5 data at a higher spatial density than can be 

achieved with reference-grade monitors (Lin et al., 2020; Li et al., 2020; Badura et al., 2020; Y. Lu et al., 

2021; Chadwick et al., 2021). However, low-cost sensors (or more specifically, the Plantower PMS5003 

devices) tend to exhibit measurement bias (Kelly et al., 2017; Zheng et al., 2018; Levy Zamora et al., 2019; 

Sayahi et al., 2019; Tryner et al., 2020), requiring correction relative to reference monitors (Ford et al., 

2019b; Wendt et al., 2019a). Low-cost Sun photometers have been deployed at high-spatial resolution to 

evaluate satellite AOD uncertainty as part of the Global Learning and Observations to Benefit the 

Environment (GLOBE) program (Boersma & de Vroom, 2006; Brooks & Mims, 2001a). GLOBE Sun 

photometers were operated by students as part of education programming, resulting in over 400 

measurements between January 2002 and October 2005 in the Netherlands (Boersma & de Vroom, 2006). 

These data were used to evaluate satellite-derived AOD in corresponding regions. However, the authors 

noted difficulty coordinating with schools to achieve consistent measurements, specifically those 

corresponding with satellite overpasses. Collectively, these previous efforts have advanced the 

understanding of AOD and PM2.5:AOD variability considerably. However, there is still demand for co-
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located PM2.5 and AOD samplers deployed at higher spatial density and with greater temporal resolution 

(Ford & Heald, 2016; Garay et al., 2017; Jin et al., 2019). Samplers used in these networks must be 

sufficiently low-cost to deploy in large numbers, have manageable operational and maintenance 

requirements, and provide useful and reliable PM2.5 and AOD measurements (i.e., measurement data of 

sufficient accuracy and precision so as to support scientific inference or public decision-making). Thus, 

consideration should be given to the tradeoffs associated with deploying low-cost sensors such as scalability 

and simplicity versus accuracy and reliability. 

In part 1 of this series of articles, we describe a low-cost, compact PM2.5 and AOD ground monitor 

(Wendt et al., 2019a; Ford et al., 2019b). The device, known as the Aerosol Mass and Optical Depth 

(AMOD) sampler, featured a PM2.5 cyclone inlet for integrated gravimetric sampling and composition 

analysis, a low-cost nephelometer (Plantower PMS5003, Beijing, China) for real-time PM2.5 mass estimate, 

and four filtered-photodiode (Intor Inc., Socorro, NM, USA) sensors at 440, 520, 680, and 870 nm for 

measuring AOD. Here, we refer to this earlier instrument as the AMODv1. The assembly cost for the first 

manufacturing set of 25 AMODv1s was under 1,100 per unit USD (Wendt et al., 2019a). The results of a 

field validation campaign revealed agreement to within 10% (mean relative error) for AOD values relative 

to co-located AERONET instruments. The mean AOD difference was <0.01 with 95% confidence upper 

and lower limits of agreement of 0.03 and -0.02, respectively. With respect to PM2.5, the AMODv1 filter 

measurements agreed within 8% (mean relative error) relative to Federal Equivalent Method (FEM) 

monitors from the Environmental Protection Agency (EPA), with a mean difference of -0.004 µg m-3 and 

95% confidence upper and lower limits of agreement of 1.84 and -1.85 µg m-3, respectively (Wendt et al., 

2019a). With respect to real-time PMS5003 PM2.5 measurements, the mean relative error between the 

AMODv1 and an FEM monitor was 1.98 µg m-3 with and mean difference of 0.04 µg m-3 and 95% 

confidence upper and lower limits of agreement of 5.02 and -4.95 µg m-3, respectively (Wendt et al., 2019a). 

These results indicated that the AMODv1 accurately quantified surface PM2.5 concentrations and AOD 

simultaneously and at a substantially lower cost and smaller size than existing equipment. To test 
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implementation of the AMODv1, we constructed and deployed 25 AMODv1s in a citizen-science network, 

as documented in part 2 in this series (Ford et al., 2019b).  

Despite the promise of the AMODv1, the initial deployment highlighted several key limitations. 

First, the AMODv1 lacked quality control measures for misalignment or cloud contamination during the 

measurement period. Second, the instrument had limited temporal resolution for AOD (typically one 

measurement per day). Third, despite the presence of a visual alignment aid (Wendt et al., 2019), many 

volunteers found it difficult to align the instrument with the sun, which was compounded by inconsistent 

standards as to what constituted proper alignment. Fourth, data could not be transmitted wirelessly or 

accessed remotely. The first objective of this current work was to address these four major limitations of 

the AMODv1 design. Another shortcoming of our work on AMODv1 was limited stability analysis of the 

AOD sensors across varying atmospheric conditions and over time. The second objective of this work, 

therefore, was to evaluate the stability of the AOD sensors across a range of pollution levels and to assess 

the stability of the AOD sensors after repeated deployments over the course of a year. Here, we describe 

our design changes and extended validation efforts toward our research objectives. First, we summarize the 

design advantages of the AMODv2 relative to the AMODv1. Second, we present the results from a 

validation campaign where AMODv2 units were co-located with reference instruments. Third, we analyze 

the stability of AMODv2 AOD measurements after 15 months of use. Finally, we analyze the reliability of 

the AMODv2 design in a series of laboratory experiments. The results presented here demonstrate that 

AMODv2 is a practical option to establish spatially-dense PM2.5 and AOD measurement networks. Applied 

in these networks, the AMODv2 will close gaps in the existing global aerosol measurement infrastructure 

of ground-based and satellite-based observations. 
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Materials and Methods 

Instrument design 

We designed the AMODv2 to sample integrated gravimetric PM2.5 mass concentration, real-time 

PM2.5 mass concentration, and AOD simultaneously. One intended application is large-scale sampling 

campaigns with the AMODv2 instruments operated by volunteers with little to no background in aerosol 

or atmospheric science (Ford et al., 2019b). Thus, we prioritized a design that is low-cost, accurate, 

mechanically robust, portable, automated, and user-friendly. We provide images of AMODv2 hardware in 

Fig. 2-1, highlighting key internal and external components. 
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Figure 2-1: Images detailing external and internal AMODv2 design and hardware. a) Photograph of 
AMODv2 sampling outdoors. b) External computer animated rendering of AMODv2 features and 
dimensions. c) Computer generated exploded view of AOD measurement subsystem. d) Computer 
generated exploded section view of PM2.5 sampling, wireless data transfer, and power subsystems. 
 

The AMODv2 measures AOD at 440 nm, 500 nm, 675 nm, and 870 nm using optically filtered 

photodiodes (Intor Inc., Socorro, NM, USA) with narrow bandwidth (<15 nm at full-width half-maximum 

signal). The measurement process is fully automated using a solar tracking system (Section 2.3), reducing 

the potential for misalignment due to user error. Movement in the zenithal plane is achieved using a custom 

turret module embedded in the interior of the AMODv2 enclosure (Fig. 2-1a). The module was designed in 
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SolidWorks® (ANSYS, Inc., Canonsburg, PA, USA) and built using multi-jet fusion printing. The module 

houses a custom printed circuit board containing the solar tracking sensors and the filtered photodiodes. 

Light enters the turret through four, 4 mm apertures, and passes through 112 mm tubes to reach the filtered 

photodiodes (Fig. 2-1c). These proportions yield a viewing angle of approximately 2 degrees for each 

photodiode sensor element. A stepper motor (Stepper Online 17HS10-0704S-C2, Nanjing City, China), 

fixed to the turret, actuated the zenithal rotation. Movement in the azimuthal plane is actuated using a 

second stepper motor (Stepper Online 17HS19-1684S-C6, Nanjing City, China) fixed to a turntable and 

base-plate assembly (McMaster Carr 6031K16, Elmhurst, IL, USA), which enables 360 degree rotation of 

the AMODv2. The angular resolution of each stepper motor is tuned to 0.056 degrees using programmable 

drivers (Texas Instruments DRV8834RGER, Dallas, Texas, USA). Active tracking is accomplished using 

closed-loop control enabled by a 3-axis accelerometer (STMicroelectronics LSM6DSM, Geneva, 

Switzerland), a GPS module (u-blox CAM-M8, Thalwil, Switzerland), and a quadrant photodiode solar 

tracking sensor (Solar MEMS NANO-ISS5, Seville, Spain). 

The AMODv2 measures PM2.5 using both real-time and time-integrated techniques. Real-time 

PM2.5 concentrations are measured and streamed using a light-scattering PM2.5 sensor (Plantower PMS5003, 

Beijing, China). A 3D-printed fixture secured the sensor in position to sample ambient air, while downward 

sloping vents protect the sensor from water ingress (Fig. 2-1d). PM2.5 concentrations are evaluated on the 

PMS5003 chip via a manufacturer proprietary algorithm. The AMODv2 reports the PM2.5 values corrected 

by Plantower’s proprietary atmospheric correction. These values are accessed by the AMODv2 

microcontroller via serial communication. A flow chart detailing the PM2.5 measurement protocol is 

provided in Fig. A1. 

For time-integrated PM2.5 mass concentration measurement, we leveraged a PM2.5 cyclone design 

from prior studies (Volckens et al., 2017; Kelleher et al., 2018; Wendt et al., 2019a). The main circuit board 

features three ultrasonic pumps (Murata MZBD001, Nagaokakyo, Japan) and a mass flow sensor 

(Honeywell Omron D6F, Charlotte, NC, USA,) to control the flow of air through a custom aluminum 

cyclone and filter cartridge with a 50% cut point of 2.5 μm (Fig. 2-1d). The gravimetric sample is collected 
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on a 37mm Teflon filter secured within a filter cartridge. Sampled particles are collected on a single filter 

that is pre and post weighed for each sample. During deployment, a field blank is carried along with the 

sampler to correct for incidental mass contamination or drift. 

The AMODv2 is powered using a 12 V, 10 Ah LiFePO4 battery (Dakota Lithium, Grand Fork, ND, 

USA) with a secondary 12 V, 3.3Ah LiFePO4 (Battery Space, LFH4S4R1WR-C5, Richmond, CA, USA) 

battery in parallel. The battery is charged using a barrel plug inlet accessible on the side of the enclosure. 

A detachable rubber plug seals the inlet from the outside environment when not charging. Charging 

circuitry supports charging at a rate of 3.0 A, enabling a full charge in approximately eight hours. A full 

charge can power the AMODv2 for over 120 hours. 

The AMODv2 records and wirelessly transfers meteorological and quality-control data in real time. 

Meteorological data include ambient temperature (°C), ambient pressure (hPa), and relative humidity (%). 

Quality control metrics include sample duration (s), sample flow rate (L min-1), total sampled volume (L), 

battery temperature (°C), battery voltage (V), battery state of charge (%), current draw (mA), and wireless 

signal strength (RSSI). 

The external housing of the AMODv2 (Fig. 2-1b) is made from a weather-resistant NEMA 

electrical enclosure (Polycase, YQ-080804, Avon, Ohio, USA). The dimensions of a fully assembled 

AMODv2 are 21.8 cm W × 21.8 cm L × 12.8 cm H, with a weight of 3.1 kg. A folding carry handle is fixed 

to the upper surface of the enclosure to aid transport (Fig. 2-2b). The total cost of the AMODv2 was 1,175 

USD per unit, for a production run of 100 units (Table A1). This tabulation includes an estimated three 

hours of assembly at a rate of 25 USD per hour. 

We developed the AMODv2 control software using an online, open-source platform (mbedTM; 

ARM® Ltd., Cambridge, UK). The software was written in C++ and executed by a 64-bit microcontroller 

(STMicroelectronics STM32L476RG, Geneva, Switzerland). We implemented wireless data transfer using 

a Wi-Fi and BluetoothTM module (Espressif Systems ESP32-C3-WROOM, Shanghai, China). A MicroSD 

card stores all data for data backup or offline deployment (Molex 5031821852, Lisle, IL, USA). We 
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integrated software modules for AOD, real-time PM2.5, gravimetric PM2.5, data logging, and wireless data 

transfer using a real-time operating system (RTOS) for pseudo-simultaneous software execution. 

AOD measurement and solar tracking 

The AMODv2 applies the Beer-Lambert-Bouguer law to calculate AOD (a). This relationship, 

expressed in terms of measurable parameters, is as follows: 𝜏𝜏𝑎𝑎(𝜆𝜆) =
1𝑚𝑚 �𝑙𝑙𝑙𝑙 �𝑉𝑉0𝑅𝑅2� − 𝑙𝑙𝑙𝑙(𝑉𝑉) � − 𝜏𝜏𝑅𝑅(𝜆𝜆,𝑝𝑝) − 𝜏𝜏𝑂𝑂3 (2-2) 

where m is the unitless air mass factor, which accounts for the increased air mass that light passes through 

as the sun approaches the horizon, R is the Earth-sun distance in astronomical units (AU), V is the signal 

produced by the light detector in volt, τR accounts for Rayleigh scattering by air molecules, p is the pressure 

at the sensor in Pa, λ is the sensor wavelength in m, τO3 accounts for ozone absorption, and V0 is the 

extraterrestrial constant in volts, which is the sensor signal if measured at top-of-atmosphere and is 

determined via calibration. AOD values at 440 nm, 500 nm, 675 nm, and 870 nm are calculated using Eq. 

(2-2). The Earth-Sun distance, R, is computed directly from GPS data and the solar positioning algorithm. 

V is the signal produced by the photodiode and V0 is accessed from on-chip memory. The relative optical 

air mass factor is computed as a function of solar zenith angle (θ) as follows (Young, 1994): 𝑚𝑚  =  
1.002432 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃) + 0.148386 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) + 0.0096467

 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃) + 0.149864 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃) + 0.0102963 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) + 0.000303978 (2-3) 

AOD calibration procedure 

  The extraterrestrial constants for all AMODv2s were evaluated via calibration relative to 

AERONET sun photometers (Cimel CE318, Paris, France) (Holben et al., 1998). AERONET instruments 

report AOD at 340 nm, 380 nm, 440 nm, 500 nm, 675 nm, 870 nm, 1020 nm, and 1640 nm (Holben et al., 

1998). We selected the four AMODv2 AOD wavelengths in part for direct comparison with AERONET 

instruments. We conducted calibrations at the MAXAR-FUTON site in Fort Lupton, Colorado (40.036 N, 

104.885 W) between November 2019 and February 2020. AMODv2 units were co-located within 50 m of 
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the AERONET instrument and sampled for 2 to 3 hours at a rate of one sample every 2.5 to 3 minutes (note: 

AERONET instruments are programmed to record AOD every 15 minutes so we oversampled the 

AMODv2 to achieve sufficient temporal overlap with AERONET). AMODv2 and AERONET level 1.0 

measurements concurrent within 60 seconds of each other were included in the calibration data set (Holben 

et al., 1998). For each set of concurrent measurements, we calculated the extraterrestrial constant by 

applying Eq. (2-2) solved for V0, where V was the raw voltage reported by the AMODv2, and τa was the 

AOD reported by the AERONET instrument. The AMODv2 calibration constants were the average value 

of V0 for a given instrument and wavelength. 

User operation and measurement procedure 

  We designed the AMODv2 to be operated by individuals without a background in aerosol 

sampling. We developed a standard procedure that is detailed in a user manual provided as supplementary 

material. After the initial setup, the AMODv2 requires no operator inputs for the duration of the sample. A 

flow chart outlining the manual and automatic steps to perform an AMODv2 measurement is provided in 

Fig. 2-2.  
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Figure 2-2: Overall device operation flow diagram for a single sample. After each sample, the AMODv2 
must be recharged for at least eight hours. Manual inputs require operator intervention. Automatic processes 
are executed with no operator intervention. Predefined processes are detailed in supplemental Figs. A1-A6. 
Parallel processes are executed pseudo-simultaneously using a real-time operating system.  
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Materials needed to initiate a sample include an AMODv2, a cartridge loaded with a pre-weighed 

filter, and a smartphone with the AMODv2 control application installed (“CEAMS”; available on the Apple 

App Store and Google Play). A detailed description of the mobile application is in the user manual, which 

is included as a supplement to this work. After executing an initialization routine by selecting “Scan for 

Device”, the operator may connect to their device via BluetoothTM using the mobile application. The 

operator can select a wireless network and input the proper credentials to connect the AMODv2 to the 

internet. The application then prompts the operator to scan the QR code on the back of the filter cartridge 

to link the filter with the upcoming sample in the data log. After the cartridge is manually loaded into the 

compartment behind the inlet (Fig. 2-1b), the AMODv2 should be placed on a flat surface with an 

unobstructed view of the sun. The operator then starts the sample from the mobile application. After an 

initial data push, the sample begins at the next 20 minute mark (e.g. 12:00, 12:20, or 12:40). The AMODv2 

begins sampling air through the inlet at 1 L min-1 and continues to do so for the remainder of the 120-hour 

sampling period. Real-time PM2.5 and AOD measurements are initiated at each 20 minute mark from the 

start of the sample. The PM2.5 reported at each 20 minute interval is the average of measurements taken 

every 10 seconds over a period of 3 minutes. If the sun is less than 10 degrees above the horizon, the motors 

do not activate and the solar tracking algorithm is not executed. After each AOD and PM2.5 measurement 

is completed, data are uploaded to the affiliated website (csu-ceams.com), where real-time visualizations 

of AOD and PM2.5 are available. Data reported to the website are accessible with a map-based user interface. 

Quality-control data are available to research staff via a private administrator portal. A snapshot example 

of the website is provided in Fig. A7. At the conclusion of a sample, the operator removes the filter 

cartridge. Upon receipt of the filters, the CEAMS team stored the filters in the refrigerator until mailed to 

minimize loss of volatile compounds. Complete data files can be downloaded from the website or accessed 

via a MicroSD card. Individual measurements of AOD and PM2.5, from which averages are derived, are 

available in the complete file, facilitating post-sample uncertainty analysis of PM2.5 and AOD 

measurements. 
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Validation, stability, and reliability studies 

 We assessed precision and bias of AMODv2 AOD sensors relative to an AERONET monitor at the 

NEON-CVALLA site in Longmont, Colorado (40.160 N, 105.167 W) between June 2020 and December 

2020 (Holben et al., 1998). We co-located our instruments within 50 m of the reference instrument (and 

within 5 m of each other) on nine separate days with varying atmospheric conditions (e.g. wildfire smoke 

and clean air) using a total of 14 unique AMODv2 units. Each test consisted of 2 to 4 hours of sampling at 

a rate of one sample approximately every 3 minutes. The AERONET reference monitor sampled at a 

frequency of one sample approximately every 15 minutes. AMODv2 and AERONET measurements 

concurrent within 2 minutes were included in the validation data set. The accuracy of AMODv2 AOD 

measurements was assessed via Deming regression. 

We evaluated the long-term stability of the AOD sensors by re-calibrating a set of 16 AMODv2 

units 15 months after their initial calibration. Original calibrations for the units tested were conducted at 

the MAXAR-FUTON site in Fort Lupton, Colorado, USA (40.036 N, 104.885 W) on February 21, 2020.  

Re-calibrations were conducted at the NEON-CVALLA site on May 27, 2021 (The MAXAR-FUTON site 

was indefinitely unoperational at the time of the second calibration). 

We tested the reliability of AMODv2 instruments in a series of 5-day, outdoor samples on the roof 

of a Colorado State University laboratory facility (430 N College Avenue, Fort Collins, Colorado, USA). 

All units were co-located within a 10 m radius. We started tests on January 16, 2021, January 30, 2021, and 

March 31, 2021, which included 34, 27, and 15 unique AMODv2 units respectively, for a total of 76 

samples. We assessed the reliability of the AMOD according to the rate at which samples terminated 

prematurely. Samples that failed to reach at least 115 hours of the intended 120 hour sample duration were 

designated as premature terminations. We specifically assessed the mechanical robustness of AMODv2 

units by visually inspecting failed units for evidence of water ingress and electrical component damage. We 

also analyzed the AOD data from these samples to evaluate the automatic solar alignment procedure and 

quality control algorithm. 
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 Compared with our prior work (Wendt et al., 2019a), we tested the AMODv2 AOD measurement 

system under a broader range of atmospheric conditions. A sizable portion of validation measurements were 

taken under heavy smoke caused by the Cameron Peak and East Troublesome fires of 2020. We conducted 

additional testing under more moderate smoke and clear conditions. AOD values reported by AERONET 

during validation experiments ranged from 0.035 ± 0.01 to 1.59 ± 0.01 at 440 nm, 0.030 ± 0.01 to 1.51 ± 

0.01 at 500 nm, 0.021 ± 0.01 to 1.130 ± 0.01 at 675 nm, and 0.016 ± 0.01 to 0.770 ± 0.01 at 870 nm. 

Results and discussion 

Summary of design improvements 

With the AMODv2 design presented here, we addressed the key shortcomings that we identified 

with AMODv1 enumerated in the Introduction. First, AOD quality control was addressed with motorized 

solar tracking and a cloud screening protocol. AMODv2 AOD measurements are taken as triplets, 

facilitating the application of screening protocols based on temporal variation (Smirnov et al., 2000; Giles 

et al., 2019). The availability of full data files at the end of each sample facilitates additional screening 

based on hourly and daily variations in AOD values, beyond the immediate quality controls applied to 

triplets. Second, insufficient temporal resolution was addressed by automating AOD measurement and 

increasing the sample rate. With automatic sampling in place, units measure every 20 minutes of daylight 

for up to five days. This updated protocol increases the likelihood that measurements will be available at 

the desired times of day (e.g. satellite overpass times). Third, we reduced the potential for operator error by 

eliminating the manual alignment requirement present in the prior design via solar tracking. Fourth, we 

improved data accessibility through the integration of a Wi-Fi module and a user-friendly website interface. 

These design changes were achieved while adding only 75 USD to the manufacturing cost, relative to 

AMODv1 (Table A2). The most important design changes from AMODv1 to AMODv2 are summarized 

in Table 2-1. 

Table 2-1: Design comparison between AMODv1 and AMODv2 
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Design specification AMODv1 AMODv2 

Sample interval 48 hours 120 hours 

Sample flow rate 2 L min-1 1 L min-1 

Sun alignment procedure Manual using pinhole aperture 
target 

Automatic dual-axis closed-loop 
sun tracking system 

AOD cloud screening None available Automatic AOD triplet 
measurement screening protocol 

AOD measurement frequency 1 measurement per day 1 measurement every 20 minutes 
during daytime hours 

Data logging MicroSD card MicroSD card, wireless data 
transfers every 20 minutes, and 
complete file wireless data 
transfer at the end of each sample 

Data visualization None available Real-time PM2.5 and AOD plots 
on website 

Real-time debugging 
information 

None available Sample flow rate, total sampled 
volume, battery temperature, 
battery voltage, state of charge, 
current draw, and wireless signal 
strength 

Manufacturing Cost in USD  
(As of July 2019) 

1,100 1,175 

 
We conducted a sample deployment of 10 AMOD units during a wildfire smoke event in Fort 

Collins, Colorado in October of 2020. The purpose of this deployment was to highlight the design 

advantages of the AMODv2 in the context of rapidly changing air quality. The results of the deployment 

are detailed in the first supplement to this work (Figs. A8 and A9). 

AOD sensor validation and calibration stability 

Here, we present results of co-located validation studies for the AOD measurement system. Our 

cyclone-based gravimetric PM2.5 sampling system has been validated extensively in prior work and shown 

to agree closely with reference PM2.5 monitors (Volckens et al., 2017; Arku et al., 2018; Kelleher et al., 
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2018; Pillarisetti et al., 2019; Wendt et al., 2019a). Plantower light scattering sensors have likewise been 

evaluated extensively in prior work (Kelly et al., 2017; Zheng et al., 2018; Levy Zamora et al., 2019; Sayahi 

et al., 2019; Wendt et al., 2019a; Bulot et al., 2019; Tryner et al., 2020). 

We observed close AOD agreement between AMODv2 and AERONET instruments. Correlation 

plots on the full set of measurement pairs are provided in Fig. 2-3 (n = 426 paired measurements per 

wavelength). Summary statistics calculated on the full set of measurement pairs across all measurement 

conditions are provided for each wavelength in Table 2-2. 

Table 2-2: Summary statistics for AMODv2 vs. AERONET co-located tests 

Wavelength (nm) Mean absolute 
error (AOD) 

Deming slope 
coefficient 

R2 AOD Precision 
(AOD) 

440 0.04 0.953 0.987 0.02 

500 0.06 0.985 0.978 0.03 

675 0.03 1.011 0.995 0.01 

870 0.03 1.015 0.977 0.02 

 
 

Summary statistics on the data set partitioned into clear and elevated-AOD samples are presented 

in Table A1. The definitions of clear and elevated-AOD samples are explained in the description of Table 

A1. The mean absolute errors for the full data set were 0.04, 0.06, 0.03, and 0.03 AOD units at 440 nm, 

500 nm, 675 nm, and 870 nm, respectively. The Deming regression slope coefficients were 0.953, 0.985, 

1.011 and 1.015 at 440 nm, 500 nm, 675 nm, and 870 nm, respectively. The squares of Pearson correlation 

coefficients were 0.987, 0.978, 0.995, and 0.977 at 440 nm, 500 nm, 675 nm, and 870 nm, respectively. 

With respect to precision, the average differences from the mean for units measuring coincidentally (i.e. 

the average amount an individual unit deviated from the mean of all units measuring at the same time) were 

0.02, 0.03, 0.01, and 0.02 AOD units at 440 nm, 500 nm, 675 nm, and 870 nm, respectively. With respect 

to stability across AOD magnitude, the mean absolute error deviated by less than 0.011 between clear days 

and elevated-AOD days across all wavelengths (Table A1). 
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Figure 2-3: AERONET (MAXAR-FUTON site in Fort Lupton, Colorado, USA) vs. AMODv2 AOD co-
located comparison (n=426) results with panels separated by wavelength. Lines of best fit were calculated 
via deming regression analysis. 
 

Due to the broad range of AOD levels during testing, global summary statistics do not fully capture 

how error and precision scales with increasing AERONET AOD, as these figures of merit are not constant 

across the range of measured AOD values (Fig. 2-4). Measurements at high AOD impact the mean absolute 

error disproportionately, while measurements at low AOD impact the mean percent error 

disproportionately. We derived expected error (EE) equations to constrain the error of AMODv2 

measurements relative to AERONET as a function of AOD (following the form used in the validation of 

satellite AOD products compared to AERONET AOD). We derived the equations iteratively by adjusting 
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the constant and linear terms until the bounds defined by Eqs. (2-4) through (2-7) each contained 85% of 

the co-located measurement pairs for each wavelength.  𝐸𝐸𝐸𝐸440 =  ±(0.080 +  0.050 ⋅ 𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑅𝑅𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴440) (2-4) 𝐸𝐸𝐸𝐸500 =  ±(0.090 +  0.040 ⋅ 𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑅𝑅𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴500)  (2-5) 𝐸𝐸𝐸𝐸675 =  ±(0.045 +  0.020 ⋅ 𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑅𝑅𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴675) (2-6) 𝐸𝐸𝐸𝐸870 =  ±(0.050 +  0.010 ⋅ 𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑅𝑅𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴870) (2-7) 

 A logarithmic plot illustrating how the error bounds scale with increasing AOD is provided in Fig. 

2-4. 
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Figure 2-4: Logarithmic AERONET vs. AMODv2 AOD co-located results with expected error (EE; AOD 
units) bounds, with panels separated by wavelength. Equation bounds contain 85% of co-located 
measurements. 
 

Equations (2-4) through (2-7) indicate a low dependence of the AOD magnitude on the AMODv2 

error relative to AERONET for all wavelengths. Existing error between AMODv2 and AERONET 

measurements was explained primarily by the constant term. These findings are consistent with the 

summary statistics presented in Table A1 and demonstrate the stability of AMODv2. 
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AMODv2 bias relative to AERONET was primarily dependent on the specific unit, rather than 

systemic design uncertainty. A mean-difference plot colored by AMODv2 unit ID is provided in Fig. 2-5. 

 

Figure 5: Mean-difference plot for measurements taken by AERONET and AMODv2 instruments, with 
panels separated by wavelength. Paired AERONET and AMODv2 under both clear and biomass burning 
conditions (as defined in Table A1)  are included. Points represent paired AMODv2 and AERONET 
measurements with the average of the measurement pair on the x-axis in log scale and the difference on the 
y-axis. The top and bottom dashed lines represent the upper and lower limits of agreement, respectively, 
evaluated at 95% confidence. The solid line in between the limits of agreement is the mean difference 
between the two measurement techniques. Points are colored according to the AMODv2 unit ID. 
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Units AD00006 and AD00051 exhibited the highest bias at 440 nm and 500 nm, respectively. With 

units AD00051 and AD00006 removed from the data set, mean absolute errors were reduced by 0.011, 

0.013, 0.008, and 0.004 AOD units at 440 nm, 500 nm, 675 nm, and 870 nm, respectively. Bias from units 

AD00006 and AD00051 also impacted the EE derivations. With units AD00006 and AD00051 omitted, 

Eqs. (2-4) through (2-7) bound 92.5%, 94.6%, 97.6% and 92.2% of the co-located pairs, respectively. 

Individual unit bias was most likely caused by faulty calibration or optical sensor drift over time.  

Previous work has noted the tendency for optical interference filters to degrade over time, changing 

the accuracy of the most recent calibration (Brooks & Mims, 2001a; Giles et al., 2019). We quantified the 

long-term stability of the AMODv2 AOD sensors by re-calibrating 16 AMODv2 units 15 months after their 

initial calibration.  Summary statistics quantifying the change calibration constant (V0) changes are provided 

in Table 2-3. 

Table 2-3: Summary statistics for AMODv2 calibration stability test. All summary statistics refer to the 
change in V0 (Eq. 2-2). Note that the absolute value of the maximum change refers to the single unit with 
the highest percent change for each wavelength. 

Wavelength (nm) Average absolute value of 
change (%) 

Median change 
(%) 

Absolute value of 
maximum change 

(%) 

440 13.84 -7.14 62.72 

500 11.80 -9.64 37.08 

675 6.66 -0.75 29.40 

870 14.63 -2.80 50.72 

 
 A plot illustrating the voltage change undergone by each of the 16 AMODv2 units is provided in 

Fig. 2-6. 
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Figure 2-6: Linear change plots illustrating the change in calibration voltage, V0 (Eq. 2-2), from the initial 
calibration to a follow up test calibration of 16 AMODv2 units. Each instrument is represented by a separate 
line with starting and ending calibration voltage values delineated on the vertical axis. Panels are separated 
by wavelength. Each line represents the change after 15 months of a single wavelength channel of an 
AMODv2 unit. 
 

The results presented in Fig. 2-6 illustrate that the calibration constants (V0 in Eq. 2-2) remained 

relatively stable (changes of 5% or less) for most AMODv2 units over the course of 15 months. However, 

several units exhibited relatively large changes (in excess of 30%) in their calibration constants, indicating 

calibration changes may vary considerably by unit. Boersma and de Vroom (2006) present theoretical 
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analyses and conclude that the calculation of AOD is most sensitive to errors in the calibration constant, V0 

(Boersma & de Vroom, 2006). Their theoretical analyses combined with the results in Fig. 2-6, point to 

drift in V0 as a likely source for large, unit specific errors in AOD AMODv2 measurements. To limit errors 

due to calibration drift, we recommend that AMODv2 V0 values be re-calibrated on an annual basis. 

Determining the source of changes to the calibration constants of some AMODv2 units is the subject of 

ongoing investigation. Potential sources include changes in sensitivity or drift of the photodiode sensor 

element, degrading of the optical interference filters, and/or clouding of the protective glass window 

element in the light path of the sensors. 

Reliability testing 

 AMODv2 sensor validation results from this work and prior work indicate that the instrument can 

accurately measure AOD and PM2.5 when operating properly. However, for effective large-scale 

deployments, AMODv2 units must reliably complete their intended sampling protocol when deployed 

outdoors for 120 hours. Potential causes of premature sample failure included, premature battery drainage, 

damage to mechanical or electrical components (e.g. water ingress into motors or sensors), and firmware 

related crashes (e.g. memory overflow errors).  In a series of reliability tests on the rooftop of our laboratory 

facility, we found that of 76 attempted samples, 75% were successfully completed, 16% failed due to 

premature battery drainage, 8% failed due to water damage, and 1% (one unit) failed due to a firmware 

crash. To address failures due to premature battery drainage, we replaced batteries that would not fully 

charge and replaced motors that were drawing excess current. To address failures due to water damage, we 

replaced damaged boards and applied additional sealant to key mechanical interfaces. We addressed the 

firmware crash issue by reconfiguring the memory allocation to grant more memory to the wireless data 

push functionality, which proved to be the most memory intensive sub-system. Overheating was not an 

issue in the testing discussed here, as the testing was conducted in winter months. We will test the AMODv2 

under warmer conditions to evaluate heating effects on the performance of the instrument. 
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We also verified that AMODv2 units were attempting AOD measurements and applying the prescribed data 

screening protocols. In the 76 test samples, AMODv2 units attempted 22,419 AOD measurements per 

wavelength. Units detected the sun and took at least one measurement toward forming a triplet 4,763 times 

per wavelength. The results partitioned by quality control designation are provided in Table 2-4. Instances 

where an AMODv2 reported a numerical AOD value were considered valid AOD measurements. Instances 

where an AMODv2 failed to acquire three AOD measurements for a single measurement sequence (Fig. 

A6) were designated as incomplete with a unique error code. Cloud-screened measurements were those 

where the solar alignment is achieved for 3 measurements but the triplet failed to meet the acceptance 

criteria (Fig. A6). 

Table 2-4: Results from the AMODv2 quality control algorithm from 4.763 AOD measurements taken in 
laboratory rooftop testing. Attempts where zero measurements were logged for a triplet attempt are omitted 
from the table. 

Wavelength (nm) Proportion of valid AOD 
measurements 

Proportion of invalid AOD 
measurements 

  Incomplete AOD 
triplets 

Cloud-screened 
measurements 

440 33% 20% 46% 

500 34% 20% 45% 

675 35% 20% 44% 

870 33% 20% 46% 

 
The results of this study indicate the AMODv2 automatically acquired solar alignment for a 

complete measurement triplet on 80% of attempted measurements. However, among the completed triplets, 

approximately 45% of measurements were identified as cloud-contaminated and subsequently screened. 

The screening algorithm did not reach consistent results across all wavelengths, as evident by slight 

deviations in the proportion of screened data across wavelengths. In this work, we applied the same 

exclusion criteria to each wavelength (Fig. A6). These results indicate unique exclusion criteria may be 

necessary for each wavelength to achieve consistent results, particularly when there is substantial deviation 
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in magnitude between two measurement wavelengths (e.g. 440 nm AOD much higher than 870 nm AOD 

for a single measurement). 

Discussion and conclusions 

In the current study, we evaluated the AMODv2 under a wide range of atmospheric pollution levels 

and observed close agreement between the AMODv2 and AERONET AOD measurements, with mean 

absolute errors of 0.04, 0.06, 0.03, and 0.03 AOD units at 440 nm, 500 nm, 675 nm, and 870 nm, 

respectively. The agreement between AMODv2 and AERONET was stable across AOD levels ranging 

from 0.016 ± 0.01 to 1.590 ± 0.01. We identified unit-specific changes to AOD calibration constants over 

time as a potential source of error in AOD measurements and recommended annual re-calibration (in line 

with recommendations for AERONET instruments)  to mitigate those errors. While the AMODv2 was 

designed to be deployed by citizens, here the evaluation was done with data collected by team members. In 

Parts 1 and 2, we noted that there could be potential user errors that may impact the data quality. These 

were not analyzed in the present study. Even though the AMODv2 was designed to reduce these errors by 

automating the AOD process, there is still the potential for errors (i.e., improper placement). Future work 

describing the deployment of AMODv2s by citizen scientists should also include analysis of these issues. 

The AMOD was designed to be a low-cost, user-friendly, and high-performance instrument for 

PM2.5 and AOD measurements to be deployed in citizen-science campaigns. Citizen-led sampling is a 

promising approach to produce large-scale data sets to quantify air pollution concentrations at 

spatiotemporal resolution unachievable by more-expensive reference monitors (e.g., Brooks and Mims, 

2001; Boersma and de Vroom, 2006; Ford et al., 2019). In Parts 1 and 2 of this series, we detailed the design 

and deployment of the AMODv1. In these previous studies, we noted several limitations of the instrument 

design that limited the amount of data (specifically AOD) collected by participants. Here, we present the 

improvements made to the AMOD measurement system and the implementation of wireless data transfer 

and real-time visualization, which were the primary areas of improvement compared with the previous 

design. The new design of the AMODv2 allows for unsupervised measurement and quality control 
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protocols that reduce the operational demands on a study volunteer, particularly compared with AMODv1 

and other low-cost AOD sensors, while increasing the amount of data that can be collected. Deployments 

with citizen scientists are ongoing and data from those campaigns will be the subject of future studies. The 

portability, performance, and low cost of the AMODv2 make it a practical option to establish spatially-

dense PM2.5 and AOD measurement networks. Applied in these networks, the AMODv2 will close gaps in 

the existing global aerosol measurement infrastructure of ground-based and satellite-based observations. 
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CHAPTER 3. A NATIONAL CROWDSOURCED NETWORK OF LOW-COST FINE PARTICULATE 

MATTER AND AEROSOL OPTICAL DEPTH MONITORS: RESULTS FROM THE 2021 WILDFIRE 

SEASON IN THE UNITED STATES 

Chapter Overview 

 Fine particulate matter (PM2.5) air pollution is a leading cause of premature death, disease, and 

environmental degradation globally. Wildfire smoke is a primary source of ambient air pollution, 

particularly in the United States. In regions lacking adequate ground monitoring, health impact assessments 

and epidemiological studies on the effects of wildfire smoke may rely heavily on satellite-based 

instruments, which estimate ground-level PM2.5 based on Aerosol Optical Depth (AOD), a measure of light 

extinction through the atmosphere. However, reference-grade ground monitors are cost prohibitive to 

deploy and maintain at the spatial scales needed to assess the spatial variability of wildfire smoke. Low-

cost PM2.5 sensors have been deployed at large scales and high spatial resolution in crowdsourced networks. 

However, these sensors typically lack AOD measurement capability. In prior work, we designed the 

Aerosol Mass and Optical Depth (AMODv2) sampler, which is capable of simultaneously measuring PM2.5 

(optical and gravimetric filter-based) and AOD. In this work, we distributed AMODv2s to student 

volunteers in the contiguous United States, forming a nationwide crowdsourced monitoring network from 

June 15, 2021 through August 8, 2021. A majority of our network were successful, with 86.6% of them 

resulting in a valid filter sample. We found our AOD sensors agreed closely with reference AOD monitors 

within 25 km on measurements within 180 seconds, with mean absolute error results in AOD units of 0.04 

at 440 nm, 0.06 at 500 nm, 0.03 at 675 nm, and 0.03 at 870 nm, even with these imperfect co-location 

criteria. In a regional analysis of the effects of wildfire smoke on crowdsourced measurements, we observed 

elevated PM2.5 and AOD on smoky days in most regions in the contiguous United States. These increases 

are manifested in similar PM2.5:AOD ratio values in these regions regardless of the presence of smoke. 

However, in California, median PM2.5 remained similar on smoky days relative to non-smoky days, while 

median AOD increased on smoky days, implying lofted smoke away from the surface. In California, the 
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median PM2.5:AOD ratio was 67.2 µg m-3 on non-smoky days, compared with 30.2 µg m-3 on smoky days. 

We show that paired PM2.5 and AOD measurements collected by a crowdsourced network can highlight 

anomalies in ambient air quality during smoke events. 

Introduction 

 Fine particulate matter (PM2.5) air pollution is a leading cause of human death and disease globally 

(Brauer et al., 2016; Forouzanfar et al., 2016; Fuller et al., 2022; Vohra et al., 2021). PM2.5 can penetrate 

deep into a person’s lungs, causing acute and chronic disease (Feng et al., 2016; Janssen et al., 2013; Kim 

et al., 2019; Pope & Dockery, 2006).  Each year, millions of premature deaths worldwide are attributed to 

PM2.5 exposure (Brauer et al., 2016; Forouzanfar et al., 2016). Ambient PM2.5 also impacts the Earth’s 

climate by contributing to radiative climate forcing (Myhre et al., 2013). 

As a primary source of ambient PM2.5,  smoke from wildfires has been linked to negative health 

outcomes (Liu et al., 2015; Reid et al., 2016; Cascio, 2018 and references therein). Worldwide, an estimated 

hundreds of thousands of deaths per year are attributable to ambient smoke (Johnston et al., 2012). In the 

United States, tens of thousands premature deaths are attributable to wildfire smoke per year (Ford et al., 

2018; O’Dell et al., 2021). Wildfire smoke has been linked to respiratory, cardiovascular, and asthma-

related morbidity (e.g., Henderson et al., 2011; Gan et al., 2017), resulting in thousands of hospital 

admissions per year (Fann et al., 2018; Ford et al., 2018; Neumann et al., 2021; O’Dell et al., 2021). 

The impact of wildfire smoke plumes can vary considerably at relatively small spatial scales (e.g., 

Reid et al., 2015). In many areas affected by wildfire smoke, ground monitors are not distributed with 

sufficient spatial density for public health assessment, due to cost constraints. Satellite-based instruments, 

which can estimate ground-level PM2.5 at relatively high spatial resolution, are used for assessment in areas 

lacking sufficient ground monitors (Hammer et al., 2020; Lee, 2020; van Donkelaar et al., 2016). Recent 

studies on the impact of wildfire smoke have incorporated data from satellite-based instruments in addition 

to surface monitors and simulation results from chemical transport models (CTMs) (e.g. Reid et al., 2015; 

Lassman et al., 2017; Ford et al., 2017; O’Dell et al., 2019; Cleland et al., 2020; Cheeseman et al., 2020). 



34 
 

Satellite-based instruments, such as the Moderate Resolution Imaging Spectrometer (MODIS) and the 

Multi-angle Imaging SpectroRadiometer (MISR) (Diner et al., 1998; Salomonson et al., 1989), have been 

used to estimate ground-level PM2.5 by associating aerosol optical depth (AOD), a measure of light 

extinction through the atmosphere, with ground-level PM2.5 (Hammer et al., 2020; Y. Liu et al., 2005; van 

Donkelaar et al., 2006, 2010, 2012, 2013, 2016). Often, these studies have translated AOD to PM2.5 using 

a simple proportional relationship, expressed as follows (Y. Liu et al., 2005): 𝑃𝑃𝑃𝑃2.5 = 𝜂𝜂 ⋅ 𝐴𝐴𝑂𝑂𝑂𝑂 (1) 

where η is an empirically-derived conversion factor between PM2.5 and AOD.  The uncertainty of satellite-

based PM2.5 estimates consists of the uncertainties of satellite-derived AOD and the conversion factor η 

(Ford & Heald, 2016; Jin et al., 2019).  

Ground monitors can be used to constrain the uncertainties of satellite-based PM2.5 estimates by 

accurately measuring PM2.5 and AOD at the Earth’s surface (Hammer et al., 2020; Sayer et al., 2012; van 

Donkelaar et al., 2012, 2013, 2016). Sun photometers measure AOD from the Earth’s surface by 

quantifying the extinction of sunlight in the atmosphere due to atmospheric aerosols (Holben et al., 1998). 

The Aerosol Robotics Network (AERONET) consists of reference-quality sun photometers distributed 

throughout the planet, including hundreds of active sites in the contiguous United States (Holben et al., 

1998). Ground-level PM2.5 can be measured by a variety of different methods. For example, PM2.5 can be 

measured gravimetrically by instruments that sample air at a known flow rate and isolate particles with 

diameters smaller than 2.5 µm from the flow stream, which are deposited on a filter (e.g. Volckens et al., 

2017; Kelleher et al., 2018) or by using light-scattering sensors, measuring aerosol concentrations and size 

distributions based on how a controlled light source is scattered and absorbed by sampled air (e.g. Tryner 

et al., 2020). The Environmental Protection Agency (EPA) maintains the Air Quality System (AQS), which 

includes reference-quality gravimetric and light-scattering PM samplers 

(https://aqs.epa.gov/aqsweb/airdata.html). A complete evaluation of satellite-derived PM2.5 requires co-

locating ground-based AOD and PM2.5 monitors. The Surface Particulate Matter Network (SPARTAN) 

features sites throughout the world where reference-quality AOD and PM2.5 monitors are co-located and 
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operate simultaneously (Snider et al., 2015). SPARTAN and deployments of similar instruments have been 

used to evaluate satellite AOD and PM2.5 at specific sites (Green et al., 2009; Snider et al., 2015). Due to 

the relatively high costs of reference equipment (>10,000 USD for PM2.5 and >50,000 USD for 

AERONET), there are relatively few active SPARTAN sites worldwide (~20 active sites). Outside of 

specific field campaigns (Garay et al., 2017; Holben et al., 2018; Sorek-Hamer et al., 2020), AERONET 

monitors are rarely deployed long-term at sub-city scales, which may be necessary to capture the PM2.5 

variability during wildfire smoke events (Reid et al., 2015). Lower-cost instruments have the potential to 

fill spatial gaps in ground monitoring networks left by reference monitors (Gupta et al., 2018). 

Networks of low-cost nephelometers (e.g. the Plantower PMS5003) have been deployed to acquire 

ground-level PM2.5 data at finer spatial resolution (Badura et al., 2020; Chadwick et al., 2021; Gupta et al., 

2018; Li et al., 2020; Lin et al., 2020; Y. Lu et al., 2021). However, Plantower PMS5003 sensors are known 

to exhibit relatively high measurement bias, requiring field correction relative to reference methods 

(Barkjohn et al., 2021; Ford et al., 2019b; Kelly et al., 2017; Levy Zamora et al., 2019; Sayahi et al., 2019; 

Tryner et al., 2020; Zheng et al., 2018). Networks of low-cost, hand-held sun photometers have been 

deployed in crowdsourced studies (Boersma & de Vroom, 2006; Brooks & Mims, 2001b). However, these 

studies encountered difficulties coordinating with study participants to take measurements during satellite 

overpasses in addition to inconsistent measurement quality control practices (Boersma & de Vroom, 2006). 

To date, crowdsourced deployments of low-cost air pollution monitors have typically been limited to one 

measurement modality (PM2.5 or AOD). This limitation has motivated our work toward the development 

of novel, low-cost monitors capable of measuring both PM2.5 and AOD(Wendt et al., 2019b, 2021). 

 In prior studies, we developed and tested a low-cost monitor for simultaneous measurement of 

AOD and PM2.5 called the Aerosol Mass and Optical Depth (AMOD) sampler (Ford et al., 2019b; Wendt 

et al., 2019b, 2021). We deployed AMODv1 samplers in a crowdsourced network called Citizen Enabled 

Aerosol Measurements for Satellites (CEAMS) in northern Colorado and found that non-scientist 

volunteers could effectively operate the instruments to acquire data used to assess satellite measurements 

at relatively small spatial scales (<5 km) (Ford et al., 2019b). In a subsequent study, we developed and 
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validated the AMODv2 sampler. The AMODv2 maintained the PM2.5 measurement capabilities of the 

AMODv1, while achieving longer runtimes through a larger battery, automated AOD measurement through 

a solar tracking system, and real-time data transmission through a Wi-Fi module (Wendt et al., 2021).  

In this work, we describe our second CEAMS deployment featuring a crowdsourced PM2.5 and 

AOD monitoring network of AMODv2s spanning the contiguous United States in the summer of 2021. We 

specifically focus our analysis on the regional variability of PM2.5 and AOD under the influence of wildfire 

smoke. First, we summarize the data collected by volunteers using AMODv2s. Second, we assess the 

performance of our AOD sensors in a crowdsourced context by comparing our results to nearby AERONET 

monitors. Third, we evaluate the regional variability of PM2.5 and AOD in the presence and absence of 

smoke. Finally, we highlight results from California, which exhibited unique smoke-dependent variability 

compared with the rest of the contiguous United States. With our crowdsourced network of low-cost PM2.5 

and AOD monitors, we seek to expand the availability of ground-level PM2.5 measurements for direct 

application to Earth science and public health research, and to advance the understanding of the regional 

variability of PM2.5 and AOD toward improving satellite-based air quality monitoring. 

Materials and methods 

Nationwide crowdsourced monitoring network 

 Our nationwide CEAMS network consisted of 29 undergraduate students and two administrators 

from the Student Airborne Research Program (SARP) through the National Aeronautics and Space 

Administration (NASA). Participants operated AMODv2s at their homes or workplaces. A map illustrating 

the distribution of sampling locations is provided in Fig. 3-1. We partitioned sites in the contiguous United 

States into four regions: 1) California/West Coast, 2) Mountain West, 3) Midwest, and 4) Northeast (Fig. 

3-1). The sampling campaign began on June 15, 2021 and ended on August 8, 2021. 



37 
 

 
Figure 3-1: Locations of CEAMS and AERONET sites for summer 2021 field campaign. Sites are colored 
by region. An example photograph of an AMODv2 sampling AOD in Laporte, Colorado is provided (Photo 
Credit: Bonne Ford). 
 

Participant training and AMODv2 operation 

 Here we summarize how participants operated the AMODv2 in our crowdsourced network. A 

detailed description of the instrument and prior validation work are provided in Wendt et al., (2021). The 

AMODv2 measures gravimetric time-integrated PM2.5 mass concentration, real-time PM2.5 mass 

concentration, and AOD simultaneously (Wendt et al., 2021). For gravimetric PM2.5, the AMODv2 sampled 

air at 1 L min-1 through a custom cyclone (Kelleher et al., 2018; Volckens et al., 2017), which isolated PM2.5 

from incoming flow. PM2.5 was continuously deposited on the filter until the conclusion of the sample, 

when the participant placed the cartridge in a sealed container and refrigerated their samples until the end 

of the campaign. AMODv2s also reported semi-continuous PM2.5 concentrations using a light-scattering 
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PM2.5 sensor (Plantower PMS5003, Beijing, China). AOD was measured at 440 nm, 500 nm, 675 nm, and 

870 nm semi-continuously (during daylight hours) by AMODv2s using a solar tracking subsystem (Wendt 

et al., 2021). Instruments were programmed to report PM2.5 and AOD at each 20-minute mark throughout 

the day (e.g. 1:00, 1:20,  1:40, etc.). At night or when the sun was obstructed from view, only PM2.5 was 

reported. At the conclusion of each sampling period, participants brought their AMODv2 inside for 

charging and to initiate a wireless full-file data transfer via the smartphone application. The full log files 

contained meteorological (e.g temperature, relative humidity, and barometric pressure) and quality control 

(e.g. battery state of charge and wireless signal strength) data (Wendt et al., 2021). 

We distributed AMODv2 sampling kits to study participants via mail. Each sampling kit included 

an AMODv2, eight pre-weighed gravimetric sampling filters, two pre-weighed blank filters, a charging 

cable, a user manual (Wendt et al., 2021), a microSD card reader, and a sampler repair kit. The external 

housing of the AMODv2 is made from a weather-resistant NEMA electrical enclosure (Polycase, YQ-

080804, Avon, Ohio, USA). We trained participants on how to operate their AMODv2s in a series of online 

video training sessions. We coordinated participants to begin their 96-hour samples each week on Tuesday 

morning and sample through Saturday morning. We held online “office hours” on Mondays to facilitate 

repairs of damaged samplers and provide further instruction for interested participants. We assigned each 

participant with a unique identification code to link their instrument with our project website (csu-

ceams.com). Participants with internet access connected their instruments to their site’s Wi-Fi using our 

smartphone application (“CEAMS”; available on the Apple App Store and Google Play). They could then 

visualize their data on our website in real time. Those lacking internet access removed their sampler’s 

microSD card at the end of each sampling period to download data, which was subsequently uploaded to 

our server via FTP. To prepare a sample, participants loaded a pre-weighed, 37mm Teflon filter contained 

in a cartridge (Wendt et al., 2021). Participants then placed their AMODv2 in an outdoor location with, to 

the greatest extent possible, an unobstructed view of the sun during the day. Participants then initiated a 96-

hour sampling run using our smartphone application. 
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PM2.5 and AOD data processing and quality control 

 At the conclusion of the nationwide CEAMS campaign, participants mailed back their AMODv2s 

along with their filter samples. We first post-weighed sample filters and blanks. We evaluated the mass 

limit-of-detection as the mean change in filter blank mass plus three times the standard deviation of the 

blank filter masses. We discarded AMODv2 log files based on the validity of the accompanying filter 

samples. Filter samples with less mass than the limit-of-detection were not included in subsequent analyses. 

We applied blank correction to filter masses by subtracting the mean blank mass from the mass of each 

sample filter from a given participant. Following Ford et al., (2019) and Tryner et al., (2020), we applied a 

filter correction to each PMS5003 PM2.5 measurement. We scaled each PMS5003 PM2.5 measurement such 

that the sample period average was equal to the time-weighted average PM2.5 concentration measured via 

the filter sample.  

 AOD measurements made in our study followed a triplet protocol. At each 20 minute mark, the 

AMODv2 AOD subsystem sampled sunlight intensity three times at 30-second intervals. Both the raw 

measurements and the triplet average were saved in the sample log file. We screened our triplet 

measurements for cloud contamination based on the AERONET cloud screening algorithm, which, in part, 

identifies measurements with intra-triplet variation above an empirically determined threshold (Giles et al., 

2019; Smirnov et al., 2000). To account for differences in the electrical stability of our optical sensors 

compared with those in AERONET monitors, we derived our own empirical intra-triplet variability 

thresholds. Specifically, at AOD below 0.7, we classified triplets with maximum variability greater than 

0.1 to be cloud contaminated. At AOD greater than or equal to 0.7, the threshold was set to 0.15. We also 

omitted incomplete triplets. For analysis of PM2.5:AOD ratio, we used the 500 nm AOD channel. 

 The gravimetric PM2.5 subsystem of the AMODv2 have been extensively evaluated in laboratory 

and field settings in prior work (Arku et al., 2018; Kelleher et al., 2018; Pillarisetti et al., 2019; Volckens 

et al., 2017; Wendt et al., 2019b). The light-scattering PM2.5 subsystem has likewise underwent extensive 

laboratory and field evaluations (Kelly et al., 2017; Zheng et al., 2018; Levy Zamora et al., 2019; Sayahi et 
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al., 2019; Wendt et al., 2019a; Bulot et al., 2019; Tryner et al., 2020). By contrast, prior to this work, the 

AOD subsystem had been evaluated only in controlled experiments (Wendt et al., 2021) and not in a 

crowdsourced field campaign. To evaluate the performance of the AOD subsystem in our crowdsourced 

network, we compared valid AMODv2 AOD measurements with AERONET AOD measurements taken 

within 180 seconds and 25 km of each other. A total of four CEAMS/AERONET sites satisfied these criteria 

yielding 493 valid measurement pairs in total including all wavelengths. 

 We obtained daily smoke plume information from National Oceanic and Atmospheric 

Administration (NOAA) Hazardous Mapping System (HMS) polygons (Ruminski et al., 2006). The HMS 

product identifies that there is smoke in the atmospheric column, without specifying where in the column 

the smoke is located (Ruminski et al., 2006). CEAMS PM2.5 and AOD measurements occurring within the 

boundaries of daily smoke polygons were labeled as smoke-impacted. 

Results and discussion 

Data overview 

Participants in our nationwide CEAMS network collected a total of 192 unique log files using 

AMODv2 samplers in the summer of 2021. These log files included meteorological and quality control data 

at 30-second intervals, along with PM2.5 and AOD measurements at 20-minute intervals. They also include 

summary runtime metrics such as total sampling time, total volume of air sampled, and the reason for 

runtime termination. Sampling runs concluded at the end of the specified 96-hour runtime or prematurely 

due to one of the following mechanisms: depleted battery, user-initiated manual shutdown, or unknown 

error. Based on prior testing (Wendt et al., 2021), we suspect failures with unknown cause were most likely 

due to water damage from either heavy rain or home irrigation systems. For a detailed analysis of 

prematurely terminated sampling runs, see Text S1 in the supplementary material. Of the 192 sample log 

files, 189 had an accompanying filter returned at the end of the study. Others were lost or damaged in the 

unloading process or in transit. We received a total of 60 blank filters at the conclusion of the study. The 
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limit-of-detection for filter samples was 17.3 µg, which translates to a time-averaged PM2.5 mass 

concentration of 3 µg m-3, based on a 96-hour sample duration at 1 L min-1. Of the returned filters 149 

(78.8%) contained PM2.5 mass in excess of the limit-of-detection. Of the 43,071 total PMS5003 PM2.5 

measurements collected, 41,381 (96.2%) were non-negative (post-sampling weight exceeded pre-sampling 

weight) and classified as valid. The mean ratio of the filter PM2.5 to Plantower PMS5003 PM2.5 (i.e., 

PMS5003 scaling factor) was 1.7 with a standard deviation of 1.9. Box and whisker plots of these PMS5003 

scaling factors as a function of the number of smoke-impacted days is provided in Fig. B1, and these 

correction-factor distributions for each individual AMODv2 device are provided in Fig. B2. Log files 

without a corresponding filter measurement were excluded from all analyses, leaving a total of 38,699 filter-

corrected PMS5003 measurements. For AOD measurements, there were 3,658; 3,760; 3,681; and 3,083 

triplets marked as valid for 440 nm, 500 nm, 675 nm, and 870 nm channels; respectively. For additional 

information on AOD quality-control results, see Text S1 in the supplementary material. In Fig. 3-2, we 

provide the distribution of sample runtimes associated with CEAMS log files labeled by failure mode and 

filter status. 
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Figure 3-2: Distribution of CEAMS sample logs ordered by runtime with failure mode and filter status 
labeled. We introduced a horizontal random jitter with one hour width for visualization purposes. Points 
labeled “Completed Runtime'' completed the full 96-hour runtime without interruption. Sample runtimes 
above 96 hours were caused by participants shutting off their AMODv2 mid-sample and restarting it shortly 
thereafter. Such samples with valid filters were included in subsequent analyses.  

 
In Fig. 3-3, we provide histograms illustrating the distributions of filter-corrected PMS5003 PM2.5, AOD at 

500 nm, and PM2.5:AOD ratios for all data from the study. In Fig. B3, we provide histograms for the 

remaining three AOD wavelengths. 
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Figure 3-3: Histograms of a) PM2.5, b) AOD at 500 nm, and c) PM2.5:AOD ratio for all valid measurements 
across all CEAMS sites for June -August 2021 deployment.  Counts represent measurements collected at 
20-minute intervals. 
 

Across all CEAMS measurements, the mean (median) values of PM2.5 concentration, AOD at 500 

nm, and PM2.5:AOD ratio were 9.6 (7.2) µg m-3, 0.24 (0.12), and 60.1 (37.9) µg m-3, respectively. These 

average results are of similar order of magnitude to those in preliminary SPARTAN sites in North America 

(Snider et al., 2015). 

In-field AERONET comparison 

Here we analyze the bias and accuracy of crowdsourced AOD data from the relatively low-cost 

CEAMS instruments compared to reference AERONET monitors. In Fig. 3-4, we provide a scatter plot of 

CEAMS and AERONET AOD measurements by wavelength and HMS smoke designation. Paired 

measurements in Fig. 3-4 were located within 25 km and coincident within 180 seconds. 
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Figure 3-4: Scatter plot of CEAMS and AERONET AOD measurement pairs occurring within 180 seconds 
and 25 km of each other. N = number of paired triplicate measurement points; MAE = mean absolute error 
in dimensionless AOD units. 
 

AERONET AOD values ranged from 0.057 to 1.60 at 440 nm, 0.053 to 1.35 at 500 nm, 0.034 to 

0.81 at 675 nm, and 0.026 to 0.17 at 870 nm. The mean absolute errors in AOD units were 0.030 at 440 

nm, 0.059 at 500 nm, 0.019 at 675 nm, and 0.034 at 870 nm. These results are consistent with our prior 

study of AMODv2 accuracy (Wendt et al., 2021), in which the mean absolute errors in AOD units were 

0.04 at 440 nm, 0.06 at 500 nm, 0.03 at 675 nm, and 0.03 at 870 nm. These results indicate that 

crowdsourced AMODv2 measurements can achieve similar agreement with reference AERONET 

measurements across a broad range of AOD values. 
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The agreement between CEAMS AOD and AERONET AOD varied as the distance between two 

monitors increased. In Fig. B3, we illustrate how the mean absolute percent error varies inconsistently as 

the distance between the CEAMS and AERONET instruments increases. We observe relatively close 

agreement for measurements within 25 km of each other. Between 25 km and 37 km, the mean absolute 

percent error is elevated and then falls again between 37 km and 53 km (Fig. B4). Paired AMODv2 and 

AERONET AOD measurements from locations between 25 km and 37 km away from the nearest 

AERONET monitor were impacted by smoke, which may have large gradients in AOD over these 

lengthscales. The relatively close agreement between AMODv2s and AERONET monitors separated by 

between 37 km and 53 km, of which measurements were primarily not smoke-impacted, indicates the 

presence of smoke can have a substantial impact on the agreement of AMODv2 and AERONET monitors 

within 53 km. For AMODv2 and AERONET monitors separated by more than 53 km, the mean absolute 

percent error was relatively high for all coincident measurements (Fig. B1). 

Regional variability of PM2.5 and AOD due to smoke 

To assess the relationship between PM2.5 and AOD, we isolated measurements with valid filter-

corrected PM2.5 and AOD at 500 nm, yielding a total of 3,391 paired measurement data points. Each 

measurement included a region designation along with a binary HMS smoke designation (yes/no smoke). 

There were 1,217 (655); 88 (194); 490 (412); and 158 (177) measurements with no smoke (yes smoke) 

according to HMS in California, the Midwest, the Mountain West, and the Northeast respectively. In Fig. 

3-5, we present box and whisker plots of PM2.5, AOD, and PM2.5:AOD ratio as functions of region and 

HMS smoke designation. We present summary statistics for CEAMS based on region and HMS smoke 

designation in Table 3-1. 
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Figure 3-5: Box and whisker plots of PM2.5, AOD, and PM2.5:AOD ratio separated by region and HMS 
smoke status. The box represents the 25th-75th percentile range with the line within the box denoting the 
median. Note that here we refer to the “California/West Coast” region as “California” because sites in 
Washington and Oregon did not collect valid AOD measurements. 

 

Table 3-1: Regional PM2.5, AOD, and PM2.5:AOD ratio quantiles separated by HMS smoke status. 

Region HMS Smoke 
Designation 

PM2.5 : Median  
(25%, 75%)  
(µg m-3) 

AOD: Median  
(25%, 75%)  
(µg m-3) 

PM2.5:AOD ratio:  
Median  
(25%, 75%)  
(µg m-3) 

California Not smoky 7.1  
(4.2, 10.5) 

0.098 
(0.069, 0.15) 

67.2  
(40.2, 109.6) 

California Smoky 7.5  
(4.0, 11.7) 

0.26 
(0.15, 0.33) 

30.7 
(16.4, 57.9) 

Midwest Not smoky 3.47 
(2.2, 6.3) 

0.16 
(0.11, 0.19) 

25.4 
(18.0, 37.7) 

Midwest Smoky 7.21 
(3.4, 11.3) 

0.30 
(0.15, 0.56) 

24.2 
(12.8, 42.1) 
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Mountain West Not smoky 4.23 
(2.2, 7.6) 

0.11 
(0.079, 0.17) 

33.50 
(17.6, 53.8) 

Mountain West Smoky 8.55 
(4.9, 12.0) 

0.26 
(0.18, 0.47) 

29.4 
(19.1, 42.7) 

Northeast Not smoky 4.1 
(2.0, 9.5) 

0.24 
(0.17, 0.33) 

18.4 
(9.3, 29.9) 

Northeast Smoky 10.2 
(5.6, 16.0) 

0.55 
(0.33, 0.85) 

20.3 
(10.7, 30.8) 

 

In the Midwest, Mountain West, and Northeast regions; median PM2.5 and AOD values were both 

higher on smoky days compared with non-smoky during the summer of 2021 (Fig. 3-5). These simultaneous 

increases from smoke manifested in relatively stable PM2.5:AOD ratio values in those three regions 

regardless of the presence of smoke (Fig. 3-5 and Table 3-1). For sites in California, median AOD was 

elevated on days with smoke present compared with days without smoke (Fig. 3-5). The magnitude of the 

median increase was similar to what we observed in the Midwest and Mountain West regions (Table 3-1). 

However, in California, PM2.5 concentrations were relatively unaffected by the presence of smoke, with the 

median concentration only 0.41 µg m-3 higher on smoky days compared to non-smoky days. Higher AOD 

with unaffected PM2.5 concentrations on smoky days in California manifested in median PM2.5:AOD ratio 

being higher on non-smoky days compared to smoky days. 

In a decadal climatology (2008 to 2017) of the Pacific West, South West, and Southeast regions of 

the United States, Bian et al., (2020) show that median PM2.5 concentrations were higher in the presence of 

wildfire smoke in all regions. Our results in the Midwest, Mountain West, and Northeast regions of the 

United States are consistent with this trend. However, in California, our results differ from climatological 

expectations for the Pacific West (Bian et al., 2020), with median PM2.5 concentrations remaining stable 

across smoky and non-smoky conditions. We found these anomalous results were driven primarily by four 

CEAMS locations in southern California (Fig. 3-1). In Fig. B5, we present maps of fire locations and smoke 

plumes from the HMS product illustrating evolving smoke plumes in the California region for selected 

transition periods between smoky and non-smoky conditions. In Fig. 3-6, we present time series data from 
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the four devices in Southern California between July 5, 2021 and July 25, 2021, featuring transient wildfire 

smoke. A version of Fig. 3-6 including the 440 nm to 675 nm Angstrom Exponent is provided in Fig. B6. 

A version of Fig. 3-6 for the CEAMS location in Sacramento, California is provided in Fig. B7. 

 
Figure 3-6: Time series plots of PM2.5, AOD, and PM2.5:AOD ratio from July 6, 2021 to July 24, 2021 from 
four CEAMS sites in Southern California, colored by HMS-derived smoke status. Measurements are from 
four AMODv2s (Fig. 3-1). Note that measurements on July 12, 2022 were from a single AMODv2 started 
early by the CEAMS participant. 
 

In the sampling periods of July 6 through July 10 and July 12 through 17, we observed similar 

week-to-week PM2.5 concentrations, despite the presence of wildfire smoke from July 12 through July 16 
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(Fig. 3-6). During the same sampling periods, the magnitude of AOD was affected by wildfire smoke, with 

AOD values increasing substantially during the smoky week relative to the non-smoky week (Fig. 3-6). In 

the sampling period of July 20 through July 24, smoke impacted measurements were observed on July 23. 

Between July 20 and July 24 PM2.5 concentrations in Southern California trended upward, without 

significantly deviating from the previous two weeks in magnitude. AOD reached its peak average 

magnitude on July 23 in the presence of wildfire smoke (Fig. 3-6). The site near Sacramento (not included 

in southern California category) exhibited similar behavior during the first two week (Fig S7). However, 

on July 23 and 24, the site near Sacramento exhibited a prominent increase in both PM2.5 concentration and 

AOD (Fig S7). 

Prior studies using low-cost sensors in California during wildfire events have reported distinct 

increases in ground-level PM2.5 concentrations during wildfire smoke events (Gupta et al., 2018; Y. Lu et 

al., 2021). Using satellite-based AOD measurements, Gupta et al., (2018) observed a similarly distinct 

increase in AOD during the same wildfire smoke events. We observed similar results near Sacramento on 

July 23 and 24 (Fig. B7). However, in Southern California only AOD was consistently higher on smoky 

days, with PM2.5 concentrations often remaining similar to levels on non-smoky days (Fig 6). These results 

are consistent with smoke aloft during some wildfire smoke events specified by HMS. With smoke aloft, 

the AOD sensors would detect additional light diminution caused by suspended particles, where surface 

nephelometers would be minimally affected. In Fig. 3-7, we highlight potential smoke aloft in California 

by providing regional histograms for PM2.5:AOD ratios as a function of HMS smoke status. 
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Figure 3-7: Regional density histograms for PM2.5:AOD ratio separated by HMS smoke status. Note that 
here we refer to the “California/West Coast” region as “California” because sites in Washington and Oregon 
did not collect valid AOD measurements. 
 

In the Midwest, Mountain West, and Northeast, distributions of PM2.5:AOD ratios were relatively 

consistent from non-smoky to smoky days (Fig. 3-7). In California, the distribution of PM2.5:AOD ratios 

on non-smoky days differed from other regions in our study. There were more instances of PM2.5:AOD 

ratios above 50 µg m-3 on non-smoky days in California than for all other regions and smoke statuses (Fig. 

3-7). If the regional trend of similarity between smoky and non-smoky days held true in California, we 
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would expect the distribution of PM2.5:AOD ratios on smoky days to skew high relative to other regions. 

However, we observed PM2.5:AOD ratios in California skewed relatively low on smoky days (Fig. 3-7). 

Like daily results presented in Fig. 3-6, these results are consistent with smoke aloft events, where surface 

PM2.5 are relatively unaffected compared with AOD in the presence of elevated plumees. The presence of 

smoke aloft may introduce a positive bias to AOD-based PM2.5 quantification methods, including satellite-

based instruments, if the vertical distribution of smoke is not accounted for (Cheeseman et al., 2020; Ford 

& Heald, 2016). A majority of wildfire smoke impacting California is produced by local sources, creating 

wildfire events that can evolve at relatively small spatial and temporal scales (Brey et al., 2018). Our work 

highlights the utility of deploying co-located PM2.5 and AOD monitors during wildfire events. 

Limitations 

 The primary limitation of this study was the relatively small number of unique sites in our national 

crowdsourced network. While we were able to acquire substantially more PM2.5 and AOD measurements 

than in our previous local CEAMS deployment (Ford et al., 2019b), our network was still not near the scale 

of low-cost networks of nephelometers (Badura et al., 2020; Chadwick et al., 2021; Gupta et al., 2018; Li 

et al., 2020; Lin et al., 2020; Y. Lu et al., 2021). To better realize the advantages of low-cost monitors and 

crowdsourcing future networks similar to CEAMS should feature more sites in a given locality than EPA-

AQS and AERONET. 

In addition to a limited number of deployment sites, our results were also limited by AMODv2 

failures due to damaged components and inconsistent operation. Eight of 31 sites did not contribute AOD 

measurements and were thus not included in the analysis depicted in Fig. 3-5. These instruments sustained 

damage to the AOD subsystem either in the shipping process or early on in the deployment. We instructed 

participants with malfunctioning AOD subsystems to disconnect the AOD sensors on their AMODv2 and 

complete the remainder of the deployment collecting filter and light-scattering PM2.5 measurements. The 

crowdsourcing aspect of this deployment also introduced unique difficulties, with 28.2% of premature 

shutdowns being caused by operator intervention. For example, two AMODv2s were stolen from 
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participants’ yards, prompting other participants to prematurely end some samples when they felt their 

AMODv2 was not in a secure location. Other reasons for early manual shutdowns included transportation 

of instruments mid-sample, uncertainty about inclement weather, and uncertainty about potentially 

malfunctioning components. These incomplete sampling attempts were discarded in the final analysis if 

they did not meet limit-of-detection thresholds for the filter samples. Irregularities in sampler operation 

have impacted prior studies involving crowdsourced data collection (e.g. Boersma and de Vroom, 2006; 

Ford et al., 2019). In this study, we found that the increased degree of automation of the AMODv2 relative 

to the AMODv1 led to more reliable results from our participants (Ford et al., 2019b). In future studies, we 

will continue to improve the usability and reliability of our sensors to reduce potential complications for 

participants without a background in aerosol sampling. 

Conclusions 

 Recent studies have leveraged crowdsourced networks of low-cost sensors toward a greater 

understanding of ambient air quality (e.g. Boersma and de Vroom, 2006; Gupta et al., 2018; Ford et al., 

2019; Lu et al., 2021). In this study, we build upon these efforts by establishing a nationwide crowdsourced 

network of integrated PM2.5 and AOD monitors. AMODv2s performed similarly in our crowdsourced field 

campaign compared with laboratory validation experiments with respect to runtime reliability and AOD 

quality control (Wendt et al., 2021). AMODv2 AOD measurements in the CEAMS network agreed closely 

with AERONET monitors for measurements co-located within 25 km and coincident within 180 seconds. 

The magnitude of the agreement was similar to that of our prior instrument validation study co-locating (<1 

km) AMODv2s with an AERONET monitor in northern Colorado (Wendt et al., 2021). Results from our 

network indicated that median PM2.5:AOD ratio was relatively unimpacted by the presence or absence of 

smoke at sites in the Midwest, Mountain West, and Northeast regions of the United States. However, 

median PM2.5:AOD ratio was higher on smoke-free days in California relative to days with smoke present. 

In California, median PM2.5 concentration trends on smoky vs. non-smoky days differed from 

climatological expectations (Bian et al., 2020). We used data collected by participants to identify probable 
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instances of smoke aloft, which low-cost PM2.5 monitors alone could fail to properly characterize. As 

networks of crowdsourced low-cost PM2.5 monitors expand, further work in expanding access to co-located, 

low-cost AOD monitors strengthen these networks' ability to monitor evolving smoke events. By 

crowdsourcing our low-cost instruments we empower local communities to stay informed on wildfire 

events impacting their daily lives. 
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CHAPTER 4. A CLOUD SCREENING ALGORITHM FOR GROUND-BASED AEROSOL OPTICAL 

DEPTH MEASUREMENTS USING ALL-SKY IMAGES AND DEEP TRANSFER LEARNING 

Chapter Overview 

Aerosol optical depth (AOD) is used to characterize aerosol loadings within Earth’s atmosphere. 

However, AOD measurements can be biased by cloud obstruction. We present a novel deep transfer 

learning model on all-sky images to support more accurate AOD retrievals. We used three independent 

image datasets for training and testing: the novel Northern Colorado All-Sky Image (NCASI), the Whole 

Sky Image SEGmentation (WSISEG), and the METCRAX-II datasets from the National Center for 

Atmospheric Research (NCAR). The model is intended to classify whole-sky images as: 1) clear sky, 2) 

thin cirrus obstructing the solar disk, and 3) thick, non-cirrus clouds obstructing the solar disk. The best-

performing model successfully classified 95.5%, 96.9%, and 89.1% of testing images from NCASI, 

METCRAX-II and WSISEG datasets, respectively. Our results demonstrate that all-sky imaging with deep 

transfer learning can be applied toward cloud screening, which would aid ground-based AOD 

measurements. 

Introduction 

 The abundance of aerosols in the atmosphere can be quantified optically from surface-based 

instruments called sun photometers, which measure aerosol optical depth (AOD), a dimensionless metric 

of light extinction by particles. Accurate AOD measurement requires a clear view of the solar disk. If the 

solar disk is partially obscured by clouds, measured AOD will be biased high. Thus, reliable AOD 

measurements from sun photometers require robust cloud screening. 

 Prior work has implemented quality control algorithms to reduce errors from cloud cover. The 

Aerosol Robotics Network (AERONET) provides automatic, multi-wavelength AOD measurements at 

hundreds of locations (Holben et al., 1998). Smirnov et al. (2000) leveraged the functionality of AERONET 

sun photometers to develop an automated cloud screening protocol for AOD measurements. Each AOD 
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measurement is the average of a triplet of measurements, with 30 seconds between each measurement 

(Smirnov et al., 2000). The triplet is classified as cloud-contaminated if the maximum difference within the 

triplet exceeds an empirically derived threshold, based on the assumption that AOD variability within short 

time periods is more likely due to clouds than rapid changes in aerosol (Smirnov et al., 2000). Additional 

screening steps incorporated all AOD measurements across a day, followed by screening by an analyst. 

This latter process often lagged the initial measurement by months and may be affected by analyst 

inconsistencies (Smirnov et al., 2000). 

 Alexandrov et al. (2004) proposed an algorithm based on the change in AOD as a function of the 

Azithumal position of the sun for Multi-Filter Rotating Shadowband Radiometers (MFRSRs). The 

algorithm had a 3.4% false negative rate, wherein the data point was identified as clear when actually cloud-

contaminated, and a 4.0% false positive rate (Alexandrov, 2004). This approach is less conservative than 

the AERONET algorithm, (i.e. it will classify fewer points as cloud-contaminated) but is also independent 

of calibration, enabling effective cloud screening during calibration (Alexandrov, 2004). A subsequent 

study (Giles et al., 2019), used LIDAR to detect cirrus clouds and derive empirical thresholds, improving 

the removal of cirrus contamination by the AERONET algorithm. 

A weakness of sensor-based cloud screening algorithms is their instrument-specific nature 

(Smirnov et al., 2000). Algorithms for AERONET instruments are likely not applicable to different 

instruments, which have different hardware (Wendt et al., 2021). When porting algorithms, unique 

empirical thresholds must be determined to remain effective, assuming the necessary sensors are present at 

all (Wendt et al., 2021). Previous studies using handheld sun photometers relied on operator observations 

of the sky to assess clouds (Boersma & de Vroom, 2006; Ford et al., 2019a; Wendt et al., 2019a). This 

approach requires consistent operator attention, which defeats the practical and personnel advantages 

gained via automated measurements, and relies on the subjective opinion of the operator.  

To date, image-based analysis of clouds has not been used in support of ground-based AOD 

measurement quality control. However, prior work in the area of cloud classification of sky images can be 

leveraged toward this aim. Long et al. (2006) used whole-sky images (collected using fish-eye lenses to 
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achieve at least 160 degrees field of view) to evaluate cloud brokenness, uniformity, and solar obstruction 

(Long et al., 2006). Their algorithm, which  separated images into their red, green, and blue (RBG) 

components, and classified pixels based on their R/B values, performed well under uniform sky conditions 

(>95% accuracy for solar disk obstruction), but was less accurate for images with more irregular cloud 

coverage (<85% accuracy for solar disk obstruction) (Long et al., 2006).  

Calbo & Sabburg (2008) mathematically defined sky conditions based on whole sky images, 

determined using six image features: mean, standard deviation, smoothness, third moment, uniformity, and 

entropy determined using the R/B values and an intensity parameter. The Calbo & Sabburg (2008) 

algorithm was least effective at discriminating between cases with thin clouds present and covering or not 

covering the sun (Calbó & Sabburg, 2008). For cloud classification, this distinction may not be significant; 

however, for AOD cloud screening applications, the presence of thin cirrus clouds can substantially bias a 

measurement (Smirnov et al., 2000; Alexandrov, 2004; Giles et al., 2019); thus, determining if thin clouds 

are present (and covering the sun) is critical. 

 Other cloud classification schemes aim to better distinguish cirrus from clear sky. Heinle et al. 

(2010) use R – B rather than R/B along with additional image features (difference, energy, contrast, and 

homogeneity); and a non-parametric k-Nearest-Neighbors classifier. Li et al. (2011) found better results for 

cirrus clouds when they first classified sky cases as unimodal (only clouds or only sky) or bimodal (mixture 

of cloud and sky) before applying their algorithm. Liu et al. (2013) proposed the use of multiple images 

taken over the course of several minutes to form a Tensor Ensemble of images (Shuang Liu et al., 2013), 

an approach which leverages the dynamic nature of cloud movement to help distinguish it from forward 

scattering around the solar disk. 

  Recent research has applied machine learning techniques to evaluate sky condition and cloud 

coverage from images (Gu et al., 2018). Taravat et al. (2015) applied both a multilayer perceptron neural 

network (MLP) and a support vector machine classification to whole-sky image classification, which both 

showed classification accuracy than previous thresholding approaches. Xia et al. (2015) proposed the use 

of a hybrid method using an extreme learning machine and kNN. Prior to classification, textural, color, and 
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shape features were extracted. The classification accuracy increased with increasing numbers of features 

(Xia et al., 2015). Deep convolutional neural network (CNN) models are particularly effective for feature 

extraction and classification on image data (Gu et al., 2018). Shi et al. (2017) presented a CNN model for 

cloud identification based on common image classification architectures and demonstrated that their model 

outperformed prior feature-based models on the same dataset. Liu et al. (2018) incorporated temperature, 

humidity, pressure, wind speed, and maximum wind speed parameters with visual image data to further 

refine cloud type classification on whole sky images. Zhang et al. (2018) presented CloudNet, a deep CNN 

model tailored to extract cloud features and classify images based on cloud type; it has achieved the best 

results on both partial and whole-sky images. The success of prior work in image-based cloud identification 

supports the use of similar algorithms for solar obstruction screening for AOD quality control.  

 In previous machine learning cloud classification models, training and testing data were drawn 

from the same domain, namely sky images (S. Liu et al., 2018; Shi et al., 2017; Zhang et al., 2018). Recent 

research into deep learning has explored transfer learning, in which data from outside the application 

domain are incorporated into model development (Pan and Yang, 2010; Zhuang et al., 2021 and references 

therein). Transfer learning for image classification leverages the most effective pre-trained CNN models to 

compute features useful for building classifiers for a wide variety of image classes and then applies the 

models to specific domains (Zhuang et al., 2021). Effective deep CNN models can have over 10 million 

trainable parameters (Simonyan & Zisserman, 2015); however, in transfer learning, these parameters are 

trained in advance, outside of the application domain (Pan & Yang, 2010; Zhuang et al., 2021), thus 

reducing the time and resource requirements. In practice, pre-trained parameters may be frozen or left 

trainable. If frozen, application-specific training is reduced to the classification layer parameters, which are 

a small fraction of the total parameters. If left trainable, application-specific training is accelerated as 

parameters will likely be initialized closer to their optimal values. 

The Visual Geometry Group (VGG) at Oxford University developed the VGG-16 model, a deep 

CNN model designed for image classification (Simonyan & Zisserman, 2015). VGG-16 was trained on 

ImageNet, an image database consisting of over 14 million images from 20,000+ unique image classes 
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(Deng et al., 2009; Simonyan & Zisserman, 2015). VGG-16 has been used effectively for transfer learning 

in image classification applications (e.g. Tammina, 2019; Guan et al., 2019; Kaur and Gandhi, 2019).  

Here, we develop a transfer learning model based on VGG-16 for cloud screening on all sky images. 

We first present a new all-sky-image data set collected using a low-cost prototype imaging module. We 

then describe the image pre-processing algorithm used to prepare images for input into our classification 

model and the design and training of our classification model. Finally, we evaluate the performance of our 

algorithm on three independent all-sky-image sets. 

Materials and methods 

All-sky images 

Image-based cloud screening for AOD measurements requires the co-location or hardware 

integration of an all-sky camera with a sun photometer. All-sky cameras suitable for AOD cloud screening 

must image the solar disk and the sky surrounding the solar disk while preserving the edge detail of the 

solar disk and nearby clouds. Images cannot be used for AOD screening if the image area surrounding the 

solar disk is saturated with sunlight. For this reason, all-sky cameras used in previous cloud identification 

studies were designed to block or attenuate incident sunlight (e.g Calbó & Sabburg, 2008; Fa et al., 2019; 

Xie et al., 2020).  

Accordingly, we located two pre-existing sets of all-sky image data with which to train and test our 

model, in addition to a third data set that was collected specifically for this project (see the top row of Fig. 

4-1 for example images). The Whole Sky Image SEGmentation (WSISEG) data set includes 400 all-sky 

images captured on the 25 rooftop of Anhui Air Traffic Management Bureau, Civil Aviation Administration 

of China in July 2018 (Xie et al., 2020). The resolution of images in WSISEG is 2,000 pixels ✕ 1,944 

pixels. The National Center for Atmospheric Research (NCAR) published METCRAX-II ISS All Sky 

Camera Imagery (UCAR/NCAR - Earth Observing Laboratory, 2016). The images in METCRAX-II were 

collected on the island of Diego Garcia between September 2011 and February 2012. The resolution of 
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these images is 640 pixels ✕ 480 pixels.  Due to the large data storage requirements (6,128 MB), we did 

not save the entire data set. We manually selected all day-time images that were later evaluated for inclusion 

into training and testing data.  

Finally, we created a collection of all sky images called the Northern Colorado All-Sky Image 

(NCASI) set, using a custom-designed imaging module (see Text C1, Fig. C1, and Table C1 in Appendix 

C). We collected a total of 3,544 images between 1-21 September 2021. Images from the 1st, 20th, and 21st 

of September 2021 were collected near a private residence in Boulder, Colorado, USA. Images from all 

other days were collected at the Powerhouse Energy Campus at Colorado State University (430 N. College 

Avenue, Fort Collins, Colorado, USA). The image resolution is 1,920 pixels ✕ 1,200 pixels. The module 

was configured such that when started, it captured an all-sky image every 30 seconds. 

Figure 4-1: Top: example images from the a) NCASI, b) METCRAX, and c) WSISEG datasets. Bottom: 
Transformations performed in image preparation algorithm. d) Raw image files are scaled and cropped to 

a uniform size 840 pixels ✕ 840 pixels). e) A multi-stage thresholding algorithm isolates sunlit pixels. f) 
From the sunlit contour, we calculate the center of the sunlit pixels in the image. g) Using the center, we 

crop the image (224 pixels ✕ 224 pixels). 
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We built our algorithm to classify three types of sky conditions: 1) sun not obscured by clouds; 2) 

sun obscured by thin cirrus clouds; and 3) sun obscured by thick, non-cirrus clouds. We manually labeled 

images according to these designations. We discriminated between cirrus and thick, non-cirrus clouds 

based on how the cloud cover impacted the shape of the solar disk. Images where the solar disk presented 

as circular, despite the presence of thin cloud cover, were designated as cirrus. Images where the shape of 

the solar disk deviated from circular due to the presence of cloud cover were designated as non-cirrus. We 

built and selected our model training and testing datasets to include samples from all three enumerated 

sky conditions. We provide example images from each data set under each sky condition in Fig. C2. 

Image preparation 

 Initially, input images of potentially varying sizes are scaled to a common a size of 840 pixels ✕ 

840 pixels using an area pixel model as illustrated in Fig. 4-2a (Chun-Ho Kim et al., 2003). This operation 

normalizes important features such as the size of the solar disk in square pixels. From the scaled image, we 

isolate the blue color channel and perform a binary threshold operation, where 8-bit pixel values greater 

than or equal to 252 are set to the maximum value of 255 (white) and all other pixels are set to zero (black). 

We then apply smoothing to the thresholded image using 15 ✕ 15 Gaussian kernel with the standard 

deviations in the horizontal and vertical axes set to zero (Burt, 1981). We found that for images with sunlit 

clouds near, but not obstructing, the solar disk, a Gaussian filter alone was insufficient to smooth the edges 

of sunlit contours. Therefore, we applied an additional bilateral filter with a pixel-neighborhood diameter 

of 15 pixels with color and space standard deviation values set to 25 (Tomasi & Manduchi, 1998). The 

smoothing steps blend black pixels with white pixels, leaving pixels near the contour edge with values 

between 0 and 255. To restore the image to a binary image, we apply an additional binary thresholding 

operation with the threshold set to a pixel value of 50. The result of these thresholding operations is 

illustrated in Fig. 4-2b. We then apply a contour detection algorithm to the binary image to derive contour 

arrays for each area of contiguous white pixels (Suzuki & be, 1985). For images with a high number of 

optically saturated clouds (common in the METCRAX-II data set), there can be multiple sunlit contours 
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that are not the solar disk. To isolate the solar disk contours from surrounding sunlit clouds, we apply pixel 

area and circularity criteria. Across all three datasets, the solar disk for scaled images greater than 2750 

square pixels. Contours greater than that threshold are evaluated based on their circularity, defined as 

follows: 𝐶𝐶 =  
4⋅𝜋𝜋⋅𝐴𝐴𝐿𝐿2  (3-1) 

where C is the circularity, A is the area, and L is the arc length of the contour. Among contours within the 

acceptable area range, the contour with the highest circularity is considered the contour of the solar disk. 

We then calculate the centroid of the solar disk contour and crop the image to a region sized 224 pixels ✕ 

224 pixels centered at the centroid of the solar disk, as depicted in Fig. 4-2c and Fig. 4-2d. For images 

where the solar disk is fully obscured and no pixels pass the binary thresholding tests (most often due to 

heavy cloud cover obscuring the solar disk), the center of the cropped image is placed at the center of the 

original scaled image and the resulting image is given the “cloud” label. In other cases, as in Fig. 4-2, the 

solar disk is obscured by clouds such that its true center cannot be determined. For these images, the 

approximate center is used and the image is given the cloud label. For images where the calculated solar 

disk center is within 112 pixels of an edge, the image cannot be cropped to 224 pixels ✕ 224 pixels. In 

these cases, the edge of the scaled image (Fig. 4-2a) is used as the edge of the cropped image, and the 

cropped image will be smaller than 224 pixels ✕ 224 pixels. 

Model Design 

For our feature extraction layers, we used the VGG-16 deep CNN model with parameters pre-

trained on ImageNet (Deng et al., 2009; Simonyan & Zisserman, 2015). We used the Tensorflow 

implementation of VGG-16 (Abadi et al., 2015). VGG-16 expects input tensors sized 224 ✕ 224 ✕ 3, with 

the third dimension representing RGB color channels present in colored images (Simonyan & Zisserman, 

2015). After image preparation, most images were suitable for input into the VGG-16 model without further 

resizing. Images that were cropped to smaller proportions (i.e., center of the solar disk was close to the 
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image edge) were scaled to the proper input size and then passed to a data generator implemented in 

Tensorflow’s VGG-16 model (Abadi et al., 2015).  The output of the pre-trained VGG-16 model is a 7 ✕ 

7 ✕ 512 tensor representing the features learned from the ImageNet database (Deng et al., 2009; Simonyan 

& Zisserman, 2015). To interface with VGG-16, the output tensor from the feature extraction layers is 

flattened to a one-dimensional vector, which is interfaced with a three-node dense classification layer with 

a softmax activation function (Bridle, 1989). For a particular input sample, the output layer gives a 

probability estimate for each of the three possible sky condition classes. The class associated with the 

highest probability value is the classification of the model. 

Model training and evaluation 

 We created training and testing subdatasets for NCASI, METCRAX-II, and WSISEG using a 

random split of approximately two-thirds training and one-third testing data. Training-testing data partitions 

for each set and class designation are provided in Table 4-1. The images in the training and testing sets 

were pre-processed using our image preparation algorithm. We built seven datasets, each with training and 

testing subsets: one for each data set, one for each of the possible combinations, and a single combination 

of all three. 

Table 4-1: Training and testing data partitions by data set and class designation. 

Image data set Class designation Number of training samples Number of testing 
samples 

NCASI Clear 59 27 

NCASI Cirrus 70 24 

NCASI Cloud 52 38 

METCRAX-II Clear 204 118 

METCRAX-II Cirrus 124 73 

METCRAX-II Cloud 239 133 

WSISEG Clear 35 18 

WSISEG Cirrus 26 22 
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WSISEG Cloud 198 98 

 
We trained all models using the same training parameters. We used the categorical cross-entropy 

loss function and the Adam optimizer with a learning rate of 0.00012 (Kingma & Ba, 2017). We trained for 

100 epochs with a batch size of 32. We did not modify pre-trained weights of VGG-16. The weight and 

bias parameters of the output layer were the only trainable parameters, which comprised 0.51% of the total 

model parameters.To limit overfitting, we also applied data augmentation, which supplements training data 

by producing batches of randomly modified images created via transformation operations. We implemented 

data augmentation in Tensorflow using the ImageDataGenerator module (Abadi et al., 2015) allowing 

rotation of 20 degrees, width/height shifting of 10%, a zooming range of 20%, and random horizontal and 

vertical flips. We trained our model using a GPU (NVIDIA, Tesla K80, Santa Clara, California, USA) on 

the Google Colaboratory platform (Google, Mountain View, California, USA). 

Results and discussion 

Model evaluation 

 Holding model and training parameters constant, we trained seven different models using the seven 

possible combinations of the three training datasets. We evaluated each of the seven models according to 

classification accuracy on the three testing datasets. Separating cirrus and non-cirrus cloud classifications 

is useful for interpreting classification results, though it is not strictly necessary for AOD quality control. 

We assessed the model’s performance on the binary classification problem typically addressed by AOD 

quality control algorithms by combining cirrus and non-cirrus cloud designations. The results of our 

analysis are presented in Table 4-2. 

Table 4-2: Three-class (two-class) classification accuracy of models trained on seven different training 
datasets. Three-class results are from cirrus, clear, and cloud categories.  Two-class results are from clear 
and cloud categories. Accuracy metrics for each model were calculated using the testing data from NCASI, 
METCRAX-II, and WSISEG individually. The best performing model on each test data set is given in bold 
text. 
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Training data 
set(s) 

Model 
Number 

Accuracy on  
NCASI (%) 

Accuracy on 
METCRAX-II (%) 

Accuracy on  
WSISEG (%) 

NCASI 1 97.8 (100.0) 76.2 (81.2) 75.4 (87.0) 

METCRAX-II 2 84.3 (84.2) 95.7 (95.7) 79.0 (79.0) 

WSISEG 3 64.0 (78.7) 62.0 (68.5) 89.1 (94.2) 

NCASI and 
METCRAX-II 

4 95.4 (100.0) 95.5 (97.5) 82.6 (87.0) 

NCASI and 
WSISEG 

5 92.1 (100.0) 70.0 (72.5) 90.0 (95.7) 

METCRAX-II 
and WSISEG 

6 84.3 (96.6) 95.7 (97.8) 89.1 (94.9) 

All 7 95.5 (100.0) 96.9 (98.4) 89.1 (94.2) 

 
The model trained on all training data (model 7) generalized the best to the testing data. Model 7 correctly 

classified 95.5%, 96.9% and 89.1% of testing samples from NCASI, METCRAX-II, and WSISEG images, 

respectively (Table 4-2). The three-class confusion matrix for model 7 is given in the top row of Fig. 4-2 

(three-class confusion matrices for the remaining six models are provided in the top rows of Figs. C4 

through C9). The accuracies of model 7 for the binary classification were 100.0%, 98.4%, and 94.2% for 

NCASI, METCRAX-II and WSISEG, respectively (Table 4-2). We present the binary confusion matrix for 

model 7 in the bottom row of Fig. 4-2 (see bottom rows of Figs B4-B9 for the remaining six models). 
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Figure 4-2: Top row: three-class (cirrus, clear, and cloud) confusion matrices for transfer learning model 
trained on NCASI,  METCRAX-II, and WSISEG training datasets (model 7). Bottom row: Two-class (clear 
and cloud) confusion matrices for transfer learning model trained on NCASI,  METCRAX-II, and WSISEG 
training datasets (model 7). a) Results on NCASI testing data set. b) Results on METCRAX-II testing data 
set. c) Results on WSISEG testing data set. “Predicted” refers to the model output and “True” refers to the 
observed class designation. 

 
For both the three-class and binary classification problems, model 7 performed best on the NCASI 

images, followed by METCRAX-II, and WSISEG, respectively (Fig. 4-2). Three of the four models at least 

partially trained on the NCASI training set achieved over 95.0% accuracy on the NCASI testing set (Table 

4-2). On both the NCASI and METCRAX-II testing images, model 7 exhibited the highest error rate on 

images manually labeled as cirrus. On the NCASI data, 8.0% of cirrus images were classified as cloud (not 

cirrus) images and 0.0% were classified as clear images. For METCRAX-II, 3.0% of the cirrus images were 

classified as cloud (not cirrus) images, and 3.0% were classified as clear images. However, in the two-class 

problem, both cirrus and non-cirrus clouds are classified identically, rendering errors between cirrus and 

cloud categories immaterial for the inherently binary problem of AOD cloud screening. When the two cloud 

types are combined, model 7 correctly classifies 100.0% of samples from the NCASI set. For METCRAX-

II data, model 7 incorrectly classifies 1.0% of clear images as cloud, and incorrectly classifies 2.0% of clear 

images as cloud. For WSISEG data, high rates of confusion between clear and cirrus images led to relatively 
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poor results in the two-class problem, with 33.0% of clear images being classified as cloud images, but only 

2.0% of cloud images being classified as clear. 

Model 7 performed well relative to prior AOD screening algorithms, but these results partially 

depended on the testing dataset. The algorithm proposed in Alexandrov et al. (2004) had a false negative 

(i.e. cloud classified as clear) rate of 3.4% and a false negative (i.e. clear classified as cloud) rate of 4.0% 

for the binary cloud screening problem. Our model performed better than the prior algorithm on NCASI 

and METCRAX-II images, and worse on WSISEG images (Fig. 4-2). The false negative rates on NCASI, 

METCRAX-II, and WSISEG testing data were 0.0%, 2.0%, and 2.0%, respectively (Fig. 4-2). The false 

positive rates on NCASI, METCRAX-II, and WSISEG testing data were 0.0%, 1.0%, and 33.0%, 

respectively (Fig. 4-2). In Alexandrov et al. (2004), the authors do not specify the relative proportions of 

cirrus and non-cirrus cloud samples present in the 575 cloud-contaminated samples they analyzed, 

precluding a direct comparison of performance on cirrus cases. The generalizability of our models to images 

similar to those in NCASI is supported by the performance of model 6 (trained only on METCRAX-II and 

WSISEG) on NCASI. Despite not seeing any NCASI images during training, model 6 correctly classified 

96.6% of NCASI testing images in the two-class problem (Table C3). 

Model 7 performed well on NCASI images because, in part, thin and thick clouds not directly in 

front of the sun were less likely to be saturated (i.e. maximum RGB values) with light (e.g. Fig. 4-1a). In 

the METCRAX-II and WSISEG datasets, clouds outside of direct sunlight, yet still in the 224 pixel ✕ 224 

pixel frame, were more likely to be fully saturated with light (e.g. Figs. 4-1b and 4-1c). In the WSISEG 

data set, there were apparent camera glare spots around the solar disk (Figs. C10 through C12 show all 

images misclassified by model 7). We suspect these glare spots were a result of sunlight reflection off of 

plastic or glass protective coverings over the imaging systems. The METCRAX-II data set has less severe 

glare spots, and the NCASI data set lacks glare spots entirely. 
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Limitations 

 A limitation of this work was the subjectivity of the class label designations, particularly for the 

METCRAX-II and WSISEG datasets (Figs. C10 through C12). For the NCASI data that was collected 

specifically for this project, we had the advantage of observing the actual condition of the sky as the images 

were collected. However, with the METCRAX-II and WSISEG datasets, we could only assign class 

designations using images. This complicated class designations, particularly between cirrus and clear 

images in the WSISEG data set, where it was difficult to distinguish between glare and cirrus clouds (e.g. 

Fig. C12). Glare in WSISEG images may have contributed to relatively poor results distinguishing between 

clear and cirrus designations for all models (Fig. 4-2 and Figs. C4 through C9). However, issues with the 

WSISEG data did not impact the performance of models 5-7, which partially used WSISEG data. Models 

5-7 generalized well to NCASI and METCRAX-II despite potential mislabeling of WSISEG samples. 

Clarity issues in WSISEG images emphasize the importance of high image fidelity around the solar disk 

for AOD screening application. In future work, we will test the generalization ability of model 7 on 

additional independent data without additional training.  

Our model generally performed well on a variety of different cloud types from three independent 

datasets. However, we did not test our model on images with high aerosol loading. Wildfire smoke, volcanic 

ash, heavy industrial emissions and other sources of high atmospheric aerosol concentrations could be 

erroneously classified as clouds. Additional images with the sun obscured by high levels of aerosol are 

needed to test the model's sensitivity to aerosol concentrations.  

Our datasets were also limited to images from three unique camera configurations. Different 

imaging systems produce images with different hues, resolutions, and saturation levels, among other visual 

differences. As demonstrated on the NCASI and METCRAX-II datasets (Tables C2 and C3), our model 

performs best on images with limited lens glare spots. To improve performance on images from different 

imaging systems, we recommend further training of our output layer parameters using additional labeled 
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images. Models 1-7 models and their respective weights are publicly available (see data availability 

section). 

Conclusions 

In this work, we presented a novel approach for cloud screening that could be applied to AOD 

measurements and that builds on the literature surrounding cloud classification from whole sky images. We 

designed an imaging module to capture all-sky images with high-fidelity, particularly around the solar disk. 

Using this imaging module, we produced the NCASI data set, a novel collection of all-sky images from 

Northern Colorado that includes images of a variety of cloud and sky conditions. Combining our NCASI 

data set with two other independent all-sky image datasets and the pre-trained VGG-16 model, we applied 

transfer learning to develop an effective cloud screening model. Our model performed well classifying the 

solar disk as unobstructed (clear), obstructed by thin cirrus clouds, or obstructed by optically thick, non-

cirrus clouds.  

Image-based cloud screening is agnostic of sun photometer hardware, making it especially 

applicable for lower-cost sun photometers (Wendt et al., 2019a, 2021), which may lack the hardware and 

personnel required to fully implement state-of-the-art sensor-based cloud screening. When paired with 

AOD measurements, all-sky images may be used for relatively simple quality control and descriptive 

purposes. Our work suggests that cameras configured to produce images like the NCASI datasets will 

perform well in quality control applications. The performance of our model on cirrus cloud cover represents 

a promising advancement in AOD quality control for cloud cover most difficult to distinguish from elevated 

aerosol. 
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CHAPTER 5. CONCLUSIONS 

In this work, we present novel low-cost air quality measurement technologies and their 

applications. We first describe the development and validation of the AMODv2, a low-cost instrument 

capable of simultaneous measurement of PM2.5 mass concentration and AOD. We then detail our 

deployment of AMODv2s in a crowdsourced air pollution monitoring network. There we show AMODv2s 

can be operated by student volunteers to monitor local air quality and assess the regional variability of 

ambient air pollution in the presence of wildfire smoke. Finally, we present an image-based machine 

learning algorithm for screening AOD measurements for cloud contamination. 

From a technological perspective, the AMODv2 is a step toward the synthesis of reference-grade 

and low-cost air quality monitors. Electronic components that were cost-prohibitive or non-existent in 

recent decades are now widely available at low cost. In many other industries (e.g. telephones and consumer 

appliances), the proliferation of low-cost and high-performance components has produced performance 

improvements with simultaneous downward price pressure. The AMODv2 represents a major turn away 

from the cost-performance tradeoff that has limited air pollution monitoring. Pressure for greater 

performance at lower cost is often driven by consumer demands. By incorporating human factor design in 

the development of the AMODv2, we were cognizant of the preferences of a broader range of potential 

end-users. The AMODv2 is for both the specialized aerosol scientist and the interested community member. 

With this in mind, we sought to maximize the degree of automation of the AMODv2 while developing a 

simple and familiar configuration interface. Collecting air quality data-with the AMODv2 requires only 

basic filter handling and executing familiar tasks such as operating a smartphone application and connecting 

a device to Wi-Fi. Our crowdsourced sampling campaigns demonstrated that, after a one-hour training 

session, non-scientists were ready to operate AMODv2s. With our validation results, we show that 

measurements collected by AMODv2 users are accurate relative to reference monitors. 

The modernization of air quality monitoring is not only a matter of hardware. Modern 

developments in algorithms and software have helped hardware systems realize their full potential. Deep 
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learning algorithms in particular are becoming the dominant solution for a range of software tasks including 

text, audio, and image analysis. With our transfer learning model on all-sky images, we present a platform-

independent algorithm for AOD cloud screening. High-quality image sensors are now available at relatively 

low-cost (< $50), making it more affordable than ever to incorporate all-sky imaging module into air quality 

monitoring systems. We demonstrated our model accurately discriminates between clear and cloud-

contaminated all-sky images. 

Our technology points to a future of community-driven air pollution monitoring. Crowdsourced 

networks of low-cost nephelometers (e.g. Plantower PMS5003) have made a substantial impact on air 

pollution research in recent years (Gupta et al., 2018; Lin et al., 2020; Li et al., 2020; Badura et al., 2020; 

Lu et al., 2021; Chadwick et al., 2021). Our crowdsourced network of AMODv2s highlighted how PM2.5 

and AOD measurements, collected in tandem, can illuminate details of air pollution events beyond what is 

possible with PM2.5 measurements alone. Our image-based quality control approach can ensure that 

crowdsourced AOD measurements free from cloud-contamination. We have facilitated a future where 

accurate and fully-automated AOD sensors could be distributed to citizen operators at similar scales to 

PM2.5 sensors. Our work on image-based cloud screening provides a simple and AOD-sensor independent 

approach to ensure future crowdsourced AOD measurements are of high quality.  

Additional steps toward our overall goal of improving community-driven air quality monitoring 

include additional design improvements to the AMODv2. The primary limitation of the AMODv2 was 

mechanical robustness, particularly in heavy rain. Any potential AMODv3 design will feature improved 

material selection and manufacturing processes to improve durability in long-term deployments. The 

integration of a fisheye lens into future AMOD iterations would also represent a significant improvement 

into the technology. Hardware and software integration of a fisheye lens on a future AMODv3 design would 

facilitate one-shot AOD quality control for instruments in the field, even for instruments without internet 

access. Future work is needed to evaluate the feasibility of executing our transfer learning algorithm on 

relatively limited processors. We would seek to maintain the accuracy of the algorithm while scaling back 

the computational complexity, a goal facilitated by ongoing work in embedded processing and deep 
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learning complexity optimization. An additional limitation of our work was the relative scale of our national 

crowdsourced network. Though we were able to detect air pollution anomalies during wildfire events, our 

crowdsource network did not include enough sites and did not span a great enough period of time to evaluate 

broad air quality trends in the United States. However, there are already thousands of low-cost 

nephelometers actively measuring PM2.5 concentrations across the globe. What is far less common, are low-

cost AOD sensors that could be paired with these nepholomenters. The AOD measurement subsystem of 

the AMODv2 is at least one order of magnitude less expensive than prior automated AOD measurement 

devices. The design and production of low-cost AOD sensors based on the AMODv2 subsystem could 

bolster PM2.5 measurement networks, moving us closer to long-term and broad-scale air pollution 

monitoring by crowdsourced networks. With a low-cost nephelometer, a low-cost AOD sensor, and sky 

camera, volunteers across the world could contribute air pollution data at scopes previously unachievable. 
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APPENDIX A 

 
Figure A1: Overview of real-time PM2.5 measurement protocol.  
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Figure A2: Overview of AOD measurement protocol. Initialization, search, tracking, and measurement 

algorithms are detailed in Figs. A2-A5.  
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Figure A3: AOD subsystem initialization protocol.  
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Figure A4: AOD subsystem search algorithm.  
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Figure A5: AOD subsystem tracking algorithm  
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Figure A6: AOD subsystem measurement algorithm  
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Table A1: AMODv2 validation summary statistics calculated separately for elevated-AOD days and clear 
days. Elevated-AOD days were defined as days when the average AERONET AOD at 500 nm was 
greater than or equal to 0.15. Clear days were defined as days in which the average AOD was less than 
0.15. In total, five days were identified as clear and four days were identified as elevated-AOD. 

Wavelength (nm) AERONET 500 nm 
AOD magnitude 

Number of samples Mean absolute error 
(AOD) 

AOD Precision 
(AOD) 

440 All included 426 0.04 0.02 

500 All included 426 0.06 0.02 

675 All included 426 0.03 0.01 

870 All included 426 0.03 0.02 

440 > 0.15 (elevated) 115 0.05 0.02 

500 > 0.15 (elevated) 115 0.05 0.02 

675 > 0.15 (elevated) 115 0.03 0.01 

870 > 0.15 (elevated) 115 0.03 0.01 

440 < 0.15 (clear) 311 0.04 0.02 

500 < 0.15 (clear) 311 0.06 0.03 

675 < 0.15 (clear) 311 0.02 0.01 

870 < 0.15 (clear) 311 0.03 0.02 

  



94 
 

 

 
Figure A7: Example live map from project website csu-ceams.com overlaid with time series of PM2.5 from 
selected units. This snapshot was taken at a time when AMODv2 units were located at different locations 
in Colorado for test deployments, for purposes of illustrating the web interface. Colored circles represent 
active AMODv2s. Grey circles represent inactive AMODv2 units. Inactive units are either charging 
between samples or have been sent back from the testing site. The color scale is determined by the current 
Air Quality Index (AQI) calculated based on the PM2.5 measurement. The four sample PM2.5 time series 
plots are linked to specific participant locations with arrows. Time series plots can be accessed by clicking 
on an active circle. Users may select the option to view AOD from a drop-down menu for both the map and 
the time series plot. Note: that this figure has been edited to show map and time series plots on the same 
page. On the actual website selecting a point displays only one simplified time series on the map itself. 
Detailed time series shown here are available on a separate page which can be accessed through selecting 
a unit on the map.   
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Here we present results from a sample deployment of 10 units. We configured the units to sample 

for approximately 60 hours. The 10 units were co-located and sampled simultaneously. We collected and 

analysed real-time PM2.5 mass concentrations, AOD, PM2.5 to AOD ratio, meteorological data, and 

quality control data. In Fig. A8, we provide real-time AOD at 500 nm, real-time PM2.5, and the 

corresponding PM2.5 to AOD ratios. 

 

Figure A8: Time series from 10 co-located AMODv2s featuring PM2.5 concentration, AOD at 500 nm, and 

PM2.5 to AOD (at 500nm) ratio for 17-19 October 2020 in MST. PM2.5 measurements are from the 

Plantower PMS5003 and are the CF = 1 values. These values have not been corrected relative to the filter 
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mass concentrations. Points are colored according to the AMODv2 ID. Note the vertical axis for PM2.5:AOD 

is provided in a logarithmic scale to clarify lower values indicative of lofted smoke. 

 

 In Fig. A9, we provide detailed results from a single unit including 4-channel AOD, PM2.5, and 

meteorological data including temperature, pressure, and relative humidity. This sample deployment 

highlighted several important strengths of the AMODv2 relative to AMODv1 and other prior sampling 

approaches. The high temporal resolution of AOD and PM2.5 measurements facilitated a more complete 

understanding of the air pollution event occurring during the sample. With the AMODv2, we observed 

moderate air pollution at the start of the sample on the afternoon of 16 October 2020, with all units reporting 

consistent values for AOD (>0.30 ± 0.06) and PM2.5 (50 ± 20.0 to 100 ± 40.0 µg m-3). This was followed 

by increases on 17 October 2020 to severe levels (AOD up to 1.5 ± 0.06 and PM2.5 up to 300 ± 66.2 µg m-

3) as wildfire smoke swept over the city in the afternoon and gradually subsided over the course of 18 

October 2020. We observed reductions in PM2.5:AOD (<10) as ground level PM2.5 decreased to moderate 

and mild levels (<20 ± 2.0 µg m-3), while the AOD remained elevated (>0.50 ± 0.06) due to the presence 

of lofted smoke. We then noted the continuation of the trend at ground level with the further reduction of 

ground-level PM2.5 on 19 October 2020 (5 ± 2.0 to 15 ± 2.0 µg m-3). Cloud cover prevented additional AOD 

measurements on 19th October, which was automatically screened for using the cloud screening algorithm. 

The meteorological data was also consistent with cloud cover with lower temperatures and elevated relative 

humidity reported on that day (Fig. A9).  

Data from the sample deployment were accessed from our companion website (csu-ceams.com) in 

real time. With AOD, PM2.5 and PM2.5:AOD reported every 20 minutes throughout the sample to the 

website, we could assess the progress of wildfire smoke in Fort Collins remotely in real time. This was not 

possible with AMODv1, which lacked wireless transmission capabilities. In terms of scalability, the 

AMODv2 was relatively easy to deploy and maintain owing to its compact design, coupled with its 

automated measurement protocols. In the sample test, we were able to quickly prepare and deploy units in 

response to wildfire activity. 
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We leveraged the data accessibility features of AMODv2 for real-time quality control of incoming 

sample data. We monitored sample flow rate and total sampled volume to detect potential errors with the 

gravimetric sample collection. We monitored battery temperature to detect potential overheating of the unit, 

allowing proper intervention (e.g. temporarily moving the unit into shade) before the instrument reaches a 

shutoff threshold. We used battery voltage, battery state of charge, and current draw data to identify units 

unlikely to complete the intended sample duration. Current draw data was also used to identify when the 

tracking motors were engaged, indicating an attempted AOD measurement at the expected time. Wireless 

signal strength data were used to identify units with relatively poor connection and move them into areas 

with better signal. In the sample deployment detailed here, no interventions based on quality control data 

were warranted. However, in general, these data can be used to remotely identify and address 

malfunctioning units mid-sample. This feature represents a substantial improvement compared with 

AMODv1, which provided no sample quality control data in real time, requiring manual data acquisition 

(via micro SD card) and unit inspection following a failed sample.  
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Figure A9: Sample time series from completed AMODv2 sample in MST. Temperature, pressure, relative 

humidity, and PM2.5 reported at 30 second intervals are provided in the top four panels. The bottom panel 

gives screened AOD measurements, reported at 20 minute intervals. The presence of wildfire smoke on 

October 17 corresponded with increases in PM2.5 and AOD.  
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Table A2: AMODv2 Cost of Goods and Assembly Summary. Costs tabulated here are for a production 
run of 100 units. 

Component Manufacturer Part Number Cost 
(USD) 

Printed Circuit Boards Vergent Engineering Custom Parts 400 

440 nm Filtered Photodiode Intor Custom Parts 28 

520 nm Filtered Photodiode Intor Custom Parts 26 

680 nm Filtered Photodiode Intor Custom Parts 26 

870 nm Filtered Photodiode Intor Custom Parts 28 

Light-Scattering PM2.5 Sensor Plantower PMS5003 15 

Solar Alignment Sensor Solar MEMS NANO-ISS5 45 

Electrical Box Polycase Custom Part 55 

3D Printed Fixtures GoProto Custom Part 67 

Cyclone and Inlet Synergy Core Custom Part 74 

Battery Pack Dakota 
LithiumBatteries 

12V 10AH 
LiFePO4 

63 

Auxiliary Battery Pack Battery Space LFH4S4R1WR-
C5 

68 

Zenith Stepper Motor Stepper Online 17HS10-0704S-
C2 

7 

Azimuth Stepper Motor Stepper Online 17HS19-1684S-
C6 

8 
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Misc. Housing Components N/A N/A 25 

Assembly Labor N/A N/A 240 

Total Costs     1175 
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APPENDIX B 

Text B1: Summary of CEAMS quality control results 

Of the 192 sample logs received at the conclusion of the study sample logs, 140 (72.9%) completed 

at least 76.8 hours (75%) of the prescribed 96-hour runtime. Of the prematurely terminated samples, 30 

(57.7%) had a depleted battery, 14 (26.9%) were manually turned off by the operator via the pushbutton, 

and 8 (15.4%) failed due to an unknown electrical or mechanical error. In Fig. 2, we provide the distribution 

of CEAMS runtimes, colored by the failure mode. 

Compared with our prior laboratory reliability testing (Wendt et al., 2021), fewer AMODv2s 

completed their full runtime. In our laboratory testing (Wendt et al., 2021), 75.0% of the samples completed 

their prescribed runtime, compared with 72.9% in the CEAMS network. However, relatively similar 

proportions of samplers failed due to battery depletion (64.0% for laboratory and 57.7% for CEAMS) and 

unspecified electrical or mechanical failure (9% for laboratory and 15.4% for CEAMS). The difference in 

overall performance can then be partially explained by user-initiated pushbutton shutdowns, which did not 

occur in the laboratory testing. We received some explanations for why some samples were manually shut 

down prematurely including concern over inclement weather, concern over theft from relatively insecure 

positions, and choosing to move the device to a new location mid-sample. Further study on participant 

interactions with the samplers is the subject of ongoing work. 

We applied additional quality control analyses to specific AOD and PM2.5 measurements. With 

respect to AOD, the AMODv2 reported either a triplet average of AOD measurements or a unique error 

code at every 20-minute mark throughout the day. Unique error codes were provided for measurements 

initiated at night (no execution of tracking protocol), those that never achieved alignment with the sun, 

thoses with incomplete triplets, and those identified as cloud-contaminated. Across all wavelengths, 981 

AOD measurement attempts did not complete a full triplet of measurements. The number of triplets 

screened for clouds and those marked as valid varied by wavelength. There were 1,915; 1,813; 1,892; and 

2,490 triplets marked as cloud-contaminated for 440 nm, 500 nm, 675 nm, and 870 nm channels 

respectively. There were 3,658; 3,760; 3,681; and 3,083 triplets marked as valid for 440 nm, 500 nm, 675 
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nm, and 870 nm channels; respectively. We accounted for discrepancies with the 870 nm channel by 

including triplets that were valid for the remaining three wavelengths. 

Compared with our prior laboratory validation work (Wendt et al., 2021), a higher proportion of 

measurement triplets were marked as valid for all wavelengths in our crowdsourced CEAMS campaign. In 

our prior study, 33.0%, 34.0%, 35.0%, and 33.0% of triplet attempts were marked as valid for 440 nm, 500 

nm, 675 nm, and 870 nm channels, respectively (Wendt et al., 2021). In the present study, 55.8%, 57.4%, 

56.2%, and 47.0% of triplet attempts were marked as valid for 440 nm, 500 nm, 675 nm, and 870 nm 

channels, respectively. 
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Figure B1: Box and whisker plots of how filter/PMS5003 values (i.e., Plantower scaling factors) varied 
with the number of smoke days for AMODv2 sampling runs. Filters with five smoke-impacted days 
included two partial sampling days (i.e. sample for 12 hours on the first day, and another 12 hours on the 
last day, for a total of 96 hours.) 

  



104 
 

 

Figure B2: Distribution of filter/PMS5003 concentration ratio by number of smoke impacted days and 
AMODv2 identification number. Filters with five smoke-impacted days included two partial sampling days 
(i.e. sample for 12 hours on the first day, and another 12 hours on the last day, for a total of 96 hours.) 
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Figure B3: Distribution of valid AOD measurements in CEAMS campaign by wavelength. 
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Figure B4: SARP vs. AERONET mean absolute percent error as a function of distance separating SARP 
and AERONET monitors. 
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Figure B5: HMS smoke maps for selected time periods with smoke sources and AMODv2 locations labeled. 
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Figure B6: Time series plots of PM2.5, AOD, Angstrom exponent, and PM2.5:AOD from July 6, 2021 to 
July 24, 2021 from four CEAMS sites in Southern California. Measurements are from four AMODv2s (Fig. 
1). Note that measurements on July 12, 2022 were from a single AMODv2 started early by the CEAMS 
participant. 
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Figure B7: Time series plots of PM2.5, AOD, Angstrom exponent, and PM2.5:AOD from July 6, 2021 to 
July 24, 2021 from a CEAMS site near Sacramento, California. Note that measurements on July 12, 2022 
were from a single AMODv2 started early by the CEAMS participant. 
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APPENDIX C 

Text C1: We designed a prototype all-sky-imaging module using relatively low-cost, and commercially 

available components. The camera included an image sensor (Sony, IMX477-AACK-C, Minato City, 

Tokyo, Japan) and integrated circuitry for simple interfacing with the Raspberry Pi 4B. We achieved a 180° 

field of view using a fisheye lens (Arducam Technology Co., Limited, M25170H12, Hong Kong), and  

adequate sunlight attenuation by layering three, 3-stop, neutral density filters (Kodak, 1964741, Rochester, 

New York, USA) between the image sensor element and the lens. A photograph of the module and its 

associated componentry is provided in Fig. B1. 

We used a Raspberry Pi 4B with 4 GB of RAM (Raspberry Pi Foundation, Cambridge, United 

Kingdom) as the processing unit and the Raspberry Pi HQ Camera Module (Raspberry Pi Foundation, 

SC0261, Cambridge, United Kingdom) as the imaging unit. The camera included an image sensor (Sony, 

IMX477-AACK-C, Minato City, Tokyo, Japan) and integrated circuitry for simple interfacing with the 

Raspberry Pi 4B. We achieved a 180° field of view using a fisheye lens (Arducam Technology Co., Limited, 

M25170H12, Hong Kong), and  adequate sunlight attenuation by layering three, 3-stop, neutral density 

filters (Kodak, 1964741, Rochester, New York, USA) between the image sensor element and the lens. This 

configuration had the effect of reducing the image sensor exposure by a factor of 512. The Raspberry Pi 4B 

was powered with a 5 V, 4 Ah Lithium Polymer battery. We housed the electrical components in an 

electrical enclosure (Polycase, YQ-080804, Avon, Ohio, USA) and cut a circular hole in the lid to expose 

the image sensor to the sky. The cost of goods to produce a single prototype was 282.48 USD. A summary 

of component costs is provided in Table C1.  
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Figure C1: Photograph of NCASI imaging module.  
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Figure C2: Example images from NCASI, METACRAX-II, and WSISEG for cirrus, clear, and cloud 
designations  
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Figure C3: Example pre-processed images from NCASI, METACRAX-II, and WSISEG for cirrus, clear, 
and cloud designations.  
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Figure C4: Top row: three-class confusion matrices for transfer learning model trained on NCASI training 
data set (model 1). a) Results on NCASI testing data set. b) Results on METCRAX-II testing data set. c) 
Results on WSISEG testing data set. Bottom row: two-class confusion matrices for transfer learning model 
trained on NCASI training data set (model 1). a) Results on NCASI testing data set. b) Results on 
METCRAX-II testing data set. c) Results on WSISEG testing data set. 

 
Figure B5: Top row: three-class confusion matrices for transfer learning model trained on METCRAX-II 
training data set (model 2). a) Results on NCASI testing data set. b) Results on METCRAX-II testing data 
set. c) Results on WSISEG testing data set. Bottom row: two-class confusion matrices for transfer learning 
model trained on METCRAX-II training data set (model 2). a) Results on NCASI testing data set. b) Results 
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on METCRAX-II testing data set. c) Results on WSISEG testing data set. 

 
Figure C6: Top row: three-class confusion matrices for transfer learning model trained on WSISEG training 
data set (model 3). a) Results on NCASI testing data set. b) Results on METCRAX-II testing data set. c) 
Results on WSISEG testing data set. Bottom row: two-class confusion matrices for transfer learning model 
trained on WSISEG training data set (model 3). a) Results on NCASI testing data set. b) Results on 
METCRAX-II testing data set. c) Results on WSISEG testing data set. 

 
Figure C7: Top row: three-class confusion matrices for transfer learning model trained on NCASI and 
METCRAX-II training data sets (model 4). a) Results on NCASI testing data set. b) Results on METCRAX-
II testing data set. c) Results on WSISEG testing data set. Bottom row: two-class confusion matrices for 
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transfer learning model trained on NCASI and METCRAX-II training data sets (model 4). a) Results on 
NCASI testing data set. b) Results on METCRAX-II testing data set. c) Results on WSISEG testing data 
set. 

 
Figure C8: Top row: three-class confusion matrices for transfer learning model trained on NCASI and 
WSISEG training data sets (model 5). a) Results on NCASI testing data set. b) Results on METCRAX-II 
testing data set. c) Results on WSISEG testing data set. Bottom row: two-class confusion matrices for 
transfer learning model trained on NCASI and WSISEG training data sets (model 5). a) Results on NCASI 
testing data set. b) Results on METCRAX-II testing data set. c) Results on WSISEG testing data set. 

 
Figure C9: Top row: three-class confusion matrices for transfer learning model trained on METCRAX-II 
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and WSISEG training data sets (model 6). a) Results on NCASI testing data set. b) Results on METCRAX-
II testing data set. c) Results on WSISEG testing data set. Bottom row: two-class confusion matrices for 
transfer learning model trained on METCRAX-II and WSISEG training data sets (model 6). a) Results on 
NCASI testing data set. b) Results on METCRAX-II testing data set. c) Results on WSISEG testing data 
set. 
 

 
Figure C10: Misclassified images on NCASI testing data set for the model trained on NCASI, METCRAX-
II, and WSISEG data sets (model 7). 
 

 
Figure C11: Misclassified images on METCRAX-II testing data set for the model trained on NCASI, 
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METCRAX-II, and WSISEG data sets (model 7).  
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Figure C12: Misclassified images on WSISEG testing data set for the model trained on NCASI, 
METCRAX-II, and WSISEG data sets (model 7). 
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Table C1: Component costs of imaging module 

Component Manufacturer Part Number Cost (USD) 

Raspberry Pi 4 Model B 
4 GB 

Raspberry Pi 
Foundation 

Raspberry Pi 4B/4GB 55.00 

Raspberry Pi HQ 
Camera Module 

Raspberry Pi 
Foundation 

SC0261 50.00 

Arducam M12 Fisheye 
Lens 

Arducam Technology 
Co., Limited 

M25170H12 9.99 

Neutral Density Optical 
Gelatin Wratten Filter 
(75 mm ×75 mm) 

Kodak 1964741 97.50 

Electrical Box Polycase YQ-0808804-13 55.00 

Battery Pack for 
Raspberry Pi, 4000mAh 

Yapears 5647469919 14.99 

 
Total Cost: 282.48 USD 
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