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ABSTRACT 

MACHINE LEARNING METHODS TO FACILITATE  

OPTIMAL WATER ALLOCATION AND MANAGEMENT  

IN IRRIGATED RIVER BASINS TO COMPLY WITH WATER LAW 

The sustainability issues facing irrigated river basins are intensified by legal and institutional 

regulations imposed on the hydrologic system. Although solutions that would boost water 

savings and quality might prove to be feasible, such imposed institutional constraints could veto 

their implementation, rendering them legally ineffectual. The problems of basin-scale irrigation 

water management in a legally-constrained system are exemplified in the central alluvial valley 

of the Lower Arkansas River Basin (LARB) in Colorado, USA, and in the Tripa River Basin in 

Indonesia. In the LARB, water and land best management practices (BMPs) have been proposed 

to enhance the environment, conserve water, and boost productivity; however, the legal 

feasibility of their implementation in the basin hinder BMP adoption. In the Tripa river basin, the 

rapid growth of water demand pushes the proposal of new reservoir construction. However, 

inadequate water availability and the lack of water law enforcement requires the basin to seek 

water from adjacent basins, thereby raising legal and economic feasibility issues. 

To address these issues, an updated version of a decision support system (DSS) named River 

GeoDSS has been employed to model basin-scale behavior of the LARB for both historical 

(baseline) and BMP implementation scenarios. River GeoDSS uses GeoMODSIM as its water 

allocation component, which also handles water rights and uses a deep neural network (DNN) 

functionality to emulate calibrated regional MODFLOW-SFR2 models in modeling complex 
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stream-aquifer interactions. The use of DNNs for emulation if critical for extrapolating the 

results of MODFLOW-SFR2 simulations to un-modeled portions of the basin and for compute-

efficient analysis. The BMP implementations are found to introduce significant alterations to 

streamflows in the LARB, including shortages in flow deliveries to water right demands and in 

flow deficits at the Colorado-Kansas Stateline. To address this, an advanced Fuzzy-Mutation 

Linear Particle Swarm Optimization (Fuzzy-MLPSO) metaheuristic algorithm is applied to 

determine optimal operational policies for a new storage account in John Martin Reservoir for 

use in mitigating the side-effects of BMP implementation on water rights and the interstate 

compact.  

Prior to the implementation of Fuzzy-MLPSO, a dedicated study is conducted to develop the 

integration between MLPSO and GeoMODSIM, where it is applied in addressing the water 

allocation issue in the Tripa River Basin. The coupling of simulation (GeoMODSIM) and 

optimization (MLPSO) models provides optimal sizing of reservoirs and transbasin diversions 

along with optimal operation policies. Aside from that, this study shows that MLPSO converges 

faster compared to the original PSO with sufficiently smaller swarm size. The implementations 

of Fuzzy-MLPSO in the LARB provided optimal operational rules for a new storage account in 

John Martin Reservoir dedicated to abating the undesirable impacts of BMP implementation on 

water rights and Stateline flows. The Fuzzy-MLPSO processes inflow, storage, seasonal, and 

hydrologic states into divert-to-storage/release-from-storage decisions for the new storage 

account. Results show that concerns over shortages in meeting water rights demands and deficits 

to required Stateline flow due to otherwise beneficial BMP implementations can be addressed 

with optimized reservoir operations.  
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Chapter 1 Introduction 

1.1 Background 

With a 50% projected population increase and 100% growth in global grain demand by 2050 

looming (Alexandratos, 1999), the pressure to ensure productivity and efficiency of irrigated 

agriculture also is increasing (Mazoyer and Roudart, 2006). The percentage of water used for 

irrigation constitutes about 69% of total water withdrawals, or around 2700 km³/year, worldwide 

(Frenken and Gillet, 2012). In terms of groundwater resources alone, irrigation throughout the 

populated parts of the world has been extracting groundwater at a faster rate than it is recharged; 

thus, leading to declining storage (Ward and Dillon, 2012). Beyond the burden placed on water 

resource consumption, inefficiencies in irrigation practices create a number of serious water 

quality problems. Water applied in excess of crop consumptive use either percolates downward 

below the root zone or runs over the land surface into drains. Deep percolation often leads to 

rising groundwater tables which contribute to waterlogging and salinization of the root zone, 

resulting in crop yield decline on about 15% of the world’s irrigated land (Wild, 2003). Excess 

subsurface flows also are created which carry nutrients from fertilizer, along with pesticides, into 

deeper groundwater and into streams(Spalding and Exner, 1993; McMahon and Böhlke, 1996). 

Moreover, these subsurface irrigation return flows dissolve and mobilize trace elements, like 

selenium (Se), uranium (U), and arsenic (As), into the stream-aquifer system (Gates et al., 2016; 

Shultz et al., 2018a). 

The sustainability issues facing irrigated regions are further intensified by institutional 

regulations imposed on the hydrologic system (Easter, 1993), e.g. water law and administrative 

water compacts. Although solutions that would boost water savings and quality might prove to 
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be feasible, such imposed institutional constraints could veto their implementation, rendering 

them legally ineffectual. For example, suppose an example best management practice (BMP) 

alternative of switching from flood or furrow irrigation to drip or sprinkler irrigation is estimated 

to beneficially increase irrigation efficiency at a regional level within a river basin. This 

irrigation water reduction BMP implementation would reduce the amount of water diverted from 

the river, altering the amount and timing of both surface and groundwater return flow back to the 

stream system, as well as changing the amount and timing pattern of undiverted water within the 

river. Another BMP implementation could aim at reducing inefficient canal seepage, which also 

would result in less water required to be diverted from the river. The mechanism of the effects of 

BMP implementation to the changes in flow patterns is illustrated in Figure 1. 

Although the BMPs are designed with good intentions, i.e. lowering pollution risks and 

reducing non-beneficial water use (by lowering the water table and reducing evaporative upflux 

under non-cropped areas), such side effects in the change of flow patterns to and within the 

stream system may be prohibited by water law.  For example, the possible violation of an 

interbasin compact or water rights system could occur, e.g. when flow changes upstream reduce 

access to water users downstream.  In such a case, the proposed BMP would be deemed legally 

infeasible. Such institutional constraints become even more complex when there are multiple 

proposed amendments to water management, more variability within the basin, more 

stakeholders involved, and greater pressures on ensuring productivity and sustainability. 
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Figure 1. Sketch of flow processes in an irrigated river basin in relation to BMP implementation. 

1.2 Problem Statement 

Ill-structured problems of basin-scale irrigation water management in a legally-constrained 

system are exemplified in the central alluvial valley of the Lower Arkansas River Basin in 

Colorado, USA (LARB, Figure 2) and in the Tripa River Basin in Indonesia (Figure 14). In the 

LARB, sustainability issues are waterlogging and salinity, accompanied by reduced crop yield; 

nutrient, salt, and trace element loading to streams; and nonbeneficial consumptive use of water 

brought about by a shallow water. Previous studies have proposed alternative water and land 

BMPs which include reduced irrigation water application, lease-fallowing of irrigated fields, 

reduced canal seepage, reduced fertilizer, and improved riparian buffers (Morway and Gates, 

2012; Morway et al., 2013; Qurban, 2018; Shultz et al., 2018b), with the prospect of enhancing 

water quality, saving water, and boosting crop productivity. However, the legal feasibility of 

their implementation in the basin, i.e., with respect to the prior-appropriation water rights system 

and Colorado-Kansas Interstate Compact (Colorado Revised Statutes, 1949), hinder BMP 
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adoption. The Tripa river basin experiences projected increases in municipal and irrigation water 

demands required to support a population growth of 3.5%, which is more than double the 

national average of 1.5%. This rapid growth of water demand, along with unpredictable growth 

of water demands from poorly planned and regulated palm plantation estates, push the proposal 

of new reservoir construction. However, inadequate water availability and the limited water law 

enforcement requires the basin to seek water from adjacent basins, thereby raising legal and 

economic feasibility issues. 

A decision support system (DSS) could help in the search for answers in addressing these 

issues. DSSs are made up of related computational algorithms that can be used to support 

complex problem solving and decision making processes (Shim et al., 2002), which include data 

management capabilities, modeling, and interactive graphical user interface functionalities. A 

DSS needs to employ realistic simulation models with regard to the geospatial and temporal 

databases, and environmental impacts, as well as adherence to legal concerns. With a DSS, the 

historical state of a system can be modeled, calibrated, and used to gain more understanding. 

This historically-calibrated model is usually dubbed as “the baseline condition”. What-if 

scenarios can be modeled and assessed by the DSS in relation to the baseline to gain more 

understanding of the system and to assess the feasibility and potential benefit of changes 

introduced to the system.  

In the case of the LARB, a DSS named RiverGeoDSS was previously constructed by Triana 

et al. (2010a). In relation to the data management aspect, RiverGeoDSS includes management of 

hydro-meteorological data, water rights data, and irrigation demands data over the period 1999 - 

2006. Modeling-wise, RiverGeoDSS employs GeoMODSIM as the backbone for the surface 

water and water rights modeling. A radial-basis artificial neural network has been used to 



5 
 

emulate a MODFLOW model for the DSS’s groundwater-stream interaction modeling 

component. These components were wrapped as an ArcGIS extension, for which ArcMap serves 

as both the GUI as well as the interoperability component of the model (Triana, 2008). The 

current study updates the previously constructed RiverGeoDSS, with functionalities improved by 

implementing reduced redundancy, the ability to accept data changes and MODSIM network 

modifications, embedded deep neural network (DNN) modeling capability inside RiverGeoDSS, 

and a simplified graphical user interface. RiverGeoDSS rebuild details are presented in 

Appendix A. 

A generalized river basin DSS, e.g., HEC-ResSim (Klipsch and Hurst, 2007), RiverWare 

(Zagona et al., 2001), and MODSIM (Labadie, 2006), could be used to effectively model optimal 

water allocation in a basin. The generalized river basin DSS is deemed better than constructing 

an ad-hoc DSS designed for a specific river basin, due to the concerns of upgradability and 

adaptability to the changes in the basin. In this study, GeoMODSIM, which is also the core 

component of RiverGeoDSS, is used to model the Tripa river basin network. The modeled river 

basin network contains the consideration of local water law in the form of priority-based 

allocation system in modeling the possibility of constructing and operating reservoirs within the 

river basin as well as transbasin diversion projects for conveying flows from adjacent river 

basins, to assess the impact of these projects on reducing water shortages and satisfying future 

water requirements.  

GeoMODSIM, like any other simulation model, is designed to provide accurate evaluation of 

given water management plans but is not designed to systematically find the best or optimal 

plans. In addressing the needs of the Tripa river basin, GeoMODSIM is coupled with a novel 

variant of particle swam optimization (PSO) called mutation linear particle swarm optimization 
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(MLPSO). The coupling of simulation (GeoMODSIM) and optimization (MLPSO) models 

provides for optimal sizing of reservoirs and transbasin diversions along with optimal operation 

policies. The tested coupling of GeoMODSIM and MLPSO is then utilized to address concerns 

raised by the implementations of BMPs in the LARB. Although providing potentials of reducing 

pollutant loadings to the stream, and lowering risks of salinization and water logging, the 

implementation of the BMPs produce significant alterations in water deliveries to the fields and 

in downstream river flows to the Colorado-Kansas border, raising concerns in the compliance of 

water right system and Colorado-Kansas Interstate Water Compact. The coupling of Fuzzy-

MLPSO and GeoMODSIM is used to optimize the recommended size and operation of a new 

storage account in John Martin Reservoir. The extension of MLPSO with a fuzzy rule-based 

system is needed due to the high dimensionality of the problem and to generate interpretable 

policies as well. Similar approaches of combining simulation models and metaheuristic models 

in generating optimal reservoir operation policy have been demonstrated in previous studies, e.g., 

genetic algorithm (GA) and fuzzy logic (Wan et al., 2006; Labadie and Wan, 2010; Labadie et 

al., 2012); multiswarm PSO for multi-reservoir operation (Ostadrahimi et al., 2012); and 

optimal-control theory using hybridization of fuzzy logic, PSO, and Q-learning (Hein et al., 

2017). 

1.3 Study Objectives 

This study builds off the previously developed River GeoDSS, where the objectives are: 

1. Improve the machine learning application to stream-aquifer modeling within River GeoDSS 

for assessment of baseline and BMP conditions, as presented in Chapter 2. The improved 

deep neural networks use two updated regional MODFLOW-SFR2 models (upstream and 

downstream regions, Figure 2), as opposed to one MODFLOW-UZF model (upstream region 
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only, Figure 2) in the previous River GeoDSS, in application to the LARB. Chapter 2 also 

describes the effort of avoiding neural network overfitting, assesses neural network 

performance using a number of metrics, and applies the revised River GeoDSS in evaluating 

side effects of selected BMP implementations and in exploring the feasibility of using a new 

reservoir storage account to mitigate these side effects to meet water rights demands and 

comply with the Arkansas River Compact. 

2. Develop an MLPSO-enhanced version of GeoMODSIM in application to the Tripa River 

Basin, Indonesia. The goal is to determine optimal sizing and least-cost design capacities for 

proposed reservoirs and transbasin diversion projects while simultaneously determining 

optimal system operation strategies that minimize the risk of water supply shortages, as 

described in Chapter 3. 

3. Integrate the MLPSO-enhanced version of GeoMODSIM with fuzzy sets to find the optimal 

size and operational policy for a new storage account in John Martin Reservoir to mitigate 

the side effects of BMP applications in the LARB, as presented in Chapter 4.  

Appendices on the rebuild of RiverGeoDSS (Appendix A), neural network implementations 

(Appendix B), and MLPSO implementations (Appendix C) are also supplied to further explain 

the components of this study.  
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Chapter 2 Deep Learning for Compute-Efficient Modeling of BMP Impacts on Stream- 

Aquifer Exchange and Water Law Compliance in an Irrigated River Basin1 

Overview. Irrigated agriculture in the alluvial valley of Colorado’s Lower Arkansas River Basin 

(LARB) is hindered by inefficient irrigation practices that contribute to salinization, 

waterlogging, reduced crop yields, and harmful concentrations of nutrients in the stream-aquifer 

system. Intensive data collection and modeling in the LARB over the past 20 years have resulted 

in the development of the GIS-based basin-scale decision support system River GeoDSS. 

Parallel efforts in regional-scale calibration and application of the MODFLOW-SFR2-RT3D-

OTIS stream-aquifer system model permit evaluation of best management practices (BMPs) 

designed to mollify environmental impacts. Since BMP implementation is only allowed if water 

laws are not violated, a deep learning model is developed to serve as an accurate, compute-

efficient surrogate of MODFLOW as imbedded in River GeoDSS in assessing basin-scale 

impacts of BMP implementations on stream-aquifer exchange and water rights.  Results show 

that these BMPs can be judicially implemented while maintaining water law compliance in the 

basin.  

  

                                                 
1 This chapter has been submitted as an article to Elsevier’s Environmental Modelling & Software. Authors: 

Faizal I. W. Rohmat, John W. Labadie, and Timothy K. Gates. The article has been revised from the original version 
and in the resubmission process at the time of writing this dissertation. 
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2.1 Introduction 

Waterlogging and salinization are age-old maladies that continue to plague irrigated areas 

worldwide causing an estimated annual loss of over $27 billion in crop production (Adeel, 2014). 

In the U.S., an estimated 30% crop yield reduction occurs due to salinization of irrigated lands 

(USDA, 2018). Soils become waterlogged when saturated conditions predominate due to over-

irrigation and poor drainage, often contributing to salinization by inhibiting the leaching of salts 

intrinsic to the applied waters and creating degraded conditions by the transport of salts from 

underlying shallow groundwater to the surface via capillary action. Furthermore, intense 

irrigation and fertilization of alluvial soils contribute to large oxygen and nitrate (NO3) 

concentrations that can accelerate the dissolution and mobilization of inherent salts and other 

mineral pollutants [e.g., selenium (Se), and uranium (U)] into alluvial aquifers with hydraulic 

connection to rivers. This in turn elevates surface water pollutant concentrations to levels that 

imperil the ecological health of the riverine environment (Seiler, 1995; Mueller-Price and Gates, 

2008; Gates et al., 2009; Bailey et al., 2012; Shultz et al., 2018a). It is clear that salinization and 

related nonpoint source pollution pose a serious threat to our most productive agro-ecological 

systems and the long-term sustainability of irrigated agriculture (Özerol et al., 2012). 

A variety of land and water best management practices (BMPs) have the potential to lower 

solute concentrations toward boosting agricultural productivity while meeting regulatory water 

quality standards and reducing ecological damage (Bailey et al., 2012; Shultz et al., 2018b). 

Some of the most effective practices involve reducing irrigation diversions by increasing 

application efficiencies and lowering canal conveyance losses, but these measures also lead to 

altered rates and patterns of irrigation return flows from adjacent unconfined aquifers 

intersecting stream channels. As a major constraining consequence, flows in the receiving 
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streams can be substantially changed by such BMPs, thereby potentially damaging legal access 

of downstream water users in river basins governed by some form of the prior appropriation 

doctrine (“first in time, first in right”) and/or interstate compacts.  

Fully-integrated river basin management strategies that consider the important political, 

legal, and institutional aspects of water allocation in the basin, along with realistic modeling of 

the complex, interconnected stream-aquifer system, are required for evaluating if proposed 

BMPs are viable. There are several generalized river basin management software packages that 

can be used, including MODSIM (Labadie, 2010), RiverWare (Zagona et al., 2001), RIBASIM 

(Krogt, 2008), and WEAP (Yates et al., 2005). Unfortunately, these models are ill-suited to 

providing realistic analysis of complex stream-aquifer interactions since they utilize simplistic 

lumped parameter groundwater models based on the Glover method (Glover and Balmer, 1954; 

Glover, 1974) such as the stream depletion factor (SDF) method (Jenkins, 1968), or they 

represent the aquifer as a simple linear reservoir. Attempts have been made to provide more 

realism by linking these models to 3-dimensional finite-difference models such as the USGS 

MODFLOW groundwater flow model (Langevin et al., 2017). 

Morway et al. (2016) coupled MODFLOW (2005) with MODSIM using the unique 

customizing capabilities of MODSIM, where users have direct access to all public variables and 

object classes for creating custom code in C#.NET or VB.NET, with the .NET CLR producing 

high-speed executable code. Custom code was created that directly executes compiled 

MODFLOW libraries within the iterative computational structure of MODSIM for the current 

operational time step. Although Morway et al. (2016) allude to the “computational cost due to 

numerous required iterations between MODSIM and MODFLOW,” the CPU time requirements 

related to the application of the coupled models to a hypothetical agricultural river basin are not 
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mentioned. According to Morway et al. (2016), published attempts at linking other models with 

MODFLOW fail to consider the need to perform multiple iterations within a single time step 

since the MODFLOW results input into the river basin management model likely result in altered 

irrigation diversion rates, thereby requiring re-execution of MODFLOW in response to those 

changes. Several iterations may be required until the calculated flows converge to consistent 

values before advancing to the next time step. Valerio (2008) documents that linkage of 

RiverWare with MODFLOW using a less accurate, single feed-forward iteration required 

computer run times of up to 4.5 days for a single scenario. The magnitude of computer run times 

required for iteratively convergent direct linkage between MODFLOW and river basin 

management models is clearly unacceptable, particularly when considering the many 

combinations of spatially-distributed BMPs that must be evaluated.  

Triana et al. (2010b) applied artificial neural networks (ANNs) for modeling stream-aquifer 

interactions in the irrigated stream-aquifer system of the Lower Arkansas River basin (LARB) of 

southeastern Colorado (Figure 2). Measurable georeferenced spatial, temporal and BMP 

scenario-based explanatory variables considered to be correlated with the calibrated MODFLOW 

generated groundwater return flow datasets served as inputs to the ANNs. The ANNs were 

trained to match as closely as possible the modeled groundwater return flow output datasets, with 

portions of the datasets not included in the training reserved for testing and validation. The 

ANNs were effective for modeling the highly nonlinear and complex relationships between the 

explanatory variables and the calculated groundwater return flow rates for a portion of 

Colorado’s LARB referred to as the Upstream Study Region (USR) (Figure 2) and for assessing 

the impacts of altered return flow patterns on protecting downstream senior water rights while 

adhering to the Kansas-Colorado Interstate Compact which governs required flows into Kansas. 
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Figure 2. Upstream study region (USR) and downstream study region (DSR) in the LARB showing 

irrigated parcels, canals, streams and streamflow gages. 

Aside from the computational cost of executing the ANNs being a small fraction of 

MODFLOW computer run times, the enormous time and cost to monitor and collect the 

necessary field data for MODFLOW for application over the entire LARB would be prohibitive. 

Although the powerful interpolation capability of ANNs is well documented, their effective 

extrapolation performance for stream-aquifer modeling has been demonstrated by only a few 

authors, including Pektas and Cigizoglu (2017), whereby ANNs developed from MODFLOW 

modeling over a region of an alluvial river basin can be extrapolated to similar unmodeled 

regions of the basin. Triana et al. (2010b) successfully linked surrogate ANNs with 

GeoMODSIM, a GIS-based version of MODSIM, and incorporated the linked models into the 
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River GeoDSS decision support system for basin-wide water management and evaluation of 

BMPs by extrapolating the ANNs to unmodeled regions of the LARB.  

Since the publication of Triana et al. (2010b), more comprehensive MODFLOW models 

have been calibrated and tested for a portion of the LARB east of John Martin Reservoir referred 

to as the Downstream Study Region (DSR) (Figure 2) (Morway et al., 2013), along with 

updating and extending MODFLOW modeling in the USR. The updated MODFLOW model for 

the USR now includes the utilization of the SFR2 streamflow routing package, along with the 

unsaturated-zone flow (UZF) package and has been coupled with the RT3D (reactive transport in 

3 dimensions) and OTIS (one-dimensional transport with inflow and storage) models for 

simulation of solute fate and transport. The use of a single regional MODFLOW model to train 

the ANN, however, has been proven to be inapplicable to the entire basin with findings 

suggesting that the USR-trained ANN model does not perform well when tested with the DSR 

data, and vice versa. The ANN architecture employed in Triana et al. (2010b) was one-layer 

shallow ANN with radial basis activation functions. Manual adjustment of the radial basis spread 

parameter was employed outside of the River GeoDSS software suite. Reported herein is the 

training and validation of a deep neural network (DNN), which is essentially an artificial neural 

network (ANN) with many hidden processing layers and neurons in its architecture. The DNN 

for this study uses the combined results from the two regional MODFLOW-SFR2 flow models 

(for the USR and DSR) based on datasets now available from field monitoring activities in the 

LARB that extend several years beyond the 1999 – 2001 period considered by Triana et al 

(2010a, 2010b). The generalized DNN is incorporated into River GeoDSS which links it with 

GeoMODSIM for fully integrated basin-wide water management. This study serves as a firm 

foundation for developing measures for mitigating adverse impacts on senior water rights and 
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interstate compact agreements resulting from implementation of BMPs designed to quell 

waterlogging, curb salinization, and reduce toxic levels of NO3, salts, Se, and U in LARB 

aquifers and streams. 

2.2 Study Area: Lower Arkansas River Basin, Colorado 

2.2.1 General Description 

Figure 2 depicts the extent of the LARB study area for conducting basin-scale modeling, 

which extends from the outlet of Pueblo Reservoir to the Colorado-Kansas Stateline, with inserts 

showing the USR and DSR where data have been gathered for calibrating and validating 

MODFLOW-SFR2 models and solute transport models specifically for those regions. The USR, 

upstream of John Martin Reservoir, drains to a 78 km section of the Arkansas River from 

Manzanola eastward to Adobe Creek. The total USR drainage area is approximately 50,000 ha, 

with roughly half of the area devoted to irrigated agriculture. The 55,000 ha DSR extends from 

May Valley Drain at Lamar east of the reservoir for about 71 km to the Colorado-Kansas border 

and includes 33,000 ha of irrigated fields. Field data collection for USR model calibration and 

testing occurred primarily during the period 1999 to 2012, whereas most of the data collection 

for the DSR occurred between 2002 and 2012. Average annual precipitation within the semi-arid 

alluvial valley increases eastwardly from 284 mm just below Pueblo Reservoir to 386 mm at 

Lamar in the DSR. Clifford and Doesken (2009) report an average annual reference ET of about 

1295 mm in the alluvial valley during the irrigation season (Mar. 15 to Nov. 15). The proportion 

of cultivated fields in the USR and DSR with very shallow water tables (i.e. water table depth, 

Dwt < 2 m, as simulated by the models) was 24% and 21%, respectively, as reported by Morway 

et al. (2013). This indicates significant susceptibility to problems of waterlogging, salinity, and 

non-beneficial water consumption (Gates et al., 2016). 
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2.2.2 Surface and Groundwater Quality 

A series of sedimentary formations of late Cambrian to Tertiary ages comprise the LARB 

main alluvial valley (Darton, 1906), with strong hydraulic connections existing between the 

alluvium and the Arkansas River and tributaries (Person and Konikow, 1986). Evidence suggests 

that these rock formations and their weathered residuum yield a variety of salts, along with Se 

and U, under the dissolving action of natural and irrigation flows (Bailey et al., 2012). Total 

dissolved solids (TDS) in sampled Arkansas River reaches of the LARB are quite high, with 

average values of TDS around 930 mg/L in the USR and 2,930 mg/L in the DSR (Gates et al., 

2016), posing a hazard to irrigated crops and markedly exceeding the EPA drinking water limit 

(USEPA, 2009). Approximation of the loadings of major salt ions directly to the Arkansas River, 

not including tributary flows, are estimated to occur at an average rate of about 7.5 metric tons 

per day per km and 15.4 metric tons per day per km along the Arkansas River in the USR and 

DSR, respectively (Gates et al., 2016). The 85th percentile of nitrate-nitrogen (NO3-N) in river 

samples exceeds the total N interim standard of 2 mg/L at many locations in the USR and the 

two most downstream locations within the DSR (Gates et al., 2016). Dissolved Se and U 

concentrations for all sampling events from 2006 to 2011 in the USR and 2003 to 2011 in the 

DSR, respectively, reveal that 85th percentile values for Se concentrations are about 3 and 3.3 

times greater than the chronic standard of 4.6 μg/L in the USR and DSR, respectively. The 85th 

percentile values of most river samples for U are just below the chronic standard of 30 μg/L in 

the USR, but 2.4 times greater in the DSR (Gates et al., 2016). 

2.2.3 Best Management Practices 

The following BMPs have been proposed for ameliorating the detrimental conditions of 

waterlogging, salinization, and nonpoint source pollution within the main alluvial valley of the 
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LARB: (1) reduced irrigation (RI) by increasing irrigation efficiency; (2) canal sealing (CS) to 

reduce seepage; and (3) lease-fallowing agreements (LF) (Shultz et al., 2018b). RI practices 

primarily involve altering application rates and land slopes in the traditional border and furrow 

water application methods and/or converting to sprinkler and drip irrigation. Although efficiency 

improvements do not necessarily reduce crop water consumptive use, they can lower water 

tables, moderate waterlogging conditions, and diminish return flows (Godbout and Johnson, 

2018). Canal sealing (CS) can be an effective means of reducing water losses, and thereby 

reducing diversions, and also is cost-effective with the use of linear anionic polyacrylamide 

sealants (Martin and Gates, 2014). Lease-fallowing (LF) BMPs primarily involve agreements 

with municipalities to receive additional water supply through intermittent fallowing of irrigated 

fields to avoid “buy and dry” scenarios that can degrade rural communities, while allowing 

irrigators to receive an economic benefit without having to sell all their water rights. Other viable 

land BMPs evaluated in Shultz et al. (2018b) include reduced fertilizer applications (RF) and 

enhancement of vegetated riparian buffers (ERB) to promote chemical reduction and 

volatilization of pollutants. 

2.2.4 Stream-Aquifer System and Compact Compliance 

Flow rates in the Arkansas River below Pueblo Dam are influenced primarily by snowmelt 

and runoff from the Upper Arkansas River Basin, groundwater base flow, runoff from 

precipitation events on the eastern plains, and releases from Pueblo Dam and John Martin Dam 

downstream. The stream-aquifer system of the central alluvial valley of the LARB supplies water 

to municipalities and industry primarily using well pumping from the alluvium. These flows, 

however, are small compared to stream-aquifer system interactions between the river and 

irrigated agriculture in the valley, which have the most significant impact on maintaining senior 
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water rights and complying with the Kansas-Colorado Arkansas River Compact. The Compact 

constrains the operation of irrigation systems in the LARB by prohibiting any changes that 

would alter the amount and timing of groundwater return flows to the river (Colorado Revised 

Statutes, 1949). To guarantee that the provisions of the Compact are maintained with, the Office 

of the Colorado State Engineer has issued efficiency rules that prohibit implementation of BMPs 

that would result in diminished return flows back to the river resulting from improved efficiency, 

thereby risking violation of the Compact. A dilemma that arises is that reductions in excess 

surface or subsurface flows resulting from increased irrigation efficiency, which clearly improve 

the sustainability of irrigated agriculture by mitigating the problems of waterlogging, 

salinization, and increased concentrations of nutrients and toxic trace elements (Morway et al., 

2013; Shultz et al., 2018b; Tavakoli-Kivi, 2018), are prohibited unless otherwise augmented by 

appropriate changes in river operation, such as with amended releases from reservoir storage.  

2.3 Regional-Scale MODFLOW Models 

MODFLOW is a popular, open-source software package developed by the USGS for 3D 

flow modeling of multi-layer groundwater systems with complex boundary conditions. 

MODFLOW employs a numerical finite-difference scheme to solve the Boussinesq nonlinear, 

parabolic partial differential equations governing groundwater flow in several aquifer layers, 

which can be confined or unconfined (Harbaugh, 2005). Variants of MODFLOW also can 

simulate unsaturated flow, surface water runoff, surface water storage, pumping wells, 

evapotranspiration, and groundwater recharge. Flow and sink/source output from MODFLOW 

commonly are used to drive a number of solute transport models, including RT3D-OTIS 

(Qurban, 2018; Shultz et al., 2018a, 2018b). Colorado State University (CSU) has been 

conducting continuous data collection and modeling efforts since 1999 in the USR and since 
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2002 in the DSR of the LARB for calibration and application of regional MODFLOW and 

related solute transport models for predicting impacts of the BMPs on the stream-aquifer system. 

It is believed that the USR and DSR are also highly representative of the un-modeled regions of 

the Lower Arkansas River basin since they include about 54% of the total irrigated area in the 

basin. The intensive data monitoring efforts have allowed construction of high spatial resolution 

MODFLOW finite-difference models of the USR and DSR with 3D grids including three 

overlapping vertical layers with 250 m cell size. A weekly time step is used for all MODFLOW 

simulations in the USR and DSR. 

The Newtonian structured MODFLOW-NWT (Niswonger et al., 2011) version of 

MODFLOW is linked with the UZF (Niswonger et al., 2006) and SFR2 (Niswonger and Prudic, 

2005) packages, which incorporate unsaturated zone flow, stream-aquifer flow exchange, and 

streamflow routing. Also, in the USR, the UZF package coupled with RT3D (Reactive Transport 

in 3 Dimensions) (Bailey et al., 2013b) is linked with OTIS (One-dimensional Transport with 

Inflow and Storage) and QUAL2E to form RT3D-OTIS for simulating multi-species transport in 

groundwater and interconnected streams. RT3D-OTIS has been applied to simulate NO3-N and 

Se transport in the USR (Shultz et al., 2018a) and in the DSR (Qurban, 2018). Both the 

MODFLOW models use the WEL package for simulating specified point discharge at wells. The 

RES package simulates leakage from reservoir features such as ponds, lakes, and reservoirs, 

performing similarly to the RIV package by simulating leakage between a reservoir and the 

aquifer by acting as a head-dependent flow boundary (Fenske et al., 1996). 

The regional groundwater models for the USR and DSR were calibrated using a combination 

of manual and automated procedures (Morway et al., 2013; Bailey et al., 2014; Shultz et al., 

2018a). The automated procedure applies UCODE (Poeter and Hill, 1998) and PEST (Doherty, 
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1994) to minimize residuals between predicted and measured groundwater heads, groundwater 

return flows, canal seepage, total evapotranspiration (ET), groundwater upflux to ET, and 

recharge to infiltration ratio by adjusting parameter values for selected aquifer properties. The 

calibrated model was then applied to simulate 67 alternative water and land BMP scenarios, 

including 39 combined BMPs, for effectiveness in decreasing Se and NO3 contamination in the 

USR. Each combined BMP scenario, along with four single BMPs, were simulated at basic, 

intermediate, and aggressive levels (Shultz et al., 2018b). Qurban (2018) analyzed a similar, 

though not as extensive, array of BMP scenarios for mitigating Se and NO3 in the DSR. 

Additional water BMPs were earlier considered by Morway et al (2013) to examine impacts on 

groundwater table levels and return flows to the Arkansas River and its tributaries. 

2.4 Basin-Scale River Basin Management Model 

2.4.1 River GeoDSS Geospatial Decision Support System 

River GeoDSS is a geospatial decision support system for river basin management with 

integrated modules for river basin modeling, database management, and graphical user 

interfaces, and is fully implemented in a geographic information system (GIS) for geospatial 

modeling and analysis (Figure 3). The centerpiece of River GeoDSS is Geo-MODSIM, a 

generalized river basin management model developed at CSU that considers the important 

physical and hydrologic characteristics required for developing river basin management 

strategies, along with the inclusion of complex legal and institutional mechanisms governing the 

allocation and use of available flows in an over-appropriated river basin. GeoMODSIM is a GIS-

based version of the MODSIM generalized river basin management model (Labadie, 2006, 

2010). MODSIM is embedded as a custom extension in ArcGIS Desktop GIS 10.x 

(Environmental Systems Research Institute, 2011), where ArcMap® as the primary windows 
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desktop application for ArcGIS serves as a georeferenced graphical user interface for 

GeoMODSIM (Figure 4). An updated version of the basin-scale decision support system River 

GeoDSS (Triana et al., 2010a) is applied to generating river basin management strategies that 

consider the stream-aquifer impacts of a wide range of BMP implementations for water quality 

improvement while assuring compliance with basin water rights and the Colorado-Kansas 

Arkansas River Compact. 

 

Figure 3. GeoMODSIM geospatial river basin management model displayed in the ArcMap® interface 

for ArcGIS 10.x geographic information system (ESRI, Inc). 
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Figure 4. River GeoDSS river decision support structure diagram showing linked modules. 

2.4.2 Improved Modeling Capabilities of River GeoDSS 

Many of the original capabilities of the Triana et al. (2010b) version of River GeoDSS are 

retained in the updated version presented herein. These include: (1) automated construction of 

georeferenced MODSIM hydrologic networks generated from digital hydrographic map layers 

available from the National Hydrography Dataset (NHDPlusV2); (2) a highly efficient network 

flow optimization algorithm for allocating flows in strict accordance with water right and storage 

right priorities over monthly, weekly, daily, and even sub-daily time steps; (3) tools for populating 

and editing the spatiotemporal database; (4) setting geometric network properties in ArcMap; (5) 

execution of MODSIM directly within ArcMap; (6) georeferenced display of graphical output 

results in the ArcMap interface; and (6) access to the ArcGIS Spatial Analyst Extension.  

As depicted in Figure 4, a key element of the updated River GeoDSS is the use of a DNN 

for accurately emulating MODFLOW-SFR2, instead of attempting to directly couple the 

compute-intensive MODFLOW-SFR2 model with GeoMODSIM. This differs from the previous 

work by Triana et al. (2010a, 2010b) where shallow (in contrast with deep) single-layered ANNs 
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with radial basis activation functions were used. The other main difference in the approach taken 

here is that inputs to the DNN constitute raw data in contrast with the manually-extracted 

features employed in the previous work by Triana et al. (2010a, 2010b). For example, in the 

earlier work, aquifer recharge per unit area was assumed to have a direct significance to the 

ANN output variables, e.g., groundwater return flows. With the deep learning approach, minimal 

intervention to the DNN’s learning process is desired, requiring that the raw variables, e.g., 

aquifer thickness, area, stream lengths, are used instead. 

Also, in the earlier version of River GeoDSS, all ANN development had to be performed 

outside of River GeoDSS, where the extracted georeferenced spatiotemporal explanatory 

variables had to be input into the commercial modeling package MATLABTM (MathWorks Inc.) 

to develop the ANN. The trained ANN then required insertion back into River GeoDSS and 

linked with GeoMODSIM which then executed the river basin management simulation. In the 

updated version of River GeoDSS, all DNN model development is performed entirely within 

River GeoDSS, where the user can select and modify DNN configurations in a dedicated tab in 

the River GeoDSS dialog window (Figure 3), thereby providing a seamless modeling pipeline 

that does not require the user to exit River GeoDSS to complete the DNN development. The 

configurations include selection of the number of hidden layers (for determining the use of either 

a shallow or deep neural network), number of hidden nodes per layer, training-testing portion, 

activation function, the neural network solver, and the regularization value (a scalar introduced 

to the learning model to prevent overfitting and improve generalizability). 

Other significant updates and improvements in River GeoDSS include: (1) reduced 

redundancy in the coding through implementation of native ArcObjects libraries (Environmental 

Systems Research Institute, 2019) instead of hard-coded case-specific implementations as in the 
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original, providing more robust and seamless usage; (2) updated georeferenced and non-

georeferenced databases such as inclusion of new spatiotemporal variables; (3) migration from 

the original MATLABTM-based ANN module to the Scikit-learn license-free machine learning 

package (Pedregosa et al., 2011); (4) use of the significantly updated MODFLOW models 

employing the SFR2 package, as well as using an extended simulation period; and (5) use of 

combined datasets from both the USR and DSR regions of the LARB as the source data for 

developing the DNN, as opposed to previous USR-only implementation of River GeoDSS 

(Triana et al., 2010a, 2010b). 

2.5 Compute-Efficient Deep Learning Surrogate of Regional-scale Models 

2.5.1 ANN, Deep Learning and DNN 

 ANNs are a type of machine learning model comprised of numerous combinations of simple 

processor units or neurons joined through interconnection links called synapses that result in 

massively parallel interconnected networks that allow application of connectionist learning 

procedures. The synapses are assigned connection strengths, or synaptic weights, within which 

the acquired knowledge is stored (Haykin, 2008). The weights are used in the calculation of 

input activation for each neuron node in an ANN layer, where the weighted sum input signals 

from all feeder neurons to that node are essentially summed. A feedforward algorithm is utilized 

where the activation function in each neuron processes the summed weighted inputs and passes 

neuron activation function output to the outgoing connected neurons in the next layer. 

In a supervisory learning mode, the ANNs are trained by determining the weights that 

essentially result in a close match between measured or target outputs and the computed outputs 

of the trained ANN, where “closeness” can be defined in several ways. The learning process 

usually employs the backpropagation algorithm, where after information passes from the input 
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layer to the final output layer of nodes, the ANN computed output values are then compared to 

the actual values. The discrepancies are then transferred backward by progressing from the 

output layer back to the input layers to update the synapses connection weights that produce 

improved ANN outputs. At the end of the training process, the final weight values attributed to 

the synapses are essentially the ANN acquired knowledge from a dataset. The canonical 

procedure after a machine-learning training is then to test the learned model with an unseen data 

subset to validate its generalizability. Readers are referred to Haykin (2008) and Abu-Mostafa et 

al., (2012) for in-depth descriptions of ANN methodologies. 

Advancements in computing power and affordability have propelled the development and 

widespread use of ANNs and further inspired the birth of the field of deep learning. Throughout 

the last half-century, significant research has been done to find accurate representations of 

complex data structures using the most efficient methodologies possible. This research 

particularly blossomed in the field of computer vision, where image classification was found to 

require highly multilayered or deep ANNs, or DNNs. To circumvent this complexity, a feature 

extraction approach can be taken, which is essentially creating higher-level abstractions, e.g., 

lines and shapes, of lower level features, e.g., pixels, that are then input to the machine-learning 

algorithm. This approach, however, is tedious and requires significant human intervention to the 

learning process, particularly in the creation of higher-level abstractions. Deep learning aims to 

better address the challenge, its main idea being that of capturing multiple levels of knowledge 

representation from raw data with minimal manual interference (Alpaydin, 2014, 2016; LeCun et 

al., 2015). 

A DNN is a specific tool in the deep learning family, which exploits multiple layers of 

representation to model complex relationships for supervised or unsupervised learning (Deng et 
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al., 2014). The aim is to allow a machine to be fed with raw data and automatically discover 

multiple levels of representation for regression and classification. The key ingredient of deep 

learning is its raw data input and multilayered hidden units, and in the case of DNN, its 

employment of multiple layers of calculation nodes. Similar to its shallow version, feed-forward 

and backpropagation algorithms are often employed in the training of DNNs (Alpaydin, 2014, 

2016; Deng et al., 2014; LeCun et al., 2015). 

2.5.2 Steps Taken in the Deep Learning Model Development 

The following steps for ANN and DNN model development were suggested by Wu et al. 

(2014): (1) input/feature selection, (2) data splitting, (3) model architecture selection, (4) model 

structure selection, (5) model calibration, and (6) model validation. Note that there is a 

distinction between model architecture and structure, where the former relates to how 

information moves across the neural network, such as the selection of feed-forward, recurrent 

Jordan, or recurrent Elman architectures (Haykin, 2008). In contrast, model structure focuses on 

the properties of the network itself; e.g., the number of parallel layers of neuron nodes or 

processing elements, numbers of nodes per layer, and the activation function selected for the 

processing elements. The development of DNN surrogates of the regional-scale MODFLOW 

models of this study deviates slightly from the protocol of Wu et al. (2014) with the steps taken 

being: (1) network architecture and feature selection, (2) model structure selection, (3) model 

calibration, and (4) model validation. Since the model architecture step is combined with feature 

or input layer selection, and this study only utilizes the feedforward neural network architecture, 

discussion of this modeling step deals only with the feature selection. The data splitting step is 

also merged with model structure selection, which is explained subsequently. The model 

calibration step focuses on training and testing of the neural network, for example, 10% of the 
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entire input-output dataset for supervisory learning may be utilized for performing the model 

validation step, with the remaining 90% further sub-divided into training and testing datasets. 

The validated neural network model is then incorporated into River GeoDSS as a compute-

efficient emulator of the MODFLOW-UFZ stream-aquifer system model.  

2.5.3 Neural Network Architecture and Feature Selection 

Figure 5 depicts the input-output structure of the feedforward DNN developed as a surrogate 

of MODFLOW-SFR2 for supervised learning. Neurons in the input layer of the neural network 

represent measurable explanatory variables categorized as spatial, temporal, and scenario-based 

inputs, with the latter reflecting the wide range of BMP combinations and intensities as modeled 

by MODLOW- SFR2. The DNN’s output variables are mainstream, tributary, and overland 

return flows resulting from a large number of MODFLOW-SFR2 simulations for a wide range of 

BMPs. To predict those output variables, spatial, temporal, and scenario-based explanatory 

variables are selected with an ad-hoc approach, where the variables are expected to have a 

significant hydrologic impact to the behavior of the return flow output variables. 

The spatial input variables are measured using GIS spatial analysis operations on 

georeferenced maps, with the temporal input variables including precipitation measurements and 

groundwater pumping rates. The scenario-based input variables are of two types: management 

scenario-dependent and GeoMODSIM-dependent, where the latter are river flows and canal 

diversions calculated by GeoMODSIM based on BMP impacts, water right priorities, and other 

administrative mechanisms. All temporal explanatory variables (i.e., Precipitation, Pumping, 

Streamflow, and Average Diversion) are in weekly time increments, ranging over the historical 

period 31 December 1998 through 30 December 2009, and spatially aggregated in buffer zones. 

The buffer zones are defined as valley areas parallel to the main river channel with a longitudinal 
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length of 15 km and incremental width of 3 km on the north and south sides of the river 

(presented in sky blue color in the insert maps in Figure 2). The methodology for buffer zone 

aggregation is discussed in detail in Triana et al. (2010b). Maier et al. (2010) stress the 

importance of ensuring input variable independence in the input data selection process, where 

improperly accounting for input variable redundancy can result in increases in the number of 

neural network connection weights requiring optimization, leading to multi-modal fitting error 

surfaces, and increasing the likelihood of overfitting. Extensive linear correlation analyses were 

conducted between all possible pairs of the original 15 explanatory variables, with the results 

summarized in Figure 6. Three variables (i.e., canal elevation, stream elevation, and buffer zone 

elevation) are strongly linearly correlated with each other, requiring removal of two of them 

from the set of explanatory variables, i.e., stream elevation and canal elevation.  

 

Figure 5. Input-output variables for DNN surrogate development 
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Figure 6. Selection of explanatory variables selection (solid dark blue or dark red shading indicates very 

strong correlation 

2.5.4 Model Structure Selection 

For this study, the model selection process includes selecting data splitting methods, network 

architecture, solver selection, activation functions, and the regularization value. Data splitting 

generally separates data into training, testing, and validation subsets. The training subset is 

applied to the training of the neural network, whereas the testing subset determines whether it is 

overfitted; i.e., when training should be terminated. The validation subset is used to assess the 

generalization capability of the trained neural network (Maier et al., 2010). Wu et al. (2014) 

emphasize the importance of justifying the data splitting method by comparison with alternative 

methods. For this study, two types of data sampling methods were considered: randomized and 

sequential sampling, with each method having 10% of the data saved for the validation subset 
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and nine variations of training and testing percentage pairs of the remaining 90% data subset: 

10%-90%, 20%-80%, 30%-70%, 40%-60%, 50%-50%, 60%-40%, 70%-30%, 80%-20%, and 

90%-10%, with the first percentage applying to the training subset and the second to the testing 

subset. For the randomized sampling method, the 10% validation subset was sampled in advance 

in a randomized fashion, with the remaining 90% sampled for the training subset, also in a 

randomized manner, leaving the remainder as the testing subset. For the sequential sampling 

method, the earliest 10% of the data were saved as the validation subset. The latest 90% portion 

of the dataset serves as the training subset, with remaining datasets applied to model testing. The 

decision to compare these two sampling groups, i.e., randomized or sequential, is based on the 

popularity of applying these two methods as seen in the literature. He et al. (2014) and Gong et 

al. (2016) applied sequential data sampling for training, whereas Triana et al. (2010b) and Wu et 

al. (2015) employed randomized data sampling. 

Wu et al. (2014) also mention the importance of developing a well-described and justified 

neural network architecture by comparing alternative architectures. Here, the architecture 

selection is based on how many hidden layers are required, as well as the number of neurons or 

nodes in each layer. In this study, up to 2000 nodes per layer were utilized, with various types of 

solvers, activation functions, and regularization values also evaluated. The hyperbolic tangent 

(tanh), rectified linear unit (ReLU), logistic, and identity functions were considered as activation 

function alternatives, with the following eight regularization values considered: 0, 0.00001, 

0.0001, 0.001, 0.01, 0.1, 1, and 10. The limited-memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm (LBFGS) (Andrew and Gao, 2007), stochastic gradient descent (SGD) (Robbins and 

Monro, 1985), and ADAM (Kingma and Ba, 2015) were the solver alternatives considered. 



30 
 

2.5.5 Model Testing and Validation 

More than 40,000 neural network configurations were evaluated in this study. Out of this 

large number of trained networks, only the best-performing model was employed in the 

application step. Although a metamodeling approach could have been employed to find the best 

performing neural network (Broad et al., 2015), a simple brute-force approach was utilized with 

consideration of the available computing resources and the decision to avoid an extra layer of 

computing due to the large-scale nature of the neural networks. The replicative and predictive 

validation criteria were assessed, which is consistent with two of the three validation methods 

suggested by Humphrey et al. (2017). Replicative validity of a model can be confirmed using 

scatter plots of the predicted versus observed data where a good result indicates that the model 

captures the underlying characteristics in the data used for model training/calibration. Predictive 

validation, on the other hand, is applied to determine the model generalization capability over the 

range of the calibration data, where the validation of the trained neural network can be used to 

confirm it.  

To avoid overfitting, the metrics used to assess the performance of the trained neural 

networks are (1) the Akaike information criterion (AIC) (Akaike, 1974) and (2) the Amari 

number (Amari et al., 1997). While R² and RMSE are the most commonly used performance 

metrics, AIC introduces more depth to the metrics. Aside from measuring model goodness-of-fit, 

AIC also penalizes model complexity. This parsimony-favoring nature of AIC is useful for 

selecting the minimal model that best explains the observed data. The Amari number further 

explores model parsimony, with overfitting assumed as linked to the ratio of the number of 

training samples to the number of connection weights, where it has been shown that overfitting 

does not to occur when the ratio exceeds 30. In this study, the best performing neural network is 
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evaluated with respect to predictive validity based on the lowest AIC value, while satisfying the 

condition of having an Amari number larger than 30. The coefficient of determination, R², is also 

used to present the performance of the neural networks without penalization of the network 

complexity. 

2.6 Modeling Results 

2.6.1 Neural Networks Configuration Selection 

Training and testing of the many the neural network configurations for the LARB system 

required more than 5 days of computing with eleven desktop computers and servers, where the 

CPU specifications were multi-core Intel® CPUs at 3.4 – 4.0 GHz at 100% utilization. Each of 

the various run configurations required an average of 170 s per run. The best performing network 

was selected based on the lowest AIC value while satisfying the Amari number criteria. Figure 7 

shows test AIC vs the number of hidden nodes per layer and network complexity for different 

numbers of layers and sampling methods. Four charts are shown: random sampling with a single 

layer, random sampling with two layers, sequential sampling with one layer, and sequential 

sampling with two layers. A distinction is also made between neural networks prone to 

overfitting, with Amari numbers less than or equal to 30 shown in yellow, and those considered 

to be safe from overfitting, or having Amari numbers greater than 30, shown in blue. It is clear in 

this study that randomized sampling outperforms sequential sampling and that the two-layer 

DNNs generally outperformed the one-layer shallow ANNs, where the AIC values of the two-

layer networks are lower at the boundary between overfit-prone and overfit-safe points (i.e., 

yellow and blue dots, respectively). This may indicate that the shallow ANNs are unable to 

capture the complexity or high-nonlinearity of the stream-aquifer interaction being modeled. In 

the same figure, when comparing AIC values against network complexity (i.e., the secondary 
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abscissa in Figure 7), with network complexity defined as the number of connection weights 

estimated in the training, the DNNs outperform the shallow ANNs on the same complexity. This 

further reinforces the assertion that the DNNs are better in capturing system nonlinearity than 

shallow ANNs. 

 

Figure 7. Test AIC vs the number of hidden nodes per layer and neural network complexity for the LARB 

system for different number of layers and sampling methods (lower AIC is better); random sampling for: 

(a) one-layer and (b) two-layer; and sequential sampling for: (c) one-layer an (d) two-layer. 

Also evaluated were impacts to the testing AIC values on changing the other neural network 

properties. Although the results are not shown here, it was found that randomly-sampled neural 

networks with minimal regularization value are superior. Moreover, tests showed that the 

ADAM solver dominates training performance, with the lowest average number of iterations and 

the lowest average training time compared to other solvers. Comparing the various activation 

functions, i.e., identity, logistic, ReLU, and tanh, the latter two methods outperformed the former 

with ReLU slightly leading. Although the identity function averaged the least amount of 

computation time and fastest convergence, it yielded a relatively higher test AIC value. The 
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logistic function required similar average computation time as ReLU and tanh but displayed 

greater variability and a higher average number of iterations, along with poorer performance in 

terms of average and minimum test AIC values. 

Another important parameter selection is the training-testing percentage or data division, 

where Maier et al. (2010) stresses the need to pay more attention to since the way the data are 

divided can have a significant impact on model performance. In this study, nine pairs of data 

division options were considered, ranging from 10% training – 90% testing to 90% training – 

10% testing with 10% increments. A higher training percentage could be selected since it 

produces well-performing neural networks; however, this raises another overfitting issue not 

caused by the structural configuration of the neural network but rather by its being over-trained. 

Since Maier and Dandy (2000) stress the importance of training and testing sets being 

representative of the same population, a comparison of the nine data splitting methods was 

conducted using principal component analysis (Pearson, 1901) to compare the data splitting 

options. Figure 8 displays the density plot of the first principal component for different data 

portions (training and testing) and the nine training-testing percentage options. The chart 

generally indicates that most of the data splitting options having between a 40% and 80% 

training portion produce visually similar training and testing data density plot. 

On evaluating the merits of using deeper neural networks, Figure 9 shows the comparison of 

the R² statistic and training time as affected by numbers of hidden layers. In this comparison, all 

neural networks were trained with 50 nodes per hidden layer, 50% training portion, ADAM 

solver, relaxed regularization, ReLU activation function, and randomized sampling method. 

Figure 8 shows that there is a significant increase in performance by using DNNs instead of 

shallow ANNs. However, the performance gained by further increasing the depth of a neural 
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network is not proportional to the increase in required training time. Moreover, violation of the 

Amari number criterion is apparent starting from a four-layered DNN onwards. Therefore, it is 

reasonable to conclude that a two- or three-layered DNNs are satisfactory for modeling model 

stream-aquifer interactions in the LARB, with deeper neural networks providing minimal 

improvement, but at the expense of increased training time and overfitting concerns. 

 

Figure 8. First principal component density for different data portions (training and testing) and 

training-testing percentages for the LARB system: (a) 10% – 90%, (b) 20% – 80%, (c) 30% – 70%, (d) 

40% – 60%, (e) 50% – 50%, (f) 60% – 40%, (g) 70% – 30%, (h) 80% – 20%, (i) 90% – 10%. 
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Figure 9. Comparison of (left) R² scores and (right) training time of n-layered neural networks with 50 

nodes per hidden layer, 50% training portion, ADAM solver, relaxed regularization, ReLU activation 

function, and randomized sampling method. 

Based on the results presented herein, the best performing DNN configuration was selected 

as: randomized sampling method, 50% training subset, 3-layer 50-node hidden layers, ADAM 

solver, 0.00001 regularization value, and ReLU activation function. Figure 10 compares the 

DNN vs MODFLOW calculations for various return flow components (i.e., target variables) and 

data subsets, including the validation subset. The trained DNN generalizes well to the reserved 

validation subset, with excellent R² value of 0.89 as compared to the performance of the DNNs 

in the training and testing subsets; i.e., with R² values of 0.91 and 0.90, respectively. Broken 

down into the return flow components, Figure 10 shows the DNN performs even better in 

predicting the overland return flow component, while slightly lower in the mainstream return 

flow component for the training, testing, and validation subsets, respectively, and the tributary 

return flow components. It is concluded therefore that the trained, tested, and validated DNN 

reasonably emulates the compute-intensive MODFLOW stream-aquifer system model for the 

Lower Arkansas River basin. The DNN is suitable as a compute-efficient replacement of 
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MODFLOW in River GeoDSS (Figure 3) for finding river basin management strategies that can 

accommodate the implementation of water quality improvement BMPs without violating basin 

water rights and the Colorado-Kansas Interstate Compact.  

2.6.2 Application of River GeoDSS with DNN-Generated Return Flows to Examine BMP 

Effects  

The best performing DNNs are employed in the River GeoDSS model for performing 

accurate stream-aquifer system analysis to calculate realistic, spatially-distributed return flows to 

the mainstem river and tributaries along the entire valley region within the LARB. Return flows 

calculated by the neural networks are automatically assigned to the appropriate return-flow nodes 

in River GeoDSS. GeoMODSIM routes flows in the LARB hydrologic network while ensuring 

the satisfaction of the prior-appropriation water rights system, where senior water rights are 

entitled to take an adjudicated flow rate for beneficial uses (i.e., agricultural, industrial, or 

household) before the subsequent junior water rights can do so. The model also accounts for the 

goal of meeting the Stateline flow requirements of the Arkansas River Compact. 

The River GeoDSS was applied to simulate the impacts of 75 water-related BMPs on return 

flows and instream flow conditions along the entire valley reach of the LARB. These BMPs were 

earlier assessed by Morway et al (2013) and Shultz et al (2018b) to estimate their impacts on 

water table depth, return flows, water quality, and related variables in the USR and DSR. Shultz 

et al. (2018b) modeled stand-alone BMPs involving not only improved water management, but 

also land management (i.e., enhancing the riparian buffer adjacent to the river and tributaries and 

reducing fertilizer applications), as well as combinations of these water and land management 

BMPs. It should be noted that Morway et al (2013) considered only water BMPs. 
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Figure 10. DNN vs MODFLOW estimates of return flows for various data subsets and return flow 

components; overall return flow performance: (a) training, (b) testing, (c) validation subsets; main 

stream groundwater return flow performance: (d) training, (e) testing, (f) validation subsets; tributary 

groundwater return flow performance: (g) training, (h) testing, (i) validation subsets; overland return 

flow performance: (j) training, (k) testing, (l) validation subsets. 
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Table 1. Tradeoffs between percent reductions in pollutants for selected BMP combinations [CS-x: Canal 

Sealing to reduce seepage by x percent; RF-x: Reduced Fertilizer Application by x percent; RI-x Reduced 

Irrigation Application by x percent] and required capacity of new storage account in John Martin for 

Arkansas River Compact compliance. 

  CS20-

RF10 

CS40-

RF20 

CS60-

RF30 

RI10-

CS40-

RF10 

In-stream Se level reduction* 
(Shultz et al., 2018b) 

15.1% 24.3% 31.6% 13.0% 

In-stream NO3-N level reduction* 
(Shultz et al., 2018b) 

4.4% 8.8% 11.2% 0.4% 

Groundwater Se level reduction* 
(Shultz et al., 2018b) 

6.1% 12.5% 20.8% 1.9% 

Groundwater NO3-N level reduction* 
(Shultz et al., 2018b) 

12.8% 23.1% 33.0% 12.0% 

Average reduction* in 
cropped area with 
(Estimated from 

Morway et al., 2013) 

Dwt < 1 m 12.8% 16.3% 19.8% 24.9% 

1 m < Dwt < 2 m 8.4% 12.4% 16.4% 17.7% 

2 m < Dwt < 3 m 5.9% 8.5% 11.1% 11.6% 

Required capacity of new storage account in 
John Martin Reservoir (106 m3) 

6.04 10.14 14.02 12.40 

Required capacity of new storage account as 
percentage of total storage capacity in John 

Martin Reservoir 

1.4% 2.4% 3.3% 3.0% 

*Compared to the BL Scenario 

Table 1 summarizes the potential beneficial impacts of some selected combined BMPs, 

namely CS20-RF10, CS40-RF20, CS60-RF30, and RI10-CS40-RF10, which are highlighted 

here since they have positive impacts on all studied pollutants. The nomenclature for the BMPs 

is defined as follows: RIx indicates a reduction in applied irrigation water over the region by x 

percent from current baseline (BL) conditions, CSx denotes canal sealing to reduce seepage 

losses by x percent from baseline conditions, LFx denotes lease fallowing of x percent of the 

baseline irrigated land in concentrations shown are from simulations of long-term conditions 

reported in Shultz et al. (2018b), where the available dataset was repeated four times resulting in 
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over 40 years of extended simulation data. The estimated percent reductions in cropped area 

underlain by shallow saline water tables with Dwt < 1 m, with 1 m < Dwt < 2 m, and with 2 m < 

Dwt < 3 m are based upon Morway et al. (2013). Studies of BMP impacts on salinization are still 

underway, but field data presented in Morway and Gates (2012) indicate that increased Dwt 

corresponds to decreased soil salinity. Only the water BMP components of these combinations 

lead to altered irrigation return flow patterns. 

Figure 11 shows the effects of the 75 BMP alternatives simulated by River GeoDSS on 

weekly water right shortages, where shortages are defined as the average simulated delivered 

flow rate subtracted from the average demand then divided by the average demand and expressed 

as a percentage. The weekly demands were calculated based on historical records and on the 

flow demand reduction that would result from the implementation of each BMP scenario. For 

example, a 30% reduced irrigation BMP (RI30) would amount to 30% less water required at the 

field level, thereby cutting the assigned flow demands for each canal. Results in Figure 11 

indicate that water BMP implementations, which reduce return flows and alter in-stream flow 

patterns, would lead to shortages in the fulfillment of water rights along the river. These 

shortages primarily occur during the dry period between 2002-2005. Smaller shortages occur in 

the year 1999, which is associated with the priming of the simulation, where numerical errors are 

present during the initial simulation timesteps. Figure 11 displays the shortages by dividing the 

water rights into those located upstream or downstream of John Martin Reservoir (Figure 2), and 

into senior or junior water rights. This division by seniority was made by sorting the rights in 

ascending order from the oldest (1 April 1861) to the youngest (31 July 2007), then splitting 

them roughly in half at the date 1 March 1887. There are 68 senior rights and 39 junior rights 

upstream of John Martin Reservoir. Downstream of the reservoir there are 5 senior and 14 junior 
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rights. Shortages in meeting water rights, associated with the implementation of alternative 

BMPs, are negligible for the upstream-senior water rights, which include most of the oldest 

water rights along the river, along with the downstream-senior component. However, significant 

shortages are predicted to occur for the upstream-junior and downstream-junior water rights. The 

differences between the size of the shortages in the upstream-junior and the downstream-junior 

rights are due to releases from storage in John Martin Reservoir which dampen the shortages 

occurring downstream of the reservoir.  

 

 Figure 11. Simulated shortages in the fulfillment of water rights under considered BMP alternatives for 

the (a) upstream-senior, (b) upstream-junior, (c) downstream-senior, and (d) donwstream-junior water 

rights. 
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Figure 12. Flow time series relative to the baseline scenario at the Stateline with an example storage 

account implementation for mitigating a combined RI30-LF30-CS80 BMP impact. 

Evaluating flows further downstream at the Stateline, simulated BMP alternatives were 

predicted to alter the pattern of flow delivery to Kansas in the form of surpluses and deficits at 

the Stateline, with more aggressive BMPs introducing larger magnitudes of alteration. Figure 12 

shows an example of simulated flows at the Stateline resulting from the implementation of the 

RI30-LF30-CS80 BMP scenario in relation to the BL scenario. The BL scenario is defined as the 

modeled scenario where streamflow and diversions are based on data for a historical period 

(1999 – 2009) when Colorado was in full compliance with the Compact. Without a source of 

replacement water, e.g. a new storage account in John Martin Reservoir (see curve labeled 

“Without storage account” in Figure 12), times of substantial flow deficit (where the plotted flow 

drops below the zero axis) are predicted to occur at the Stateline, resulting in potential violation 

of the Compact Agreement between Colorado and Kansas. Figure 13 shows average 

discrepancies from baseline Stateline flows, across all of the modeled BMPs, during periods of 

surplus as well as during periods of deficit. The relatively large flows during periods of surplus 

are due in part to decreased non-beneficial consumptive use of water derived from increased Dwt 

and decreased water-table upflux under non-cultivated LARB areas, brought about by BMP 

efficiency improvements (Morway et al., 2013). 
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2.6.3 New Reservoir Storage Account to Compensate for BMP Side Effects 

One option to address this issue of Compact violation is to store excess streamflow generated 

by efficient water use (i.e., water left in the river due to reduced canal diversions resulting from 

BMP efficiency improvements) in a new storage account in John Martin Reservoir. This would 

allow timed releases to be made from the account to sustain compliance with the Compact during 

later periods when return flows from the irrigated valley have diminished. This possible 

augmentation plan has been simulated in River GeoDSS, whereby excess river flows specifically 

resulting from BMP implementation are captured and stored in the new storage account. The 

establishment of such a storage account in John Martin Reservoir dedicated to providing 

replacement flows for compliance with the Compact currently is under consideration by the 

Arkansas River Compact Administration. Figure 12 provides flows at the Stateline simulated by 

River GeoDSS for the RI30-LF30-CS80 BMP scenario, relative to BL flows, for the case with 

the creation of a storage account in comparison to the case without a storage account. Results 

indicate that timed releases from a John Martin storage account are capable of maintaining flows 

at the Stateline at or above the BL scenario. Another key finding is that the use of a new storage 

account in John Martin Reservoir would eliminate shortages in fulfilling water rights 

downstream of the reservoir; however, shortages upstream of the reservoir would still exist and 

perhaps could be remedied by altering the operation of Pueblo Reservoir at the upstream end of 

the LARB. The last two rows of Table 1 summarize the storage account volumes in John Martin 

Reservoir required to offset return flow depletions from the BL resulting from the 

implementation of the selected BMPs so as to comply with the water right system and the 

Compact, calculated using a linear reservoir method (Chow et al., 1988). As indicated here, more 

aggressive BMPs which reduce pollution more substantially also were found to require a larger 
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storage account to maintain Compact compliance. Nevertheless, in the case of all modeled 

BMPs, the required size of the new storage account is only a small fraction (< 5%) of the total 

available storage capacity in John Martin Reservoir. Further examination of water and land 

management BMPs in addressing the lingering sustainability and productivity problems in the 

LARB, as well as the formulation of optimal operating rules for a new storage account in John 

Martin Reservoir to mitigate side effects of the BMPs, are subjects of future research that can 

build upon this study. Future work also will include the consideration of how altered releases 

from Pueblo Reservoir could potentially redress junior water rights shortages upstream of John 

Martin Reservoir.  

 

Figure 13. Average simulated Stateline surplus and deficit flows across the modeled BMPs. 

2.7 Chapter Summary and Conclusions 

 The Lower Arkansas River Basin (LARB) of Colorado, similar to many irrigated alluvial 

river basins around the world, is experiencing degradation of water quality and diminished crop 

yields due to inefficient irrigation water management. A number of water and land best 
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management practices (BMPs) have been identified for alleviating these serious agro-

environmental impacts, including increased irrigation efficiency, canal sealing to reduce seepage, 

lease-fallowing programs, reduced fertilizer applications, and enhancing vegetated riparian 

buffers to promote chemical reduction and volatilization of pollutants. The socio-economic 

ramifications of attempting to implement these BMPs require serious consideration; but, in many 

irrigated river basins governed by a prior appropriation doctrine of water rights and impacted by 

interstate compact agreements, it is the political, legal, and institutional restrictions that can 

seriously inhibit implementation. 

To explore ways to overcome these issues, the GIS-based river basin decision support system 

River GeoDSS, created previously by Triana et al. (2010b) but substantially updated in this 

work, is applied to accurately model the implementation of BMP strategies in the LARB, with 

strict adherence to Colorado water law and an interstate Compact agreement. A key requirement 

of River GeoDSS is the accurate simulation of the complex spatiotemporal characteristics of the 

stream-aquifer system. Extensive field data collection activities and modeling studies using 

MODFLOW-SFR2, coupled with the solute transport model RT3D-OTIS, have been carried out 

in upstream and downstream study regions of the LARB for predicting the quantity and quality 

of return flows to the mainstem river and tributaries. Since the compute-intensive nature of 

MODFLOW-SFR2 prevents its direct coupling with River GeoDSS for modeling the entire 

LARB valley, deep neural networks (DNNs) are developed to emulate MODFLOW-SFR2 for 

direct integration into River GeoDSS. 

Utilizing large input-output datasets resulting from numerous MODFLOW-SFR2 model 

executions for a wide range of BMP implementations, a detailed approach of deep learning-

based modeling, training, and validation procedures have been conducted that yield 
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MODFLOW-surrogate DNNs with moderate complexity and low regularization values. With the 

application of the ADAM solver and ReLU activation functions, the DNNs are shown to exhibit 

excellent generalization capability and are extrapolated over the entire LARB valley area. 

Results of utilizing the River GeoDSS-DNN linkage show that the use of a new account in John 

Martin Reservoir for storing replacement water from flows remaining in the river due to BMP 

efficiency improvements would enable judicious releases to meet water rights shortages and to 

augment depleted flows at the Stateline. An important next step is to use the reservoir features of 

River GeoDSS to develop new rules for operating John Martin Reservoir, and perhaps Pueblo 

Reservoir further upstream, for the timely intake of replacement flows and release of 

augmentation flows to keep water rights whole and to assure compliance with the Compact for a 

number of top-ranking BMPs.  
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Chapter 3 Integrated Reservoir and Transbasin Diversion Project Sizing and 

Operations using MODSIM-DSS and Mutation Linear Particle Swarm Optimization: 

Application to the Tripa River Basin, Indonesia2 

Overview. Integrating optimal selection and sizing of water resources system projects with the 

inclusion of realistic system operational models is a challenging problem, particularly with the 

added consideration of transbasin diversion projects. MODSIM-DSS river basin decision support 

system is a generalized tool designed for integrating system design and operations for optimal 

water management. MODSIM-DSS is applied to Tripa River Basin of Indonesia for allocation of 

water supply for municipalities, paddy field irrigation sites, livestock, fisheries, and plantations. 

Although there is significant annual streamflow in the basin, dry season shortages, particularly 

for paddy field irrigation, are a recurring problem. The basin is modeled herein using MODSIM-

DSS and extended with a novel particle swarm optimization (PSO) metaheuristic algorithm 

variant called mutation linear particle swarm optimization (MLPSO). The optimization goal is to 

determine optimal sizing and least-cost design capacities for proposed reservoirs and transbasin 

diversion projects while simultaneously determining optimal system operation strategies that 

minimize the risk of water supply shortages. The MLPSO implementation is shown to converge 

quicker with lower optimal cost compared to the standard PSO algorithm. Although with a 

significantly higher number of particles, standard PSO performs as good as MLPSO. 

 

                                                 
2 This chapter will be submitted as an article to Springer’s Water Resources Management. Authors: Faizal I. W. 

Rohmat and John W. Labadie. 
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3.1 Introduction 

Water is a severely strained natural resource across the globe where numerous stakeholders 

with diverse objectives compete for available water resources in a river basin. In most river 

basins, various institutional and administrative rules and priorities govern water allocation and 

use. The presence of competing uses for available water, high demands during low-flow periods, 

and difficulties in the valuation of benefits can make decision support for river basin systems 

quite complex (Grigg, 2008). For instance, the Republic of Indonesia often experiences severe 

dry season water shortages that are exacerbated by widely varying climatic conditions and 

diverse geographical environments in the country.  

The most recent estimates of total water demand for irrigation, municipal, and industrial uses 

resulting from Indonesia’s population and economic growth are currently at a flow rate of 

approximately 2788 MCM/month (million cubic meters/month) (Fulazzaky, 2014), with 

available surface water during low-flow conditions for normal or average years approximately 

2048 MCM/month. The pattern of climatic variation from year to year can impact water 

availability to an extent that is difficult to predict, especially during the dry season. This 

imbalance in demand-capacity resulting from drought conditions impacts about 250,000 hectares 

or 3% of the total paddy fields in Indonesia, with an average annual loss of rice production 

estimated at 300,000 tons at an approximate average annual cost of USD 61 million (Fulazzaky 

and Sutardi, 2009). Moreover, during the historical extreme drought period that occurred 

between the years 2003 and 2008, 17% of the total rice fields under cultivation was affected by 

the drought (Asian Development Bank, 2016).  

Along with climatic drought conditions in Indonesia, the Asian Development Bank (2016) 

has projected a country-wide 4.31% average annual increase in total water demands between 
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2013 and 2030. Unfortunately, these significant demand increases are concentrated in the three 

main islands of Indonesia (i.e., Java, Sumatra, and Sulawesi), where the report suggests that 

these three islands are the regions where drought hazard is particularly concentrated. These 

pressures on water supply are further aggravated by water allocation conflicts between 

stakeholders, where during times of drought, water right holders with lower priorities may take 

water out of priority due to administrative and monitoring breakdowns. If appropriate measures 

fail to be undertaken, these conditions will likely worsen due to pressures from population and 

economic growth, as well as possible long-term climate change impacts. 

As part of the Woyla-Bateue River Basin System in Aceh Province, Sumatra Island, 

Indonesia, the Tripa watershed (Figure 14) is in many ways representative of typical river basins 

in Indonesia. The basin has multiple and diverse water demands, has suffered severe water 

deficits, but continues to grow economically which increases pressures on available water 

supplies, as reported by the Ministry of Public Works of the Republic of Indonesia (2013). Of 

concern, are the projected increases in municipal and irrigation water demands required to 

support a population growth rate of 3.49%, which is more than twice the national average of 

1.49%. This problem is further aggravated by the unpredictable growth of palm plantation water 

demands in the region, due to limited regional agrarian planning and policy enforcement. To 

accommodate these pressures, the Ministry of Public Works of the Republic of Indonesia (2013) 

explored the potential for construction of new reservoirs, with water budget analyses suggesting 

that the wetter months are potentially sufficient for providing excess flows and releasing water 

for use during dry months. In addition to the possibility of new reservoir construction, the report 

ascertains that water availability conditions in river basins directly adjacent to the Tripa are less 

strained, suggesting the feasibility of possible transbasin diversion project development.  
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It is crucial that appropriate tools are judiciously applied to integrating the determination of 

minimum cost storage/transbasin diversion capacities required, but with consideration of optimal 

system operational strategies for satisfying irrigation, municipal, livestock, and plantation 

demands. An effective decision support system (DSS) for integrated river basin planning and 

operations is needed for address these issues. The DSS would need to employ realistic computer-

aided simulation models with consideration of geospatial databases, legal constraints, 

environmental impacts, and the project objectives. In order to effectively model future water 

allocation in the Tripa River Basin, ad-hoc DSS specifically designed for this river basin only 

could be employed. A better option is use of a generalized DSS that provides a general-purpose 

framework rather than “hard-wired” tools for a particular system. Some of examples of 

generalized river basin DSSs include HEC-ResSim (Klipsch and Hurst, 2007), RiverWare 

(Zagona et al., 2001), and MODSIM (Labadie, 2006). 

River basin simulation models such as these can provide accurate evaluation of given water 

management plans but are not designed to systematically find the best or optimal plans. 

Optimization methods such as linear programming (LP), nonlinear programming (NLP), and 

dynamic programming (DP) can be applied, but often require simplifications in the basin 

modeling to accommodate use of these methods (Labadie, 2004). Considering the nature of the 

complexity of a river basin water allocation modeling, the DSS simulation capability would 

somehow need to be enhanced with optimization capability, especially in exploring alternative 

solutions in addressing the increased reservoir storage capacity needs of the system, along with 

optimal reservoir operational strategies. Among the possible optimization algorithms available, 

metaheuristic methods such as evolutionary algorithms are the most suitable for combining 

optimization and accurate river simulation for fully integrated analysis of both optimal planning 
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and design of the system (e.g., sizing and location of reservoirs and transbasin diversion 

projects), as well as determination of optimal operational policies for the planned system and 

analysis of tradeoffs between construction costs and risk of failing to satisfy demands. The use of 

metaheuristic algorithms allows the application of agent-based optimization approaches where 

the metaheuristic modeling agent sends various planning and operational decisions to a realistic 

simulation model, which then returns information to the agent on the performance of 

planning/operational strategies, providing the basis for the agent to learn the best strategies. This 

type of reinforcement learning approach was successfully applied to the Geum River Basin, 

South Korea by Lee and Labadie (2007).  

 
Figure 14. Location of Tripa River Basin in Woyla-Bateue RBS (Ministry of Public Works of the 

Republic of Indonesia 2013). 

The advancement and affordability of multi-core computing power has contributed to the 

ascendancy of a wide variety of powerful metaheuristic algorithms that, although unable to 

guarantee termination to global optimal solutions, are less likely to become “trapped” in local 
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optima as often occurs with traditional optimization models when applied to complex, 

nonconvex optimization problems (Labadie, 2004). Evolutionary algorithms are a large class of 

biologically inspired metaheuristic optimization methods, which include the classic genetic 

algorithms, simulated annealing, ant colony optimization, differential evolution, and particle 

swarm optimization (Simon, 2013). It is It is with the large number and variety of metaheuristic 

algorithms developed, it is difficult to select what would be consider the best method for a 

particular application. Particle swarm optimization (PSO) is selected for this this study since it 

has been widely adopted in the field of water resources engineering due to its robustness, rapid 

convergence, and relatively lower computing power requirement. PSO has been successfully 

applied by Shourian et al. (2008b) for integrating optimization (PSO) and simulation (MODSIM-

DSS). 

This study explores the possibility of constructing and operating reservoirs in the river basin 

and transbasin diversion projects for conveying flows into the Tripa River basin from adjacent 

river basins with excess available water supplies, to assess the impact of these projects on 

reducing water shortages to help satisfy the future water requirements in the basin. Optimal 

integrated optimal selection and sizing of water resources system projects along with inclusions 

of inclusion of realistic system operations in the optimization. This study utilized MODSIM-DSS 

river basin management model includes a highly efficient network flow optimization model for 

efficiently priority-based water allocation and extends it using a novel variant of PSO called 

mutation linear particle swarm optimization (MLPSO) to minimize construction costs with 

consideration of optimal basin-wide coordinated operations for the planned system, while 

evaluating the frequency of shortages in meeting the Tripa’s future water needs and evaluating 

impacts transbasin diversions on adjacent basins.  
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3.2 Review of River Basin Management Decision Support Systems 

DSS is defined as “a computer information system that provides information in a given 

domain of application using analytical decision models and access to databases, to support a 

decision maker in making decisions effectively in complex and ill-structured tasks" (Klein and 

Methlie 2009). A river basin DSS is a system used to gain a better understanding of conflict 

management of river basin water resources to assist in the resolution of these conflicts between 

stakeholders in the river basin. A river basin management DSS should be able to be used for 

general river basin problem structures and allow evaluation of hydrologic, economic, 

environmental, and institutional/legal impacts as related to alternative development and 

management scenarios (Labadie et al., 2007). There are many examples of river basin DSS’s 

commonly used and implemented worldwide in many river basin systems that incorporate most 

of the desirable attributes of a DSS, namely RIBASIM (Krogt, 2008), Mike Hydro Basin (DHI, 

2017), HEC-ResSim (Klipsch and Hurst, 2007), RiverWare (Zagona et al., 2001), CALSIM 

(Draper et al., 2004), and MODSIM (Labadie, 2006). The DSSs can also be formed in an ad-hoc 

fashion, meaning that the DSS was built for a specific case only and generally require heavy 

modifications to be applicable to the other similar cases. Some of the examples of ad-hoc DSS 

are DSS for optimal reservoir modeling with sediment deposition control (Hadihardaja, 2009), 

DSS for tsunami prediction and mitigation planning (Hadihardaja et al., 2010), DSS for 

modeling water resources development and climate scenarios (Kling et al., 2014), DSS for lake 

water management (Lin et al., 2015), and DSS for participative irrigation water use modeling 

(Douglas et al., 2016). 

MODSIM is a generic river basin management decision support system which is the longest 

continuously maintained river basin management software package currently available, initially 
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conceived in 1978 at Colorado State University. As a comprehensive river basin DSS, MODSIM 

provides both a framework of integrated river basin planning and management, as well as 

assistance in real-time operations and control. Unlike the river basin management models that 

offer internal, but often simplified rainfall-runoff, water quality, consumer usage models, and 

economic valuation methods in their software packages, MODSIM incorporates powerful 

customization capabilities that enable users to attach their preferred modeling tools that are more 

accurately calibrated for their system. The most recent version, MODSIM 8.5.1, which can be 

downloaded as freeware (http://modsim.engr.colostate.edu), is developed under the Microsoft 

.NET Framework using the Visual C#.NET language, with the MODSIM graphical user 

interface developed in Visual Basic.NET. The custom-code editor in MODSIM provides users 

with the ability to customize MODSIM for any specific operating rules, input data, output 

reports, and access to external models running concurrently with MODSIM without having to 

modify the source code. MODSIM is designed as a computer-aided tool for developing improved 

basin-wide and regional strategies for short-term water management, long-term operational 

planning, drought contingency planning, water rights analysis, and resolving conflicts between 

urban, agricultural, and environmental concerns. MODSIM allows free distribution of runtime 

applications without the imposition of distribution costs or licensing requirements (Labadie, 

2010). The graphical user interface (GUI) for MODSIM (Figure 15) allows users to create a river 

basin network structure of node and link objects in the display through simple point and click 

operations, provides spreadsheet-style data entry for all network objects, allows automatic import 

of time series data from database management systems, and automatically executes a robust 

network flow optimization model. Users can import lengthy time series data for streamflows, 

consumptive demands, and environmental flow requirements from .xls, .dbf, .csv file formats or 
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copied from the clipboard. MODSIM objects used in this study, along with a summary of their 

functionality and data requirements, are presented in Table 2.  

Various versions and adaptations of MODSIM have been successfully applied to numerous 

complex river basin systems, including the Geum River River Basin, South Korea (Labadie, 

2004); the San Joaquin River Basin, California (Marques et al., 2006); the Lower Arkansas River 

Basin, Colorado (Triana et al., 2005); the Piracicaba River Basin (12,400 km²), State of Sao 

Paulo, Brazil (Azevedo et al., 2000); the Imperial Irrigation District of San Diego County, 

California (Miller et al., 2005); Upper Snake River Basin, Idaho (Flug et al., 2000; Miller et al., 

2003); Upper and Middle Deschutes Basin and Crooked River Basin (La Marche, 2001); 

Klamath River Basin from Keno, Oregon to Seiad Valley, California (Campbell et al., 2001); 

along with other successful applications in various parts of the world, including the Iskar River 

Basin, Bulgaria (Yancheva and Temelkova, 2006), the Sirvan River Basin, Iran (Shourian et al., 

2008a, 2008b). 
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Table 2. MODSIM objects, possible functionality, and data requirements (Labadie, 2010). 

Icon Functionality Data requirements 

 

 
Reservoir 

(Operation) 
 

• Main-stem and off-stream reservoir 
operations 

• Flood control, conservation pools, 
dead storage 

• Zones for storage balancing in multi-
reservoir systems 

• Elevation-area-capacity tables 

• Maximum, minimum, initial storage 

• Reservoir storage guide-curves 

• Reservoir balance tables 

• Hydraulic outlet capacity tables 

• Net evaporation loss; seepage 

• Inflow forecast (if available) 

 

 
Non-Storage 

 

• Watershed Runoff 

• Tributary inflow 

• Flow confluence and diversion 

• Groundwater return flows 

• Stream depletion from pumping 

• Imported inflow time series data 

• Execution of external rainfall-runoff 
models through custom mode 

 

 

 
Demand 

 

• Consumptive demand 

• Groundwater pumping 

• Stream-aquifer modeling with Glover 
model or USGS stream depletion 
factor (SDF) method 

• Import of demand time series data 

• External consumptive use models 

• Demands/priorities conditioned on 
hydrologic state 

• Water use efficiency (time variable) 

• Aquifer parameters; pumping 
capacity 

 

 
Flow-Thru 

 

• Instream flow requirements, 
environmental, ecological, or 
navigation purposes 

• Non-consumptive demands 

• Gaging station for model calibration 

• Time series of instream flow 
requirements 

• Flow-through demands and 
priorities vary with hydrologic 
conditions 

• Measured flow data for calibration 

 
Network-

Sink 

• River basin outlet (multiple outlets for 
several basins allowed) 

 

 
Link 

• Channel losses 

• Maximum and minimum flow 

• Time series of maximum capacities 

• Link costs and benefits 
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Figure 15. MODSIM GUI showing Tripa network. 

3.3 Mutation Linear Particle Swarm Optimization 

Particle swarm optimization is a relatively new optimization method; first instituted in 1995, 

as a method that initially inspired by social behavior mechanism towards a common goal 

(Eberhart and Kennedy, 1995). PSO has gained widespread appeal among researchers and has 

been shown to offer excellent performance across a wide range of application domains. This is 

mainly driven by the rapid convergence of PSO. The current PSO optimization procedure widely 

used, however, resembles more of how swarm intelligence works. Take the example of a group 

of beach birds flying over a shallow ocean finding the best fishing location. The birds fly over 

the sea and record the "value" of its current position about the possibility of getting food. The 

birds then will communicate with each other, share their best, and move together towards the 

group's best. With each bird's position update influenced by its personal best record, social best, 

and its inertia. In PSO, the birds resemble optimization particles, best fishing location resembles 

the global optimum, while inertia, individual learning, and social learning coefficients are 

essential parameters in the optimization. 
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The general formulation of the original PSO formulated by Kennedy and Eberhart (1995) 

defines a swarm-based metaheuristic optimization of population size 𝑛 > 1. Each particle in the 

swarm is defined the by d-dimensional 𝒙, 𝒗, and 𝒑 vectors, where the variables represents its 

current position, direction and movement, and personally recorded best position, respectively. 

The optimization tries to find the best position vector 𝒙∗ defined as: 

find 𝒙∗ ∈ 𝑆 ⊂ ℝ𝑑  such that ∀𝒙 ∈ 𝑆, 𝑓(𝒙∗) ≤ 𝑓(𝒙), 
where 𝑆 is the 𝑑-dimensional search space and a subset of ℝ𝑑 Euclidean space (Bonyadi and 

Michalewicz, 2017). The particles’ vectors are updated every iteration 𝑡 for each particle 𝑖: 
𝒗𝑡+1𝑖 = 𝜂(𝒙𝑡𝑖 , 𝒗𝑡𝑖 , 𝒑𝑡𝑖 , 𝑁𝑡𝑖) 
𝒙𝑡+1𝑖 = 𝜉(𝒙𝑡𝑖 , 𝒗𝑡+1𝑖 ) 

𝒑𝑡+1𝑖 = {𝒙𝑡+1𝑖 𝑖𝑓 𝑓(𝒙𝑡+1𝑖 ) < 𝑓(𝒑𝑡𝑖) 𝑎𝑛𝑑 𝒙𝑡+1𝑖 ∈ 𝑆𝒑𝑡𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where Nti is the set of particle neighborhood or topology system that contributes to the 

calculation of velocity rule of particle 𝑖 at timestep 𝑡. The topology examples can be used are 

global-best topology, ring topology, wheel topology, and pyramid topology, where each of them 

has some advantages and disadvantages. 

Functions 𝜂(∙) and 𝜉(∙) in the update functions are velocity update and position update rule, 

respectively. In the original PSO, these functions defined as: 

𝒗𝑡+1𝑖 = 𝒗𝑡𝑖 + 𝜑1(𝒑𝑡𝑖 − 𝒙𝑡𝑖) + 𝜑2(𝒈𝑡𝑖 − 𝒙𝑡𝑖) 
𝒙𝑡+1𝑖 = 𝒙𝑡𝑖 + 𝒗𝑡+1𝑖  
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where 𝜑1 is the personal learning coefficient, 𝜑2 is the neighborhood learning coefficient, and 𝒈𝑡𝑖  
is the best particle position of 𝑁𝑡𝑖 neighbor set or topology. This study uses the recommended 

PSO parameters and number of iterations according to Pedersen (2010). The inertia term ω is 

introduced to control the influence of the previous velocity vector in the calculation of the 

updated velocity vector (Shi and Eberhart, 1998), while 𝑅1𝑡𝑖  and 𝑅2𝑡𝑖  𝑑 × 𝑑 diagonal random 

matrices also introduced to help swarm’s exploration (Clerc, 2006; Montes de Oca et al., 2009), 

resulting in: 

𝒗𝑡+1𝑖 = 𝜔𝒗𝑡𝑖 + 𝜑1𝑅1𝑡𝑖 (𝒑𝑡𝑖 − 𝒙𝑡𝑖) + 𝜑2𝑅2𝑡𝑖 (𝒈𝑡𝑖 − 𝒙𝑡𝑖) 
which is called the standard PSO (SPSO). 

The tricky problem with SPSO, however, is the stagnation issue, where swarm converges 

into non-quality solution. This issue relates to the characteristics of guaranteed convergence of 

the original PSO and SPSO, where the nature of the algorithm guarantees swarm to convergence 

to a solution and unable to further explore the search space, even though there are better 

solutions available (van den Bergh and Engelbrecht 2003). The example of this case is when the 

swarm converges to either a local optima or saddle points. Bonyadi and Michalewicz (2015) 

introduced mutation linear particle swarm optimization (MLPSO), which one of the design aim 

is to tackle the stagnation issue. MLPSO uses mutation operator which is applied to the velocity 

update rule of SPSO. The mutation operator is defined as: 

𝒗𝑡+1𝑖∗ = 𝒗𝑡+1𝑖 + 𝑁(0, 𝝈) 
where 𝑁 is the multivariate normal distribution and 𝝈 is the vector of variances. The values of 𝝈 

calculated as: 
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∀𝑗 ∈ {1, … , 𝑑}, 𝜎𝑖,𝑗 = {𝑐‖𝑁(0, 𝜸)‖ if 0 ≤ ‖𝒗𝑡+1𝑖 ‖ < 𝛾𝑡𝑖,𝑗𝑐‖𝒗𝑡+1𝑖 ‖ otherwise  

where ‖∙‖ is the norm operator, 𝑐 is a constant, set equal to 1 𝑑1.5⁄ , 𝛾𝑡𝑖,𝑗 is a small real number of 

particle 𝑖 in the 𝑗-th dimension, and 𝜸 is a d-dimensional 𝛾 vector, which basically control the 

exploratory nature of a particle and is determined by: 

𝛾𝑡+1𝑖 = {  
  2𝛾𝑡𝑖 if 𝑠𝑡𝑖 > 𝑠𝑚𝑖𝑛 𝑎𝑛𝑑 𝛾𝑡𝑖 < 𝛾𝑚𝑎𝑥  0.5𝛾𝑡𝑖 if 𝑓𝑚𝑖𝑛 < 𝑓𝑡𝑖 < 𝑓𝑚𝑎𝑥  and ‖𝒗𝑡𝑖‖ < 𝛾𝑡𝑖2𝛾𝑡𝑖 if 𝑓𝑡𝑖 > 𝑓𝑚𝑎𝑥  and 𝛾𝑡𝑖 < 𝛾𝑚𝑎𝑥 and mod(𝑡, 𝑞) = 0𝛾𝑡𝑖 otherwise  

The values 𝑠𝑡𝑖 and 𝑓𝑡𝑖 are the number of successive iterations at current iteration 𝑡 where the 

personal best has been successfully updated or failed to update, respectively. The other 

parameters, 𝑠𝑚𝑖𝑛 is the minimum successive update threshold, usually set to 10, 𝑓𝑚𝑖𝑛 is the 

minimum update failure threshold, usually set to 10 as well, 𝑓𝑚𝑎𝑥 is the maximum update failure 

threshold, set to 200, 𝑞 is set to 50, and 𝛾0𝑖  are all set to 1 (Bonyadi and Michalewicz, 2015). 

Clerc and Kennedy (2002) also pointed out that PSO has the problem of undesirable swarm 

explosion, where the particles moving towards infinity. This swarm explosion still presents in 

MLPSO method, and Bonyadi and Michalewicz (2015) introduced epsilon constraint handling to 

prevent such problem (epsilon-MLPSO or EMLPSO) in the same paper they introduced 

MLPSO. However, this study does not utilize such constraint handling, instead a velocity 

limiting function is used, which is defined as: 

∀𝑗 ∈ {1,… , 𝑑}      𝑣𝑡𝑖,𝑗∗ = max(min(𝑣𝑡𝑖,𝑗, 𝑣𝑚𝑎𝑥) , 𝑣𝑚𝑖𝑛) 
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where 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are lower and upper velocity limit bounds, respectively, and 𝑣𝑡𝑖,𝑗 is the 

velocity of particle 𝑖 in iteration 𝑡 in the 𝑗-th dimension. The starred velocity term denoted the 

limited velocity. 

3.4 Study Area Description 

Tripa River Basin is located in Nagan Raya, Central Aceh, Aceh Barat Daya, and Gayo Lues 

Regencies in the Aceh Province located in the northwestern tip of Sumatra Island. Tripa River 

Basin is part of Woyla-Bateue River Basin System in the Aceh Province in Indonesia (Figure 14) 

comprises an area of 344,500 hectares. The population in the basin was 73,145 in 2011 and has 

been growing at a rate of 3.49%, which is more than twice the national average of 1.49%. The 

population is projected to grow to 155,000 in 2033 (Ministry of Public Works of the Republic of 

Indonesia, 2013). Settlements in Tripa Basin are concentrated in two locations: Blangkajeren in 

the upstream region of the basin, and Darulmakmue in the downstream. Tripa River supplies 

water to meet a wide range of demands including domestic supply, irrigated agriculture, 

livestock and fisheries, plantations, and other minor needs such as industrial and electric power. 

The amount of irrigated area in Tripa River Basin was 32,500 hectares in 2011 and is projected 

to reach 49,500 hectares in 2033 (Ministry of Public Works of the Republic of Indonesia, 2007). 

The plantation area was 9,900 hectares in 2011 and is projected to have minimal growth. The 

number of cattle was 125,000 in 2011 and is projected to have minimal growth as well (Ministry 

of Public Works of the Republic of Indonesia, 2013). 

Annual rainfall in the region is 3,900 mm with monthly fluctuations due to the prevailing 

monsoon climate (Statistics of Aceh Province, 2013). Rice paddy field irrigation occurs during 

most months with dry crops such as corn, onions, and beans are grown in the drier months. 

Paddy is the preferred crop since rice is the staple food in Indonesia, and because it is more 
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profitable for the farmers. However, approximately 70-80% of raw water use in Indonesia is for 

paddy field irrigation (Serageldin, 1995), with daily requirement varying from 1,200 to 2,800 

mm per year (Pasaribu et al., 2013). This makes the reliable delivery of water supply for paddy 

fields a challenging water allocation, since irrigated rice fields require a significant amount of 

water, while being a staple food for Indonesia (Taylor, 2003) and is one of Indonesia’s main 

development priorities (Ministry of Agriculture of the Republic of Indonesia, 2013). Another 

source of significant water allocation problem is the palm plantations in the river basin, owned 

by several multinational companies with shareholders from Malaysia, China, and Indonesia. 

Aside from the significant issue on deforestation and wildlife damage, palm plantations also 

possess high water requirements; i.e., 1,500-1,700 mm per year (Pasaribu et al., 2013). With the 

presence of the palm plantations and their corresponding high water demands, Tripa River Basin 

is the most vulnerable river basin in the Woyla-Bateue River Basin System (Ministry of Public 

Works of the Republic of Indonesia, 2013). On the other hand, the study also reveals that there is 

potential for the development of water resources in the basin, including water storage in the form 

of new reservoirs, with evidence that there are wet months to store excess flows and release the 

water for use during the dry months (Figure 16). 

3.5 Methodology 

The performed analysis is divided into following steps: (1) data gathering and synthesis, (2) 

MODSIM network formulation, (3) MLPSO formulation, and (4) results discussion. 



62 
 

 

  

Figure 16. Tripa basin water budget condition: (top) monthly inflow, current demand and future demand, 

(bottom-left) demand broken down into monthly component, (bottom-right) pie chart of the average 

demand components. 

3.5.1 Data Gathering and Synthesis 

Water demands (irrigation, livestock, and municipal) and short-period inflow data are already 

available from the water resources management framework report. However, for a better 

foundation of study, an extended rainfall dataset is collected for further being used as the source 

for synthetic flow generation. Since the local government has minimum availability and 

completeness of rainfall gauges dataset, the extended rainfall data is collected from the National 

Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (Dile 

and Srinivasan, 2014; Fuka et al., 2014). The river basin planning report provides river 

schematics and location of the demand nodes, which will be used for the basis in determining 

interior flow location in the synthetic streamflow generation and the formulation of MODSIM 
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network (Figure 15). The data acquired must be analyzed and processed to be able to be input 

into the model, including performing preliminary analysis to monthly inflow and demand 

variabilities. This analysis includes synthetic flow generation using a calibrated HEC-HMS 

model (US Army Corps of Engineers, 2015). The resulted synthetic streamflow data is a 31-year 

monthly data from 1980 to 2010 calibrated to the available observed data, which then used as 

inflow data to the MODSIM network. 

3.5.2 MODSIM Network Formulation 

In the application of the MODSIM model, two reservoirs and two transbasin diversions were 

constructed. Each reservoir's target and transbasin discharge initially set zero. The MODSIM run 

is set in conditional run mode, meaning that it will automatically distinguish hydrologic 

condition for each time step, with predetermined internal MODSIM hydrologic state boundaries. 

The hydrologic states defined are dry, average, and wet hydrologic states. By running in this 

conditional run mode, different reservoir targets are required for respective hydrologic states. In 

the constructed MODSIM network, the demand nodes constitute two municipalities, seven paddy 

irrigation units, one livestock area and one palm plantation in the river basin which depend on 

water supply from Tripa River. The paddy fields require 30% of its diverted water returned to the 

river during the wet season of September to January. This unique modeling requirement has been 

taken care in MODSIM by the implementation of special demand and flow-through composite 

node construction.  

Conventional paddy field irrigation has different irrigation mechanisms as compared to the 

general ones, e.g., wheat plantation or other crops. Irrigated rice fields perform flooding and 

draining of standing water; therefore, some of the diverted water return to the river in the form of 

runoff that flows into drainage canals. Although groundwater return flows can occur from paddy 
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field irrigation, the amount is not significant compared to surface return flows. In its 

implementation in MODSIM, the configuration of demand nodes for paddy field irrigation 

differs from the standard "consumptive demand node” object in MODSIM (Table 2 row 3). The 

modeling of paddy field irrigation demands requires both consumptive and return flow 

components as a composite of a “Consumptive demand node” (Table 2, row 3) and a “Flow-Thru 

demand node” (Table 2, row 4). The composite configuration combines these two demand nodes 

by diverting water from an intake point on the river and then returns a portion of it to a 

downstream non-storage river node. As an example, the nonstorage node NS5 diverts water to 

the composite paddy field configuration IR3-FT3, where IR3 consumes a more significant 

portion of the diverted water and FT3 flushes the remainder to the downstream return node of 

NS4 (Figure 17). The consumptive and non-consumptive demand nodes are assigned the same 

priority and represent the total demand for paddy field irrigation. 

 
Figure 17. Paddy Field demand node configuration for IR3-FT3 paddy field demand. 

A baseline case run was performed with the assumption of zero capacities of all the proposed 

projects, which provides an estimate of the shortages that would occur under the projected 2033 

demand scenarios. The projected monthly demand data are assumed to recur annually (Figure 

16) over the simulation period with 47% of the demand is for the combined water requirements 
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of the irrigation sites, while the high demand of the plantation site (46.6%) comes in second. 

Compared to irrigation water needs, the municipalities, livestock, and plantation have a constant 

value throughout the year. Various priorities were assigned to the demand nodes based on the 

governing rules of Indonesia. Priority water allocations in Indonesia is specified in Act No. 11 of 

1974 of the Republic of Indonesia are as follows: Priority (A) for drinking water, household, 

defense and national security, worship, urban needs; Priority (B) for agriculture, the agricultural 

community and other agricultural enterprises, farms, plantations, fisheries; and Priorities (C) for 

the energy, industrial, mining, water traffic, and recreation (Republic of Indonesia, 1974; 

Ministry of Public Works of the Republic of Indonesia, 2003). Priority numbers were assigned to 

each demand node following the priority rankings established by the Republic of Indonesia. The 

two municipalities receive the highest priority since they are considered the class of Priority A. 

The seven irrigation sites and the livestock get the second highest priority, while the plantation 

site, as a mix of agriculture (Priority B) and industry (Priority C), receives the 3rd highest 

ranking. The proposed reservoirs considered to have the least priority and are therefore assigned 

the lowest ranking in the allocation scheme. The formulated Tripa MODSIM network is 

presented in Figure 15, with the forecast node is an internal auxiliary node used by the reservoir 

nodes in determining what hydrologic states they were in on each timestep. 

3.5.3 Particle Swarm Optimization Implementation 

From the established MODSIM network formulation, there are 12 transbasin flow rates to be 

determined per month and 12 reservoir target values to be determined per month per 

hydrological condition. With two transbasin diversions, two planned reservoirs, and three 

hydrological conditions, there are at least 96 values to be determined. The value set is then added 

with 24 MODSIM intrinsic values, i.e., 12 monthly boundary values between wet and medium 



66 
 

hydrological conditions, and between medium and dry. All 120 of these values are monthly 

values that are assumed to be annually recurring for the 31-year simulation period. This 120 

number of variables is taken as the number of decision dimension for the PSO variables. Based 

on the configurations suggested by Pedersen (Pedersen 2010), the PSO parameters selected were 𝜔 = −0.2089 (inertia), 𝜙1 = −0.0787 (individual learning), 𝜙2 = 3.7637 (social learning), 

and the particle population of 161. The runs taken were both SPSO and MLPSO, with MLPSO 

parameters taken were 𝑠𝑚𝑎𝑥  and 𝑓𝑚𝑖𝑛 set to 10, 𝑓𝑚𝑎𝑥 set to 200, 𝑞 set to 50, and 𝛾0𝑖  are set to 1. 

The cost minimization function used in this study formulated as: 

minimize 𝑐𝑜𝑠𝑡 𝐹 = 𝑇1 + 𝑇2 + 𝑅1 + 𝑅2 + 𝑃 

𝑇𝑖 = {𝑎𝑡 ×max 𝑡𝑖𝑑 + 𝑏𝑡 𝑖𝑓 max 𝑡𝑖𝑑 > 00 𝑖𝑓max 𝑡𝑖𝑑 = 0 𝑖 = 1,2 𝑑 = 1,2, … ,12 

𝑅𝑗 = {𝑎𝑟 ×max 𝑟𝑖𝑑ℎ + 𝑏𝑟 𝑖𝑓 max 𝑟𝑖𝑑ℎ > 00 𝑖𝑓max 𝑟𝑖𝑑ℎ = 0 𝑗 = 1,2 𝑑 = 1,… ,12 ℎ = 𝑑𝑟𝑦, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑤𝑒𝑡 
𝑃 = 𝑐1 ×∑∑𝑡𝑖𝑑12

𝑑=1
2
𝑖=1 + 𝑐2 × 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 

where 𝑇𝑖 and 𝑅𝑗 are the construction cost of transbasin 𝑖 and reservoir 𝑗, respectively. Variable 𝑡𝑖𝑑  

is the transbasin diversion flow for transbasin 𝑖 at month 𝑑 in m³/s, 𝑟𝑗𝑑ℎ is the reservoir storage of 

reservoir 𝑗 at month 𝑑 at hydrologic state ℎ in million m³. Parameters 𝑎𝑡, 𝑏𝑡 and 𝑎𝑟, 𝑏𝑟 are the 

slope and intersect of the cost-versus-size of transbasin projects and reservoir projects, 

respectively (Figure 18). The last component of the cost function is 𝑃, which is the penalty term 

that is based on transbasin diversion flow 𝑡𝑖𝑑  and the shortage occurring in the system, where 𝑐1, 𝑐2 is the penalty cost constants used in the calculation. 
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Figure 18. Project cost versus capacity of transbasin projects in Indonesia (left), project cost versus 

capacity of reservoir projects in Indonesia (right). 

  

Figure 19. Baseline scenario (left) average monthly shortages over the simulation period (right) average 

monthly shortages grouped by month. 

3.6 Results and Discussion 

Figure 19 shows the monthly shortage at the baseline scenario, where the transbasin 

diversions and reservoirs were practically do not exist. The figure shows that, without any 

intervention, the model indicates that the future Tripa watershed is subject to a risk of frequent 

shortage as frequent as 55% with an average value of 30.20 m³/s. This result reemphasizes the 

importance of water management measure in overcoming this severe condition. The average 

monthly shortage at the baseline run shows that the shortages are concentrated between June and 

September, which line with the dry season of the region. Figure 20 shows the comparison of 
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optimization cost over iterations for MLPSO and the original PSO with different swarm size.  It 

is shown that MLPSO generally converges faster than PSO, with lower optimization cost. 

Figure 21 shows the optimization cost and shortage frequency over iterations. The 

optimization cost rapid decrease reflects the important general property of PSO, i.e., rapid 

convergence. With high penalty imposed on the total shortage, a swarm particle is forced to get 

out of the high penalty zone as fast as possible to reach the zone of minimum shortage events, 

which is reflected by the rapid decline of shortage frequency values (Figure 21). When broken 

down to separate construction cost from the total optimization cost, Figure 22 shows a rapid 

decline of construction cost in the first iteration and a big jump-down in the average shortage, 

followed by an ever-decreasing average shortage but with slightly increasing construction cost. 

In this phase, the optimization swarm tried to compromise construction cost first move away 

from the shortage zone. The process then continued with the swarm minimizes the construction 

cost while staying at the no-shortage zone. The swarm then stabilized at a point where the 

average shortage and shortage frequency are 0, and the total construction zone was around 684 

million dollars. Figure 23 shows the change in reservoir capacities and the combined average 

diversion over iterations. They follow the same pattern as Figure 24, where they jumped down in 

the first iteration, increased for a while, decreased, and stabilized. The final states of the swarm 

revealed in Figure 24, Figure 25, and Figure 26. Figure 24 shows the pattern of both transbasin 

diversions to aid Tripa Basin in nullifying its shortage. The average flows are 49.14 m³/s and 

43.92 m³/s, while the maximum flows are 64.29 m³/s and 58.06 m³/s, for transbasin 1 and 

transbasin 2, respectively. Figure 25 and Figure 26 show the operation rule in multiple 

hydrologic conditions for reservoir 1 and reservoir 2, respectively. The optimized capacities 

resulted are 235 million m³ and 34 million m³ for reservoir 1 and 2, respectively. 
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There is a concern whether such recommended values are available to be diverted from the 

adjacent basins. Even if hydrologically the water and funding are available, diverting water from 

a basin to another would require enormous environmental and political impact. Based on this 

issue, Figure 27 was formulated. It shows the tradeoff between the combined construction cost 

and the frequency of shortage. The points plotted on the chart are the collection of swarm 

particle search along the search domain over iterations, plotted in the said dimensions only. The 

plot shows that for a combined cost, multiple shortage frequencies could result due to the 

different operational pattern in the transbasin and reservoirs. Aside from showing that, the plot 

shows that there is a lower 95% confidence boundary. This boundary which can be taken as the 

pareto optimal front and be used for determining the tradeoff between the said dimensions, 

should the construction cost be a significant concern in overcoming the shortage problem, which 

then relates to the environmental or political impacts imposed by the diversion. 
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Figure 20. Comparison of optimization cost over iterations for MLPSO and original PSO with different 

swarm size. 

 

Figure 21. Optimization cost and shortage frequency over iterations. 
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Figure 22. Construction cost and average shortage value over iterations. 

 

Figure 23. Reservoir capacities and combined average diversion over iterations. 

 

Figure 24. Monthly design transbasin diversion values. 
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Figure 25. Monthly reservoir 1 design target storages for various hydrologic states. 

 

Figure 26. Monthly reservoir 2 design target storages for various hydrologic states. 
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Figure 27. Shortage frequency versus total construction cost tradeoff ensemble and its lower 95% 

confidence boundary. 

3.7 Chapter Summary and Conclusions 

Water shortages are a significant concern in Tripa River Basin in Indonesia. Even though 

there is adequate annual inflow in the river basin, seasonal variations in both inflows and 

demands result in significant shortages in meeting future projected needs. The study indicates 

that Tripa River Basin is subject to a 55% shortage frequency with an average of 30.20 m³/s. 

There is a need to estimate the design capacity of a proposed reservoir for the catchment to 

reduce shortages in conjunction with the effects of transbasin diversions into the basin. The 

model of this optimization problem is solved using MODSIM, a generic river basin management 

decision support system. The MODSIM model was then extended using mutation linear particle 

swarm optimization (MLPSO) to minimize the construction cost and to optimize operating rule, 

as well as the impacts to the adjacent basins and the frequency of shortage in meeting the basin's 

future needs. Over the iterations, the swarm shows rapid convergence in minimizing the 

optimization cost, resulting in decreased construction cost, nullified shortage, and optimized 

operation rule. The swarm then stabilized at a point where the average shortage and shortage 

frequency are 0; the total construction zone was around 684 million dollars; maximum transbasin 

flows are 64.29 m³/s and 58.06 m³/s for transbasin 1 and transbasin 2, respectively; and the 

capacities of 235 million m³ and 34 million m³ for reservoir 1 and 2, respectively. In addressing 

the concern whether such recommended values are hydrologically, environmentally, and 

politically available to be diverted from the adjacent basins, a chart was produced showing the 

tradeoff between total diverted transbasin water and shortage frequencies. The same approach 

then produced a tradeoff chart between construction cost and shortage frequency, should the 

construction cost be a significant concern in overcoming the shortage problem. 
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There are many opportunities for further studies on water allocation optimization in the Tripa 

River Basin or similar river basins in Indonesia. Future work should consider the impacts of 

groundwater return flows to the river resulting from irrigation applications, with the possibility 

of reducing shortages in the river system. Since the location of the proposed reservoirs used in 

this study is based on previous studies, attention should be given to modeling different reservoir 

placements, both in number and in locations. Considerations of different arrangements of 

reservoirs may lead to more efficient solutions. Another study will be to model the river basin 

network by involving adjacent river basins since this study includes consideration of transbasin 

diversions from adjoining river basins. This further study is necessary because the possibility of 

currently proposed transbasin diversion can be further established, along with water management 

practices that need to be considered in each river basin. Further study on the economic analysis 

of the implementation of these water management practices could be valuable, whether the 

benefits generated from these projects would exceed the costs of building them. These 

recommendations are left for future works. 
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Chapter 4 Fuzzy Mutation Linear Particle Swarm Optimization of Reservoir 

Operations to Support Improved Water Management in an Irrigated River Basin3 

Overview. A river basin planning and analysis tool is used to explore effective mitigation of the 

side effects of best management practices (BMPs) which are designed to in ensure sustainability 

and productivity of irrigation areas in the Lower Arkansas River Basin (LARB) of Colorado. 

Benefits of these BMPs are offset by their alteration of downstream flow patterns which threaten 

compliance with water rights and the Arkansas River Compact between Colorado and Kansas. 

Potential compensation for these consequences is possible by altering the operation of John 

Martin Reservoir located in the center of the basin. Finding optimal reservoir operational 

strategies, however, is a challenging endeavor since operational decisions must be determined 

over the course of more than 500 weekly time steps, in conjunction with the complex 

characteristics of the highly dynamic and spatially distributed stream-aquifer-system of the 

LARB. A novel metaheuristic approach called Mutation Linear Particle Swarm Optimization 

(MLPSO) combined with fuzzy logic is applied. MLPSO employs a linear mutation method to 

ensure adequate coverage of the feasible region of the decision variables, while fuzzy logic 

implementation provides a solution to the high dimensionality of the optimization problem as 

well as generating interpretable policy. The results are then evaluated with the legal 

requirements, which show that Fuzzy-MLPSO is able to generate John Martin Reservoir 

operational policy that fulfills water right demands and satisfies the Arkansas River Compact. 

   

                                                 
3 This chapter will be submitted as an article to Elsevier’s Journal of Hydrology. Authors: Faizal I. W. Rohmat, 

John W. Labadie, and Timothy K. Gates. 
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4.1 Introduction 

The lower Arkansas River Basin (LARB) is an agricultural river basin located in the 

southeastern part of the State of Colorado. It is home to approximately 14,000 irrigated fields 

covering a total of about 110,000 ha supplied by 25 canals that divert water from the Arkansas 

River and its tributaries, and by thousands of alluvial groundwater wells. Most of the fields are 

irrigated using surface-irrigation methods with only about 20% using sprinklers and drip 

irrigation (Osborn et al., 2017). The LARB has been long known for its valuable agricultural 

production, with the introduction of extensive irrigation dating back to the 19th century. Over the 

years, however, the challenges of a shallow groundwater table, salinization, and nutrient and 

trace element pollution have emerged (Gates et al., 2016).  

To answer the need for lowering environmental pollution while ensuring sustainability and 

productivity of irrigated lands in the LARB, prior studies proposed best management practices 

(BMPs) that have the potential to reduce pollution while conserving water in the basin (Bailey et 

al., 2013a, 2015; Qurban, 2018; Shultz et al., 2018a, 2018b). The BMPs include combinations of 

incremental levels of reduced irrigation water application, reduced canal seepage, lease-

fallowing of irrigated fields, reduced fertilizer application, and improved riparian buffers. In the 

studies, BMPs were formulated and modeled using groundwater, stream, and coupled 

groundwater-stream flow and reactive solute transport models, primarily based upon 

MODFLOW-SFR2 (Niswonger and Prudic, 2010), UZF-RT3D (Clement et al., 1998; Clement 

and Johnson, 2002; Bailey et al., 2013b), and OTIS (Runkel, 1998). These models are well-

calibrated and applied to two representative LARB regions called the upstream study region 

(USR) and downstream study region (DSR) located along stretches of the central alluvial valley 

upstream and downstream of John Martin Reservoir, respectively (Figure 28). The BMP 
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simulations indicate prospective lowering of the shallow saline water table, reductions in 

selenium (Se) and nitrate (NO3) concentrations, and more efficient water use.  

Although such BMP implementations are simulated to be advantageous, complex legal 

constraints imposed in the basin, i.e. the prior appropriation water rights system and the 

Arkansas River Compact between Colorado and Kansas (Colorado Revised Statutes, 1949), 

hinder their adoption. These laws prohibit changes to the system that would alter the irrigation 

return flow pattern to the stream network, thereby threatening to violate both Colorado water 

rights and the Compact. To further understand the implications of these BMP side effects at the 

basin-scale, a decision support system (DSS) modeling tool named River GeoDSS has been 

developed (Triana et al., 2010a) and further refined (Rohmat et al., 2019). The DSS employs the 

GeoMODSIM model as its stream routing and water rights component with deep neural network 

(DNN) models incorporated to emulate MODFLOW-SFR2 simulations of stream-aquifer 

interaction (Figure 29) and is wrapped with a georeferenced ArcMap extension (Environmental 

Systems Research Institute, 2011). The basin-wide DSS has demonstrated that 75 alternative 

BMP scenarios would indeed significantly alter Arkansas River flow patterns, with detrimental 

impacts on water rights and Colorado-Kansas Stateline flows. Figure 30 shows an example of 

simulated flow changes at the Stateline relative to the baseline historical condition resulting from 

the implementation of a BMP entailing lease-fallowing of 30% of the irrigated valley lands in the 

LARB (LF30). Lease-fallowing arrangements remove irrigation water applications for three out 

of ten years to allow transfer of the consumptive use portion to municipalities. Rohmat et al 

(2019) demonstrated that all BMPs currently under consideration would, to varying degrees, 

cause shortages in fulfilling water rights demands and result in Stateline flow deficits. Altering 

John Martin Reservoir operation, which is located right in the middle of the basin (Figure 28), by 
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setting up and managing a new storage account could be the answer to this constraint. Triana 

(2008) demonstrated that alterations to the reservoir’s operational policy offers a potential 

solution to the Stateline flow problem. Triana (2008) used a tedious trial-and-error approach to 

examine alternative reservoir operations. To discover a generalizable reservoir operation policy, 

a more formalized method is needed. 

 

Figure 28. The Lower Arkansas River Basin showing the USR and DSR, with John Martin Reservoir 

emphasized. 

A variant of particle swarm optimization (PSO) (Eberhart and Kennedy, 1995), is proposed 

in this study as an optimization method to find a generalizable policy for a new storage account 

in John Martin Reservoir. PSO algorithm is inspired by social behavior mechanism of an insect 

swarm or a collection of particles towards a common goal. Each particle in the swarm moves 

within the search space based on the swarm’s global knowledge of the objective, individual 

particle’s memory and inertia, as well as stochastic exploration. Although it does not guarantee 
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an exact solution, PSO provides a near-global optimal solution to the problem and has been 

widely adopted by researchers for its rapid convergence and robustness. In this study, a recently-

introduced variant of PSO called mutation linear particle optimization (MLPSO) is used. 

MLPSO was proposed by Bondyadi and Michalewicz (2015) and is developed for PSO 

optimization set within a continuous space, where the feasible region might be nonconvex, a 

common characteristic of realistic problems like the one presented here. MLPSO is classified as 

a hybrid PSO, complementing the drawbacks of a standard PSO (Shi and Eberhart, 1998) 

methodology with added functionalities. MLPSO employs mutation that is linear in the velocity 

update term to overcome the bounded search space and line search issues present in standard 

PSO (Bonyadi et al., 2013). 

 

Figure 29. River GeoDSS screenshot and its components. 
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Figure 30. Example simulated flow changes at the Stateline relative to the historical condition caused by 

the CS60 BMP. 

A major hinderance to the optimization of realistic systems, however, is the high 

dimensionality of the search space. As the number of dimensions increases, the chances of 

having saddle points in the optimization space also increases. Those saddle points are surrounded 

by “high error plateaus that can dramatically slow down the learning process” and the probability 

of the occurrence of saddle points in an optimization search space increases exponentially with 

the increase of the dimensionality of the problem (Dauphin et al., 2014). Thus, high-dimensional 

optimization is very prone to stagnation, where this study of finding an optimal John Martin 

Reservoir operational policy is no exception. To overcome the “curse of dimensionality” 

problem, a fuzzy logic approach added to MLPSO is proposed. This hybridization of fuzzy logic 

with metaheuristic methods has been successfully demonstrated in similar setups, e.g., 

stormwater reservoir operation using a genetic algorithm (GA) and fuzzy logic (Wan et al., 2006; 

Labadie and Wan, 2010; Labadie et al., 2012); multiswarm PSO for multi-reservoir operation 

(Ostadrahimi et al., 2012); and optimal-control theory using hybridization of fuzzy logic, PSO, 

and Q-learning (Hein et al., 2017). These studies have demonstrated fuzzy hybridization with 
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metaheuristic methods to be effective in not only handling the “curse of dimensionality” but also 

generating interpretable policies. 

This paper presents the methodology applied in finding an optimal policy for employing 

expanded storage and releases from John Martin Reservoir to mitigate the detrimental side 

effects of otherwise beneficial BMP implementation. The MLPSO and fuzzy logic methods are 

reviewed, and the hybrid optimization procedure is described. Results and discussion follow, 

with consideration of the need to eliminate shortages in meeting water rights demands, but with 

focus given to comparing the flow at the Colorado-Kansas Stateline generated by the altered 

John Martin Reservoir policy with the flows generated by the Colorado-Kansas Hydrologic-

Institutional Model (H-I) which is used to administer compliance with the Compact. 

4.2 Methodology 

4.2.1 Review of PSO and MLPSO 

Unconstrained minimization problem formulated as: 

find 𝒙 ∈ 𝑆 ⊂ ℝ𝑑  such that ∀𝒚 ∈ 𝑆, 𝑓(𝒙) ≤ 𝑓(𝒚), 
where 𝑆 is the 𝑑-dimensional search space and a subset of ℝ𝑑 Euclidean space. Both 𝒙 and 𝒚 

are d-dimensional as well, and 𝑓(∙) is the objective function (Bonyadi and Michalewicz, 2017). 

The original PSO formulated by Kennedy and Eberhart (1995) as a swarm-based metaheuristic 

optimization of n>1 particles. Each particle is defined by d-dimensional position (𝒙), velocity 

(𝒗), and personal best (𝒑) vectors, where each variable respectively represents its current 

position, direction and movement, and personally recorded best position. All these vectors are 

updated every iteration 𝑡 for each particle 𝑖 (Bonyadi and Michalewicz, 2017): 

𝒗𝑡+1𝑖 = 𝜂(𝒙𝑡𝑖 , 𝒗𝑡𝑖 , 𝒑𝑡𝑖 , 𝑁𝑡𝑖) 
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𝒙𝑡+1𝑖 = 𝜉(𝒙𝑡𝑖 , 𝒗𝑡+1𝑖 ) 
𝒑𝑡+1𝑖 = {𝒙𝑡+1𝑖 if 𝑓(𝒙𝑡+1𝑖 ) < 𝑓(𝒑𝑡𝑖) and 𝒙𝑡+1𝑖 ∈ 𝑆𝒑𝑡𝑖 otherwise  

where 𝑁𝑡𝑖 is the set of particle neighborhood or topology system that contributes to the 

calculation of velocity rule of particle 𝑖 at timestep 𝑡. Many different types of topology can be 

used. For example, the global-best topology, where there is only one global neighborhood. Other 

types of topology are the ring topology, wheel topology, and pyramid topology; each of them has 

some advantages and disadvantages. 

Functions 𝜂(∙) and 𝜉(∙) are velocity update and position update rule, respectively. In the case 

of original PSO, these functions defined as: 

𝒗𝑡+1𝑖 = 𝒗𝑡𝑖 + 𝜑1(𝒑𝑡𝑖 − 𝒙𝑡𝑖) + 𝜑2(𝒈𝑡𝑖 − 𝒙𝑡𝑖) 
𝒙𝑡+1𝑖 = 𝒙𝑡𝑖 + 𝒗𝑡+1𝑖  

where 𝜑1 is the personal learning coefficient, 𝜑2 is the neighborhood learning coefficient, and 𝒈𝑡𝑖  
is the neighborhood best attributed to the 𝑁𝑡𝑖 neighbor set or topology. Shi and Eberhart (1998) 

later introduced inertia term 𝜔 to control the influence of the previous velocity vector in the 

calculation of the updated velocity vector, resulting in: 

𝒗𝑡+1𝑖 = 𝜔𝒗𝑡𝑖 + 𝜑1(𝒑𝑡𝑖 − 𝒙𝑡𝑖) + 𝜑2(𝒈𝑡𝑖 − 𝒙𝑡𝑖) 
which is called the linear PSO (LPSO). Further, Clerc (2006) and Montes de Oca et al. (2009) 

the introduced 𝑅1𝑡𝑖  and 𝑅2𝑡𝑖  𝑑 × 𝑑 diagonal random matrices where their elements are random 

diagonal numbers distributed uniformly in [0,1], which results in standard PSO or SPSO: 
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𝒗𝑡+1𝑖 = 𝜔𝒗𝑡𝑖 + 𝜑1𝑅1𝑡𝑖 (𝒑𝑡𝑖 − 𝒙𝑡𝑖) + 𝜑2𝑅2𝑡𝑖 (𝒈𝑡𝑖 − 𝒙𝑡𝑖) 
Bonyadi and Michalewicz (2015, 2017) have pointed out that there are some limitations in 

LPSO that could cause the optimization to fail, i.e., line search issues, stagnation, and swarm 

explosion. On top of that, Helwig and Wanka (2007) stressed the problem of PSO optimization 

in high dimensional setup, where it could lead to those PSO limitations. Line search issue is 

when particle 𝑖 starts oscillating between its personal best and the neighborhood best (Wilke et 

al., 2007). Although this line search almost exclusively present in the LPSO and could be 

mitigated by the introductions of random terms 𝑅1𝑡𝑖  and 𝑅2𝑡𝑖 , there are still some situations where 

line search issue is still present in SPSO (Bonyadi and Michalewicz, 2014). The second issue, 

stagnation, occurs when the swarm converges into non-quality solution. This issue relates to the 

characteristics of guaranteed convergence of the original PSO, LPSO, and SPSO, where the 

nature of the algorithm guarantees swarm to convergence to a solution and unable to further 

explore the search space, even though there are better solutions available (van den Bergh and 

Engelbrecht, 2003). The example of this case is when the swarm converges to a local optima or 

saddle points. The third problem, swarm explosion is a state when PSO coefficients were set to 

inappropriate values, resulting in particles moving towards infinity (Clerc and Kennedy, 2002). 

This explosion is not desired, especially in the optimization in a constrained search space, where 

although the swarm indicates there is a possibility of better solution outside the bounded space, 

the solution must be inside the bounded search space. 

Mutation linear particle swarm optimization (MLPSO), introduced by Bonyadi and 

Michalewicz (2015), is designed to tackle line search and stagnation limitations of LPSO. 

MLPSO uses mutation operator which is applied to the velocity update rule of LPSO. The idea 

of this is to mutate bot magnitude and direction of velocity in its update process: 
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𝒗𝑡+1𝑖∗ = 𝑨 𝝓 𝒗𝑡+1𝑖 = 𝑨 𝝓 𝜇(𝒙𝑡𝑖 , 𝒗𝑡𝑖 , 𝒑𝑡𝑖 , 𝑁𝑡𝑖) 
where 𝝓 is rotation transform function and 𝑨 is magnitude mutation function. In MLPSO, the 

mutation is defined as: 

𝒗𝑡+1𝑖∗ = 𝑨 𝝓 𝒗𝑡+1𝑖 = 𝒗𝑡+1𝑖 + 𝑁(0, 𝝈) 
where N is the multivariate normal distribution and 𝝈 is the vector of variances. The larger the 𝜎 

is, the further 𝑣𝑡+1𝑖∗  will deviate from 𝑣𝑡+1𝑖 . Note that this 𝑁(0, 𝝈) term serves both as rotation and 

magnitude mutation operator. The values of 𝝈 calculated as: 

∀𝑗 ∈ {1, … , 𝑑}, 𝜎𝑖,𝑗 = {𝑐‖𝑁(0, 𝜸)‖ if 0 ≤ ‖𝒗𝑡+1𝑖 ‖ < 𝛾𝑡𝑖,𝑗𝑐‖𝒗𝑡+1𝑖 ‖ otherwise  

where ‖∙‖ is the norm operator, 𝑐 is a constant, usually equals to 1 𝑑1.5⁄ , 𝛾𝑡𝑖,𝑗 is a small real 

number of particle 𝑖 in the 𝑗-th dimension, and 𝜸 is a d-dimensional 𝛾 vector, and 𝑁(0, 𝜸) is the 

small normally distributed vector with mean 0 and variance vector 𝜸. The values of 𝛾𝑡𝑖 basically 

control the exploratory nature of a particle and is determined by: 

𝛾𝑡+1𝑖 = {  
  2𝛾𝑡𝑖 if 𝑠𝑡𝑖 > 𝑠𝑚𝑖𝑛 𝑎𝑛𝑑 𝛾𝑡𝑖 < 𝛾𝑚𝑎𝑥  0.5𝛾𝑡𝑖 if 𝑓𝑚𝑖𝑛 < 𝑓𝑡𝑖 < 𝑓𝑚𝑎𝑥  and ‖𝒗𝑡𝑖‖ < 𝛾𝑡𝑖2𝛾𝑡𝑖 if 𝑓𝑡𝑖 > 𝑓𝑚𝑎𝑥  and 𝛾𝑡𝑖 < 𝛾𝑚𝑎𝑥 and mod(𝑡, 𝑞) = 0𝛾𝑡𝑖 otherwise  

where 𝑠𝑡𝑖 and 𝑓𝑡𝑖 are the number of successive iterations at current iteration 𝑡 where the personal 

best has been successfully updated or failed to update, respectively. Note that 𝑠𝑡𝑖 × 𝑓𝑡𝑖 = 0, 

meaning that once a particle’s best successfully or failed to update, one value becomes positive 

while the other is reset to zero. For other variables the 𝛾𝑡𝑖 update rule, 𝑠𝑚𝑖𝑛 is the minimum 

successive update threshold, usually set to 10, 𝑓𝑚𝑖𝑛 is the minimum update failure threshold, 
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usually set to 10 as well, 𝑓𝑚𝑎𝑥 is the maximum update failure threshold, set to 200, 𝑞 is set to 50, 

and 𝛾0𝑖  are all set to 1 (Bonyadi and Michalewicz, 2015). 

To tackle the swarm explosion drawback of PSO, one could use the modified flavor of PSO 

that is specifically designed to tackle this issue. For example, constriction-coefficient PSO, 

where it was the original variant of PSO used in the development of MLPSO (Bonyadi and 

Michalewicz, 2015). However, it is found that CCPSO did not perform well in finding the 

optimum alteration to John Martin Reservoir operation policy. In this study, instead, SPSO is 

used in place of CCPSO for the backbone of MLPSO calculation. This is not a problem as 

Bonyadi and Michalewicz (2015) stated that any kind of PSO can be used in place of CCPSO. 

The swarm explosion problem, however, still pose a serious concern even after using MLPSO, as 

the nature of this study is a high-dimensional and constrained optimization problem (Helwig and 

Wanka, 2007). To tackle this, a combination of velocity limiting function, dimension reset, and 

fuzzy logic approach is used. 

Velocity limiting function and dimension reset is aimed at preventing swarm explosion by 

limiting the maximum magnitude of the updated velocity: 

∀𝑗 ∈ {1,… , 𝑑}      𝑣𝑡𝑖,𝑗∗ = max(min(𝑣𝑡𝑖,𝑗, 𝑣𝑚𝑎𝑥) , 𝑣𝑚𝑖𝑛) 
where 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are lower and upper velocity limit bounds, respectively, and 𝑣𝑡𝑖,𝑗 is the 

velocity of particle 𝑖 in iteration 𝑡 in the 𝑗-th dimension. The starred velocity term denoted the 

limited velocity. Dimension reset function used in this study is also aimed at the swarm 

explosion problem. The characteristic of this approach is more reactive, compared to the 

preventive characteristics of velocity limiting function. The dimension reset function is: 
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∀𝑗 ∈ {1,… , 𝑑}      𝑥𝑡𝑖,𝑗∗ = { 𝑥𝑡𝑖,𝑗 if 𝑥𝑚𝑖𝑛𝑗 ≤ 𝑥𝑡𝑖,𝑗 ≤ 𝑥𝑚𝑎𝑥𝑗rand(𝑥𝑚𝑖𝑛𝑗 , 𝑥𝑚𝑎𝑥𝑗  ) otherwise  

where 𝑥𝑚𝑖𝑛𝑗  and 𝑥𝑚𝑎𝑥𝑗  are lower and upper bounds of the search space in the 𝑗-th dimension, 

respectively, and 𝑥𝑡𝑖,𝑗 is the position of particle 𝑖 in iteration 𝑡 in the 𝑗-th dimension. The starred 

position term denoted the restarted position, initiated using a random function with the bounds 

between 𝑥𝑚𝑖𝑛𝑗  and 𝑥𝑚𝑎𝑥𝑗 . Fuzzy logic, on the other hand, aimed to reduce the dimensionality of 

the problem and will be explained in the next subsection. 

4.2.2 Incorporation of Fuzzy Logic 

Fuzzy logic was first introduced by Zadeh (Zadeh, 1965) in the area of information and 

control theory. Fuzzy logic addresses uncertainty in the form of vagueness or subjectivity, where 

the classes of objects under consideration do not always have precisely defined criteria of 

membership (Klir and Folger, 1988). For example, the class of “cars made in February 1999” has 

a fairly “crisp” membership function for cars made between 1 February 1999 and 28 February 

1999, excluding any other dates; this is usually termed a classical or crisp set. On the other hand, 

there is a loose definition of “old cars” or “new cars”, where both the bounds and the degree of 

membership of the age range are vague. Fuzzy sets are designed to accommodate membership 

uncertainty, by using a certain measurable property of an object to assign a degree of 

membership of that object in a set, with the degree of membership usually varying continuously 

between 0 to 1. Another characteristic of a fuzzy set is that an object can belong to multiple 

classes, as opposed to membership in a conventional set where the exclusivity rule is applied 

(Tayfur, 2014). As an example, in a fuzzy set of “coffee temperature” as illustrated in Figure 31, 

a cup of coffee (object) with 28°C temperature belongs to both the “cold” and “warm” sets with 

membership function values of 0.2 and 0.75, respectively, and with a value 0 for belonging to the 
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“hot” set. Notice that fuzzy sets are useful for quantitative description of verbal statements, or 

linguistically-described concepts. 

In systems with operational policies using fuzzy logic rules, a so-called fuzzy rule-based 

system, outputs or actuations of the system are inferred from a series of fuzzy logic-processed 

input. There are several variations of this fuzzy logic system processing. One of them is a 

Mamdani fuzzy rule-based system (Mamdani, 1976), which involves fuzzification, inference, 

defuzzification steps. The general structure of a fuzzy rule 𝑛 is: 

IF 𝑎1 is 𝐴𝑛1⊙𝑎2 𝑖𝑠 𝐴𝑛2⊙…⊙ 𝑎𝐾 𝑖𝑠 𝐴𝑛𝐾 THEN 𝐵𝑛 

where the operator ⊙ refers to the AND, OR, or XOR (exclusive-or) operator, and arguments in 

the IF rule premises are assumed to belong to fuzzy sets, with the THEN consequence also 

belonging to a fuzzy set (Bogardi et al., 2003). In terms of the classification into fuzzification, 

inference, defuzzification steps, the IF premises are the fuzzification steps (𝑎𝑖 𝑖𝑠 𝐴𝑛,𝑖), the ⊙ 

operator and the THEN part is the inference step, which is followed by defuzzification of the 

resulting 𝐵𝑛 fuzzy set. Note that a major characteristic of a fuzzy rule based-system is that for a 

given set of inputs, multiple rules can be activated but at varying degrees of fulfillment. 

 

Figure 31. Fuzzy set example of coffee temperature in “cold”, “warm”, and “hot” sets. 
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There are variations in the selection and interpretation of the ⊙ operator. The most 

commonly used operator is the AND operator interpreted as fuzzy product rule, for example 

between these two fuzzy sets: 

𝜈𝑛(𝑎1, 𝑎2) = 𝐴𝑛1 AND 𝐴𝑛2 = 𝜇𝐴𝑛1(𝑎1)𝜇𝐴𝑛2(𝑎2) 
where 𝑎𝑖 is the input to fuzzy set 𝐴𝑖, 𝜇𝐴𝑛𝑖(∙) is the membership function of fuzzy set 𝐴𝑛𝑖, and 𝑣𝑛 

is the overall membership of rule 𝑛. There are many variations of defuzzified actuation of a rule 𝑛 as well, and one of the most commonly used is the normed weighted sum combination: 

𝑏(𝑎1, 𝑎2) = ∑ 𝜈𝑛(𝑎1, 𝑎2)𝐵̅𝑛𝑁𝑛=1∑ 𝜈𝑛(𝑎1, 𝑎2)𝑁𝑛=1  

where 𝐵̅𝑛 is the mean of the fuzzy consequence of rule 𝑛 ∈ {1,… ,𝑁}, N is the total number of 

rules, and 𝑏 is the defuzzified system actuation. 

4.2.3 Colorado-Kansas Interstate Compact Model 

The Arkansas River Compact is an agreement between Colorado and Kansas concerning the 

apportionment of Arkansas River flow between the two States. The Compact was ratified and 

approved by the legislators in 1949 (Colorado Revised Statutes, 1949). The H-I model is used to 

determine whether flow at the Colorado-Kansas Stateline during a certain period is in 

compliance with the Compact. The H-I model simulates a simplified hydrologic and institutional 

system of both stream and groundwater flow. Inputs to the H-I model are gaged river flow data, 

precipitation, water rights, and irrigated acreage, as well as physical hydrologic properties. The 

model outputs include, but are not limited to, water budget, canal diversion predictions, in-

stream flow routing values, and flow at the Stateline, which is the focused output of interest. 
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The flow at the Stateline is simulated by the H-I model for two scenarios: the historical run, 

which estimates actual historical conditions, and the Compact run, which includes only flow 

components that are subject to the Compact. In another words, the Compact run simulates how 

much flow should have been delivered to Kansas, while the historical run simulates what the 

actual delivery is. The difference between the two runs is considered as the accretion/depletion 

and serves as the basis for whether a flow period is in compliance with the Compact. The 

temporal resolution of the H-I model input and output is monthly, while compliance is assessed 

using a 10-year running average wherein the monthly values are first lumped into annual values. 

4.2.4 Model Applications 

The optimization method was applied to find a policy for flow diversion from the river 

upstream into a new storage account in John Martin Reservoir or release from the new storage 

account back into the river downstream, on top of the original John Martin Reservoir operation. 

The modeled GeoMODSIM network had 575 weekly time steps, starting from the first week of 

1999 through the last week of 2009 (11 years) with 75 BMPs simulated. The BMPs are 

combinations of varying levels of water management improvements [reduced irrigation (RI) 

application, canal sealing (CS) to reduce seepage, and lease-fallowing (LF) of irrigated land]. 

BMP combinations including land management improvements [reduced fertilizer (RF) 

application and enhanced riparian buffers (ERB) along the river and tributaries] were considered 

in earlier studies but are not included here since they do not affect irrigation return flow rates to 

the river and tributaries. 
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Figure 32. Illustration of the formulation of fuzzy rules for diversion to and release from reservoir 

storage.  

The optimization objective function in this study is: 

min𝐹 = 𝑤1∑𝐷𝑒𝑓𝑖𝑐𝑖𝑡 + 𝑤2(𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑆𝑖𝑧𝑒)  
where 𝑤1 and 𝑤2 are user-defined weights, 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 is the flow deficit at the Stateline resulting 

from a BMP implementation compared to the historical/baseline condition, and 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑆𝑖𝑧𝑒 is the resulting new storage account size. Both 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 and 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑆𝑖𝑧𝑒 are dynamically determined within the model run time. The weight 𝑤1 is 

set to 1 to reduce the number of optimized parameters, resulting in an optimization with only 𝑤2 

to adjust. The adjustment of 𝑤2 uses a trial-and-error approach, which finds a balance between 

eliminating all deficits and minimizing the new storage account size. The GeoMODSIM network 

run is then repeated back-to-back 𝑛 times. 

In a conventional PSO implementation, the optimizer would have 𝑛 × 575 dimensions to 

optimize. In this study, the Fuzzy-MLPSO optimizes only the centers of fuzzy decisions 

diverting flow into or releasing from the storage account. The number of fuzzy decisions is based 
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on the number of combinations of fuzzy input rules. For the example pictured in Figure 32, there 

are two layers of fuzzy rules, i.e., an inflow rule and a storage rule, with each having four and 

five fuzzy units, respectively. This combination of fuzzy rule numbers produces 20 response 

rules. In this study, there are four layers of fuzzy rules implemented, i.e., inflow rule, storage 

rule, seasonal rule, and hydrologic state rule. The inflow rule describes the flow coming into 

John Martin Reservoir, the storage rule provides the current storage volume within the storage 

account (expressed in relation to the initial storage), the seasonal rule divides a year into four 

quarters, and the hydrologic state rule specifies whether a year is wet, normal, or dry. The 

resulting flow at the Stateline is the outcome of the optimized storage account operation and is 

evaluated with the H-I model to check its compliance with the Compact. Delivery of flow to 

meet water right demands is also evaluated. To address the difference in temporal resolution 

between the GeoMODSIM model which has a weekly time step and the H-I model which has a 

monthly time step, with lumping into an annual average for evaluating compliance, the weekly 

flow at the Stateline simulated by GeoMODSIM is lumped into monthly and annual average 

values. 

4.3 Results and Discussion 

Figure 33 displays three of the Fuzzy-MLPSO optimized rules for diverting to storage (+) or 

releasing from storage (-) as a function of inflow to and current storage deviation from initial 

storage in John Martin Reservoir, namely for wet, normal, and dry hydrologic conditions during 

the last quarter of the year to mitigate side effects of the CS60 BMP, i.e. 10% reduced irrigation 

combined with 40% reduced canal seepage. CS60 is selected since it is one of the few water 

BMP implementations, along with CS20, CS40, and CS60 that have been shown to have a 

positive effect on both Se and NO₃ reduction in the basin when combined with RF land BMPs 
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(Shultz et al., 2018b). Similar optimal rules for this BMP the hydrologic conditions within the 

remaining quarters of the year also were determined. Plots in Figure 34(a) and Figure 34(b) show 

surplus and deficit flows at the Stateline for cases without and with the optimized new storage 

account rule, respectively. As shown, the BMP implementation prior to the storage account 

alteration has a significant impact on altering the flow at the Stateline, with deficits especially 

present during the winter period. By implementing a new storage account, the amount and 

frequency of shortages are reduced, as shown in Figure 34(b). A time series plot of optimal 

storage in the new account, determined for the CS60 BMP, is depicted in Figure 34(c).  

Figure 35 shows the average surplus, deficit, and net flow patterns at the Stateline aggregated 

monthly and annually for the CS60 BMP. As shown, implementation of the new storage account 

can substantially reduce Stateline depletions, with significantly lower deficits present during the 

winter months, along with lower surpluses during the summer months. This behavior reveals the 

tendency of the optimized storage account operation to divert flow to storage in summer months 

and to release water during winter months. The presence of remaining Stateline deficits, 

however, is due to the nature of the optimized fuzzy rule-based system, trades exact weekly 

decisions of diversion/release for a generalized operational policy.  
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Figure 33. The optimized Fuzzy-MLPSO rule set for the CS60 BMP for (a) dry, (b) wet, and (c) normal 

hydrologic conditions for the last quarter of the year. 

Figure 35 includes a depiction of the monthly-averaged and annual-averaged net change in 

Stateline flow in relation to the baseline [net flow change = surplus flow (+) plus deficit flow (-

)]. As shown, the implementation of the CS60 BMP without a new storage account results in a 

monthly-averaged net deficit in Stateline flow during winter months. With implementation of the 

new storage account, all of the monthly-averaged net changes become positive. The same 

behavior is shown for the annual-averaged net flow change. Figure 35 shows that before the 
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implementation of the new storage account, the average net change in Stateline flow in the year 

2002 is negative, which is alarming. However, with implementation of the storage account, the 

annual-averaged net flow change is positive for all years. This same behavior was confirmed for 

implementation of the Fuzzy-MLPSO optimized rules for all 75 modeled BMPs. 

 

Figure 34. CS60 BMP surplus and deficit Stateline flows for (a) without a new storage account in John 

Martin Reservoir and (b) with a new storage account in John Martin Reservoir; and (c) time series of 

volume stored in new storage account. 
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Figure 35. Summarized comparison of the state of the system with and without a new storage account in 

John Martin Reservoir for CS60 BMP: (a) monthly-averaged Stateline flow surplus and deficit, (b) 

annual-averaged Stateline flow surplus and deficit, (c) annual-averaged Stateline flow net change. 

Figure 36 shows the optimal John Martin Reservoir storage account size determined for all 

75 BMPs to insure the fulfillment of water right demands and the satisfaction of the Arkansas 

River Compact. Recall that these considered water BMPs could be combined with land BMPs 

such RF and ERB, as described in Shultz et al (2018b). Figure 36 reveals that more aggressive 

BMPs require more storage account volume to offset detrimental side effects in meeting water 

right demands Compact requirements. Nevertheless, in all cases the required new storage 

account size was less than about 5.5% of the total capacity of John Martin Reservoir. 



96 
 

 

Figure 36. Optimal new storage account sizes to mitigate side effects for each modeled BMP. 

4.4 Chapter Summary and Conclusions 

The concern of having shortages in meeting water rights and significant alterations in flow at 

the Colorado-Kansas Stateline hinders the adoption of BMPs designed to enhance sustainability 

and productivity in the central alluvial valley of Colorado’s LARB. This study demonstrates that 

alteration of John Martin Reservoir by setting up and operating a new storage account can 

answer the challenge. Storage account operation is modeled using Fuzzy-MLPSO applied to the 

River GeoDSS, where a fuzzy rule-based system is combined with a novel variant of PSO that 

focuses on overcoming the drawbacks of the original PSO. The Fuzzy-MLPSO uses four layers 

of fuzzy rules that processed inflow, current storage, quarter of the year, and hydrologic states 

into divert-to-storage/release-from-storage decisions for the new storage account. Model 

implementation results in a generalizable operational policy in managing a new storage account, 

i.e., week-by-week divert-to-storage/release-from-storage decisions, rather than an exact 

solution. The optimal reservoir operation policy ensures compliance with the Arkansas River 

Compact and eliminates shortages in meeting water rights demands that are brought about by 

BMP implementation. More aggressive BMPs would achieve greater impacts in reducing 
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pollutants and lowering the shallow saline water table, would require a larger new storage 

account size. Although sufficient to eliminate shortages to water rights demands and to insure 

Compact compliance, some deficits in Stateline flow still remain post-implementation of the new 

storage account policy, opening up further development in this study. Enhancement of reservoir 

operating policy to further reduce the deficits may be achievable through the use of more 

sophisticated but still generalizable system operational optimization methods, e.g., deep 

reinforcement learning, Q-learning, and fuzzy dynamic programming.  
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Chapter 5 Findings and Future Work 

5.1 Summary 

Improving water resources management in statutory and administratively constrained stream-

aquifer systems can be quite challenging, particularly for river basins with prior-appropriative 

water right structures and with interstate compact agreements. In the Lower Arkansas River 

Basin of Colorado, serious sustainability issues are becoming more evident due to waterlogging 

and salinization of irrigated lands along with high concentrations of nutrients and geogenic trace 

elements in surface and groundwater resources. The problems arise from excessive application of 

fertilizers and inefficient irrigation practices. Implementation of various best management 

practices (BMPs) have been proposed and simulated to be effective in enhancing environmental 

quality and crop productivity in the basin. The BMPs include varying levels of reduced irrigation 

application, reduced canal seepage, lease-fallowing of irrigated fields, lower fertilizer 

applications, and improved riparian buffers. A primary concern is that the implementation of 

these effective BMPs also can result in significant changes in groundwater and surface water 

return flows in an alluvial basin with the potential for injuring senior water right holders, as well 

as altering downstream flow patterns that can result in violation of the Arkansas River Compact 

agreement. 

A decision support system (DSS) has been employed to help find answers to this quite ill-

structured problem. The DSS is an updated version of River GeoDSS, where functionality has 

been significantly improved by reducing redundancy, allowing convenient menu-based changes 

in input data, GIS-based MODSIM network modifications, improved and embedded neural 

network modeling capability, and a user-friendly graphical user interface. The updated River 
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GeoDSS is used to model basin-scale behavior of the LARB for both historical (baseline) and 

BMP implementation scenarios using a deep neural network functionality to emulate the updated 

regional MODFLOW-SFR2 models (upstream and downstream) in modeling complex stream-

aquifer interactions. The basin-wide BMP implementations are found to indeed introduce 

significant alterations to streamflow in the basin, including alterations of flow deliveries to water 

rights and at the Colorado-Kansas Stateline. To address this, an advanced Fuzzy-MLPSO 

metaheuristic algorithm is applied to determine optimal John Martin Reservoir operational 

policies for mitigating the side-effects of BMP implementation on water rights and the interstate 

compact.  

Prior to implementation of Fuzzy-MLPSO, a dedicated study is conducted to develop the 

integration between MLPSO and GeoMODSIM, where it is applied in addressing the water 

allocation issue in the Tripa River Basin. The GeoMODSIM model is used to model water 

allocation problem in addressing future needs of the basin while adhering to the associated water 

allocation priority system. The model evaluates the simulations of integrated sizing and 

operation of proposed reservoirs and transbasin diversion for baseline and future conditions. It is 

extended with MLPSO for minimizing the construction cost and optimizing operating rule, the 

impacts of transbasin diversions to the adjacent basins, and the frequency of shortage in meeting 

the basin's future needs. Over the iterations, the swarm shows rapid convergence in minimizing 

the optimization cost, resulting in decreased construction cost, nullified shortage, and optimized 

operation rule. 

The Fuzzy-MLPSO study modeled the operation of a new storage account in John Martin 

Reservoir that was dedicated to abating the undesirable impacts of BMP implementation on 

water rights and Stateline flows. The Fuzzy-MLPSO processes inflow, storage, seasonal, and 
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hydrologic states into divert-to-storage/release-from-storage decisions. The results show that 

concerns over shortages in meeting water rights demands and deficits to required Stateline flow 

due to BMP implementations can be addressed with the implementation of optimized operational 

policy. The results also show that the required storage account size is less than 5% of John 

Martin Reservoir’s conservation storage to facilitate all considered BMPs, with more aggressive 

BMPs requiring larger storage account size. 

5.2 Model Limitations and Uncertainties 

In the LARB studies, the regional MODFLOW-SFR groundwater models are the 

instrumental component to the entire River GeoDSS, where they act as the data source that is 

surrogated by the DNN models embedded in the river basin allocation model. The regional 

groundwater models are calibrated to extensive primary collected field data (Morway et al., 

2013; Gates et al., 2016; Shultz et al., 2018a), as well as data compiled from state and national 

agencies sources, e.g., Colorado Department of Water Resources (CDWR), U.S. Geological 

Survey (USGS). The river basin network model containing the DNN surrogate to the 

groundwater model is then used as the basis of determining the recommended size of a new 

reservoir storage account to amend the side effects of the BMP implementations, where it uses a 

metaheuristic MLPSO model that involves random number generation procedures.  

Considering this complex chain of data and models forming the River GeoDSS suite, 

uncertainty is of major interest. All of the he model components of River GeoDSS have 

uncertainties associated with it. As Briggs (2016) stressed on the importance of mentioning the 

conditionality of a statistical result to a model, it is vital to state that the results of a River 

GeoDSS model component are conditional to the components preceding it. For example, the new 

storage account size recommendation results are conditional to the MLPSO implementation, the 
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DNN surrogate model, and the GeoMODSIM river allocation model. The DNN is in turn 

conditional to the MODFLOW-SFR2 model, while the MODFLOW-SFR2 model and 

GeoMODSIM river allocation model are conditional to the observation data and the calibration 

and testing processes. This network of a chained model then raises an important issue of 

compounded uncertainties, where their quantification and handling are suggestions for the 

subjects of future studies.  

5.3 Future directions 

The conducted studies open further possible developments, including use of more 

sophisticated but still generalizable system operational optimization methods, e.g., deep 

reinforcement learning, Q-learning, and fuzzy dynamic programming. In addition, the sources 

and nature of model uncertainty should be more directly addressed. Other future directions 

include the implementation of more accurate neural networks to model stream-aquifer 

interactions, e.g., deep recurrent neural networks, as well as direct coupling between the stream 

(GeoMODSIM) and groundwater (MODFLOW) models using actual LARB datasets.  Another 

recommended endeavor is to quantify and account for uncertainties in River GeoDSS model 

components. This could include sensitivity analyses of the effects of changes in parameter values 

on simulated model components.  Stochastic analysis could account for the residuals in DNN 

predictions of MODFLOW-simulated stream-aquifer exchanges.  From there, subsequent studies 

could be identified and undertaken to further reduce uncertainties in the model, for example by 

collecting and analyzing more data in the regions or domains where ambiguity due to spatial and 

temporal variability is fairly large. 
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Appendix A River GeoDSS Update 

A.1 River GeoDSS Main Improvement 

Many of the original capabilities of the original River GeoDSS retained in the updated 

version, including automated construction of georeferenced MODSIM hydrologic networks 

generated from digital hydrographic map layers available from the National Hydrography 

Dataset (NHDPlusV2), efficient network flow optimization using MODSIM engine, tools for 

editing and populating spatiotemporal database, geometric network properties setup, execution of 

MODSIM directly from the GUI, access to ArcGIS extensions, and mass balance conservation 

mechanism. 

To ensure water balance in the modeled basins, River GeoDSS uses two mass conservation 

mechanisms. The first is a mass balance calculation internal to GeoMODSIM, employing 

Lagrangian relaxation optimization and a combination of active and inactive flow links to ensure 

mass balance in a modeled river basin network (Labadie, 2010). The second mass conservation 

mechanism is implemented inside River GeoDSS in a specialized run session called the 

calibration step. In this session, a river basin network with embedded stream gauge nodes firstly 

runs with artificial links flowing from and into the stream gauges construct to ensure that the 

simulated amount of water flowing through the gauges matches the historical records. After this 

calibration run session, the artificial link values are then locked, and the model shifts to scenario 

mode where it models the BMP scenario implementations in the river basin. In this scenario run 

session, GeoMODSIM internally applies mass balance conservation in the network. The details 

of the mechanism of artificial links construct around the stream gauges to ensure mass balance 

calculation is presented in Triana (2008). 
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The updated version of River GeoDSS employs deep neural networks, in contrast to the 

original one which uses one-layered radial basis artificial neural networks (RBMANN). In this 

deep learning approach, aside from having deeper neural networks, the inputs to the deep neural 

networks (DNN) uses raw input variables, instead of needing to manually extracting or 

modifying the variables as employed in the original version. For example, instead of using 

aquifer thickness per unit area feature, both aquifer thickness and area features are used as DNN 

inputs. One major improvement in this version is that in the original version, the ANN 

development had to be performed outside of River GeoDSS. Where after extracting 

georeferenced spatiotemporal explanatory variables, users had to move them to MATLAB™ to 

develop the ANN. The trained ANN then inserted back to River GeoDSS as the stream-aquifer 

interaction module. In this updated version of River GeoDSS, the entire DNN training procedure 

is performed entirely within River GeoDSS without the need for the users to leave the GUI, 

therefore providing seamless integration. Presented below is the screenshot of the neural 

networks tab of the updated River GeoDSS (Figure 37). In this tab, users can select the ANN 

configurations which include selection of the number of hidden layers and hidden nodes per 

layer, training-testing portion, activation function, the neural network solver, and the 

regularization value (a scalar introduced to the learning model to prevent overfitting and improve 

generalizability). The ability to not leave River GeoDSS suite is enabled provided the user has a 

Python 3.x installed and supplied in the main tab of the GUI (Figure 38). 
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Figure 37. The neural networks tab in the updated River GeoDSS GUI. 

 

Figure 38. The required Python EXE path in the updated River GeoDSS GUI. 

A.2 River GeoDSS Other Improvements 

Other significant updates and improvements in River GeoDSS include: (1) reduced 

redundancy in the coding through better code implementations; (2) replacement of the sync table 

with geometric network tracer; (3) migration from the original MATLABTM-based ANN 

module to the Scikit-learn license-free machine learning package (Pedregosa et al., 2011). The 

reduced redundancy and better programming practices carried out by extensive code cleanup and 
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refactors as well as intensive use of git versioning software. The extensive code cleanups 

particularly remove the use of go-to statements and the use of legacy code implementations that 

requires legacy DLLs. The refactors result in more organized project structure, with codes used 

in multiple projects are structurally referenced instead of copied. The displays of 

refactored/restructured code as well as the use of git are presented in Figure 39, Figure 40, and 

Figure 41. 

Sync table is the legacy functionality in the original River GeoDSS that synchronizes or 

maps nodes and links of the generated MODSIM to the nodes and links in the ArcGIS geometric 

network. Sync table in the form of a separated MS Access database is generated at the start of 

River GeoDSS execution, where it creates MODSIM network from an ArcGIS geometric 

network. However, for some reason, the sync table prohibits MODSIM network update. This 

functionality is then replaced with geometric network tracer class that does not save the topology 

into a database table, rather maps both MODSIM and ArcGIS geometric network in runtime. The 

geometric network tracing functionalities (GetTableOfEdgesAndConnectedNodeNames, 

GetUpstreamNodeName, GetDownstreamNodeName, QueryConnectedEdgesAndNodes) as well as other 

geometric network methods are presented in Figure 42. Another improvement is the use of 

windows presentation format (WPF) eXtensible Markup Language (XML) -based graphical user 

interface (GUI), as presented in Figure 43. The use of such GUI presents sleeker and more 

adaptable GUI. The updated GUI also presents all River GeoDSS functionalities in tabbed 

format, instead of hidden menus and/or contents menus. The order of the tabs also represents the 

order of execution of the River GeoDSS program. 
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Figure 39. Screenshot of the summarized restructured code. 

 

Figure 40. Screenshot of the expanded restructured code. 
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Figure 41. Intensive use of git versioning software. 
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Figure 42. The use geometric network utility with geometric network tracing functionalities to replace the 

legacy sync table. 

 

Figure 43. The use of XML-based WPF GUI. 
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Appendix B Neural Networks Implementations 

Presented in this appendix chapter, the specifications of neural network implemented in this 

study. The discussion includes data domain specification, neural networks review, and code 

implementation. In addition to Figure 4 showing the diagram of River GeoDSS, Figure 44 shows 

the general scheme of RiverGeoDSS custom ArcMap® extension, in relation to the 

GeoMODSIM, MODFLOW-SFR2 model, Scikit-learn package (Pedregosa et al., 2011), 

ArcGIS® ArcObjects libraries (Environmental Systems Research Institute, 2019), and the 

databases. The emphasis of the updated River GeoDSS system, is that Scikit-learn neural 

networks module is now inside the River GeoDSS suite, as the users would only need to load and 

process the required databases, i.e., water rights geospatial databases, temporal databases, 

management scenarios, process MODFLOW-SFR2 models, configure the neural networks, and 

run the GeoMODSIM model in one go, without the need to leave the software system. 

ArcGIS® ArcObjects-

based data 

management engine
Georeferenced

MODFLOW-SFR2

groundwater models

GeoMODSIM

(surface water 

model)

Management 

scenarios

Water rights 

database
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Geospatial 
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Results

 

Figure 44. General scheme of River GeoDSS custom ArcMap® extension. 
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B.1 Domain Specification 

The neural networks treat groundwater and overland return flows from MODFLOW-SFR2 

models as output or target variables, with mainstream and tributary groundwater return flow are 

separated; thus, the neural networks have three separate output variables to approximate. As a 

comparison, Triana et al. (2010b) used one highly calibrated regional MODFLOW model with a 

shorter temporal domain and two target variables, i.e., mainstream and tributary groundwater 

return flow, instead of three, and a radial-basis activation function instead of the activation 

functions that are used in this study. On the input or explanatory variables side, three types of 

neural networks variables were used: spatial, temporal, and scenario-based, with temporal 

variables having spatial variability and scenario-based variables having spatial and temporal 

variabilities. The spatial variables are area sizes, elevations, stream lengths, canal lengths, 

irrigation parcels, and aquifer thickness. The variables temporal variables are weekly 

precipitation and weekly groundwater pumping. The scenario-based explanatory variables are 

irrigation reduction index, seepage reduction index, fallowing index, river flow, and average 

diversion. The river flow and the average diversion variables are the products of MODSIM 

surface water allocation model. The full neural network input-output variables schematics are 

presented in Figure 5. The use of neural networks in this study is categorized as a supervised 

regression learning model. 

The neural networks data domains used are the upstream region (USR) and the downstream 

region (DSR), stacked together creating a longer dataset. Each of the USR and DSR has their 

separate well-calibrated high-resolution MODFLOW models. The data is available from 31 

December 1998 to 31 December 2009 (575 weeks). Spatially, all the variables are clipped by 

buffer features. Buffer features constitute spatial areas parallel to the river with a specified lateral 
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and longitudinal widths. Figure 2 shows the map of basin-wide, USR, and DSR regions. The 

temporal resolution for temporal explanatory variables, scenario-based explanatory variables, 

and buffer zone features. Hydrologically, the dataset covers a wide range of hydrologic 

conditions: from the extreme wet condition in 1999 to the extreme dry condition in 2002-2003. 

Figure 45 shows the timeseries plots of inflow to John Martin Reservoir and Colorado-Kansas 

Stateline flow which indicate the hydrologic condition in the basin during the dataset temporal 

domain between 1999 and 2009. Presented as well, the annual aggregation to further show the 

wide range of hydrologic conditions simulated by the model. Since the neural networks were 

trained upon this wide range of data, it is expected to have a robust approximation capability. It 

means that when the neural networks introduced to the future dataset, it is expected to perform 

well, assuming the future dataset fall within the trained hydrologic, which is quite wide. Figure 

46 shows the average amount of net return flow, with positive value indicate water is flowing to 

the stream from the aquifer. 

B.2 Neural Network Architecture 

The neural networks model being trained is a supervised regression feedforward network, 

trained using the training data (in-sample) and tested using unseen testing data (out-of-sample), 

which are independent of each other, with each of them gives fitting performance values. A 

neural networks model is considered good for having a reasonably good performance in the 

unseen testing data. Regarding the way the data is used for the learning process, there are two 

aspects being considered, i.e., data fractioning and sampling method. In this study, a 70% 

fraction means 70% of the data are used as training dataset and 30% of the rest are used a testing 

dataset. Prior to this data splitting, a 10% data portion has been reserved for validation purpose. 
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Figure 45. Inflow to John Martin Reservoir and Colorado-Kansas Stateline flow indicating hydrologic 

condition in the basin: (a) weekly inflow timeseries (b) annual average flow. 

 

Figure 46. Average weekly return flow in the system. 
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A typical feedforward network contains one input layer, at least one hidden layer, and one 

output layer. Each of the layers contains nodes which represent processing units. The number of 

nodes in the output layer constitutes the number of target variables. Similarly, the number of 

nodes in the input layer constitutes the number of input or explanatory variables. Usually, a bias 

node is added to each of the layers; therefore, the number of nodes in the input layer is the 

number of explanatory variables plus one. In the typical ANN setting, their number of hidden or 

processing layer is at least one. In each of these hidden layers, there are several hidden nodes the 

user predetermines, with the first node for each of the layers is the bias node. Between each node 

in each layer, there are links or synapse link connections. These links have weights that were 

randomly initiated at the start of learning and adjusted throughout the learning process. The 

finalized weights of the neural networks network are the recorded knowledge based on the data 

learned by the neural networks. A typical neural network diagram for a three-layer network is 

presented in Figure 47. 

This study searches for the best performing neural networks with several configuration 

variables: sampling method, hidden layer configurations, training portion, regularization value, 

and the solver. Figure 48 illustrates the comparison between 70% randomized and 70% 

sequential sampling methods. In this study the training portions evaluated are between 10% and 

90% with 10% increments, with 20% training percent means 20% of the dataset used for training 

and the 80% remaining used for testing, while evaluating both sequential and randomized 

sampling methods. 
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Figure 47. Typical ANN network diagram for a three-layer neural networks. 

 

 

Figure 48. Illustration of 70% randomized and 70% sequential sampling methods. 

In this study, the hyperbolic tangent (tanh), logistic, rectified linear unit, and identity 

functions are used. Although the tanh function is proven to perform best for layered feedforward 

networks (Kalman and Kwasny, 1992) and selected as the function of choice for regression 

neural networks (Abu-Mostafa et al., 2012). This study explores the uses of other activation 

functions available to the software package being used. Figure 49 presents a comparison between 

hyperbolic tangent, linear or identity, and hard (sign) activation functions. The activation 

functions used in this study can be mathematically presented as  

identity(𝑥) = 𝑥 tanh (𝑥) = sinh(𝑥)cosh(𝑥) = 𝑒𝑥 − 𝑒−𝑥𝑒𝑥 + 𝑒−𝑥logistic(𝑥) = 11 + 𝑒−𝑥 relu(𝑥) = {0, for 𝑥 < 0𝑥, for 𝑥 ≥ 0  

70% Randomized

70% Sequential

Training Testing
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In the process of training the ANNs, a regularization value  (λ) is often used to prevent 

overfitting of the model by constraining the learning algorithm to improve out-of-sample error, 

especially when data noise exists (Abu-Mostafa et al., 2012). If the learning model does not use 

regularization term (𝜆 = 0), it will be a naïve learning model, which may strictly follow in-

sample or training data, but usually performs poorly on the test or out-of-sample data. Figure 50 

illustrates the effect of regularization on the fitting of the model. The regularization value used in 

this study is either 0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, or 10. As for the solver, the 

ANN solver used is either Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm 

(LBFGS) (Andrew and Gao, 2007), stochastic gradient descent (SGD) (Robbins and Monro, 

1985), or ADAM (Kingma and Ba, 2015) 

 
Figure 49 Comparison between the four activation functions used in this study 

        

Figure 50. Illustration of the effect of regularization to the fitting of the model, without regularization 

(left) and with regularization (right). 
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B.3 Additional Results 

In addition to the results presented in Chapter 2, following are the results of the neural 

networks training showing the excellent surrogate capability. Figure 51 shows USR return flow 

comparison for all return flow components (main steam, tributary, and overland), where the 

DNN-predicted return flow closely mimic MODFLOW-generated return flows. In terms of 

fitting performance, as previously mentioned, the best performing ANN was selected based on 

the lowest AIC value while satisfying the Amari number criteria. In addition to Figure 7 that 

shows test AIC vs the number of hidden nodes per layer and network complexity for different 

numbers of layers and sampling methods, Figure 52, Figure 53, and Figure 54 show the AIC 

performance of different regularization values, solvers, and training fractions, respectively. 

Figure 55 shows the neural network training time of different solver methods. 
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Figure 51. USR return flow timeseries comparison, baseline scenario. 



137 
 

 

Figure 52. Test AIC vs regularization for different sampling methods (lower AIC is better); (a) 

randomized sampling, (b) sequential sampling. 

 

Figure 53. Test AIC vs solver for different activation functions and sampling methods (lower AIC is 

better); random sampling with activation: (a) identity, (b) logistic, (c) ReLU, (d) tanh; sequential 

sampling: (e) identity, (f) logistic, (g) ReLU, (h) tanh. 
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Figure 54. Test AIC vs training fraction for different sampling methods (lower AIC is better); (a) 

randomized sampling, (b) sequential sampling. 

 

Figure 55. Training time vs solver for different activation functions and sampling methods (lower AIC is 

better); random sampling with activation: (a) identity, (b) logistic, (c) ReLU, (d) tanh; sequential 

sampling: (e) identity, (f) logistic, (g) ReLU, (h) tanh. 
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B.4 Code Implementations 

The neural network codes implemented in this study were written in Python and developed 

through Visual Studio 2019 integrated development environment (IDE). The code uses 

MLPRegressor class from Scikit-learn package (Pedregosa et al., 2011), while the remaining 

parts of the code was self-developed, including input, preprocessing, serialization, and 

interoperability with River GeoDSS suite. The neural networks code is written in four separate 

files: main_trainer.py main input-output class, train_ann.py core training class, thedata.py object 

source code, and use_ann.py class that deserialize and postprocess neural network training data 

for River GeoDSS use. Presented below are the source codes: 

main_trainer.py 

print("Training the ANN") 
 
import sys 
import pickle 
import os 
 
from thedata import TheData 
from train_ann import TrainANN 
from ast import literal_eval 
 
trainDataPath = str(sys.argv[1]) # training data full path 
annSavePath = str(sys.argv[2]) # ann serialization full path 
 
mode = str(sys.argv[3]).lower() == 'true' # true for randomized sampling 
nh = literal_eval(sys.argv[4]) # input configuration form River GeoDSS 
alph = float(sys.argv[5]) # regularizaion value, example: 0.0001 
 
trainport =  float(sys.argv[6]) # training portion, example: 0.7 
solv =  str(sys.argv[7]) # solver: 'adam', 'lbfgs', or 'sgd' 
funct = str(sys.argv[8]) # activation: 'identity'/'tanh'/'logistic'/'relu' 
 
colstart = 2 
xcolcount = 13 
 
trainData = TheData(trainDataPath, os.path.basename(trainDataPath), 500, colstart, 
xcolcount) 
 
mlp, res = TrainANN.RunAnn(alph, trainData.batch, mode, trainData.name, nh, solv, 
trainport, funct, trainData.Xnorm, trainData.Ynorm) 
print(res) 
pickle.dump(mlp, open(annSavePath, 'wb')) 
pickle.dump(mlp, open(annSavePath+','+res+'.ann', 'wb')) 
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train_ann.py 

import pandas as pd 
import numpy as np 
import time 
from sklearn.neural_network import MLPRegressor 
from sklearn.metrics import mean_squared_error 
from math import sqrt 
from math import log 
 
class TrainANN: 
    def RunAnn(alph, batch, mode, name, nh, solv, trainport, acti, Xnorm, Ynorm): 
 
        def repr(nh): 
            return ("[" + str(nh) + "]").replace("(","").replace(")","").replace(", 
","x") 
 
        def Shuffler(X,T,trainTuple=(0.7,0.0,0.3),random=True): 
            trnPort, vldPort, tstPort = trainTuple 
            if trnPort + vldPort + tstPort > 1 or trnPort + vldPort + tstPort < 0: 
                print('Sum of portions must be equals to 1') 
                return None 
     
            if trnPort < 0 or vldPort < 0 or tstPort < 0: 
                print('Each portion must be greather than 0') 
                return None 
         
            nRows = X.shape[0] 
            nTrn = int(round(nRows * trnPort)) 
            nVld = int(round(nRows * vldPort)) 
            nTst = nRows - nTrn - nVld 
            rows = np.arange(nRows) 
     
            if(random): 
                np.random.seed(3249) 
                np.random.shuffle(rows) 
     
            trnIndices = rows[:nTrn] 
            vldIndices = rows[nTrn:(nVld + nTrn)] 
            tstIndices = rows[(nVld + nTrn):] 
     
            XTrn = X[trnIndices,:] 
            TTrn = T[trnIndices,:] 
            XVld = X[vldIndices,:] 
            TVld = T[vldIndices,:] 
            XTst = X[tstIndices,:] 
            TTst = T[tstIndices,:] 
     
            return XTrn,TTrn,XVld,TVld,XTst,TTst 
 
 
        start = time.time() 
     
        X_train, Y_train, _, _, X_test, Y_test = Shuffler(Xnorm, Ynorm, 
(trainport,0.0,(1.0 - trainport)), random=mode) 
     
        mlp = MLPRegressor(activation=acti,  
                           alpha=alph, 
                           hidden_layer_sizes=(nh),  
                           random_state=3249, 
                           solver=solv, 
                           batch_size = batch) 
     
        mlp.fit(X_train, Y_train) 
 
        m_numberofdata = X_train.shape[0] 
 
        nh = nh if isinstance(nh, tuple) else (nh,) 
         
        p_complexity = (nh[-1] + 1) * Y_train.shape[1] 
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        for x in range(len(nh)-1): p_complexity = p_complexity + (nh[x] + 1) * nh[x + 
1] 
        p_complexity = p_complexity + (X_train.shape[1] + 1) * nh[0] 
 
        H_train = mlp.predict(X_train)  
        H_test = mlp.predict(X_test)  
 
        rsq_train = mlp.score(X_train, Y_train) 
        rsq_test = mlp.score(X_test, Y_test) if trainport < 1.0 else float('nan') 
     
        rmse_train = sqrt(mean_squared_error(Y_train, H_train)) 
        rmse_test = sqrt(mean_squared_error(Y_test, H_test)) 
 
        aic_train = m_numberofdata * log(rmse_train) + 2 * p_complexity 
        aic_test = m_numberofdata * log(rmse_test) + 2 * p_complexity 
 
        amari = m_numberofdata / p_complexity 
 
        end = time.time() 
     
        res = ",".join([str(name), 
                        "Randomized" if mode else "Sequential", 
                        str(trainport), 
                        repr(nh), 
                        str(solv), 
                        str(alph), 
                        str(acti),                        
                        str(mlp.n_iter_), 
                        '%.4f' % (end - start), 
                        '%.4f' % rsq_train,  
                        '%.4f' % rsq_test, 
                        '%.4f' % rmse_train, 
                        '%.4f' % rmse_test, 
                        '%.4f' % aic_train, 
                        '%.4f' % aic_test, 
                        '%.4f' % amari,]) 
 
        return mlp, res 
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thedata.py 

import pandas as pd 
import numpy as np 
 
class TheData: 
    def __init__(self, filePath, nameId, batchSize, colstart, xcolcount, normalize = 
True): 
        self.file = filePath 
        self.name = nameId 
        self.batch = batchSize 
 
        df = pd.read_csv(filePath).iloc[:,colstart:] 
        data = np.array(df, dtype=float) 
        self.Xraw = data[:,0:xcolcount] 
        self.Yraw = data[:,xcolcount:] 
        self.Xmeans = self.Xraw.mean(axis=0) 
        self.Ymeans = self.Yraw.mean(axis=0) 
        self.Xstds = self.Xraw.std(axis=0) 
        self.Ystds = self.Yraw.std(axis=0) 
        if normalize: 
            self.Xnorm = (self.Xraw - self.Xmeans) / self.Xstds 
            self.Ynorm = (self.Yraw - self.Ymeans) / self.Ystds 
 
    def Restandardize(self, newXmeans, newXstds, newYmeans, newYstds, haveTargets = 
True): 
        self.Xmeans = newXmeans 
        self.Ymeans = newYmeans 
        self.Xstds = newXstds 
        self.Ystds = newYstds 
        self.Xnorm = (self.Xraw - self.Xmeans) / self.Xstds 
        if haveTargets: 
            self.Ynorm = (self.Yraw - self.Ymeans) / self.Ystds 
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use_ann.py 

import sys 
import pandas as pd 
import pickle 
import os 
 
from thedata import TheData 
 
trainDataPath = str(sys.argv[1]) # training data full path, example: 
'F:\Temporary\trainingdata' 
regionDataPath = str(sys.argv[2]) # region data full path, example: 
'F:\Temporary\WholeBuffers\WholeBuffers' 
annPath = str(sys.argv[3]) # ann serialization full path, example: 
'F:\Temporary\pass1.sav' 
fname =  str(sys.argv[4]) # ann result table full path, example: 
'F:\Temporary\annrun.csv' 
 
colstart = 2 
xcolcount = 13 
 
trainData = TheData(trainDataPath, os.path.basename(trainDataPath), 500, colstart, 
xcolcount) 
regionData = TheData(regionDataPath, os.path.basename(regionDataPath), 500, colstart, 
xcolcount, False) 
 
regionData.Restandardize(trainData.Xmeans, trainData.Xstds, trainData.Ymeans, 
trainData.Ystds, False) 
 
ann = pickle.load(open(annPath, 'rb')) 
Hnorm = ann.predict(regionData.Xnorm) 
H = Hnorm * trainData.Ystds + trainData.Ymeans 
 
returns = pd.read_csv(regionDataPath).iloc[:,:(colstart+3)] 
returns['main']=H[:,0] 
returns['trib']=H[:,1] 
returns['overland']=H[:,2] 
 
returns.to_csv(fname, index=False) 
 
print("The ANN-generated return flow has been written into " + fname) 
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Appendix C MLPSO Implementations 

C.1 MLPSO Framework 

Mutation linear particle swarm optimization (MLPSO) implemented in this study uses 

following constrained optimization framework: 

find 𝒙∗ ∈ 𝑆 ⊂ ℝ𝑑  such that ∀𝒚 ∈ 𝑆, 𝑓(𝒙∗) ≤ 𝑓(𝒙), 
𝒗𝑡+1𝑖 = 𝜂(𝒙𝑡𝑖 , 𝒗𝑡𝑖 , 𝒑𝑡𝑖 , 𝑇𝑡𝑖) 
𝒙𝑡+1𝑖 = 𝜉(𝒙𝑡𝑖 , 𝒗𝑡+1𝑖 ) 

𝒑𝑡+1𝑖 = {𝒙𝑡+1𝑖 if 𝑓(𝒙𝑡+1𝑖 ) < 𝑓(𝒑𝑡𝑖) and 𝒙𝑡+1𝑖 ∈ 𝑆𝒑𝑡𝑖 otherwise  

𝒗𝑡+1𝑖 = 𝜔𝒗𝑡𝑖 + 𝜑1𝑅1𝑡𝑖 (𝒑𝑡𝑖 − 𝒙𝑡𝑖) + 𝜑2𝑅2𝑡𝑖 (𝒈𝑡𝑖 − 𝒙𝑡𝑖) + 𝑁(0, 𝝈) 
𝒙𝑡+1𝑖 = 𝒙𝑡𝑖 + 𝒗𝑡+1𝑖  

∀𝑗 ∈ {1, … , 𝑑}, 𝜎𝑖,𝑗 = {𝑐‖𝑁(0, 𝜸)‖ if 0 ≤ ‖𝒗𝑡+1𝑖 ‖ < 𝛾𝑡𝑖,𝑗𝑐‖𝒗𝑡+1𝑖 ‖ otherwise  

𝛾𝑡+1𝑖 = {  
  2𝛾𝑡𝑖 if 𝑠𝑡𝑖 > 𝑠𝑚𝑖𝑛 𝑎𝑛𝑑 𝛾𝑡𝑖 < 𝛾𝑚𝑎𝑥  0.5𝛾𝑡𝑖 if 𝑓𝑚𝑖𝑛 < 𝑓𝑡𝑖 < 𝑓𝑚𝑎𝑥  and ‖𝒗𝑡𝑖‖ < 𝛾𝑡𝑖2𝛾𝑡𝑖 if 𝑓𝑡𝑖 > 𝑓𝑚𝑎𝑥  and 𝛾𝑡𝑖 < 𝛾𝑚𝑎𝑥 and mod(𝑡, 𝑞) = 0𝛾𝑡𝑖 otherwise  

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑡𝑖,𝑗 ≤ 𝑥𝑚𝑎𝑥 

with velocity limiting function: 

∀𝑗 ∈ {1,… , 𝑑}      𝑣𝑡𝑖,𝑗∗ = max(min(𝑣𝑡𝑖,𝑗,  𝑣𝑚𝑎𝑥) , 𝑣𝑚𝑖𝑛) 
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where 

𝑆  : 𝑑-dimensional search space and a subset of ℝ𝑑 Euclidean space 𝑥𝑡𝑖,𝑗, 𝑣𝑡𝑖,𝑗 : 𝑗-th element of vector 𝒙 and 𝒗, respectively, of the 𝑖-th particle at time step 𝑡 𝒙𝒕𝒊 , 𝒗𝒕𝒊 , 𝒑𝒕𝒊 , 𝒈𝒕𝒊 : position, velocity, personal best, neighborhood best vectors, respectively, of the 𝑖-th particle at time step 𝑡 𝒙∗ : final global best position vector 𝑇 : topology set of the 𝑖-th particle at time step 𝑡 𝑓(∙) : optimization cost function 𝜂(∙) : velocity update function 𝜉(∙) : position update function 𝑓(∙) : optimization cost function 𝜔 : inertia coefficient 𝜑1 : personal learning coefficients 𝜑2 : social learning coefficients 𝑖 : particle index 𝑗 : vector component (dimension) index  𝑡 : time step 𝑅 : random matrix, where 𝑟 = [0,1] 𝑁 : normal distribution with mean 𝜇 and variance 𝜎 𝛾 : MLPSO throttle variable 𝑠𝑡𝑖, 𝑓𝑡𝑖  : number of successive successful or failed iterations, respectively ‖∙‖ : norm operator 𝑞 : cycle number 
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C.2 MLPSO Development 

The MLPSO code developed on C# 6.0 language through Visual Studio 2019 integrated 

development environment (IDE). The target platform is .NET framework 4.7.2. The code is 

developed in an object-oriented programming (OOP) fashion. This program rely on MODSIM 

8.4.5 dynamic link libraries (DLLs), which serve as the means to interact with MODSIM files, 

i.e., MODSIM input files (*.xy) and MODSIM output files (*.mdb). The time taken to tun a 

MODSIM model is in the order of seconds to minutes. Because of the total computation time 

needed to run an MLPSO-enhanced MODSIM is significant when working with hundreds of 

iterations and dozens to hundreds of particles, parallelization is necessary. 

Direct parallelization, which resulting only in one executable file (EXE) that generates 

multiple processes or threads, is prohibited by MODSIM libraries. Direct parallelization has been 

tried and tested, however produced inconsistent results. The reason to this behavior when using 

direct parallelization is still unknown. In this study, a fork-join model is taken, where the core 

EXE initializes particles, serializes the particles, and then instruct EXE applets to deserialize 

each particle, interact with MODSIM files, and return by saving a serialized return value for the 

core EXE that its process has been completed. The core EXE then deserialize the applet 

information to update the state of the swarm. Presented in Figure 57 is the general flowchart of 

the model. 

As mentioned in Chapter 4, the application of Fuzzy-MLPSO in LARB involves the use of 

weighted combination to calculate optimization cost function. The use of such weighted 

combination results in the storage and shortage values dependent on the weight values assigned. 

In addition to the results presented in Chapter 4, Figure 56 shows the comparison of shortage and 

new storage account size in the LARB Fuzzy-MLPSO implementation study as the result of 
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variable cost weight values along with its smoothed trendline and confidence interval. It is 

shown that generally, the shortage decreases in the increase of storage account size, up to a point 

where the further increase in storage account size increase provides minimal merit to the 

decrease of shortage. 

 

Figure 56. Shortage vs new storage account size in the LARB Fuzzy-MLPSO implementation study as the 

result of variable cost weight values. 
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Figure 57. General flowchart of the fork-join MLPSO model. 

C.3 MLPSO Code 

The MLPSO code is developed in a solution with three projects: MLPSO.Core, 

MLPSO.Applet, and MLPSO.Utilities. The latter one was compiled as a DLL, while the first two 

were compiled as EXEs that refer to the DLL. The same project framework is used for both 

LARB Fuzzy-MLPSO and Tripa MLPSO. The only differences were the solution and project 

naming, where the location application precedes the naming scheme of the project, and the 

specialized sub-namespace where the classes for location specific functionalities grouped 

together. In Figure 58, ArkFMLPSO code is shown, where the project names denoted that the 
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solution is for MLPSO applied in the Lower Arkansas River Basin that includes fuzzy rule 

functionalities. Shown as well, the sub-namespace showing classes that specialized for working 

with LARB only.  

 

Figure 58. Screenshot of ArkFMLPSO code structure and working GUI. 


