
DISSERTATION

RESOURCE ALLOCATION FOR HETEROGENEOUS COMPUTING SYSTEMS:

PERFORMANCE CRITERIA, ROBUSTNESS MEASURES, OPTIMIZATION

HEURISTICS, AND PROPERTIES

Submitted by

Luis Diego Briceño Guerrero

The Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2010

Copyright by Luis Diego Briceño Guerrero 2010

All Rights Reserved

COLORADO STATE UNIVERSITY

June 27, 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY LUIS DIEGO BRICEÑO GUERRERO ENTITLED RESOURCE

ALLOCATION FOR HETEROGENEOUS COMPUTING SYSTEMS: PERFORMANCE

CRITERIA, ROBUSTNESS MEASURES, OPTIMIZATION HEURISTICS, AND PROP-

ERTIES BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DE-

GREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Anton Willem Böhm

Anura Jayasumana

James T. Smith II

Advisor: Howard Jay Siegel

Co-Advisor: Anthony A. Maciejewski

Department Head: Anthony A. Maciejewski

ii

ABSTRACT OF DISSERTATION

RESOURCE ALLOCATION FOR HETEROGENEOUS COMPUTING SYSTEMS:

PERFORMANCE CRITERIA, ROBUSTNESS MEASURES, OPTIMIZATION

HEURISTICS, AND PROPERTIES

Heterogeneous computing (HC) is the coordinated use of different types of machines, net-

works, and interfaces to maximize the combined performance and/or cost effectiveness of

the system. The application environments studied in this research are: a weather data-

processing system, a massive multi-player on-line gaming system, and a distributed satel-

lite image processing system. Each one of these application environments was simulated

on different computation platforms. Contributions for each environment: (1) mathematical

model of environment, (2) defined a performance criterion, (3) defined robustness metric,

(4) designed resource allocation heuristics based on performance and robustness measures,

and (5) conducted simulation studies for evaluating and comparing heuristic techniques.

We consider an iterative approach that decreases the finishing time of machines by

repeatedly executing a resource allocation heuristic to minimize the makespan of the con-

sidered machines and tasks. For each successive iteration, the makespan machine of the

previous iteration and the tasks assigned to it are removed from the set of considered

machines and tasks. The contribution include identifying which characteristics heuristics

iii

need to generate improvement with the iterative approach, showing that the effectiveness

of the iterative approach is heuristic dependent, and deriving a theorem to identify which

heuristics cannot attain improvements.

Luis Diego Briceño Guerrero
The Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, CO 80523

Summer 2010

iv

TABLE OF CONTENTS

SIGNATURE . ii

ABSTRACT OF DISSERTATION . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

DEDICATION . xv

ACKNOWLEDGEMENTS . xvi

I INTRODUCTION . 1

II ITERATIVE MINIMIZATION OF NON-MAKESPAN MACHINES 4

2.1 Introduction . 4

2.2 Problem Statement . 6

2.3 Heuristics that Will Not Improve With the
Iterative Approach . 8

2.3.1 Minimum Execution Time (MET) with Deterministic
Tie Breaking . 8

2.3.2 Minimum Completion Time with Deterministic Tie Breaking (MCT) 8

2.3.3 Min-Min with Deterministic Tie Breaking 9

2.3.4 Generalized Completion Time Function
and Iteration Invariant Heuristics 9

2.3.5 Properties of Iteration Invariant Heuristics 10

2.4 Heuristics That May Improve with the Iterative Approach 15

2.4.1 MET with Random Tie Breaking 15

2.4.2 MCT with Random Tie Breaking 17

2.4.3 Min-Min with Random Tie Breaking 18

2.4.4 Genetic Algorithm (GA) . 20

2.4.5 K-percent Best Algorithm . 22

2.4.6 Switching Algorithm (SWA) . 25

2.4.7 Sufferage Algorithm . 29

2.5 Analysis of Characteristics of Heuristics . 32

2.6 Conclusions . 35

v

III ROBUST RESOURCE ALLOCATION FOR WEATHER DATA PRO-
CESSING ON A HETEROGENEOUS PARALLEL SYSTEM 36

3.1 Introduction . 36

3.2 System Model . 38

3.2.1 Overview . 38

3.2.2 Robustness . 39

3.3 Related Work . 41

3.4 Heuristics for High Priority Tasks . 43

3.4.1 Overview . 43

3.4.2 Minimum Execution Time (MET) 43

3.4.3 Minimum Completion Time (MCT) 44

3.4.4 K-Percent Best (KPB) . 44

3.4.5 MinCT-MinCT . 44

3.4.6 MaxCT-MinCT . 46

3.4.7 HPT Genitor . 46

3.5 Heuristics for Revenue Generating Tasks 47

3.5.1 Overview . 47

3.5.2 Greedy Heuristics . 48

3.5.3 MaxW-MaxW . 49

3.5.4 MaxWPTU-MaxWPTU . 49

3.5.5 MaxWPTU-MinCT . 50

3.5.6 RGT Genitor . 50

3.6 Simulation Setup . 51

3.7 Bounds . 53

3.7.1 HPT Upper Bound (UB1) . 53

3.7.2 RGT Upper Bound (UB2) . 53

3.8 Results . 54

3.8.1 Results of Consistent ETCs . 54

3.8.2 Results of Inconsistent ETCs . 57

3.8.3 Results of Partially-Consistent ETCs 59

3.9 Conclusions . 60

vi

IV RESOURCE ALLOCATION IN A CLIENT/SERVER MASSIVE MULTI-
PLAYER ONLINE GAMING ENVIRONMENT 63

4.1 Introduction . 63

4.2 Environment . 66

4.2.1 Overview . 66

4.2.2 Computational Model for Main Server and Secondary Servers . . . 66

4.2.3 Objective Functions RTmax and RTmin 67

4.2.4 Heuristic Requirements . 68

4.3 Response Time Minimization . 69

4.3.1 Problem Statement . 69

4.3.2 Heuristics for Response Time Minimization 70

4.3.3 Lower Bound . 77

4.3.4 Simulation Results . 79

4.4 Robustness to Additional Players Joining the Game 80

4.4.1 Problem Statement . 80

4.4.2 Robustness Metric . 82

4.4.3 Heuristics for Maximizing Robustness to
Additional Players Joining the Game 85

4.4.4 Upper Bound . 87

4.4.5 Simulation Results . 89

4.5 Related Work . 90

4.6 Conclusions . 92

V ROBUST RESOURCE ALLOCATION IN A SATELLITE IMAGING
SYSTEM . 94

5.1 Introduction . 94

5.2 Problem Statement . 95

5.2.1 System Model . 95

5.2.2 Robustness . 99

5.2.3 Performance Metric . 99

5.3 Heuristics . 101

5.3.1 Multicore Minimum Completion Time 101

5.3.2 Multicore Random Resource Allocation 102

vii

5.3.3 Heterogeneous Robust Duplication (HRD) 102

5.3.4 Dynamic Available Tasks Critical Path (DATCP) 107

5.3.5 Multicore Dynamic Levels . 109

5.3.6 Multicore Genitor . 109

5.4 Related Work . 111

5.5 Results . 113

5.5.1 Simulation Setup . 113

5.5.2 Simulation Results . 114

5.6 Conclusions . 119

VI CONCLUSIONS . 122

References . 122

viii

LIST OF TABLES

1 Execution times for HPT. 55

2 Execution times for RGT. 56

3 Table showing the divisor for parallel tasks 99

4 Table showing the simulation trials and their respective configurations. . . . 114

ix

LIST OF FIGURES

1 Procedure for using MET to generate a resource allocation. 8

2 Procedure for using MCT to generate a resource allocation. 9

3 Procedure for using Min-Min to generate a resource allocation 9

4 Example of a resource allocation using the Min-Min heuristic. In (a), the
ETC matrix used for this example is found. The allocation of the first itera-
tion is shown in (b), the second iteration in (c), and the final iteration in (d).
This example illustrates that iterations 2 and 3 do not change the original
mapping. 11

5 Glossary of Notation. 12

6 Example of makespan among non-makespan machines being reduced for
MET: (a) details of original mapping, (b) details of first iterative mapping,
(c) graphical representation of original mapping, and (d) graphical represen-
tation of first iterative mapping. 16

7 Example of overall makespan increasing for MET: (a) details of original map-
ping, (b) details of first iterative mapping, (c) graphical representation of
original mapping, and (d) graphical representation of first iterative mapping. 17

8 Example of makespan among non-makespan machines being reduced with
MCT: (a) ETC matrix, (b) details of original mapping, (c) details of first
iterative mapping, (d) graphical representation of original mapping, and (e)
graphical representation of first iterative mapping. 18

9 Example of overall makespan increasing for MCT: (a) ETC matrix, (b) de-
tails of original mapping, (c) details of first iterative mapping, (d) graphical
representation of original mapping, and (e) graphical representation of first
iterative mapping. 19

10 Example of makespan among non-makespan machines being reduced for Min-
Min: (a) ETC matrix, (b) details of original mapping, (c) details of first
iterative mapping, (d) graphical representation of original mapping, and (e)
graphical representation of first iterative mapping. 20

11 Example of overall makespan increasing for Min-Min: (a) ETC matrix, (b)
details of original mapping, (c) details of first iterative mapping, (d) graphical
representation of original mapping, and (e) graphical representation of first
iterative mapping. 21

12 Summary of one possible procedure that can be used to implement a GA . 22

13 Procedure for using K-percent Best to generate a resource allocation. 23

x

14 Example of makespan among non-makespan machines being reduced for K-
percent Best: (a) ETC matrix, (b) details of original mapping, (c) details of
first iterative mapping, (d) graphical representation of original mapping, and
(e) graphical representation of first iterative mapping. 24

15 Example of makespan increasing for K-percent Best: (a) ETC matrix, (b)
details of original mapping, (c) details of first iterative mapping, (d) graphical
representation of original mapping, and (e) graphical representation of first
iterative mapping. 26

16 Procedure for using SWA to generate a resource allocation. 27

17 Example of makespan among non-makespan machines being reduced with
SWA: (a) ETC matrix, (b) details of original mapping (largest and smallest
RTs are in italic for a given mapping event), (c) details of first iterative
mapping, (d) graphical representation of original mapping, and (e) graphical
representation of first iterative mapping (for t4 mapping event MET is used
and CTs do not matter). 28

18 Example of makespan increasing for SWA: (a) ETC matrix, (b) details of
original mapping (largest and smallest RTs are in italic for a given mapping
event), (c) details of first iterative mapping, (d) graphical representation of
original mapping, and (e) graphical representation of first iterative mapping
(for t4 mapping event MET is used and CTs do not matter). 30

19 Procedure for using Sufferage to generate a resource allocation. 31

20 Example of makespan among non-makespan machines being reduced for Suf-
ferage: (a) ETC matrix, (b) details of original mapping, (c) details of first
iterative mapping, (d) graphical representation of original mapping, and (e)
graphical representation of first iterative mapping. 32

21 Example of overall makespan increasing for Sufferage: (a) ETC matrix, (b)
details of original mapping, (c) details of first iterative mapping, (d) graphical
representation of original mapping, and (e) graphical representation of first
iterative mapping. 33

22 Overview of a space-based weather system. 37

23 Illustration of a resource allocation that includes both high priority and rev-
enue tasks. Rectangles represents tasks (dark high priority and light shaded
areas show revenue tasks) . 40

24 Procedure for using MET to generate a resource allocation. 43

25 Procedure for using MCT to generate a resource allocation. 44

26 Procedure for using K-Percent Best to generate a resource allocation. 45

27 Procedure for using MinCT-MinCT to generate a resource allocation. . . . 45

28 Procedure for using MaxCT-MinCT to generate a resource allocation.. . . . 46

29 Procedure for using Genitor to generate a resource allocation. 48

xi

30 Procedure for using MaxW-MaxW to generate a resource allocation. 49

31 Chromosome representation for RGT Genitor: (a) chromosome strings, (b)
machine queues. 51

32 Illustration of τa and τb. 55

33 Consistent heterogeneity robustness for HPT, averaged over 1000 trails. The
95% confidence intervals are shown. 56

34 Consistent heterogeneity robustness for RGT, averaged over 1000 trails. The
95% confidence intervals are shown. 57

35 Inconsistent heterogeneity robustness for HPT, averaged over 1000 trails.
The 95% confidence intervals are shown. 58

36 Inconsistent heterogeneity robustness for RGT, averaged over 1000 trails.
The 95% confidence intervals are shown. 59

37 Sample histogram of number of tasks that have machine i as its minimum
execution time machine. 59

38 Partially-consistent heterogeneity robustness for HPT, averaged over 1000
trails. The 95% confidence intervals are shown. 61

39 Partially-consistent heterogeneity robustness for RGT, averaged over 1000
trails. The 95% confidence intervals are shown. 62

40 (a) Client/server architecture, using a single server to do processing; and
(b) secondary server architecture, using users’ computers to assist the Main
Server in processing. 64

41 This figure illustrates the return time for a user x (Ux) connected directly to
the MS. 68

42 This figure illustrates the return time for a user x (Ux) connected to the MS
through an SS. 69

43 This figure illustrates RTmax when the user with just misses the deadline for
sending computation at the SS, i.e., ∆ = CompMS 69

44 This figure illustrates RTmin when the user with just makes the deadline for
sending computation at the SS, i.e., ∆ = 0. 70

45 Procedure for using Min-Min RT to generate a resource allocation. 70

46 Pseudo-code for generating the initial resource allocation of the Iterative
Minimization heuristic. 72

47 Procedure for using the Iterative Minimization heuristic to generate a re-
source allocation. 72

48 Procedure for using the Tabu Search heuristic to generate a resource allocation. 73

49 Procedure for using the short hops to improve a resource allocation. 74

50 Procedure for using the DPSO heuristic to generate a resource allocation. . 75

xii

51 Procedure for using the Genitor RT to generate a resource allocation. . . . 76

52 Procedure for using crossover to generate new resource allocations. 77

53 Procedure for using mutation to change a resource allocation. 78

54 Results for response time minimization. The computational parameters of
the MS were set to: b = 0.03 and c = 0.01, values are averaged over 100
scenarios, and the error bars show the 95% confidence intervals. 81

55 Procedure for using the ROAR heuristic to generate a resource allocation. . 86

56 Results for maximizing the robustness of the system against additional play-
ers joining the game. The computational parameters of the MS were set to:
b = 0.03 and c = 0.01, values are averaged over 100 scenarios, and the error
bars show the 95% confidence intervals. The values for βmax and ∆max are
200 and 150 milliseconds, respectively. 89

57 The composition of compute node j is illustrated in this figure. 96

58 This figure shows a diagram of a DAG. The PE shown in compute node 1
(PE1,1) is executing t1 that requires SD1 from compute node 3. In this case,
TD3 and TD7 on compute node 1 need to be transmitted to compute node 2
for t6. The result of t6 must be stored in an HD of the system, and the time
to store the result must be considered when calculating the makespan. . . . 97

59 An illustration of HiPPI network is shown in this figure. 97

60 In this figure, an example of a resource allocation is shown. Each of the
execution times for the tasks in (a) is increased by 50% with the results
shown in (b). Note that the communication times do not increase, and the
makespan for (b) (equal to ∆) is much less than makespan in (a) increased
by 50%. In (a), the makespan PE (the PE that determines the makespan)
is PE3,1. After all task execution times are increased by 50%, PE3,1 is no
longer the makespan PE. This example intuitively shows how the makespan
is not a good measure of robustness. 100

61 Procedure for estimating a completion time in our environment. 101

62 Procedure for modifying a total ordering. 101

63 Procedure for generating a resource allocation using Multicore MCT. 102

64 Figure showing an example of the AEST and ALST computation. The AEST
is calculated first starting from t1 to t7. After all the AESTs are calculated,
the ALST of t7 is set to the AEST of t7 (in this case 31), and the ALST of
the all the tasks from t7 to t1 is calculated. 103

65 Procedure used to generate the HRD list. 103

66 Procedure used to map tasks to machines for the HRD heuristic. 104

67 Procedure used to calculate the critical path of the DATCP heuristic. . . . 106

68 DATCP heuristic procedure used to generate a resource allocation. 106

xiii

69 DATCP-V heuristic procedure used to generate a resource allocation. . . . 108

70 Procedure used to assign tasks to machines using dynamic levels. 110

71 Procedure used for crossover in the Multicore Genitor heuristic. 110

72 Procedure used for resource allocation by the Multicore Genitor. 111

73 Results for the heuristics defined in Section 5.3 with αcomp = αcomm = 1
and ∆ = 15,500. Recall that the two variations of satellite placement are
arbitrary (ARB) and heuristic driven (HEU). The results are shown with a
95% confidence interval. 115

74 Results for the heuristics defined in Section 5.3 with αcomp = αcomm = 1
and ∆ = 10,500. Recall that the two variations of satellite placement are
arbitrary (ARB) and heuristic driven (HEU). The results are shown with a
95% confidence interval. 116

75 Results for the heuristics defined in Section 5.3 with αcomp = 1, αcomm =
3, and ∆ = 8000. Recall that the two variations of satellite placement are
arbitrary (ARB) and heuristic driven (HEU). The results are shown with a
95% confidence interval. 117

76 Results for the heuristics defined in Section 5.3 with αcomp = 1, αcomm =
3, and ∆ = 6000. Recall that the two variations of satellite placement are
arbitrary (ARB) and heuristic driven (HEU). The results are shown with a
95% confidence interval. 118

77 Results for the heuristics defined in Section 5.3 with αcomp = 2, αcomm =
6, and ∆ = 8000. Recall that the two variations of satellite placement are
arbitrary (ARB) and heuristic driven (HEU). The results are shown with a
95% confidence interval. 119

78 Results for the heuristics defined in Section 5.3 with αcomp = 2, αcomm =
6, and ∆ = 6000. Recall that the two variations of satellite placement are
arbitrary (ARB) and heuristic driven (HEU). The results are shown with a
95% confidence interval. 120

79 Scatter plot of makespan vs. robustness for 10,000 resource allocations of the
Multicore MCT heuristic in three different scenarios: (a) αcomp =1, αcomm =
1, and ∆ = 15,500; (b) αcomp = 1, αcomm = 3, and ∆ = 8,000; and (c) αcomp
= 2, αcomm = 6, and ∆ = 8,000. Additionally, a line showing ∆/makespan
(square markers) was graphed in (a), (b), and (c) to show how makespan and
robustness are related based on communication time. 121

xiv

To my parents and sister for their encouragement, and sacrifices

made during this period of study.

To my friends and family for all your support.

To Jaime for your patience and understanding.

xv

ACKNOWLEDGEMENTS

I would like to thank my advisors Prof. Siegel and Prof. Maciejewski for their guidance

and help through this process. Special thanks to Prof. Smith, Prof. Jayasumana, and

Prof. Bohm. Thanks to Vladimir Shestak, Samee Khan, Ricky Kwok, Jerry Potter, Paul

Maxwell, Abdulla Al-Qawasmeh, and Dalton Young for their valuable comments on various

portions of this work. This research was supported by the NSF under Grant CNS-0615170,

CNS-0905399, and by the Colorado State University George T. Abell Endowment.

xvi

CHAPTER I

INTRODUCTION

Heterogeneous computing (HC) is the coordinated use of different types of machines, net-

works, and interfaces to maximize the combined performance,cost effectiveness, and/or the

robustness of the system. This thesis considers using the FePIA procedure derived in [5] to

mathematically model robustness metrics for several different HC environments. Resource

allocation heuristics are designed for each of these environments to improve the system

performance. This thesis also studies the performance of several greedy heuristics using an

iterative approach.

The second chapter of this thesis considers an HC environment like the one described

in [17]. In some environments, it is useful to minimize the finishing times of each machine

in the system not just the machine that is the last to finish, i.e., the makespan machine.

For example, if the execution times of the tasks on the makespan machine are overesti-

mated then the minimization of the completion of other machines becomes important. In

Chapter 2, we consider an iterative approach that decreases the finishing time of machines

by repeatedly executing a resource allocation heuristic to minimize the makespan of the

considered machines and tasks. For each successive iteration, the makespan machine of

the previous iteration and the tasks assigned to it are removed from the set of considered

machines and tasks. The goal is to identify which characteristics heuristics need to generate

improvement with the iterative approach. We show that the effectiveness of the iterative

approach is heuristic dependent, and derive a theorem to identify which heuristics cannot

attain improvements.

We observe that no heuristic can guarantee an improvement; however, we can find

heuristics that can change the resource allocation from one iteration to the next.

The third chapter of this thesis considers the data processing portion of a space-based

weather monitoring system. It is a heterogeneous weather data processing system that

1

is susceptible to uncertainties in the arrival time of data sets. The resource allocation

must be robust with respect to these uncertainties. The tasks to be executed by the data

processing system are classified into two broad categories: critical (e.g., telemetry, tracking

and control), and revenue producing (e.g., data processing and data research). In this

environment, the resource allocation of the critical tasks must be done before the resource

allocation of the non-critical (revenue) tasks. A two-phase allocation scheme is presented

in this research. The goal of the first part is to find a resource allocation that minimizes

makespan of the critical tasks. For the second part, the robustness of the mapping is the

difference between the expected arrival time and the time at which the revenue earned is

equal to the operating cost. Thus, the heuristics for the second part find a mapping that

minimizes the time for the revenue (gained by completing non-critical tasks) to be equal to

the cost. We design and evaluate different resource allocation heuristics and compare their

performance to a mathematical bound.

The fourth chapter considers a massive multiplayer online gaming (MMOG) environ-

ment. In this environment, each user controls an avatar (an image that represents and is

manipulated by a user) in a virtual world and interacts with other users. An important

aspect of MMOG is maintaining a fair environment among users (i.e., not give an unfair

advantage to users with faster connections or more powerful computers). The experience

(either positive or negative) the user has with the MMOG environment is dependent on

how quickly the game world responds to the user’s actions and the fairness of the environ-

ment. This study focuses on scaling the system based on demand. If the performance falls

below acceptable standards, the main server can off-load calculations to secondary servers.

A secondary server is a user’s computer that is converted into a server. We consider two

optimization criteria: first to minimize the maximum time it takes to get a response from

the main server, and the second is to maximize the number of players that can join an

on-going game, while maintaining a fair environment.

The fifth chapter considers a heterogeneous cluster of multicore-based machines used to

analyze satellite images. The workload involves large data sets, and is typically subject to

deadline constraints. Multiple applications, each represented by a directed acyclic graph

2

(DAG), are allocated to this multicore system. Each node in the DAG represents a task

that needs to be executed and task execution times vary substantially across machines.

The goal of this research is to assign applications to multicore-based parallel system in such

a way that they all complete before a common deadline, and their completion times are

robust against uncertainties in task execution times. We define a metric to quantify this

robustness. In this study, we design, compare, and evaluate resource allocation heuristics

that attempt to maximize this robustness metric.

3

CHAPTER II

ITERATIVE MINIMIZATION OF NON-MAKESPAN

MACHINES

2.1 Introduction

The use of heuristics for resource allocation in a heterogeneous parallel and distributed

computing environment is an important area of research and has been widely studied (e.g.,

[11, 17, 75, 86]). Static and dynamic mapping of tasks to machines are both used to do

resource allocation [2]. Static heuristics can be used in production environments, where

the tasks to be executed are known in advance; dynamic heuristics are used to allocate

resources on-line, without prior knowledge of when or which tasks arrive. In this study, we

will consider static task mapping. One metric for evaluating the performance of heuristics

is the time to complete a set of tasks on a heterogeneous suite of machines, i.e., makespan.

The makespan machine is defined as the machine with the largest completion time.

An issue one needs to consider when using makespan as an optimization criterion is

what does it mean to optimize the performance of “non-makespan machines” (the non-

makespan machines are all the machines in the heterogeneous computing (HC) system

except the makespan machine). The procedure we consider here is to repeatedly minimize

the makespan among the non-makespan machines. To achieve this goal we use the following

iterative approach. This approach decreases the finishing time of non-makespan machines

by repeatedly running a mapping heuristic to minimize the makespan of the remaining

considered machines and tasks. For each successive iteration, the makespan machine of

the previous iteration and the tasks assigned to it are removed from the set of considered

machines and tasks. The scenario in [68] is an example of a situation where the minimization

of the completion time of non-makespan machines can be important. Because allocation

A preliminary version of portions of this research appeared in [19].

4

decisions are based on predicted values of tasks execution times, the predicted makespan

machine may finish earlier than expected and another machine may have a larger completion

time and thus become the actual (versus predicted) makespan machine. The iterative

approach studied here is just one of many methods that can be used for considering the

completion time of non-makespan machines, e.g., sum of each machine’s completion time

squared.

This paper has three main contributions. The first contribution is the introduction of

an iterative technique that may be able to reduce the completion times of non-makespan

machines when used with certain heuristics. The second contribution is the definition

and mathematical characterization of “non-improving” heuristics. The third contribution

is to determine the characteristics of a heuristic, that will cause the mapping to change

across iterations. The heuristics considered for this study were Minimum Execution Time,

Minimum Completion Time, Min-Min Genetic Algorithm, Switching Algorithm, Sufferage,

and K-Percent Best.

Makespan is often the performance feature to be optimized in the study of resource

allocation in a heterogeneous computing system. Many studies explore different methods of

reducing the makespan of the given set of tasks. The literature was examined to select a set

of heuristics appropriate for the HC environment considered in this study. The MET, MCT

[1, 17, 39, 64] , and Min-Min [13, 16, 31, 39, 42, 44, 47, 52, 64, 86] heuristics implemented here

are adapted from [42]. The K-percent Best [1,39,65] and Switching Algorithm [39,52,64,65]

were adapted from [65] and the Sufferage Algorithm [13,14,23,31,38,44,47,52,65,69,72,84]

was adapted from [65]. The variation of the GA implemented here is an adaptation of the

GA in [71].

In this study, we use a heuristic and iteratively apply it to a set of tasks and machines

that becomes smaller after each iteration. This approach has not been studied in the

past. Note that the iterative approach is different from simply running a heuristic multiple

times on the same set of machines and tasks (e.g., multiple runs of a GA). In this study,

the iterative approach is presented as a possible complement to any heuristic for resource

allocation in an HC system.

5

The remainder of the paper is organized as follows. Section 2.2 describes the prob-

lem statement in detail. In Section 2.3, we describe three heuristics that when used in

conjunction with the iterative approach their iterative mappings are the same as their orig-

inal mapping. Some examples of heuristics where the original and iterative mappings may

be different are described in Section 2.4. The observations from Sections 2.3 and 2.4 are

analyzed in Section 2.5, and Section 2.6 concludes the work.

2.2 Problem Statement

Let T be the set of tasks that must be executed on a set of machines M . The estimated

time to compute (ETC) each task on each machine is assumed to be known in advance

and contained in an ETC matrix [17]. The ETC values can be based on user supplied

information, experimental data, or task profiling and analytical benchmarking [2,36,37,50,

62,89]. Determination of ETC values is a separate research problem; the assumption of such

ETC information is a common practice in resource allocation research (e.g., [9,30,37,46,50,

58,78,88]). The initial ready time for a machine is the time at which the machine will become

available to begin processing its first task from T . Tasks are assumed to be independent,

i.e., no inter-task communication is required. We make the common simplifying assumption

that each machine can only execute one task at a time, i.e., multitasking is not allowed

(e.g., [32, 56]).

For each heuristic, the mapping it produces when all tasks and machines are available is

called the original mapping. After each iteration (of the iterative approach), the makespan

machine and the tasks assigned to it are removed from consideration, and the ready times

for all remaining machines are reset to their initial ready times. The tasks that are avail-

able for mapping (were not mapped to the makespan machine in the original mapping) are

mapped again, using the same heuristic to minimize makespan among the remaining ma-

chines; this mapping is called the iterative mapping. In the context of this paper, mappable

tasks are those tasks that a heuristic can select from to assign at a given point during the

allocation. The available machines are the machines that can be assigned a mappable task.

It is important to note that both mappable tasks and available machines are dependent on

6

the heuristic used in the iterative approach. This iterative process is repeated until only one

machine remains. The goal of this study is to identify which characteristics heuristics need

to generate improvement with the iterative approach. Improvement is when the makespan

among the remaining machines compared to the makespan among the non-makespan ma-

chines generated in the original mapping is reduced. We show that the effectiveness of the

iterative approach is heuristic dependent and study the behavior of the iterative approach

for each of the chosen heuristics.

Whether the iterative approach will change a mapping often depends on how ties are

broken within a heuristic. A tie in a resource allocation heuristic is when a heuristic must

choose from two equally good solutions, i.e., the heuristic determines both task assignments

are the best possible task assignments. Two types of methods to break ties will be considered

for this study. The first method is to break ties deterministically, e.g., the task and machine

with the lowest identification number are chosen. The second method is to break ties

randomly, e.g., if multiple machines are tied each will have a an equal probability of being

chosen.

The problem we wish to address has two main components: (1) for a given heuristic

considered here, will the iterative approach result in a change to the original mapping, (2)

what are the characteristics of a heuristic whose original mapping may be improved by this

iterative technique.

Makespan is often the performance feature to be optimized in the study of resource

allocation in a heterogeneous computing system. Many studies explore different methods

of reducing the makespan of the given set of tasks. The literature was examined to select a

set of heuristics appropriate for the HC environment considered in this study. The MET,

MCT [1, 17, 39] , and Min-Min [16, 31, 39, 42, 44, 47, 52, 86] heuristics implemented here are

adapted from [42]. The K-percent Best [1,39,65] and Switching Algorithm [39,52,65] were

adapted from [65] and the Sufferage Algorithm [14, 23, 31, 38, 44, 47, 52, 65, 69, 72, 84] was

adapted from [65]. The variation of the GA implemented here is an adaptation of the GA

in [71].

In this study, we use a heuristic and iteratively apply it to a set of tasks and machines

7

1 A task list is generated that includes all unmapped tasks in a given arbitrary
order.

2 The first task in the list is assigned to its minimum execution time machine.

3 The task selected in step 2 is removed from the task list.

4 Steps 2-3 are repeated until all tasks have been mapped.

Figure 1: Procedure for using MET to generate a resource allocation.

that becomes smaller after each iteration. This approach has not been studied in the

past. Note that the iterative approach is different from simply running a heuristic multiple

times on the same set of machines and tasks (e.g., multiple runs of a GA). In this study,

the iterative approach is presented as a possible complement to any heuristic for resource

allocation in an HC system.

In the following section, we describe three common heuristic techniques where, if ties are

broken deterministically, the iterative approach will not change the mapping. We will also

formalize the properties that allow this to occur. In Section 2.4, we present four heuristics

from the literature where the iterative approach may change the mapping for better or for

worse.

2.3 Heuristics that Will Not Improve With the
Iterative Approach

2.3.1 Minimum Execution Time (MET) with Deterministic
Tie Breaking

The details of the Minimum Execution Time (MET) heuristic [1, 17, 39] are shown in

Figure 24. The MET heuristic will not change its mapping from iteration to iteration. The

generalized proof of why this occurs will be presented in Section 2.3.5.

2.3.2 Minimum Completion Time with Deterministic Tie Breaking (MCT)

The procedure to implement the Minimum Completion Time (MCT) heuristic [1,17,39]

is shown in Figure 25. With the iterative approach, the individual completion time for each

machine does not improve over iterative mappings if ties are broken deterministically (will

be demonstrated in Section 2.3.5).

8

1 A task list is generated that includes all unmapped tasks in a given arbitrary
order.

2 The first task in the list is assigned to its minimum completion time machine
(machine ready time plus estimated computation time of the task on that ma-
chine).

3 The task selected in step 2 is removed from the task list.

4 The ready time of the machine on which the task is assigned is updated.

5 Steps 2-4 are repeated until all the tasks have been mapped.

Figure 2: Procedure for using MCT to generate a resource allocation.

1 A task list is generated that includes all the tasks as unmapped tasks.

2 For each task in the task list, the machine that gives the task its minimum
completion time (first Min) is determined (ignoring other unmapped tasks).

3 Among all task-machine pairs found in 2, the pair that has the minimum com-
pletion time (second Min) is determined.

4 The task selected in 3 is removed from the task list
and is assigned to the paired machine.

5 The ready time of the machine on which the task is mapped is updated.

6 Steps 2-5 are repeated until all tasks have been mapped.

Figure 3: Procedure for using Min-Min to generate a resource allocation

2.3.3 Min-Min with Deterministic Tie Breaking

The Min-Min heuristic [31, 39, 42, 44, 47, 52, 86] is a two phase greedy heuristic. The

procedure for this heuristic is given in Figure 27. The performance of the Min-Min heuristic

using the iterative approach will depend on the method used to break ties. If the ties are

broken deterministically, the individual completion times for each machine do not improve

(will be demonstrated in Section 2.3.5).

2.3.4 Generalized Completion Time Function
and Iteration Invariant Heuristics

The MET, MCT, and Min-Min heuristics are minimizing very similar performance features.

We will relate the different performance functions by a generalized one based on machine

9

ready time and task execution time. Let RTk,n(m) be the ready time of machine m at the

nth mapping event (assignment of a task to a machine) of the kth iteration, and ETC(t,m)

be the estimated time to compute task t on machine m. A generalized completion time

(GCT) function of task t on machine m (where λ and η are arbitrary values) is:

GCT (t,m, n, k) = λ · ETC(t,m) + η ·RTk,n(m). (1)

We can then define the completion time, CT, of a new task t on machine m with Equation 1

and λ = η = 1. For both MCT and Min-Min the values of λ, η are equal to 1, the difference

between the set of machines considered for the MCT and Min-Min heuristics. For the

MET, the value of λ is equal to 1, and η is equal to 0. For GCT functions (Equation 1),

the ETC and initial ready times (RTk,1(m)) do not vary across iterations (i.e., RT1,1(m) =

RT2,1(m) = ... = RTM,1(m)).

We define an Iteration Invariant Heuristic (IIH) as a heuristic whose mapping will not

change across all iterations. Let Tk,n be the set of mappable tasks and Mk,n be the set of

available machines at the nth mapping event in the kth iteration. We will show in the next

section that a specific type of IIH (which encompasses MCT, MET, and Min-Min) can be

defined that at every mapping event n a task (tmin) is assigned to machine mmin (with an

argmin∗ approach), where

tmin,mmin = argmin
t∈Tk,n,m∈Mk,n

GCT (t,m, n, k) . (2)

It follows that at each mapping event these heuristics assign one task to one machine. 1

Additionally, this type of IIH (GCT IIH) breaks ties deterministically, i.e., they will always

pick the same pair. In particular, we select the tmin with the lowest task identification

number, and if necessary, the lowest numbered mmin.

2.3.5 Properties of Iteration Invariant Heuristics

In GCT IIHs, the assignment of tasks to machines does not change across iterations, and

thus these heuristics are not well suited for use with the iterative approach, that is, no

improvement is made over the original mapping. To design heuristics that can cause the

1∗argmin: returns the arguments at which a function attains its minimum value

10

machines
task m1 m2 m3

t1 3 2 4
t2 4 5 6
t3 8 3 1

(a)

completion time

mapping event (n) task m1 m2 m3 assignment

1

t1 3 2 4

t � mt 4 5 6

iteration k=1

1 t3 � m3
t2 4 5 6

t3 8 3 1

2

t1 3 2 5

t1� m2t2 4 5 7

3 t2 4 7 7 t2� m1

(b)

completion time

mapping

event (n) task m1 m2 m3 assignment

t1 2 4

iteration k=2

1

makespan

machine of

iteration k=1

t3 � m3t2

assigned in

iteration k=1

t3 3 1

2 t1 2 5 t1� m2

(c)

completion time

mapping

event (n) task m1 m2 m3 assignment

t1
makespan

machine of

iteration

k=1

makespan

machine of

iteration

k=2

assigned in

iteration k=2 t3 � m3

t2
assigned in

iteration k=1

iteration k=3

1

2 iteration k=1

t3
1

(d)

Figure 4: Example of a resource allocation using the Min-Min heuristic. In (a), the ETC
matrix used for this example is found. The allocation of the first iteration is shown in (b),
the second iteration in (c), and the final iteration in (d). This example illustrates that
iterations 2 and 3 do not change the original mapping.

mapping to change with the iterative approach, it is important to understand the properties

of GCT IIHs.

Consider the ETC and the example resource allocation done by the Min-Min heuristic

with three tasks (t1, t2, t3) and three machines (m1,m2,m3) shown in Figure 4. We can

observe that for the Min-Min heuristic the relative order in which tasks are assigned to

machines does not change, i.e., if a task Γk,i (ith task assigned in iteration k) was assigned

before a task Γk,j (i < j) then Γk,i is always assigned before Γk,j in every iteration, assuming

both tasks are available for mapping. This property will be proved later in this sub-section.

We cannot use n to compare the assignment of a task across the kth and (k + 1)th

iterations, because the n in the (k + 1)th iteration could represent the mapping event of

different task. Assume task t is available for mapping at iterations k and k + 1, i.e., it

11

n mapping event of the kth iteration
RTk,n(m) ready time for machine m at the nth mapping event of the kth iteration
ETC(t,m) estimated time to compute task t on machine m

GCT (t,m, n, k) GCT (t,m, n, k) = λ · ETC(t,m) + η ·RTk,n(m)
Tk,n set of mappable tasks at the nth mapping event of the kth iteration
Mk,n set of available machines at the nth mapping event of the kth iteration
Tµk

tasks assigned to the makespan machine in the kth iteration
Γk,n nth task mapped at the kth iteration
βk,n machine to which Γk,n is mapped
µk makespan machine of iteration k

ω(k,Γk,n) represents the mapping event where task Γk,n is assigned in the kth iteration
n̂ n̂ = ω(k + 1,Γk,n)

Γk+1,n̂ n̂th task mapped at the (k + 1)th iteration, by definition it is equal to Γk,n
βk+1,n̂ machine to which Γk+1,n̂ is mapped (proved in Thm. 1 to be equal to βk,n)

Figure 5: Glossary of Notation.

is not on the makespan machine for iterations z ≤ k. To compare across iterations, we

use the function ω(k, t) to represent the mapping event where task t is assigned in the kth

iteration, i.e., by definition n = ω(k,Γk,n). For convenience, we will define n̂ = ω(k+1,Γk,n)

to compare the mapping of Γk,n in the kth and the (k + 1)th iteration (at the nth and n̂th

mapping events respectively). Thus, Γk,n is equal to Γk+1,n̂ by definition.

We will show that if Γk,n is mapped to machine βk,n in the kth iteration, i.e.,

Γk,n, βk,n = argmin
t∈Tk,n,m∈Mk,n

GCT (t,m, n, k), (3)

and Γk+1,n̂ (recall that Γk,n = Γk+1,n̂) is mapped to machine βk+1,n̂ in the (k+1)th iteration,

i.e.,

Γk,n, βk+1,n̂ = argmin
t∈Tk+1,n̂,m∈Mk+1,n̂

GCT (t,m, n̂, k + 1), (4)

then βk+1,n̂ = βk,n. The relationship of Tk,n to Tk+1,n̂, and Mk,n to Mk+1,n̂ is an important

aspect of GCT IIHs. Let us define the makespan machine of the kth iteration as µk, and

the set of tasks assigned to the makespan machine in the kth iteration as Tµk
. Between

the sets of tasks Tk,n and Tk+1,n̂ two conditions are needed for the mapping to be iteration

12

invariant:

Tk+1,n̂ ⊆ Tk,n, and (5)

Tk,n − Tk+1,n̂ ⊆ {Tµk
,∅}. (6)

Two additional conditions for the relationship between Mk,n and Mk+1,nk+1
are:

Mk+1,n̂ ⊂ Mk,n, and (7)

Mk,n −Mk+1,n̂ = {µk}. (8)

A GCT IIH is a heuristic that has the properties shown in Equations 1, 5, 6, 7, 8, and

breaks ties deterministically. The proof that a mapping generated by GCT IIHs will not

change across iterations is shown in Theorem 1 using Lemma 1. Lemma 1 states that if

ready times are identical at the nth mapping event of the kth and the n̂th mapping event

of the (k + 1)th iteration, then the task/machine assignment will be the same. Theorem 1

uses the result from Lemma 1 to show that the mapping will not change across iterations.

A glossary of relevant notation is shown in Figure 5.

Lemma 1. Consider tasks not assigned to µk for a GCT IIH. If the ready times are identical

at the nth mapping event of the kth iteration and the n̂th mapping event of the (k + 1)th

iteration then the same task/machine assignment is chosen in both iterations.

Proof. From Equation 2, we know that the GCT function of the task/machine pairs in the

kth iteration will have the following property:

GCT (Γk,n, βn, n̂, k) ≤ GCT (t,m, n, k) ∀t ∈ Tk,n, ∀m ∈Mk,n, (9)

and the (k + 1)th iteration has the following property:

GCT (Γk+1,n̂, βk+1,n̂, n̂, k + 1) ≤ GCT (t,m, n̂, k + 1) ∀t ∈ Tk+1,n̂,∀m ∈Mk+1,n̂. (10)

Given the assumption that RTk+1,n̂(m) = RTk,n(m), and the ETC values are fixed it follows

that:

GCT (t,m, n̂, k + 1) = GCT (t,m, n, k)∀t ∈ Tk+1,n̂, ∀m ∈Mk+1,n̂. (11)

13

Because {Γk+1,n̂,βk+1,n̂} and {Γk,n,βk,n} are the task-machine pairs that minimize the

GCT function in the (k+ 1)th and kth iterations, and ties are broken deterministically then

βk+1,n̂ = βk,n, i.e., respectively

argmin
t∈Tk+1,n̂,m∈Mk+1,n̂

GCT (t,m, n̂, k + 1) = argmin
t∈Tk,n,m∈Mk,n

GCT (t,m, n, k), (12)

Γk+1,n̂, βk+1,n̂ = Γk,n, βk,n. (13)

Theorem 1. The mapping generated by a GCT IIH will not change across iterations.

Proof. Inductive hypothesis: Consider the nth task mapped by a GCT IIH in the kth

iteration (Γk,n). Let P (n) be the statement that Γk,n will have the same assignment in both

the kth iteration and the (k + 1)th iteration. For the basis and inductive steps, there are

two cases to consider: the case when the task is mapped to the makespan machine in the

kth iteration (µk) and the case when the task is not mapped to machine µk.

To prove P (n) is true ∀n ≥ 1 we need to prove:

1) P (1) is true

2) (∀n) [P (n) is true for all r, 1 ≤ r ≤ n ⇒ P (n+ 1) is true].

Basis Step: Prove that P (1) is true.

Case 1: The task Γk,1 was assigned to machine µk. Because Γk,1 was assigned to µk, it will

remain assigned to µk in the (k + 1)th iteration because the makespan machine is removed

from consideration; thus, the P (1) statement is true for case 1 of the basis step.

Case 2: The initial ready times of the kth and the (k+ 1)th iterations are identical. There-

fore, using Lemma 1, we can prove case 2 is true. Thus the P (1) statement is true for case

2 of the basis step.

Inductive Step: For the inductive step assume that ∀r P (1 ≤ r ≤ n) is true and prove

P (n+ 1) is true. The assumption that P (1 ≤ r ≤ n) is true implies that ready times, when

Γn+1,k is mapped, are equal in the kth mapping and the (k + 1)th mapping.

Case 1: The (n+ 1)th task to be mapped in the kth iteration was assigned to machine µk.

14

Because Γn+1,k was assigned to µk, it will remain assigned to µk in the (k + 1)th iteration

because the makespan machine is removed from consideration; thus, the P (1) statement is

true for case 1 of the inductive step.

Case 2: Because of the inductive assumption, all the previous task to machine assignments

are identical between the kth and (k+ 1)th iteration. This implies that the ready times, for

all machines in both Mk,n and Mk+1,n̂ are the same. Therefore, using Lemma 1, we prove

case 2 is true. Thus the P (n + 1) statement is true for case 2 of the inductive step. This

proves that all assignments remain identical between iterations.

GCT IIH like MET, MCT, and Min-Min are indeed IIH when ties are broken determin-

istically and the mappings do not change with the iterative approach. It is important to

note that in practice, depending on precision of completion times, ties can be rare. Also if

two machines are tied as the makespan machine, then the machine with the smallest iden-

tification number is selected. In the next section, we explore heuristics that may improve

the iterative approach.

2.4 Heuristics That May Improve with the Iterative Ap-
proach

2.4.1 MET with Random Tie Breaking

2.4.1.1 Example of Reducing the Makespan among Non-Makespan Machines

This is the same MET as described in Section 2.3.1 except that ties are broken randomly.

For this example, the initial ready times of machines are 0. Consider the following mapping

order: t1, t2, and t3. The resource allocations of the original mapping are shown in Figure

6(a) and 6(c). There are two MET machines for t1 and t3. In the original mapping, task t1

and t3 will be assigned to m2.

The first iterative mapping (without machine m1)is shown in Figures 6(b) and 6(d).

In the first iterative mapping, t1 is assigned to m2 and t3 is assigned to m3. This change

causes the makespan among the machines in this iteration to decrease. The makespan of

the set of machines m2 and m3 is decreased from 3 in the original mapping to 2 in the first

iterative mapping.

15

machine ETC
assignment (m1, m2, m3)

t1 → m2 3, 2, 2
t2 → m1 4, 5, 6
t3 → m2 8, 1, 1

(a)

machines ETC
assignment (m2, m3)

t1 → m2 2, 2
t3 → m3 1, 1

(b)

t2

t1

t2

t3

0 1 2 3 4 5

m1

m2

m

m
ac

hi
ne

s

time

3 t2

(c)

t2

t1

t3

0 1 2 3 4 5

m1

m2

m3

m
ac

hi
ne

s

time

(d)

Figure 6: Example of makespan among non-makespan machines being reduced for MET: (a)
details of original mapping, (b) details of first iterative mapping, (c) graphical representation
of original mapping, and (d) graphical representation of first iterative mapping.

2.4.1.2 Example of Increasing Overall Makespan

The previous subsection shows we can reduce, from iteration k to k + 1, the maximum

finishing times among the machines available at the (k + 1)th iteration. However, it is

also possible that the maximum finishing time can be increased even beyond the original

makespan. Because of this, we must be careful when applying this method. An example of

makespan increasing is shown in this subsection.

For this example, the initial ready times of machines are 0. Consider the following

mapping order: t1, t2, t3, and t4. The resource allocations of the original mapping are

shown in Figures 7(a) and 7(c). There are two MET machines for t1. Task t1 will be

assigned to m2 in the original mapping. However, in the first iterative mapping (without

machine m1) shown in Figures 7(b) and 7(d), t1 is assigned to m3. This change causes the

makespan to become greater than that of the original full mapping. In practice, you can

try all possible combination of tie breaking. For this example, we break ties randomly.

16

machine ETC
assignment (m1, m2, m3)

t1 → m2 3, 2, 2
t2 → m2 4, 1, 4
t3 → m3 5, 4, 3
t4 → m1 4, 5, 6

(a)

machines ETC
assignment (m2, m3)

t1 → m3 2, 2
t2 → m2 1, 4
t3 → m3 4, 3

(b)

t4

t1

t3

t2

t2

t2

0 1 2 3 4 5

m1

m2

m3

m
ac

hi
ne

s

time

(c)

t4

t2

t1

t2

t2

t3

0 2 4 6

m1

m2

m3

m
ac

hi
ne

s

time

(d)

Figure 7: Example of overall makespan increasing for MET: (a) details of original mapping,
(b) details of first iterative mapping, (c) graphical representation of original mapping, and
(d) graphical representation of first iterative mapping.

2.4.2 MCT with Random Tie Breaking

2.4.2.1 Example of Reducing the Makespan among Non-Makespan Machines

This is the same MCT as described in Section 2.3.2 except that ties are broken randomly.

For this example of improvement, the initial ready times are 0. Consider the following

mapping order for the MCT heuristic: t1, t2, t3, and t4. The ETC matrix used for this

example is shown in Figure 8(a). In Figures 8(c) and 8(b), the term “Machine CT” denotes

the Machine completion time of the task in the corresponding row, based on previous task

assignments. This example relies on a tie in the mapping of task t3 between m2 and m3.

In the original mapping, t3 is assigned to m2.

In the original mapping shown in Figures 8(b) and Figure 8(d), t3 is assigned to machine

m3. However, in the first iterative mapping shown in Figures 8(c) and 8(e), t3 is assigned

to machine m2. Thus, the makespan of the remaining machines m2 and m3 went from 5 in

the original mapping to 4 in the first iterative mapping.

17

machine
task (m1, m2, m3)

t1 8, 9, 10
t2 3, 2, 5
t3 5, 2, 4
t4 3, 3, 1

(a)

machine CT
assignment (m1, m2, m3)

t1 → m1 8, 9, 10
t2 → m2 11, 2, 5
t3 → m3 13, 4, 4
t4 → m2 11, 5, 5

(b)

machine CT
assignment (m2, m3)

t2 → m2 2, 5
t3 → m2 4, 4
t4 → m3 7, 1

(c)

t1

t2

t3

t2

t4

t2

0 2 4 6 8 10

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t1

t2

t4

t2

t3

t2

0 2 4 6 8 10

m1

m2

m3

m
ac

hi
ne

s
time

(e)

Figure 8: Example of makespan among non-makespan machines being reduced with MCT:
(a) ETC matrix, (b) details of original mapping, (c) details of first iterative mapping,
(d) graphical representation of original mapping, and (e) graphical representation of first
iterative mapping.

2.4.2.2 Example of Increasing Overall Makespan

For this example, the initial ready times of machines are 0. Consider the following

mapping order for the MCT heuristic: t1, t2, t3, and t4. The ETC matrix used for this

example is shown in Figure 9(a).

The original mapping is shown in Figures 9(b) and 9(d). This example relies on a tie in

the mapping of task t1 between m2 and m3. In the original mapping, t1 is assigned to m2.

The resource allocations for the first iterative mapping are shown in Figures 9(c) and 9(e).

For the first iterative mapping, we assign task t1 to m3. This change causes the makespan

to become greater than that of the original full mapping.

2.4.3 Min-Min with Random Tie Breaking

2.4.3.1 Example of Reducing the Makespan among Non-Makespan Machines

This is the same Min-Min as described in Section 2.3.3 except that ties are broken

randomly. For this example of improvement, the initial ready times of machines are 0. The

ETC matrix used is shown in Figure 10(a). In Figures 10(b) and 10(c), the term “Machine

18

machines
task (m1, m2, m3)

t1 3, 2, 2
t2 4, 1, 4
t3 5, 4, 3
t4 4, 5, 4

(a)

machine CT
assignment (m1, m2, m3)

t1 → m2 3, 2, 2
t2 → m2 4, 3, 4
t3 → m3 5, 7, 3
t4 → m1 4, 8, 7

(b)

machine CT
assignment (m2, m3)

t1 → m3 2, 2
t2 → m2 1, 6
t3 → m3 5, 5

(c)

t4

t1

t3

t2

t2

t2

0 1 2 3 4 5

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t4

t2

t1

t2

t2

t3

0 2 4 6

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 9: Example of overall makespan increasing for MCT: (a) ETC matrix, (b) details
of original mapping, (c) details of first iterative mapping, (d) graphical representation of
original mapping, and (e) graphical representation of first iterative mapping.

CT” denotes the Machine completion time of the task in the corresponding row, based on

previous task assignments.

The original mapping is shown in Figures 10(b) and 10(d), and the iterative mapping

is shown in Figures 10(c) and 10(e). In the second assignment of the example shown in

Figures 10(b) and 10(c), task t2 was assigned to m3 in the original mapping, and then to

m2 in the first iterative mapping (when makespan machine m1 is excluded. The makespan

of the set of machines m2 and m3 is decreased from 6 in the original mapping to 4 in the

first iterative mapping.

2.4.3.2 Example of Increasing Overall Makespan

For this example of makespan increasing, the initial ready times of machines are 0.

The ETC matrix used is shown in Figure 11(a). The original mapping is shown in Figures

11(b) and 11(d), and the first iterative mapping is shown in Figures 11(c) and 11(e). In the

original mapping, we considered that this tie was broken by assigning t3 to m2; however, in

the first iterative mapping t2 is assigned to m3. This change causes the makespan to become

greater than that of the original full mapping. This example proves that the makespan can

19

machines
task (m1, m2, m3)

t1 8, 9, 10
t2 10, 3, 4
t3 11, 1, 4
t4 8, 5, 4

(a)

machine CT
1st assignment (m1, m2, m3)

t1 8, 9, 10
t2 10, 3, 4

t3 → m2 11, 1, 4
t4 8, 5, 4

2nd assignment (m1, m2, m3)
t1 8, 10, 10

t2 → m3 10, 4, 4
t4 8, 6, 4

3rd assignment (m1, m2, m3)
t1 8, 10, 14

t4 → m2 8, 6, 8
4th assignment (m1, m2, m3)

t1 → m1 8, 15, 14
(b)

machine CT
1st assignment (m2, m3)

t2 3, 4
t3 → m2 1, 4

t4 5, 4
2nd assignment (m2, m3)

t2 → m2 4, 4
t4 6, 4

3rd assignment (m2, m3)
t4 → m3 9, 4

(c)

t1

t3

t2

t2

t4

t2

0 2 4 6 8 10

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t1

t3

t4

t2

t2

t2

0 2 4 6 8 10

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 10: Example of makespan among non-makespan machines being reduced for Min-
Min: (a) ETC matrix, (b) details of original mapping, (c) details of first iterative mapping,
(d) graphical representation of original mapping, and (e) graphical representation of first
iterative mapping.

increase if ties are broken randomly using the Min-Min heuristic.

2.4.4 Genetic Algorithm (GA)

Genetic Algorithms (GAs) have been shown to work well for numerous problem domains,

including resource allocation and job shop scheduling. GAs use chromosomes to represent

possible solutions, e.g., all tasks and the machines to which they are assigned. A GA

20

machines
task (m1, m2, m3)
t1 4, 1, 3
t2 5, 6, 7
t3 3, 1, 2
t4 5, 5, 4

(a)

machine CT
1st assignment (m1, m2, m3)

t1 → m2 4, 1, 3
t2 5, 6, 7
t3 3, 1, 2
t4 5, 5, 4

2nd assignment (m1, m2, m3)
t2 5, 7, 7

t3 → m2 3, 2, 2
t4 5, 6, 4

3rd assignment (m1, m2, m3)
t2 5, 8, 7

t4 → m3 5, 7, 4
4th assignment (m1, m2, m3)

t2 → m1 5, 8, 11
(b)

machine CT
1st assignment (m2, m3)

t1 → m2 1, 3
t3 1, 2
t4 5, 4

2nd assignment (m2, m3)
t3 → m3 2, 2

t4 6, 4
3rd assignment m2, m3

t4 → m3 6, 6
(c)

t2

t1

t4

4t2

t3

t2

0 2 4 6

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t2

t1

t3

t2

t2

t4

0 2 4 6

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 11: Example of overall makespan increasing for Min-Min: (a) ETC matrix, (b)
details of original mapping, (c) details of first iterative mapping, (d) graphical representation
of original mapping, and (e) graphical representation of first iterative mapping.

has a population that consists of multiple chromosomes and typically has two operators

to search for better solutions. The first operator is crossover, an operator that combines

two chromosomes to produce two new chromosomes. The second operator is mutation,

this operator may randomly change tasks assignments within a chromosome. A GA can

be summarized by the procedure shown in Figure 29. This variation of a GA is adapted

from [71].

21

1 An initial population of mappings is generated.

2 The mappings in the population are ordered based on makespan.

3 While the stopping criteria is not met:

a An intermediate population is created using a selection mechanism
(i.e., rank based selection).

b Two chromosomes in the intermediate population are probabilistically
selected as parents for crossover.

i A random cut-off point is generated.
ii The machine assignments of the tasks below the cut-off point are ex-

changed.

c Each offspring has a probability of being mutated. For the chosen
chromosome, a random task is chosen and its machine assignment
is arbitrarily modified.

d The resultant population of the crossover and mutation
replaces the original population. Because of elitism
the best chromosome remains in the population.

4 The best solution is output.

Figure 12: Summary of one possible procedure that can be used to implement a GA

For each iteration (of the iterative approach), the best mapping found by GA in the

previous iteration, excluding the makespan machine and the tasks assigned to it, is included

in current population (i.e., it is used as a “seed”). Using elitism in the GA guarantees that

the final mapping is either the seeded mapping or a mapping with a smaller makespan,

among the machines considered in the current iteration. Thus, for GA the iterative approach

will result in either an improvement or no change. The iterative technique also works with

steady state GAs such as Genitor [85], because Genitor uses ranking to keep the best

chromosome.

2.4.5 K-percent Best Algorithm

2.4.5.1 Overview of K-percent Best Algorithm

The K-percent Best Algorithm [1, 39, 65]. The K-percent Best Algorithm, is a hybrid

of MET and MCT. The procedure to implement K-percent Best is shown in Figure 26. If

the percentage is (100/number of machines)% then the K-percent Best is identical to the

22

1 A task list is generated that includes all unmapped tasks in a given arbitrary
order.

2 A subset is formed by picking the M · (k
100) best machines based on

the execution times for the task.

3 The task is assigned to a machine that provides the earliest completion time
in the subset.

4 The task is removed from the unmapped task list.

5 The ready time of the machine on which the task is assigned is updated.

6 Steps 2-5 are repeated until all tasks have been assigned.

Figure 13: Procedure for using K-percent Best to generate a resource allocation.

MET heuristic, however, if the percentage is 100% then it is identical to the MCT heuristic.

An example of the K-percent Best Algorithm with the iterative approach improving the

makespan among non-makespan machines, and in contrast, an example of increasing the

overall makespan, can be found even for cases when no special consideration is used to break

ties. The percentage K for a given environment is found by experimentation.

The K-percent best heuristic uses the MCT heuristic that Theorem 1 proved would not

change mappings unless ties were broken randomly, however its mappings do change. This

introduces an important question: how can a heuristic that uses MCT to do its assignments

change when ties are broken deterministically? The characteristic that K-percent Best has

is that it limits the number of machines considered for assignment depending on the size of

the set of machines that are available at that iteration. This implies that if the percentage

was such that only one machine is selected, i.e., KPB would work like MET or 100% (K-

percent Best would work like MCT) the mapping would not change across iterations. If

the value of K is between these two extreme values then the KPB will violate Equation 8.

Thus, despite the MCT part, the K-percent Best is not a GCT IIH. For values of K that

result in a group of machines whose size is greater than one, the reduction in machines after

an iteration can cause the minimum completion time machine in the original mapping to be

left out of the machines the heuristic allows for assignment in the first iterative mapping.

23

machines
task (m1, m2, m3)

t1 80, 90, 100
t2 100, 40, 30
t3 110, 39, 10
t4 80, 30, 40

(a)

machine CT K-%
assignment (m1,m2,m3) machines

t1 → m1 80, 90, — m1,m2
t2 → m3 —, 40 , 30 m2,m3
t3 → m2 —, 39, 40 m2,m3
t4 → m2 —, 69, 70 m2,m3

(b)

machine CT K-%
assignment (m2,m3) machines

t2 → m3 —, 30 m3
t3 → m3 —, 40 m3
t4 → m2 30, — m2

(c)

t1

t3

t2

t2

t4

t2

0 20 40 60 80

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t1

t4

t2

t2

t2

t3

0 20 40 60 80

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 14: Example of makespan among non-makespan machines being reduced for K-
percent Best: (a) ETC matrix, (b) details of original mapping, (c) details of first iterative
mapping, (d) graphical representation of original mapping, and (e) graphical representation
of first iterative mapping.

2.4.5.2 Example of Reducing the Makespan among Non-Makespan Machines

For this example, the initial ready times of machines are 0. Consider the ETC matrix

shown in Figure 14(a) for three machines and the following mapping order: t1, t2, t3, and

t4. The percent for this example is set to 70%. This implies that for the original mapping

the best two machines are considered for mapping, and for the first iterative mapping only

one machine is considered. Allowing only one machine forces the K-percent Best Algorithm

to map tasks to the MET machine in the first iterative mapping.

The original mapping using the K-percent Best heuristic is shown in Figures 14(b) and

14(d). The result of the first iterative mapping is shown in Figures 14(c) and 14(e). In

the original mapping, t3 is assigned to m2. However, in the first iterative mapping t3 is

24

assigned to m3. This change in mapping is because the K-percent Best Algorithm considers

only one machine for resource allocation in the first iterative mapping, while it had used

two machines in the original mapping. The makespan for machines m2 and m3 is reduced

from 69 in the original mapping to 40 in the first iterative mapping.

2.4.5.3 Example of Increasing Makespan

For this example, the initial ready times of machines are 0. Consider the ETC matrix

shown in Figure 15(a) for three machines and the following mapping order: t1, t2, t3, t4,

and t5. The percent, for this example, is set to 70%. This implies that for the original

mapping the best two machines are used for mapping, and for the first iterative mapping

only one machine is considered. This is the critical difference between the first iterative

mapping and the original mapping. Considering one machine in the first iterative mapping

forces the K-percent Best Algorithm to perform like the MET heuristic.

The results of the original mapping are shown in Figures 15(b) and 15(d). The results

of the first iterative mapping are shown in Figures 15(c) and 15(e). In the original mapping

t5 is assigned to m3; however in the first iterative mapping, task t5 is assigned to m2. The

overall makespan increased from 60, in the original mapping, to 70 in the first iterative

mapping. This is because the number of K-% Best machines went down from two to

one. This example shows that for K-percent Best Algorithm the makespan can increase,

specifically overall makespan.

2.4.6 Switching Algorithm (SWA)

2.4.6.1 Overview of SWA

The Switching Algorithm (SWA) is adapted from [65]. It was designed for use in dynamic

environments, but can be used in static environments as well. The switching algorithm is

a hybrid of the MET and MCT heuristics. The procedure for SWA is shown in Figure 16.

The high and low thresholds are determined experimentally. Examples of the SWA with

the iterative approach both improving the makespan among non-makespan machines (see

Figure 17) and increasing the overall makespan (Figure 18) can be found even for cases

25

machines
task (m1, m2, m3)

t1 60, 100, 120
t2 10, 20, 40
t3 20, 40, 30
t4 50, 30, 40
t5 60, 20, 25

(a)

machine CT K-%
assignment (m1,m2,m3) machines

t1 → m1 60, 100, — m1,m2
t2 → m2 70, 20, — m1,m2
t3 → m3 80, —, 30 m1,m3
t4 → m2 —, 50, 70 m2,m3
t5 → m3 —, 70, 55 m2,m3

(b)

machine CT K-%
assignment (m2,m3) machines

t2 → m2 20, — m2
t3 → m3 —, 30 m3
t4 → m2 50, — m2
t5 → m2 70, — m2

(c)

t1

t2

t3

t2

t4

t5

0 20 40 60

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t1

t2

t3

t2

t4

t2

t3

t5

t3

0 20 40 60 80

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 15: Example of makespan increasing for K-percent Best: (a) ETC matrix, (b) details
of original mapping, (c) details of first iterative mapping, (d) graphical representation of
original mapping, and (e) graphical representation of first iterative mapping.

when no special consideration is used to break ties.

The SWA, like the K-percent Best, uses heuristics (MCT and MET) that we proved

would not change mappings if ties were broken deterministically (Theorem 1). However, in

SWA the heuristic used to assign a task in one iteration (MET or MCT) can change when

assigning the same task in the next iteration (e.g., t4 in Figures 18(b) and 18(c)). In SWA,

the choice of using MCT or MET to map as task at a given mapping event depends on the

load balance between the machine with the largest computation time, and the machine with

the smallest computation time. In general, the calculation of the load balance index when

a given task is mapped will change from iteration i to i+1. As a result, different heuristics

may be used to map that task at different iterations. Thus, the objective function of this

26

1 A task list is generated that includes all unmapped tasks in a given arbitrary
order.

2 The first task in the list is assigned using the MCT heuristic.

3 The load balance index is calculated for the system
(minimum ready time / maximum ready time over all machines).

4 The heuristic used to map the task is determined as follows:

i If the load balance index ≥ “high threshold,” MET is selected
to map the next task.

ii If the load balance index ≤ “low threshold,” MCT is selected
to map the next task.

iii Otherwise, the current heuristic remains selected.

5 Steps 3-4 are repeated until all tasks have been mapped.

Figure 16: Procedure for using SWA to generate a resource allocation.

heuristic cannot be written as a GCT with fixed λ and η (i.e., λ and η would change as the

heuristic used changes between MCT and MET).

2.4.6.2 Example of Reducing the Makespan among Non-Makespan Machines

Consider the ETC matrix shown in Figure 17(a) and the following mapping order: t1,

t2, t3, t4, t5, and t6. The initial ready times for all the machines is 0. SWA will switch from

MCT to MET when the balance index (BI) is greater than or equal to the high threshold

of 0.8, and will switch from MET to MCT when the BI is less than or equal to the low

threshold of 0.7.

The original mapping for the SWA is shown in Figures 17(b) and 17(d). In the orig-

inal mapping, the BI never exceeds 0.8; therefore, all mappings are done using the MCT

heuristic.

The first iterative mapping for the SWA example of improvement is shown in Figures

17(c) and 17(e). The difference is that t4 is assigned to m3 in the first iterative mapping

(instead of m2). This was different because t4 was assigned with the MCT heuristic in

the original mapping, and in the first iterative mapping t4 was assigned using MET. The

27

machines
task (m1, m2, m3)

t1 40, 70, 50
t2 60, 50, 80
t3 70, 90, 60
t4 100, 30, 21
t5 110, 30, 30
t6 60, 120, 110

(a)

machine CT ready times
assignment (m1,m2,m3) (m1,m2,m3) BI mapper
t1 → m1 40, 70, 50 0, 0, 0 x MCT
t2 → m2 100, 50, 80 40, 0, 0 0 MCT
t3 → m3 110, 90, 60 40, 50, 0 0 MCT
t4 → m2 140, 80, 81 40, 50, 60 2/3 MCT
t5 → m3 150, 110, 90 40, 80, 60 1/2 MCT
t6 → m1 100, 200, 200 40, 80, 90 4/9 MCT

(b)

machine CT ready times
assignment (m2,m3) (m2,m3) BI mapper
t2 → m2 50, 80 0, 0 x MCT
t3 → m3 140, 60 50, 0 0 MCT
t4 → m3 —, 21 50, 60 5/6 MET
t5 → m2 80, 111 50, 81 50/81 MCT

(c)

t1

t2

t3

t6

t4

t5

0 20 40 60 80 100

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t1

t2

t3

t6

t5

t4

0 20 40 60 80 100

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 17: Example of makespan among non-makespan machines being reduced with SWA:
(a) ETC matrix, (b) details of original mapping (largest and smallest RTs are in italic for a
given mapping event), (c) details of first iterative mapping, (d) graphical representation of
original mapping, and (e) graphical representation of first iterative mapping (for t4 mapping
event MET is used and CTs do not matter).

makespan among the remaining machines (m2 and m3) was reduced from 90 to 81.

28

2.4.6.3 Example of Increasing Makespan

Consider the ETC matrix shown in Figure 18(a) and the following mapping order: t1,

t2, t3, t4, and t5. The initial ready times for all the machines is 0. SWA will switch from

MCT to MET when the BI is greater than or equal to the high threshold of 0.5 and will

switch from MET to MCT when the BI is less than or equal to the low threshold of 0.4.

The original mapping is shown in Figures 18(b) and 18(d), and the first iterative mapping

is shown in Figures 18(c) and 18(e). Task t4 is assigned to m3 (in the first iterative mapping)

because the resource allocation of t4 has a different BI. The makespan machine after the

first iterative mapping is m3 (i.e., the completion time of m3 becomes greater than the

completion time of m1). The overall makespan increased from 60 in the original mapping

to 65 in the first iterative mapping.

2.4.7 Sufferage Algorithm

2.4.7.1 Overview of Sufferage Algorithm

The Sufferage Algorithm [14, 23, 31, 38, 44, 47, 52, 65, 69, 72, 84] is shown in Figure 19.

In this context, the sufferage value of a task is the difference between its second smallest

completion time among all machines and its smallest completion time among all machines.

That is, it is the increase in completion time that occurs if the task cannot use its best

machine but must use its second best machine instead. Thus, the Sufferage Algorithm

is a greedy algorithm that does a limited local search. An example of Sufferage with the

iterative approach improving the makespan among non-makespan machines and, in contrast,

an example of increasing the overall makespan, can be found even for cases when ties are

broken deterministically.

In the Sufferage heuristic, the assignment of a task A to machine B depends on how

much it would “suffer” if it was assigned to the machine where A has the second best

completion time. The reason why the mapping generated by this heuristic can change is

because the machine where A has the second best completion time in the original mapping

could easily be the makespan machine. This implies the sufferage value for one or more

29

machines
task (m1, m2, m3)

t1 60, 100, 120
t2 10, 20, 40
t3 50, 25, 40
t4 60, 30, 25
t5 40, 20, 10

(a)

machine CT ready times
assignment (m1,m2,m3) (m1,m2,m3) BI mapper
t1 → m1 60, 100, 120 0, 0, 0 x MCT
t2 → m2 70, 20, 40 60, 0, 0 0 MCT
t3 → m3 110, 45, 40 60, 20, 0 0 MCT
t4 → m2 120, 50, 65 60, 20, 40 1/3 MCT
t5 → m3 100, 70, 50 60, 50, 40 2/3 MET

(b)

machine CT ready times
assignment (m1,m2,m3) (m1,m2,m3) BI mapper
t2 → m2 20, 40 0, 0 x MCT
t3 → m3 45, 40 20, 0 0 MCT
t4 → m3 —, 65 20, 40 1/2 MET
t5 → m2 40, 85 20, 65 4/13 MCT

(c)

t1

t2

t3

t2

t4

t5

0 20 40 60

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t1

t2

t3

t2

t5

t4

0 20 40 60

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 18: Example of makespan increasing for SWA: (a) ETC matrix, (b) details of original
mapping (largest and smallest RTs are in italic for a given mapping event), (c) details of
first iterative mapping, (d) graphical representation of original mapping, and (e) graphical
representation of first iterative mapping (for t4 mapping event MET is used and CTs do
not matter).

tasks will be different, and thus change the mapping decision. The Sufferage heuristic is not

a GCT IIH, because the function it uses to map cannot be written in the from of Equation

1. Note that for the sufferage algorithm there are two types of ties (a) for a given task to a

different machine both have the minimum completion time (step 2.i in Figure 19); and (b)

for a given machine two tasks may have the same sufferage values (step 2.i.b in Figure 19).

30

1 A task set (S) is generated that includes all unmapped tasks
in a given arbitrary order.

2 While there are still unmapped tasks:

i For each machine find the set of tasks that have their
minimum completion time on this machine.

a If the set of tasks is size one, then assign the corresponding task to
the machine and remove the task from S.

b If the size of the set of tasks is greater than one, then assign task with
the highest sufferage value, and remove that task from S.

ii The ready times for all machines are updated.

Figure 19: Procedure for using Sufferage to generate a resource allocation.

2.4.7.2 Example of Reducing the Makespan among Non-Makespan Machines

For this example of improvement, the initial ready times of machines are 0. Consider

the ETC matrix shown in Figure 20(a). The original mapping is shown in Figures 20(b)

and 20(d), and the first iterative mapping is shown in Figures 20(c) and in Figure 20(e).

The difference between the original mapping and the first iterative mapping is that in the

original mapping t4 was assigned to m1 in the first pass; however, in the first iterative

mapping t4 was assigned to m2 in the second pass. This is because the sufferage for t3

increased from 0 to 21 from the original mapping to the first iteration as a result of m3

being removed. This caused t3 (instead of t4) to be mapped to m1. The makespan for

machines m1 and m2 is reduced from 60 in the original mapping to 50 in the first iterative

mapping.

2.4.7.3 Example of Increasing Makespan

For this example, the initial ready times of machines are 0. Consider the ETC matrix

shown in Figure 21(a). The original mapping is shown in Figures 21(b) and 21(d), and the

first iterative mapping is shown in Figures 21(c) and 21(e). In the original mapping, t2 is

assigned to m2 in the first pass. However, task t2 is assigned to m3 in the second pass of the

first iterative mapping, because the sufferage of t4 increased in the first iterative mapping as

31

machines
task (m1, m2, m3)

t1 50, 20, 50
t2 71, 80, 70
t3 50, 71, 50
t4 10, 30, 20

(a)

machine CT
1st pass (m1, m2, m3) Sufferage
t1 → m2 50, 20, 50 30
t2 → m3 71, 80, 70 1

t3 50, 71, 50 0
t4 → m1 10, 30, 20 10
2nd pass (m1, m2, m3) Sufferage
t3 → m1 60, 91, 120 31

(b)

machine CT
1st pass (m1, m2) Sufferage
t1 → m2 50, 20 30
t3 → m1 50, 71 21

t4 10, 30 20
2nd pass (m1, m2) Sufferage
t4 → m2 60, 50 10

(c)

t4

t1

t2

t3

t2

t2

0 20 40 60

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t3

t1

t2

t1

t4

t1

0 20 40 60

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 20: Example of makespan among non-makespan machines being reduced for Suffer-
age: (a) ETC matrix, (b) details of original mapping, (c) details of first iterative mapping,
(d) graphical representation of original mapping, and (e) graphical representation of first
iterative mapping.

a result of m1 being removed. This increase caused t4 be assigned at a different pass of the

heuristic. This in turn forces t1 to be mapped in the 3rd pass, instead of the second pass,

and to a different machine, i.e., m2 resulting in larger makespan. The overall makespan

increases from 100 in the original mapping to 108 in the first iterative mapping.

2.5 Analysis of Characteristics of Heuristics

In the analysis of the heuristics that use the iterative approach, we found that there

are three main situations in which a mapping can change. The first situation is when

a mapping will change from one iteration to the next if ties are broken randomly. This

situation occurred with the Min-Min, MCT, and MET heuristics. If ties are instead broken

32

machines
task (m1, m2, m3)

t1 80, 70, 91
t2 70, 50, 70
t3 100, 160, 160
t4 20, 38, 60

(a)

machine CT
1st pass (m1, m2, m3) Sufferage

t1 80, 70, 91 10
t2 → m2 70, 50, 70 20
t3 → m1 100, 160, 160 60

t4 20, 38, 60 18
2nd pass (m1, m2, m3) Sufferage
t1 → m3 180, 120, 91 29

t4 120, 88, 60 28
3rd pass (m1, m2, m3) Sufferage
t4 → m2 120, 88, 151 32

(b)

machine CT
1st pass (m2, m3) Sufferage

t1 70, 91 21
t2 50, 70 20

t4 → m2 38, 60 22
2nd pass (m2, m3) Sufferage

t1 108, 91 17
t2 → m3 88, 70 18
3rd pass (m2, m3) Sufferage
t1 → m2 108, 161 53

(c)

t3

t2

t1

t2

t4

t2

0 50 100

m1

m2

m3

m
ac

hi
ne

s

time

(d)

t3

t4

t2

t1

t1

t1

0 50 100

m1

m2

m3

m
ac

hi
ne

s

time

(e)

Figure 21: Example of overall makespan increasing for Sufferage: (a) ETC matrix, (b)
details of original mapping, (c) details of first iterative mapping, (d) graphical representation
of original mapping, and (e) graphical representation of first iterative mapping.

deterministically, then these heuristics are GCT IIHs (as proved in Section 2.3.5). It is

important to use these observations and apply them to heuristics that were not considered

in this study. An example of a different heuristic that is also a GCT IIH is the Opportunistic

Load Balancing (OLB) [17, 63, 65] heuristic. OLB assigns each task, in a given arbitrary

order, to the machine with the smallest ready time. The OLB heuristic uses a GCT function

with λ = 0 and η = 1 (recall that MET has λ = 1 and η = 0). There are other IIHs, and

similar proofs can be derived for them.

The second situation is when a mapping can change from one iteration to the next

33

independently of how ties are broken. This situation occurred with the K-percent Best,

SWA, and Sufferage heuristics. The main characteristic of the second category of heuristics

is that additional information, other than a GCT function, is used to determine assignments.

Intuitively, this means that the assignment of task A to machine B depends on the state

of the other available machines; however, the set of available machines changes from one

iteration to the next. An additional example of this second type of heuristic is the Max-Min

heuristic [13,42]. In Max-Min, we find the machine that has the minimum completion time

for each task and from these task-machine pairs we select the pair that has the maximum

completion time. Consider a situation with multiple tasks and machines where t1 has

its minimum completion time on m1 in the original mapping, and t2 has its minimum

completion time on m2. In this example, the completion time of t2 on m2 is greater than

the completion time of t1 on m1 (GCT (t1,m1, 1, 1) < GCT (t2,m2, 1, 1)). Therefore, t2

gets assigned to m2 (t2 → m2). However, assume m1 was the makespan machine of the

original mapping and t1 has a new minimum on m2. This new minimum is greater than

the completion time of assigning t1 to m1. This could cause t1 → m2 to be greater than

t2 → m2 (GCT (t1,m2, 1, 2) > GCT (t2,m2, 1, 2)) causing t1 to be assigned to m2 and t2 to

be assigned to a different machine. Max-Min is not a GCTIIH because its task to machine

assignment is done with the following equation:

Γk,n, βk,n = argmax
t∈Tk,n

{
argmin
m∈Mk,n

(GCT (t,m, n, k))

}
. (14)

This equation is different from Equation 2, therefore it is not a GCT IIH.

The third situation is when a mapping will result in either an improvement or no change.

The GA based approach was the only heuristic considered in this study where the overall

makespan could not increase; however, no improvement can be guaranteed. This was ac-

complished using the best chromosome from the previous iteration and seeding it into the

current iteration. This usage of seeding comes very naturally to the GA heuristic; however,

the same concept can also be applied to the other heuristics in this study, e.g., KPB, SWA,

Sufferage. If we have heuristics where the mapping can change (with the iterative approach)

then we can compare the mapping of the non-makespan machines from iteration k and the

34

mapping from iteration k + 1 and keep the mapping with the smallest makespan. This

would cause the best solutions to be preserved across iterations, thus changing the mapping

only if a better makespan is found.

2.6 Conclusions

An iterative approach for minimizing the finishing times of machines in a heteroge-

neous computing environment was proposed. The performance of several heuristics was

analyzed for such an approach. The greedy heuristics studied (Min-Min, MCT, MET,

SWA, K-percent Best, and Sufferage) did not guarantee an improvement in the completion

time among non-makespan machines. The Min-Min, MCT, and MET heuristics with de-

terministic tie breaking were characterized as GCT IIHs, and were mathematically proven

to not change mappings. However, the Min-Min, MCT, and MET heuristics with ran-

dom tie breaking can change the makespan among remaining machines (i.e., improve or

get worse, even causing the overall makespan to increase). The Switching Algorithm, K-

percent Best, and Sufferage heuristics all produced mappings with the iterative approach

where the makespan among remaining machines can change. The main characteristic that

SWA, K-percent Best, and Sufferage share is that the assignment of a given task to a given

machines depends on the state of other machines. It was also determined that these heuris-

tics use additional information other than the GCT function to assign tasks. The GA-based

approach using elitism will keep the same mapping or produce a better mapping and there-

fore guarantees the overall makespan will not increase. In summary, the most important

characteristic to note when implementing the iterative approach with on of the heuristics

is that one must apply elitism across iterations to guarantee the makespan among available

machines at each iteration does not become worse.

In this study, we aim to minimize the maximum completion time of machines,i.e., min-

imizing the makespan. Analogously we could try to minimize the maximum utilization or

minimize the maximum power consumption of a computer. Thus, this approach can be

used in various minmax environments.

35

CHAPTER III

ROBUST RESOURCE ALLOCATION FOR WEATHER

DATA PROCESSING ON A HETEROGENEOUS

PARALLEL SYSTEM

3.1 Introduction

A space-based weather monitoring system considered in this work consists of three major

components: a satellite positioning system, the satellite with its data collection sensors, and

the data processing system (see Figure 22). The satellite positioning system is responsible

for requesting (from the satellite) the data that must be collected, and sending the asso-

ciated processing tasks to the distributed computing platform. Imaging across a variety

of spectral bands is collected by the satellite, and is transmitted to the data processing

system. This research can also apply to different satellite image processing environments,

e.g., entertainment and homeland security.

The weather imaging data sent down by the satellite (the data set) must be processed

before it is of any value to the users. A new weather data set is received periodically,

and the current data set must be processed before the next data set arrives. A similar

requirement is used in the satellite image processing in [49]. The tasks to be executed on

the data set can be classified into two broad categories: (a) critical telemetry, tracking,

and control (TTC); and (b) non-critical data processing and data research [67]. Currently

systems used for processing the data sets, at a typical site, are divided into three distinct

sets of processing elements (dedicated to TTC, data processing, and data research). As a

result of this partitioning of a given data set, one system may be overloaded while another

is underloaded.

The goal of this research is to develop a resource manager so that a smaller heterogeneous

A preliminary version of portions of this research appeared in [68].

36

data

collection

request data sets

satellite

satellite

positioning

system

tasks associated

with data

collection

data processing

system

Figure 22: Overview of a space-based weather system.

global bank of shared common resources can replace the three sets of processing elements

and operate efficiently. The global bank will reduce the cost of the system, while being

financially viable. This platform is a heterogeneous computing system (HCS), because

machines are typically added or replaced over time with new machines. Therefore, tasks

may have different execution times on different machines, and thus have greater affinity to

certain machines.

The allocation of tasks to machines is a static mapping problem [2], because all the tasks

that need to be executed are known a priori (before the data set to be processed arrives).

However, it has some characteristics of dynamic mapping in that tasks are known a short

time in advance so the resource allocation must be performed in a short amount of time,

e.g., 5 minutes.

In an HCS, the assignment of tasks to machines to obtain a near-optimal resource

allocation is an important research problem. The act of assigning (matching) each task

to a machine and ordering (scheduling) the execution of the tasks in each machine is

known as mapping, resource allocation, or resource management. The mapping

problem has been shown, in general, to be NP-complete (e.g., [26, 34, 42]). Hence, the

development of heuristic techniques to find near optimal solutions is an active area of

research (e.g., [2, 33,35,86]).

The performance of computing systems is susceptible to degradation due to unpre-

dictable circumstances. Therefore, it is necessary to allocate resources to tasks so that the

robustness of the system in response to unpredictable events is maximized [5]. For this

37

study, the times between the arrival of data sets can vary, i.e., it is uncertain. The next

data set may arrive earlier than expected. Because the current data set is discarded when

the next data set arrives, it is important for the resource allocation to be robust against an

early arrival of the next data set. Thus, it is necessary to develop a performance metric to

evaluate the robustness of a mapping produced by the heuristics. The contributions of this

research are: (1) derived a formal mathematical model for a proposed real world weather

image processing system; (2) defined a new robustness metric for making resource allocation

decisions; (3) the development of a two-part approach for scheduling high priority tasks

(HPT), and revenue generating tasks (RGT) in an oversubscribed system where each

part has a different robustness criteria; (4) designed and evaluated new problem domain

specific heuristics for developing resource allocations; and (5) the derivation of a bound on

the performance of a resource allocation for the proposed HCS.

The remainder of this paper is organized as follows. A detailed overview of the system

model is given in Section 3.2. Section 3.3 discusses the related work. The heuristics for

HPT and RGT are explained in Sections 3.4 and 3.5, respectively. Section 3.6 describes the

simulation setup used for the experiments, and the bounds on the performance of a resource

allocation are presented in Section 3.7. The experimental results are discussed in Section

3.8. In Section 3.9, the conclusions are presented.

3.2 System Model

3.2.1 Overview

In this study, there are a set of T tasks that must be executed on M heterogeneous machines

for a given data set. It is assumed that all the tasks associated with a data set must arrive

at a predetermined time before the expected arrival time of the data set. Therefore, all

the tasks associated with a data set are known a priori, and the mapping problem is a

static mapping problem [2, 17]. A new data set arrives from the satellite after an interval

of τ time units. The high priority tasks from this new data set are needed to steer the

satellite. We need the computing power to schedule these high priority tasks in order to

decide where to move the satellite next. Therefore, when a new data set arrives, all tasks

38

associated with the old data set are dropped, and the machine queues are emptied. In some

scenarios dealing with large image data sets, it may difficult to keep multiple data sets from

multiple time intervals. Furthermore, for the case where the same geographical location is

being monitored, it is better to use the latest data. In our environment, we will need to

stop executing revenue tasks to execute the new high priority tasks.

An oversubscribed system is considered because it makes meeting robustness constraints

more difficult to accomplish. In this system, not all tasks (for the current data set) can be

completed by the expected arrival time of the next data set. The oversubscribed scenario

allows the comparison of the heuristics in a different environment.

The expected arrival time of the next data set, τexpected, is only an estimate and the

next data set might arrive earlier than expected. The estimated time to compute (ETC)

values of each task over different data sets on each machine are assumed to be known. The

assumption of such ETC information is a common practice in resource allocation research

(e.g., [37, 46, 50, 58, 88]). In this system, we consider that task preemption is not allowed.

Let the machine ready time be the time at which a machine would be able to start the

execution of a currently unassigned task.

Execution of the high priority tasks ensure the proper functioning of the system; there-

fore, it is necessary to provide a guarantee that these tasks are completed. The revenue tasks

are important to ensure the system is financially viable. Because of the difference in mea-

sures between high priority tasks and revenue tasks, the resource allocation is separated into

two parts. Consider that makespanHP is the completion time of the last high-priority

task to finish, Dataseti is the time when data set i arrives, and ∆τ= τexpected − τ . An

illustration of this notation is shown in Figure 23.

3.2.2 Robustness

A procedure for deriving a robustness metric for an HCS referred to as FePIA (Features,

Perturbations, Impact, and Analysis) is introduced in [5]. The FePIA procedure addresses

three fundamental questions [4]: (a) What behavior of the system makes it robust? (b)

What uncertainties is the system robust against? (c) Quantitatively, exactly how robust is

39

Dataseti+1
Dataseti

m3

m0

m2

m1

makespanHP

1

revenue tasks

m0

high priority tasks

τ

τexpected

∆τ

these revenue tasks

are teminated

Figure 23: Illustration of a resource allocation that includes both high priority and revenue
tasks. Rectangles represents tasks (dark high priority and light shaded areas show revenue
tasks)

the system?

Using the FePIA procedure, we define what behavior makes the first part robust. For

HPT, a resource allocation is robust if all high priority tasks finish before τexpected, and the

robustness is quantified by the difference between τexpected and the makespan of high priority

tasks (makespanHP). Therefore, this system needs to be robust against uncertainty in the

arrival time of the next data set. By minimizing makespanHP , we maximize time difference

between the maximum completion time of these tasks and τexpected. The robustness for HPT

(ρ1) is quantified as

ρ1 = τexpected −makespanHP . (15)

The part 2 tasks generate a revenue, but are not critical to the operation of the satellite.

Each revenue task i (ti) has an associated revenue of R(ti). The revenue generated by the

satellite should cover the costs associated with the continued operation of the satellite (e.g.,

labor, facilities).

For RGT, we define robustness of a research allocation as follows. The revenue generated

40

by the satellite for each data set needs to be larger than the cost associated with processing

that data set for the system to be robust. Let Ctotal be the cost associated with processing

a data set, and CTasks(τ) be the set of revenue tasks completed before the arrival of the

next data set; this set is a function of τ . The system is robust if

Ctotal ≤
∑

∀ti∈CTasks(τ)

R(ti) . (16)

The uncertainty considered when assigning both HPT and RGT is the arrival time τ of

the next data set. The robustness metric for RGT (ρ2) is the maximum value of ∆τ

(τexpected − τ) such that the revenue is equal to or exceeds the cost, and is calculated using

the following equation:

ρ2 = max ∆τ : Ctotal ≤
∑

∀ti∈CTasks(τexpected−∆τ)

R(ti) . (17)

3.3 Related Work

There are many definitions of robustness for various environments (e.g., [5, 8, 66, 74]). For

this study, we use the concept of robustness proposed in [5], where the robustness of a

resource allocation in a parallel and distributed computing system is discussed—including

the FePIA procedure. Our study applies the robustness concept to an environment that is

required to be profitable, where revenue is earned by executing tasks. The two studies in [5]

have very different robustness metrics, despite being generated with the same procedure.

The study in [8] discusses a job shop environment that is susceptible to sudden changes

that render an existing schedule infeasible. In our study, we use a robustness metric that

quantifies the largest change in the arrival time of the next data set that still meets the

performance constraints.

The work in [74] defines a robustness metric for systems that use a stochastic model for

task execution times. One major difference between this study and the work in [74] is that

we model estimated task execution time as a fixed value, while [74] models the execution

time as a random variable. The other difference is the use of a task-profit paradigm to

generate a robustness metric that guarantees the system is profitable.

41

The work in [66] describes a dynamic mapping environment, where the resource allo-

cation must be robust against uncertainty in the estimated execution time of the tasks.

Two variations are considered: (a) maximizing robustness with a makespan constraint, and

(b) minimizing makespan with a robustness constraint. Our study shares some similarities

with the goal of variation (a) because we maximize robustness based on the estimated ar-

rival time of data sets. However, it has three main differences: we consider a static rather

than dynamic environment, our uncertainty parameter is different, and we use a different

robustness metric.

The work in [80] studies two related scenarios. In the first scenario, there is a fixed

machine set and the goal is to maximize a robustness metric. In the second scenario, the

goal is to maximize robustness with a dollar cost constraint on the set of machines that

can be used. In both our study and [80] there is a makespan constraint. However, the

uncertainty in our study is the arrival time of the next data set and not the execution time

of a task. Also, the robustness metric in this study is based on guaranteeing a profit while

the robustness metric in [80] is the smallest collective increase in task execution time that

will make the system violate its makespan constraint.

In [10] the authors describe an oversubscribed system for scheduling communications

for a satellite range scheduling problem. Each task has a priority and a deadline associated

with it, and not all tasks can be scheduled before their deadlines. The goal is to minimize

the number of tasks that cannot complete before their deadline. This problem is similar to

our study because we schedule based on task priority, i.e., assign high priority tasks first,

and also the money generated by revenue tasks can be considered as a priority. However, in

our study, the profitability of the system is robust against uncertainties in the arrival time

of the next data set. This does not necessarily correlate to minimizing the number of tasks

that cannot complete before the deadline.

The work in [55] also discusses an oversubscribed environment of tasks with multiple

priorities, but emphasizes that task priorities must be rigidly respected, i.e., a higher priority

task can never be traded for a set of low priority tasks. Our study is similar because it is

divided into a two-part scheduling problem, where the high priority tasks must be completed

42

(1) A list is generated that includes all unmapped tasks
in a given arbitrary order.

(2) The first task in the list is assigned to its minimum execution
time machine.

(3) The next task in the list is selected.

(4) Steps (2)–(4) are repeated until all the tasks have been mapped.

Figure 24: Procedure for using MET to generate a resource allocation.

before the revenue tasks can be considered. However, for revenue tasks there is a trade-off.

Another significant difference between our work and the work in [55] is that we study how

the system performs when there is uncertainty in the arrival time of the next data set.

3.4 Heuristics for High Priority Tasks

3.4.1 Overview

Six static heuristics are discussed here: five greedy heuristics and a Genitor Algorithm. We

consider two types of greedy heuristics: one-phase and two-phase. The one-phase heuristics

for HPT are Minimum Execution Time, Minimum Completion Time, and K-Percent Best,

and the two-phase heuristics are MinCT-MinCT and MaxCT-MinCT. These heuristics were

chosen because they have performed well in similar environments. The Genitor heuristic

(a steady state genetic algorithm) was implemented for comparison purposes; this Genitor

approach cannot be fielded in a live system because of time constraints on the heuristic

runtime.

3.4.2 Minimum Execution Time (MET)

The Minimum Execution Time (MET) [17, 42] heuristic considers tasks in an arbitrary

order, and maps a task ti to the machine j that has the smallest ETC(i, j) for that task.

The assignment obtained by the MET is independent of the task ordering [20]. Therefore, a

random task ordering was used. The procedure for the MET heuristic is shown in q111111

Figure 24.

43

(1) A list is generated that includes all unmapped tasks
in a given arbitrary order.

(2) The first task in the list is assigned to its minimum completion
time machine (machine ready time plus estimated computation
time of the task on that machine).

(3) The task selected in step (2) is removed from the list.

(4) The ready time of the machine where the task is assigned is updated.

(5) Steps (2)–(4) are repeated until all the tasks have been mapped.

Figure 25: Procedure for using MCT to generate a resource allocation.

3.4.3 Minimum Completion Time (MCT)

The Minimum Completion Time (MCT) [17, 42] heuristic considers the tasks in a given

random order. Each task is mapped to the machine that completes the task soonest, where

the completion time (CT) of ti on machine j is the ready time for machine j plus ETC(i, j).

The procedure for the MCT heuristic is shown in Figure 25.

3.4.4 K-Percent Best (KPB)

For the K-Percent Best (KPB) [65] heuristic, the “K-percent” of the machines with the

smallest execution time for a given task are identified. The task is mapped to the machine

in this subset that has the minimum completion time. A “K” value of 1/M% causes this

heuristic to be the same as with MET, while 100% implies that the heuristic is the same as

MCT. Different values of K were explored, and it was found that the best average results

across all ETC consistencies were obtained when K was equal to 50%. A random task

ordering of tasks was used for the KPB heuristic. The procedure for the KPB heuristic is

shown in Figure 26.

3.4.5 MinCT-MinCT

MinCT-MinCT [17,42,65] is a two-phase greedy heuristic based on the minimum completion

time of the tasks. The procedure used for the MinCT-MinCT heuristic is shown in Figure

27.

44

(1) A list is generated that includes all unmapped tasks in a given arbitrary order.

(2) For the first task, a subset is formed by identifying the M · (K
100) machines with

the smallest execution times for the task.

(3) The task is assigned to the machine that provides the minimum
completion time in the subset (ties are broken randomly).

(4) The task is removed from the list.

(5) The ready time of the machine where the task is assigned is updated.

(6) Steps (2)–(5) are repeated until all tasks have been assigned.

Figure 26: Procedure for using K-Percent Best to generate a resource allocation.

(1) A list is generated that includes all the unmapped tasks.

(2) For each task in the list, the machine that gives the task its minimum completion
time (first “Min”) is determined (ignoring other unmapped tasks).

(3) Among all task-machine pairs found in (2), the pair that has the minimum
completion time (second “Min”) is determined.

(4) The task selected in (3) is removed from the list
and is assigned to the paired machine.

(5) The ready time of the machine where the task is mapped is updated.

(6) Steps (2)–(5) are repeated until all tasks have been mapped.

Figure 27: Procedure for using MinCT-MinCT to generate a resource allocation.

45

(1) A list is generated that includes all unmapped tasks.

(2) For each task in the list, the machine that gives the task its minimum completion
time is determined (ignoring other unmapped tasks).

(3) Among all task-machine pairs found in (2), the pair that has the maximum
completion time is determined.

(4) The task selected in (3) is removed from the list
and is assigned to the paired machine.

(5) The ready time of the machine where the task is mapped is updated.

(6) Steps (2)–(5) are repeated until all tasks have been mapped.

Figure 28: Procedure for using MaxCT-MinCT to generate a resource allocation..

3.4.6 MaxCT-MinCT

The MaxCT-MinCT [17,42,65] heuristic is similar to the MinCT-MinCT heuristic. However,

instead of selecting the task-machine pair with the smallest completion time, this heuristic

selects the task-machine pair that has the largest completion time. The intuition behind

selecting the tasks with larger execution times first is to prevent the mapping of a long task

on top of a virtually balanced loading [17]. The procedure used for the MaxCT-MinCT

heuristic is shown in Figure 28.

3.4.7 HPT Genitor

Genetic Algorithms (GA) have been shown to work well for numerous problem domains,

including resource allocation and job shop scheduling, e.g., [17, 25, 27]. The Genitor algo-

rithm is a steady-state GA [85]. It uses a ranked population and only does one crossover

operation per generation. Genitor (like other GAs) uses chromosomes to represent pos-

sible solutions, e.g., all tasks and the machines to which they are assigned. The Genitor

heuristic implemented here is a variation of Genitor described in [85].

Based on experimentation the population size used for this study was 200 chromosomes.

The chromosome is a vector of length T (number of tasks), and the ith element of the

vector is the machine to which ti is assigned. The population is seeded with the best

solution generated among the greedy heuristics for each specific simulation. The remaining

46

199 chromosomes are generated randomly. Multiple copies of a chromosome are not allowed

in the initial population to reduce the probability of premature convergence.

The population is sorted in descending order of robustness radius (ρ1). Elitism, the

property that guarantees the best solution remains in the population, is implicitly imple-

mented in Genitor by always maintaining a sorted list.

For crossover, two parents are selected using the linear bias approach [85], and two

point crossover is used for the selected parents. The machine assignments from the part of

the chromosome between the crossover points is exchanged between parents, and two new

offspring are generated.

For mutation, each entry in an offspring has a 0.01 probability of being randomly se-

lected. For each mutated entry, a random machine assignment (from 1 to M) is chosen to

replace the old machine assignment.

Each offspring is then evaluated and must compete for inclusion in the population. If

the new offspring has a larger robustness radius than the worst member in the population,

then the offspring is inserted in sorted order into the population, and the worst chromosome

is removed. Otherwise, the new offspring is discarded. The heuristic is stopped after one

hour (recall the Genitor is used just for comparison), and the best solution is selected.

The procedure for the HPT Genitor heuristic is shown in Figure 29. The population,

probability of mutation, and linear bias parameters were determined experimentally.

3.5 Heuristics for Revenue Generating Tasks

3.5.1 Overview

For the second part of the problem, machine ready times are the finishing times found by

the best HPT heuristic. Several heuristics were implemented for this part. Of these, MET,

MCT, KPB, and MinCT-MinCT are the same as described in Section 3.4 with revenue being

used to determine the order in which tasks are assigned. The MaxW-MaxW, MaxWPTU-

MaxWPTU, and MaxWPTU-MinCT heuristics are greedy heuristics similar in structure

to the MinCT-MinCT heuristic but using different objective functions. A Genitor-based

heuristic also was implemented for comparison only, due to its long execution time.

47

1 An initial population is generated.

2 While the stopping criteria is not met (i.e., heuristic execution time
is less than 1 hour):

a Two chromosomes in the population are probabilistically
selected as parents for crossover using the linear bias function.

i Two random cut-off points are generated.
ii The machine assignments of the tasks between

the cut-off points are exchanged.

b Each entry in an offspring chromosome has a chance of being mutated.

c The resultant offspring of the crossover and mutation
are inserted in the ranked population, and the two
worst chromosomes are discarded.

3 The best solution is output.

Figure 29: Procedure for using Genitor to generate a resource allocation.

3.5.2 Greedy Heuristics

For the one-phase greedy heuristics (MET, MCT, and KPB), three different orderings of

tasks were used. These orderings are random orderings (RAND), revenue per time unit

(RPTU), and revenue averaged per time unit (RAPTU) among all machines. These

orderings are calculated as follows:

(a) RAND: Random ordering of tasks.

(b) RPTU: For each task i that needs to be mapped, RMINi is calculated using the

following equation:

RMINi =
R(ti)

min1≤j≤M ETC(i, j)
. (18)

The tasks that need to be mapped are sorted in descending order based on RMINi.

(c) RAPTU: For each task i that needs to be mapped, RAV Gi is calculated using the

following equation:

RAV Gi =
R(ti)∑

1≤j≤M (ETC(i, j)/M)
. (19)

The tasks that need to be mapped are sorted in descending order based on RAV Gi.

48

(1) Generate a list of all the unmapped tasks.

(2) For each task in the list, find the machine j that gives the maximum worth.

(3) For all the task-machine pairs found in step (2), select the pair that has the
maximum worth value.

(4) Assign the selected task, remove it from the list, and update the finishing time
of the machine.

(5) Repeat steps (2) – (4) until all the tasks have been mapped.

Figure 30: Procedure for using MaxW-MaxW to generate a resource allocation.

3.5.3 MaxW-MaxW

This heuristic is similar in structure to MinCT-MinCT, but instead of minimizing comple-

tion time it maximizes a “worth” value. Let Fij be the completion (finishing) time of task

i on machine j. For a task i on a machine j, the likelihood (Lij) of task i completing on

machine j before the deadline is defined as

Lij =
τexpected − Fij
τexpected

. (20)

The worth value (wij) is based on Lij and is calculated using the following equation:

wij = Lij ·R(ti) . (21)

The procedure used to implement MaxW-MaxW is shown in Figure 30. For the MaxW-

MaxW heuristic, the step (2), can be replaced by just finding the minimum completion time

machine.

3.5.4 MaxWPTU-MaxWPTU

The MaxWPTU-MaxWPTU heuristic is a Max-Max heuristic similar in structure to MaxW-

MaxW. However, this heuristic is based on worth per time unit (WPTU), calculated as

follows:

wptuij =
wij

ETC(i, j)
. (22)

The procedure for MaxWPTU-MaxWPTU is the same as the procedure shown in Figure

30; however, worth per time unit is substituted for worth.

49

3.5.5 MaxWPTU-MinCT

The MaxWPTU-MinCT heuristic is similar to the MaxW-MaxW heuristic previously de-

scribed. MinCT finds for each unmapped task the task/machine pair with the smallest

completion time, then MaxWPTU selects the task/machine pair with the maximum WPTU.

3.5.6 RGT Genitor

The RGT Genitor is similar to the HPT Genitor shown in Figure 29. However, the RGT

Genitor requires information about the assignment of tasks to machines, and the ordering

of these tasks in the machine queue. This information is represented with two chromosome

strings that are illustrated in Figure 31(a). The top string represents the assignment of ti

to machine j. The bottom string is a real number from 0 to 1 that represents the relative

ordering of a task in a machine queue. In Figure 31(b), the string from Figure 31(a) is

converted to a mapping. To understand how the chromosome string is converted into a

mapping, we can observe the tasks assigned to machine 0. The task-real number pairs

assigned to machine 0 are: t4 − 0.74, t7 − 0.23, t11 − 0.34, and t12 − 0.99. The real number

is used to arrange the tasks in ascending order within the machine queue (e.g., t11 executes

before t4 because 0.34 < 0.74).

This implementation of the RGT Genitor uses 200 chromosomes. The best solution

generated among the greedy heuristics was used as a seed in the RGT Genitor. The rest of

the population is created by generating a random assignment of tasks to machines, and a

uniform random variable (U(0, 1)) for the relative ordering for each task. The chromosomes

are sorted in a ranked list based on descending order of ρ2.

The crossover for the RGT Genitor is done by selecting two parents using linear bias [85].

For the two selected parents, two crossover points are randomly generated. Between these

two crossover points, the machine assignments and the real numbers are exchanged among

parents. This crossover procedure generates two new offspring.

The mutation is done on both offspring. For each entry i in the machine assignment

string of the offspring, with X% probability of mutation (determined experimentally) reas-

sign task i to a randomly selected machine. After the machine assignment string is mutated,

50

2 1 2 0 1 2 0 1 2 2 0 0

0.51 0.1 0.05 0.74 0.4 0.01 0.23 0.89 0.73 0.68 0.34 0.99

t
1

t
2

t
3

t
4 t

5
t
6

t
7

t
8 t

9
t
10

t
11

t
12

(a)

m
1

m
2

t
2

t
5

t
8

t
6

t
3

t
1

t
10

t
9

m
0

t
7

t
11

t
4

t
12

m
1

time

t
2

t
5

t
8

(b)

Figure 31: Chromosome representation for RGT Genitor: (a) chromosome strings, (b)
machine queues.

the random number string is mutated. For each entry i of the random number string of the

offspring, with X% probability of mutation (determined experimentally), a new random

number (U(0, 1)) is generated and it replaces the entry for task i.

After the crossover and mutation operations are done, the offspring are evaluated and

inserted into the sorted population; the two worst chromosomes are discarded from the

population (i.e., the size of the population remains constant). This process is repeated until

the stopping criteria is met (i.e., heuristic execution time reaches one hour).

3.6 Simulation Setup

The simulation environment was intended to represent a typical satellite data processing

system. The environment we used to evaluate and compare the heuristics had 8 machines

(M = 8), and 2048 total tasks (subdivided into: 512 high priority tasks, and 1536 revenue

tasks). In this environment, users submit requests to process a provided data set by one

of a set of well-known tasks. For this simulation, the estimated time to compute a task

ti on machine j (ETC(i, j)) was generated using the coefficient of variance (COV) based

51

method, described in [3].

Three different kinds of ETC matrices were generated for this simulation; to represent

a variety of different types of actual heterogeneity: consistent, inconsistent, and partially-

consistent. For this study, 100 different ETCs were generated for each type of consistency

(consistent, inconsistent, and partially consistent). The results presented are averaged for

each consistency over the 100 runs. For a consistent ETC matrix, if ti has a lower execution

time on machine x than machine y, then the same is true for any tk. For an inconsistent

ETC matrix, if ti has a lower execution time on machine x than machine y, then there

exists a task tk with a lower execution time on machine y than machine x. A combination

of these two cases is the partially-consistent ETC matrix, which is an inconsistent matrix

with a consistent sub-matrix [3]. For the partially-consistent matrices simulated here, the

consistent sub-matrix was 50% of the tasks for 50% of the machines.

To simulate the diverse task mixtures in a real system, the COV for task heterogeneity

was 0.1 and machine heterogeneity was set to 0.4, i.e., low task - high machine heterogeneity.

The simulation parameters were configured to ensure an oversubscribed system, and provide

a sufficient challenge for the mapping heuristics. The mean time to execute the tasks was

set to 7.5 seconds. Also, the estimated arrival time of a new data set was τ = 900 seconds.

The execution ratio of a task (ERTi) is the average execution time of a task i over all

machines divided by the average execution time of all tasks across all machines.

In an actual system, revenue for each task is negotiated between the system provider and

the user. For our simulation studies, the R(ti) values for revenue task i are computed by

multiplying the ERTi and a sample from a Gamma distribution (mean of 200 and standard

deviation of 50).

The simulations were run on an Intel Core 2 Duo T8100 (2.1GHz), with 4Gb RAM

running a Windows Vista OS. The code was written in C++ and run on cygwin.

52

3.7 Bounds

3.7.1 HPT Upper Bound (UB1)

To compute an upper bound (UB1) on the robustness radius of the HPTs, let SetHP be

the set of high priority tasks. The UB1 for the high priority tasks is given by

UB1 = τ −
∑

ti∈SetHP
min∀j ETC(i, j)
M

. (23)

The calculation for the bound assumes that each task can be executed using its minimum

execution time, and that a single task can be split across multiple machines [17]. These

assumptions are unrealistic and depending on consistency and heterogeneity of an HCS the

bound can be fairly loose.

3.7.2 RGT Upper Bound (UB2)

The upper bound for RGT (UB2) uses the best result found from among the HP heuristics

to set the initial machine ready times for RGT. This method is used (instead of using the

result of UB1) to make the bound tighter. For similar reasons to those discussed in 3.7.1,

this bound will also be loose.

Let Setrevenue be the set of revenue tasks. For each revenue task (ti ∈ Setrevenue),

the revenue per minimum execution time (RPMETi) is calculated using the following

equation:

RPMETi = Ri/min
j
ETC(i, j) . (24)

A list (UBlist) of the revenue tasks sorted based onRPMETi in descending order is created.

To calculate UB2, we define CTj as the completion time of machine j, and task i (ti) as

the ith task from UBlist. The following equations also define terms (τa, τb, in Figure 32,

and the minimum execution time of ti MET (ti)) that are used in the description of the

53

bound:

τa =
M−1∑
j=0

(makespanHP − CTj) , (25)

τb = (τexpected −makespanHP) ·M , (26)

MET (ti) = min
j
ETC(i, j). (27)

The Nmin is the minimum number of revenue tasks from UBlist needed for the revenue

to be larger than the cost, and τtotal is the minimum total amount of time units that the

minimum execution time machines would need to execute these tasks. That is:

Nmin = minY : cost ≤
Y∑
i=0

R(ti), (28)

τtotal =
Nmin−1∑
i=0

[MET (ti)] +
cost−

∑(Nmin−1)
i=0 R(ti)

R(tNmin)
·MET (tNmin). (29)

Equations 28 and 29 assume that the system is oversubscribed, and that it is possible for

the system to be robust (can have a revenue that exceeds cost). Based on the previous

definitions, it is possible to calculate the bounds using the following conditions:

ρ2 = ρ1 if τtotal ≤ τa, (30)

ρ2 = τexpected −
τa + τb − τtotal

M
if τa < τtotal ≤ τa + τb. (31)

If the system is not robust (i.e., τtotal > τa + τb), then

ρ2 =
τa + τb − τtotal

M
if τtotal > τa + τb, (32)

can be used to determine the minimum time past the deadline needed to make revenue

equal to cost.

3.8 Results

3.8.1 Results of Consistent ETCs

The robustness results for the HPT consistent ETC matrices are shown in Figure 33, and

the execution time of the heuristics is shown in Table 1. The MinCT-MinCT heuristic was

the best among the greedy heuristics; its performance was within 80.9% of UB1, and within

99.9% of the best solution found by the Genitor heuristic. It is important to remember that

54

c
o
m

p
le

ti
o
n
 t

im
e

τexpected

b
τ

a
τ

makespanHP

m0 m1 m2 m3

c
o
m

p
le

ti
o
n
 t

im
e

Figure 32: Illustration of τa and τb.

heterogeneity
heuristic consistent partially-consistent inconsistent

MET, MCT, KPB [0.02-0.03] [0.02-0.03] [0.02-0.03]
MinCT-MinCT 0.20 0.19 0.20
MaxCT-MinCT 0.26 0.26 0.26

Table 1: Execution times for HPT.

the Genitor was implemented only for comparison, because of its long execution time. For

the parameters used in this study, it is possible to obtain a good result in a short amount

of time with a greedy heuristic (0.01 seconds versus 1 hour of runtime for Genitor). The

MET had the worst results; the average robustness generated by the MET heuristic had

−1070.18 time units of robustness. The reason behind the poor performance of the MET

heuristic is that all tasks are assigned to one machine. The KPB heuristic outperformed

the MET heuristic, but did not perform as well as the MCT heuristic. Because the KPB

heuristic shares characteristics with MET and MCT, it is not surprising to see that it shares

the negative aspects of the MET heuristic when doing resource allocations with consistent

ETC matrices.

The results for the RGT consistent ETCs are shown in Figure 34, and the execution

times are shown in Table 2. The best greedy heuristic was the MaxWPTU-MaxWPTU

with a robustness of 201.7 time units; this robustness was within 98% of robustness value

generated by the Genitor heuristic.

The RAPTU variation of MCT outperformed all the other one-phase greedy heuristics.

In terms of robustness, the robustness obtained by MCT-RAPTU was about 84.2% of the

55

361.76

496.93
443.43

528.47 528.68

653.61

0

500

1000

one -phase two -phase

p
a

rt
 I
 (

s
e

c
o

n
d

s
)

-1,070.18

1500

1000

-500

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
 (

s
e

c
o

n
d

s
)

Figure 33: Consistent heterogeneity robustness for HPT, averaged over 1000 trails. The
95% confidence intervals are shown.

heterogeneity
heuristic consistent partially-consistent inconsistent

MET, MCT, KPB [0.02-0.03] [0.02-0.03] [0.02-0.03]
MinCT-MinCT 1.46 1.42 1.48
MaxW-MaxW 2.10 2.11 2.00

MaxWPTU-MinCT 2.11 2.01 2.11
MaxWPTU-MaxWPTU 3.55 3.54 3.56

Table 2: Execution times for RGT.

robustness obtained by the MaxWPTU-MaxWPTU heuristic. In terms of execution, the

one-phase greedy mappings had an average of execution time between 0.02-0.03s, compared

to the fastest two-phase heuristic (MaxWPTU-MaxWPTU) it was 178 times faster.

The best variation for the KPB was the RAPTU; both the RAPTU and RPTU produced

mappings that were robust. However, the RAND variation did not produce robust results.

For RGT, all variations of the MET heuristic have a negative robustness. The variation

MET-RPTU was the best performing among the tested orderings for MET. This is an

obvious result as the minimum execution time machine is the only machine that matters

when considering the assignment of the MET heuristic.

The MinCT-MinCT heuristic performed better than the MET and KPB heuristics that

used revenue to determine the task assignment order. However, the MinCT-MinCT did not

56

-95.9

56.8
53.5 60.0

173.8168.3
136.4

186.0193.3

201.7
206.4

322.3

-600

-400

-200

0

200

400

600

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
I

(s
e

c
o

n
d

s
)

MET

KPB
MCT

-1,773.1

-1,217.1

-1,149.7

-2000

-1800

-1600

-1400

-1200

-1000

-800
ro

b
u

s
tn

e
s

s
 p

a
rt

 I
I

(s
e

c
o

n
d

s
)

Figure 34: Consistent heterogeneity robustness for RGT, averaged over 1000 trails. The
95% confidence intervals are shown.

perform better than two of the MCT variations. Because the KPB and MET only used

a small set of machines, it is better to use a greedy two-phase heuristic instead of these

heuristics even though it does not have considerations for the revenue. Because the MCT

heuristic distributes the load across all machines, the added revenue consideration makes

it perform better than the MinCT-MinCT heuristic. The RAND variation of all one-phase

greedy heuristics (MET, KPB, and MCT) performed the worst, because it does not consider

the revenue when ordering tasks. However, the results from the RAND illustrate how much

improvement is obtained by using the revenue-based orderings.

3.8.2 Results of Inconsistent ETCs

The results of HPT for the inconsistent matrices are shown in Figure 35, and the execution

time of the heuristics is shown in Table 1. The MinCT-MinCT heuristic was the best

performing greedy heuristic with an average robustness of 552.35. This result was over

99.9% of robustness value generated by the Genitor heuristic that was used for comparison.

The results of RGT for the inconsistent matrices are shown in Figure 36, and the ex-

ecution time of the heuristics is shown in Table 2. The MaxWPTU-MaxWPTU was the

best performing heuristic. This result was over 98.7% of the robustness value generated

57

481.62
515.21

430.84

552.35 552.53

651.32

200

400

600

800
one-phase two-phase

p
a

rt
 I
 (

s
e

c
o

n
d

s
)

-547.66

-800

-600

-400

-200

0
ro

b
u

s
tn

e
s

s
 p

a
rt

 I
 (

s
e

c
o

n
d

s
)

Figure 35: Inconsistent heterogeneity robustness for HPT, averaged over 1000 trails. The
95% confidence intervals are shown.

by the Genitor heuristic. Even though Genitor is seeded with the best of the heuristics

and has a runtime of 60 minutes, It was interesting to observe that the MET heuristic

did not perform well with inconsistent heterogeneity. In previous studies (e.g., [17]), MET

performed similarly to MCT with inconsistent heterogeneity. However, in this experiment,

its performance was significantly inferior to MCT’s performance. Despite how poorly the

MET performed in the inconsistent case, it did improve when compared to its performance

in the consistent case.

By observing a sample histogram of the MET machine for each task in the inconsistent

case (Figure 37(a)), it is easy to understand why the MET heuristic is not performing

well. In the low-task/high-machine heterogeneity case, a small subset of machines have the

minimum execution time for the majority of tasks, i.e., machines 1, 2 and 3. Thus because

of the low-task/high-machine heterogeneity, many tasks share the same MET machine.

One-phase greedy heuristics were significantly faster than the two-phase heuristics. The

average execution time of the one-phase heuristics was less than 0.03s, while the quickest

two-phase greedy heuristic had a run time of 1.4s. Both MaxW-MaxW and MaxWPTU-

MinCT had a runtime of approximately 2.11s; this shows that calculating the worth per

time unit, as opposed to just the worth, does not increase the runtime significantly.

58

77.2

193.2 190.3

104.2

212.7209.6
189.8

231.1
248.2

251.3

254.6

343.2

0

200

400

600

MET

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
I

(s
e

c
o

n
d

s
)

-663.0

-360.1
-333.2

-800

-600

-400

-200
KPB MCT

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
I

(s
e

c
o

n
d

s
)

Figure 36: Inconsistent heterogeneity robustness for RGT, averaged over 1000 trails. The
95% confidence intervals are shown.

400

600

800

1000

1200

1400

t
a
s
k
 c
o
u
n
t

0

200

(a) Inconsistent heterogeneity.

400

600

800

1000

1200

t
a
s
k
 c
o
u
n
t

0

200

(b) Partially consistent heterogeneity.

Figure 37: Sample histogram of number of tasks that have machine i as its minimum
execution time machine.

3.8.3 Results of Partially-Consistent ETCs

The results of HPT for the partially-consistent matrices are shown in Figure 38, and the

execution time of the heuristics is shown in Table 1. The best performing greedy heuristic

was MinCT-MinCT, and it was over 99.9% on average of the solution Genitor was able to

produce. Both the MinCT-MinCT and Genitor are very close to UB1 at about 85.8%. The

59

MCT and KPB heuristic both had good performance and overlapping confidence intervals;

both were approximately 79.7% of UB1.

By observing a sample histogram of the minimum execution time machine (Figure 37(b))

for the partially consistent heterogeneity case, it easy to understand why the MET heuristic

is performing better than it did in the inconsistent case. The partially consistent case

has a better distribution of the minimum execution time machine than the inconsistent

case, because of the algorithm, used to create the partially consistent matrix [3], creates

a consistent sub-matrix (composed of half the tasks and half the machines). This allows

the minimum execution time machine to be spread across more machines, thus marginally

improving the results. This explains why the MET did better in the partially consistent

heterogeneity than in the inconsistent heterogeneity.

It is interesting to observe that, in general, the results are closer to UB1 in the partially

consistent case than in the inconsistent case. This can be explained by considering the

method used to calculate UB1, i.e., it assumes all machines to be the MET machine. The

reason why this bound is tighter for the partially consistent case is the same reason why

the MET results are better for the partially consistent case.

The results of RGT for the partially-consistent matrices are shown in Figure 39, and

the execution time of the heuristics is shown in Figure 2. The best performing greedy

heuristic for RGT was the MaxWPTU-MaxWPTU with a robustness of 246.00 time units,

which was 73.5% of UB2. The RGT Genitor gave an average improvement of 1.6% time

units, and had overlapping confidence intervals with MaxWPTU-MaxWPTU. Among the

one-phase heuristics MCT-RAPTU had the best performance with a robustness of 208.8,

which was about 84.9% of the performance obtained by the best performing greedy heuristic

(MaxWPTU-MaxWPTU).

3.9 Conclusions

The environment considered for this study is a computer system that processes weather data.

Additionally, this research could also apply to different types of satellite image processing,

e.g., homeland security. The satellite data system has two parts that need to be robust

60

482.63
511.80

410.86

550.58 550.79

641.78

200

400

600

800
one-phase two-phase

p
a

rt
 I
 (

s
e

c
o

n
d

s
)

-405.40

-600

-400

-200

0

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
 (

s
e

c
o

n
d

s
)

Figure 38: Partially-consistent heterogeneity robustness for HPT, averaged over 1000 trails.
The 95% confidence intervals are shown.

against uncertainty. The first part is the execution of critical tasks to ensure the operation of

the satellite, and the second part ensures financial viability of the system. The uncertainty

considered for this system is the variability in the time interval between the arrival of

successive data sets.

Several heuristics and their variations were implemented for each of the parts. For

all the evaluated scenarios, the best HPT heuristic was MinCT-MinCT, and MaxWPTU-

MaxWPTU was either the best for RGT or had comparable performance. Therefore, these

are recommended as the resource allocation heuristics for this environment. In all scenar-

ios, MinCT-MinCT was within 99.9% of Genitor for HPT, and MaxWPTU-MaxWPTU

performed on average about 98% of Genitor for RGT. This is a good result considering that

the Genitor was seeded with the best greedy heuristic, and executes for an hour instead of

seconds. The MCT-RAPTU is the best one-phase heuristic for RGT robustness, across all

consistencies. For a few test cases, the Genitor was allowed to run for six hours with only

a 1% additional improvement (over the Genitor with a one hour run time). This indicates

that very little improvement was observed from letting the Genitor heuristic execute for a

longer time.

An example of possible extensions could be: tasks execution times could be vary based

61

77.5

189.6
192.0

99.6

208.8 204.7
186.5

227.8
242.6246.0 249.9

334.9

0

200

400

600

MET

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
I

(s
e

c
o

n
d

s
)

-534.6

-272.8
-243.4

-800

-600

-400

-200 KPB MCT

ro
b

u
s

tn
e

s
s

 p
a

rt
 I
I

(s
e

c
o

n
d

s
)

Figure 39: Partially-consistent heterogeneity robustness for RGT, averaged over 1000 trails.
The 95% confidence intervals are shown.

on the input data sets, possible machine failures, representing the entries in an ETC as

a probability mass function, use of different revenue models, computing platforms with

different heterogeneities, variation in the amount of tasks that need to be executed, and

applications to other important sensor problems. Another extension to this work is to

incorporate good will or fairness when assigning resources. This fairness could become part

of the robustness metric or a Quality-of-Service constraint. Additionally, the same model

could be used to simulate a multicore or multi-threaded environment. However, to do this

accurately, we would need to incorporate memory hierarchy, and sharing. This could also

be an area for future research.

62

CHAPTER IV

RESOURCE ALLOCATION IN A CLIENT/SERVER

MASSIVE MULTI-PLAYER ONLINE GAMING

ENVIRONMENT

4.1 Introduction

The environment considered in this research is a massive multiplayer online gaming

(MMOG) environment. In an MMOG environment, each user controls an avatar (an image

that represents and is manipulated by a user) in a virtual world and interacts with other

users. An important aspect of an MMOG environment is maintaining fairness among users

(i.e., not giving an unfair advantage to users with faster connections or more powerful com-

puters). The experience (positive or negative) the user has with the MMOG environment is

dependent on how quickly the game world responds to the user’s actions. There are various

methods that can be used to quantify the responsiveness of the game world to a user’s

action. One possible method is to minimize the maximum response time (time needed to

send an action to the server and receive the result of that action from the server) among

all users; another option is to reduce the differences between the response times so that the

system is “fair.”

In general, most MMOG environments use a client/server architecture to control the

virtual game world. The client/server architecture has some disadvantages: the initial

procurement of servers is expensive, server administration is required, customer service is

necessary, and the architecture is hard to scale based on demand. In addition to the initial

development cost, other factors such as the popularity of a game, and unexpected technical

problems during and after the launch, also can affect the final cost and success of the

game [73].

A preliminary version of portions of this research appeared in [21,22].

63

1

Simple Diagram of MMOG

structure

Px: Player x U1

U2

U3

U4

U5

U6

UN–1

UN

MS

…

(a)

U1

SS
α
/U2

U3 U6

SSβ/U5

UN–1

UN

MS
•
…

•5

U4

(b)

Figure 40: (a) Client/server architecture, using a single server to do processing; and (b)
secondary server architecture, using users’ computers to assist the Main Server in processing.

The environment we are interested in is massive on-line first-person shooters. These

types of games usually involve a large group of people (e.g., 256 people in Massive Action

Game (MAG) developed by Zipper Interactive) competing in a virtual world attempting

to complete specific goals . A problem may occur when considering interaction with other

users. For example, consider a war game where two users are shooting at each other. One

way of determining the winner of this contest is to determine who shot first. However,

determining who shot first in the game world can be difficult. It is possible for the game to

process these users’ actions in the incorrect order.

This study focuses on using secondary servers to modify the system based on demand.

Consider an environment where there is a main server (MS) that controls the state of the

virtual world, and each user (N is the total number of users) produces a data packet that

needs to be processed by the MS. If the performance falls below acceptable standards, the

MS can off-load calculations to secondary servers (SSs). An SS is a user’s computer that is

converted into a server to avoid degradation in the performance of the MMOG environment

(see Figure 40). The purpose of using the users’ computers as SSs is to create a distributed

ad-hoc system that will keep the response times low and fair.

The allocation of users as SSs has similar security requirements as distributed servers

and peer-to-peer based MMOG systems. These issues are studied in [12, 45] and will not

be discussed here because we consider it to be a separate research problem.

The introduction of SSs causes the game-state to be handled differently than with a

64

single MS. Each SS handles conflicts among the players attached to it, and sends conflict-

free information to the MS. However, this information may conflict with information from

another SS. If there is a conflict between SSs then it will be resolved by the MS.

This study assumes all players are willing to become SSs. Our approach could easily

be adapted to account for having a subset of players who are not willing to be an SS, i.e.,

we can have a list of players eligible to become SSs.

A session in the MMOG environment is assumed to last for an extended period of

time, with a small break between sessions [54]. These assumptions make a static resource

allocation heuristic viable [2]. This study evaluates the MMOG environment with two

different optimization criterion. The first criteria is the minimization of the response time,

while the second is the maximization of robustness. In both cases, the heuristics determine

the number of SSs, which users are converted to SSs, and how users are distributed among

the SSs and the MS. The assignment of users to SSs and the MS is related to the

assignment of tasks to machines (e.g., [11,17,75,86]) with the SSs and the MS as machines

and the users as tasks.

This paper is separated into two parts; for the first part (in Section 4.3), we propose

heuristics that minimize the time it takes to process the game-world update requests from all

users. A mathematical lower bound is derived to evaluate the performance of the heuristics

for minimization of response time in this MMOG. For the second part (in Section 4.4),

we consider that the number of new players joining an on-going game is unknown, and

we derivate a “robustness” metric to make the resource allocation resilient against this

uncertainty. The goal of the heuristics is to provide a “fair” environment for all the users,

and to be “robust” against this uncertainty. The difference between the first part and the

second part is that the second part uses a metric based on fairness to quantify the quality

of a resource allocation.

The contributions of this paper are: (a) mathematically modeling an MMOG environ-

ment, (b) designing heuristics to minimize the response time, (c) studying and simulating

an MMOG environment where an unpredictable number of players may want to join an

ongoing session, (d) creating parameters to quantify the robustness of a system against

65

the uncertainty of the number of players that will try to join an ongoing session, and (e)

deriving resource allocation heuristics that maximize the number of players that can join

an existing game session while still maintaining a fair system.

This paper is organized as follows. Section 4.2 provides the common environment.

In Section 4.3, we analyze the MMOG environment when the optimization criteria is to

minimize the maximum response time. This section includes the heuristics used to do

resource allocation, the bound on performance, and the results for this simulation setup.

Section 4.4 focuses on the proposed heuristics for maximizing the robustness, the upper

bound on the number of new players that can join the game, and results for this section.

We provide the related work in Section 4.5, and in Section 4.6 we present our conclusions.

4.2 Environment

4.2.1 Overview

For both problem domains considered in this study, the aspect of the MMOG environment

we can control is (a) which users are converted into secondary servers, and (b) how users

are assigned to the MS and SSs. In the client/server solution shown in Figure 40(a), all

users connect to the MS, therefore the MS is the only machine performing computation.

In the SS solution shown in Figure 40(b), the MS and SSs perform computation and the

MS resolves conflicts among users and SSs connected to it.

The time it takes the system to respond to a user’s request (latency) is very important [7].

The communication time between different pairs of nodes (user computer, SS, or MS)

will vary. To simplify the calculation of a server’s response time to a user, the following

assumptions are made about the communication model in this system. The communication

times among the users, SSs, and the MS do not change during a session. These times are

independent of the number of users connected to an SS or the MS. These assumptions are

used to reduce the complexity of the simulations.

4.2.2 Computational Model for Main Server and Secondary Servers

To simplify the simulation study, the level of activity in the MMOG environment of all the

users is considered identical (i.e., the frequency of interaction with the MMOG environment

66

is the same for all players). Thus, the computational load is based on the number of users

(i.e., they have the same computational needs). To model the computation times of the MS

and SSs we need to consider how the computation time increases with the increase in the

number of users. In [43], latency in an MMOG environment shows a “weak exponential”

increase with an increase in players; we approximate this by using a constant communication

time and a quadratic factor for the computation.

Let nα be the number of users connected to secondary server α (SSα), and µα be a

computational constant for SSα that represents the heterogeneity in the computing power

of the users’ computers (each user has a different constant). The computation time for an

SSα (Compα) can be modeled as:

Compα = µα · (nα)2. (33)

Let nsecondary be the total number of users connected to all the SSs, nnss be the number

of SSs, nmain be the number of users connected to the MS, and b and c be computational

constants of the MS. The computation time of the MS (CompMS) is:

CompMS = c · nsecondary + b · (nmain + nnss)2. (34)

We assume that the state of the game world is updated every CompMS time units.

4.2.3 Objective Functions RTmax and RTmin

Let RTx represent the Response Time (RT) of a packet (representing an action in the game

world) sent by the computer of user x (Ux) to the MS (possibly through an SS) and

returning to Ux with the corresponding consequence of that action in the game world. Let

Comm(A,B) be the communication time between node A and node B, and ∆ is the time

packet has to wait before being processed. The equation used to calculate RTx if Ux is

connected directly to the MS is:

RTx = Comm(Ux,MS) + CompMS + Comm(MS,Ux) + ∆. (35)

67

Comm(Ux,MS)

•CompMS

t(k) t(k+2)t(k+1) t(k+3)

RTx

Ux action

Comm(MS,Ux)

Δ •CompMS

CompMS •CompMS

Figure 41: This figure illustrates the return time for a user x (Ux) connected directly to
the MS.

A graphical representation of this equation is shown in Figure 41. If a user is connected to

an SSα then the equation is:

RTx = Comm(Ux, SSα) + Compα + Comm(SSα,MS) + CompMS

+ Comm(MS,SSα) + Comm(SSα, Ux) + ∆. (36)

A graphical representation of this equation is shown in Figure 42. If Ux is SSα then Equation

36 is used with Comm(Ux, SSα) = Comm(SSα, Ux) = 0. To calculate the maximum

response time (i.e., RTmax) we use:

RTmax = max
∀Ux

(RTx), (37)

with ∆ = CompMS . As shown in Figure 43, this time represents the maximum time any

user will have to wait for a response from the MS. Let RTmin represent the fastest any

user can interact with the MMOG environment, and it is calculated as follows:

RTmin = min
∀Ux

(RTx), (38)

with ∆ = 0 (shown in Figure 44).

4.2.4 Heuristic Requirements

All heuristics were limited to a maximum execution time of 10 minutes. We assume that

the players wait in a game lobby while the game fills up, therefore the resource allocation

can be done while the players are in the lobby. In this context, resource allocation implies

assigning a user in one of three ways: (1) attaching it directly to the MS without making

68

CompMS •CompMS

Compi

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Comm(Ux,SSi) Comm(SSi,MS)

RTx

Ux action

Comm(MS,SSi)
Comm(SSi, Ux)

Δ •CompMS

•CompMS

Figure 42: This figure illustrates the return time for a user x (Ux) connected to the MS
through an SS.

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Ux just missed its deadline

CompMS •CompMS

Compi

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Comm(Ux,SSi)
Comm(MS,SSi)

RTmax

•CompMS

Ux action

Comm(SSi,Ux)
Comm(SSi,MS)

Compi

ΔΔΔΔ=CompMS Compi

Compi Compi

•CompMS
•user

•action

•SS

•MS

Figure 43: This figure illustrates RTmax when the user with just misses the deadline for
sending computation at the SS, i.e., ∆ = CompMS .

it an SS (although it can become one), (2) attaching it to the MS and making it an SS, or

(3) attaching it to an existing SS. An unassigned user is one that has not been assigned yet,

and directly connected users (DCUs) are users that are connected directly to the MS.

4.3 Response Time Minimization

4.3.1 Problem Statement

The purpose of this section is to maintain an acceptable system performance (despite the

MS used to maintain the MMOG environment being oversubscribed) without increasing

the processing power of the MS. The proposed solution is to convert users to SSs that

assist the MS in computation. In the client/server solution shown in Figure 40(a), all users

connect to the MS, therefore the MS is the only machine performing computation. In the

69

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Ux just made its deadline

CompMS •CompMS

Compi

t(k-1) t(k) t(k+2)t(k+1) t(k+3)

Comm(Ux,SSi)
Comm(MS,SSi)

RTmin

•CompMS

Ux action

Comm(SSi,Ux)
Comm(SSi,MS)

Compi

Compi •CompMS

Compi

•user

•action

•SS

•MS

Figure 44: This figure illustrates RTmin when the user with just makes the deadline for
sending computation at the SS, i.e., ∆ = 0.

(1) Given a predetermined set of DCUs, all users that are not in the set of DCUs
are marked as unassigned.

(2) For each unassigned user, the DCU that gives the minimum RT is determined
(first minimum).

(3) The best paired user/server (i.e., with smallest RT) among all the pairs gener-
ated in (2) is selected (second minimum).

(4) The user in the best pair selected in (3) is then assigned to its paired server.

(5) Steps (2) through (4) are repeated until all tasks are assigned.

Figure 45: Procedure for using Min-Min RT to generate a resource allocation.

SS solution shown in Figure 40(b), the MS and SSs perform computation and the MS

resolves conflicts among users and SSs connected to it. The objective, of this section, is

to minimize RTmax (i.e., the resource allocation that produces the smallest RTmax is the

best).

4.3.2 Heuristics for Response Time Minimization

4.3.2.1 Min-Min RT

The Min-Min RT sub-heuristic, used by the other heuristics, is based on the concept of Min-

Min heuristic [42]. The Min-Min heuristic is widely used in the area of resource allocation

(e.g., [20,31,39,42,44,47,51,86]). Min-Min RT requires a set of DCUs to generate a resource

allocation; therefore, it is not an independent heuristic. The procedure to implement the

Min-Min RT is shown in Figure 45.

70

4.3.2.2 Min-Min SS

The Min-Min SS heuristic is similar to the Min-Min RT heuristic. The difference is that

the Min-Min SS does not require an initial set of DCUs. The heuristic will determine the

set of SSs by allowing users to consider connecting to the MS in addition to DCUs in step

(2) of Figure 45.

4.3.2.3 Iterative Minimization

In Iterative Minimization (IM), a resource allocation is represented in the form of an vector

whose ith element indicates the way user i is connected to the MS, either directly or the

SS to which it is connected. A potential host (PH) is a user that is not connected to

the MS through an SS; i.e., either it is a DCU or is unassigned at this point. This

heuristic considers assigning an unassigned user to all PHs or the MS and picks the PH

or MS that provides the minimum RTx. If a PH provides the minimum RTx and is not

already an SS then it is converted to one. The pseudo-code is shown in Figure 46. An

iterative minimization procedure is run on the resource allocation from the IM heuristic.

This iterative minimization attempts to move the user with RTmax to a different secondary

servers or to the MS to find a better resource allocation. The procedure for this iterative

minimization is shown in Figure 47.

4.3.2.4 Tabu Search

Tabu Search concept [41] enhances the performance of a global search method by storing

the previously visited areas in the search space using a tabu list so they are not revisited.

To make the size of the tabu list reasonable, only the last n (set empirically to 20) visited

neighborhoods are saved [41]. The resource allocation is represented by vectors as in the

IM heuristic.

Local moves (or short hops) explore the neighborhood of the current resource allocation,

searching for the local minimum. All the moves that we use in the Tabu Search are consid-

ered greedy in the sense that we accept a resource allocation if it has a smaller RTmax (better

objective function value); however, applying greedy moves may cause the Tabu Search to

71

(1) Mark all users as unassigned.

(2) For each unassigned user (u) in a fixed arbitrary order.

(a) Define minRT as the RT if u is connected directly to the MS.

(b) Among all PHs, find the PH that minimizes RT of u connected to the
MS through PH (RTu→PH→MS) .

(i) If RTu→PH→MS is less than minRT then attach u to PH, and convert
PH to an SS if it is not already one. Because of heterogeneity in
computation and communication the RTu might be smaller through a
PH instead of the MS.

(ii) Else, attach u directly to the MS.

(c) Mark user u as assigned.

(3) Output final resource allocation.

Figure 46: Pseudo-code for generating the initial resource allocation of the Iterative
Minimization heuristic.

(1) RTbest is equal to the RTmax value of the resource allocation generated in Figure
46.

(2) For each user (Ux) connected to an SS

(a) Connect Ux to the MS and connect the user with RTmax to Ux.

(b) Find the RTmax of this configuration.

(c) If RTmax < RTbest then save this resource allocation as the best.

(3) For each user (Ux) connected to an SS

(a) Swap Ux with the user with RTmax.

(b) Find the RTmax of this configuration.

(c) If RTmax < RTbest then save this resource allocation as the best, otherwise
undo the swap.

(4) For each SS (SSx)

(a) Connect the user with RTmax to SSx.

(b) Find the RTmax of this configuration.

(c) If RTmax < RTbest then save this resource allocation as the best, otherwise
undo the change.

(5) Output best resource allocation.

Figure 47: Procedure for using the Iterative Minimization heuristic to generate a
resource allocation.

72

(1) Create the tabu list of size sizetabu.

(2) While the execution time is less than 10 minutes

(a) Generate a random set of DCUs (randDCUs). If this random set is not in
the tabu list then continue to step (b), otherwise repeat step (a).

(b) Use the Min-Min RT heuristic with randDCUs to generate a full mapping.

(c) Use the short hop procedure.

(d) Update the tabu list by adding the set of DCUs from step (c) and removing
the oldest set of DCUs.

Figure 48: Procedure for using the Tabu Search heuristic to generate a resource
allocation.

reach a local minimum that it cannot escape. The global move (or long hop) is used to es-

cape local minima by producing a random resource allocation with a new set of SSs that is

not in the tabu list. Intuitively the short hops try to find better resource allocations within

the same neighborhood (same set of DCUs) by moving the user with RTmax to other SSs,

or by reducing the computation of the SS where the user with RTmax is connected. The

sum of both long hops and short hops were limited to a 10 minute execution time limit. The

number of short hops allowed per long hop was limited to a maximumMAXSHORTHOPS

hops (determined empirically to be 100), or 10 short hops without improvement. The pro-

cedure for Tabu Search is shown in Figure 48 and the procedure for the short hops is shown

in Figure 49.

In our experiments, the Tabu Search heuristic was seeded with the results from other

heuristics. This was accomplished by replacing the first long hop (first long hop is generated

in steps 2(a) and 2(b) in Figure 48) with the solution from the seed heuristic.

4.3.2.5 Discrete Particle Swarm Optimization

Discrete Particle Swarm Optimization (DPSO) is based on the particle swarm optimization

in [48]. The authors in [70] implemented a discrete version of the particle swarm optimiza-

tion in [48], upon which we base our implementation. Intuitively, this algorithm samples

the search space of possible SS configurations, and then uses the Min-Min RT algorithm

to generate a complete mapping from a set of SSs.

In DPSO, the position of a particle represents a solution (resource allocation). Each

73

(1) Set shorthops to 0 and set MAXSHORT HOPS to the maximum allowed short
hops.

(2) Given the resource allocation found in the long hop, we determine RTmax of
this resource allocation.

(3) While shorthops < MAXSHORT HOPS

(a) Find the user with RTmax (Umax).

(b) For each server s (DCU or MS), reconnect Umax to s,
and if the move decreases RTmax then

(i) accept the move
(ii) update RTmax

(iii) go to step (c)

(c) Increase shorthops by one.

(d) Find the SS that has the user with RTmax.

(e) Select a random user that is connected to this SS (Urandom).

(f) For each DCU s , reconnect Urandom to s,
and if the move decreases RTmax then

(i) accept the move,
(ii) update RTmax

(iii) go to step (g).

(g) Increase shorthops by one.

Figure 49: Procedure for using the short hops to improve a resource allocation.

particle is composed of N entries (each entry represents a user). Let Xij ∈ {0, 1} represent

whether user j is a DCU (Xij = 0), or a non-DCU (Xij = 1) in particle i. Particles move

around through different possible solutions based on how their velocity is composed. The

direction of the velocity will determine whether user j changes to a DCU or a non-DCU .

Let Vmin represent the minimum and Vmax represent the maximum allowed velocity for

a particle. A particle i will have a velocity in each direction j (Vij ∈ [Vmin, Vmax]). A

sigmoid function is used to probabilistically convert the real value of Vij into a position

of either 0 or 1 for Xij . A coefficient (w ≤ 1) is used to slow the current velocity of the

particle over time. A particle is allowed to “move” for a pre-determined number of iterations

(itermax)—determined based on the maximum allowed execution time.

Each particle i will keep a record of its best solution (P i), where each P i has an entry for

74

(1) Initialize an array of P particles by N dimensions randomly with 0 or 1 (a value
of 0 indicates a user is not a DCU and 1 indicates the user is a DCU).

(2) Determine RTmax using the Min-Min RT heuristic for each particle.
(3) Initialize the global and each particles best positions.
(4) For i = 1 to number of particles do

(a) For j = 1 to number of dimensions do
(i) R1 = U(0, 1)
(ii) R2 = U(0, 1)

(iii) R3 = U(0, 1)
(iv) Vij = w · Vij + pw ·R1 · (P ij −Xij) + gw ·R2 · (Gj −Xij)
(v) If (Vij < Vmin) then Vij ← Vmin.

(vi) If (Vij > Vmax) then Vij ← Vmax.
(vii) If (R3 < Sigmoid(Vij)) then Xij = 1, else Xij = 0.

(b) Determine RTmax using the Min-Min RT algorithm to generate a complete
mapping.

(5) Set each particle’s best position (P i) using the particles in (4),and set the best
global position to the best P i over all i.

(6) Repeat (4) and (5) until the number of iterations is equal to itermax.

Figure 50: Procedure for using the DPSO heuristic to generate a resource allocation.

each user j (P ij ∈ {0, 1}). The particle i will be attracted back to P i with a given personal

weighting coefficient (pw). This coefficient will attract this particle to explore areas of the

search space close to P i.

The system as a whole will keep a best global solution (G). This best global solution

has an entry for each user j (Gj ∈ {0, 1}). All the particles in the system are attracted to

the best global solution. The force of the attraction is determined by a global weighting

coefficient (gw). The coefficient promotes the exploration around the best known solution.

The values of the coefficients w, gw, and pw were selected by experimentation to optimize

the performance. The pseudo-code for our implementation of DPSO is shown in Figure 50.

In our experiments, the DPSO heuristic was seeded with the results from other heuris-

tics. This was accomplished by creating a particle that has the same set of SSs as the

resource allocation generated by the seed heuristic. The set of SSs determined by the seed

is evaluated using the Min-Min RT heuristic, and the associated RTmax is determined.

75

1) An initial population of 200 chromosomes is generated and evaluated.

2) While there are less than 1000 iterations without improvement or 10 minutes
have not elapsed.

a) A pair of parents is selected using roulette wheel selection.

b) Two offspring are generated using two-point crossover.

c) For each offspring there is a 3% probability of mutating each field in the
chromosome.

d) The offspring are evaluated and inserted into the ordered population dis-
placing the worst chromosomes.

3) The output is the best resource allocation.

Figure 51: Procedure for using the Genitor RT to generate a resource allocation.

4.3.2.6 Genitor RT

The Genitor RT heuristic is based on the Genitor heuristic [85]. Genitor is a steady state

heuristic that only does one crossover and mutation operation per iteration. The results of

the crossover and mutation are evaluated and inserted in the ordered population based on

their rank. The heuristic uses the ranked population to keep the best chromosomes in the

population (of size 200 determined empirically).

This heuristic uses a chromosome that represents a full mapping. A chromosome is a

vector of size N where the value of the ith entry represents where the ith user is connected.

The value j in this entry indicates that user i connected to the MS through user j (if

1 ≤ j ≤ N), and directly to the MS (if j = 0). While this a clear and natural representation,

the disadvantage of this representation is that the crossover and mutation operations can

cause invalid resource allocations that need to be fixed. The complete procedure for the

Genitor RT heuristic is shown in Figure 51.

The first operator is crossover; for the crossover, we randomly select two points (from

1 to N) in the two parent strings and exchange the entries of the parents between these

two points. If the crossover causes a user x to be mapped to another user that is no longer

an SS, then user x is assigned to an existing SS that gives it the smallest RTx time. The

procedure for the crossover is shown in Figure 52.

76

(1) Select two parents for crossover (parent 1 and parent 2) using a linear bias
function.

(2) Generate two random numbers between 1 and N (R1 and R2 with R1 < R2)

(3) The entries between R1 and R2 in parent 1 are exchanged with the value the
entries have in parent 2 generating a child.

(4) For each entry (i.e., user assignment) in the child:

(a) Check if the entry has a valid assignment.

(b) If the entry has an invalid assignment (e.g., assigned to a user that is not
an SS) then assign it to the server (MS or an SS) that gives the user the
minimum RTx.

(5) The entries between R1 and R2 in parent 2 are exchanged with the value the
entries have in parent 1 generating a child, and repeat step (4).

Figure 52: Procedure for using crossover to generate new resource allocations.

The second operator is mutation; for the mutation, we determine with a fixed probability

if the assignment of a user is mutated. The mutation is done by randomly selecting if a

user should be connected directly to the MS, an SS, or user i (not an SS). If the user is

an SS assigned to a user i, then reassign it to user i and reassign the players connected

to it to other existing SSs (selected randomly). If as a result of the mutation the user is

connected directly to the MS or is an SS then no further repairs need to be made to the

assignment; however, if the randomly selected user is connected to another user i then i

needs to be converted into an SS. The procedure for mutation is shown in Figure 53.

In our experiments, the Genitor RT heuristic was seeded with the results from other

heuristics. This was accomplished by using the resource allocation generated by the seed

heuristic as a chromosome in the population.

4.3.3 Lower Bound

The primary purpose of deriving a mathematical lower bound was to evaluate the experi-

mental results of our proposed heuristics for the minimization of RTmax. The bound has

two components that can be calculated independently. The first component finds the min-

imum possible computation time of the MS and SSs (by performing an exhaustive search

77

(1) Set k to 1.

(2) Based on a fixed probability, determine if the kth entry in the chromosome is
mutated.

(3) If the entry is mutated, then:

(a) Generate a random assignment (connected to the MS, SS, or user i).

(b) If the entry being modified is an SS, then reassign the players assigned to
this SS to existing SSs (selected randomly).

(c) If this is an assignment to a user that is not an SS convert that user to an
SS.

(4) Increase k by 1.

(5) If k ≤ N then go to (2).

Figure 53: Procedure for using mutation to change a resource allocation.

of all possible computation times). This component has two simplifying assumptions that

are consistent with generating a lower bounds: (a) all users have the same computational

constant (µmin = min∀Ux µx), and (b) users connected to SSs are evenly distributed among

SSs. Component (a) removes the heterogeneity in computing power of the SSs, and (b)

minimizes the maximum computation time among SSs. Given the assumptions above, we

set ∆ = CompMS , and Equations 33, 34, and 36 we can calculate the computation fcomp

with the following equation:

fcomp(n, nnss) = Compα + 2 · CompMS with ∆ = CompMS (39)

fcomp(n, nnss) = µmin ·
⌈
N − n
nnss

⌉2

+ 2 ·
[
c · (N − n) + b · n2

]
; (40)

The second component is the lower bound on the communication time. This bound is

calculated by finding the minimum time each user requires to connect to the MS (either

connected directly to the MS or through another user), and then finding the minimum

among these times.

Let n = nss + nmain be the total number of users that are connected to the MS. Based

on Equation 33, and assuming user x connects to the MS through user y gives user x’s

communication time fcomm. The communication time fcomm is calculated as follows:

78

fcomm(Ux, Uy) = Comm(Ux, Uy) + Comm(Uy, Ux) + Comm(Uy,MS) + Comm(MS,Uy) .(41)

The case where Ux = Uy is considered to account for the case when Ux is connected to the

MS, i.e., Comm(Ux, Ux) = 0. The lower bound (LB) on RTmax is given as:

LB = min
1≤n≤N

(
min

0≤nnss≤n
(fcomp(n, nnss))

)
+ min
Ux∈all users

(
min

Uy∈all users
(fcomm(Ux, Uy))

)
. (42)

Proof. The proof will be divided into two parts. The first part will be to prove that the

computational bound is minimum and the second part will be to prove the communication

minimum.

The first part of the bound does an exhaustive evaluation of all possible configurations

for nnss and n. This will give us all the possible computations times. It will move n from

1 (only one user connected to the MS) to N (all users connected to the MS). For each of

these values of n it will attempt all possible configurations of nnss ≤ n. It is important to

note that nnss = 0 is an invalid configuration unless n = N (i.e., the only scenario where

we do not have SSs is when all users are connected directly to the MS), and in this case

we consider (N −N)/(0) = 0. Because we are considering all the possible configurations it

is not possible to get a smaller computation time.

The second part of the bound finds the smallest communication time for each user, then

it finds the minimum among these times. This method does an exhaustive search of the

possible communication times (through an SS or directly connected to the MS). Therefore,

this is a user with this minimum communication time. To this user’s communication time

we add the smallest possible computation time to get a lower bound on RTmax.

4.3.4 Simulation Results

4.3.4.1 Simulation Setup

The simulation had 200 users interacting in the MMOG environment. The constants for

these simulations were b = 0.03 and c = 0.01 (the values for these constants were set to

approximate realistic values for latencies in an MMOG environment). The communication

79

times between nodes were allowed to vary from 0 to 40 ms with a uniform distribution.

The computational constant (µα) at each user node was allowed to vary between 0.5 and

1 with a uniform distribution. For this study, 100 scenarios were created with varying

communication times and µα for each user. For the purpose of comparison, each heuristic

was limited to a maximum execution time of 10 minutes per scenario.

4.3.4.2 Results for Minimization of Response Times

Figure 54 shows the results averaged over the 100 scenarios. We can observe that the DPSO

had the best performance in all cases (unseeded, seeded with Min-Min SS, and seeded with

IM). When we seeded the heuristics with the Min-Min SS seed, the DPSO with the Min-

Min SS seed was the best overall performing variation. Additionally all heuristics were able

to improve upon the allocation done by the Min-Min SS seed. For the heuristics seeded

with the IM heuristic, we can see that the DPSO did not perform as well as the DPSO

seeded with the Min-Min SS. Genitor and Tabu were able to improve on the result of the

IM heuristic. The performance of Tabu Search when it was seeded with IM was comparable

to its performance when seeded with Min-Min SS. The Genitor did have better performance

with the Min-Min SS seed (as opposed to the IM seed).

The LB was calculated to compare the performance of the heuristics to a mathemat-

ical bound on performance. The lower bound is about 44.7 time units less than the best

performing heuristic (DPSO with Min-Min seed).

If all users were connected to the MS then the RTmax would be approximately 1200

time units (i.e., 2002 · b + max∀Ux 2 · Comm(Ux,MS) ≈ 1200). The use of the secondary

server based approach in our simulations leads to an improvement of an order of magnitude

(i.e., 110 time units versus 1200 time units).

4.4 Robustness to Additional Players Joining the Game

4.4.1 Problem Statement

The purpose of this section is to determine an allocation that will allow the maximum

number of new players to join an on-going game, i.e., be robust to additional players. The

concept of robustness is described in detail in Section 4.4.2.

80

67.6

130.6
140.5

115.6

181.5

132.0

112.3
119.0

128.5

115.4

130.3 129.4

40

60

80

100

120

140

160

180

200

R
T

m
a

x
(m
s
)

unseeded seeded with

Min-Min SS

seeded

with IM

0

20

40

Figure 54: Results for response time minimization. The computational parameters of the
MS were set to: b = 0.03 and c = 0.01, values are averaged over 100 scenarios, and the
error bars show the 95% confidence intervals.

81

The goal of the heuristics presented in this section is to provide an environment where the

differences in latency among all users are bounded by a quality of service (QoS) constraint.

This QoS constraint is based on human perception (i.e., the difference in response times

between players is imperceptible). If the QoS is met then the environment provides a high-

quality interactive experience. New players are users that join the game after the initial

resource allocation and are connected to the MS. The new players are not aware of the

initial configuration of SSs, and therefore we assume that they can only connect to the

MS. The latency for original users may increase above the QoS bound as new players join

the game. The heuristics will provide a resource allocation that maximizes the number of

new players that can be connected to the MS, while still maintaining the QoS for all users.

4.4.2 Robustness Metric

4.4.2.1 Overview

Using the FePIA (Performance Features, Perturbation Parameters, Impact, and Analysis)

procedure described in [4], we define the characteristics that make the system robust. The

FePIA procedure should respond to three fundamental robustness questions [4, 6]. First,

what behavior of the system makes it robust? Second, what uncertainties is the system

robust against? Quantitatively, exactly how robust is the system?

4.4.2.2 Performance Feature

The first step of the FePIA procedure is to describe quantitatively the QoS requirement

that makes the system robust. The requirement that makes the system robust is that all

the RTs are within a pre-determined range. The maximum RT time the system can allow

is βmax:

RTmax ≤ βmax. (43)

However, to maintain fairness RTmin also has a constraint. A time window (∆max) is used

to specify the allowable range of RTx for all users. The constraint that RTmin must meet

is:

RTmax −RTmin ≤ ∆max. (44)

82

For the system to be robust the constraints shown in Equations 43 and 44 need to be

satisfied.

4.4.2.3 Perturbation Parameter

The second step of the FePIA procedure is to determine the perturbation parameter that

represents the uncertainty in the system. For this study, the perturbation parameter is the

number of new players joining the game after the initial resource allocation is done.

4.4.2.4 Impact of Perturbation Parameter on the QoS Performance Features

In this study, it is assumed that new players joining a game in progress connect to the

MS. When new players join, the computation at the MS will increase quadratically. This

increase in time will make the RT of users that are already in the game increase, and hence

RTmax will increase. Thus, if the initial resource allocation satisfies Equation 44, then it

will remain satisfied.

Let RTnew be the RT for a new player. We assume the system does not allow new

players whose response time exceeds RTmax (i.e., RTnew < RTmax); or violates the fairness

criteria (i.e., RTmax − RTnew ≤ ∆max). Therefore new players have comparable time to

other connected users.

4.4.2.5 Analysis

The number of new players that can be added to the system before RTmax and RTmin

violate the QoS constraints can be calculated exactly if RTmax ≤ βmax. For a given resource

allocation and an associated set of secondary servers, we can calculate how many new players

can join the game before the QoS constraints are violated. We define Γ as the components

of the RT equation that do not depend on the number of players connected to the MS.

When Ux is connected to the MS, Γ is given by:

Γ = Comm(Ux,MS) + Comm(MS,Ux), (45)

83

and if Ux is connected to SSα then Γ is:

Γ = Comm(Ux, SSα) + Compα + Comm(SSα,MS)

+ Comm(MS,SSα) + Comm(SSα, Ux). (46)

Therefore,

RTmax = Γ + 2 · CompMS . (47)

The system will be at the boundary of robustness when RTmax is equal to βmax with

∆ = CompMS , that is

βmax = Γ + CompMS + ∆, or (48)

βmax = Γ + 2 · CompMS . (49)

Let nnew represent the number of new players that can be added, and n be equal to nmain+

nnss. This implies that

βmax = Γ + 2 · (c · nsecondary + b · (n+ nnew)2) . (50)

The quadratic term can be expanded so that

βmax = Γ + 2 · (c · nsecondary + b · ((n)2 + 2 · n · nnew + n2
new)). (51)

Using Equation 47, this can be simplified to

βmax = RTmax + 2 · b · (2 · n · nnew + n2
new). (52)

This can be re-written in standard quadratic form:

2 · b · n2
new + 4 · b · n · nnew + (RTmax − βmax) = 0. (53)

With the roots given by the quadratic formula, the robustness metric, the maximum number

of new players that can be added, is quantified as:

nnew = −n±
√
n2 − RTmax − βmax

2 · b
. (54)

This result requires some interpretation, because it has two roots. If Equation 54 has

two real roots, then the largest value is selected. If the largest value is positive then this

84

is the number of players the current resource allocation can add without violating the QoS

constraints. If the largest value is negative then this is the number of players that need

to be removed for the system to become robust. If the roots generated by Equation 54

are complex then the robustness cannot be achieved due to excessive communication or

computation at an SS. The value of the robustness metric is based on RTmax which is

determined by the given resource allocation; hence, better resource allocation will result in

larger values for the robustness metrics.

For some heuristics, it is necessary to give a “robustness” value to all resource allocations.

If the resource allocation cannot achieve robustness (i.e., Equation 54 has two complex

roots), then we approximate the robustness. In this case, the robustness is calculated as:

nnew =
−
√
RTmax − βmax√

2 · b
. (55)

This gives a negative bias to all the resource allocations that cannot reach robustness.

4.4.3 Heuristics for Maximizing Robustness to
Additional Players Joining the Game

4.4.3.1 Recursive Optimization Algorithm for Robustness (ROAR)

The Recursive Optimization Algorithm for Robustness (ROAR) iteratively adds SSs and

uses the Min-Min RT algorithm to assign non-DCUs to DCUs. Initially, the ROAR heuris-

tic creates a sorted list (COMMlist) of users in ascending order of communication time to

the MS. The first element of this list is added as a DCU , and the Min-Min RT heuristic

is used to assign the non-DCUs. If the constraints are met by this resource allocation,

then the robustness is calculated, and compared against the best known robustness. If the

constraints are not met, then the next element in COMMlist is also added as a DCU .

This procedure continues until a stopping criteria is met, which is the number of iterations

without improvement, or we have added all the users as SSs. The procedure for the ROAR

heuristic is shown in Figure 55.

4.4.3.2 Robust Tabu Search

The Robust Tabu Search is very similar to the Tabu Search in Section 4.3.2.4. The dif-

ferences between the two heuristics are: in Figure 48, if this mapping does not meet the

85

(1) Create a list with all users sorted in ascending order based on communication
time to the MS (COMMlist).

(2) Set best robustness, i, and j to 0.

(3) While j < stopping criterion and i < N then:

(a) Add the ith entry in the list to the set of DCUs (DCUset). Note that when
a user is added to DCUset, it will remain in DCUset until the heuristic
finishes executing.

(b) Use the Min-Min RT heuristic with DCUset to generate a full mapping.

(c) If the QoS constraints are not met then go to step (f), otherwise continue
to step (d).

(d) Calculate the robustness of the current mapping (Rx).

(e) If Rx > best robustness then

(i) best robustness← Rx and j ← 0.
(ii) The current mapping is stored as the best known resource allocation.

Otherwise, increment j by 1

(f) Increment i

(4) The best known resource allocation is output.

Figure 55: Procedure for using the ROAR heuristic to generate a resource allocation.

86

fairness constraints (based on βmax and ∆max) in step 2(b) then we go to step 2(a), oth-

erwise continue to step 2(c), and we switch from minimizing RTmax to maximizing the

robustness in steps 2, 3(b), 3(b).ii, 3(f), and 3(f).ii of Figure 49.

4.4.3.3 Robust Discrete Particle Swarm Optimization

The Robust Discrete Particle Swarm Optimization (Robust DPSO) is very similar to the

Discrete Particle Swarm Optimization in Section 4.3.2.5. The differences between the two

heuristics are the change in the objective function (from minimizing RTmax to maximizing

robustness in step 2 and 4(b) in Figure 50), and checking the resource allocation to insure

the fairness constraints are met in step 1 and 4(b). Note, that in step 5 the best position is

based on maximum robustness.

4.4.3.4 Robust Genitor

The Robust Genitor heuristic is very similar to the Genitor RT (Section 4.3.2.6). The

differences are that the chromosomes are ranked based on decreasing robustness instead

of increasing RTmax and chromosomes are only allowed entry into the population if both

fairness constraints are met in step 2(d) in Figure 51.

4.4.4 Upper Bound

The primary purpose of deriving a mathematical upper bound was to evaluate the experi-

mental results of our proposed heuristics for the maximization of robustness. This bound

is based on the lower bound in Section 4.3.3, and uses the same simplifying assumptions.

The basic idea of the upper bound is (1) to find a lower bound on RTmax (RTbound) for

each specific configuration (i.e., values of n,nnss, and nmain), and (2) using RTbound with the

number of users connected to the MS (n = nnss + nmain) to calculate a true upper bound

using Equation 54.

The function fcomp from Section 4.3.3 is used to calculate the computation required

given n and nnss, and Equation 56 is the communication part of Equation 42.

Commmin = min
Ux∈all users

(
min

Uy∈all users
(fcomm(Ux, Uy))

)
. (56)

87

RTbound(n, nnss) = fcomp(n, nnss) + Commmin . (57)

The robustness of the bound can be calculated with Equation 54 by substituting RTbound

for RTmax. If the robustness of a particular configuration can be calculated with the

quadratic equation shown in Equation 54, then the discriminant fquad will be a positive

value, i.e.,

fquad(n, nnss) = cdotn2 − RTbound(n, nnss)− βmax
2 · b

. (58)

If fquad is positive, then

robmax(n, nnss) = −n+
∣∣∣∣√fquad(n, nnss)∣∣∣∣ . (59)

Otherwise,we have complex roots and the game cannot be played in this configuration.

Therefore, there roots would be ignored.

For each configuration there will be a robmax, the upper bound (UB) will be the maxi-

mum robmax over all possible configurations.

UB = max
1≤n≤N

(
max

0≤nnss≤n
(robmax(n, nnss))

)
(60)

To show that the following bound is true, we must first prove that RTbound is a lower

bound on RTmax for a specific n and nnss of DCUs. The value of RTbound is composed of

the communication bound and the computation bound.

The bound on communication does an exhaustive search of the possible communication

times (through an SS or directly connected to the MS). Therefore, no user can have a

smaller communication time than Commmin independent of the configuration.

The bound on the computation will calculate the minimum computation given a specific

configuration. It consider values of n from 1 (only one user connected to the MS) to N (all

users connected to the MS). For each of these values of n, all possible values of nnss ≤ n

are considered. Each combination of n and nnss we generate a value of fcomp, and the sum

of fcomp and the bound on communication will give us RTbound. For each RTbound, the

robustness can be calculated using Equation 59. The maximum of these robustness values

is the UB.

88

30.23

12.23

22.65

20.72

16.62

22.86 23.06 22.80

15

20

25

30

35

ro
b
u
s
tn
e
s
s

(#
 g
e
n
e
ri
c
 p
la
y
e
rs
 a
d
d
e
d
)

unseeded seeded with

ROAR

12.23

5.71

0

5

10

15

ro
b
u
s
tn
e
s
s

(#
 g
e
n
e
ri
c
 p
la
y
e
rs
 a
d
d
e
d
)

Figure 56: Results for maximizing the robustness of the system against additional players
joining the game. The computational parameters of the MS were set to: b = 0.03 and c =
0.01, values are averaged over 100 scenarios, and the error bars show the 95% confidence
intervals. The values for βmax and ∆max are 200 and 150 milliseconds, respectively.

4.4.5 Simulation Results

4.4.5.1 Simulation Setup

The simulation setup is the same as in Section 4.3.4.1. The values for βmax and ∆max are

200 and 150 milliseconds, respectively.

4.4.5.2 Results for Maximization of Robustness

The Robust Tabu Search, Robust DPSO, and Robust Genitor heuristics were run with and

without a seed as shown in Figure 56, the results shown were the best results for each

heuristic found after doing parameter sweeps on controlled parameters, e.g., probability of

mutation in the Robust Genitor, and velocity weighting parameters in DPSO. The Robust

Tabu Search, Robust DPSO, and Robust Genitor heuristics had an execution time of 10

minutes, while the ROAR and Min-Min SS heuristics had an execution time of less than 1

minute.

89

The performance of the seeded Robust Genitor and Robust DPSO had similar per-

formance (about 22-23 players could be added). The unseeded Robust Genitor did not

perform well, this could due to the method used for generating random resource alloca-

tions, i.e., resource allocation with a negative robustness were not screened out of the initial

population.

The Min-Min SS heuristic (described in Section 4.3.2.2) was used as a comparison to see

how heuristics that optimize RTmax perform when considering robustness as the optimiza-

tion criterion. It had a performance that was not able to add as many users as the ROAR

heuristic (on average it could add approximately 8 less players).

For the Robust Tabu, the average result from the long hop was a robustness of 9.06 users

(a total of 3458 long hops were executed). The average improvement obtained by the local

search was 24.45% upon the initial resource allocation with an average of 24.5 short hops.

This shows that the short hops are able to improve the resource allocation by exploring the

neighborhood.

The Robust Tabu, Robust Genitor, and Robust DPSO significantly improved with the

introduction of the seed. However, this improvement in performance was mostly due to

the high robustness generated by the ROAR heuristic. The DPSO heuristic had a 0.21 (≈

1%) improvement, Tabu Search had a 0.15 (≈ 1%) improvement, and Robust Genitor had

a 0.41 (≈ 2%) over the ROAR heuristic. The results of the ROAR seeded heuristics were

(on average) 7.4 time units less than the UB (about 76% of the UB).

The results from the heuristics for the maximization show that with the constraints set

for this environment, a large number of users can be added while maintaining the fairness

conditions (approximately 10% more users). The results from the heuristics for robustness

maximization are not very close to the UB. The closest result generated by the heuristics

was on average approximately 7 users less than the UB.

4.5 Related Work

Various MMOG architectures are reported in the literature (e.g., client/server [24,29], peer-

to-peer [15, 43, 54], mirrored server [28]). Each architecture has its own advantages. For

90

example, the client/server and mirrored server allows the company that develops the MMOG

environment to maintain tight control of the game state. However, there is a significant

monetary cost associated with maintaining a large-scale MMOG environment. In a peer-to-

peer architecture, because of the absence of a centralized game state controller, no peer has

full control over the game state making it difficult to maintain a consistent MMOG environ-

ment. The advantage of using a peer-to-peer architecture is that there is no single point of

failure and the MMOG environment can be maintained without a significant monetary cost.

The use of the centralized server in the hybrid approach may have a single point of failure,

however it allows the game developer to control the MMOG environment and uses peers to

reduce the computation of the main server. Our work is different from [28, 29] because it

considers converting users to secondary servers. Our work is also different from [15, 43, 54]

because it has a “non-peer” centralized server, and fairness is not directly addressed.

Maintaining a seamless interactive experience for the users is an important factor in

MMOG because an increase in latency within the system can lead to deterioration in the

gaming experience [7, 29]. In [43], the authors show that the latency follows a “... weak

exponential increase ...” as the number of users in the system increases. Our study focuses

on latency as a critical performance parameter that must be maintained and uses the results

in [43] to model the relationship between latency and the number of users.

In [24], a hybrid approach is presented where peers are clustered together and they up-

date movement information independent of the main server. Because movement information

can make up a significant amount of the traffic generated by an MMOG [59], this off-loading

can reduce the main server’s computational load. The work in [24] shares similarities with

our work, however the focus of our study is resource allocation considering latency and

heterogeneity in a hybrid MMOG environment. In regard to heterogeneity, [24] considers

the scenarios where the peers are either able or unable to computationally contribute to

the system. Our algorithm uses heterogeneity of computational capabilities as part of the

information used to make resource allocation decisions. Also, the study in [24] does not use

a robustness metric to evaluate resource allocation.

This study proposes a hybrid client/server architecture to combine the best elements of

91

both the centralized client/server and peer-to-peer architectures, and guarantee a robustness

criteria that creates a fair environment. Our work is similar to [60], where a distributed

system uses intermediate servers (analogous to our definition of secondary servers) to reduce

the communication latency to the central server. The main differences between our study

and theirs is that in [60] the intermediate servers are predefined and do not participate as

users in the MMOG, and we have a robustness criterion to guarantee fairness.

4.6 Conclusions

In this study, we created a detailed mathematical model of a hybrid MMOG environment,

and derived metrics to analyze the performance of the system. For the first part of the

study, we designed heuristics that minimize the maximum response time (RTmax) among

every player in this environment. Heuristics for this environment need to determine (a)

how many users are converted into secondary servers, (b) which users are converted into

secondary servers, and (c) how the remaining users are connected among the secondary

servers and the main server. For this environment, we derived a mathematical lower bound

on RTmax, and showed it to be a true lower bound. We used a simulation study to compare

heuristics against each other and to the lower bound. In this part of the study, we saw that

we could decrease the response time from approximately 1.2s (with all users connected to

the main server) to about 112ms using the proposed resource allocation heuristics.

The mathematical model of the MMOG environment was additionally used to address

the problem of adding players to an on-going game session. The problem of adding players

was modeled in terms of fairness and robustness. We designed heuristics to maximize a

robustness metric, i.e., number of player that can join an on-going game, that guarantees

(using QoS constraints) the configuration of the system is fair. We derived a mathematical

upper bound on the number of players that can be added, and used this bound to evaluate

the performance of the heuristics. In this part of the study, using the proposed resource

allocation heuristics, we were able to add approximately 10% more players (≈ 220) while

maintaining a system that is fair. If users are connected directly to the main server, then

we would able to support a maximum of 81 users within the fairness constraints. This

92

shows that, in our environment, the hybrid client/server configuration found by the resource

allocation heuristics can duplicate the number of players that can interact the system.

A possible extension to this study is to make the model more realistic, consider that

players may leave (or be banned) during an on-going game session, consider that new players

joining can be assigned anywhere (as opposed to only the main server), and determine an

allocation given a large set of users that allows the maximum number players among these

users to participate in the game session.

93

CHAPTER V

ROBUST RESOURCE ALLOCATION IN A SATELLITE

IMAGING SYSTEM

5.1 Introduction

In this study, we consider a heterogeneous computing (HC) system based on multicore chips

used to analyze satellite data. The data processing applications used in the analysis typically

require computation on large data sets, and their execution may be subject to a completion

deadline. Multiple applications, each represented as a directed acyclic graph (DAG) of

tasks, are to be assigned to an HC system for execution. The goal of this study is to assign

tasks to processors in such a way that all applications complete before a common deadline,

and the application completion times are robust against uncertainties in task execution

times. We define a measure of robustness in this context, and we design, compare, and

evaluate five resource allocation heuristics that attempt to maximize robustness, and test

them under a variety of situations.

The simulation environment used to compare and evaluate these heuristics is motivated

by similar systems in use at DigitalGlobe± 1 and the National Center for Atmospheric

Research 2 (NCAR?). In these systems, data from a satellite is received and distributed to

storage units in the satellite data processing HC system, where there are: (a) heterogeneous

hard drive (HD) access rates, (b) different computational capabilities across compute nodes,

and (c) different data set sizes. This satellite data processing system has the following

characteristics: (a) the initial allocation of satellite data to HDs is determined by the

heuristic, (b) there is limited RAM available at each compute node, (c) data items have

to be explicitly staged to and removed from RAM, (d) some tasks can be executed using

A preliminary version of portions of this research appeared in [18].
1± http://www.DigitalGlobe.com/
2? http://www.ncar.ucar.edu/

94

parallelization, and (e) transfer times between HD and RAM must be taken into account.

The simulation environment models this HC system and the applications.

Each application requires only a subset of the total collection of data that is downloaded

from the satellite. Resource allocation in this environment requires both selecting a location

within the system to store each satellite data item and mapping tasks to compute nodes for

execution; the mapping includes a decision about using data parallelism and multiple cores

to each task. All applications and their required satellite data items are known prior to the

satellite collecting the data, so this is an instance of a static resource allocation problem [2].

The general mapping problem is NP-complete [26,34,42]; therefore, heuristics are required

to obtain a near-optimal allocation in a reasonable time.

Our contributions are: (a) a model and simulation of a complex multicore-based data

processing environment that executes data intensive applications, (b) a robustness metric

for this environment, and (c) resource allocation heuristics to maximize robustness using

this metric.

In the next section, we will describe the problem statement. Five heuristics are defined

in Section 5.3. The related work is discussed in Section 5.4. Section 5.5 and 5.6 provide the

results and conclusions, respectively.

5.2 Problem Statement

5.2.1 System Model

This HC system is composed ofN compute nodes, where each compute node j has dedicated

storage (DSj)—composed of RAMj and HDj . Each compute node also has one to eight

processing elements (PEs), where each PE in our model may correspond to a core in a real

system. We make the simplifying assumption that each PE may only execute one task at

a time, i.e., no multi-tasking. The PEs within a compute node are homogeneous, but are

assumed to be heterogeneous across compute nodes. Each compute node j has νj PEs where

the xth PE is denoted PEj,x(1 ≤ x ≤ νj), and the total number of PEs across all compute

nodes is M (M =
∑N

j=1 νj). The composition of a compute node j is shown in Figure 57.

The goal of resource allocations in this environment is to complete all applications before a

95

RAMj …

PEj,1

compute

nodej
HDj

n
e

tw
o

rk

DSj

PEj,νj

PEj,i
•ti

…n
e

tw
o

rk

Figure 57: The composition of compute node j is illustrated in this figure.

common deadline (∆). Let appk be the kth application. Each appk is divided into Tk tasks,

represented by a DAG. In the DAG, entry tasks require only satellite data and exit tasks

produce final results that must be stored on an HD. Without loss of generality, we assume

that there is an entry task and an exit task for each DAG. Tasks may require both satellite

data sets, denoted SDi, and data sets produced by other tasks, denoted TDj . Within a

compute node α, a data set can be located in either RAM or the HD. The location of a

data set (TD or SD) within a compute node α is denoted locα, i.e., locα ∈ {RAMα, HDα}.

An example of a resource allocation of a DAG is shown in Figure 58.

In each compute node, the RAM storage space is limited and may be unable to store

simultaneously data sets currently needed by tasks assigned to the PEs; however, each HD

is assumed to be large enough to store any SDs and TDs assigned to it. If a TD in RAM

is to be released, but is required later as an input to a task, then it must be copied to the

HD. Because all SDs are initially stored on HDs, SDs do not need to be saved to the HD

before being overwritten in RAM. Two methods for initial placement of satellite data are

considered: the first one (ARB) uses a fixed arbitrary placement, and the second method

(HEU) lets the heuristic map satellite data sets to compute nodes.

All the input data sets required by a task must be in local RAM before the task can

start executing, and must remain in RAM until its execution is finished. The storage space

in RAM for the output of a task must be reserved locally before it begins execution. For

a given compute node, if there is space currently available in RAM then the required data

96

SD6

t1

t3

SD1

TD2 SD4

PE1,1
node1

t6

SD8

TD7

TD3
node3

PE2,1

node2

Figure 58: This figure shows a diagram of a DAG. The PE shown in compute node 1
(PE1,1) is executing t1 that requires SD1 from compute node 3. In this case, TD3 and TD7

on compute node 1 need to be transmitted to compute node 2 for t6. The result of t6 must
be stored in an HD of the system, and the time to store the result must be considered when
calculating the makespan.

node
1

node
2

nodeN
…

Figure 59: An illustration of HiPPI network is shown in this figure.

sets are sent directly to the RAM on the destination compute node. If there is no space

currently available in RAM, then the required data is sent to the HD of the destination

node. When a task finishes execution, we evaluate which data sets can be removed from

RAM, we select for removal data sets that are not currently being used, and have the fewest

remaining tasks that require them (TDs are copied to the HD to avoid lost data). In this

model, all PEs on the same compute node share dedicated storage and network access. The

time to access local RAM from a PE is assumed to be part of the estimated task execution

time. HD access must be considered explicitly, and is different for a read or a write.

The network topology used for this study is a high performance parallel interface

97

(HiPPI) crossbar switch (Figure 59). Each compute node may simultaneously transmit

and receive one data set at a time, but may not broadcast. The transfer rate of data from

one compute node to another depends on the data’s location in both the source and the

destination, i.e., RAM or HD.

Because there are two locations where data may be stored and two compute nodes

involved in the transfer, there are four cases of data transfer within this system. In the

first case, we wish to transfer data from RAM on a source compute node to RAM on a

destination compute node. This transfer is only limited by network bandwidth (the same

for all compute nodes) because the bandwidth to RAM is always greater. In the second

case, the transfer rate of data from the HD on the source compute node to RAM on the

destination compute node is limited by the smaller of the network bandwidth and the read

bandwidth of the source HD. In the third case, the transfer rate of data from RAM on a

source compute node to HD on a destination compute node is limited to the smaller of the

network bandwidth and the write bandwidth of the destination HD. In the fourth case, the

transfer rate of data from a HD on the source compute node to the HD on the destination

compute node is limited by the smaller of the network bandwidth, the read bandwidth from

the source HD, and the write bandwidth to the HD on the destination compute node.

For each task ti, we assume that an estimated time to compute on each compute node

j has been provided, denoted ETC(i, j), possibly determined from past task execution

times or experimentation, which is a common assumption (e.g., [9,30,37,46,50,78,88]). The

goal of this study is to assign tasks to PEs so that unexpected increases in the estimated

task computation times do not cause the total time required to complete all applications

(makespan) to exceed ∆.

A subset of the tasks are designed to be decomposable for parallel execution within

a single compute node. These decomposable tasks are grouped into good parallel tasks

and poor parallel tasks, based on how amenable the task is to parallel processing. For

both “good” and “poor” parallel tasks, a divisor value is used to scale the execution time

depending on how many PEs a task is being parallelized across. This parallel execution time

is denoted ETCparallel(i, j) = ETC(i,j)
divisor , and the divisor values we use in the simulations

98

number of PEs in use
types of parallelism 1 2 3 4 5 6 7 8

divisor for good parallel tasks 1 1.75 2.5 3.25 4 4.75 5.5 6.25
divisor for poor parallel tasks 1 1.5 2 2.5 3 3.5 4 4.5

Table 3: Table showing the divisor for parallel tasks

are shown in Table 3. In this work, any time a parallelizable task is assigned to a compute

node all idle PEs were assigned to execute the task. In our simulation environment, the

amount of RAM in the compute node is a constraint that can prevent all PEs from executing

different tasks. Therefore, parallelizing tasks makes more efficient use of the memory.

5.2.2 Robustness

A resource allocation is robust if it meets a given performance criterion and is able to

maintain this performance despite unexpected perturbations [5, 74, 79]. To quantitatively

compare robustness among different possible resource allocations, three questions about

robustness must be answered [4]: (1) What behavior of the system makes it robust? Our

system is robust if all applications complete before a common deadline ∆. (2) What un-

certainties is the system robust against? The uncertainty is the relationship between the

estimated execution time of each task and the actual data dependent execution time of

each task. (3) Quantitatively, exactly how robust is the system? In this study, we define

robustness of a given resource allocation to be the smallest common percentage increase (ρ)

for all task execution times that causes the makespan to be equal to the deadline ∆. Thus,

the robustness metric ρ is maximized for this study. An example of a resource allocation

with a robustness of 50% is shown in Figure 60.

5.2.3 Performance Metric

The performance metric for this study is ρ. Due to the complexity of the environment,

it is difficult to identify a closed-form expression for ρ. Robustness is different than just

increasing the makespan by ρ, because of the complexity introduced by the inter-compute

node data transfers. Thus, an iterative search procedure is used.

In a real system, the execution times of all tasks will not be increased by the same per-

centage. However, ρ can be used as a suitable measure for robustness in this environment—it

99

i

d

g
h

ti
m

e
a’

i’

d’

g’ h’

c’

ti
m

e

f

f’
e

e’

makespan

∆ ∆

PE1,1 PE2,1 PE3,1

a
b

c
ti

m
e

PE1,1 PE2,1 PE3,1

a’
b’

c’

(a) (b)

Figure 60: In this figure, an example of a resource allocation is shown. Each of the execution
times for the tasks in (a) is increased by 50% with the results shown in (b). Note that the
communication times do not increase, and the makespan for (b) (equal to ∆) is much less
than makespan in (a) increased by 50%. In (a), the makespan PE (the PE that determines
the makespan) is PE3,1. After all task execution times are increased by 50%, PE3,1 is no
longer the makespan PE. This example intuitively shows how the makespan is not a good
measure of robustness.

can be viewed as a worst-case guarantee.

We define the makespan with a λ% percent of the execution times as makespanλ. One

procedure to calculate λ, such that makespanλ = ∆, is to multiply all the estimated task

execution times by λ. Then, using a binary search, the value of λ is found to the nearest

percent. The starting upper value of λ for the binary search is an upper limit on λ (ULλ).

ULλ for the binary search is calculated as follows. For each PE, sum the ETC values of

the tasks assigned to that PE. Let µ be the maximum value of these sums among all PEs.

The starting value for the binary search is:

ULλ =
∆
µ
. (61)

The binary search will go between 0% (all computation times are set to 0 time units),

and ULλ. For each iteration of the binary search, we calculate the makespan (including

communication) until you find the value of λ (to the nearest percent) gives makespanλ = ∆.

100

(1) Let transfertime = 0.

(2) For a given task ti on PE j (PEj)

(a) For each data set dat (satellite and inter-task) required by ti at PEj :

(i) Determine the smallest transfer time from all possible sources to move
dat to the RAM of the compute node associated to PEj .

(ii) Add the transfer time from 1(i) to transfertime (ignoring availability
of communication channels of compute nodes).

(3) For each dependency of the destination task, determine the maximum
completion of among all the predecessor tasks (maxsource).

(4) Estimated completion time of ti on PEj is equal to the sum of transfertime
and the maximum of maxsource and the ready time of PEj .

Figure 61: Procedure for estimating a completion time in our environment.

(1) A random task trand is selected for mutation.

(2) A valid range where trand can be moved in the ordering without violating any
precedence constraint is determined (i.e., after all predecessor and before all
successor tasks).

(3) A random position within this range is selected, and trand
is moved to this new position.

Figure 62: Procedure for modifying a total ordering.

5.3 Heuristics

5.3.1 Multicore Minimum Completion Time

The Multicore Minimum Completion Time (MC MCT) heuristic estimates the completion

time of each resource allocation, and assigns each task to the machine that gives it its

minimum completion time. The MC MCT uses a known total ordering to generate a

resource allocation. The procedure used to calculate the estimated completion time is

shown in Figure 61, the procedure for modifying a total ordering (based on the mutation

in [83]) is used to create multiple MC MCT solutions is shown in Figure 62, and the complete

procedure for MC MCT is shown in Figure 63.

101

(1) Generate a valid total ordering for all tasks (DAGlist).

(2) For 100 iterations the heuristic we execute steps i-ix

(i) The first task in DAGlist is assigned to its estimated minimum completion
time PE (Figure 61).

(ii) Communication is scheduled from the compute node (that has a copy of
the data set) that can start the communication the earliest.

(iii) The RAM of the compute node is allocated for this task’s data sets (input
and ouput) as soon as possible.

(iv) If it is possible then the task is parallelized across multiple PEs.

(v) The task used in step (i) is removed from DAGlist.

(vi) The ready time of the PE on which the task is assigned is updated.

(vii) Steps (i)-(vi) are repeated until all the tasks have been mapped.

(viii) Calculate the robustness of the resource allocation, and keep the best so-
lution across iterations.

(ix) Mutate the total ordering using the procedure shown in Figure 62.

(3) Output the best solution.

Figure 63: Procedure for generating a resource allocation using Multicore MCT.

5.3.2 Multicore Random Resource Allocation

The Multicore Random Resource Allocation heuristic uses an arbitrary total ordering, and

assigns the tasks (in order) to a randomly selected PE. The procedure is the same as that

of MC MCT except that in step 2(i) of Figure 63 we assign tasks to PEs randomly.

5.3.3 Heterogeneous Robust Duplication (HRD)

5.3.3.1 Overview

Heterogeneous Robust Duplication (HRD) is based on the Highest Critical Parents with

Fast Duplication heuristic introduced in [40]. The algorithm has a listing phase, where

tasks have their priority computed and are inserted into a queue based on that priority.

The algorithm then has a scheduling phase, where the tasks are assigned to PEs in order

of the queue.

102

3

0 0

4

11 19

3

10 10

2

9 14

8

7
6

3
5 8

5

AETi

AESTi ALSTi

average

communication

time(TD)

t1

t2 t3 t4

t
1

18 26

5

21 21

3

31 31

4 5

time(TDi) t5
t6

t7

Figure 64: Figure showing an example of the AEST and ALST computation. The AEST
is calculated first starting from t1 to t7. After all the AESTs are calculated, the ALST of
t7 is set to the AEST of t7 (in this case 31), and the ALST of the all the tasks from t7 to
t1 is calculated.

(1) For each application DAG

(a) Traverse the DAG downward (starting at tentry), computing the AEST for
each task.

(b) Traverse the DAG upward (starting at texit), computing the ALST for each
task.

(c) Identify all critical nodes (where ALST = AEST).
(d) Push the critical nodes on the stack (S) in descending order of their ALST.
(e) While S is not empty do

(i) If the task at the top of the stack S has a parent that is not in L then
push the parent on S (so that the parent is at the top of the stack).

(ii) Else pop S and enqueue on L.

Figure 65: Procedure used to generate the HRD list.

5.3.3.2 The Listing Phase

We denote the average communication time for the transferring a data item (dati,j) created

by ti and consumed by tj between any pair of compute nodes as ACT (dati,j), and the

transfer time of dati,j between the HD or RAM of the source compute node k and the HD

or RAM of the destination node l as TT (dati,j, k, l). These parameters are calculated as

follows:

103

(1) Generate the HRD list using the procedure in Figure 65.
(2) For each task in the HRD list

(a) A task (tmap) is de-queued from L

(b) For tmap on each PEj

(i) Calculate the robustness (considering communication, memory alloca-
tion, and parallelization) of assigning tmap to PEj .

(ii) Calculate the completion time (considering communication, memory
allocation, and parallelization).

(iii) We compare this allocation of tmap to the best allocation of tmap.
(iv) If the DTS is large enough to hold the execution time of tcritical, then

attempt duplication. Keep the duplicated critical task if the robustness
is improved.

(v) Communication is scheduled from the compute node (that has a copy
of the data set) that can start the communication the earliest.

(vi) The RAM of the compute node is allocated for this task’s data sets
(input and output) as soon as possible.

(vii) If it is possible then the task is parallelized across multiple PEs.
(viii) The ready time of the PE on which the task is assigned is updated.

(3) Output the solution.

Figure 66: Procedure used to map tasks to machines for the HRD heuristic.

TTaverage(dati,j , α, β) =
TT (dati,j , RAMα, HDβ) + TT (dati,j , HDα, RAMβ)

4

+
TT (dati,j , HDα,HDβ) + TT (dati,j , RAMα, RAMβ)

4
(62)

ACT (dati,j) =

∑N
α=1

∑N
β=1 [TTaverage(dati,j , α, β)]

N2
. (63)

This algorithm calculates two values for each task, the Average Earliest Start Time

(AEST) and the Average Latest Start Time (ALST). We traverse down the DAG com-

puting AEST (ti) for each task ti. We define the average execution time of ti as AET (ti),

and calculate it as follows:

AET (ti) =

∑N
j=1ETC(i, j) · νj

M
. (64)

Let pred(ti) be the set of predecessor tasks for ti in the DAG, and succ(ti) be the set of

104

successor tasks. We can calculate AEST (ti) recursively as follows:

AEST (tentry) = 0, (65)

AEST (ti) = max
tj∈pred(ti)

[AEST (tj) +AET (tj) +ACT (dati,j]. (66)

To compute ALST (ti) recursively, we traverse up the DAG, for each task ti.

ALST (texit) = AEST (texit), (67)

ALST (ti) = min
tj∈succ(ti)

[ALST (tj)−ACT (dati,j]−AET (ti). (68)

Tasks along the critical path (critical tasks) have ALST equal to AEST. An example of

this is shown in Figure 64.

In the next part of the listing phase, a prioritized queue L is built for the mapping phase,

using the procedure in Figure 65. The goal of this procedure is to consider the critical task

path as soon as possible.

5.3.3.3 Mapping Phase

For the mapping phase, a task tmap is dequeued from L. Initially, assign tmap to the PE(s)

that results in the maximum robustness value (MRV). Multiple PEs may have the same

robustness value. If ties occur then we select the PE with the minimum completion time

(MCT), equal to the estimated ready time of the PE plus the execution time of tmap on

that PE. We repeat this until the queue is empty.

The idle time slot just prior to the execution of a task is denoted as the duplicate

time slot (DTS). The DTS for each PE on the same compute node (as the PE selected for

assignment) is the start time of tmap minus the time when the PE finishes executing the task

it has before tmap. If the DTS is large enough to hold the execution of the critical parent

then duplication is attempted; thus, eliminating the need to incur the communication cost

of the critical parent’s data set. For this study, we attempted the duplication if the DTS

was large enough. However, we only kept the duplication if it improved the robustness. The

procedure for the HRD is shown in Figure 66.

105

(1) Let ti = texit
(2) Calculate average task execution time (AET (ti)).
(3) For each SDx needed by ti, calculate the estimated transfer time (using

ACT (SDx) Equation 63).
(4) For each TDj needed by ti, calculate the estimated transfer time to

successor nodes (using ACT (TDj) Equation 63).
(5) Determine the maximum time from any successor (child) node

to the texit (maxtime).
(6) The critical path value is the sum of each individual TD and SD transfer time,

maxtime, and AET (ti).
(7) Select another task (whose successors have a calculated critical path value) and

go to step (2) until all tasks are processed.

Figure 67: Procedure used to calculate the critical path of the DATCP heuristic.

(1) Calculate the critical path for each application (using the procedure shown in
Figure 67).

(2) Dynamically create a list of all tasks available for mapping (i.e., predecessors
have been mapped).

(3) Determine the task with the longest critical path from the list of available tasks.
(4) For task ti determined in (3),

(a) For each PE k in each compute node j,
(i) Calculate the robustness of assigning ti to PEj,k (including communi-

cation, memory, and task parallelization).
(b) Find the compute node j with the highest number of maximum-robustness-

value PEs (it is possible for other PEs to have the same robustness value).
This compute node is denoted nodemax.

(c) Map task to the PE with the maximum robustness in nodemax.
(d) Communication is scheduled from the compute node (that has a copy of

the data set) that can start the communication the earliest.
(e) The RAM of the compute node is allocated for this task’s data sets (input

and ouput) as soon as possible.
(f) If it is possible then the task is parallelized across multiple PEs.
(g) The ready time of the PE(s) on which the task is assigned is updated.
(h) Remove task ti from list.

(5) Repeat steps (2)–(4) until all tasks are mapped.

Figure 68: DATCP heuristic procedure used to generate a resource allocation.

106

5.3.4 Dynamic Available Tasks Critical Path (DATCP)

5.3.4.1 Base Version

The Dynamic Available Tasks Critical Path (DATCP) heuristic is based on the Dynamic

Critical Path (DCP) heuristics [57]. It is based on computing the critical path for every

arbitrary task, and choosing the ordering based on this critical path value. Without loss

of generality, assume that all of the entry nodes of all application DAGs have a common

predecessor that is the pseudo-node entry task tentry. Similarly, assume there is a unique

exit node texit. The calculation of the critical path is a recursive process that begins with

texit and finishes at tentry. Each task calculates its estimate of the average time to reach

texit and then passes this time value to its predecessor tasks. The execution time for a task

is calculated using the average values across all compute nodes.

The pseudo-code for the critical path calculation method is in Figure 67. After calcu-

lating the critical path, the next step of the heuristic determines the list of available tasks,

which are entry tasks or tasks whose predecessors have been mapped. The available task

with the longest critical path time is then mapped to the compute node that maximizes

the robustness value. That task is then removed from the list of mappable tasks and the

process is repeated until all tasks are mapped. The pseudo-code for this algorithm is listed

in Figure 68.

5.3.4.2 Variation

A variation of this heuristic (DATCP-V) was implemented to determine the effect of

breaking ties between two allocations with the same robustness. DATCP assigns the tasks to

a PE on the compute node with the maximum number of PEs with the same robustness, and

HRD assigns it to the PE that has the minimum completion time. This variation is identical

to the DATCP heuristic except that steps 4(a) through 4(c) in Figure 68 are replaced with

the steps from HRD that assign a task to the PE with the maximum robustness using

minimum completion time to breaks ties (steps 2(b).i and 2(b).iv from Figure 66). The

procedure for DATCP-V is shown in Figure 69.

107

(1) Calculate the critical path for each application (using the procedure shown in
Figure 67).

(2) Dynamically create a list of all tasks available for mapping (i.e., predecessors
have been mapped).

(3) Determine the task with the longest critical path from the list of available tasks.
(4) For task ti determined in (3),

(a) Calculate the robustness (considering communication, memory allocation,
and parallelization) of assigning tmap to PEj .

(b) Calculate the completion time (considering communication, memory allo-
cation, and parallelization).

(c) We compare this allocation of tmap to the best allocation of tmap.
(d) If the DTS is large enough to hold the execution time of tcritical, then

attempt duplication. Keep the duplicated critical task if the robustness is
improved.

(e) Communication is scheduled from the compute node (that has a copy of
the data set) that can start the communication the earliest.

(f) The RAM of the compute node is allocated for this task’s data sets (input
and ouput) as soon as possible.

(g) If it is possible then the task is parallelized across multiple PEs.
(h) The ready time of the PE(s) on which the task is assigned is updated.
(h) Remove task ti from list.

(5) Repeat steps (2)–(4) until all tasks are mapped.

Figure 69: DATCP-V heuristic procedure used to generate a resource allocation.

108

5.3.5 Multicore Dynamic Levels

The Multicore Dynamic Levels MC DL heuristic is based on the concept [77]. The static

level of a task is computed as an approximate time from the task node to the exit node along

the worst-case path on a heterogeneous system. A data arrival time for a task is defined as

the time when all required input data arrives for a task at a destination node. The dynamic

level is the static level minus the maximum of data arrival time and the time when the

processing element is ready to execute a new task. The mappable task/machine pair with

the highest dynamic level value is selected for mapping.This dynamic level depends on the

state of the system due to previous task-to-PE assignments. The difference between our

work and [77] is that this version assigns memory, schedules data transfers, and employs

task level parallelism in a multicore environment.

The static level SL(ti) is calculated recursively using the following equation:

SL(texit) = AET (texit) (69)

SL(ti) = max
tj∈succ(ti)

[SL(tj)] +AET (ti) (70)

For each task (ti) on a PE (PEj), the current dynamic level is calculated before ev-

ery task is assigned. Let S be the state of processing and communication resources,

DA(ti, PEj, S) be the earliest time that all the data transfer to ti (on PEj) from its

predecessors are guaranteed to be completed, and TF (PEj, S) be the time when the task

assigned to PEj finishes. The dynamic level of ti on PEj at state S (DL(ti, PEj, S)) is

calculate as follows:

DL(ti, PEj , S) = SL(ti)−max [TF (PEj , S), DA(ti, PEj , S)]. (71)

The procedure for the Multicore Dynamic Levels is shown in Figure 70. Despite the MC

DL heuristic not considering robustness explicitly it does perform well for certain scenarios.

5.3.6 Multicore Genitor

The Multicore Genitor heuristic is based on the concept of the Genitor heuristic [85]. The

Genitor is a steady state heuristic that only does one crossover and mutation operation

109

(1) Calculate the static levels for all tasks (Equation 70).
(2) While tasks remain unassigned

(a) For each task-PE pair calculate the dynamic level (Equation 71).
(b) Using the task-PE pair with the highest dynamic level, assign this task to

the corresponding PE.
(c) Communication is scheduled from the compute node (that has a copy of

the data set) that can start the communication the earliest.
(d) The RAM of the compute node is allocated for this task’s data sets (input

and ouput) as soon as possible.
(e) If it is possible then the task is parallelized across multiple PEs.
(f) The ready time of the PE(s) on which the task is assigned is updated.

(3) Output the solution.

Figure 70: Procedure used to assign tasks to machines using dynamic levels..

1) A random position in the scheduling string is selected for a one-point crossover.

2) We create a copy of parent A (denoted offspring A), and parent B (denoted
offspring B).

2) For offspring A, create an ordered list listAwith the tasks from the bottom part
of its scheduling string.

3) For offspring B, create an ordered list listBwith the tasks from the bottom part
of its scheduling string.

4) For offspring A, we change its scheduling string so that the tasks in listB follow
the same relative ordering in listB and offspring A.

5) For offspring B, we change its scheduling string so that the tasks in listA follow
the same relative ordering in listA and offspring B.

Figure 71: Procedure used for crossover in the Multicore Genitor heuristic.

per iteration, and uses an ordering population to keep the best chromosomes (encountered

during the simulation) in the population. The results of the crossover and mutation are

evaluated and inserted in the population based on their rank.

The chromosome used in the Multicore Genitor is based on the work in [83]. The

chromosome in [83] has two strings: a mapping string and a scheduling string. The mapping

string is a vector of length LN =
∑
∀k Tk (recall that Tk is the number of tasks in application

k), where the ith entry in the chromosome represents task ti (assume LN task are uniquely

numbered from 1 to LN), and the value of the entry represents the PE where ti is assigned.

110

1) An initial population of chromosomes (amount is determined empirically) is
generated and evaluated.

(i) Seeds of Multicore Dynamic Levels heuristic and DATCP are generated.

(ii) The remaining seeds are created by using the total ordering generated by
the Multicore Dynamic Levels heuristic as an initial ordering for the MC
MCT heuristic (shown in Figure 63).

(2) While there are less than 1000 iterations without improvement, repeat the fol-
lowing procedure.

(i) A pair of parents are selected for crossover and mutation using linear bias
(1.5 determined experimentally) [85].

(ii) Two offspring are generated using one-point crossover (for both the map-
ping and scheduling string). For the scheduling string, the crossover pro-
cedure is shown in Figure 71.

(iii) For each offspring, there is a 1% probability (determined empirically) of
mutating each field (determined empirically) in the chromosome. For the
scheduling string, the procedure for mutation is shown in Figure 62.

(iv) The offspring are evaluated and ranked into the population displacing the
worst chromosome.

3) The output is the best solution.

Figure 72: Procedure used for resource allocation by the Multicore Genitor.

The scheduling string is also of length LN ; however, the jth entry represents the jth task

in the total ordering. The difference between the Genitor heuristic in [83] and this paper

is that Genitor in this paper maximizes robustness, stages data sets to RAM, parallelizes

tasks, and determines satellite placement. The procedure for crossover is shown in Figure

71, and the full procedure for the Multicore Genitor is shown in Figure 72.

5.4 Related Work

The research that discusses scheduling DAGs on multi-processor systems is extensive, e.g.,

[53,57,61,77,81,82,87]. Resource allocation of operations research and computer literature.

In this section, examples of existing heuristics are presented.

The Modified Critical Path (MCP) algorithm developed in [87] was designed for ho-

mogeneous systems and considers only one application DAG. The heuristic determines the

latest possible start time of each task (constrained by the critical path length) and then

111

creates a list of tasks in increasing order of these times. Tasks are selected for mapping in

the order of the list. The selected task is then mapped to the machine that allows the earli-

est start time. Thus, the heuristic attempts to start critical path tasks as early as feasible.

There are several differences between [87] and this study. We focus on robustness against

uncertainty in execution times, and consider a heterogeneous computing environment.

The authors in [77] developed the Dynamic Level Scheduling (DLS) heuristic. The

static level of a task is computed as an approximate time from the task node to the exit

node along the worst-case path on a heterogeneous system. A data arrival time for a task is

defined as the time when all required input data arrives for a task at a destination node. The

dynamic level is the static level minus the maximum of data arrival time and the time when

the processing element is ready to execute a new task. The mappable task/machine pair

with the highest dynamic level value is selected for mapping. The performance metric in [77]

was makespan, and the paper did not consider uncertainties or robustness. As indicated

earlier, minimizing makespan is not the same as maximizing our robustness measure for

DAGs.

The Dynamic Critical Path (DCP) heuristic developed in [57] calculates the Absolute

Earliest Start Times (AbEST) and Absolute Latest Start Time (AbLST) for each task. A

task is defined to be on the critical path if its AbEST equals its AbLST. At each mapping

event, mappable tasks update their AbEST and AbLST to determine which task is on the

critical path. The critical path task is then mapped to a compute node that minimizes the

Earliest Start Time (EST) of the task and the EST of its successor tasks. The DATCP

heuristic differs from the DCP heuristic in that the DCP heuristic does not have to deal

with uncertainty in task execution times and its performance goal is makespan rather than

robustness.

The work in [76] considers a heterogeneous ad hoc grid used to compute an application

composed of communicating sub-tasks. Both this and our study consider the mapping

problem of DAGs in a heterogeneous computing environment; the heuristics in [76] minimize

the average battery power consumed while meeting a makespan constraint. This paper

focuses on maximizing the ability of a resource allocation to tolerate the uncertainty of

112

execution times, while the work in [76] does not consider uncertainty. The minimization

of battery power consumed, as studied in [76], is different than maximizing robustness

presented in this study.

5.5 Results

5.5.1 Simulation Setup

Each simulation run (50 total) has 50 unique applications, and each application is composed

of 8 to 16 tasks when the number of tasks is chosen with uniform probability. We generate

DAGs with unique entry and unique exit tasks. The DAGs have a maximum fanout of 3,

and a maximum fan in of 3, similar to the example in Figure 64. This type of DAG was used

because it is similar to the DAGs encountered in real-world applications like DigitalGlobe.

The size of the SD and TD sets used in this simulation varies from 1 to 20 GBytes in size.

We assume the network bandwidth is 512 Mbytes per second, and that the HC system is

composed of four compute nodes. Compute node 1 has eight PEs, compute node 2 has four

PEs, and finally compute nodes 3 and 4 have two PEs. All compute nodes have 160 GBytes

of RAM (152 are used for staging data and the remaining 8 are assumed to be used to buffer

data in and out of the local HD). Half of the tasks in the applications are parallelizable, with

half of those having “good” parallelism and half having “poor” parallelism (see Table 3 in

Section 5.2). The ETC values of a task are calculated by adding all the incoming data sets

(SD and TD in GBytes), and multiplying this sum by an ETC-per-GByte value generated

using the coefficient of variation based method described in [3]. Consider that all compute

nodes are sorted in descending order based on the number of PEs. If k is greater than j,

then the ETC of computing ti on compute node j (PE running individually) is less than or

equal to its ETC on compute node k. Note that even if two nodes have the same number

of PEs, they may still have different ETC values. The intuition behind ordering the ETC-

per-GByte in this manner is that newer systems will have more cores per multiprocessor,

and a PE in this multiprocessor will be faster than a PE in an older multiprocessor. A

high-task/high-compute-node heterogeneity [3] is used to simulate the tasks within the

DAGs. The heterogeneity values used to generate the ETCs are Vtask = σtask
µtask

= 0.4 and

113

trial αcomp αcomm ∆
1 Medium (1) High (1) Loose (15,500)
2 Medium (1) High (1) Loose (10,500)
3 Medium (1) High (3) Loose (8,000)
4 Medium (1) High (3) Loose (6,000)
5 Medium (2) High (6) Loose (8,000)
6 Medium (2) High (6) Loose (6,000)

Table 4: Table showing the simulation trials and their respective configurations.

Vmachine = σmachine
µmachine

= 0.3, and the mean (µtask) is 1 second/Gbyte.

Additional parameters were created to scale the mean computation time and commu-

nication bandwidth. The first parameter is αcomp ∈ <, used to scale the computation by a

factor of αcomp; and the second parameter is αcomm ∈ <, used to scale the communication

bandwidth by a factor of αcomm. The different trials simulated in this study are shown in

Table 4.

5.5.2 Simulation Results

5.5.2.1 Medium Computation and Large Communication

In Figure 73, we can observe that both DATCP variations have the best performance in

terms of makespan and robustness. It is important to remember that the fitness functions

used to assign tasks to PEs in DATCP and DATCP-V are very different; however, their

performance is comparable. The scenario with αcomp and αcomm = 1 has long communi-

cation times compared to computation times. The MC Random heuristic had the worst

performance and the highest makespan, because it does not consider communication or

computation. Therefore, it will often assign tasks from one application across multiple

compute nodes, and these tasks may be unable to start executing quickly because of large

communication delays in transferring required data.

The results with αcomp = 1, αcomm = 1 , and ∆ = 10, 500 shown in Figure 74 show the

DATCP and DATCP-V heuristics significantly outperforming the other heuristics (both in

makespan and robustness). In this scenario, the HRD was barely able to keep a performance

of 1 (makespan equal to deadline), the MC MCT was on average not able to meet the

deadline line constraint, and the MC Random heuristic did not make the deadline on any

run.

114

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

m
a
k
e
s
p
a
n

0

2,000

(a) Makespan

1

2

3

4

5

6

ro
b
u
s
tn
e
s
s
 (
p
)

0

(b) Robustness

Figure 73: Results for the heuristics defined in Section 5.3 with αcomp = αcomm = 1 and
∆ = 15,500. Recall that the two variations of satellite placement are arbitrary (ARB) and
heuristic driven (HEU). The results are shown with a 95% confidence interval.

5.5.2.2 Medium Computation and Medium Communication

For the results in Figures 75 and 76, we reduced the average communication times by a

factor of 3. This causes the scheduling gaps created by cross-compute-node communication

to be reduced significantly.

In Figures 75, the DATCP and DATCP-V outperform the other heuristics in regards

to makespan; however, in terms of robustness the DATCP and DATCP-V have comparable

performance to MC DL heuristics. The results in Figure 76 show that even with the

reduced communication times, when the deadline is tightened, the DATCP and DATCP-V

outperform the other heuristics (both in makespan and robustness). The MC DL heuristic

115

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

m
a
k
e
s
p
a
n

0

2,000

4,000

(a) Makespan

1

1.5

2

2.5

3

3.5

4

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.5

(b) Robustness

Figure 74: Results for the heuristics defined in Section 5.3 with αcomp = αcomm = 1 and
∆ = 10,500. Recall that the two variations of satellite placement are arbitrary (ARB) and
heuristic driven (HEU). The results are shown with a 95% confidence interval.

was the second best performing heuristic, and the difference in performance between it and

DATCP was reduced in this scenario (compared to the two scenarios in Section 5.5.2.1). In

this scenario, the MC Random heuristic was the worst performing heuristic; however the

performance in the tight deadline case improved significantly. This was due to a reduction

in the penalty of communicating.

5.5.2.3 Loose and Tight Deadlines with αcomp=2, and αcomm = 6.

For the results in Figures 77 and 78, we increased the computation time by a factor of two

and reduced the average communication times by a factor of six. This drastically reduces

the gaps created by cross-compute-node communication. This causes the makespan and

116

1,000

2,000

3,000

4,000

5,000

6,000

7,000

m
a
k
e
s
p
a
n

0

1,000

(a) Makespan

1

1.5

2

2.5

3

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.5

(b) Robustness

Figure 75: Results for the heuristics defined in Section 5.3 with αcomp = 1, αcomm = 3, and
∆ = 8000. Recall that the two variations of satellite placement are arbitrary (ARB) and
heuristic driven (HEU). The results are shown with a 95% confidence interval.

robustness to be even more closely correlated, because a change in robustness causes a

proportional linear increase in the makespan. This will be shown in Section 5.5.2.4.

For this scenario, the MC DL heuristic and the MC MCT heuristics on average perform

better (shown in Figure 77). However, the MC MCT, DATCP, and DATCP-V heuristics

have overlapping confidence intervals, and MC DL has overlapping confidence intervals with

MC MCT. In this scenario, the HRD and MC random are the worst performing heuristics.

In Figure 78, we see that the performance of DATCP is comparable to the best per-

forming heuristics when we make the deadline tighter. In this case, the performance of MC

DL, MC MCT, DATCP, and DATCP-V is comparable.

117

1000

2000

3000

4000

5000

6000

7000

m
a
k
e
s
p
a
n

0

1000

(a) Makespan

0.5

1

1.5

2

2.5

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.5

(b) Robustness

Figure 76: Results for the heuristics defined in Section 5.3 with αcomp = 1, αcomm = 3, and
∆ = 6000. Recall that the two variations of satellite placement are arbitrary (ARB) and
heuristic driven (HEU). The results are shown with a 95% confidence interval.

5.5.2.4 Comparison of Makespan vs. Robustness with Loose Deadlines

In Figure 79, the MC Random heuristic to generate 20,000 resource allocations, and the

deadlines were made loose to avoid the random heuristic from only finding solutions that

had a makespan that was close to the deadline. The three cases shown represent a scenario

where communication is dominant 79(a), communication and computation are comparable

79(b), and a scenario where computation is dominant 79(c).

It is interesting to see that as the computation increased (higher computation to com-

munication ratio) the robustness and makespan follow the relationship of ∆/makespan.

However, when communication is predominant then there is a large deviation between

118

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

m
a
k
e
s
p
a
n

0

1,000

(a) Makespan

0.4

0.6

0.8

1

1.2

1.4

1.6

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.2

0.4

(b) Robustness

Figure 77: Results for the heuristics defined in Section 5.3 with αcomp = 2, αcomm = 6, and
∆ = 8000. Recall that the two variations of satellite placement are arbitrary (ARB) and
heuristic driven (HEU). The results are shown with a 95% confidence interval.

∆/makespan and robustness. The results in Figure 79 indicate that using our robustness

metric in systems where communication is greater or comparable to computation is bet-

ter than using it when communication times are small or close to negligible compared to

computation times.

5.6 Conclusions

This study focused on using heuristics to allocate resources for multiple applications (formed

by DAGs of tasks) to an HC environment based on multicore chips. The goal of resource allo-

cations is to meet the deadline constraint while being robust against uncertainty in execution

times. We modeled a heterogeneous computing system used for satellite image processing,

119

2,000

3,000

4,000

5,000

6,000

7,000

8,000

m
a
k
e
s
p
a
n

0

1,000

2,000

(a) Makespan

0.4

0.6

0.8

1

1.2

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.2

(b) Robustness

Figure 78: Results for the heuristics defined in Section 5.3 with αcomp = 2, αcomm = 6, and
∆ = 6000. Recall that the two variations of satellite placement are arbitrary (ARB) and
heuristic driven (HEU). The results are shown with a 95% confidence interval.

defined a mathematical robustness metric, and created and evaluated resource allocation

heuristics that maximize this robustness metric. We showed that there is an important

advantage in using robustness to guide the resource allocation done by the heuristics.

The full ordering of tasks is an important factor for making a good allocation of re-

sources in the system. The experiment that substituted the fitness function used to assign

tasks in the DATCP heuristic with the function used for the HRD proved that there was

not a significant difference in how the two fitness functions performed. As computation

becomes dominant, the differences between heuristics that minimize makespan and those

that increase robustness become less significant. Because the makespan is more dependent

120

1

1.5

2

2.5

3

3.5

4

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.5

1

makespan

(a)

0.5

1

1.5

2

2.5

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.5

ro
b
u
s
tn
e
s
s
 (
p
)

makespan

(b)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ro
b
u
s
tn
e
s
s
 (
p
)

0

0.2

0.4

6500 7000 7500 8000 8500

ro
b
u
s
tn
e
s
s
 (
p
)

makespan

(c)

Figure 79: Scatter plot of makespan vs. robustness for 10,000 resource allocations of the
Multicore MCT heuristic in three different scenarios: (a) αcomp =1, αcomm = 1, and ∆ =
15,500; (b) αcomp = 1, αcomm = 3, and ∆ = 8,000; and (c) αcomp = 2, αcomm = 6, and ∆ =
8,000. Additionally, a line showing ∆/makespan (square markers) was graphed in (a), (b),
and (c) to show how makespan and robustness are related based on communication time.

on increases in the computation time.

A factor that was not important to the performance of the heuristics was the placement

of satellite data. This was due to the ability of the heuristics to compensate for different

initial satellite data placements. The MC Genitor was unable to improve the performance

of the MC DL and DATCP heuristics. To observe if the performance of the MC Genitor

could be improved, we removed the stopping criteria and allowed the MC Genitor to run

for 10,000 iterations for 5 of the 50 simulation runs. The performance, in these trials, was

only improved by 1 to 2% when allowed to run for all 10,000 iterations.

Future work could include using more realistic data instead of using the coefficient of

variation based method to generate the ETC values for the simulations. Also, we could

refine the hardware model to do a more detailed simulation of multicore chips using the

framework we have designed here (e.g., a more sophisticated communication topology).

121

CHAPTER VI

CONCLUSIONS

In the various environments studied in this thesis, we have shown that robustness is funda-

mentally different than other performance criteria (e.g., makespan, slack). It is possible, in

some test scenarios, for them to be correlated. The advantage of using robustness is being

able to give a guarantee on performance given variations in system parameters. This is

where traditional performance criteria and custom tailored robustness metrics are different.

Because we know that there is uncertainty in a system parameter, we are able to produce

resource allocations that are resilient against variations in this parameter.

For the iterative approach, we initially thought that using a resource allocation heuristic

on a subset of tasks and machines would improve the performance of the system. However,

we saw that the resource allocation generated by some heuristics had variation, while those

generated by other heuristics did not have any variation. When we investigated why this

occurred we discovered that some heuristics are iteration invariant. For a subset of these

heuristics (generalized completion time iteration invariant heuristics), we derived a theorem

to prove why these heuristics will always produce the same resource allocation when used

with the iterative approach.

122

REFERENCES

[1] I. Al-Azzoni and D. G. Down, “Linear programming based affinity scheduling for

heterogeneous computing systems,” in International Conference on Parallel and Dis-

tributed Processing Techniques and Applications (PDPTA ’07), Jun. 2007.

[2] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski, N. Beck, L. Boloni, M. Mah-

eswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “Characterizing

resource allocation heuristics for heterogeneous computing systems,” in Advances in

Computers Volume 63: Parallel, Distributed, and Pervasive Computing, 2005, pp. 91–

128.

[3] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Representing task and

machine heterogeneities for heterogeneous computing systems,” Tamkang Journal of

Science and Engineering, Special 50th Anniversary Issue, vol. 3, no. 3, pp. 195–207,

Nov. 2000.

[4] S. Ali, A. A. Maciejewski, and H. J. Siegel, “Perspectives on robust resource allocation

for heterogeneous parallel systems,” in Handbook of Parallel Computing: Models, Algo-

rithms, and Applications, S. Rajasekaran and J. Reif, Eds. Boca Raton, FL: Chapman

& Hall/CRC Press, 2008, pp. 41–1–41–30.

[5] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the robustness of a

resource allocation,” IEEE Transactions on Parallel and Distributed Systems, vol. 15,

no. 7, pp. 630–641, Jul. 2004.

[6] ——, “Measuring the robustness of a resource allocation,” IEEE Transactions on Par-

allel and Distributed Systems, vol. 15, no. 7, pp. 630–641, Jul. 2004.

123

[7] G. J. Armitage, “An experimental estimation of latency sensitivity in multiplayer quake

3,” in 11th IEEE International Conference on Networks (ICON ’03), Sep. 2003, pp.

137–141.

[8] C. Artigues, J. Billaut, and C. Esswein, “Maximization of solution flexibility for robust

shop scheduling,” European Journal of Operational Research, vol. 165, no. 2, pp. 314–

328, 2005.

[9] H. Barada, S. M. Sait, and N. Baig, “Task matching and scheduling in heterogeneous

systems using simulated evolution,” in 10th IEEE Heterogeneous Computing Workshop

(HCW ’01), Apr. 2001, pp. 875–882.

[10] L. Barbulescu, A. E. Howe, L. D. Whitley, and M. Roberts, “Trading places: How

to schedule more in a multi-resource oversubscribed scheduling problem system,” in

International Conference on Automated Planning and Scheduling (ICAPS-04), Jun.

2004.

[11] L. Barbulescu, L. D. Whitley, and A. E. Howe, “Leap before you look: An effective

strategy in an oversubscribed scheduling problem,” in 19th National Conference on

Artificial Intelligence, Jul. 2004, pp. 143–148.

[12] N. E. Baughman and B. N. Levine, “Cheat-proof playout for centralized and distributed

online games,” in IEEE Conference on Computer Communications (INFOCOM ’01),

Mar. 2001, pp. 104–113.

[13] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng, J. Don-

garra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal, G. Marin,

M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, M. Patel, D. Reed, Z. Shi,

O. Sievert, H. Xia, and A. YarKhan, “New grid scheduling and rescheduling methods

in the GrADS project,” International Journal of Parallel Programming, vol. 33, no.

2–3, Jun. 2005, uses Min-Min, Max-Min, and sufferage.

124

[14] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,

J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring, A. Su, and D. Zagorod-

nov, “Adaptive computing on the grid using apples,” IEEE Trans. on Parallel and

Distributed Systems (TPDS), vol. 14, no. 4, pp. 369–382, Apr. 2003.

[15] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed architecture for online

multiplayer games,” in 3rd Symposium on Networked Systems Design and Implemen-

tation, 2006, pp. 155–168.

[16] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, “Task

scheduling strategies for workflow-based applications in grids,” in Cluster Computing

and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, vol. 2, may

2005, pp. 759 – 767 Vol. 2, uses min-min in a grid environment.

[17] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hensgen, M. Mah-

eswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A comparison of

eleven static heuristics for mapping a class of independent tasks onto heterogeneous dis-

tributed computing systems,” Journal of Parallel and Distributed Computing, vol. 61,

no. 6, pp. 810–837, Jun. 2001.

[18] L. Briceno, J. Smith, H. J. Siegel, A. A. Maciejewski, P. Maxwell, R. Wakefield, A. M.

Al-Qawasmeh, R. C. Chiang, and J. Li, “Robust resource allocation of dags in a hetero-

geneous multicore system,” in 19th International Heterogeneity in Computing Work-

shop (HCW’10),, 2010.

[19] L. D. Briceno, M. Oltikar, H. J. Siegel, and A. A. Maciejewski, “Study of an iterative

technique to minimize completion times of non-makespan machines,” in 16th Heteroge-

neous Computing Workshop (HCW 2007), in the proceedings of the 21st International

Parallel and Distributed Processing Symposium, Mar 2007.

[20] L. D. Briceño, M. Oltikar, H. J. Siegel, and A. A. Maciejewski, “Study of an iterative

technique to minimize completion times on non-makespan machines,” in International

Heterogeneity in Computing Workshop (HCW ’07), Mar. 2007, p. 138.

125

[21] L. D. Briceno, H. J. Siegel, A. A. Maciejewski, Y. Hong, B. Lock, M. N. Teli, F. Wedyan,

C. Panaccione, and C. Zhang, “Resource allocation in a client/server hybrid network for

virtual world environments,” in International Heterogeneity in Computing Workshop

(HCW ’08), 2008.

[22] L. D. Briceño, H. J. Siegel, A. A. Maciejewski, Y. Hong, B. Lock, M. N. Teli, F. Wedyan,

C. Panaccione, and C. Zhang, “Robust resource allocation in a massive multiplayer

online gaming environment,” in International Conference on the Foundations of Digital

Games 2009 (ICFDG 2009), Apr. 2009.

[23] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics for schedul-

ing parameter sweep applications in grid environments,” in 9th IEEE Heterogeneous

Computing Workshop (HCW 2000), Mar. 2000, pp. 349–363.

[24] A. Chen and R. Muntz, “Peer clustering: A hybrid approach to distributed virtual en-

vironments,” in Proceedings of 5th ACM SIGCOMM workshop on Network and system

support for games, 2006.

[25] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop scheduling prob-

lems using genetic algorithms–i. representation,” Computers & Industrial Engineering,

vol. 30, no. 4, pp. 983 – 997, 1996.

[26] E. G. Coffman, Computer and Job-Shop Scheduling Theory. John Wiley and Sons,

New York, NY, 1976.

[27] F. D. Croce, R. Tadei, and G. Volta, “A genetic algorithm for the job shop problem,”

Computers & Operations Research, vol. 22, no. 1, pp. 15–24, 1995, genetic Algorithms.

[28] E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin, “An efficient synchronization mech-

anism for mirrored game architectures,” Multimedia Tools Applications, vol. 23, no. 1,

pp. 7–30, 2004.

[29] G. Deen, M. Hammer, J. Bethencourt, I. Eiron, J. Thomas, and J. H. Kaufman,

“Running quake ii on a grid,” IBM Systems Journal, vol. 45, no. 1, pp. 21–44, 2006.

126

[30] M. K. Dhodhi, I. Ahmad, and A. Yatama, “An integrated technique for task matching

and scheduling onto distributed heterogeneous computing systems,” Journal of Parallel

and Distributed Computing, vol. 62, no. 9, pp. 1338–1361, Sep. 2002.

[31] Q. Ding and G. Chen, “A benefit function mapping heuristic for a class of meta-tasks in

grid environments,” in CCGRID ’01: Proceedings of the 1st International Symposium

on Cluster Computing and the Grid, May 2001, p. 654.

[32] A. Dogan and F. Ozguner, “Genetic algorithm based scheduling of meta-tasks with

stochastic execution times in heterogeneous computing systems,” Cluster Computing,

vol. 7, no. 2, pp. 177–190, Apr. 2004.

[33] M. M. Eshaghian, Heterogeneous Computing. Artech House, Norwood, MA, 1996.

[34] D. Fernandez-Baca, “Allocating modules to processors in a distributed system,” IEEE

Transaction on Software Engineering, vol. SE-15, no. 11, pp. 1427–1436, Nov. 1989.

[35] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure.

San Fransisco, CA, Morgan Kaufmann, 1999.

[36] R. F. Freund and H. J. Siegel, “Heterogeneous processing,” IEEE Computer, vol. 26,

no. 6, pp. 13–17, Jun. 1993.

[37] A. Ghafoor and J. Yang, “A distributed heterogeneous supercomputing management

system,” IEEE Computer, vol. 26, no. 6, pp. 78–86, Jun. 1993.

[38] S. Ghanbari and M. R. Meybodi, “Learning automata based algorithms for mapping

of a class of independent tasks over highly heterogeneous grids,” in European Grid

Conference (EGC ’05), Feb. 2005, pp. 681–690.

[39] ——, “On-line mapping algorithms in highly heterogeneous computational grids: A

learning automata approach,” in International Conference on Information and Knowl-

edge Technology (IKT ’05), May 2005.

127

[40] T. Hagras and J.Janecek, “A high performance, low complexity algorithm for compile

time job scheduling in homogeneous computing environments,” Parallel Computing,

vol. 31, no. 7, pp. 653–670, Jul. 2005.

[41] A. Hertz and D. de Werra, “The tabu search metaheurstic: How we used it,” Annals

of Mathematics and Artificial Intelligence, vol. 1, no. 1–4, pp. 111–121, Sep. 1990.

[42] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks on

non-identical processors,” Journal of the ACM, vol. 24, no. 2, pp. 280–289, Apr. 1977.

[43] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation of game servers: a

peer-to-peer approach to scalable multi-player online games,” in 3rd ACM SIGCOMM

workshop on Network and System Support for Games, Aug. 2004, pp. 116–120.

[44] Z. Jinquan, N. Lina, and J. Changjun, “A heuristic scheduling strategy for independent

tasks on grid,” in Eighth International Conference on High-Performance Computing in

Asia-Pacific Region 2005, Nov. 2005.

[45] P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmann, “Addressing cheating

in distributed mmogs,” in 4th ACM SIGCOMM Workshop on Network and System

Support for Games, 2005.

[46] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous distributed com-

puting systems,” IEEE Concurrency, vol. 6, no. 3, pp. 42–51, Jul. 1998.

[47] K. Kaya, B. Ucar, and C. Aykanat, “Heuristics for scheduling file-sharing tasks on het-

erogeneous systems with distributed repositories,” Journal of Parallel and Distributed

Computing, vol. 67, no. 3, pp. 271–285, Mar. 2007.

[48] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International

Conference on Neural Networks, Nov. 1995, pp. 1942–1948.

[49] S. U. Khan and I. Ahmad, “A cooperative game theoretical technique for joint op-

timization of energy consumption and response time in computational grids,” IEEE

128

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, vol. 20, no. 3,

Mar. 2009.

[50] A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. Wang, “Heterogeneous comput-

ing: Challenges and opportunities,” IEEE Computer, vol. 26, no. 6, pp. 18–27, Jun.

1993.

[51] J.-K. Kim, H. J. Siegel, A. A. Maciejewski, and R. Eigenmann, “Dynamic mapping in

energy constrained heterogeneous computing systems,” in IEEE International Parallel

and Distributed Processing Symposium (IPDPS ’05), Apr. 2005.

[52] ——, “Dynamic resource management in energy constrained heterogeneous computing

systems using voltage scaling,” IEEE Transactions on Parallel and Distributed Systems,

Special Issue on Power-Aware Parallel and Distributed Systems, vol. 19, no. 11, pp.

1445–1457, Nov. 2008.

[53] S. Kim, S. Lee, and J. Hahm, “Push-pull: Deterministic search-based DAG scheduling

for heterogeneous cluster systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 11, pp. 1489–1502, Nov. 2007.

[54] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for massively

multiplayer games,” in IEEE Conference on Computer Communications (INFOCOM

’04), Mar. 2004, pp. 96–107.

[55] L. A. Kramer and S. L. Smith, “Maximizing flexibility: A retraction heuristic for

oversubscribed scheduling problems,” in Eighteenth International Joint Conference on

Artificial Intelligence, Aug. 2003.

[56] A. Kumar and R. Shorey, “Performance analysis and scheduling of stochastic fork-

join jobs in a multicomputer system,” IEEE Transactions on Parallel and Distributed

Systems, vol. 4, no. 10, pp. 1147–1164, Oct. 1993.

129

[57] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective technique

for allocating task graphs to multiprocessors,” IEEE Transactions on Parallel and

Distributed Systems, vol. 7, no. 5, pp. 506–521, May 1996.

[58] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping algorithms for a

distributed heterogeneous computing environment,” in 4th IEEE Heterogeneous Com-

puting Workshop (HCW ’95), Apr. 1995, pp. 30–34.

[59] J. Lee, “Considerations for movement and physics in mmp games,” in Massively Mul-

tiplayer Game Development. Hingham, MA: Charles River Media, Inc., 2003, pp.

275–289.

[60] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server selection for large scale interactive

online games,” Computer Networks, vol. 49, no. 1, pp. 84–102, Sep. 2005.

[61] G. Liu, K. Poh, and M. Xie, “Iterative list scheduling for heterogeneous computing,”

Journal of Parallel and Distributed Computing, vol. 65, no. 5, pp. 654–665, May 2005.

[62] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous distributed comput-

ing,” in Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, Ed.

New York, NY: John Wiley, 1999, vol. 8, pp. 679–690.

[63] E. Machtans, L. Sato, and A. Deppman, “Improvement on scheduling dependent tasks

for grid applications,” in Computational Science and Engineering, 2009. CSE ’09.

International Conference on, vol. 1, aug. 2009, pp. 95 –102.

[64] F. Magouls, J. Pan, K.-A. Tan, and A. Kumar, Introduction to Grid Computing. Chap-

man & Hall/CRC Numerical Analy & Scient Comp. Series, 2009.

[65] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping

of a class of independent tasks onto heterogeneous computing systems,” Journal of

Parallel and Distributed Computing, vol. 59, no. 2, pp. 107–121, Nov. 1999.

[66] A. M. Mehta, J. Smith, H. J. Siegel, A. A. Maciejewski, A. Jayaseelan, and B. Ye,

“Dynamic resource allocation heuristics that manage tradeoff between makespan and

130

robustness,” Journal of Supercomputing, Special Issue on Grid Technology, vol. 42,

no. 1, pp. 33–58, Jan. 2007.

[67] NESDIS, “National environmental satellite data information service (nesdis),” http:

//www.nesdis.noaa.gov/About/about.html, Mar. 2006.

[68] M. Oltikar, J. Brateman, J. White, J. Martin, K. Knapp, A. A. Maciejewski, and

H. J. Siegel, “Robust resource allocation in weather data processing systems,” in 8th

Workshop on High Performance Scientific and Engineering Computing (HPSEC 2006),

Aug. 2006, pp. 445–454.

[69] D. Paranhos, W. Cirne, and F. Brasileiro, “Trading cycles for information: Using repli-

cation to schedule bag-of-tasks applications on computational grids,” in International

Conference on Parallel and Distributed Computing, Aug. 2003.

[70] J. Pugh and A. Martinoli, “Discrete multi-valued particle swarm optimization,” in

IEEE Swarm Intelligence Symposium ’06, May 2006, pp. 103–110.

[71] S. Russell and P. Norvig, Artificial Intelligence a Modern Approach, Second Edition.

Prentice Hall, 2005.

[72] P. SaiRanga and S. Baskiyar, “A low complexity algorithm for dynamic scheduling of

independent tasks onto heterogeneous computing systems,” in 43rd annual Southeast

regional conference - Volume 1, Mar. 2005, pp. 63–68.

[73] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha, “On demand platform for

online games,” IBM Systems Journal, vol. 45, no. 1, pp. 7–20, 2006.

[74] V. Shestak, J. Smith, H. J. Siegel, and A. Maciejewski, “Stochastic robustness metric

and its use for static resource allocations,” Journal of Parallel and Distributed Com-

puting, vol. 68, no. 8, pp. 1157–1173, Aug. 2008.

[75] V. Shestak, E. K. P. Chong, H. J. Siegel, A. A. Maciejewski, L. Benmohamed, I.-

J. Wang, and R. Daley, “A hybrid branch-and-bound and evolutionary approach for

131

allocating strings of applications to heterogeneous distributed computing systems,”

Journal of Parallel and Distributed Computing, vol. 68, no. 4, pp. 410–426, Apr. 2008.

[76] S. Shivle, H. J. Siegel, A. A. Maciejewski, P. Sugavanam, T. Banka, R. Castain,

K. Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D. Sendek,

J. Sousa, J. Sridharan, and J. Velazco, “Static allocation of resources to communi-

cating subtasks in a heterogeneous ad hoc grid environment,” Journal of Parallel and

Distributed Computing, Special Issue on Algorithms for Wireless and Ad-hoc Networks,

vol. 66, no. 4, pp. 600–611, Apr. 2006.

[77] G. Sih and E. Lee, “A compile-time scheduling heuristic for interconnection-constrained

heterogeneous processor architectures,” IEEE Transactions on Parallel and Distributed

Systems, vol. 4, no. 2, Feb. 1993.

[78] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous task graphs using

genetic algorithms,” in 5th IEEE Heterogeneous Computing Workshop (HCW 1996),

Apr. 1996, pp. 86–97.

[79] J. Smith, V. Shestak, H. J. Siegel, S. Price, L. Teklits, and P. Sugavanam, “Robust

resource allocation in a cluster based imaging system,” Parallel Computing, vol. 35,

no. 7, pp. 389–400, Jul. 2009.

[80] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar, A. Mehta, R. Pichel,

A. Horiuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang, M. Aydin,

P. Lee, K. Guru, M. Raskey, and A. Pippin, “Robust static allocation of resources for

independent tasks under makespan and dollar cost constraints,” Journal of Parallel

and Distributed Computing, vol. 67, no. 4, pp. 400–416, April 2007.

[81] X. Tanga, K. Li, G. Liao, and R. Li, “List scheduling with duplication for heterogeneous

computing systems,” Journal of Parallel and Distributed Computing, vol. 70, no. 4, pp.

323–329, Apr. 2010.

132

[82] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-complexity

task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 3, pp. 260–274, Mar. 2002.

[83] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, “Task matching and

scheduling in heterogeneous computing environments using a genetic-algorithm-based

approach,” Journal of Parallel and Distributed Computing, Special Issue on Parallel

Evolutionary Computing, vol. 47, no. 1, pp. 8–22, Nov. 1997.

[84] B. Wei, G. Fedak, and F. Cappello, “Scheduling independent tasks sharing large data

distributed with bittorrent,” in The 6th IEEE/ACM International Workshop on Grid

Computing, Nov. 2005.

[85] D. Whitley, “The genitor algorithm and selective pressure: Why rank based allocation

of reproductive trials is best,” in 3rd International Conference on Genetic Algorithms,

Jun. 1989, pp. 116–121.

[86] M. Wu and W. Shu, “Segmented min-min: A static mapping algorithm for meta-

tasks on heterogeneous computing systems,” in 9th Heterogeneous Computing Work-

shop (HCW ’00), Mar. 2000, pp. 375–385.

[87] M. Wu and D. Gajski, “Hypertool: A programming aid for message-passing systems,”

IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 3, pp. 330–343, Jul.

1990.

[88] D. Xu, K. Nahrstedt, and D. Wichadakul, “Qos and contention-aware multi-resource

reservation,” Cluster Computing, vol. 4, no. 2, pp. 95–107, Apr. 2001.

[89] J. Yang, I. Ahmad, and A. Ghafoor, “Estimation of execution times on heteroge-

neous supercomputer architectures,” in International Conference on Parallel Process-

ing, vol. I, Aug. 1993, pp. 219–225.

133

