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ABSTRACT 
 
 
 

USING DATA SCIENCE TO UNDERSTAND PSYCHOSOCIAL DETERMINANTS OF HEALTH 

BEHAVIORS 

 

Data science allows researchers to transform raw data into knowledge by combining technology 

and computer science skills with statistical and mathematical skills. Data scientists in academic research 

need substantive expertise in a particular field to help guide research questions, select proper 

measurement and analytical approaches, and help them understand the potential mechanisms and meaning 

underlying research findings. Further, having substantive expertise in health will enhance the collective 

knowledge regarding the relationships between exposures and chronic disease outcomes.  

This dissertation provides concrete examples of data science’s three areas of knowledge: 1) 

Substantive Expertise; 2) Technology & Computer Science; and 3) Statistics & Math to inform the 

collection, management, analysis, and interpretation of data related to unmodifiable and modifiable 

determinants of health (e.g. psychosocial determinants), health behaviors, and chronic disease. 

 This dissertation focuses on the substantive areas of chronic disease, health behaviors, and 

psychosocial and unmodifiable determinants of health behaviors, and demonstrates how these areas relate 

to one another to ultimately improve human health. Chronic diseases, such as cardiovascular disease, type 

2 diabetes, and metabolic syndrome, negatively affect society by decreasing quality of life, causing 

negative short- and long-term health outcomes, and creating significant financial and social burdens. 

Reducing the burdens associated with these diseases requires a clear understanding of which variables 

predict the development, progression, and comorbidities associated with these largely preventable 

diseases. 

 Most of these diseases can be prevented by addressing behavioral risk factors, including weight 

status, physical activity/inactivity, sedentary behavior, and sleep. An individual’s weight status and their 

physical activity participation predict cardiovascular disease-related outcomes and risk factors. Type 2 
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diabetes and metabolic syndrome are related to longer-term exposure to physical inactivity and sedentary 

behavior. Sleep disturbances and acute sleep deprivation increase the risk for cardiovascular disease and 

negative metabolic outcomes. Each of these health behaviors also interact with one another, resulting in 

potentially synergistic effects on chronic disease risk. Understanding health behaviors can help unravel 

the complex relationships among these health behaviors and chronic disease risk, and can potentially 

determine the dose of health behaviors required to confer positive health outcomes.  

 Improving health outcomes via changes in health behaviors also requires an understanding of 

how psychosocial determinants, such as stress, motivation, and action planning, relate to health behaviors. 

Psychosocial stress directly affects disease risk via physiological mechanisms, and indirectly affects 

disease risk through effects on physical activity and sleep behaviors. Greater psychosocial stress 

corresponds with worse chronic disease outcomes, less physical activity, and poorer sleep quality, and 

there is a reciprocal relationship between stress, physical activity, and sleep. More autonomous forms of 

motivation correspond with greater physical activity and more controlled forms of motivation correspond 

with lesser physical activity. Action planning significantly predicts physical activity and may close the 

gap between individuals’ motivations, intentions, and behaviors. Each of these psychosocial determinants 

uniquely affect health behaviors and health outcomes.  

 Unmodifiable determinants, including age, sex, and race/ethnicity may correlate with or predict 

psychosocial determinants of health, health behaviors, and health outcomes. Proper statistical knowledge 

allows researchers to examine the direct and/or moderating effects of age, sex, and race/ethnicity in 

affecting the relationships between health behaviors and health outcomes, and properly examining these 

effects will allow researchers a more in-depth understanding of these relationships. As such, the health 

sciences can greatly benefit from data scientists who can combine their technological and statistical skills 

with substantive expertise to inform a clearer understanding of the relationships between unmodifiable 

and psychosocial determinants of health, health behaviors, and health outcomes. 

Chapter 3 provides examples of how having expertise in health, along with technological skills, 

will enhance research. Study 1 demonstrates how technological skills enabled the development of a 
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Research Electronic Data Capture (REDCap) project that successfully increased the efficiency of data 

collection, improved data management and quality control/assurance, and accommodated the reporting 

needs and research goals of Colorado State University’s Firefighter Testing Program (FTP), which is an 

ongoing, longitudinal program that captures data in Colorado firefighters related to psychosocial 

determinants of health, fitness, and cardiovascular disease risk. We found that migrating the FTP from 

paper-based data capture to REDCap required 15 months of project development, with subsequent field-

testing and ongoing data collection resulting in continued changes to the FTP REDCap project. While this 

study primarily demonstrates technological skills, it is also shows how substantive expertise and 

statistical knowledge informed the FTP REDCap project.  

Study 2 demonstrates how technology can be used to study health behaviors, and the purpose was 

to compare activPAL algorithm-estimated values for time in bed (TIB), wake time (WT) and bed time 

(BT) against self-report and the van der Berg algorithm. Baseline data from the Community Activity for 

Prevention Study were used. We used mixed-effects models, Bland-Altman plots, and equivalence tests to 

compare between TIB, WT, and BT values for all three methods. The activPAL algorithm was not 

equivalent to self-report (t(1084)=3.41, 90% CI [0.64, 0.91], p=1.00) or the van der Berg algorithm 

(t(982)=4.91, 90% CI [0.74, 0.97], p=1.00) in estimating TIB, but was equivalent to self-report for 

estimating BT (t(1143)=2.06, 90% CI [-0.47, -0.21], p=.02), and was equivalent to the van der Berg 

algorithm for estimating WT (t(986)=-2.69, 90% CI [0.21, 0.43], p<.01). The van der Berg algorithm was 

equivalent to self-report for TIB days (t(990)=6.11, 90% CI[-0.20, 0.015], p<.01), WT (t(1001)=-8.57, 

90% CI [0.07, 0.21], p<.01), and BT (t(1124)=-4.17, 90% CI [0.16, 0.35], p<.01). Errors in the activPAL 

algorithm occurred when individuals participated in substantial lying down behaviors prior to BT or after 

WT. Overall, activPAL users can start taking advantage of the new algorithm, which enhances the utility 

of using the activPAL for examining 24-hour movement patterns in free-living individuals. Study 2 

demonstrates how knowledge of technology can be leveraged to measure health behaviors and substantive 

expertise can be used to inform the interpretation of health behavior data.  



 

v 

Chapter 4 provides examples of combining statistical skills with substantive expertise to examine 

the relationships among unmodifiable and psychosocial determinants of health behaviors. Study 3 

examined the longitudinal relationships between sex, race/ethnicity, autonomous motivation, controlled 

motivation, and PA planning with PA participation. We used data from Waves 2 (W2) through 7 (W7) of 

the NEXT Generation Health Study (NEXT), a nationally representative cohort study of U.S. 10th graders 

(N=2785). A two piece growth model indicated that PA declined from W2–W4 (b=-0.285, p<.001) and 

W4–W7 (b=-0.125, p=.042). Being female (b=-0.786, p<.001), or African American (b=-0.542, p=.001) 

or Hispanic (b=-0.501, p=.034) was associated with less PA at W2 compared to being male or White, 

respectively. Increased autonomous motivation was associated with higher PA (b: 0.196-0.384, p<.001). 

PA planning varied significantly between individuals and significantly predicted PA (b=0.445, p<.001). 

Controlled motivation was not significantly associated with PA. Our findings indicated that the 

adolescent-to-adult transition is characterized by transient changes in PA, suggesting this may be an 

appropriate timeframe for addressing PA.  

Specifically, study 4 combines technological and statistical skills with substantive expertise to 

examine psychosocial determinants of health behaviors. The purpose of the study was to characterize 

firefighters’ acute stress and tiredness and between- and within-person variability in stress and tiredness 

by duty status using a smartphone-based approach to ecological momentary assessment (EMA) in a 

convenience sample of 39 firefighters. EMA data were analyzed using mixed-effects location scale 

models. Firefighters’ lowest stress levels were when off-duty (𝛽𝛽=16.27) and their highest stress levels 

were when on-duty (𝛽𝛽=24.47). Within-subject effects of duty status accounted for a larger proportion of 

variability for all duty types except when “on night/off day”. Firefighters’ lowest tiredness levels were 

when off-duty (𝛽𝛽=24.71) and their highest levels were when on-duty (𝛽𝛽=32.18). Within-subject effects of 

duty status accounted for a larger proportion of variability in tiredness for all duty types. We concluded 

that firefighters’ more similar experiences to one another when they are on-duty might account for greater 

similarity in their stress and tiredness outcomes when on- versus off-duty.  
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These studies demonstrate how technological and statistical skills, paired with substantive 

expertise in health sciences can inform the collection, management, analysis, and interpretation of data 

related to unmodifiable and psychosocial determinants of health, health behaviors, and health outcomes. 

They also demonstrate how these skills can be applied to research in a variety of populations, as well as to 

research using various methodological and statistical approaches. Finally, these studies demonstrate that 

all three skills are needed to conduct effective and meaningful research studies, and how substantive 

expertise in a particular field, like the health sciences, provides a necessary foundation to employ 

technological and statistical skills in a meaningful way. Overall, this dissertation supports the assertion 

that we should intentionally foster the development of data scientists within the health sciences and 

capitalize on data scientists’ skills to promote progress in research, clinical practice, and public health, 

with the long-term goal of improving human health.   
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CHAPTER 1 – INTRODUCTION TO DATA SCIENCE 
 
 
 

“The ability to take data – to be able to understand it, to process it, to extract value from it, 
to visualize it, to communicate it – that’s going to be a hugely important skill in the next 
decades.” – Dr. Hal Varian, Chief Economist at Google and Professor at University of 
California Berkeley (Varian, 2009)  
 
D.J. Patil and Jeff Hamerbacher coined the term “data scientist” in 2008, and the Harvard 

Business Review wrote an article in 2012 referring to data scientist as the sexiest job of the 21st century 

(Davenport & Patil, 2012). The increasing number of online courses with an emphasis on data science 

reflects the popularity of data science as a career; for example, a cursory search for “data science” courses 

in the online platform Coursera resulted in 875 matches (Coursera, 2019). The number of data science 

courses, specializations, and graduate degree certificates and programs offered by universities also 

continues to increase (Columbia University, 2018; Mobilize Center, 2019a; University of Florida, 2019; 

Worcester Polytechnic Institute, 2019). Despite the wide-spread adoption of the term “data scientist” and 

the growing popularity of data science as a career, little consensus exists regarding the definition of what 

makes an individual a data scientist (Davenport & Patil, 2012). The Harvard Business Review defines 

data scientists as “high-ranking professional(s) with the training and curiosity to make discoveries in the 

world of big data” (Davenport & Patil, 2012). The National Institutes of Health (NIH) defines data 

science as “the interdisciplinary field of inquiry in which quantitative and analytical approaches, 

processes, and systems are developed and used to extract knowledge and insights from increasingly large 

and/or complex sets of data” (National Institutes of Health, 2018). Wickham and Grolemund describe 

data science as “an exciting discipline that allows you to turn raw data into understanding, insight, and 

knowledge” (Wickham & Grolemund, 2017). Each of these definitions emphasizes data science as a field 

in which data, paired with curiosity or inquiry, allows individuals to uncover knowledge and insights 

about the world. The question is: How do data scientists transform data into knowledge? 

 Data scientists typically transform data into knowledge using analytical techniques like data 

mining or machine learning. They often work in the private sector for large tech companies like Google, 
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LinkedIn, and Uber, using their technological and statistical skills to transform data into knowledge about 

consumer behaviors, knowledge used to inform business processes, investments, and production 

decisions. However, widespread recognition exists regarding the ability for data science to transform a 

multitude of industries beyond the tech-space, including retail, telecommunications, agriculture, health, 

and the penal system (Bowne-Anderson, 2018). The NIH recognizes the value of data science and 

emphasizes the need to train data scientists capable of using Big Data to inform the advancement of 

scientific research, particularly in the field of biomedical sciences (National Institutes of Health, 2019). 

The NIH’s recognition of the value data science can provide for advancing scientific research led to the 

growing presence of data scientists in academic research. The NIH’s decision to fund a series of Big Data 

to Knowledge (BD2K) Centers of Excellence across the U.S. accounts for a large proportion of the 

growth of data scientists in academic research. 

The NIH funded the BD2K Centers for the purpose of developing new analytical approaches, 

methods, software tools, etc. for advancing the Science of Big Data (National Institutes of Health, 2019). 

These centers use data science for a wide range of academic disciplines (National Institutes of Health, 

2019). For example, Stanford’s Mobilize Center uses data science for biomechanical modeling, 

behavioral and social modeling, statistical learning, and integrative modeling and prediction (Mobilize 

Center, 2019a). The results of these data science efforts inform mobility-related health applications, 

including cerebral palsy clinical planning, gait rehabilitation research, and weight management through 

physical activity (Mobilize Center, 2019b). The University of Florida’s Data Science Research Lab uses 

data science to generate predictive models and identify important physiological markers of health to 

facilitate patient care in perioperative environments (University of Florida College of Medicine, 2019). 

Other BD2K Centers use data science to identify causal relationships between biomedical variables and 

health outcomes, to harness the power of mobile sensors (i.e. smart watches, accelerometers, GPS, etc.) to 

provide insights into health conditions like drug addiction, smoking, and obesity, and to develop and 

validate biomarkers for use in research (MD2K, 2019). Each of these centers uses database management 

systems, machine or deep learning algorithms, probabilistic modeling, and data mining, along with other 
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approaches, to process, extract meaning from data, and identify significant relationships between 

variables to inform research.  

Extracting meaningful knowledge from data is a primary goal of data scientists. However, 

achieving this goal requires substantial investment in managing and cleaning data. Data scientists use 

approximately 80% of their time finding, cleaning, and/or organizing data (Bowne-Anderson, 2018; 

Crowdflower, 2016). Properly managing and cleaning data is important because data scientists (and all 

researchers) cannot trust analytical outcomes until data have been properly cleaned and quality assured. 

Unfortunately, data management is not particularly enjoyable, with 57% of data scientists indicating that 

the least enjoyable part of their job is cleaning and organizing data (Crowdflower, 2016). The good news 

is that there is a light at the end of the tunnel, because data scientists are using their technical skills, such 

as their knowledge of machine learning, to build automated approaches for cleaning and organizing data 

(Bowne-Anderson, 2018). This automation will remove much of the drudgery from data scientists’ day-

to-day tasks, but it also leads to the question: 1) Are data scientists automating their jobs into 

obsolescence?  

No, they are not; rather, this automation allows data scientists to capitalize on their other skills, 

such as the ability to interpret and communicate the meaning underlying data findings. Many data 

scientists argue that increased automation of data management tasks shifts an emphasis away from data 

scientists needing to know specific techniques, like how to clean and organize data or how to build and 

use deep learning infrastructures, towards their skills related to rapid, independent learning and 

communicating data findings (Bowne-Anderson, 2018; Davenport & Patil, 2012). Davenport and Patil 

support the value of these skills over technical skills, stating:  

“More enduring will be the need for data scientists to communicate in a language that all 
their stakeholders understand and to demonstrate the special skills involved in storytelling 
with data, whether verbally, visually, or – ideally – both.” (Davenport & Patil, 2012)  
 

The ability to communicate what data means requires knowledge beyond technology/computer science 

and statistics/math. Understanding the meaning underlying data and communicating said meaning 

requires data scientists to possess substantial expertise in a specific field. Wickham and Grolemund 
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acknowledge this need for substantive expertise through their conceptualization of data scientists as 

combining three areas of knowledge: 1) Substantive Expertise in a particular field; 2) Technology & 

Computer Science; and 3) Statistics & Math (Wickham & Grolemund, 2017).  

 

 

Possessing substantive expertise in a field is particularly important for data scientists working in 

academic research. Industry-based data scientists may be successful by only employing their 

technological and statistical skills, typically acting as number crunchers for senior executives and other 

decision-makers. Academic data scientists cannot rely solely on said skills; rather, they require 

substantive expertise to support their research. Substantive expertise in a given field guides the questions 

academic data scientists ask, how they measure outcomes, and the analytical approaches they use to 

understand research outcomes. Substantive expertise also allows academic data scientists to identify 

potential mechanisms (i.e. physiological or psychological) underlying the relationships they discover. 

Perhaps more importantly, substantive expertise allows academic data scientists to identify when the 
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Technology 
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Figure 1. Data scientists' three areas of knowledge 
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relationships they identify do not make sense from a theoretical, conceptual, and/or physiological 

perspective. This knowledge of the theoretical underpinnings or physiological mechanisms driving a 

discovered relationship is necessary for informing future research and interventions. Additionally, this 

substantive knowledge provides academic data scientists with the necessary expertise to communicate the 

meaning underlying data outcomes. Overall, academic data scientists require substantive expertise in a 

field, not just technological or statistical expertise. Indeed, many examples exist regarding significant 

findings discovered by mining Big Data, findings that, while statistically meaningful, are practically 

meaningless or theoretically unsound.  

For example, through data mining, data scientists found that Miss America’s age correlates 

almost perfectly with the number of murders committed by steam, hot vapors, and hot objects across time, 

and that the S&P 500 Index correlates with butter production in Bangladesh, accounting for 99% of the 

variation in Bangladesh’s butter production (Piatetsky & Rajpurohit, 2014). While these findings may 

appear interesting or intriguing, they also seem odd, inexplicable, or even false. They are, in fact, false, 

and occurred because of data scientists committing one of the cardinal sins of data mining, namely, 

‘overfitting the data’ (Piatetsky & Rajpurohit, 2014). Overfitting data occurs when researchers test too 

many hypotheses or, in the case of data mining, allow for the presence of too many potential correlations, 

eventually leading to interesting but spurious findings. This results in inaccurate or misleading findings 

and bolsters already-existing public distrust of scientists and their research (Resnick, 2017). These 

examples demonstrate how technological and statistical knowledge may be insufficient foundations upon 

which to build meaningful knowledge – the true goal of data science. They also demonstrate the need for 

substantive expertise to explain data-driven phenomena. Successfully communicating with others about 

data findings requires substantive expertise in the field and the ability to identify when findings are 

meaningful, but what is meaningful? 

The question of ‘what is meaningful’ underlies the NIH’s interest in promoting the development 

and training of data scientists. Specifically, the NIH’s promotion of data science and the development of 

an academic data science work force comes in part from the recent ‘replication crisis’, in which the 
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findings from previous landmark studies have proven unrepeatable, a crisis resulting in public distrust of 

science, scientists, and the research process (National Institutes of Health, 2018; Resnick, 2017). For 

example, a paper in Science attempting to replicate 100 findings published in psychology journals found 

that only 39% could be replicated (Loken & Gelman, 2017). In economics research, only 60% could be 

replicated (Resnick, 2017). The typical scientific definition of ‘what is meaningful’ likely underlies this 

replication crisis. John Ioannidis stated that:  

“the high rate of non-replication (lack of confirmation) of research discoveries is a 
consequence of the convenient, yet ill-founded strategy of claiming conclusive research 
findings solely on the basis of a single study assessed by formal statistical significance, 
typically for a p-value less than 0.05” (Ioannidis, 2005).  
 

Emphasis on the p-value as the metric for qualifying research findings as “meaningful” continues to be 

scrutinized, because a given p-value does not indicate whether or not a finding is truly meaningful. 

Rather, finding a statistically significant p-value, such as p<.05, only indicates that the findings in a study 

are likely to generalize to the broader population and, simultaneously, indicates that the findings likely 

did not arise due to chance, in which case they would not be generalizable to the population in question 

(Geher, 2016). Indeed, Ioannidis argues that the replication crisis could be due to the penchant of 

researchers to focus on the claims of one research study, simply because said study found a statistically 

significant p-value for a given relationship, without considering other studies examining the same 

outcome (Ioannidis, 2005). Focusing on the outcomes of one study is inherently problematic because 

probability dictates that one set of researchers may falsely find a significant relationship when a true 

relationship doesn’t exist, and if the scientific community happens to focus on that one false study, it 

leads to false assumptions regarding the relationship between variables (Ioannidis, 2005). Such 

assumptions can lead researchers down a false trail and/or prevent them from pursuing more fruitful 

research questions. Well-trained data scientists recognize these limitations of using p<.05 to indicate 

statistical significance, and recognize that statistical significance does not reflect the actual 

meaningfulness of outcomes. However, if data scientists and researchers cannot rely on p<.05 to indicate 

whether results are meaningful, what metric can they use to establish meaningfulness? 
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Some researchers suggest lowering the value for statistical significance from p<.05 to p<.005, a 

move that would increase the likelihood of reproducible results (Resnick, 2017). Such a change makes 

sense from a mathematical perspective because it requires six times stronger evidence, thereby increasing 

the burden of proof scientists should achieve prior to further pursuing a specific research question 

(Resnick, 2017). Meeting this criteria of p<.005 would also require a 70% increase in sample size 

(Resnick, 2017). Critics arguing against this change say it will stifle scientific progress, particularly for 

new researchers with low budgets, and that good researchers know how to follow-up with appropriate 

studies (Resnick, 2017). Critics also argue that this change keeps the scientific community fixated on p-

values, a fixation that fails to indicate whether or not research findings are truly meaningful (Resnick, 

2017). I agree that this fixation on p-values is problematic because it does not answer the question of 

meaningfulness, though decreasing statistical significance to p<.005 does increase the likelihood that 

research findings could be meaningful. For example, the Science paper about the replication crisis found 

that studies yielding results with p-values <.01 were more likely to be replicated (Loken & Gelman, 2017; 

Resnick, 2017). It may be more appropriate to shift away from focusing on p-values towards other 

measures of meaningfulness, like effect size or clinical significance. Indeed, many researchers argue in 

favor of examining effect sizes or clinical significance to identify meaningful research findings (Johnson, 

1999; Leung, 2001; Nakagawa & Cuthill, 2007; Page, 2014; Resnick, 2017; Sullivan & Feinn, 2012). 

Identifying findings as being clinically meaningful typically means that the smallest expected 

change in the outcome is sufficient or important enough that it would change patient management (Kazis, 

Anderson, & Meenan, 1989; Leung, 2001; Page, 2014). Clinical meaningfulness also requires balancing 

beneficial and harmful changes – like balancing statin-related improvements in low density lipoprotein 

(LDL) cholesterol levels with statin-related side effects, such as difficulty sleeping or muscle aches 

(Kazis et al., 1989; Leung, 2001; Page, 2014). Clinical meaningfulness strongly relates to effect size, with 

effect size indicating the magnitude of difference or change between two groups that is accounted for by a 

drug, intervention, or other variable (Kazis et al., 1989; Sullivan & Feinn, 2012). Researchers can use 

several indices to quantify effect size, including Cohen’s d, odds ratios, relative risk, and the r2 coefficient 
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of determination (Kazis et al., 1989; Sullivan & Feinn, 2012). Using effect size helps researchers and 

clinicians quantify the meaningfulness of outcomes; whereas, the p-value only provides information 

regarding whether an effect likely exists (Kazis et al., 1989; Sullivan & Feinn, 2012). For example, a 

study might find a statistically meaningful decrease in blood pressure levels among individuals who meet 

physical activity recommendations; however, the effect of meeting physical activity recommendations 

could be small, perhaps only decreasing blood pressure by 1 mm mercury (Hg). Such an effect would 

likely be considered practically or clinically meaningless, despite being statistically significant. In 

contrast, if a study found a 10 mm Hg decrease in blood pressure related to meeting physical activity 

recommendations that would represent a much larger effect size and clinically meaningful change in 

blood pressure. Gene V. Glass understood the value of effect size when interpreting research outcomes, 

stating that:  

“Statistical significance is the least interesting thing about the results. You should describe 
the results in terms of measures of magnitude – not just, does a treatment affect people, but 
how much does it affect them.” (Sullivan & Feinn, 2012) (Emphasis added)  

 
However, not all scientists agree with focusing entirely on effect sizes (Ioannidis, 2005). Ioannidis states 

that the presence of too large of effect sizes likely indicates large bias in a study, and suggests that 

researchers should consider whether errors in their data collection or analyses resulted in such large effect 

sizes (Ioannidis, 2005). Ioannidis’ argument supports the need for data scientists to be capable of 

providing plausible explanations for their findings and not to take findings at face-value. This need exists 

regardless of whether scientists use p-values, effect sizes, or another metric to identify whether research 

findings are meaningful. Data scientists with substantive expertise in a specific field of study possess the 

necessary skills to identify plausible explanations underlying research outcomes and to understand the 

differences between p-values and effect sizes. These skills provide substantial value because they help 

inform the progression of research based on a nuanced understanding of a specific scientific field and 

statistical analyses and outcomes. These skills also make data scientists uniquely positioned to identify 

meaningful research findings and to communicate them to researchers, clinicians, and the general public. 
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 Over the past decade, dramatic changes in technology and statistics, combined with the Big Data 

revolution, fostered the growth of data science and the need for well-trained data scientists. The Big Data 

revolution provides researchers with access to massive quantities of data across of a variety of fields, 

including genetics, clinical studies, electronic medical records, and observational data collected from 

wearable devices, like smartwatches, fitness trackers (i.e. Fitbit or Apple Watch), and so forth. The large 

quantity of data encompassing a variety of fields provides researchers with the unique opportunity of 

identifying previously unknown relationships that may have the capacity to improve the human condition 

and inform the progress of scientific research. However, analyzing Big Data does not automatically result 

in identifying meaningful scientific outcomes. As previously mentioned, mining Big Data can result in 

identifying spurious or meaningless relationships, and data scientists who are solely capable of employing 

technological and/or statistical skills without the necessary substantive expertise may undermine the 

inherent value of Big Data, thus wasting the opportunities it affords to improve the human condition. This 

reinforces Davenport and Patil’s acknowledgment that data scientists’ technological and statistical skills 

may prove to be less enduring than their ability to communicate research findings in a meaningful way 

(Davenport & Patil, 2012), an ability that is largely dependent upon data scientists’ substantive expertise 

in a given field. Data scientists with substantive expertise provide the best opportunity for harnessing the 

power of Big Data and advances in technology and statistics for improving the human condition.  

The health sciences represent a field that should capitalize on data scientists’ technological and 

statistical abilities for the purpose of improving human health, such as by reducing chronic disease risk. 

Data scientists with substantive expertise in health behaviors and chronic disease can use data captured 

via electronic medical records, wearable devices, and smartphone-based assessments, among others, to 

enhance collective knowledge regarding the relationships between psychosocial determinants of health, 

health behaviors, and chronic disease. Such data scientists can combine their substantive expertise in 

health behaviors and outcomes with their technological and statistical skills to identify meaningful 

outcomes that can inform how researchers, clinicians, and the general public think about health. These 

data scientists can inform future research studies, interventions, clinical practice, and public health 
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recommendations to improve human health and reduce chronic disease risk. As such, we should 

intentionally foster the development of data scientists within the health sciences and capitalize on data 

scientists’ skills to promote progress in research, clinical practice, and public health, and to enhance 

human health outcomes.    

This dissertation provides examples of combining data scientists’ three areas of knowledge: 1) 

Substantive Expertise; 2) Technology & Computer Science; and 3) Statistics & Math (Wickham & 

Grolemund, 2017), to inform the collection, management, analysis, and interpretation of data related to 

unmodifiable and psychosocial determinants of health, health behaviors, and health outcomes. Chapter 2 

provides substantive information on chronic disease, health behaviors, and psychosocial and unmodifiable 

determinants of health. Chapter 3 includes two studies using technological and computer science skills. 

Study 1 provides an example of how to use technology and computer science to enhance the management 

and quality control and assurance of health-related data, and Study 2 provides an example of how to use 

technology, specifically an accelerometer/inclinometer, to examine individuals’ health behaviors. Chapter 

4 includes two studies using statistical and mathematical skills. Specifically, study 3 provides a practical 

example of combining statistical and mathematical knowledge with substantive expertise to examine the 

relationships among unmodifiable and psychosocial determinants of health and health behaviors, and 

Study 4 provides a practical example of combining technological and statistical skills with substantive 

expertise to examine psychosocial determinants of health behaviors. The studies in this dissertation 

employ a variety of populations, methodological and statistical approaches, and research outcomes of 

interest, thus demonstrating how data scientists’ skills can inform a multitude of studies in the health 

sciences to increase knowledge, with the long-term goal of improving human health.   
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CHAPTER 2 – SUBSTANTIVE EXPERTISE IN CHRONIC DISEASE, HEALTH BEHAVIORS, AND 

PSYCHOSOCIAL AND UNMODIFIABLE DETERMINANTS OF HEALTH 

 
 
 

Introduction 

Chronic diseases represent a huge public health burden in the United States (U.S.) and globally. 

Many of these diseases, such as cardiovascular disease (CVD), type 2 diabetes mellitus (DM), and 

metabolic syndrome, negatively affect quality of life, short- and long-term health outcomes, and lifespan. 

The significant public health burden associated with CVD, DM, and other non-communicable diseases 

resulted in the World Health Organization (WHO) establishing the goal of reducing: 

“the preventable and avoidable burden of morbidity, mortality and disability due to non-
communicable diseases by means of multi-sectoral collaboration and cooperation at 
national, regional and global levels, so that populations reach the highest attainable 
standards of health and productivity at every age and those diseases are no longer a barrier 
to well-being or socioeconomic development.” (World Health Organization, 2013) 

 
This goal supports the WHO’s vision to create a world free from the burden of non-communicable 

diseases (World Health Organization, 2013). The WHO established nine global targets to help achieve 

this vision, with one target focused on achieving a 25% relative reduction in the risk of premature 

mortality due to CVD, cancer, diabetes, and chronic respiratory diseases (World Health Organization, 

2013). Other targets focus on chronic disease risk factors, such as reducing the prevalence of high blood 

pressure, DM, and obesity (World Health Organization, 2013). Two targets focus on increasing access to 

basic medical care, affordable medications, counseling, etc. (World Health Organization, 2013). Finally, 

four focus on improving health behaviors related to the development of chronic disease, such as reducing 

tobacco use and increasing participation in physical activity (PA) (World Health Organization, 2013). The 

WHO’s recognition of the strong relationship between health behaviors and the risk for CVD, DM, and 

other preventable chronic diseases underlines the importance of acknowledging the role of health 

behaviors in preventing chronic disease and improving overall health.  
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Research indicates that engaging in health promoting behaviors, like PA and healthy eating, and 

avoiding health compromising behaviors, like tobacco use and excessive alcohol use, helps reduce 

chronic disease risk. Health promoting behaviors directly and indirectly reduce chronic disease risk and 

improve risk factors for chronic disease. For example, participating in PA directly reduces the risk for 

DM by promoting cellular glucose uptake, thereby decreasing blood glucose levels and reducing the 

quantity of insulin the pancreas must produce to lower blood glucose levels. PA indirectly reduces the 

risk for CVD, DM, and metabolic syndrome by reducing the risk for overweight/obesity. Researchers, 

interventionists, physicians, and public health professionals need to understand the direct and indirect 

effects of health behaviors to effectively reduce chronic disease risk by targeting these behaviors via 

research studies, interventions, medical care, and public health policies.  

 Understanding the relationship between health behaviors and chronic disease is an import first 

step in combatting chronic disease. However, focusing solely on health behaviors often fails to reduce 

chronic disease risk, requiring additional understanding of the psychosocial determinants of said health 

behaviors. For example, research suggests that psychosocial determinants like stress, motivation, and 

action planning, affect engagement in PA, healthy eating, and other health behaviors. Therefore, 

researchers and public health professionals need to understand the causal relationships among these 

psychosocial determinants, health behaviors, and chronic disease. Finally, understanding these 

relationships also requires knowledge of the role of unmodifiable variables, such as sex, race/ethnicity, 

and age.  

Characterizing how unmodifiable variables, psychosocial determinants, health behaviors, and 

chronic diseases relate to one another requires consideration of the directionality and temporality of these 

relationships, which is achievable by using appropriate statistical models. For example, cross-sectional 

analyses allow researchers to examine how unmodifiable variables, like sex, may moderate the 

relationship between PA participation and chronic disease. Longitudinal analyses allow researchers to 

understand how psychosocial determinants, like motivation, affect PA participation across time, thereby 



 

13 

affecting subsequent chronic disease. Such analyses have the power to inform future research studies, 

interventions, and public health recommendations to reduce chronic disease risk.  

Therefore, the purposes of this chapter are to:  

1. Describe chronic diseases and their effects on human health and society;  

2. Synthesize current knowledge regarding how health behaviors affect chronic disease;  

3. Examine the relationships between psychosocial determinants of health behaviors, health 

behaviors, and chronic disease; and  

4. Identify how unmodifiable variables correlate with or predict psychosocial determinants 

of health, health behaviors, and chronic disease.  

Integrating this information provides the necessary foundation for informing the questions researchers 

ask, as well as for informing the use of technological and statistical approaches for answering questions 

concerning the relationship between psychosocial determinants, health behaviors, and chronic disease. 

Chronic Disease 

Cardiovascular Disease 

CVDs represent the leading cause of death in the U.S. and worldwide (Centers for Disease 

Control and Prevention, 2017a; World Health Organization, 2017). One-in-four deaths in the U.S. are due 

to CVD (Centers for Disease Control and Prevention, 2017a) and, in 2011, CVD was listed as the 

underlying cause of 31.3% of deaths in the U.S. (Mozaffarian et al., 2015; National Center for Health 

Statistics, 2011). Coronary heart disease (CHD) represents the most common type of CVD in U.S., killing 

over 370,000 people annually (Centers for Disease Control and Prevention, 2018), and eliminating all 

forms of CVD could increase life expectancy in the U.S. by almost 7 years (Danaei et al., 2009). CVD 

also accounts for the largest proportion of worldwide deaths due to non-communicable diseases 

(McAloon, Osman, Glennon, Lim, & Hayat, 2016). In 2016, approximately 17.9 million people died from 

CVDs, accounting for 31% of all global deaths, and CVDs account for one-third of premature deaths 

worldwide (World Health Organization, 2017). As such, the World Health Assembly Ministers of Health 

set the goal of reducing premature deaths due to non-communicable diseases by 25% by 2025 (S. C. 
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Smith et al., 2012). Achieving this goal would delay or prevent the number of premature deaths 

attributable to CVDs by millions of people annually (Kontis et al., 2014; S. C. Smith et al., 2012). 

While CVD-related mortality rates are a serious cause for concern, advances in biomedical 

research, emergency response systems, and the treatment and prevention of CVD have lowered mortality 

rates (American Heart Association, 2017). Specifically, from 2000 to 2011, CVD-related mortality rates 

declined by 3.7% yearly, and stroke mortality rates declined by 4.5% yearly (American Heart 

Association, 2017). Age-standardized mortality rates for other cardiovascular and circulatory diseases 

also decreased by 10% to 50% from 1990 to 2016 (Mokdad et al., 2016). Unfortunately, these declines 

have attenuated, decreasing by less than 1% per year since 2011 (American Heart Association, 2017). 

Alarmingly, vulnerable populations show increased CVD mortality rates and, in 2015, overall CVD 

mortality rates increased by 1% – the first increase since 1969 (American Heart Association, 2017). 

Along with threatening mortality, CVD morbidities also threaten public health. 

CVD accounts for a large proportion of morbidities, with 41.5% of Americans having at least one 

CVD condition, such as CHD, cerebrovascular disease, congestive heart failure (CHF), hypertension 

(HTN), rheumatic heart disease, or pulmonary embolism, among others (American Heart Association, 

2017; World Health Organization, 2017). In the U.S., the prevalence of CVD morbidities varies by the 

type of CVD, with HTN representing the most prevalent morbidity, affecting 96.1 million people 

(American Heart Association, 2017). CHD affects 16.8 million people, followed by stroke, CHF, and 

atrial fibrillation (7.5, 5.8, and 5.2 million people, respectively) (American Heart Association, 2017). The 

American Heart Association (AHA) predicts an increased prevalence of CVD-related morbidities over the 

next two decades, projecting that, by 2035, 45% of the U.S. population will have some form of CVD, 

with an additional 43 million people experiencing HTN, CHD, stroke, CHF, and atrial fibrillation 

(American Heart Association, 2017).  

This high prevalence of CVD morbidities represents a significant financial burden, and CVD is 

the most expensive chronic disease in the U.S., costing approximately $555 billion per year (American 

Heart Association, 2017). In contrast, diseases like DM and Alzheimer’s cost $200 billion and $225 
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billion annually, respectively (American Heart Association, 2017). The AHA projects that increasing 

CVD-related expenses over the coming years will surpass the cost for other prevalent chronic diseases, 

like DM and Alzheimer’s, with CVD-related costs increasing to $1.1 trillion by 2035. The Baby 

Boomers’ eminent transition from middle-age into older adulthood (65 years and older) or old age (80+ 

years) account for this dramatic increase in CVD-related costs (American Heart Association, 2017). 

Direct CVD-related medical costs are predicted to increase by 135% from 2015-2035, and indirect costs 

associated with lost productivity at work and at home are projected to increase 55% from 2015-2035 

(American Heart Association, 2017). Current and future CVD-related costs represent a substantial 

financial burden for Americans, particularly for underserved populations; however, financial costs only 

represent part of the concern related to the increased prevalence of CVD morbidities. 

Along with the financial costs, the social costs of CVD cause substantial concern. Disability 

adjusted life years (DALYs) provide one metric for estimating the societal burden of CVD, because they 

combine years of life lost and years lived with disability (McAloon et al., 2016). Years of life lost 

accounts for the frequency and age at which death due to CVD occurs, and years lived with disability 

accounts for years lost from ideal health status (McAloon et al., 2016). One DALY equates to one year of 

healthy life lost (McAloon et al., 2016). CVD accounted for 398 million worldwide DALYs in 2012, and 

CVD accounts for two of the top ten global causes of DALYs, making it the largest fatal and non-fatal 

health burden in the world (McAloon et al., 2016).  

The high prevalence of CVD-related mortality and morbidity represents a huge public health 

concern, affecting the physical health, financial health, and quality of life of individuals and the 

population as a whole. As such, reducing CVD-related morbidities and mortality has the potential to 

promote greater physical, financial, and social well-being for individuals and society at large. However, 

chronic diseases other than CVD also represent a significant health burden. For example, while CVD 

represents the most prevalent, expensive, and fatal health burden in the world, type 2 DM also increases 

morbidity and mortality. DM occurs when either the pancreas fails to produce sufficient insulin, or to 
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effectively use insulin, to lower blood glucose levels (World Health Organization, 2016). While there are 

many types of DM, type 2 DM comprises the largest health burden of all types of DM.  

Type 2 Diabetes Mellitus 

DM prevalence rates have continued increasing, with rates among U.S. adults being 6.2% from 

1988-1994, followed by an increase to 9.9% from 2005-2010, and finally to 9.4% in 2015 (Centers for 

Disease Control and Prevention, 2019b; Mozaffarian et al., 2015; Selvin, Parrinello, Sacks, & Coresh, 

2014). Approximately 8.1 million U.S. adults have undiagnosed DM, and 80.8 million U.S. adults have 

prediabetes (Mozaffarian et al., 2015; Selvin et al., 2014). The prevalence of type 2 DM also increased by 

30.5% in youth between 2001 and 2009 (Dabelea et al., 2014; Mozaffarian et al., 2015). Overall, DM 

prevalence rates in the U.S. are expected to increase to at least 12.0% by 2050, with the largest expected 

increases among individuals 65-74 years of age (220% increase) and 75+ years of age (449% increase) 

(Mozaffarian et al., 2015; Narayan, Boyle, Geiss, Saaddine, & Thompson, 2006). Global prevalence rates 

parallel the U.S., with 8.5% of adults living with DM worldwide, a 100% increase from 1980 (World 

Health Organization, 2016). Additionally, 24% to 62% of people have undiagnosed or untreated DM 

(Cho et al., 2018; World Health Organization, 2016). Estimates predict global DM prevalence rates will 

increase to anywhere from 9.9% to 11.8% by 2030 (Bommer et al., 2018; Cho et al., 2018). These high 

DM-related prevalence rates cause concern, particularly considering the high DM-related morbidity rates. 

DM represents the seventh leading cause of death in the U.S., with a crude death rate of 

24.7/100,000 people (Centers for Disease Control and Prevention, 2019b), and accounts for 5.2% of 

deaths worldwide (Mozaffarian et al., 2015). DM-related mortality often results due to comorbidities, 

including CVDs, with at least 68% of U.S. adults with DM dying from some form of CVD, and CVD 

mortality rates are 2-4 times higher among adults with DM (Centers for Disease Control and Prevention, 

2019b; McAloon et al., 2016; Mozaffarian et al., 2015). Chronic kidney disease also accounts for high 

DM-related mortality rates in the U.S., with rates increasing by 61.1% from 1990 to 2016 (Mokdad et al., 

2016). Globally, DM accounts for approximately 9.9% of all-cause mortality (Cho et al., 2018), and CVD 

accounts for 60% of global deaths in people with DM (McAloon et al., 2016). Individuals with DM 
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experience shorter lifespans, with U.S. males and females with DM living an average of 7.5 and 8.2 fewer 

years than non-diabetics, respectively (Franco, Steyerberg, Hu, Mackenbach, & Nusselder, 2007; 

Mozaffarian et al., 2015). The high mortality rates and reduced lifespans associated with DM continue 

increasing, and projections suggest that global DM-related deaths will increase to approximately 4.57 

million by 2030 (Bommer et al., 2018). 

DM-related morbidities cause even greater concern than DM-related mortalities. DM increases 

the risk of developing CVD and the hazard ratios (HR) for developing CVD are 2.4 among males with 

DM and 2.5 among females with DM (McAloon et al., 2016; Mozaffarian et al., 2015). These 

associations exist because many CVD risk factors commonly co-occur with DM. For example, diabetics 

experience high obesity rates, with 26.1%, 43.5%, and 17.8% of adults with DM being overweight, obese, 

or severely obese (BMI ≥ 40), respectively (Centers for Disease Control and Prevention, 2019b; 

Mozaffarian et al., 2015). These high obesity rates among diabetics correspond with increased CVD risk, 

and obese diabetic males and females experience a 86.9% and 78.8% lifetime CVD risk, compared to 

78.6% and 54.8% in normal weight diabetic males and females, respectively (Fox et al., 2008; 

Mozaffarian et al., 2015). Weight status represents a common risk factoring underlying DM and CVD. 

DM also affects the risk for CVD-related events, including acute myocardial infarction (MI), 

atrial fibrillation, CHF, stroke, or death (Bahrami et al., 2008; Booth, Kapral, Fung, & Tu, 2006; 

Goldstein et al., 2011; Hunt et al., 2009; R. R. Huxley, Filion, Konety, & Alonso, 2011; Kissela et al., 

2005; Mozaffarian et al., 2015). DM also clusters with CVD risk factors, and prevalence rates of HTN 

and elevated LDL are 75%-85% and 70%-80% among adults with DM, respectively (Mozaffarian et al., 

2015; Preis et al., 2009; Selvin et al., 2014). Diabetics exhibit more severe subclinical atherosclerosis, as 

measured by coronary artery calcium, and the extent of coronary artery calcium is a stronger predictor of 

CHD and CVD in people with DM than among those without DM (Mozaffarian et al., 2015). Finally, 

coronary artery calcium progression occurs to a greater extent among diabetics and said progression 

thereby predicts future CVD event risk (Blaha et al., 2011; Malik et al., 2011; Mozaffarian et al., 2015; 

Wong et al., 2012). 
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Some of the most debilitating DM-related comorbidities include blindness, kidney disease, and 

limb amputation (World Health Organization, 2016). In 2010, diabetic retinopathy accounted for 1.9% of 

moderate or severe visual impairment and 2.6% of blindness globally (World Health Organization, 2016). 

Approximately 35% of diabetics experience retinopathy and 7% experience vision-threatening 

retinopathy (World Health Organization, 2016). Globally, DM, HTN, or a combination thereof account 

for 80% of end-stage renal disease, with 12-55% of cases solely attributable to DM (World Health 

Organization, 2016). Diabetics also experience amputation rates that are 10 to 20 times higher than non-

diabetics (World Health Organization, 2016). Fortunately, recent improvements in DM treatment and 

maintenance of normal blood glucose levels has reduced amputation rates among diabetics by 40-60% 

(World Health Organization, 2016). However, despite these improvements, DM is an expensive disease. 

DM accounts for 1 in every 5 healthcare dollars spent in the U.S., costing an estimated $245 

billion in 2012 (American Diabetes Association, 2013; Mozaffarian et al., 2015). These costs include 

$176 billion from direct medical costs and $69 billion from indirect costs due to reduced productivity 

(American Diabetes Association, 2013; Mozaffarian et al., 2015). Individuals with DM cost 

approximately 2.3 times more than those with DM, with annual medical expenditures of diabetics 

averaging $13,700/year (Centers for Disease Control and Prevention, 2019b). Globally, DM accounts for 

12% of total health expenditures (Zhang et al., 2010), including $860 billion from direct costs and $460 

billion from indirect costs (Bommer et al., 2018). Globally, direct costs of DM are projected to increase 

by 2030, costing anywhere from $490.1 billion to $1.7 trillion (Bommer et al., 2018; Zhang et al., 2010). 

Indirect costs are predicted to increase to $780 billion (Bommer et al., 2018). Along with substantial 

financial costs, DM ranked as the fourth leading cause of DALYs in the U.S. in 2016, and DALYs due to 

DM-related chronic kidney disease increased by 127.6% from 1990 to 2016, rising from the 38th to the 

21st leading cause of DALYs (Mokdad et al., 2016). DM represents a chronic disease that causes 

significant physical, financial, and social burdens in the U.S. and globally. However, one other chronic 

disease, metabolic syndrome, also requires consideration, particularly due its shared characteristics with 

CVD and DM.  
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Metabolic Syndrome 

Metabolic syndrome refers to a cluster of metabolic abnormalities that lead to increased risk for 

CVD and type 2 DM (Mozaffarian et al., 2015). Historically, the precise clinical definition of metabolic 

syndrome varied between organizations; however, in 2009, multiple organizations issued a joint scientific 

statement to harmonize the definition of metabolic syndrome (Alberti et al., 2009). As such, individuals 

are diagnosed as having metabolic syndrome when they exhibit at least three of the following five risk 

factors: 1) Fasting plasma glucose ≥100mg/dL or undergoing drug treatment for elevated glucose; 2) high 

density lipoprotein (HDL) cholesterol <40mg/dL in males or <50mg/dL in females or undergoing drug 

treatment for reduced HDL cholesterol; 3) Triglycerides ≥150mg/dL or undergoing drug treatment for 

elevated triglycerides; 4) Waist circumference >102 cm in males or >88 cm in females for people of most 

ancestries living in the U.S.; and 5) Blood pressure ≥130 mmHg systolic or ≥85 mmHg diastolic, or 

undergoing drug treatment for HTN or antihypertensive drug treatment in a patient with a history of HTN 

(Alberti et al., 2009). Among adults, the age-adjusted prevalence of metabolic syndrome was 22.9% in 

2009-2010 (Beltran-Sanchez, Harhay, Harhay, & McElligott, 2013; Mozaffarian et al., 2015). Globally, 

prevalence rates are also high, ranging from 15.1% in northwest China, to 29.6% in Brazil, with the 

highest prevalence rates occurring among indigenous populations (Australian Aborigines – 33.0% and 

Torres Strait Islanders – 50.3%) (de Carvalho Vidigal, Bressan, Babio, & Salas-Salvado, 2013; M. Li, 

McCulloch, & McDermott, 2012; Mozaffarian et al., 2015; Zhao et al., 2014).  

The relationship between metabolic syndrome and mortality risk remains unclear, with some data 

indicating that metabolic syndrome increases all-cause and/or CVD mortality risk, and other data 

suggesting no increase in risk (Church et al., 2009; Mottillo et al., 2010; Mozaffarian, Kamineni, Prineas, 

& Siscovick, 2008). A meta-analysis by Mottillo et al. indicated that metabolic syndrome increased all-

cause mortality by 58% (Mottillo et al., 2010). However, other research among older individuals (mean 

age 73 years) suggests that, while metabolic syndrome may correspond with a 22% greater all-cause 

mortality risk, this increased risk is likely driven by elevated fasting glucose and HTN (Mozaffarian et al., 

2008). Indeed, only older individuals with metabolic syndrome who had elevated fasting glucose or HTN 
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demonstrated higher all-cause mortality (relative risk (RR): 1.41 and 1.26, respectively) (Mozaffarian et 

al., 2008). Mottillo et al.’s meta-analysis similarly found that metabolic syndrome did not increase all-

cause mortality risk among individuals without DM; however, their study did not examine the unique 

contribution of individual metabolic syndrome components on all-cause mortality risk (Mottillo et al., 

2010). Therefore, metabolic syndrome may increase all-cause mortality risk; however, the individual risk 

factors of elevated fasting glucose and HTN may drive the relationship between metabolic syndrome and 

all-cause mortality.   

Metabolic syndrome also increases CVD mortality risk, with RR estimates ranging from 1.51 to 

2.40 (Mottillo et al., 2010; Mozaffarian et al., 2008). Similar to overall mortality, individuals with 

metabolic syndrome who also have DM experience increased CVD mortality risk (HR 2.1 and 1.8 among 

individuals with and without DM, respectively) (Church et al., 2009). Higher CVD mortality risk also 

only occurs among individuals with metabolic syndrome who have either elevated fasting glucose and/or 

HTN (population attributable risk fraction (PAF): 9.6% and 11.3%, respectively) versus those without 

elevated fasting glucose or HTN (PAF: 1.1% and 0.2%, respectively) (Mozaffarian et al., 2008). These 

findings suggest the need to examine the presence of specific metabolic syndrome components when 

attempting to understand the relationship between metabolic syndrome and mortality risk.  

Finally, some data suggest that the combined presence of DM and metabolic syndrome 

significantly increases the risk of CVD mortality among males when compared to the presence of 

metabolic syndrome alone, even after adjusting for CVD history (HR: 3.1 and 1.7, respectively) (Church 

et al., 2009). In contrast, among males with DM, the addition of metabolic syndrome did not significantly 

increase CVD mortality rate or the risk of CVD mortality (Church et al., 2009). This finding corresponds 

with other research suggesting that the presence of elevated fasting blood glucose (as represented by DM) 

may be the driving factor behind elevated CVD mortality among individuals with metabolic syndrome 

(Church et al., 2009; Mozaffarian et al., 2015). 

While data regarding the effect of metabolic syndrome on all-cause and CVD-mortality remain 

mixed, more consistent research indicates that metabolic syndrome increases the risk for CVD, MI, and 
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stroke (RR: 2.35, 1.99, and 2.27, respectively), and these relationships existed even in the absence of DM 

(Mottillo et al., 2010). The INTERHEART study also found that metabolic syndrome increases the risk of 

MI, with the PAF ranging from 14.5% to 16.8%, depending on the definition of metabolic syndrome 

(Mente et al., 2010; Mozaffarian et al., 2015). Metabolic syndrome increases CVD risk even after 

adjusting for individual metabolic syndrome components (RR: 1.54) (Gami et al., 2007; Mozaffarian et 

al., 2015), and exhibiting a larger number of metabolic syndrome components further increases CVD risk 

(Mozaffarian et al., 2015; Wannamethee, Shaper, Lennon, & Morris, 2005). Specifically, the hazards 

ratios for CVD were 1.48 and 3.39 for males and females with 1 or 2 metabolic syndrome components 

versus 3.99 and 5.95 for males and females with ≥3 components, respectively (Mozaffarian et al., 2015; 

Wannamethee et al., 2005). Metabolic syndrome-related CVD risk also varies based on the clustering of 

risk factors present, with a combination of central obesity, elevated fasting glucose, and HTN conferring 

the greatest CVD risk (HR: 2.36) (Franco et al., 2009; Mozaffarian et al., 2015). 

Considering the negative health consequences of metabolic syndrome, it is unsurprising that it 

increases health-care costs by ~24% for each additional metabolic syndrome component present 

(Boudreau et al., 2009; Mozaffarian et al., 2015). However, limited data exist to-date examining the 

precise direct and indirect medical costs associated with metabolic syndrome, or the DALYs associated 

with metabolic syndrome (Mozaffarian et al., 2015). Considering the substantial overlap between 

metabolic syndrome, CVD, and DM, it is reasonable to assume that metabolic syndrome accounts for 

substantial direct and indirect costs, as well as DALYs.  

Metabolic syndrome, DM, and CVD negatively affect individuals and society due to their 

associated health, financial, social burdens. Reducing the burdens associated with these diseases requires 

a clear understanding of the behaviors that predict the development, progression, and health outcomes 

associated with these largely preventable chronic diseases. 

Health Behaviors 

The WHO states that “Most cardiovascular diseases can be prevented by addressing behavioral 

risk factors such as tobacco use, unhealthy diet and obesity, physical inactivity and harmful use of 
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alcohol” (World Health Organization, 2013). Indeed, estimates suggest that overweight/obesity and 

insufficient PA were responsible for 1 in 10 deaths in 2005 (Danaei et al., 2009; Mozaffarian et al., 2015), 

and 44% of the decrease in CHD-related deaths in the U.S. from 1980-2000 were due to changes in health 

behaviors and environmental-related risk factors (Ford et al., 2007; Mozaffarian et al., 2015). Research 

also consistently indicates that PA and maintaining a healthy weight are as robust predictors of CVD-

related outcomes as traditional risk factors, like cholesterol, blood pressure, and DM (Despres, 2016; 

Folsom et al., 2011; Ford, Greenlund, & Hong, 2012; Lachman et al., 2016; Wu et al., 2012). Similar to 

CVD, the incidence, prevalence, and severity of DM and metabolic syndrome are largely related to health 

behaviors, with prevalence increasing as a result of greater long-term exposure to unhealthy behaviors, 

including physical inactivity, sedentary behavior, and screen time (Mozaffarian et al., 2015). Overall, 

research supports the significant role of health behaviors in predicting the onset, severity, and progression 

of diseases like CVD, DM, and metabolic syndrome. 

Despite consistent associations between health behaviors and chronic disease, medical spending 

patterns reflect the U.S. health care system’s penchant towards treating disease and injury, rather than 

preventing them by focusing on improving health behaviors (American Heart Association, 2017). Shifting 

the health care system towards prioritizing prevention over treatment represents a potentially feasible 

approach for reducing healthcare costs and promoting patients’ well-being, lifespan, and quality of life 

(American Heart Association, 2017). Jean-Pierre Despres’ stated that, “if behaviors are that important to 

cardiovascular health, they should be assessed and targeted in clinical practice” (Despres, 2016)(p. 510); 

however, shifting the health care system towards prioritizing prevention over treatment requires more 

than a basic knowledge regarding which health behaviors to target. Rather, such a philosophical shift 

requires a nuanced understanding of the extent to which specific health behaviors can effectively prevent 

or treat chronic disease. Targeting health behaviors also requires researchers to determine the proper 

‘dose’ of a health behavior for promoting clinically meaningful health outcomes. Failure to identify the 

proper dose prevents clinicians and public health practitioners from communicating with patients 

regarding how much the patient needs to change a particular health behavior to experience meaningful 
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changes in disease risk or comorbidities. Determining the proper ‘dose’ of specific health behaviors, and 

identifying how this dose may differ based on an individual’s unmodifiable characteristics (i.e. sex, race, 

etc.), requires researchers to expand beyond descriptive statistics and correlations into statistical models 

capable of accounting for unmodifiable characteristics, as well as between- and within-person variability 

in health behaviors and associated health outcomes. Data scientists are capable of combining appropriate 

statistical models with substantive expertise regarding the relationship between health behaviors and 

health outcomes. As such, data scientists may be able to help determine the appropriate dose of a health 

behavior for an individual, thereby providing essential information for clinicians that could support 

shifting from a focus on treatment towards a focus on prevention. Understanding the theoretical 

underpinnings of the relationship between health behaviors and chronic disease represents a necessary 

first step for data scientists attempting to shift the health care system towards a focus on prevention.    

Weight Status 

 Research indicates that weight status, physical activity and inactivity, sedentary behavior, and 

sleep represent distinct health behaviors associated with chronic disease risk and health outcomes. Weight 

status also reflects an individual’s genetics. While many other health behaviors, such as diet and tobacco 

use, also predict disease risk, this research focuses on examining the roles of weight status, physical 

activity and inactivity, sedentary behavior, and sleep in affecting chronic disease risk.  

Weight status represents a unique predictor of chronic disease risk that reflects an individual’s 

health behaviors and their genetics. While genetics are not modifiable, health behaviors are modifiable. 

Therefore, considering the strong link between weight status and health behaviors, it makes conceptual 

sense to examine weight status as a health behavior that affects health outcomes. 

The CDC defines overweight and obesity as having a “weight that is higher than what is 

considered as a healthy weight for a given height” (Centers for Disease Control and Prevention, 2017b). 

This definition reflects the assumption that, at a given height, a higher weight means increased fatness 

(Flegal et al., 2009), and corresponds with the CDC’s reliance on body mass index (BMI) as a screening 

tool to identify overweight/obesity, since BMI reflects an individual’s weight-to-height ratio [weight 
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(kg)/height (m2)] (Centers for Disease Control and Prevention, 2017b). The CDC uses BMI to screen for 

overweight/obesity because it typically correlates with body fatness, and is an appropriate tool for 

estimating the prevalence of overweight/obesity at the population-level (Centers for Disease Control and 

Prevention, 2017b). However, BMI may not always correlate with body fatness at the individual level, 

particularly among certain racial/ethnic groups, nor does it always accurately reflect an individual’s 

disease risk, a short-coming that the CDC acknowledges (Centers for Disease Control and Prevention, 

2017b). BMI also fails to account for sex (except in children), race/ethnicity, lean versus fat mass, and 

frame size, all short-comings researchers should recognize when using BMI to measure of weight status. 

Despite these short-comings, several studies suggest that BMI provides similar estimates of 

disease risk to waist circumference (WC) and waist-to-hip (WHR) (Dalton et al., 2003; Flegal et al., 2009; 

R. Huxley, Mendis, Zheleznyakov, Reddy, & Chan, 2010). For example, the Asia Pacific Cohort Studies 

Collaboration (R. Huxley et al., 2010) found no clear differences in the associations between BMI, WC, 

and WHR and CVD risk or stroke outcomes (Asia Pacific Cohort Studies, 2006). Two meta-analyses 

found little difference in the strength of the association between BMI, WC, and WHR with DM risk, and 

all three measures performed equally well in identifying incident DM risk (Decoda Study Group et al., 

2008; R. Huxley et al., 2010; Vazquez, Duval, Jacobs, & Silventoinen, 2007). BMI, WC, and WHR also 

perform equally well in identifying individuals with HTN and dyslipidemia (Decoda Study Group et al., 

2008; R. Huxley et al., 2008; R. Huxley et al., 2010), and provide similar estimates of body fatness, with 

all three measures strongly correlating with percent body fat, total fat mass, and subcutaneous adipose 

tissue and moderately correlating with visceral adipose tissue (VAT) (Barreira et al., 2012; Flegal et al., 

2009). While the literature provides no clear consensus regarding whether WC, WHR, or BMI provide 

similar predictive value regarding chronic disease risk or adiposity, this could be due to inter-individual 

variability in percent body fat at a given BMI, particularly among different racial/ethnic groups. 

For example, Asian populations exhibit significant variation in the association between adiposity 

and BMI (Deurenberg, Deurenberg-Yap, & Guricci, 2002; R. Huxley et al., 2010), with some Asian 

populations having lower BMI’s at a given percent of body fat compared with Europeans (R. Huxley et 
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al., 2010). Asians typically have 3-5% higher total body fat compared to Europeans with the same BMI 

(Deurenberg et al., 2002). However, Asians also differ from one another regarding the relationship 

between BMI and percent body fat, suggesting they should not be lumped into a single ‘Asian’ category 

(Deurenberg et al., 2002). Racial/ethnic differences may also exist for the association between BMI and 

health outcomes, with one study finding that Chinese individuals have stronger correlations between BMI 

and HTN than Caucasians, and non-Hispanic blacks have stronger correlations between BMI and HTN 

than Caucasians and Mexican Americans (Bell, Adair, & Popkin, 2002). These racial/ethnic differences in 

percent body fat at a given BMI, as well as the correlations between BMI and HTN, suggest the need for 

specific racial/ethnic cut-points for BMI categories. Racial/ethnic specific cut-points would remove one 

of the short-comings of BMI, increase its predictive utility, and reduce uncertainty about the relationship 

between BMI and health outcomes. Indeed, researchers have suggested racial/ethnic specific cut-points 

for BMI categories (Harvard School of Public Health, 2018).  

Current BMI categories for a given weight status include: 1) BMI <18.5 kg/m2 = Underweight; 2) 

BMI 18.5 – 24.9 kg/m2 = Normal weight; 3) BMI 25.0 – 29.9 kg/m2 = Overweight; and 4) BMI ≥ 30.0 

kg/m2 = Obese (Centers for Disease Control and Prevention, 2017b). However, Dobbelsteyn et al. found 

that the optimal BMI cut-points for identifying CVD risk depend upon sex, with cut-points of 25 – 26 

kg/m2 and 23 – 26 kg/m2 for males and females, respectively (Dobbelsteyn, Joffres, MacLean, & 

Flowerdew, 2001). Dobbelsteyn et al. did not examine race/ethnicity, and many researchers express 

concern regarding the continued use of BMI cut-points that fail to account for race/ethnicity. Researchers 

advocating for racial/ethnic specific cut-points suggest that China and Japan define overweight and obese 

as a BMI 24.0 – 27.9 kg/m2 and a BMI ≥ 28.0 kg/m2, respectively, and that India defines overweight and 

obese as a BMI 23.0 – 26.9 kg/m2 and a BMI ≥ 27.0 kg/m2, respectively (Harvard School of Public 

Health, 2018). Less debate exists regarding the need for sex-specific BMI cut-points, though they may be 

worth considering (Dobbelsteyn et al., 2001).  

In contrast to adult values, BMI values in children are standardized to provide sex-specific BMI-

for-age z-scores (Centers for Disease Control and Prevention, 2017b). BMI-for-age z-scores categorize 
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children’s weight status based on their percentile on the CDC growth charts, with categories including 

underweight (BMI < 5th percentile), normal weight (BMI 5th to < 85th percentile), overweight (BMI 85th to 

< 95th percentile), and obese (BMI ≥ 95th percentile) (Centers for Disease Control and Prevention, 2017b). 

These sex-specific BMI-for-age z-scores eliminate the failure to account for sex when using BMI in 

adults. However, similar to adults, there are no racial/ethnic specific BMI cut-points in children, and 

debate regarding the utility of racial/ethnic specific cut-points continues.  

Given the utility of BMI for providing population-level estimates of overweight/obesity, 

prevalence rates are typically based on BMI. The U.S. exhibits substantially high obesity prevalence rates, 

with 2015-2016 NHANES data suggesting that 39.8% of US adults ages 20 years and older are obese 

(Hales, Carroll, Fryar, & Ogden, 2017). Additionally, 18.5% of children and adolescent are obese (Hales 

et al., 2017). Global obesity rates are also high, with 39% and 13% of adults ≥18 years of age being 

overweight or obese, respectively (World Health Organization, 2018). As of 2016, over 340 million 

children/adolescents aged 5-19 years old and 41 million children <5 years old were overweight or obese 

(World Health Organization, 2018). The high prevalence of overweight/obesity is concerning because it 

suggests that adults and children may be at high risk for chronic disease and mortality.   

Obesity accounts for more than 400,000 total deaths annually (Dufour, 2018), and being 

overweight or obese decreases life expectancy by one or three years, respectively (Dufour, 2018). The 

HRs for all-cause mortality are 1.07, 1.41, and 2.46, among overweight, obese, and extremely obese 

individuals, respectively (Ma, Flanders, Ward, & Jemal, 2011; Mozaffarian et al., 2015), though some 

data suggest that all-cause mortality risk does not increase among overweight individuals (Flegal, 

Graubard, Williamson, & Gail, 2005; Flegal, Kit, Orpana, & Graubard, 2013; McGee & Diverse 

Populations Collaboration, 2005; Mozaffarian et al., 2015). Prospective research suggests that overall 

mortality rates are lowest among individuals with a BMI between 22.5 and 25 kg/m2, implying that 

having too low of a BMI may increase mortality risk (Mozaffarian et al., 2015; Prospective Studies et al., 

2009). While the effects of having a BMI between 18.5 and 30.0 kg/m2 on mortality risk remains unclear, 

having a BMI ≥30 kg/m2 consistently predicts greater mortality risk (Mozaffarian et al., 2015).  
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Being overweight or obese also increases the risk for CVD-related morbidities, and obesity 

increases the risk for CVD, DM, and metabolic syndrome in adults (Mozaffarian et al., 2015). Compared 

to normal weight individuals, overweight and obese individuals have higher odds of developing metabolic 

syndrome (OR: 2.81 and 5.24, respectively) (Cheriyath, Duan, Qian, Nambiar, & Liao, 2010; Mozaffarian 

et al., 2015). Obesity correlates with subclinical measures of atherosclerosis, including coronary artery 

calcium and carotid intima-media thickness (Burke et al., 2008; Mozaffarian et al., 2015). Overweight 

and obese individuals also have an increased risk for ischemic stroke (RR: 1.22 and 1.64, respectively) 

and hemorrhagic stroke (RR: 1.01 and 1.24, respectively) (Mozaffarian et al., 2015; Strazzullo et al., 

2010). The increased risks associated with overweight and obesity extend beyond those listed above, 

affecting risk for anxiety, depression, and Alzheimer’s (Mozaffarian et al., 2015). However, one 

important consideration when examining the relationship between obesity and CVD is the so-called 

‘obesity paradox’. This ‘paradox’ refers to evidence indicating that overweight and obese individuals with 

CVD have a better prognosis than normal weight individuals with the same CVD (Myers et al., 2015). 

This paradox could be due to the distribution of body fat. Indeed, in the 1940s, French physician 

Jean Vague suggested that the relationship between adiposity and health may be more closely related to 

body fat distribution (e.g. abdominal fat (VAT) vs thigh/hip fat) than to excess adiposity (Myers et al., 

2015). Technological advances have allowed an in-depth understanding of the role of VAT in predicting 

metabolic health and CVD risk. For example, computerized tomography scans indicate that only excess 

VAT, not overall excess adiposity, correlates with glucose intolerance and dyslipidemia (Myers et al., 

2015). VAT also correlates with greater insulin resistance, glucose intolerance, DM, and dyslipidemia, 

regardless of BMI or total adiposity (Myers et al., 2015). This consistently strong relationship between 

VAT and health outcomes has caused multiple researchers to suggest that reducing VAT may be more 

important than reducing overall adiposity (Despres, 2012; Myers et al., 2015; Ross & Bradshaw, 2009).  

The metabolic characteristics of VAT help explain the physiological mechanisms underlying the 

relationship between VAT, insulin resistance, and dyslipidemia. VAT exhibits high levels of lipolysis, 

which increases the concentration of free fatty acids in the serum, thereby exposing the liver and other 
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tissues to high free fatty acid concentrations (Myers et al., 2015; J. D. Smith et al., 2012), and VAT resists 

the anti-lipolytic action of insulin (Myers et al., 2015; J. D. Smith et al., 2012). Exposing the liver to high 

free fatty acid concentrations impairs liver metabolism, which increases the production of triglyceride-

rich lipoproteins and glucose output, ultimately contributing to hyperglycemia (Despres et al., 1990; 

Myers et al., 2015). VAT is also characterized by high concentrations of macrophages, making it pro-

inflammatory (Myers et al., 2015; J. D. Smith et al., 2012). Along with these characteristics of VAT, 

some researchers suggest that excess VAT may relate to an individual’s inability to use subcutaneous 

adipose tissue as a metabolic sink when exposed to excess caloric intake (Myers et al., 2015).  

Under ideal circumstances, when an individual’s caloric intake exceeds their needs, subcutaneous 

fat depots expand via hyperplasia (the creation of more fat cells) to provide an expanded metabolic 

reservoir for calories, thereby protecting lean tissues from accumulating harmful lipids (Myers et al., 

2015). However, if an individual cannot expand their subcutaneous fat depots, the excess calories 

accumulate as VAT and ectopic fat, in which fat is distributed in normally lean tissues, such as the liver, 

heart, kidneys, and skeletal muscle (Despres et al., 2008; Myers et al., 2015). This fat distribution 

significantly affects health, with multiple studies indicating that larger ectopic fat depots negatively alter 

cardiometabolic risk profiles (Britton & Fox, 2011; Despres, 2012; Myers et al., 2015). Ectopic fat 

accumulation in the liver may could also be a key cause of hyperglycemia, hyperinsulinemia, and 

dyslipidemia (Despres et al., 2008; Myers et al., 2015), and ectopic fat accumulation in skeletal muscle 

may contribute to systemic insulin resistance (Myers et al., 2015; Samuel, Petersen, & Shulman, 2010). 

These metabolic characteristics of ectopic fat and VAT help explain the relationship between weight 

status and disease risk, as well as the roles of body fat distribution in explaining the ‘obesity paradox’. 

Genetics may also play a role in the relationship between increased adiposity and negative health 

outcomes. Specifically, Lu et al.’s meta-analysis indicated that twelve genetic loci correlate with 

increased overall adiposity, as assessed by BMI and percent body fat (Lu et al., 2016). They found seven 

loci that affected percent body fat more than BMI, and five that affected BMI more than percent body fat, 

suggesting that the seven loci associated with percent body fat primarily affect overall adiposity; whereas, 
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the five loci associated with BMI affect overall adiposity and lean mass (Lu et al., 2016). The loci 

associated with percent body fat also correlated with cardiometabolic outcomes, including increased 

circulating leptin, subcutaneous adipose tissue, VAT, LDL-cholesterol, triglycerides, insulin resistance, 

and C-reactive protein, as well as decreased HDL-cholesterol (Lu et al., 2016). These findings indicate 

that genetic factors affecting overall adiposity and fat/lean mass may also affect cardiometabolic 

outcomes, suggesting another potential link between weight status and health outcomes.  

Not surprisingly, the negative health consequences of obesity are reflected by high medical costs. 

The U.S. spends $150-$190 billion annually on obesity (Dufour, 2018). Obese patients spend an 

additional $3615 per year on medical costs, and Medicare, Medicaid, and private insurers pay $1723, 

$1021, and $1140 more for obese beneficiaries than normal weight beneficiaries, respectively 

(Finkelstein, Trogdon, Cohen, & Dietz, 2009; Mozaffarian et al., 2015). Across their lifetimes, obese 

males and females spend almost $200,000 and $225,000 more on healthcare expenses than their normal 

weight counterparts, respectively (Dufour, 2018). These estimates represent direct medical costs; 

however, obesity also incurs substantial indirect costs, with obesity-related absenteeism costing $3.38 to 

$6.38 billion annually (Dufour, 2018). Finally, estimates suggest that employers spend an additional $506 

per obese worker annually, due to increased sick days and medical claims (Dufour, 2018). 

In summary, research consistently demonstrates that greater adiposity results in worse health 

outcomes, including increased risk for mortality, CVD-related morbidities, and risk for CVD, DM, and 

metabolic syndrome. The metabolic characteristics of VAT provide an explanation for the physiological 

mechanisms underlying the relationship between adiposity and disease risk. There are some short-

comings associated with using BMI as a measure of weight status, and researchers should considering 

these limitations when designing research studies, modeling data, and interpreting outcomes. Considering 

consistent data indicating the importance of race/ethnicity regarding BMI, researchers using BMI as a 

measure of weight status would be wise to examine the potential moderating effect of race/ethnicity. 

Finally, other health behaviors, including physical activity/inactivity and sedentary behavior likely require 

consideration as potential moderators or mediators of the effect of adiposity on health outcomes.  
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Physical Activity and Inactivity 

In recognition of the significant role PA plays in preventing CVD, the AHA selected PA as one of 

its seven components of ideal cardiovascular health (Lloyd-Jones et al., 2010; Mozaffarian et al., 2015). 

The CDC also recognizes the importance of adequate PA in promoting ideal health and sets public health 

guidelines, including specific PA recommendations for various age groups, such as preschool-aged 

children (3-5 years of age), children and adolescents (6-17 years of age), adults (18-64 years of age), and 

older adults (65 years and older), as well as for women during pregnancy and post-partum, and for adults 

with chronic health conditions and disabilities (U.S. Department of Health and Human Services, 2018). 

The guidelines for children and adolescents recommend at least 60 minutes of moderate-to-vigorous PA 

(MVPA) per day, emphasize aerobic activity, and suggest participating in muscle- and bone-strengthening 

activity at least three days per week (U.S. Department of Health and Human Services, 2018). The 

guidelines for adults emphasize the need to stand more and sit less, with guidelines recommending at least 

150-300 minutes of moderate PA per week or 75-150 minutes of vigorous PA per week, or a combination 

thereof (U.S. Department of Health and Human Services, 2018). The CDC also recommends that adults 

spread their aerobic activity throughout the week and engage in moderate or vigorous intensity muscle-

strengthening activities that involve all major muscle groups on at least two days per week (U.S. 

Department of Health and Human Services, 2018). Additional recommendations, particularly for those 

with disabilities, suggest focusing on activities a person is physically capable of and increasing the 

frequency and intensity of PA across time (U.S. Department of Health and Human Services, 2018). These 

recommendations focus on the key messages that: 1) Some PA is better than none – “Even minutes of 

physical activity has real health benefits ... [so] do what you can”; 2) Greater quantity and intensity of PA 

confers greater health benefits; and 3) PA should include aerobic and muscle-strengthening activities 

(U.S. Department of Health and Human Services, 2018). That small amounts of PA confer health benefits 

is important because individuals often identify time as their greatest barrier to PA participation (Myers et 

al., 2015). However, while some PA is better than none, one must also consider the detrimental effects of 

physical inactivity when attempting to understand the relationship between activity and chronic disease. 
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Physical inactivity refers to an individual failing to participate in sufficient PA to experience PA-related 

health benefits (Despres, 2016). As such, physical inactivity should be considered in tandem with PA.  

  Despite the strong public health focus on PA, few individuals achieve PA recommendations. For 

example, only 42% of children ages 6-11 years old and only 8% of adolescents meet PA 

recommendations (Troiano et al., 2008). Among adults aged 20 to 59 years of age, only 3.8% and 3.2% of 

males and females meet PA recommendations, respectively, with even lower rates among adults 60 years 

and older, among whom only 2.5% and 2.3% of males and females meet recommendations, respectively 

(Troiano et al., 2008). Global estimates indicate that 69% of adults meet PA recommendations (Kohl et 

al., 2012); however, these values may be inaccurate because they were based on self-report, which often 

results in over-estimating PA participation (Mozaffarian et al., 2015; Prince et al., 2008). Physical 

inactivity mirrors PA participation, with most individuals demonstrating high levels of inactivity. In the 

U.S., 15.2% of adolescents reported being inactive during the previous seven days, and more females than 

males reported being inactive (19.2% and 11.2%, respectively) (Kann et al., 2014; Mozaffarian et al., 

2015). Adult inactivity levels are high and increase with age, with 25.1%, 32.8%, 35.7%, and 51.9% of 

adults ages 18 to 44 years, 45 to 64 years, 65 to 74 years, and 75 years or older reporting being inactive, 

respectively (Mozaffarian et al., 2015). Globally, 17% of adults reported being physically inactive in 2009 

(Kohl et al., 2012). The high prevalence of physical inactivity paired with the low prevalence of 

individuals meeting PA recommendations causes concern, particularly since even small amounts of PA 

can reduce mortality and confer substantial health benefits (Despres, 2016; Lewis & Hennekens, 2016; 

Luke, Dugas, Durazo-Arvizu, Cao, & Cooper, 2011; Manson et al., 1999; Mozaffarian et al., 2015). 

The health benefits associated with PA participation include improving CVD risk factors, such as 

HTN and cholesterol levels, and reducing the likelihood of CVD-related diseases, including CHD, stroke, 

DM, and acute MI (Mozaffarian et al., 2015). PA also reduces the risk for colon, breast, and pancreatic 

cancer; improves muscle, bone, and joint health, and helps individuals maintain physical functioning, 

thereby preserving the ability for adults, particularly older adults, to maintain independence (Lewis & 

Hennekens, 2016). These benefits occur among all individuals, regardless of age, sex, disease or disability 
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status, hence the CDC’s recommendation for all individuals to engage in PA that corresponds with their 

physical fitness, abilities, etc. (Mozaffarian et al., 2015).  

 Small amounts of PA confer health benefits, with research suggesting that participating in as little 

as 3-10 minutes of moderate PA per day, or running slowly for 5-10 minutes per day, markedly reduces 

mortality risk (Myers et al., 2015). Walking at a brisk pace for 20 minutes per day also reduces MI risk by 

30-40% (Lewis & Hennekens, 2016; Manson et al., 1999). Longitudinal data indicate that individuals 

who perform at least some leisure-time PA, even if they fail to meet PA recommendations, experience a 

20% lower mortality risk compared to individuals who participate in no leisure-time PA (Arem et al., 

2015; Despres, 2016). Other studies support the finding that individuals who participate in some PA, 

despite not meeting PA recommendations, experience reduced mortality risk compared to individuals who 

do not participate in PA (HR: 0.66) (Despres, 2016; Gebel et al., 2015).  

Small amounts of PA participation also significantly affect CVD comorbidities and risk for DM 

and metabolic syndrome. NHANES data revealed significant negative associations between the number 

of minute-long moderate or vigorous PA bouts per day and adults’ systolic blood pressure, blood glucose, 

HTN, and DM, and a significant positive association with HDL-cholesterol (Luke et al., 2011). They also 

found that overall activity counts per minute were negatively associated with plasma glucose, HTN, and 

DM, and were positively associated with HDL-cholesterol (Luke et al., 2011). Finally, each one standard 

deviation increase in activity counts per minute (SD: 4.3) or minute-long moderate or vigorous PA bouts 

per day (SD: 0.8) was associated with reduced odds for HTN (OR: 0.78 and 0.81, respectively) and DM 

(OR: 0.64 and 0.50, respectively) (Luke et al., 2011). As such, the evidence consistently suggests that 

even small amounts of PA participation can reduce the risk for mortality, CVD, CVD comorbidities, DM, 

and metabolic syndrome. 

While small amounts of PA may confer health benefits, physical inactivity still negatively affects 

mortality risk, with global estimates suggesting that physical inactivity accounts for 6-10% of all deaths 

and for 30% of deaths due to ischemic heart disease (Kohl et al., 2012). Estimates suggest that eliminating 

physical inactivity globally would increase longevity by 0.68 years (DeFina et al., 2015; Lee et al., 2012), 
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and that, if physically inactive people participated in sufficient PA, 5.3-5.7 million global deaths could be 

prevented (Kohl et al., 2012). Research also consistently supports the positive effect of meeting PA 

recommendations on mortality risk (Arem et al., 2015; Despres, 2016; Gebel et al., 2015). For example, 

compared with individuals who participated in no leisure-time PA, those who performed 1-2 times or 2-3 

times the recommended minimum experienced 31% and 37% lower mortality risk, respectively (Arem et 

al., 2015; Despres, 2016), and individuals who participated in 150-299 minutes or ≥300 minutes of PA 

per week experienced reduced mortality risk (HR: 0.53 and 0.46, respectively) (Despres, 2016; Gebel et 

al., 2015). Participating in high amounts of leisure-time PA also lowers risk for incident CVD compared 

to participating in low amounts of leisure-time PA (RR: 0.76 in males and 0.73 in females), and 

researchers estimate that a high level of leisure-time PA could reduce the overall risk of incident CHD 

and stroke among males and females by 20-30% and 10-20%, respectively (J. Li & Siegrist, 2012).  

Sufficient PA participation reduces the risk for DM and metabolic syndrome and, among adults 

at-risk for DM, those who achieved the recommended 150 minutes of PA per week were 44% less likely 

to develop DM at 3.5 years follow-up (Hamman et al., 2006; Mozaffarian et al., 2015). Achieving 120-

150 minutes per week of moderate-intensity PA also reduces the risk of developing metabolic syndrome 

(Mozaffarian et al., 2015; U.S. Department of Health and Human Services, 2018). Compared with 

individuals in the lowest quartile of leisure-time PA, individuals in the highest and middle quartiles of 

leisure-time PA experience reduced odds for developing metabolic syndrome (OR: 0.80 and 0.92, 

respectively) (DeFina et al., 2015; He et al., 2014; Mozaffarian et al., 2015). Additionally, among 

individuals with DM, metabolic syndrome, or abdominal obesity, those who are very physically active 

experience a 50% decreased CVD risk compared to those who are physically inactive (Broekhuizen et al., 

2011; Myers et al., 2015). Indeed, physical inactivity is considered a leading contributor to premature 

morbidity in the U.S., accounting for 22% of CHD, 12% of DM, and 12% of HTN, among other things 

(Lewis & Hennekens, 2016), and Lee et al. found that eliminating physical inactivity globally would 

eliminate 5.8% of CHD (Lee et al., 2012). 
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Not only does physical inactivity directly affect morbidity and mortality, habitual physical 

inactivity may mediate the relationship between obesity and CVD risk, and physical inactivity and obesity 

synergistically increase CVD risk (Myers et al., 2015). The Nurse’s Health Study revealed that inactive 

obese females experienced a 62% higher CVD mortality rate compared to active obese females (Myers et 

al., 2015). Other studies found that, compared to active obese males and females, inactive obese males 

and females were 45% and 90% more likely to die from CVD, respectively (Myers et al., 2015). Multiple 

studies indicate that physically inactive individuals experience substantially higher obesity-associated 

CVD risk (~35-90%) compared to physically active obese individuals (Myers et al., 2015). In contrast, 

PA participation improves health outcomes and reduces mortality risk, even in the absence of weight loss 

(Despres, 2012; Myers et al., 2015), suggesting that sufficient PA participation may ameliorate some of 

the negative effects of excess adiposity on morbidity and mortality, whereas physical inactivity 

potentially exacerbates these effects. 

The physiological mechanisms underlying the mediating effect of physical inactivity on obesity 

and CVD risk remain poorly understood; however, the negative effects of physical inactivity on insulin 

resistance and abdominal obesity may provide some explanation. Physically inactive obese individuals 

have 88% higher odds for insulin resistance than those who are physically active (Myers et al., 2015). 

Additionally, physically inactive males and females with abdominal obesity experience a 27% and 10% 

higher likelihood of developing CHD, respectively, than do their active counterparts (Myers et al., 2015). 

These findings align with other literature suggesting that the distribution of fat accumulation may be more 

important in determining CVD, DM, and metabolic syndrome risk than total fat mass or body fat 

percentage (Despres, 2012; Myers et al., 2015; Ross & Bradshaw, 2009).  

While the physiological mechanisms underlying the relationship between physical inactivity, 

obesity, and CVD risk require additional investigation, the mechanisms underlying the positive effects of 

PA on obesity-related CVD mortality are more readily understood (Myers et al., 2015). Regular PA 

mobilizes VAT and ectopic fat depots, thus ameliorating the negative effects of these fat depots on health 

(Despres, 2012; Myers et al., 2015; Ross & Bradshaw, 2009). Skeletal muscle contractions accompanying 
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PA may also increase lipoprotein lipase activity, thereby positively affecting triglyceride levels and 

potentially reducing CVD risk (Brocklebank, Falconer, Page, Perry, & Cooper, 2015). Greater PA 

participation typically correlates with more favorable cardiac structure and function (Myers et al., 2015). 

PA-related skeletal muscle contractions may increase muscle-contraction-stimulated GLUT-4 

translocation to the cell membrane (Despres, 2016; Hamilton, Hamilton, & Zderic, 2004), thus improving 

cells’ ability to uptake glucose, thereby positively affecting insulin sensitivity and the risk for DM or 

metabolic syndrome (Brocklebank et al., 2015). Finally, skeletal muscle contractions turn on gene 

expression associated with proper insulin sensitivity, which may reduce risk for DM and metabolic 

syndrome (Despres, 2016; Hamilton et al., 2004). These beneficial physiological effects of PA help 

explain how PA reduces the risk for CVD, DM, and metabolic syndrome. 

In summary, research consistently demonstrates that, while participating in any amount of PA 

confers positive health benefits, physical inactivity is detrimental to health, and participating in greater 

amounts of PA and/or achieving PA recommendations results in better health outcomes. While the 

physiological mechanisms underlying the relationship between physical inactivity, obesity, and CVD-risk 

require additional investigation, the mechanisms underlying the positive effects of PA on CVD, DM, and 

metabolic risk are better understood. The differential effects of PA and inactivity on chronic disease risk 

suggest that researchers may want to simultaneously examine PA and physical inactivity in statistical 

models, and may want to execute separate models using continuous or categorical variables (meeting vs. 

not meeting PA recommendations) to tease out these unique effects. Examining these effects separately or 

in combination may help researchers disentangle the effects of overall quantity of PA, physical inactivity, 

and meeting/not meeting PA recommendations on health outcomes.    

Sedentary Behavior 

Sedentary behavior (SB) represent a distinct construct from physical activity/inactivity that is 

characterized by waking behaviors that occur while sitting or reclining and which require minimal energy 

expenditure (≤1.5 METS) (Barnes et al., 2012; Brocklebank et al., 2015; Despres, 2016). Researchers 

often capture SB via measures of sitting, lying, or screen time (television viewing, computer use, etc.) 
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(Barnes et al., 2012; Brocklebank et al., 2015; Despres, 2016); however, more recent studies use 

accelerometers as an objective measure of SB (Brocklebank et al., 2015). The specific method used to 

measure SB requires careful consideration, as research suggests that measuring SB via accelerometers 

may be conceptually different than measuring SB via self-report (Saunders et al., 2013). For example, 

researchers using screen time as a proxy for SB found a positive correlation with food intake; however, 

screen time consisted of watching television or playing video games, suggesting that this relationship 

between screen time (SB) and increase food intake may be limited to those specific measures of screen 

time (Chaput et al., 2011; J. L. Harris, Bargh, & Brownell, 2009; Saunders et al., 2013). Therefore, 

researchers should consider the method used for measuring SB, since the measure used affects the 

interpretation of the relationship between SB and health outcomes (Chaput et al., 2011; J. L. Harris et al., 

2009; Saunders et al., 2013). Indeed, Saunders et al. found that self-reported measures of SB in children 

and adolescents were more consistently associated with health risk than accelerometer-based measures of 

SB, reinforcing the idea that accelerometer versus self-report SB measures may represent different 

constructs (Saunders et al., 2013). As such, researchers should be cautious when interpreting the effects of 

self-reported SB, particularly as represented via screen time, on health outcomes.  

The prevalence of SB among U.S. adults and adolescents is high, and 41.3% of adolescents report 

using computers for at least three hours per day and 32.5% report watching television for at least three 

hours per day (Kann et al., 2014; Mozaffarian et al., 2015). Accelerometer data suggest that U.S. children 

spend 6.07 to 8.03 hours/day in SB (6-11 versus 16-19 year olds, respectively) (Matthews et al., 2008). 

U.S. adults spend an average of 8.44 hours per day in SB (Healy, Matthews, Dunstan, Winkler, & Owen, 

2011), and among adults 20 years and older, time spent in SB ranges from 7.48 to 9.28 hours/day, 

depending on the age group (20-29 vs. 70-85 year olds) (Matthews et al., 2008). Although individuals 

spend a large amount of time in SB, an individual’s SB may not be sustained for extended time periods, 

as research suggests that sedentary time is typically interrupted 92.5 times per day, with breaks lasting 

4.12 minutes (Healy et al., 2011). 
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The large proportion of time individuals spend in SB is concerning, particularly when considering 

the negative health effects of SB, which occur independently from PA participation (Biswas et al., 2015; 

Chau et al., 2013; Despres, 2016; Katzmarzyk, Church, Craig, & Bouchard, 2009). Time spent in SB 

consistently correlates with increased risk for all-cause, CVD-related, and other causes of mortality, and 

the effects of SB are independent of BMI and PA participation (Biswas et al., 2015; Chau et al., 2013; 

Despres, 2016; Katzmarzyk et al., 2009; Matthews et al., 2014; Thorp, Owen, Neuhaus, & Dunstan, 

2011). SB also affects morbidity, even after adjusting for PA (Biswas et al., 2015; Chau et al., 2013; 

Despres, 2016; Katzmarzyk et al., 2009). SB significantly predicts CVD incidence (Thorp et al., 2011) 

and the risk for CVD and stroke (Mozaffarian et al., 2015). Total time spent in SB correlates unfavorably 

with insulin sensitivity, fasting insulin, and triglycerides, even after adjusting for MVPA (Brocklebank et 

al., 2015). However, the relationships between SB and 2-hour plasma glucose, HDL-cholesterol, fasting 

plasma glucose, total cholesterol, and LDL-cholesterol remain inconclusive (Brocklebank et al., 2015). 

Finally, some data indicate that that high levels of SB increase risk for DM and some cancers (i.e. 

ovarian, colon, and endometrial cancer), as well as incidence of mental disorders (Thorp et al., 2011). 

Breaks in SB throughout the day may affect the relationship between SB and health outcomes, with a 

greater number of breaks correlating with lower triglyceride levels, even after adjusting for MVPA and 

total sedentary time (Brocklebank et al., 2015). However, research regarding the cross-sectional 

associations between breaks in SB and other cardiometabolic outcomes, such as insulin sensitivity and 

HDL-cholesterol, remains inconclusive (Brocklebank et al., 2015). Generally speaking, research to-date 

supports the existence of cross-sectional relationships between SB, mortality, and morbidities, and some 

data suggest that breaks in SB may correlate with health outcomes; however we need additional research 

to fully elucidate the relationship between SB, breaks in SB, and health outcomes.  

Some longitudinal data support the role of SB in predicting health outcomes. Chau et al. and 

Chastin et al. conducted meta-analyses examining the relationship between SB (conceptualized as time 

spent sitting or breaks in SB, respectively) and health outcomes (Chastin, Egerton, Leask, & Stamatakis, 

2015; Chau et al., 2013). Chau et al. found that progressive increases in time spent sitting predicted a 
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higher hazard ratio for all-cause mortality, even after adjusting for PA participation (Chau et al., 2013). 

They estimated that, based on the dose-response relationship between sitting time and mortality, spending 

10 hours/day sitting increases all-cause mortality risk by 34% and 52% with and without adjusting for 

PA, respectively (Chau et al., 2013). They also estimated that, after controlling for PA participation, time 

spent sitting accounted for 5.9% of the PAF for all-cause mortality (Chau et al., 2013). Chastin et al. 

found that breaks in SB characterized by standing significantly affected insulin levels, but not blood 

glucose levels (Chastin et al., 2015). In contrast, breaks in SB characterized by light PA or MVPA 

significantly predicted decreased postprandial blood glucose responses (-17.42% and -1.40%, 

respectively) and reduced postprandial insulin levels (-14.92% and -23.84%, respectively) (Chastin et al., 

2015). Regardless of whether breaks were characterized by standing, light PA, or MVPA, breaks in SB 

did not affect triglycerides or C-peptides (Chastin et al., 2015). These longitudinal data provide some 

support for the idea that SB (time spent sitting) and breaks in SB predict mortality and cardiometabolic 

health outcomes; however, additional longitudinal research is needed to better characterize SB and breaks 

in SB as predictors of mortality and cardiometabolic health outcomes.  

Although SB independently correlates with and predicts mortality and cardiometabolic health 

outcomes, variables like weight status may modify these relationships. For example, some research 

suggests that weight status moderates the relationship between SB and risk for DM and cancer (Thorp et 

al., 2011). However, the relationship between SB and weight status is somewhat complex. For example, 

substantial evidence indicates that greater time spent in SB increases long-term obesity risk, though 

baseline BMI may moderate this relationship (Thorp et al., 2011). Greater SB also positively correlates 

with weight gain, even after controlling for PA participation (Thorp et al., 2011). Perhaps most 

importantly, greater SB during childhood or adolescence consistently predicts obesity prevalence and a 

higher BMI in adulthood independent of childhood/adolescent BMI or time spent in PA (Thorp et al., 

2011). SB in childhood/adolescence may affect weight status in adulthood, and weight status may 

moderate the relationship between SB and chronic disease; however, additional research examining the 

potential moderating effect of weight status on SB and chronic disease risk is needed.  
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PA is another potential moderator of the effects of SB on health outcomes, weight status, and 

weight gain. Contrary to what one might suppose, PA participation does not attenuate or moderate the 

relationship between SB and risk of overweight/obesity or weight gain (Thorp et al., 2011). However, PA 

may moderate the relationship between SB and health outcomes, with some data suggesting that meeting 

PA guidelines ameliorates the detrimental effects of SB on health outcomes (Biswas et al., 2015; Despres, 

2016); whereas, other data suggest that PA does not significantly modify the relationship between SB and 

the risk of mortality, DM, HTN, or ovarian cancer (Thorp et al., 2011). Researchers may be well-advised 

to consider SB, weight status, and PA as separate constructs in analyses attempting to disentangle the 

unique and combined effects of these variables on health outcomes.  

The physiological mechanisms through which SB affects cardiometabolic health outcomes are 

not fully specified, though these mechanisms likely overlap with those related to physical inactivity 

(Despres, 2016; Lavie et al., 2015). When considering weight status, research suggests that prolonged SB 

may promote VAT or ectopic fat accumulation, leading to HTN, dyslipidemia, and other negative 

cardiometabolic outcomes (Despres, 2016; Henson et al., 2015). Additionally, the lack of skeletal muscle 

activation that accompanies SB may reduce lipoprotein lipase activity, thereby negatively affecting 

triglyceride levels (Brocklebank et al., 2015; Despres, 2016; Hamilton et al., 2004). Lack of skeletal 

muscle activation may also reduce muscle-contraction-stimulated GLUT-4 translocation, thus reducing 

cells’ ability to uptake glucose and decreasing insulin sensitivity (Brocklebank et al., 2015). Finally, a 

lack of skeletal muscle activation could turn off gene expression associated with proper insulin sensitivity 

(Despres, 2016; Hamilton et al., 2004). When considering the physiological effects of breaks in SB, the 

lack of significant associations with many cardiometabolic health outcomes could be due to the fact that 

breaks, particularly those characterized by standing or light PA, may be insufficient to counteract the 

acute negative effects of SB on cardiometabolic health (Chastin et al., 2015). The short time span over 

which individuals are studied may also explain these findings, because they do not capture the long-term 

effects of breaks in SB on health outcomes. For example, some data suggest that breaks in SB may affect 
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gene-expression related to glucose metabolism, a carry-over effect that would not be captured via cross-

sectional studies or studies with short-term follow-up (Chastin et al., 2015; Latouche et al., 2013). 

Research to-date supports the negative effects of SB on mortality and cardiometabolic health 

outcomes, independent of PA, and some data supports breaks in SB as a means to ameliorate the negative 

effects of SB. Unfortunately, the majority of studies are cross-sectional or rely on self-reported measures 

of SB; therefore, additional longitudinal studies using objective measures of SB are needed. Finally, we 

need more research examining the effect of breaks in SB on cardiometabolic health outcomes. Such 

studies should examine the effects of the frequency, number, duration, and intensity level of breaks in SB 

on health outcomes (Chastin et al., 2015). The finding that breaks in SB characterized by standing rarely 

affect cardiometabolic health outcomes reinforces the need for said research because, if breaks alone were 

sufficient to promote better cardiometabolic health outcomes, then one would expect that breaks 

characterized by standing would promote similar changes in cardiometabolic health outcomes as would 

those characterized by light PA or MVPA (Chastin et al., 2015). Expanding SB research based on the 

suggestions above could help inform clinicians and public health practitioners regarding 

recommendations related to SB.  

The CDC currently recommends that “adults should move more and sit less” (U.S. Department of 

Health and Human Services, 2018), a recommendation supported by the literature to-date. However, 

without additional research examining the role of breaks in SB, as well as the potential moderating effects 

of weight status and PA on health outcomes, recommendations will remain vague. Such recommendations 

may be appropriate at the population level, but may be insufficient to help individuals engage in positive 

health behavior changes. Researchers attempting to understand how these variables interact to affect 

health outcomes will benefit from collaborating with data scientists whose statistical skills are well-suited 

to pursue a nuanced understanding of these complex relationships.    

Sleep 

 Sleep represents another important behavior to consider when examining health outcomes, 

particularly since humans spend about 30% of their time sleeping (Wolk, Gami, Garcia-Touchard, & 
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Somers, 2005). While physiological rest constitutes the primary role of sleep, sleep also affects 

cardiovascular homeostasis (Wolk et al., 2005). Patterns of cardiovascular homeostasis follow a 24-hour 

cycle that corresponds with changes in autonomic nervous system activity, with increased 

parasympathetic activity during sleep corresponding with the lowest heart rate and blood pressure levels 

throughout a 24-hour cycle (Wolk et al., 2005). While sleep corresponds with lower heart rate and blood 

pressure, bursts of sympathetic nerve activity during the rapid eye movement stage of sleep change 

muscle tone, increase heart rate, and increase blood pressure to levels similar to those seen during 

wakefulness (Wolk et al., 2005). Sleep also affects cardiovascular homeostasis due to changes in 

arrhythmias, conduction disturbances, sinus pauses, vascular tone, endothelial function, catecholamine 

levels, and shear stress, and these sleep-related changes in cardiovascular homeostasis occur in healthy 

and unhealthy individuals (Wolk et al., 2005). In contrast with greater parasympathetic activity during 

sleep, the early morning and waking period corresponds with increased sympathetic activity resulting in 

increased heart rate, blood pressure, and vasomotor tone in the coronary arteries (Wolk et al., 2005). The 

early morning is also characterized by decreased endothelial function and increased blood coagulability 

due to greater platelet aggregation, blood viscosity, etc., changes which may explain the peak in the 

occurrence of CVD and cerebrovascular events during the morning (Wolk et al., 2005). These typical 

changes in cardiovascular homeostasis throughout the 24-hour period help maintain cardiovascular health. 

Disturbing cardiovascular homeostasis, particularly by disrupting normal sleep, significantly influences 

the cardiovascular system and may predict the development of CVD in otherwise healthy individuals 

(Wolk et al., 2005).  

 A large body of research supports the relationship between sleep and CVD, with research 

consistently indicating that sleep duration, acute sleep deprivation, and accumulated sleep debt correlate 

with the risk for CVD and metabolic disease (Heslop, Smith, Metcalfe, Macleod, & Hart, 2002a, 2002b; 

Kashani, Eliasson, & Vernalis, 2012; Wolk et al., 2005). These variables also predict health outcomes, 

with chronic episodes of short sleep duration and sleep deprivation predicting increased risk for coronary 

events, DM, HTN, and mortality (Heslop et al., 2002a, 2002b; Kashani et al., 2012; Wolk et al., 2005). 



 

42 

The effects of sleep on health outcomes are particularly well-characterized in shift workers, whose work 

schedules strongly increase their odds of experiencing sleep deprivation, greater sleep debt, and other 

sleep disturbances (Akerstedt, Fredlund, Gillberg, & Jansson, 2002). Shift workers also experience a 40% 

increased risk for CVD, coronary artery disease, and HTN, an increased risk that may be related to shift 

work-associated sleep disturbances (Wolk et al., 2005). Shift work significantly predicts disturbed sleep 

(OR: 1.56) (Akerstedt et al., 2002), and working night shifts increases sleepiness and sleepiness-related 

risk for driving accidents, long blinks while driving, and variability in driving patterns (Akerstedt, 

Kecklund, & Gillberg, 2007). Overall, sleep disturbances affect CVD risk and shift workers experience 

concomitant increases in sleep disturbances and CVD risk. 

The physiological mechanisms underlying the relationship sleep and disease risk require further 

elucidation; however, potential mechanisms may include increased sympathetic nervous system activity, 

decreased anti-oxidant enzyme activity, or impaired endothelium-dependent vasodilation due to chronic 

sleep deprivation (Wolk et al., 2005). The physiological effects of acute sleep deprivation appear to differ 

from chronic sleep deprivation, with acute deprivation corresponding with increased blood pressure and 

decreased muscle sympathetic nerve activity (Wolk et al., 2005). Acute and chronic sleep deprivation 

correlate with greater activation of inflammatory processes, such as elevated C-reactive protein levels, 

increased leukocytes, and elevated inflammatory cytokines (IL-6 and TNF-α) (Wolk et al., 2005). Finally, 

sleep deprivation may independently correlate with negative metabolic changes, such as glucose 

intolerance, insulin resistance, and a blunted insulin response to glucose (Wolk et al., 2005). Similarly, 

potential mechanisms underlying the relationship between shift work-related sleep disturbances and CVD 

include increased cardiac sympathetic and decreased cardiac parasympathetic activity, which may 

negatively affect circadian blood pressure control and decrease endothelial function (Wolk et al., 2005). 

Shift work-related increases in CVD risk may also correlate with increased obesity, dyslipidemia, and 

changes in lipid and glucose tolerance (Wolk et al., 2005). Each of these mechanisms provide a plausible 

explanation underlying the effects of sleep-disturbances on disease risk; however, additional research is 

required to further understand these mechanisms, particularly the metabolic effects of sleep disturbances. 
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 Along with considering the direct physiological link between sleep disturbances and chronic 

disease risk, sleep may indirectly affect chronic disease risk via its relationship with weight status. Indeed, 

obese individuals exhibit an inverse relationship between weight and sleep time, an association that may 

be related to changes in cortisol levels, growth hormone secretion, leptin levels, or other factors 

associated with metabolic dysregulation (Wolk et al., 2005). Obesity represents a primary risk factor for 

obstructive sleep apnea, which is significant because sleep apnea changes hemodynamic and 

neuroendocrine effects and decreases oxygen saturation (Wolk et al., 2005). A 10% weight gain also 

corresponds with a six-fold increased odds for developing sleep apnea, and weight loss decreases the 

severity of sleep apnea (Wolk et al., 2005). The effects of weight status on sleep apnea cause concern 

because of the negative acute effects of sleep apnea on health, including hypoxemia and hypercapnia 

leading to increased vascular sympathetic nerve activity, vasoconstriction, and arterial blood pressure 

(Wolk et al., 2005). Sleep apnea also triggers ischemia with ST-segment depression, increased platelet 

activation, elevated fibrinogen levels, and other changes associated with a prothrombotic state, all of 

which may explain the positive correlation between sleep apnea, stroke, CHF, and CVD mortality (Wolk 

et al., 2005). Sleep apnea triggers bradyarrhythmias, such as AV block and sinus arrest, as well as 

supraventricular and ventricular tachyarrhythmias (Wolk et al., 2005). These acute effects of sleep apnea 

may explain the correlation between the severity of sleep apnea and the risk of nocturnal sudden cardiac 

death (Wolk et al., 2005). Chronic sleep apnea increases the risk for HTN via enhanced sympathetic 

activity, elevated catecholamine levels, etc., and it may promote atherosclerosis due to increased 

oxidative stress, sympathetic activation, endothelial dysfunction, and greater inflammation (Wolk et al., 

2005). Clearly, sleep apnea negatively affects cardiovascular risk factors and associated outcomes, and 

obesity likely increases risk for sleep apnea. However, there may also exist a reciprocal relationship 

between sleep apnea and weight status, with research suggesting that chronic sleep apnea increases 

obesity risk due to increased VAT, leptin resistance, and obesity-induced metabolic abnormalities, such as 

insulin resistance, glucose intolerance, overt DM, and metabolic syndrome (Wolk et al., 2005). This 
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reciprocal relationship between obesity and sleep apnea causes particular concern, as it suggests that 

obesity and sleep apnea may synergistically increase CVD risk.  

Overall, research suggests that sleep likely represents an important health behavior to consider 

when attempting to modify disease risk. Additionally, the relationship between sleep apnea and weight 

status suggests that researchers should likely consider the individual and combined effects of sleep and 

weight status when attempting to unravel the relationship between said variables and disease risk. PA may 

also interact with sleep, as research indicates that PA improves sleep quality (Harma, Tenkanen, Sjoblom, 

Alikoski, & Heinsalmi, 1998), suggesting that the effects of PA on health outcomes may be partially due 

to PA effects on sleep. As, such, researchers should consider the roles of weight status and PA when 

examining the relationship between sleep and health outcomes. 

 Researchers with data scientists’ statistical skills and substantive expertise in health can help 

inform the design and analysis of studies attempting to unravel the complex relationships among the 

health behaviors discussed throughout this section, including weight status, physical activity/inactivity, 

SB, and sleep with health outcomes. Research to-date suggests that each of these health behaviors 

uniquely contributes to health outcomes and that many of these behaviors interact with one another by 

moderating or mediating effects on health outcomes. A thorough examination of the effects of each of 

these health behaviors requires consideration of the specific methods used for assessing said behaviors, 

because the methods used affects the interpretation of outcomes. Incorporating substantive expertise into 

the entire process, from study design through the interpretation of outcomes, will help guide the use of 

appropriate methods, statistical analyses, and interpretation of outcomes. Appropriate statistical analyses 

can help researchers identify meaningful cut-points for a given health behavior for affecting health 

outcomes, for example, determining the dose of PA required to reduce CVD risk. Identifying meaningful 

cut-points or ‘doses’ of health behaviors could help inform clinicians regarding what information to 

communicate with their patients and could help individuals make informed decisions regarding how they 

can change their health behaviors to improve their health outcomes and enhance their quality of life.  
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Psychosocial Determinants of Health and Health Behaviors 

 Understanding the health behaviors that predict chronic disease risk and associated health 

outcomes represents an important first step to improving health outcomes. However, simply knowing 

which health behaviors matter is insufficient, and to successfully improve health outcomes via changes in 

health behaviors, researchers must also understand which variables predict health behaviors. A wide 

range of variables affect health behaviors, and health behavior change theories and models typically 

attempt to address these variables. Common variables of interest in behavior change models include self-

efficacy, knowledge, intentions, outcome expectations, motivation, skills, planning, etc. (Sniehotta, 

Scholz, & Schwarzer, 2005). Many of these variables fall under the category of psychosocial 

determinants of health, and interventions typically identify one or more psychosocial determinants to 

target to successfully promote positive changes in health behaviors, with the long-term goal of reducing 

chronic disease risk and improving health outcomes. While a variety of psychosocial determinants affect 

health behaviors, this section will focus on three potential psychosocial determinants of health behaviors: 

1) Psychological stress; 2) Motivation; and 3) Action Planning. However, these psychosocial 

determinants represent only a small proportion of the potential determinants of health behaviors.  

Stress 

Psychosocial stress is one psychosocial determinant of health behaviors that directly affects 

chronic disease risk and health outcomes. Psychosocial stress is defined as the “perception that the 

demands (or anticipated demands) of the environment exceed the individual’s ability to cope” (Neu, 

Matthews, King, Cook, & Laudenslager, 2014). Psychosocial stress directly affects chronic disease risk, 

with chronic exposure to daily stressors predicting CVD morbidity and mortality, independent of CVD 

severity (Babyak et al., 2010; Cohen, Edmondson, & Kronish, 2015; Sheps et al., 2002; Steptoe & 

Kivimaki, 2013). Chronic psychosocial stress, both in early life and adulthood, corresponds with a 40%-

60% increased risk of CHD (Steptoe & Kivimaki, 2013). Specific psychosocial stressors linked to 

increased CVD risk include social isolation, stress at work, marital problems, death of a child, and having 

to care for a sick spouse (Steptoe & Kivimaki, 2013). Importantly, some data have helped rule out the 
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possibility of reverse causality, in which individuals with underlying subclinical CVD might be more 

likely to report stress, as studies excluding CVD events in the first five years after baseline found that the 

association between job strain and clinical CVD remained the same (Kivimaki et al., 2012; Steptoe & 

Kivimaki, 2013).  

Psychosocial stressors also predict increased risk of CVD events, with both social isolation and 

loneliness corresponding with a 50% increased RR of incident CVD events (Cohen et al., 2015). Work-

related stress increases RR for incident CVD events by 40% (Cohen et al., 2015), and working long hours 

corresponds with a 40% increased risk of incident CVD (Steptoe & Kivimaki, 2013; Virtanen et al., 

2012). Emotional stress may account for a small percent of the PAF for acute cardiac events (Nawrot, 

Perez, Kunzli, Munters, & Nemery, 2011; Steptoe & Kivimaki, 2013). Anger, stress, and other emotions 

correlate with episodes of MI (Babyak et al., 2010; Sheps et al., 2002; Steptoe & Kivimaki, 2013), and 

the odds of experiencing a negative emotion during the two hours prior to stroke onset is extremely high 

(OR: 14.0) (Koton, Tanne, Bornstein, & Green, 2004). Chronic exposure to psychosocial stressors 

predicts a worse prognosis in CVD patients (Cohen et al., 2015; Steptoe & Kivimaki, 2013). For example, 

work-related stress predicts recurrent cardiac events after an MI and, among MI survivors, mortality over 

2-years of follow-up occurred among 13% of patients reporting moderate or high stress, versus 9% among 

patients with low stress (Arnold, Smolderen, Buchanan, Li, & Spertus, 2012; Steptoe & Kivimaki, 2013). 

Clearly, psychosocial stressors negatively affect the risk for CVD, CVD-related events, and prognosis in 

individuals with CVD.   

 Stress-related cardiomyopathy provides the most striking example of the importance of 

psychosocial stress in affecting health outcomes. Stress-related cardiomyopathy is characterized by chest 

pain and shortness of breath, moderately elevated cardiac enzymes, EKG abnormalities, like ST elevation, 

and a weakening of the cardiac muscles, and it accounts for 2% of suspected acute coronary syndromes 

(Steptoe & Kivimaki, 2013). Interestingly, stress-related cardiomyopathy is temporary and reversible, and 

often occurs in people with little to no structural coronary artery disease, thus distinguishing it from the 

majority of cardiomyopathies (Steptoe & Kivimaki, 2013). Intense episodes of acute physical or 
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emotional stress precede the onset of stress-related cardiomyopathy in 42% and 47% of cases, 

respectively (Sharkey et al., 2010; Steptoe & Kivimaki, 2013). Elevated catecholamine levels may 

explain the onset of stress-related cardiomyopathy, as the features of stress-related cardiomyopathy also 

occur with intravenous catecholamines or beta-receptor agonists (Steptoe & Kivimaki, 2013; Wittstein et 

al., 2005). However, additional research is required to fully understand the physiological mechanisms 

underlying stress-related cardiomyopathy. 

Chronic stress exposure also increases the risk for metabolic syndrome, with studies 

operationalizing chronic stress exposure as low SES finding that low SES predicts increased risk for 

metabolic syndrome (Brunner et al., 1997; Loucks et al., 2007; Manuck, Phillips, Gianaros, Flory, & 

Muldoon, 2010; Park et al., 2012; Ramsay, Whincup, Morris, Lennon, & Wannamethee, 2008; Steptoe & 

Kivimaki, 2013). Other psychosocial stressors, including loneliness, marital stress (in women), and 

workplace stress longitudinally predict incident metabolic syndrome, even after controlling for SES 

(Steptoe & Kivimaki, 2013). The British Whitehall II study revealed that individuals reporting a greater 

frequency of stress over time experienced a greater risk of metabolic syndrome, which explained 16% of 

the effect of stress on CHD (Chandola et al., 2008). Chronic stress correlates with higher triglycerides and 

lower HDL-cholesterol (Chandola et al., 2008; Kivimaki et al., 2009; Steptoe & Kivimaki, 2013); 

however, changes in LDL- and HDL-cholesterol and triglycerides explain very little of the association 

between stress and CVD (Chandola et al., 2008; Kivimaki et al., 2002; Steptoe & Kivimaki, 2013). Stress 

transiently increases blood pressure, and there is a dose-response pattern in the association between stress 

associated with loneliness and increased blood pressure (Hawkley, Masi, Berry, & Cacioppo, 2006; 

Shankar, McMunn, Banks, & Steptoe, 2011), a response that strengthens with increasing age (Hawkley et 

al., 2006; Steptoe & Kivimaki, 2013). However, these transient, stress-induced increases in blood 

pressure may not correspond with chronic HTN, indeed, the Whitehall II study showed little support for 

HTN mediating the relationship between stress and CVD (Kivimaki et al., 2002; Steptoe & Kivimaki, 

2013). Stress may increase abdominal fat deposition, and chronic stress correlates with higher central 

obesity and BMI (Chandola et al., 2008; Kivimaki et al., 2009; Steptoe & Kivimaki, 2013). Finally, 
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higher stress correlates with immune system dysfunction, a multitude of cognitive impairments, 

depression, and burnout (Mucke, Ludyga, Colledge, & Gerber, 2018). Overall, it is clear that stress 

correlates with metabolic syndrome risk and CVD risk factors, though the role of these risk factors in 

mediating the relationship between stress exposure and CVD risk require further elucidation. 

The physiological mechanisms underlying the effects of psychosocial stress on CVD risk and 

other health outcomes remain undetermined. However, changes in blood flow, coronary artery calcium, 

and acute myocardial ischemia triggered by stress may represent potential mechanisms underlying said 

relationship. Among individuals with post-traumatic stress disorder (PTSD), common physiological 

changes include decreased myocardial blood flow, increased coronary artery calcium, and evidence of 

myocardial ischemia on a treadmill test (Cohen et al., 2015). Psychological stressors also induce acute 

myocardial ischemia in 30-70% of patients with existing coronary artery disease (Cohen et al., 2015; 

Krantz & Burg, 2014). Oddly, stress-induced myocardial ischemia typically fails to cause ischemic 

symptoms, like chest pain; however, stress-induced myocardial ischemia does correspond with increased 

mortality risk and risk of recurrent CVD (Cohen et al., 2015). As such, it is possible that distinct 

mechanisms underlie the differences between the symptoms of stress-induced myocardial ischemia and 

other forms of myocardial ischemia (Cohen et al., 2015; Jiang et al., 2013; Strike & Steptoe, 2003).  

For example, coronary microvascular dysfunction occurs with stress-induced myocardial 

ischemia, and leads to atypical symptoms like fatigue and vague discomfort (Cohen et al., 2015; Jiang et 

al., 2013; Strike & Steptoe, 2003). Acute exposure to experimental stressors triggers heightened platelet 

activation among patients who survived a stress-induced acute MI, but does not occur among patients 

who survived a non-stress-induced MI, suggestion that coagulation may play an important mechanistic 

role in the relationship between stress and CVD (Steptoe & Kivimaki, 2013; Strike et al., 2006). Stress 

may also trigger the accumulation of atherosclerotic plaques which, in combination with heightened 

platelet activation, may increase the risk for CVD events (Cohen et al., 2015). Importantly, adjusting for 

other CVD risk factors, like smoking, HTN, DM, dyslipidemia, and obesity barely attenuates the 

relationship between stress, myocardial ischemia, and coronary atherosclerosis (Cohen et al., 2015). As 
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such, stress may trigger different mechanisms underlying the development of myocardial ischemia and 

atherosclerosis; however, substantially more research is needed to elucidate these mechanisms. 

Increased hypothalamic-pituitary-adrenal (HPA) axis activity, autonomic nervous system 

reactivity, inflammation, endothelial dysfunction, and oxidative stress may also underlie stress effects on 

CVD (Cohen et al., 2015; Steptoe & Kivimaki, 2013). Exposure to acute psychological stressors, chronic 

daily stressors, traumatic events, and PTSD correlates with these changes; however, research has not 

examined whether these changes account for the association between psychosocial stress and CVD 

(Cohen et al., 2015; Kivimaki et al., 2012; Kivimaki et al., 2006; Kloner, McDonald, Leeka, & Poole, 

2009; Koton et al., 2004; Lampert et al., 2002; Lampert et al., 2009; Shahidi, Sannes, Laudenslager, & 

Maluf, 2015). The HPA axis plays an important role in regulating the body’s response to physical and 

mental stress (Neu et al., 2014). HPA axis activation triggers cortisol production, which mobilizes energy 

reserves, increases cerebral perfusion and glucose utilization, reduces inflammation, and enhances 

cardiovascular function, all to achieve the goal of helping an individual cope with stressors (Neu et al., 

2014). Short-term or mild stress triggers transient increases in cortisol levels that return to normal when 

the stressor disappears (Neu et al., 2014). However, with prolonged stress, cortisol levels remain high, 

and this chronic stimulation of glucocorticoid receptor synthesis inhibits adrenocorticotropic hormone 

(the hormone that promotes cortisol release), resulting in lower cortisol production and a state of hypo-

cortisolism (Neu et al., 2014; Schommer, Hellhammer, & Kirschbaum, 2003; Shahidi et al., 2015). 

Importantly, cortisol responsivity to acute stress may predict the progression of coronary artery 

calcification, independent of other risk factors (Hamer, Endrighi, Venuraju, Lahiri, & Steptoe, 2012; 

Hamer & Steptoe, 2012; Steptoe & Kivimaki, 2013). Thus, research supports the role of stress in 

affecting chronic HPA axis activation, which causes changes in glucose utilization, inflammation, and 

cardiovascular function, thereby explaining one physiological mechanism potentially underlying the 

effects of stress on CVD.   

Stress can also transiently impair endothelial function, increase circulating levels of pro-

inflammatory cytokines (i.e. IL-6, TNF-alpha), increase platelet activation, and promote prothrombotic 
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changes in the blood, physiological mechanisms that may also account for the effects of stress on CVD 

(Hjemdahl & Von Kanel, 2012; Steptoe & Kivimaki, 2013). There are significant within-person 

differences in the magnitude of physiological responses to stress and the post-stress recovery period 

(Steptoe & Kivimaki, 2013), differences that may relate to coping techniques (Cohen et al., 2015). For 

example, animal research suggests that coping responses moderate the relationship between the 

neurobiological pathways associated with stress and cardiovascular damage (Cohen et al., 2015). Rodents 

who use passive, rather than active, coping strategies exhibit greater HPA axis reactivity and activation of 

proinflammatory genes, along with increased cardiac hypertrophy and reduced heart rate variability 

(Cohen et al., 2015); however, significantly more research in humans is needed to help understand within-

person differences in stress responses. When considering post-stress recovery, one study revealed a 

significant and positive longitudinal relationship between impaired post-stress recovery and changes in 

carotid artery intima-media thickness (r=0.14) (Chida & Steptoe, 2010; Steptoe & Kivimaki, 2013). 

Epidemiological data also indicate that greater life stress across time increases cardiovascular reactivity, 

which correlates with faster progression of carotid artery intima-media thickness, suggesting that 

cardiovascular reactivity may mediate the relationship between chronic stress and intima-media thickness 

(Low, Salomon, & Matthews, 2009; Steptoe & Kivimaki, 2013); however, these effects of stress on 

intima-media thickness may only occur in males (Hintsanen et al., 2005). 

While stress directly affects disease risk due to underlying physiological mechanisms, stress also 

indirectly affects disease risk by affecting health behaviors. Stress inversely correlates with and predicts 

decreased PA participation across time (Bauman et al., 2012; Gerber & Puhse, 2009; Oaten & Cheng, 

2005; Schultchen et al., 2019; Steptoe et al., 1997; Stetson, Rahn, Dubbert, Wilner, & Mercury, 1997; 

Stults-Kolehmainen & Sinha, 2014). Individuals who experience high stress levels also engage in less 

exhausting activities and avoid PA (Schultchen et al., 2019). However, while stress may decrease PA 

participation, PA participation may also decrease stress, with cross-sectional and longitudinal research 

indicating that greater PA participation corresponds with lower stress levels (Aldana, Sutton, Jacobson, & 

Quirk, 1996; Bennett et al., 2006; Gerber & Puhse, 2009; Kornitzer & Kittel, 1986; Kouvonen et al., 
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2005; Melamed, Kushnir, Strauss, & Vigiser, 1997; Schnohr, Kristensen, Prescott, & Scharling, 2005; 

Wemme & Rosvall, 2005). This supports the idea that there exists a reciprocal relationship between stress 

and PA (Schultchen et al., 2019).  

The reciprocal relationship between stress and PA occurs both between- and within-people, with 

ecological momentary assessment (EMA) data indicating that, within-persons, higher stress significantly 

correlated with lower PA over the next few hours, and greater PA correlated with better self-reported 

measures of subjective stress, less subsequent stress, lower negative affect, and higher positive affect 

(Schultchen et al., 2019). Additionally, higher negative affect correlated with lower PA (Schultchen et al., 

2019). Indeed, when stressed, individuals typically exhibit unhealthy behaviors, liking being physically 

inactive (Schultchen et al., 2019), which is particularly unfortunate given the potential value PA may 

provide for dealing with stress. Perhaps most importantly, this study found that regular PA correlated with 

decreases in physiological indicators of stress, including lower salivary cortisol, lower heart rate, and 

faster cardiovascular recovery after stress exposure (Schultchen et al., 2019). These EMA findings are 

particularly noteworthy, because they demonstrate that the reciprocal relationship between stress and PA 

exists within individuals, suggesting that person-specific characteristics do not drive the directionality of 

the stress-PA relationship. 

The physiological mechanism underlying the attenuating effects of PA on individuals’ stress 

reactivity could be due to a training effect. The cross-stressor-adaptation (CSA) hypothesis suggests that 

regular exposure to physical stress, like moderate or vigorous PA, trains the body to more effectively 

handle all stressors, including psychosocial stressors (Kjaer, 1992; Luger et al., 1987; Mucke et al., 2018). 

The CSA hypothesis suggests that physical stress triggers a similar stress response to that of psychosocial 

stressors (Kjaer, 1992; Luger et al., 1987; Mucke et al., 2018), thereby promoting beneficial adaptations 

of the HPA axis and the sympathoadrenal medullary system, which can generalize to non-physical 

stressors (e.g. psychosocial stressors) (Gerber, 2017; Mucke et al., 2018). These beneficial adaptations 

could therefore account for regular PA attenuating the effects of stress on health outcomes (Gerber, 2017; 

Mucke et al., 2018). Changes in neurotransmitter levels may also underlie the relationship between PA 
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and stress. PA increases dopamine, serotonin, and endorphin release, all of which increase positive affect 

and decrease negative affect (Meeusen & De Meirleir, 1995; Ruscheweyh et al., 2011; Schultchen et al., 

2019; Sutoo & Akiyama, 2003; Winter et al., 2007). PA also increases self-efficacy, which can 

subsequently enhance momentary affect (Pannicke, Reichenberger, Schultchen, Pollatos, & Blechert; 

Rhodes & Kates, 2015; Schultchen et al., 2019). Overall, PA directly affects psychological stress and 

stress reactivity, thereby potentially moderating or mediating the relationship between stress and health 

outcomes. 

Stress also affects sleep, with cross-sectional research indicating that higher stress correlates with 

shorter sleep duration and impaired sleep (Benham, 2010; Petersen, Kecklund, D'Onofrio, Nilsson, & 

Akerstedt, 2013). Moderate everyday stress correlates with decreased time spent in deep sleep, increased 

time in lighter sleep, anxiety at bedtime, and poor sleep quality (Akerstedt et al., 2007). Individuals 

reporting higher perceived stress also demonstrate shorter sleep times, worse sleep quality, higher 

likelihood of sleep apnea, and greater sleepiness and fatigue (Kashani et al., 2012). Finally, stress 

correlates with insomnia, likely because stress makes it difficult to fall asleep, to stay asleep, and affects 

overall sleep quality (National Sleep Foundation, 2019), and stress represents one of the primary causes 

of persistent psychophysiological insomnia (Akerstedt et al., 2012; Petersen et al., 2013).  

Prospective research indicates that high work demands, work-related stress, and prior stressful 

life events predict insomnia, greater sleep disturbance, worse sleep quality, impaired sleep, and greater 

sleep variability (Akerstedt et al., 2012; de Lange et al., 2009; Ribet & Derriennic, 1999). Moderate daily 

stress predicts worse sleep, decreased sleep efficiency, and worse sleep fragmentation, and decreased 

sleep quality (Akerstedt et al., 2012; Petersen et al., 2013). This prospective research also suggests that 

there is a reciprocal relationship between stress and sleep quality, with greater stress predicting worse 

sleep quality, and worse sleep quality predicting increased stress at bedtime the following night 

(Akerstedt et al., 2012). Indeed, Akerstedt et al. concluded that, since significant variability in stress and 

sleep quality occur within a modest range, sleep quality is likely very sensitive to small changes in stress 

(Akerstedt et al., 2012). Additionally, sleepiness and stress predict day-to-day variation in fatigue, and 
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said fatigue corresponds with greater sleepiness on the same day (Akerstedt, Axelsson, Lekander, Orsini, 

& Kecklund, 2014). Cross-sectional and longitudinal research confirm the relationship between stress and 

multiple sleep metrics (i.e. sleep duration, sleep quality, etc.), as well as the likely presence of a reciprocal 

relationship between stress and sleep.  

 The physiological mechanisms underlying the effects of stress on sleep likely relate to effects on 

HPA axis activation, with data suggesting that the HPA axis and sleep exhibit a reciprocal relationship, 

and increased secretion of corticotrophin-releasing hormone predicts lighter sleep, more sleep 

awakenings, and less time spent in deep sleep (Dahlgren, Kecklund, Theorell, & Akerstedt, 2009). High 

cortisol levels inhibit deep sleep, whereas low cortisol levels may enhance deep sleep (Dahlgren et al., 

2009), which may account for the negative effects of stress on sleep, since acute stress increases cortisol.  

Deep sleep inhibits HPA axis activity (Dahlgren et al., 2009), which implies a reciprocal relationship 

between stress and sleep. Similarly, sleep disruptions alter nighttime cortisol secretions, and elevated 

cortisol in the evening time occurs after partial sleep deprivation and in insomniacs (Dahlgren et al., 

2009). Experiencing greater stress, anxiety, and fatigue corresponds with elevated evening cortisol levels 

and higher anxiety corresponds with lower cortisol levels the following morning, subsequently predicting 

higher levels of sleepiness (Dahlgren et al., 2009). Finally, high exhaustion and anxiety correspond with 

low cortisol on the following morning (Dahlgren et al., 2009). These data provide support for the 

reciprocal relationship between stress and sleep, with HPA axis activation as the physiological 

mechanism underlying this reciprocal relationship. Considering the physiological effects of HPA axis 

activation on health outcomes, the combination of higher stress and worse sleep may exacerbate the 

independent effects of stress and sleep on health outcomes. Indeed, Benham argues that models 

examining the effects of stress on health outcomes should include sleep, and that such models should 

conceptualize stress and sleep as reciprocally affecting one another, with both variables indirectly 

affecting health outcomes by increasing allostatic load (i.e. HPA axis activation) (Benham, 2010).  

 Stress clearly represents an important direct and indirect psychosocial determinant of health 

outcomes. The direct effects of stress on health outcomes likely occur via effects on HPA axis activation, 
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inflammation, endothelial functioning, etc., and the indirect effects occur via effects on weight status, PA, 

and sleep. Stress exhibits reciprocal relationships with multiple health variables, including weight status, 

PA, and sleep, suggesting that researchers attempting to understand the precise role of stress in affecting 

health outcomes need to account for these reciprocal relationships. Researchers trained in employing 

statistical models capable of accounting for such reciprocal relationships can enhance our understanding 

of how unique variables, such as stress, directly and indirectly affect health outcomes.  

Motivation 

 Motivation is another psychosocial determinant of PA. Well-established behavior change theories 

help provide guidance when researchers are attempting to understand the potential effects of motivation 

on health behaviors. Self-Determination Theory (SDT) represents one of the most well-established 

behavior change theories regarding how motivation affects health behaviors (Ryan & Deci, 2000). SDT 

states that motivation drives people to engage in a behavior, and suggests that some forms of motivation 

completely align with an individual’s values, whereas, other forms of motivation may be completely 

external to a person (Ryan & Deci, 2000). SDT conceptualizes these various types of motivation on a 

continuum from non-autonomous amotivation to completely autonomous intrinsic motivation, with four 

subcategories of extrinsic motivation in between (Ryan & Deci, 2000). Amotivation refers to a state in 

which a person has no drive for a behavior and experiences a complete lack of autonomy regarding said 

behavior (Ryan & Deci, 2000). This can occur due to a lack of perceived competence, due to the fact that 

a person believes the given behavior is not valuable, or because they are motivated not to do an action, for 

instance, as a form of defiance (Ryan & Deci, 2000). For example, a child may experience amotivation 

regarding participating in an organized sport, like baseball, if their parents force them to do it or if they 

feel incompetent in their ability to play baseball. Individuals may experience a lack of perceived 

competence for specific types of PA, or they may feel they aren’t fit enough to be active (Korkiakangas, 

Alahuhta, & Laitinen, 2009; Teixeira, Carraca, Markland, Silva, & Ryan, 2012). Individuals may also 

simply not value PA, a common occurrence, as 40% of Europeans agreed with the statement that “Being 

physically active does not really interest me – I would rather do other things with my spare time” 
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(Teixeira et al., 2012). Importantly, amotivation may increase the likelihood that an individual does not 

participate in PA (Ryan & Deci, 2000).  

The four subcategories of extrinsic motivation vary in the extent to which they are autonomously 

regulated (Ryan & Deci, 2000; Teixeira et al., 2012). External and introjected regulation are the least 

autonomous forms of extrinsic motivation (Ryan & Deci, 2000; Teixeira et al., 2012). These forms of 

motivation suggest that the individual does not have much control over their source of motivation, and 

they are often combined to represent controlled motivation (Ryan & Deci, 2000; Teixeira et al., 2012; 

Williams, Grow, Freedman, Ryan, & Deci, 1996). Controlled forms of extrinsic motivation occur when 

an individual participates in a behavior due to their desire to be compliant, to conform, or to avoid 

punishment or receive rewards (Ryan & Deci, 2000). For example, a person may participate in PA to be 

compliant with their doctor’s direction to be active to reduce their LDL-cholesterol or lose weight, or they 

may also participate in PA as a means to an end, such as to look better (Markland, 2009; Teixeira et al., 

2012). Greater controlled motivation corresponds with lower PA participation, because it does not reflect 

an individual’s internal values (Ryan & Deci, 2000; Teixeira et al., 2012), or it has no effect on PA 

participation (Teixeira et al., 2012). 

Identified and integrated regulation represent more autonomous forms of extrinsic motivation 

(Ryan & Deci, 2000; Teixeira et al., 2012). These two forms of extrinsic motivation suggest that the 

individual has more control over their source of motivation (Ryan & Deci, 2000). For example, a person 

may participate in PA because it is important to them, or it fits with their self-perception (Markland, 

2009; Teixeira et al., 2012). Similar to identified and integrated regulation, intrinsic motivation represents 

the most autonomous form of motivation (Ryan & Deci, 2000; Teixeira et al., 2012). Intrinsic motivation 

occurs when a behavior aligns with an individual’s interests, enjoyment, and sense of satisfaction (Ryan 

& Deci, 2000). For example, an individual might participate in PA because it makes them feel good or 

they enjoy the particular activity, such as playing volleyball with friends. Researchers often combine 

identified regulation, integration regulation, and intrinsic motivation to represent autonomous motivation 

(Ryan & Deci, 2000; Teixeira et al., 2012). SDT and related research examining the effects of motivation 



 

56 

on PA participation consistently indicate that more autonomous forms of motivation correlate with more 

persistent engagement in MVPA (Ryan & Deci, 2000; Teixeira et al., 2012).  

  Teixeira et al. conducted a review of the relationship between motivation and PA, finding 

consistent support that greater autonomy corresponded with greater PA participation (Teixeira et al., 

2012). They also found that controlled motivation for PA only predicted short-term adoption of PA 

(Teixeira et al., 2012). In contrast, autonomous motivation predicted long-term PA participation in a wide 

range of participants and settings (Teixeira et al., 2012). Specific sources of autonomous motivation that 

predicted greater PA participation included social engagement, overcoming challenges associated with 

PA, and the desire to develop PA skills (Teixeira et al., 2012). Overall, the review supported the idea that 

valuing the outcomes of PA, like changes in physique, is an important source of motivation predicting PA 

adoption; whereas, valuing the experience of PA, like the social engagement, is an important source of 

motivation predicting longer-term PA participation (Teixeira et al., 2012). Barbeau et al. conducted a 

path-analysis that reinforced the value of autonomous motivation in predicting PA, revealing that 

characteristics of autonomous motivation that meet the psychological needs of competence and 

relatedness significantly and positively predicted autonomous motivation, subsequently predicting PA 

participation (Barbeau, Sweet, & Fortier, 2009). Importantly, the positive effects of autonomous 

motivation on PA participation occur throughout the lifespan, with research indicating that children who 

maintained higher autonomous motivation, and who valued the experience of PA, showed smaller 

declines in PA between middle-school and high-school (Dishman, McIver, Dowda, & Pate, 2018). 

Children with higher autonomous motivation for PA also demonstrated larger declines in valuing PA as a 

means to an end, such as for improving appearance, which is a form of controlled motivation (Dishman et 

al., 2018), suggesting that autonomous motivation related to PA enjoyment may help displace more 

controlled forms of motivation. However, researchers also found that children who maintained higher 

autonomous motivation demonstrated larger declines in valuing PA for social or competence reasons 

(Dishman et al., 2018); therefore, the effects of children’s values on their levels of autonomous and 

controlled motivation for PA, as well as their subsequent PA participation, may be more complex than 
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previously thought. As such, research examining how children’s values affect their type of motivation 

regarding PA, and how this affects PA participation, requires additional consideration.  

Overall, research consistently indicates that autonomous motivation positively predicts PA 

participation (Barbeau et al., 2009; Dishman et al., 2018; Teixeira et al., 2012), and that psychological 

needs fulfillment, like experiencing competence and relatedness, fosters autonomous motivation (Barbeau 

et al., 2009; Teixeira et al., 2012). Therefore, motivation represents an important psychosocial variable 

predicting PA participation; however, the precise relationship between psychological needs fulfillment, 

values, and motivation in children requires further examination. Researchers attempting to influence PA 

participation to promote better health outcomes should consider attempting to increase individual’s 

autonomous motivation for PA and reducing amotivation or controlled motivation for PA. Researchers 

attempting to disentangle the influence of different types of motivation on PA participation should 

consider using data scientists’ statistical skills to examine the relationships between different types of 

motivation in predicting PA participation.     

Action Planning 

While motivation clearly represents an important predictor of PA participation, simply focusing 

on motivation may be insufficient, as substantial research indicates that, despite being motivated, 

individuals often fail to participate in PA (Sniehotta et al., 2005). This incongruence between motivation 

for participating in PA and actual PA participation may relate to an individual’s intentions or their ability 

to use action planning (K. Li, Iannotti, Haynie, Perlus, & Simons-Morton, 2014; Sheeran, 2002; Sniehotta 

et al., 2005). Intentions are the explicit decisions an individual makes to act in a particular way, and they 

relate to motivation by helping to focus a person’s motivation towards a goal (Sheeran, 2002). Therefore, 

intentions may help move motivation towards action. Many behavior change theories explicitly 

acknowledge the importance of behavioral intentions in predicting health behaviors, like PA (Ajzen, 

1991; Fishbein & Ajzen, 1980; Maddux, 1993; Sniehotta et al., 2005). Indeed, previous research indicates 

that PA intentions explain a significant amount of variance in exercise participation 6-10 weeks post 

cardiac rehabilitation treatment (Blanchard, Courneya, Rodgers, Daub, & Knapik, 2002; Sniehotta et al., 
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2005). Intentions also predict motivation related variables, with self-efficacy (b=0.63), outcome 

expectancies (b=0.25), and risk awareness (b=0.11) accounting for 65% of variance in intention, and 

intention significantly predicting PA participation (Sniehotta et al., 2005). Despite the importance of 

intentions in predicting and promoting behaviors, research reveals a gap between an individual’s 

behavioral intentions and their actual behaviors, which is typically referred to as the “intention-behavior 

gap” (Sniehotta et al., 2005). This consistent presence of the intention-behavior gap resulted in 

researchers postulating which variables might help explain the gap, with the goal of identifying 

intervention targets to close the intention-behavior gap. Action planning was identified as one potential 

variable affecting intentions and the intention-behavior gap. 

Action planning refers to when someone makes the conscious decision to engage in a behavior, 

often by literally putting the behavior on their schedule (i.e. scheduling an hour long run), and can include 

things such as making concrete plans that account for a variety of situations, including when to be active, 

where to be active, and what to do for activity (K. Li et al., 2014; Sniehotta et al., 2005). For example, an 

individual may plan on taking an hour long run in their neighborhood at 8AM. They may also have a 

contingency plan to go running at the gym if it’s raining outside. Sniehotta et al. found that action 

planning significantly mediated the relationship between intentions and PA participation, with intentions 

predicting action planning (b=0.41) and action planning predicting exercise behavior (b=0.25) (Sniehotta 

et al., 2005). Importantly, intentions did not significantly predict PA after including action planning in 

model, indicating that action planning accounted for the effects of intention on PA participation 

(Sniehotta et al., 2005). The combination of action planning and intentions also accounted for a 

substantial amount of variance in PA behaviors (R2 = 0.24) (Sniehotta et al., 2005). Action planning 

mediates the relationship between behavioral intentions and actual PA behavior in multiple settings (Cao, 

Schuz, Xie, & Lippke, 2013; K. Li et al., 2014; Reuter, Ziegelmann, Wiedemann, & Lippke, 2008; 

Scholz, Schuz, Ziegelmann, Lippke, & Schwarzer, 2008; Wiedemann, Lippke, Reuter, Ziegelmann, & 

Schwarzer, 2011), and interventions have successfully improved action planning as a means to increase 

PA participation (Dombrowski & Luszczynska, 2009; Koring et al., 2012). These findings suggest that 
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action planning helps explain the intention-behavior gap, and that interventions can successfully improve 

action planning to help close this gap. As such, researchers attempting to improve PA participation as a 

means to improve health outcomes should likely include action planning as a variable in their studies, as it 

represents an important link between motivation, intention, and behavior. The ability to account for these 

multiple predictors that interact with one another likely requires the inclusion of data scientists, whose 

skills allow them to simultaneously account for multiple psychosocial determinants of behaviors and to 

consider how said determinants interact with one another in predicting behavioral outcomes. 

A wide variety of psychosocial variables predict health behaviors and, as described above, stress, 

motivation, and action planning represent important variables predicting PA participation. Understanding 

the roles of these psychosocial variables in predicting PA participation can help inform the development 

of more effective and targeted interventions. Such interventions have a greater likelihood of success. Data 

scientists are well-suited to helping researchers identify the unique and combined effects of psychosocial 

variables on health behaviors and associated health outcomes. This is particularly important when 

considering variables like stress, which indirectly affects health outcomes through effects on health 

behaviors, like PA, and directly affects health outcomes via physiological mechanisms, like HPA axis 

activation. Appropriate statistical modeling techniques can help disentangle the direct and indirect effects 

of stress on health outcomes, and can concomitantly examine the effects of different types of motivation 

(i.e. autonomous and controlled motivation) on health behaviors, as well as the role of action planning in 

mediating the relationship between motivation, intentions, and health behaviors. These represent only a 

few of the psychosocial determinants affecting health behaviors; however, they provide examples of the 

complex patterns between psychosocial variables, health behaviors, and health outcomes that may be 

understandable by employing appropriate methodological and statistical approaches. 

Unmodifiable Determinants of Health 

Along with the many psychosocial and behavioral determinants of disease, several unmodifiable 

variables also affect chronic disease risk. Such variables include age, sex, race/ethnicity, socioeconomic 

status, and genetics, among others. While these characteristics are unmodifiable by nature, researchers 
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should attempt to understand how they correspond with psychosocial determinants, health behaviors, and 

health outcomes. Identifying the potential effects of unmodifiable variables can allow researchers to 

design more appropriate studies and targeted interventions, and help inform public policy and health 

recommendations. Considering the wide variety of unmodifiable determinants of chronic disease risk and 

associated variables, this section will focus on three of the most commonly measured unmodifiable 

determinants examined in research studies: 1) Age; 2) Sex; and 3) Race/ethnicity. 

Age  

Age is unmodifiable because, while it does change across time, it progresses at the same rate 

between individuals and remains fixed at any given point in time. Age affects the prevalence of CVD, 

DM, and metabolic syndrome, and affects PA participation, SB, and the relationship between health 

behaviors and chronic disease risk. For example, an individual’s likelihood of developing CVD increases 

with age and, in the U.S., 24-year-olds have a 20% risk of CVD, compared to 50% and 90% risks among 

45-year-olds and 80-year-olds, respectively (American Heart Association, 2017). Age positively 

correlates with CVD risk, with the most significant increases for people over 60 years old (McAloon et 

al., 2016). The prevalence of exhibiting at least one CVD risk factor increases with age, with 65.0% of 

U.S. adults 60 years or older having HTN, compared to 76.5% of adults 80 years or older (Bromfield et 

al., 2014; Fryar, Chen, & Li, 2012; Mozaffarian et al., 2015; Nwankwo, Yoon, Burt, & Gu, 2013). 

Incidence rates for a first CVD event increase with age, with rates of 3 per 1000 among 35-44 year old 

males, versus 74 per 1000 among 85-94 year old males (Mozaffarian et al., 2015). Females exhibit similar 

incidence rates for a first CVD event approximately one decade later than males (45-54 years old and 35-

44 years old, respectively); however, the age gap for these incident rates between males and females 

narrows with increasing age (Mozaffarian et al., 2015).  

DM prevalence rates in the U.S. increase with age, with adults ≥ 20 years old versus ≥ 65 years 

old exhibiting prevalence rates of 9.9% and 26.9%, respectively (Cowie et al., 2009; Mozaffarian et al., 

2015; Selvin et al., 2014). Global DM prevalence rates also increases with age, though income appears to 

moderate age-related increases in DM (Cho et al., 2018). For example, high-income countries exhibit the 
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highest DM prevalence rates among 75-79 year olds (22%); whereas, middle- and low-income countries 

exhibit the highest DM prevalence rates among 60-74 year olds (19%) and 55-64 year olds (8%), 

respectively (Cho et al., 2018). Metabolic syndrome prevalence rates increase with age (Mozaffarian et 

al., 2015), and age exacerbates the detrimental effects of DM and metabolic syndrome on CVD mortality 

risk (Church et al., 2009). CVD mortality rates among all males with DM are 5.5/1000 man years; 

whereas, rates among males ≥ 50 years old are 12.9/1000 man years (Church et al., 2009). Similar 

patterns for CVD mortality rates exist among males with metabolic syndrome, whose CVD mortality 

rates are 3.3/1000 man years among all males versus 8.0/1000 man years among males ≥ 50 years old 

(Church et al., 2009). Males ≥ 50 years old who have DM and metabolic syndrome also exhibit the 

highest CVD mortality rates compared to all males with DM and metabolic syndrome (14.8/1000 man 

years versus 6.5/1000 man years, respectively) (Church et al., 2009). Clearly, age affects the relationship 

between DM, metabolic syndrome and CVD mortality.  

Given the age-related increase in the prevalence of CVD and other chronic diseases, it is 

unsurprising that obesity prevalence rates also increase. Among U.S. adults, 40-59 year olds exhibit 

significantly higher obesity prevalence rates than 20-39 year olds, with rates of 42.8% and 25.7%, 

respectively (Hales et al., 2017). However, adults 60 years and older do not exhibit significantly different 

obesity prevalence rates than other age groups (41.0%), a finding that may be due to age-related changes 

in muscle mass (Hales et al., 2017). Obesity prevalence rates similarly increase with age in children, with 

6-11 year olds and 12-19 year olds exhibiting significantly higher obesity prevalence rates (18.4% and 

20.6%, respectively) than 2-5 year olds (13.9%) (Hales et al., 2017). These age-related increases in 

obesity prevalence rates correspond with similar age-related increases in SB and decreases in PA. 

A majority of studies indicate that PA participation decreases with age among children, 

adolescents, and adults (Bauman et al., 2012), and SB increases with age (Matthews et al., 2008). Among 

children, 6-11 year olds spend the least amount of time in SB (6.07 hours/day) compared to 12-15 year 

olds and 16-19 year olds (7.53 hours/day and 8.03 hours/day, respectively) (Matthews et al., 2008). 

Among adults, 20-29 year olds spend 7.48 hours/day in SB, and time spent in SB progressively increases 
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with age, with averages of 7.25 hours/day in 30-39 year olds, 7.55 hours/day in 40-49 year olds, 7.87 

hours/day in 50-59 year olds, 8.41 hours/day in 60-69 year olds, and 9.28 hours/day in 70-85 year olds 

(Matthews 2008). The association between SB and cardiometabolic outcomes also varies by age; for 

example, the positive correlation between SB and triglycerides may be stronger in 18-59 year olds 

compared to adults ≥ 60 years old, possibly because older adults already have a poorer cardiometabolic 

profile and/or spend greater quantities of time in SB (Brocklebank et al., 2015). In contrast, the negative 

effects of total time spent in SB on WC, HDL-cholesterol, and C-reactive protein may worsen with age, 

and the negative effect of fewer breaks in SB on systolic blood pressure also increases with age (Healy et 

al., 2011). These data indicate that PA declines with age, SB increases with age, and age moderates the 

relationship between SB and cardiometabolic outcomes. The precise role of age in moderating the 

relationship between SB and cardiometabolic outcomes remains unclear, and additional research is 

needed.   

Research consistently indicates that age correlates with the prevalence of chronic diseases, health 

behaviors like PA and SB, and the relationship between health behaviors and chronic disease. Therefore, 

researchers should consider examining age as a potential moderator of the relationship between health 

behaviors and health outcomes. Although it is impossible to change an individual’s age, understanding 

the role age plays in affecting health outcomes can help inform clinicians and public health practitioners 

regarding what information to communicate to patients and the general public. Understanding the role of 

age could also help researchers and interventionists design stronger studies or more effective 

interventions. Clearly, age matters, and researchers and clinicians would do well to acknowledge the 

important role of age in affecting health behaviors and outcomes.  

Sex  

Biological sex is another unmodifiable variable that correlates the prevalence of chronic disease 

and health behaviors, and potentially moderates the effects of health behaviors on health outcomes. More 

males than females suffer from CVD, and males exhibit a higher CVD mortality burden as they age than 

do females (McAloon et al., 2016; Mozaffarian et al., 2015), with CVD-mortality rates of 275.7 per 
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100,000 and 192.3 per 100,000 in males and females, respectively (Mozaffarian et al., 2015). Though, 

females’ CVD mortality burden accelerates post-menopause (McAloon et al., 2016). Males experience 

greater CVD risk, with 50 year old males and females having a 51.7% and 39.2% lifetime risk for 

developing CVD, respectively (Lloyd-Jones et al., 2010; Mozaffarian et al., 2015). The prevalence of 

CVD risk factors varies by sex, with U.S. males experiencing a higher likelihood of exhibiting at least one 

CVD risk factor than females (51.6% and 41.2%, respectively) (Fryar et al., 2012). The proportion of 

CVDs attributable to specific disease conditions vary by sex and age. For example, before 75 years of 

age, males demonstrate a larger proportion of CVD events that are attributable to CHD and females 

demonstrate a larger proportion that are attributable to stroke (Mozaffarian et al., 2015).   

The prevalence of DM and metabolic syndrome vary by sex, with U.S. males demonstrating a 

slightly higher prevalence of DM compared to females (11.8% versus 10.8%, respectively), and, after 

adjusting for other risk factors, U.S. males experience a significantly greater risk for developing DM 

(Dabelea et al., 2007; Mozaffarian et al., 2015). Global DM prevalence rates reflect those in the U.S., 

with males demonstrating a slightly higher prevalence compared to females, at 8.9% and 8.4%, 

respectively (Cho et al., 2018). Globally, DM prevalence rates peak at different ages by sex, with males’ 

prevalence rates peaking at 65-69 years of age and females’ prevalence rates peaking at 70-79 years of 

age (Cho et al., 2018). The prevalence rates of metabolic syndrome are higher among males than females, 

and prevalence rates increase with age (Ervin, 2009; Mozaffarian et al., 2015). For example, prevalence 

rates among 20-39 year old males and females are 20.3% and 15.6%, respectively; whereas, prevalence 

rates among 40-59 year old males and females are 40.8% and 37.2%, respectively (Ervin, 2009; 

Mozaffarian et al., 2015). Finally, the effect of metabolic syndrome on CVD risk varies by sex, with RRs 

of 1.98 and 2.63 among males and females, respectively (Gami et al., 2007; Mozaffarian et al., 2015). 

Contrary to CVD, DM, and metabolic syndrome, obesity prevalence rates do not vary by sex, and 

both sexes demonstrate consistent, linear increases in BMI and WC across time (Fryar et al., 2012). 

However, obesity prevalence rates do differ between males and females in specific racial/ethnic groups 

(Hales et al., 2017). Non-Hispanic Asian males demonstrate lower obesity prevalence rates than non-
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Hispanic Asian females (10.1% and 14.8%, respectively), and non-Hispanic black males demonstrate 

lower obesity prevalence rates than non-Hispanic black females (36.9% and 54.8%, respectively) (Hales 

et al., 2017). Hispanic males demonstrate lower obesity prevalence rates than Hispanic females (43.1% 

and 50.6%, respectively) (Hales et al., 2017). As such, race/ethnicity appears to affect obesity prevalence 

rates in all of the racial/ethnic groups examined in NHANES with the exception of non-Hispanic whites 

(Hales et al., 2017). There are significant sex-differences in obesity-related mortality risk, with obese 

males experiencing a significantly higher risk of premature death than obese females, a finding that could 

be due to greater insulin resistance, hepatic lipid levels, and DM in obese males versus females (Dufour, 

2018). Indeed, moderately obese males (BMI 30-35 kg/m2) experience a 29.5% increased mortality risk, 

compared to a 14.6% increased risk among moderately obese females (Dufour, 2018). Similar to adults, 

obesity prevalence rates in children do not differ by sex (Hales et al., 2017). Contrary to adults, children 

do not exhibit significant sex differences in obesity prevalence rates within specific racial/ethnic groups 

(Hales et al., 2017). These data indicate a complex relationship between sex and obesity that may be 

moderated by other characteristics, such as age and race/ethnicity, suggesting that researchers may want 

to examine two or three way interactions between sex, age, and race/ethnicity to clarify how these 

unmodifiable characteristics relate to obesity prevalence. 

With regard to PA participation, males participate in significantly more PA across all ages. Being 

male significantly predicts longitudinal PA participation among children aged 4-9 years old; however, 

being male only significantly correlates with, but does not predict, PA participation among adolescents 

and adults (Bauman et al., 2012). Male adults are more likely to meet PA recommendations than female 

adults (3.8% and 3.2%, respectively) (Mozaffarian et al., 2015; Troiano et al., 2008), and U.S. males 

engage in an average of 35 minutes of MVPA/day, whereas females engage in an average of 21 minutes 

of MVPA/day (Luke et al., 2011; Mozaffarian et al., 2015). This relationship between sex and PA also 

exists with regard to physical inactivity, and 28.6% of adult males report being physically inactive, 

compared to 32.3% of adult females (Mozaffarian et al., 2015). Adult females spend more time in SB 

than males; however, females also take more breaks from SB than males (Healy et al., 2011). Finally, 
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lifespan data indicate that females consistently spend more time in SB than males until middle adulthood 

(ages 50-59 years); however, among adults 60 years and older, males spend more time in SB than females 

(8.8 hours/day versus 8.0 hours/day, respectively) (Matthews et al., 2008).  

Children exhibit similar sex differences in PA, physical inactivity, and SB, with data indicating 

that more male than female children meet PA recommendations (Mozaffarian et al., 2015; Troiano et al., 

2008), and 11.2% of males versus 19.2% of females report having been physically inactive in the 

previous seven days (Kann et al., 2014; Mozaffarian et al., 2015). Females aged 6-11 years old spend 

more time in SB than males (6.1 hours/day and 6.0 hours/day in SB, respectively) (Matthews et al., 2008). 

Overall, data indicate that male adults and children typically participate in greater PA and demonstrate 

lower levels of physical inactivity and SB than females. 

Importantly, sex may moderate the relationship between SB and health outcomes. For example, 

while females spend more time in SB than males, females still exhibit more favorable cardio-metabolic 

profiles, possibly due to the greater number of breaks females take from SB (Healy et al., 2011). 

Significant sex differences may also exist regarding  the strength of the relationships between total 

sedentary time and breaks in SB with both sexes demonstrating significant relationships between total 

sedentary time and breaks in SB with blood pressure, triglycerides, and insulin (Healy et al., 2011). The 

one exception to this is HDL-cholesterol, for which only males demonstrate a significant association 

between total sedentary time and HDL-cholesterol; whereas, only females demonstrate a significant 

association between breaks in SB and HDL-cholesterol (Healy et al., 2011).  

Similar to findings regarding age, sex clearly relates to health behaviors and chronic disease, 

affecting prevalence rates and the relationships between health behaviors and chronic disease. As such, 

researchers should examine the potential moderating effect of sex in statistical analyses. Given that age 

may further complicate the relationship between sex and health outcomes, researchers may also need to 

consider potential two-way interactions between sex and age.   
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Race/Ethnicity 

Race/ethnicity is another unmodifiable variable that researchers may want to consider when 

examining the complex relationship between health behaviors and chronic disease risk. Data consistently 

indicate that race/ethnicity correlates with a variety of health behaviors and health outcomes. For 

example, CVD-mortality rates vary by race, with non-Hispanic white versus non-Hispanic black males 

experiencing CVD-mortality rates of 271.9 and 352.4 per 100,000, respectively, and non-Hispanic white 

versus non-Hispanic black females experiencing CVD-mortality rates of 188.1 and 248.6 per 100,000, 

respectively (Mozaffarian et al., 2015). The prevalence of at least one CVD risk factor also varies by 

race/ethnicity, with non-Hispanic black adults demonstrating the highest prevalence of at least one CVD 

risk factor (58%), and both non-Hispanic whites and Hispanics demonstrating significantly lower 

prevalence rates of at least one CVD risk factor (47% and 45%, respectively) (Fryar et al., 2012).  

Hypertension likely explains non-Hispanic blacks’ higher prevalence rates of at least one CVD 

risk factor, because non-Hispanic black males and females demonstrate the highest HTN prevalence rates 

(44.9% and 46.1%, respectively) (Crim et al., 2012; Mozaffarian et al., 2015). In contrast, HTN 

prevalence rates in non-Hispanic white males and females are 32.9% and 30.1%, respectively, and 

prevalence rates in Hispanic males and females are 29.6% and 29.9%, respectively (Crim et al., 2012; 

Mozaffarian et al., 2015). Non-Hispanic blacks develop HTN earlier in life and exhibit significantly 

higher average blood pressure values than non-Hispanic whites (Mozaffarian et al., 2015; Voors, Webber, 

& Berenson, 1979, 1980). Along with differing HTN prevalence rates between non-Hispanic blacks and 

other races/ethnicities, these rates also vary between Hispanics of different descent. For example, HTN 

prevalence rates among Hispanic males range from 19.9% in South America to 32.6% in the Dominican 

Republic, and prevalence rates among Hispanic females range from 15.9% in South America to 29.1% in 

Puerto Rico (Daviglus et al., 2012; Mozaffarian et al., 2015). The negative health effects of HTN also 

vary by race/ethnicity, and non-Hispanic blacks experience a significantly greater negative effect of HTN 

on stroke risk than do non-Hispanic whites (Howard et al., 2011; Mozaffarian et al., 2015). HTN-related 

mortality rates are highest in non-Hispanic black males and females (47.1 and 35.1 per 100,000, 
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respectively) and lowest in non-Hispanic white males and females (17.6 and 15.2 per 100,000, 

respectively) (Mozaffarian et al., 2015). When considering various CVD risk factors, race/ethnicity 

appears to be particularly important with regard to the prevalence and negative health effects of HTN. 

Racial/ethnic differences also exist in the prevalence of type 2 DM and metabolic syndrome. 

American Indians/Alaska Natives have the highest DM prevalence rates, with rates of 14.9% and 15.3% 

among males and females, respectively (Centers for Disease Control and Prevention, 2019b). Non-

Hispanic blacks exhibit significantly higher DM prevalence rates than non-Hispanic whites (15.4% and 

8.6%, respectively), and Hispanics exhibit significantly higher DM prevalence rates than non-Hispanic 

whites (11.6% and 8.6%, respectively) (Mozaffarian et al., 2015). The risk of being diagnosed with DM 

varies by race/ethnicity, with non-Hispanic whites experiencing the lowest risk, and Asian Americans, 

Hispanic/Latinos, and non-Hispanic blacks experiencing 18%, 66%, and 77% greater risks of a DM 

diagnosis, respectively (Centers for Disease Control and Prevention, 2019b; Mozaffarian et al., 2015).  

Hispanics have significantly higher prevalence rates of metabolic syndrome (40-46% higher) than 

non-Hispanic whites and blacks (Beltran-Sanchez et al., 2013; Mozaffarian et al., 2015). Non-Hispanic 

black males demonstrate the lowest and Hispanic males demonstrate the highest metabolic syndrome 

prevalence rates (18.99% and 34.76%, respectively) (Beltran-Sanchez et al., 2013; Mozaffarian et al., 

2015). Asian Indians, American Indians, and Alaska Natives exhibit high prevalence rates of metabolic 

syndrome, with estimates in Asian Indians ranging from 26.8% to 38.2%, depending on the definition 

used (Misra et al., 2010; Mozaffarian et al., 2015). Prevalence rates in American Indians are 43.2% and 

47.3% among males and females, respectively, and prevalence rates in Alaska Natives are 26.5% and 

31.2% among males and females, respectively (Mozaffarian et al., 2015; Schumacher et al., 2008). 

Racial/ethnic differences also exist regarding the health consequences of metabolic syndrome, differences 

that may be related to genetic factors (Beltran-Sanchez et al., 2013; Mozaffarian et al., 2015). For 

example, when considering the presence of non-alcoholic fatty liver disease (NAFLD) among people with 

metabolic syndrome, only 18% of non-Hispanic blacks have NAFLD, whereas, 39% of Hispanics have 

NAFLD (Mozaffarian et al., 2015; Tota-Maharaj et al., 2014).  
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Obesity prevalence rates in the U.S. vary by race/ethnicity (Hales et al., 2017). Non-Hispanic 

Asians have significantly lower obesity prevalence rates (12.7%) than other racial/ethnic groups, and non-

Hispanic whites have significantly lower obesity prevalence rates (37.9%) than non-Hispanic blacks and 

Hispanics (46.8% and 47.0%, respectively) (Hales et al., 2017). Racial/ethnic differences in obesity 

prevalence rates also vary within the sexes. For example, non-Hispanic Asian males have significantly 

lower obesity prevalence rates (10.1%) than all other male racial/ethnic groups (Hales et al., 2017). 

Within males, non-Hispanic blacks and whites have significantly lower obesity prevalence rates (37.9% 

and 36.9%, respectively) than Hispanics (43.1%) (Hales et al., 2017). Among females, non-Hispanic 

Asians have the lowest obesity prevalence rates (14.8%) compared to females in all other racial/ethnic 

groups, and non-Hispanic black and Hispanic females have significantly higher obesity prevalence rates 

(54.8% and 50.6%, respectively) than non-Hispanic white females (38.0%) (Hales et al., 2017).  

In contrast to adults, non-Hispanic white children do not have higher obesity prevalence rates 

than non-Hispanic Asian children; however, non-Hispanic black and Hispanic children have significantly 

higher obesity prevalence rates (22.0% and 25.8%, respectively) than non-Hispanic white (14.1%) and 

Asian (11.0%) children (Hales et al., 2017). Similar to adults, racial/ethnic differences in obesity 

prevalence rates among children vary within the sexes. Specifically, Hispanic male children have 

significantly higher obesity prevalence rates (28.0%) than non-Hispanic white, black, and Asian males 

(14.6%, 19.0%, and 11.7%, respectively) (Hales et al., 2017). Racial/ethnic differences in obesity 

prevalence rates in female children mirror those among all children, with non-Hispanic black and 

Hispanic females having significantly higher obesity prevalence rates (25.1% and 23.6%) than both non-

Hispanic white and non-Hispanic Asian females (13.5% and 10.1%, respectively) (Hales et al., 2017). 

Clearly, racial/ethnic differences exist regarding obesity prevalence rates in adults and children. 

Self-reported PA data suggest that a larger proportion of non-Hispanic white adults meet PA 

guidelines (53.4%) compared to either non-Hispanic black (41.4%) or Hispanic adults (42.9%) 

(Mozaffarian et al., 2015). Adolescent data mirror these findings, with 28.2% of non-Hispanic whites 

meeting PA guidelines, compared to 26.3% of non-Hispanic blacks and 25.5% of Hispanics (Kann et al., 
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2014; Mozaffarian et al., 2015). Physical inactivity rates in adults and children mirror PA data, with 

27.0% of non-Hispanic white adults reporting being inactive, compared with 39.7% and 38.8% of 

Hispanics and non-Hispanic blacks, respectively (Mozaffarian et al., 2015). Similarly, among children, 

16.1%, 20.3%, and 27.3% of non-Hispanic white, black, and Hispanic females report being physically 

inactive, respectively (Kann et al., 2014; Mozaffarian et al., 2015). Among male children, 9.2%, 12.1%, 

and 15.2% of non-Hispanic whites, blacks, and Hispanics report being physically inactive, respectively 

(Kann et al., 2014; Mozaffarian et al., 2015). In adults, Hispanic adults of all ages spend less time in SB 

than non-Hispanic whites or blacks, and Hispanic males ages 20-39 years old spend the least amount of 

time in SB among all adults (5.98 hours/day) (Matthews et al., 2008). However, race/ethnicity does not 

appear to be related to the amount of time children spend in SB, with the exception of girls ages 6-11 

years old, in which case, non-Hispanic black females are less sedentary (5.88 hours/day) than either non-

Hispanic white (6.18 hours/day) or Hispanic (6.02 hours/day) females (Matthews et al., 2008). 

Despite a lack of racial/ethnic differences in time spent in SB among children, differences do 

appear to exist when considering specific sedentary behaviors, including computer and television use. For 

example, non-Hispanic black male and female children exhibit the highest prevalence rates of spending at 

least three hours per day in non-school related computer use (51.9% and 46.6%, respectively), with 

slightly lower rates among Hispanic males and females (42.0% and 44.8%, respectively), and the lowest 

rates among non-Hispanic white males and females (39.1% and 35.6%, respectively) (Kann et al., 2014; 

Mozaffarian et al., 2015). Non-Hispanic black male and female children report the highest prevalence 

rates of watching television for at least three hours per day (55.3% and 52.2%, respectively), with 

Hispanic males and females reporting slightly lower levels (36.5% and 39.0%, respectively), and non-

Hispanic white males and females reporting the lowest levels of television use (25.7% and 24.3%, 

respectively) (Kann et al., 2014; Mozaffarian et al., 2015). 

The relationship between PA and health outcomes also appears to vary by race. Specifically, the 

most active non-Hispanic blacks (≥ 32.32 MET-hours/day) have 24%, 19%, and 24% lower risks of all-

cause mortality, CVD mortality, and cancer mortality, respectively, than do the least active non-Hispanic 
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blacks (<9.73 MET-hours/day) (Matthews et al., 2014). In contrast, the most active non-Hispanic whites 

only demonstrate significantly lower risk of all-cause mortality (HR = 0.76) and CVD mortality (HR = 

0.69), but not cancer mortality, compared to the least active non-Hispanic whites (Matthews et al., 2014). 

When considering sex and race in combination, results also vary. The most active non-Hispanic black 

males exhibit lower HRs for CVD mortality and cancer mortality compared to the least active non-

Hispanic black males (HR = 0.71 and 0.76, respectively) (Matthews et al., 2014). In contrast, among non-

Hispanic black females, those in the most active group do not demonstrate significantly lower HR for 

CVD mortality and cancer mortality than the least active non-Hispanic black females (HR = 1.05 and 

0.81, respectively) (Matthews et al., 2014).  

Race/ethnicity may not affect the relationship between SB and all-cause mortality. One study 

examining SB (represented by total time per day spent sitting) found that, when comparing the most 

sedentary adults (>12 hours/day) to the least sedentary adults (<5.76 hours/day), the HRs for all-cause 

mortality were 1.19 and 1.24 for non-Hispanic black and non-Hispanic white adults, respectively 

(Matthews et al., 2014). Importantly, these relationships existed even after controlling for PA level 

(Matthews et al., 2014). However, this study also examined the combined effects of PA and SB on all-

cause mortality risk, and they found that the most sedentary and least active non-Hispanic blacks (≥10.5 

hours/day sitting; <12.6 MET-hours/day) had a 47% greater all-cause mortality risk (HR = 1.47) 

compared to the least sedentary and most active non-Hispanic blacks (<6.5 hours/day sitting; ≥26.4 MET-

hours/day) (Matthews et al., 2014). Researchers also found that, when comparing the least versus the 

most sedentary adults (>12 hours/day SB vs. <5.76 hours/day SB), non-Hispanic black females showed a 

stronger association between SB and all-cause mortality than did non-Hispanic black males (HR = 1.27 

and 1.13, respectively) (Matthews et al., 2014). However, no sex differences existed among non-Hispanic 

blacks regarding the association between SB and either CVD mortality or cancer-mortality (Matthews et 

al., 2014). In contrast, among non-Hispanic whites, a strong positive association existed between SB and 

CVD mortality in males (HR = 2.18), but not in females (data not provided) (Matthews et al., 2014).  
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Finally, racial/ethnic differences exist in the associations between total time spent in SB and 

cardiometabolic health outcomes. Total sedentary time negatively correlates with WC in non-Hispanic 

whites, whereas, no correlation exists in Hispanics, and a positive correlation exists in non-Hispanic 

blacks (Healy et al., 2011). In contrast, significant detrimental associations exist between total sedentary 

time and insulin among all racial/ethnic groups; however, the overall shape of the associations between 

total time spent in SB and insulin differs by race/ethnicity (Healy et al., 2011). The relationship between 

breaks in SB and cardiometabolic health outcomes only appear to vary by race/ethnicity for HDL-

cholesterol, in which case, breaks are significantly and positively associated with HDL-cholesterol in 

non-Hispanic whites, but no association exists for Hispanics or non-Hispanic blacks (Healy et al., 2011). 

Similar to age and sex, race/ethnicity clearly relates to health behaviors and chronic disease, 

affecting prevalence rates and the relationships between health behaviors and chronic disease. As such, 

researchers should include race and ethnicity as variables in statistical models and should examine the 

potential moderating effects of race and ethnicity on the relationships between health behaviors and 

outcomes. Additionally, race or ethnicity may further complicate the relationship between age, sex, and 

health outcomes, suggesting the potential need for considering three-way interactions between 

race/ethnicity, sex, and age. 

Overall, the unmodifiable characteristics of age, sex, and race/ethnicity represent important 

correlates and/or predictors of health behaviors (i.e. PA, SB), chronic disease risk, and the relationships 

between health behaviors and outcomes. Researchers often include these unmodifiable characteristics as 

control variables in statistical models, instead of examining the main effects of these variables on 

outcomes. Controlling for unmodifiable variables instead of examining their main effects can potentially 

result in misleading or inaccurate findings. Failing to consider these unmodifiable variables as potential 

moderators of the relationships between health behaviors and outcomes could lead to inaccurate findings, 

particularly if moderation does exist, since the presence of moderation can make it seem as though a 

variable has no main effect on outcomes. For example, if breaks in SB only affect CVD risk in females 

but not males, simply examining the main effects of sex, rather than examining it as a moderator, will 
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likely result in researchers misinterpreting sex as an insignificant variable in statistical models. 

Researchers with appropriate statistical knowledge and substantive expertise regarding the role of these 

unmodifiable variables in affecting health behaviors and health outcomes are capable of examining the 

main and/or moderating effects of age, sex, and race/ethnicity on the relationships between health 

behaviors and outcomes. Such modeling will allow researchers to tease out the varying effects of these 

unmodifiable characteristics, which will allow a more in-depth understanding of how health behaviors 

relate to chronic disease. This in-depth understanding has the potential to positively affect future research 

studies, inform the appropriate tailoring of interventions to improve health behaviors and associated 

health outcomes, and inform clinical and/or public health recommendations, all of which can help 

improve human health outcomes.  
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CHAPTER 3 – TECHNOLOGY AND COMPUTER SCIENCE 
 
 
 

Extracting meaningful knowledge from data represents a primary goal of data scientists. 

Achieving this goal requires skills for managing, cleaning, and quality assuring data. Each of these tasks 

requires a substantial amount of time and energy, and data management represents a large part of what 

data scientists do, with research suggesting they use approximately 80% of their time finding, cleaning, 

and/or organizing data (Bowne-Anderson, 2018; Crowdflower, 2016). Properly managing and cleaning 

data is particularly important to ensure that outcomes can be trusted (Bowne-Anderson, 2018). Data 

scientists also require an understanding of how to capitalize on the use of technology. For example, using 

accelerometers for capturing information about individuals’ 24-hour movement patterns, including their 

time spent in PA, SB, or sleeping. Researchers can also use smartphones to capture repeated measures of 

individuals’ psychosocial predictors of health behaviors, such as stress, in real-time and in their natural 

environment. The studies in this chapter provide examples of how to use technology and computer 

science to enhance data management and the quality control and assurance of health-related data, as well 

as how to use technology to measure individuals’ health behaviors. Study 1 demonstrates how to migrate 

an existing research study from paper-based data collection to the Research Electronic Data Capture 

system (P. A. Harris et al., 2009), using the example of an ongoing, longitudinal program in firefighters 

that includes measures of psychosocial determinants of health, cardiorespiratory and musculoskeletal 

fitness, and cardiovascular disease risk. It also demonstrates how electronic data capture is an efficient 

tool for enhancing the management and quality control and assurance of research studies. Study 2 

demonstrates the utility of the activPAL monitor (PAL Technologies Ltd., 2010) to measure individuals’ 

time spent lying down (a proxy for sleep) in comparison to self-report or an alternative algorithm.  
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Study 1 – Migration of an ongoing, community-based project in firefighters to the Research 

Electronic Data Capture (REDCap) platform 

Introduction 

 Until recently, researchers traditionally used paper-based data capture; however, there are 

inherent risks and limitations associated with this approach, including missing or lost data (Cummings & 

Masten, 1994; Reynolds-Haertle & McBride, 1992). Data can be missing if participants fail to answer 

questions, and data can be lost due to participant or researcher errors (Cummings & Masten, 1994). Data 

entry or coding errors can occur when transferring paper-based data into an electronic database 

(Reynolds-Haertle & McBride, 1992; Weber & Roberts, 2000). Time and cost limitations also exist, with 

personnel spending substantial time transferring paper-based data into electronic databases and double-

entering data to improve accuracy and reduce errors (Reynolds-Haertle & McBride, 1992; Weber & 

Roberts, 2000; Weber, Yarandi, Rowe, & Weber, 2005). These tasks require substantial manpower, 

thereby increasing the costs associated with paper-based data capture (Reynolds-Haertle & McBride, 

1992; Weber & Roberts, 2000; Weber et al., 2005). Finally, employing a paper-based data capture 

approach can increase the risk for breaches of privacy and confidentiality (Weber et al., 2005). 

 Using electronic data capture (EDC) for capturing and managing data ameliorates many of the 

inherent risks and limitations of paper-based data capture and leads to improved efficiency, accuracy, and 

cost savings (Dunn, Cobb, Levey, & Gutman, 2016; Helms, 2001; Litchfield et al., 2005; Prokscha, 2012; 

Shah et al., 2010; Velikova et al., 1999; Weber & Roberts, 2000; Weber et al., 2005). EDC reduces the 

risk of missing data by requiring responses for individual items (Dunn et al., 2016; Shah et al., 2010; 

Velikova et al., 1999; Weber & Roberts, 2000; Weber et al., 2005). EDC often includes real-time data 

checks to identify invalid or out of range values for a given variable, decreasing the likelihood of data 

entry errors (Dunn et al., 2016; Shah et al., 2010; Velikova et al., 1999; Weber & Roberts, 2000; Weber et 

al., 2005). EDC abrogates the risk for data coding errors because data are automatically coded, and there 

is no loss of data due to data transfer from paper to an electronic database (Dunn et al., 2016; Shah et al., 

2010; Velikova et al., 1999; Weber & Roberts, 2000; Weber et al., 2005). EDC reduces the time required 
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for data capture and management because there is no need for double-data entry when using real-time 

EDC, thereby concomitantly decreasing the number of staff required to manage data (Weber et al., 2005). 

Finally, although EDC requires higher start-up costs associated with developing, testing, and deploying 

EDC forms, maintenance costs for EDC are much smaller than paper-based approaches (Dunn et al., 

2016; Prokscha, 2012; Weber et al., 2005). As such, the average total cost for using EDC is smaller than 

paper-based approaches, particularly as the number of participants in the study increases (Dunn et al., 

2016; Prokscha, 2012; Weber et al., 2005). 

 A wide range of EDC systems exist to support data capture, management, and analyses (Dunn et 

al., 2016; Leroux, McBride, & Gibson, 2011; Shah et al., 2010). These systems are often expensive, 

which can preclude academic researchers from using them (Dunn et al., 2016; Leroux et al., 2011; Shah et 

al., 2010); however, the Research Electronic Data Capture (REDCap) platform developed by Harris and 

colleagues at Vanderbilt University is available to academic research institutions across the world, either 

for free or at a low cost (P. A. Harris et al., 2019; P. A. Harris et al., 2009). Over 3200 institutions in 128 

countries use REDCap, and it has been used in a variety of contexts, including basic science research, 

clinical trials, and cohort studies, among others (P. A. Harris et al., 2019). REDCap confers many 

advantages to researchers, with features including collaboration across institutions, role-based security 

restrictions, quality assurance mechanisms, data exports for statistics packages, and customized reporting, 

among other things (P. A. Harris et al., 2009; Obeid et al., 2013). REDCap supports cross-sectional, 

longitudinal, and multi-armed studies, is HIPAA compliant, and is recognized by institutional review 

boards as a secure approach for capturing and storing data (Dunn et al., 2016; P. A. Harris et al., 2019; P. 

A. Harris et al., 2009; Obeid et al., 2013). These features of REDCap, and that it is supported by our 

institution, resulted in us adopting REDCap to support the Firefighter Testing Program (FTP) at Colorado 

State University.  

The FTP is an ongoing, longitudinal project that started twenty years ago for the purposes of 

assessing firefighters’ fitness and their cardiovascular disease risk. The FTP also informs research 

regarding the relationships between firefighters’ fitness, psychosocial outcomes, and cardiovascular 
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disease risk. The FTP is a longitudinal study with a large number of participants, has unique data needs 

(including real-time data capture, participant-completed surveys, and manual data entry), and involves a 

large number of personnel. The FTP also requires a quick and convenient mechanism for providing 

reports to individual firefighters and fire departments. Finally, multiple researchers using a variety of 

statistical software programs require easy access to the data. As such, we determined that the FTP could 

benefit in migrating from paper-based data capture to EDC in the REDCap platform. 

The objectives of this paper are to describe the process for establishing a REDCap project that: 1) 

provides an efficient tool for collecting data via real-time EDC, participant surveys, and manual data 

entry; 2) accommodates delivering individual reports to firefighters and aggregate reports to fire 

departments; and 3) facilitates research to examine the relationships between firefighters’ fitness, 

psychosocial outcomes, and cardiovascular disease risk. We will also provide recommendations to 

REDCap users based on lessons learned during the migration. 

Methods 

Data Description 

 The FTP is an ongoing project that includes firefighters from departments in Colorado and 

Wyoming. Fire departments vary regarding how often firefighters complete testing and the specific 

measures they require firefighters to complete. Comprehensive testing includes measures of fitness 

(VO2max treadmill tests, strength, flexibility, etc.), body fatness (skinfolds, waist circumferences, etc.), 

cardiovascular disease risk (family history, blood work, etc.), and psychosocial health (depression, 

anxiety, etc.). In any given year, firefighters may complete any or all of the measures above, with the time 

lapse between visits varying by department.  

 When we started developing the FTP REDCap project, 1632 firefighters had been tested, with 

data for 1153 firefighters stored in an SPSS file, and the remaining 479 firefighters’ data stored in paper 

files. Firefighters provided written, informed consent, and the project was approved by the CSU 

Institutional Review Board. 
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REDCap Project Development 

 Project development required multiple steps including: 1) creating a new REDCap project; 2) 

developing data collection instruments with specified fields and field formatting; 3) creating calculated 

fields to support data reporting and research needs (i.e. classifying participants’ cardiovascular disease 

risk); 4) developing individual and departmental reports that synchronized with custom formatted Excel 

files; 5) testing data entry forms, automated electronic surveys, and calculations; 6) configuring user roles 

and rights; 7) moving the project to production status; 8) importing existing data into the project, and 9) 

editing the project based on feedback from personnel and participants. 

Results 

Structure of REDCap Project 

 The FTP REDCap project was designed as a longitudinal project with a maximum of 20 visits per 

participant. The project includes 27 forms with 3068 fields (Figure 1). Five forms were enabled as 

automated electronic surveys (see Figure 1). Three forms were used for real-time EDC, including the 

Preliminary Evaluation, Preliminary Exercise Prescription Questions, and Treadmill Test forms.  

The remaining sixteen forms were used for manual data entry. Seven of these forms were used to 

enter previously collected data and support future data collection including the Visit Information, 

Consent, Pulmonary Testing, Hydro DEXA, Blood Work, Heart Event, and Died/Retired/Gone forms. 

Nine of these forms were used to enter previously collected data that were eliminated from the ongoing 

FTP protocol, including the Health History Questionnaire (HHQ) Data Entry, Depression Scale Original, 

Hope Scale, Anger Scale, Hostility and Cynicism Scale, Type A Scale, Forgiveness Scale, Social Support 

Scale, and Orientation to Life Scale forms. Three forms were developed to calculate scores used in 

reporting outcomes to firefighters and departments, as well as for calculating values of interest for 

researchers (Survey Scoring, Cooper – Coronary Risk Profile, and Department Report Calculations 

forms). 
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Data Security 

 We used REDCap’s role-based security restrictions to customize data access rights based on a 

given user’s role (Figure 2) (P. A. Harris et al., 2009). The project developer received full rights to the 

project, with the exception of Record Locking Customization and API. FTP Personnel had similar rights 

to the project developer; however, they could not edit the project, create data access groups, lock/unlock 

records, etc. Data Entry Personnel received the fewest rights, limited to running reports, accessing the file 

repository, executing data quality rules, and creating new records.  

Enhanced Data Quality Control 

 The FTP REDCap project enhanced data quality control measures compared to the previous 

paper-based approach. We developed field validation settings using previously collected data to identify 

reasonable validation ranges, thereby reducing data entry error and enhancing data quality. 

 We re-structured some fields to increase consistency across visits. Repeated measures of 

demographic and HHQ data in the original database revealed inconsistencies in participants’ reporting of 

key information, such as age and years in the fire service. These inconsistencies reduced the coherency 

and usability of data, informing the decision to modify existing questions. For example, the original 

question about years in the fire service, asking participants their “number of years in the fire service”, was 

changed to “What age were you when you started working in the fire service”, as it was considered easier 

for participants to recall the age they started in the fire service, rather than the year they started or total 

number of years served. A similar approach was used for assessing the use of tobacco products, including 

years of tobacco use, and years since quitting use. 

Enhanced Data Collection Efficiency 

 Migrating to REDCap enhanced data collection efficiency by allowing real-time EDC by data 

entry personnel and participants (via automated surveys), abrogating the need to transfer paper data into 

REDCap. Automated surveys enhanced FTP personnel’s ability to quickly screen participants for 

potential risks associated with completing testing. For example, personnel used survey data to screen 

participants for medication use and orthopedic injuries to determine if they could safely complete testing. 
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The automated surveys ensured that participants completed all required questions and forms; whereas, 

previously, personnel had to examine paper surveys to identify potentially missing data. The development 

of calculated fields removed the need to calculate scores by hand or in other software programs, reducing 

the risk for error and increasing efficiency for providing reports to firefighters/departments and results for 

researchers.  

Supporting Reporting Needs 

 The project included customized reports developed using REDCap’s Data Exports, Reports, and 

Stats module (P. A. Harris et al., 2009). These reports allowed personnel to export the specific data 

needed for reports to individual firefighters or fire departments. Individual reports were filtered by ID 

number, and fire department reports were filtered by department and year to provide aggregate data for 

those firefighters tested in a given year. Reports were exported to compatible Excel files that were 

formatted to meet individual/departmental reporting needs.  

Supporting Research Needs 

 The project supported research needs by enhancing the ability to easily categorize and analyze 

data. Fields that previously used qualitative responses were converted to categorical fields. For example, a 

question about history of hospitalizations and surgeries was converted from a qualitative response to a 

checkbox field with multiple categories, including heart-related hospitalizations/surgeries, elective 

surgeries, orthopedic surgeries, etc. (Figure 3). Branching logic was then used to capture additional 

information about specific surgeries, such as the type of orthopedic surgery (i.e. ACL repair, Spinal/back 

surgery, broken bone, etc.), location of surgery (i.e. right knee, left shoulder, etc.), length of time since the 

surgery occurred, etc. Another example was converting the questions about family history of heart 

disease, diabetes, etc., to categorical checkboxes that included only first degree relatives (father, mother, 

brother, sister, daughter, son), thereby preventing participants from providing unnecessary information 

about family members who were not first degree relatives (Figure 4). This was particularly important for 

assessing cardiovascular disease risk, which is determined, in part, based on the health history of first-

degree relatives. 
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Discussion 

 We successfully migrated the existing FTP to a REDCap project that provided efficient data 

collection tools, accommodated individual and departmental reporting needs, and facilitated achieving 

research goals. Building the REDCap project required an iterative process to design, test, and edit fields 

(Dunn et al., 2016; P. A. Harris et al., 2009; REDCap, 2020). We hope that the process and lessons 

learned throughout this migration process will benefit other researchers attempting to transition to EDC 

but who are struggling to do so due to typical barriers or fear of losing data (Dunn et al., 2016; Franklin, 

Guidry, & Brinkley, 2011; Shah et al., 2010). 

Existing data informed the project design by enhancing the efficiency of collecting, entering, and 

analyzing data. For example, we changed qualitative fields to categorical fields to improve the ease of 

data entry and to facilitate data analyses. These changes required substantial time and consideration to 

recode qualitative responses to categories that accurately reflected the existing data and provided 

reasonable options for future data collection. This also required researchers to recode legacy data prior to 

import. Other researchers who are considering migrating an existing project to REDCap should be aware 

that identifying appropriate categories and recoding data is potentially one of the most time-consuming 

aspects of project migration. 

Successfully creating a REDCap project that was efficient for FTP personnel required field-

testing and subsequent edits; for example, changing validation ranges to reduce the frequency of ‘Out of 

Range’ error messages popping-up during real-time EDC. During the first few months of field-testing, 

personnel simultaneously used EDC and paper-based data collection to ensure no loss of data, such as 

when collecting data in different environments (i.e. university testing facility versus fire stations). Field-

testing resulted in multiple edits, with some requiring subsequent exporting and re-importing of data. 

Importantly, making edits after putting a REDCap project into production often requires the local 

REDCap administrator’s approval, which can help safeguard users against the unintended loss or recoding 

of data (REDCap, 2020). Unfortunately, this can limit users’ ability to quickly edit a project to improve 

functionality. The institution hosting REDCap determines which changes do or do not require 
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administrator approval, with our institution using the most permissive option (Personal communication – 

Amanda Miller, 2020). However, despite our institution’s permissive approach, administrator approval 

hindered our ability to quickly respond to FTP personnel needs. Indeed, requiring approval for post-

production edits was problematic because of the FTP’s rapid, ongoing data collection needs, and the large 

number of participants in the FTP. Other REDCap users may encounter similar challenges when making 

post-production edits and should, if possible, test projects with sham participants/data to inform changes 

prior to moving the project into production (Dunn et al., 2016; P. A. Harris et al., 2009; REDCap, 2020). 

 Transitioning to automated surveys improved convenience for participants and dramatically 

reduced the time required for survey completion. The use of branching logic saved time by allowing 

participants (and data entry personnel) to bypass irrelevant questions. Additionally, anecdotal feedback 

from participants indicated they preferred answering surveys via REDCap, rather than via pen-and-paper, 

specifically due to the convenience and efficiency of completing the surveys electronically, similar to 

findings from other studies who migrated from paper-based data capture to EDC (Dunn et al., 2016; 

Helms, 2001; Litchfield et al., 2005).  

Using calculated variables in REDCap helped accommodate reporting needs and research goals 

by ensuring that all calculations were consistent between participants, which is a strong advantage of 

REDCap noted by other researchers (Dunn et al., 2016). Additionally, REDCap’s Data Quality Rule H 

ensured that, if changes to calculations were made, it was easy to recalculate the value for all participants 

in the database (Dunn et al., 2016; P. A. Harris et al., 2009). This was more efficient than calculating (or 

recalculating) values outside of REDCap and reduced the risk for calculation errors (Dunn et al., 2016). 

REDCap users should note that creating calculated variables in REDCap can be challenging, particularly 

when using a large number of logic statements. For example, the FTP requires calculating scores based on 

age- and sex-specific norms, thereby requiring a large number of if/then statements, and we determined it 

was easier to create multiple, sequential calculations to determine the final age-/sex-specific score. While 

such calculations may be easier to complete using statistical software, calculating said values in REDCap 

created an easy workflow that helped accommodate the FTP’s reporting needs. Despite some challenges 
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in creating the calculations, we recommend that REDCap users migrating from a paper-based project to 

REDCap create calculated variables within REDCap to ensure consistency of calculations, increase 

efficiency, and reduce error (Dunn et al., 2016; Helms, 2001; Litchfield et al., 2005; Shah et al., 2010; 

Velikova et al., 1999). 

 While we achieved many of our goals when migrating to REDCap, we identified inconsistencies 

in participants’ reporting of variables across visits, and we could not successfully address these 

inconsistencies within REDCap. We specifically identified inconsistencies in variables that should not 

change, such as race/ethnicity, suggesting the need to reconsider our data collection approach. We 

attempted to use REDCap’s Smart Variable feature to pull forward data from a participant’s most recent 

visit, or another specified visit, into the same data field for a subsequent visit (REDCap, 2020). Smart 

Variables allow participants to see their prior answers and modify them when needed (REDCap, 2020), 

which should reduce inconsistencies and decrease participant burden. However, in our case, using Smart 

Variables was incompatible with the FTP. Variability in how often firefighters completed testing, as well 

as which measures they completed a given visit, precluded the use of Smart Variables, because we could 

not prevent REDCap from pulling forward data into a visit for which no data were collected. For 

example, a participant might complete the HHQ on visits 1 and 4, but the Smart Variable pulled visit 1 

data into visits 2 and 3, thereby misrepresenting which data were actually collected. In such cases, this 

also meant that the HHQ data pulled forward from visit 1 into visit 4 could be quite old, but there was no 

guarantee that participants would modify their HHQ data for visit 4. Indeed, prior to migrating to 

REDCap, participants were allowed to modify previously completed paper-based HHQs; however, many 

participants failed to update important fields (i.e. medication use, hospitalizations), supporting our 

concern that they might fail to update their data. These specific challenges in using the Smart Variables 

for the FTP REDCap project precluded our using them for the majority of fields. However, we did use 

Smart Variables for fixed characteristics, like date of birth, biological sex, and race/ethnicity.  

 While Smart Variables were often incompatible with the FTP REDCap project, this was likely 

due to the unique nature of the FTP, and we suggest that, in many cases, REDCap users would be wise to 
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use Smart Variables, because they can reduce participant burden and/or data entry workload. For fixed-

characteristics, such as date of birth, pulling forward data from visit 1 into subsequent visits is appropriate 

to reduce participant burden and decrease data processing workload. However, researchers should 

critically consider which variables are fixed versus changeable, and avoid making changeable variables 

into Smart Variables. For example, marital status is a commonly collected demographic characteristic that 

is changeable, though changes in marital status may occur rarely. REDCap users should avoid Smart 

Variables in such cases, as pulling forward data from prior visits introduces the risk that participants may 

not modify their answers, resulting in unintended error. This is particularly necessary for longitudinal 

projects in which visits may occur only once every few years. 

REDCap Limitations 

We did experience some REDCap limitations worth noting. Regarding surveys, REDCap will 

mark a survey as ‘complete’ if a participant fills out all of the visible fields. However, if the survey 

includes hidden fields for the researcher to fill out, REDCap will mark the survey as complete, even if the 

hidden fields are not filled out. This can result in confusion about which forms are truly ‘complete’, 

potentially leading to missing data. This limitation can be partially mitigated by creating reports to show 

researchers when hidden fields are incomplete, and combining these reports with REDCap’s new Alerts 

and Notifications feature (REDCap, 2020), thereby reducing confusion and the potential for missing data.  

 Formatting issues when exporting data from REDCap can also create challenges, particularly if 

researchers need to re-import data due to post-production edits. When exporting numeric fields from 

REDCap to a .csv file, the exported file automatically removes trailing zeroes after the decimal point, 

even if the REDCap field requires two decimal places, such that “1.55” exports to “1.55”, but “1.00” 

exports to “1”. This requires reformatting the data prior to re-importing it into REDCap so that all 

numeric values follow a given field’s formatting requirements. We acknowledge that many users may not 

encounter this limitation, due to the rarity of exporting and reimporting data; however, it would be useful 

if REDCap could force data to be exported in the same format as specified for a given field. 
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 Exporting data from checkbox fields is another limitation, because unchecked boxes are exported 

as a ‘0’ (REDCap’s code for ‘unchecked’). This occurs even if the entire form is empty. This automatic 

exporting of ‘0’ for unchecked boxes can cause users to erroneously believe that a participant completed 

part of a particular form, and to analyze their data accordingly, even when that ‘0’ is not truly indicative 

of participant answering ‘no’. It would be helpful for REDCap to build a feature that recognizes when 

there are no data in a given form and, in such a situation, export checkbox fields as blanks instead of 

zeros. This is particularly important when participants do not complete all of the same assessments, as it 

can result in mistakenly analyzing data that do not truly exist.  

 Indeed, we found that REDCap cannot always accommodate longitudinal projects in which 

participants vary regarding the measures they complete at any given visit. REDCap was designed to 

support more standard longitudinal projects in which participants complete the same measures for a given 

visit, allowing researchers to identify which forms should be available for a particular visit (P. A. Harris 

et al., 2009; REDCap, 2020). REDCap also allows users to create multiple arms in studies and to use 

branching logic to accommodate variability in which measures are completed by given participants (P. A. 

Harris et al., 2009; REDCap, 2020). Unfortunately, these features only accommodate systematic 

variability, typically at the group level, and are insufficient to accommodate more random variability at 

the individual level. Although branching logic allows users to hide individual fields in a project, it cannot 

be used to hide entire forms (REDCap, 2020), making it appear as though individual participants failed to 

complete a particular set of measures. It would be useful for REDCap to create a feature in which entire 

forms can be hidden. This would be helpful for projects like the FTP, in which there exists large 

variability regarding the measures individual participants complete at a given visit.  

Finally, REDCap’s reporting feature can accommodate many reporting needs (REDCap, 2020); 

however, the reports are not formatted in a user-friendly manner. While this is a minor limitation, 

researchers who intend to use reports for providing feedback to participants should be aware that they 

may need to develop reports outside of the REDCap platform that are compatible with REDCap report 
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data. Custom reports may be particularly necessary if researchers are creating reports for the purpose of 

educating participants on their study/testing outcomes.  

Conclusions 

 Migrating the FTP to REDCap achieved our data collection, reporting, and research goals. The 

use of real-time EDC, automated surveys, and branching logic enhanced efficiency for FTP personnel and 

participants. Using calculated variables improved data quality control and supported reporting and 

research needs. REDCap failed to fully accommodate handling variability in repeated measures between 

participants; however, variability in the FTP likely exceeds that of typical research studies. Overall, 

REDCap was able to support the majority of the FTP’s needs, allowing successful migration of the FTP 

without loss of data, and is a useful tool for helping researchers efficiently capture and manage data. 
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Figure 2. Firefighter Testing Program – REDCap project design 
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Figure 3. Customized user roles 
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Figure 4. Hospitalizations/Surgeries – Converted from qualitative field to categorical/checkbox field 

 

 

Figure 5. Family History – Converted from qualitative field to categorical/checkbox field 
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Study 2 – Comparing the activPAL software’s Primary Time in Bed Algorithm against self-report 

and van der Berg’s algorithm  

Introduction 

 Researchers regularly use accelerometers to measure physical activity and sedentary behavior in 

the lab and in free-living settings (Bassett, 2012; Lee & Shiroma, 2014; Quante et al., 2015). When first 

used, participants removed accelerometers prior to going to bed, or when doing water-based activities 

(Bassett, 2012; Lee & Shiroma, 2014; Quante et al., 2015). Unfortunately, this often resulted in 

participants forgetting to replace the device, leading to potentially biased estimates of physical activity 

and sedentary behavior (Gibbs & Kline, 2018; Tudor-Locke et al., 2015). Nighttime removal also 

precluded researchers from capturing information about sleep, an important health behavior, thus 

preventing researchers from distinguishing the relationships between sleep, sedentary behavior, and 

physical activity with health outcomes (Meredith-Jones, Williams, Galland, Kennedy, & Taylor, 2016; 

Rosenberger, Buman, Haskell, Mcconnell, & Carstensen, 2016). Failing to distinguish or accurately 

identify these relationships decreased researchers’ ability to understand the effects of 24-hour movement 

patterns on health (Meredith-Jones et al., 2016; Rosenberger et al., 2016). Researchers recognized these 

limitations and implemented 24-hour wear protocol in which participants wear devices at all times, with 

the exception of when doing water-based activities that might damage the device. These new protocol 

resulted in the need to develop accurate 24-hour measurements (Quante et al., 2015; Rosenberger et al., 

2016), and to consider how to distinguish sleep-related behaviors from sedentary behaviors (Gibbs & 

Kline, 2018; Meredith-Jones et al., 2016).  

Researchers consistently use the activPAL when implementing 24-hour wear protocol (PAL 

Technologies Ltd., 2010). The activPAL is well-suited for a 24-hour protocol because it is small, 

lightweight, and can be waterproofed and attached to the skin on the thigh (Edwardson et al., 2017). 

These characteristics increase the likelihood that participants will wear the activPAL continuously across 

several days, thus allowing researchers to capture 24-hour movement data. The activPAL’s technology 

captures information about body posture, accurately determining sedentary time and distinguishing 
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between sedentary, stepping, and standing time in a variety of populations and settings (Kozey-Keadle, 

Libertine, Lyden, Staudenmayer, & Freedson, 2011; Lyden, Kozey Keadle, Staudenmayer, & Freedson, 

2012; PAL Technologies Ltd., 2010; Steeves et al., 2015). The activPAL’s ability to identify postural 

positions, and examine movement intensity, makes it possible to use it for distinguishing sedentary 

behavior from sleep-related behaviors, like time spent in bed (Gibbs & Kline, 2018; van der Berg et al., 

2016).  

As such, activPAL released an algorithm in 2019 for identifying primary and secondary lying 

time (PAL Technologies Ltd., 2019). Primary lying time represents the longest ‘container’ of lying down 

behavior throughout one day, and secondary lying time represents any other ‘containers’ of lying down 

behavior lasting at least 60 minutes (PAL Technologies Ltd., 2019). Primary and secondary lying time are 

context dependent; however, primary lying time can be a proxy for an individual’s time spent in bed, 

which can encompass a variety of sleep-related behaviors (Gibbs & Kline, 2018; PAL Technologies Ltd., 

2019). The activPAL’s new algorithm has the potential to enhance researchers’ ability for using the 

device to identify how 24-hour movement patterns relate to health outcomes (van der Berg et al., 2016). 

However, it is necessary to determine the accuracy of this algorithm prior to using the algorithm to 

explore additional research questions. 

Previously, researchers relied on self-report to determine sleep time, based on time in bed (TIB), 

when using the activPAL (Devine, Hakim, & Green, 2005; Edwardson et al., 2017; Quante et al., 2015). 

Participants reported TIB via diaries, introducing the possibility of recall and social desirability biases, 

which can result in over- or under-estimating TIB, and misclassifying TIB as sedentary behavior, or vice-

versa (Gibbs & Kline, 2018; Quante et al., 2015). Researchers also use fixed-time windows, which 

present similar errors to those of self-report (Meredith-Jones et al., 2016), or direct observation, a highly 

burdensome, costly, and largely unfeasible method with limited ecological validity (Dowd, Harrington, 

Bourke, Nelson, & Donnelly, 2012). Methods already exist for identifying TIB in wrist-, hip-, and waist-

worn devices (Marino et al., 2013; Quante et al., 2015); however, we are aware of only one group 

attempting to identify TIB using activPAL data (van der Berg et al., 2016). van der Berg et al. developed 
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an algorithm for identifying TIB in activPAL data, and compared the algorithm to self-report and a fixed-

time window (van der Berg et al., 2016). Their algorithm demonstrated high levels of agreement with 

self-report in identifying time spent awake, wake, and bed times, suggesting the algorithm was accurate 

for identifying TIB using activPAL data in middle- and older-aged adults (van der Berg et al., 2016). 

However, we are unaware of studies using van der Berg’s algorithm, or of studies comparing the 

activPAL algorithm against self-report or van der Berg’s algorithm.  

Therefore, the purpose of this study was to compare activPAL algorithm-estimated values for 

TIB, wake time (WT), and bed time (BT) against self-reported and van der Berg algorithm-estimated 

values. We will also examined whether the type of day (e.g. weekday versus weekend day) affected the 

accuracy of the activPAL algorithm. A secondary purpose of this study was to compare the van der Berg 

algorithm-estimated values for TIB, WT, and BT against self-reported values for all days, weekdays, and 

weekends. 

Methods 

Participants 

 We used data from the Community Activity for Prevention Study (CAPs), a randomized 

controlled trial of the effects of community gardening on health outcomes (Litt et al., 2018). Eligible 

participants were 18 years and older, able to provide consent in English or Spanish, and were new to 

gardening or had not gardened in the past two years (Litt et al., 2018). CAPs included three waves of 

participants over three years (N=296). Data were collected at baseline, 6-months, and 1-year, with 

participants randomized to a gardening group or a wait-list control. Additional details on CAPs can be 

found elsewhere (Litt et al., 2018).  

This study included baseline data from all three waves of CAPs. Participants were included if 

they wore the activPAL for at least 10 hours/day on three weekdays and one weekend day, provided 

simultaneous self-reported wake and bed times, and wore the device overnight. 187 participants were 

included in this study. The University of Colorado Boulder Institutional Review Board approved the 

study (Protocol 16-0644). Participants provided written, informed consent. 
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Measures 

The activPAL is a small, lightweight, triaxial accelerometer that records movement in the vertical, 

anteroposterior, and mediolateral axes, and identifies postural positions (PAL Technologies Ltd., 2010). 

The activPAL was attached to the skin on the front of the right thigh with transparent tape, and 

participants were asked to wear the activPAL continuously over seven days, only removing the device 

during water-based activities such as swimming or bathing (Litt et al., 2018).  

activPAL algorithm-estimated time in bed, wake time, and bed time 

Raw activPAL .datx files were processed in the PALBatch software using the CREA – 10 hour 

wear protocol and auto-correcting inverted wear (PAL Technologies Ltd., 2019). We extracted the 

following variables from the Daily Time in Bed and Daily Summaries exports: ‘TIB Start Date’ (e.g. ‘bed 

date’), ‘TIB Start Time’ (e.g. ‘bed time’), ‘TIB End Date’ (e.g. ‘wake date’), ‘TIB End Time’ (e.g. ‘wake 

time’), and ‘Primary Lying Time’ (PAL Technologies Ltd., 2019). Lying time is determined by 

identifying non-upright events lasting longer than one hour and then expanding each event to adjacent 

non-upright events (thus allowing for bathroom breaks and other sleep interruptions), which results in a 

container of predominantly non-upright events (PAL Technologies Ltd., 2019). The longest container is 

flagged as ‘Primary Lying Time’, which we considered a proxy for TIB (PAL Technologies Ltd., 2019).  

Self-reported time in bed, wake time, and bed time 

 Participants completed a self-report log for each day they wore the accelerometer. The log 

included the date worn, WT and BT (hh:mm), and overnight wear. TIB was calculated as the difference 

between self-reported bed and wake times. 

van der Berg algorithm-estimated time in bed, wake time, and bed time 

 van der Berg et al.’s ‘activPAL analyse’ algorithm for determining TIB, WT, and BT (van der 

Berg et al., 2016) was applied to each participant’s activPAL data using MATLAB R2018b (MathWorks. 

Natick, MA, USA). We extracted the following variables from the ‘uitvoer’ output file: ‘rise’, ‘bed’, and 

‘valid_min_sleep’ (i.e. TIB).  
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Other variables 

 The following variables were obtained as described elsewhere (Litt et al., 2018): sex, 

race/ethnicity, age, marital status, education, and income. Height to the nearest 0.10 cm and weight to the 

nearest 0.23 kg were measured using a portable stadiometer (Seca 213 Portable Stadiometer; Seca) and 

digital platform scale (Seca 876 Digital Scale; Seca), respectively. Body mass index (BMI) was calculated 

using measured height and weight: weight (kg)/height (m2). Waist circumference was measured to the 

nearest 0.10 cm. Height, weight, and waist circumference were measured twice, with the average 

measurement used for analyses.  

Statistical analyses 

 Descriptive characteristics of the sample and the activPAL-estimated, van der Berg-estimated, 

and self-reported TIB, WT, and BT were calculated using mean and standard deviation for continuous 

variables and n (%) for categorical variables.  

 The absolute and relative differences between TIB, WT, and BT estimated from the activPAL 

algorithm, van der Berg algorithm, and self-report were calculated and described by range, mean and SD, 

median, and the interquartile range (IQR). Absolute and relative differences were calculated for all days, 

weekdays, and weekends. Absolute differences provide information regarding the overall difference 

between two methods without allowing over- and under-estimates to cancel each out (van der Berg et al., 

2016; Welk et al., 2019), and relative differences provide information regarding the directionality of the 

difference between two methods, allowing researchers to identify over- versus under-estimation (Welk et 

al., 2019).  

Mean absolute percent error (MAPE: ((predicted value – comparison value)/(comparison 

value))*100) between TIB values derived from all three methods were calculated for all days, weekdays, 

and weekends, as MAPE reflects the magnitude of individual level error and can be compared across 

studies and devices (Welk et al., 2019). 

Separate repeated measures mixed-effects models were used to account for the lack of 

independence of measures within subjects and compared the differences in TIB, WT, and BT derived 
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from all three methods. Mixed-effects models also examined whether type of day (weekday versus 

weekend day) significantly affected the differences between methods and examined whether model fit 

improved by using a log-likelihood difference test. Intraclass correlation coefficients (ICCs) and root 

mean square error (RMSE) values were extracted from the results of the mixed-effects models (Welk et 

al., 2019).  

Bland-Altman plots were used to determine the level of agreement between TIB values for all 

three methods and to visualize bias (Dixon et al., 2018; Welk et al., 2019). Based on Dixon et al.’s 

recommendation (Dixon et al., 2018), we used equivalence tests for evaluating equivalence for estimating 

TIB, WT, and BT between the three methods. We used the Two-One-Sided Tests (TOST) method (Dixon 

et al., 2018), and specified the equivalence region for the difference in means as ±0.5 hours (±30 minutes) 

based on van der Berg et al.’s study (2016). We selected a raw value, rather than proportional value, due 

to large variability in our data and for the ease of interpreting outcomes. All analyses were conducted in R 

version 3.6.1 (R Core Team, 2019), and statistical significance was set at p<.05. 

Results 

 Table 1 shows demographics for the 187 participants included in this study and the 109 CAPs 

participants not included in this study. Our participants were 40.66 ± 12.95 years old, with 80.75% 

females, 83% white, and 29% Hispanic. Mean BMI was 27.63 ± 7.32 kg/m2. Compared to other CAPs 

participants, we had a larger proportion of whites and non-Hispanics. Our sample also weighed less and 

had a lower BMI than other CAPs participants.  

activPAL algorithm compared to self-report 

 Table 2 shows the mean TIB estimated by all three methods and the absolute and relative 

differences and the MAPE between all three methods for all days, weekdays, and weekends. Mean self-

reported TIB was 8.20 ± 1.10 hours and mean activPAL TIB was 8.97 ± 1.86 hours. The median relative 

and absolute differences between activPAL and self-reported TIB for all days were 0.61 hours and 1.41 

hours, respectively, and the median MAPE was 17.07% for all days. Mixed-effects models indicated that 

the activPAL algorithm predicted significantly more TIB than self-report for all days (b=0.79, 95% CI 
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[0.53, 1.05], ICC=0.19, RMSE=2.07). The activPAL overestimated TIB significantly more on weekends 

(b=1.03, 95% CI [0.66, 1.39], ICC=0.03, RMSE=2.71) than weekdays (b=0.68, 95% CI [0.42, 0.95], 

ICC=0.32, RMSE=1.73). Bland-Altman plots (Figure 5) indicated that there was greater agreement 

between activPAL and self-reported TIB when mean TIB was less than nine to ten hours; however, when 

mean TIB exceeded nine to ten hours, there was less agreement and greater bias. The confidence intervals 

in the Bland-Altman plots were also quite wide, particularly on weekends. 

 Equivalence tests indicated that activPAL was not equivalent to self-report in estimating TIB for 

all days (t(1084)=3.41, 90% CI [0.64, 0.91], p=1.00), weekdays (t(757)=1.88, 90%CI [0.52, 0.82], p=.97), 

or weekends (t(326)=3.07, 90% CI [0.75, 1.32], p=.99). Figure 6 shows equivalence plots for TIB for all 

days, weekdays, and weekends, indicating that activPAL overestimated TIB compared to self-report, with 

greater overestimation on weekends.  

Table 3 shows the relative and absolute differences for WT and BT for all days, weekdays, and 

weekends. The median relative and absolute differences between activPAL and self-reported WT for all 

days were 15 minutes and 36 minutes, respectively. Mixed-effects models indicated that activPAL 

predicted a significantly later WT than self-report for all days (b=0.48, 95% CI [0.31, 0.65], ICC=0.02, 

RMSE=1.99), with no differences by weekdays versus weekends. Equivalence tests indicated that 

activPAL was not equivalent to self-report in estimating WT for all days (t(1091)=-0.38, 90% CI [0.36, 

0.59], p=.35), weekdays (t(764)=-0.93, 90% CI [0.30, 0.55], p=.18), or weekends (t(326)=0.59, 90% CI 

[0.36, 0.81], p=.72). Figure 7 shows equivalence plots for WT for all days, weekdays, and weekends, 

indicating that activPAL estimated a later WT than self-report, with greater variability in the differences 

between activPAL and self-report on weekends.  

The median relative and absolute differences between activPAL and self-reported BT for all days 

were -19 minutes and 63 minutes, respectively. Mixed-effects models indicated that activPAL predicted a 

significantly earlier BT than self-report for all days (b=-0.35, 95% CI [-0.57, -0.12], ICC=0.07, 

RMSE=2.20), with no differences by weekdays versus weekends. Equivalence tests indicated that 

activPAL was equivalent to self-report in estimating BT on all days (t(1143)=2.06, 90% CI [-0.47, -0.21], 
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p=.02) and weekdays (t(816)=2.22, 90% CI [-0.45, -0.16], p=.013), but was not equivalent to self-report 

on weekends (t(326)=0.43, 90% CI [-0.69, -0.17], p=.335). Figure 8 shows equivalence plots for BT for 

all days, weekdays, and weekends, indicating that activPAL estimated an earlier BT than self-report on 

weekends, and there was greater variability in the difference between activPAL and self-reported BT on 

weekends.  

activPAL algorithm compared to van der Berg algorithm 

 Mean van der Berg-estimated TIB was 8.07 ± 1.31 hours (Table 2). The median relative and 

absolute differences between activPAL and van der Berg TIB for all days were 0.64 hours and 1.03 hours, 

respectively, and the median MAPE was 12.07% for all days. Mixed-effects models indicated that 

activPAL predicted significantly more TIB than the van der Berg algorithm for all days (b=0.88, 95% CI 

[0.68, 1.08], ICC=0.08, RMSE=1.89), and activPAL overestimated TIB significantly more on weekends 

(b=1.05, 95% CI [0.78, 1.31], ICC<.01, RMSE=2.36) than weekdays (B=0.78, 95% CI [0.55, 1.01], 

ICC=0.16, RMSE=1.71). Bland-Altman plots (Figure 5) indicated that activPAL and van der Berg-

estimated TIB were in greater agreement when mean TIB was less than eight to nine hours; however, 

when mean TIB exceeded eight to nine hours, there was less agreement and greater bias. Additionally, 

activPAL and the van der Berg algorithm were in agreement for a large proportion of values.  

Equivalence tests indicated that activPAL was not equivalent to the van der Berg algorithm in 

estimating TIB for all days (t(982)=4.91, 90% CI [0.74, 0.97], p=1.00), weekdays (t(680)=3.18, 90% CI 

[0.63, 0.91], p=.99), or weekends (t(301)=4.01, 90% CI [0.82, 1.27], p=1.00). The equivalence plots 

(Figure 6) show that that activPAL overestimated TIB compared to the van der Berg algorithm, with 

greater overestimation on weekends.  

The median relative and absolute differences between activPAL and van der Berg WT for all 

days were 1 minute and 12 minutes, respectively (Table 3). Mixed-effects models indicated that activPAL 

predicted a significantly later WT than the van der Berg algorithm for all days (b=0.32, 95% CI [0.17, 

0.47], ICC=0.00, RMSE=1.94), with no differences by weekdays versus weekends. Equivalence tests 

indicated that activPAL was equivalent to the van der Berg algorithm in estimating WT for all days 
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(t(986)=-2.69, 90% CI [0.21, 0.43], p<.01) and weekdays (t(684)=-2.67, 90% CI [0.16, 0.42], p<.01), but 

not for weekends (t(301)=-0.88, 90% CI [0.18, 0.60], p=.19). The equivalence plots (Figure 7) show that 

activPAL estimated a later WT than the van der Berg algorithm on weekends.  

The median relative and absolute differences between activPAL and van der Berg-estimated BT 

for all days were -30 minutes and 53 minutes, respectively (Table 3). Mixed-effects models indicated that 

activPAL predicted a significantly earlier BT than the van der Berg algorithm for all days (b=-0.58, 95% 

CI [-0.76, -0.40], ICC<0.01, RMSE=2.46), with no differences by weekdays versus weekends. 

Equivalence tests indicated that activPAL was not equivalent to the van der Berg algorithm in estimating 

BT for all days (t(1115)=-0.89, 90% CI [-0.70, -0.44], p=.81), weekdays (t(798)=-0.28, 90% CI [-0.68, -

0.37], p=.61), or weekends (t(316)=-1.24, 90% CI [-0.92, -0.44], p=.89). The equivalence plots (Figure 8) 

showed that activPAL estimated an earlier BT than the van der Berg algorithm, and there was greater 

variability in the difference between BT on weekends.  

van der Berg algorithm versus self-report 

 The median relative and absolute differences between van der Berg and self-reported TIB for all 

days were 0.08 hours and 1.06 hours, respectively, and the median MAPE was 13.04% for all days (Table 

2). Mixed-effects models indicated that the van der Berg algorithm predicted similar TIB to self-report for 

all days (b=-0.11, 95% CI [0.30, 0.07], ICC=0.07, RMSE=1.75), with no differences by weekdays versus 

weekends. Bland-Altman plots (Figure 5) indicated that there was reasonable agreement between the van 

der Berg algorithm and self-reported TIB. 

Equivalence tests and plots (Figure 6) indicated that the van der Berg algorithm was equivalent to 

self-report in estimating TIB for all days (t(990)=6.11, 90% CI[-0.20, 0.015], p<.01), weekdays 

(t(686)=4.96, 90% CI [-0.25, 0.01], p<.01), and weekends (t(303)=3.58, 90% CI [-0.25, 0.19], p<.01).  

The median relative and absolute differences between van der Berg-estimated and self-reported 

WT for all days were 7 minutes and 29 minutes, respectively (Table 3). Mixed-effects models indicated 

that the van der Berg algorithm predicted a significantly later wake time than self-report for all days 

(b=0.14, 95% CI [0.03, 0.24], ICC=0.02, RMSE=1.20), with no differences by weekdays versus 
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weekends. Equivalence tests and plots (Figure 7) indicated that the van der Berg algorithm was equivalent 

to self-report in estimating WT for all days (t(1001)=-8.57, 90% CI [0.07, 0.21], p<.01), weekdays 

(t(696)=-7.65, 90% CI [0.04, 0.21], p<.01), and weekends (t(304)=-4.04, 90% CI [0.04, 0.31], p<.01).  

The median absolute and relative differences between van der Berg-estimated and self-reported 

BT for all days were 45 minutes and 9 minutes, respectively (Table 3). Mixed-effects models indicated 

that the van der Berg algorithm predicted a significantly later BT than self-report for all days (b=0.26, 

95% CI [0.11, 0.41], ICC=0.03, RMSE=1.72), with no differences by weekdays versus weekends. 

Equivalence tests and plots (Figure 8) indicated that the van der Berg algorithm was equivalent to self-

report in estimating BT for all days (t(1124)=-4.17, 90% CI [0.16, 0.35], p<.01), weekdays (t(803)=-3.79, 

90% CI [0.13, 0.35], p<.01), and weekends (t(320)=-1.80, 90% CI [0.13, 0.48], p=.04).  

Discussion 

 We compared activPAL algorithm-estimated TIB to self-report and van der Berg-estimated TIB, 

as well as van der Berg-estimated versus self-report TIB for all days, weekdays, and weekends. The 

activPAL algorithm estimated significantly more TIB and was not equivalent to self-report or the van der 

Berg algorithm. The activPAL algorithm was equivalent to self-report for estimating BT, except on 

weekends, suggesting that errors in activPAL estimations of WT account for the non-equivalence between 

activPAL-estimated and self-reported TIB. The activPAL algorithm was equivalent to the van der Berg 

algorithm in estimating WT, except on weekends, suggesting that errors in activPAL estimations of BT 

account for the non-equivalence between activPAL- and van der Berg-estimated TIB. We defined 

equivalence as ±30 minutes; however, as seen in the plots (Figures 6-8), using a less conservative value of 

±60 minutes would have resulted in activPAL being equivalent to self-report and the van der Berg 

algorithm for all values, with the exception of TIB on weekends. Additionally, the Bland-Altman plots 

(Figure 5) showed that the activPAL and van der Berg algorithms were often in complete agreement in 

estimating TIB. These findings suggest that the activPAL algorithm likely only requires minor 

adjustments to improve its performance.  
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In contrast, the van der Berg algorithm was equivalent to self-report in estimating TIB, WT, and 

BT. While the van der Berg algorithm was equivalent to self-report, mixed-effects models indicated they 

were statistically different, which is likely due to the wide ranges for absolute and relative differences 

between van der Berg-estimated and self-reported values. The differences we found between the van der 

Berg algorithm and self-reported WT and BT were larger than those found in van der Berg’s original 

study, in which the median absolute differences for algorithm versus self-reported WT and BT were 12 

and 25 minutes, respectively (van der Berg et al., 2016); whereas, the median absolute difference in our 

study were 29 and 45 minutes, respectively. Additionally, the ranges in our study for median absolute 

differences were larger than van der Berg et al.’s ranges (van der Berg et al., 2016). 

 While it is challenging to identify sources of error in the activPAL algorithm due to limited 

information (PAL Technologies Ltd., 2019), activPAL provides multiple data visualization options. As 

such, we used the visualization software to identify potential sources of error within the algorithm. We 

found that the amount of time an individual lies down throughout the day might explain overestimations 

of TIB due to errors in identifying WT and BT. Figure 9 shows a common pattern we observed for when 

the activPAL algorithm overestimated TIB. As seen, the participant spent substantial time lying down 

throughout the day (indicated by the vertical bars below the horizontal bar), with only a few, short breaks 

from lying down. This appears to account for activPAL identifying a BT three hours earlier than self-

report and van der Berg values (7:51PM versus 10:35PM and 10:30PM, respectively). The activPAL also 

identified a WT six hours later than self-report and van der Berg values (11:02AM versus 5:00AM and 

5:05AM, respectively). This pattern may explain some of the error in the algorithm. Previous research 

found that, when identifying sleep onset via accelerometers, algorithms should require a shorter period of 

immobility in children compared to adolescents (Quante et al., 2015). As such, it is possible that the 

algorithm needs to allow for a longer period of immobility prior to identifying BT in adults. 

The activPAL algorithm may need to require greater levels of stillness while lying down to 

correctly identify BT and WT, and to a avoid misclassifying other lying down behaviors, like watching 

television, as TIB. As seen in Figure 9, the size of the vertical bars change, with larger bars indicating a 
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greater level of stillness. The largest vertical bars, indicative of lying down with a high level of stillness, 

began around 11PM and ended around 5AM, times corresponding with self-reported and van der Berg-

estimated BT and WT. This represents a common challenge when using accelerometers to identify sleep-

related behaviors (Gibbs & Kline, 2018), with Quante et al. acknowledging the challenge of 

distinguishing sedentary behaviors surrounding sleep from sleep itself (Quante et al., 2015). While it is 

difficult to distinguish sedentary behaviors from sleep-related behaviors, Figure 9 suggests that the 

activPAL can likely achieve this by establishing rules that combine information about body posture, an 

individual’s stillness, and the length of time lying down or being still to correctly distinguish sleep-related 

behaviors from sedentary behaviors.  

Another potential source of error in the activPAL algorithm related to wakefulness after sleep 

onset (WASO), which occurs when an individual spends time awake in bed after initially falling asleep, 

but before their final awakening (Gibbs & Kline, 2018). Similar to other devices (Quante et al., 2015), the 

presence of WASO decreased the activPAL’s ability to accurately identify WT, resulting in sometimes 

underestimating TIB. As shown in Figure 10, the data suggest that WASO started around 2:15AM and 

ended around 3:30AM, causing the activPAL to identify a WT that was seven hours earlier than self-

report or van der Berg values (2:15AM versus 9:00AM and 9:05AM, respectively). This also resulted in 

identifying the subsequent nighttime periods of lying down (3:30-6:00AM and 7:00-9:00AM) as 

secondary lying time, which may not be an ideal approach, as these periods are likely indicative of sleep 

following WASO. Gibbs and Kline make several arguments in favor of classifying WASO as part of the 

sleep period (i.e. TIB), rather than sedentary behavior (i.e. ‘secondary lying time’), when using devices to 

examine 24-hour movement patterns and transitions between sedentary behavior and sleep. Firstly it is 

normal to experience 60 minutes of WASO over a seven-hour sleep period and, secondly, the negative 

health effects of WASO only occur in combination with insufficient sleep, suggesting that, when sleep 

duration is sufficient, it may be appropriate to include WASO in the sleep period (Gibbs & Kline, 2018). 

Finally, while an individual is not asleep during WASO, the individual is intending to sleep; therefore, it 

is impractical from an intervention perspective to classify WASO as sedentary behavior, because 
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researchers would not target WASO to decrease sedentary behavior (Gibbs & Kline, 2018). As such, in 

the context of examining 24-hour movement patterns, it may be appropriate for activPAL to consider 

classifying WASO as part of TIB, rather than secondary lying time. This suggests that the activPAL 

algorithm may need to adjust its rules by allowing for WASO, which, in this example, would likely result 

in combining all three nighttime periods of lying down behavior into the ‘primary lying time’ variable 

(e.g. TIB).  

 While the activPAL algorithm encountered challenges in identifying WT and BT, it often 

estimated equivalent values to self-report and the van der Berg algorithm. As seen in Figure 11, the 

activPAL was equivalent to self-report and the van der Berg algorithm when an individual’s movement 

pattern included minimal lying down throughout the day, a transition to extremely still lying down (e.g. 

BT), and a final transition to minimal lying down (e.g. WT). This clear pattern allowed for ease in 

identifying WT and BT. Importantly, individuals in our sample with this pattern also had a regular 

sleep/wake schedule, which is consistent with previous research indicating that sleep-estimation 

algorithms perform well in healthy sleepers, but worsen with less healthy sleepers, such as those who 

have greater WASO (Marino et al., 2013; Quante et al., 2015). A regular sleep/wake patterns is also a 

hallmark of good sleep hygiene, and may correspond with other health behaviors and 24-hour movement 

patterns (Quante et al., 2015). Future researchers may want to consider examining whether the regularity 

of an individual’s sleep/wake patterns corresponds with their 24-hour movement patterns, as captured via 

the activPAL (Gibbs & Kline, 2018).  

 While identifying potential sources of error in the activPAL algorithm is helpful, users need 

practical information regarding how to use the existing algorithm. We submit that activPAL users can 

employ the algorithm, but should also continue collecting self-reported sleep data, including the time 

participants get into bed, begin attempting to fall asleep, stop attempting to sleep, and get out of bed 

(Gibbs & Kline, 2018; Quante et al., 2015). Researchers should include self-report information about 

sedentary behaviors preceding sleep and/or WASO to help identify individuals whose activPAL-estimates 

may be inaccurate. Self-report sleep logs are commonly used in conjunction with wearable devices and 
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provide additional information about participants’ sleep, thus allowing researchers to adjust for potential 

errors and account for odd sleep hours, WASO, or lying down for long periods without sleeping (Quante 

et al., 2015). Researchers can also use electronic sleep logs, completed via mobile apps, texting, etc., 

which improve participant compliance and reduce burden (Quante et al., 2015). 

We also recommend that researchers examine activPAL-estimated ‘Primary Lying Time’ values 

for outliers and, if found, either: 1) Remove the outliers, or 2) Manually replace the TIB ‘Start’ and ‘End’ 

times in the activPAL software (preferred option). These values can be replaced with self-reported data, 

by examining the data visually and identifying values based on patterns of lying down/stillness, or using a 

combination of self-report and manual scoring. Indeed, manually scoring data in conjunction with self-

report improves agreement with polysomnography compared to using a completely automated approach 

(Quante et al., 2015). Given the high quality of the activPAL’s visualization software, researchers can 

likely achieve accurate WT and BT estimates by visually examining the data, and referencing self-report 

data when needed. However, manually annotating data without using a systematic approach can introduce 

unwanted variability into the data, particularly when more than one person annotates the data (Quante et 

al., 2015). Therefore, researchers should develop a well-defined approach to adjusting data and use said 

approach consistently to avoid introducing variability, improve data quality, and allow replication of their 

approach in future studies.  

Strengths and Limitations 

There were many strengths to our study. We had a reasonably large sample of middle-aged adults 

and a large proportion of whites and Hispanics. The proportion of normal weight, overweight, and obese 

participations was similar to the U.S. population; thereby making our data generalizable to middle-aged 

whites or Hispanic in the U.S. Our participants were unaware that we were examining TIB, WT, or BT, 

thus reducing the likelihood that social desirability bias affected our results. Comparing self-report to the 

van der Berg algorithm allowed us to identify whether error occurred due to self-report biases or 

limitations in the activPAL algorithm, with results suggesting errors in the activPAL algorithm, rather 

than self-report.  
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There were some limitations to our study. Using self-report as the comparison introduces the 

potential for recall and other biases (Quante et al., 2015); however, self-report is commonly used for 

capturing sleep data (Devine et al., 2005; Quante et al., 2015), and our comparison to the van der Berg 

algorithm enhances the utility of our findings. We considered ‘Primary Lying Time’ as a proxy for TIB; 

however, the activPAL does not measure TIB per se. Rather, primary lying time is calculated based on 

extended periods (>60 minutes) of non-upright events (lying down) throughout the day (PAL 

Technologies Ltd., 2019). As such, activPAL users should note that primary lying time is not a true 

measure of TIB (or sleep) and that, when interpreting primary and secondary lying time, the contexts 

surrounding these values, such as WASO, should be considered. Researchers should also use activPAL’s 

visualization software to understand the context surrounding these values and make adjustments to 

improve estimations. 

Future studies should include other age groups, a more representative sample of races, and more 

men. The activPAL algorithm should be validated against an objective measure of sleep, ideally 

polysomnography (Marino et al., 2013), to identify how well activPAL-estimated TIB corresponds with 

actual sleeping behavior. The activPAL algorithm could also be validated against other objective 

measures, such as the Actiwatch (Quante et al., 2015). Researchers should also examine whether the 

primary and secondary lying data variables captured via the activPAL relate to sleep quantity, quality, 

WASO, or other sleep-related outcomes (Gibbs & Kline, 2018), as this could provide information about 

the practical and clinical utility of using the activPAL to measure sleep-related behaviors in free-living 

individuals. Finally, researchers need to validate the secondary lying time algorithm, because naps and 

other daytime sleep behaviors are often misidentified as sedentary behavior or non-wear time (Quante et 

al., 2015).  

Conclusions 

 In conclusion, the activPAL algorithm for detecting TIB is not equivalent to self-report or the van 

der Berg algorithm, but is equivalent to self-report for identifying BT, except on weekends, and is 

equivalent to the van der Berg algorithm for identifying WT, except on weekends. Despite this lack of 
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equivalence, the activPAL algorithm appears to require only minimal updates to achieve equivalence with 

self-report and the van der Berg algorithm. ActivPAL users can start taking advantage of the new 

algorithm as long as they are aware of its short-comings and employ reasonable approaches to adjust for 

errors. While still requiring modifications, the activPAL’s new TIB algorithm enhances the utility of 

using the activPAL for examining 24-hour movement patterns, including sleep, in free-living individuals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 

Table 1. Participant demographics and descriptive statistics 

Demographics Sleep Validation Participants (N=187a) CAPS Participants not in Sleep 

Validation (N=109b) 

Age in years (Mean ± SD)c 40.66 ± 12.95  41.99 ± 13.70 
Sex (n (%))   

Male 35 (18.72) 19 (17.43) 
Female 151 (80.75) 90 (82.57) 
Missing 1 (0.53) 0 (0.00) 

Race (n (%))   
White 156 (83.42) e 78 (71.56) e 
African American 11 (5.88) 10 (9.17) 
Other 20 (10.70) e 19 (17.43) e 

Missing 0 (0.00) 2 (1.83) 

Ethnicity (n (%))   
Hispanic  55 (29.41) e 45 (41.28) e 
Non-Hispanic 131 (70.05) e 62 (56.88) e 
Missing 1 (0.53) 2 (1.83) 

Anthropometrics (Mean ± SD)   
Height (inches) 65.21 ± 3.77 64.99 ± 3.68 
Weight (pounds) 166.53 ± 44.21e 175.36 ± 45.48 e 
BMI (kg/m2) 27.63 ± 7.32e 29.21 ± 7.36 e 
Waist Circumference (inches)d 35.79 ± 6.17 37.34 ± 6.45 

Weight Categories (n (%))   
Normal Weight 77 (41.18) 33 (30.28) 
Overweight 61 (32.62) 35 (32.11) 
Obese 49 (26.20) 41 (37.61) 

aN includes all participants who met inclusion criteria to be included in validation analyses; bN includes CAPS participants 
who were not in the sleep validation sample; cMissing age for 5 participants in the full sample and 4 participants in the sleep 
validation sample; dMissing waist circumference for one participant; ePairwise t-tests, Wilcoxon tests, or chi-square tests were 
used to examine differences between CAPS study participants who were in the sleep validation sample compared to those 
participants who were not in the sleep validation sample, with e indicating statistically significant differences between the two 
groups. 
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Table 2. Comparison of time in bed values derived from the activPAL algorithm, self-report, and the van der Berg algorithm 

All Days Measurement Range Mean ± SD Median (Q1 – Q3) 

Time in Bed (hours) 

Self-report (h) 3.73 – 11.30 8.20 ± 1.10 8.25 (7.62 – 8.89) 

activPAL algorithm (h) 3.86 – 17.21 8.97 ± 1.86 8.91 (7.94 – 9.90) 

van der Berg algorithm (h) 3.65 – 11.55 8.07 ± 1.31 8.00 (7.16 – 8.95) 

     

Relative difference (hours) 

activPAL algorithm – Self-report -5.24 – 7.95 0.78 ± 1.80 0.61 (0.02 – 1.41) 

activPAL algorithm – van der Berg algorithm -6.42 – 11.04 0.91 ± 1.59 0.64 (0.16 – 1.37) 

van der Berg algorithm – Self-report -5.60 – 5.84 -0.14 ± 1.37 0.08 (-0.84 – 0.51) 

     

Absolute difference (hours) 

activPAL algorithm – Self-report 0.09 – 7.95 1.82 ± 1.42 1.41 (0.83 – 2.34) 

activPAL algorithm – van der Berg algorithm 0.00 – 11.04 1.41 ± 1.45 1.03 (0.50 – 1.97) 

van der Berg algorithm – Self-report 0.14 – 5.84 1.36 ± 1.04 1.06 (0.57 – 1.90) 

     

Mean absolute percent error (%) 

activPAL algorithm – Self-report 0.91 – 284.30 23.76 ± 24.06 17.07 (10.34 – 30.02) 

activPAL algorithm – van der Berg algorithm -2039.82 – 833.77 15.71 ± 78.58 12.07 (5.67 – 24.02) 

van der Berg algorithm – Self-report 1.31 – 186.40 17.97 ± 18.37 13.04 (7.28 – 22.29) 

     

Weekdays Measurement Range Mean ± SD Median (Q1 – Q3) 

Time in Bed (hours) 

Self-report (h) 3.73 – 11.30 8.20 ± 1.09 8.25 (7.63 – 8.89) 

activPAL algorithm (h) 3.86 – 17.21 8.97 ± 1.87 8.90 (7.94 – 9.90) 

van der Berg algorithm (h) 3.65 – 11.55 8.06 ± 1.31 8.00 (7.16 – 8.90) 

     

Relative difference (hours) 

activPAL algorithm – Self-report -5.24 – 7.95 0.78 ± 1.80 0.61 (0.02 – 1.41) 

activPAL algorithm – van der Berg algorithm -6.42 – 11.04 0.92 ± 1.59 0.64 (0.15 – 1.38) 

van der Berg algorithm – Self-report -5.60 – 5.84 -0.15 ± 1.37 0.08 (-0.84 – 0.51) 

     

Absolute difference (hours) 

activPAL algorithm – Self-report 0.09 – 7.95 1.81 ± 1.42 1.41 (0.83 – 2.34) 

activPAL algorithm – van der Berg algorithm 0.00 – 11.04 1.40 ± 1.44 1.03 (0.50 – 1.97) 

van der Berg algorithm – Self-report 0.14 – 5.84 1.35 ± 1.04 1.06 (0.57 – 1.87) 

     

Mean absolute percent error (%) 

activPAL algorithm – Self-report 0.91 – 240.51 23.65 ± 22.78 17.45 (10.36 – 29.88) 

activPAL algorithm – van der Berg algorithm -2039.82 – 833.77 14.72 ± 93.13 12.10 (5.69 – 24.49) 

van der Berg algorithm – Self-report 1.40 – 186.40 18.04 ± 18.33 13.04 (7.36 – 22.32) 

     

Weekends Measurement Range Mean ± SD Median (Q1 – Q3) 

Time in Bed (hours) 

Self-report (h) 3.73 – 11.30 8.19 ± 1.13 8.25 (7.61 – 8.89) 

activPAL algorithm (h) 3.86 – 17.21 8.96 ± 1.85 8.92 (7.88 – 9.90) 

van der Berg algorithm (h) 4.47 – 11.55 8.09 ± 1.31 8.00 (7.16 – 9.00) 

     

Relative difference (hours) activPAL algorithm – Self-report -5.24 – 7.95 0.79 ± 1.78 0.65 (0.02 – 1.41) 
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activPAL algorithm – van der Berg algorithm -6.42 – 11.04 0.89 ± 1.61 0.64 (0.16 – 1.37) 

van der Berg algorithm – Self-report -4.67 – 5.84 -0.11 ± 1.37 0.08 (-0.82 – 0.51) 

     

Absolute difference (hours) 

activPAL algorithm – Self-report 0.09 – 7.95 1.83 ± 1.43 1.41 (0.85 – 2.34) 

activPAL algorithm – van der Berg algorithm 0.00 – 11.04 1.42 ± 1.48 1.03 (0.50 – 1.94) 

van der Berg algorithm – Self-report 0.14 – 5.84 1.36 ± 1.04 1.06 (0.57 – 1.91) 

     

Mean absolute percent error (%) 

activPAL algorithm – Self-report 0.96 – 284.30 24.02 ± 27.01 16.52 (10.16 – 30.06) 

activPAL algorithm – van der Berg algorithm 0.02 – 183.67 17.96 ± 21.05 12.00 (5.59 – 22.86) 

van der Berg algorithm – Self-report 1.31 – 164.80 17.82 ± 18.49 13.12 (6.83 – 22.02) 
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Table 3. Absolute differences in wake and bed times derived from activPAL algorithm, self-report, and van der Berg algorithm methods 

  Range Mean ± SD Median (Q1 – Q3) 

Wake times – All Days (hh:mm:ss) 

Relative differences    

activPAL algorithm – Self-report -4:44:24 – 8:11:06 0:29:11 ± 1:14:08 0:15:40 (-0:01:51 – 0:39:35) 

activPAL algorithm – van der Berg algorithm -3:50:29 – 7:55:26 0:18:29 ± 1:08:20 0:01:13 (0:00:00 – 0:23:40) 

van der Berg algorithm – Self-report -3:49:12 – 3:07:22 0:07:51 ± 0:48:37 0:07:03 (-0:06:24 – 0:27:30) 

Absolute differences    

activPAL algorithm – Self-report 0:01:47 – 8:11:06 1:00:29 ± 1:10:36 0:36:07 (0:18:33 – 1:13:19) 

activPAL algorithm – van der Berg algorithm 0:00:00 – 7:55:26 0:42:13 ± 1:09:34 0:12:47 (0:00:01 – 0:52:59) 

van der Berg algorithm – Self-report 0:01:24 – 4:11:21 0:43:45 ± 0:44:01 0:29:08 (0:14:01 – 0:56:21) 

     

Wake times – Weekdays 

(hh:mm:ss) 

Relative differences Range Mean ± SD Median (Q1 – Q3) 

activPAL algorithm – Self-report -4:44:24 – 8:11:06 0:28:56 ± 1:14:06 0:15:40 (-0:01:49 – 0:39:35) 

activPAL algorithm – van der Berg algorithm -3:50:29 – 7:55:26 0:18:22 ± 1:07:38 0:00:15 (0:00:00 – 0:22:42) 

van der Berg algorithm – Self-report -3:49:12 – 3:07:22 0:07:26 ± 0:48:45 0:06:47 (-0:06:24 – 0:27:30) 

Absolute differences    

activPAL algorithm – Self-report 0:01:47 – 8:11:06 1:00:29 ± 1:10:44 0:35:36 (0:18:23 – 1:13:19) 

activPAL algorithm – van der Berg algorithm 0:00:00 – 7:55:26 0:41:34 ± 1:08:53 0:12:12 (0:00:01 – 0:51:12) 

van der Berg algorithm – Self-report 0:01:24 – 4:11:21 0:43:20 ± 0:43:51 0:28:55 (0:13:58 – 0:55:56) 

     

Wake times – Weekends 

(hh:mm:ss) 

Relative differences Range Mean ± SD Median (Q1 – Q3) 

activPAL algorithm – Self-report -4:44:24 – 8:11:06 -0:29:50 ± 1:14:21 0:15:40 (-0:01:51 – 0:40:06) 

activPAL algorithm – van der Berg algorithm -3:50:29 – 7:55:26 18:46 ± 1:10:10 0:02:11 (0:00:00 – 0:24:00) 

van der Berg algorithm – Self-report -3:49:12 – 3:07:22 0:08:54 ± 0:48:18 0:07:47 (-0:06:34 – 0:28:02) 

Absolute differences    

activPAL algorithm – Self-report 0:01:47 – 8:11:06 1:00:37 ± 1:10:21 0:36:41 (0:19:41 – 1:13:19) 

activPAL algorithm – van der Berg algorithm 0:00:00 – 7:55:26 43:53 ± 1:11:24 0:13:44 (0:00:29 – 0:57:26) 

van der Berg algorithm – Self-report 0:01:24 – 4:11:21 0:44:49 ± 0:44:30 0:31:01 (0:15:23 – 0:56:58) 

     

Bed times – All Days (hh:mm:ss) 

Relative differences Range Mean ± SD Median (Q1 – Q3) 

activPAL algorithm – Self-report -6:48:32 – 4:54:18 -0:19:57 ± 1:33:00 -0:19:36 (-0:58:43 – 0:09:54) 

activPAL algorithm – van der Berg algorithm -11:02:01 – 0:24:44 -0:36:17 ± 1:26:59 -0:30:05 (-1:04:43 - -0:02:25) 

van der Berg algorithm – Self-report -4:31:09 – 3:26:27 0:15:27 ± 1:04:53 0:09:39 (-0:14:12 – 0:43:12) 

Absolute differences    

activPAL algorithm – Self-report 0:04:11 – 7:34:28 1:31:54 ± 1:21:39 1:03:33 (0:40:27 – 1:57:53) 

activPAL algorithm – van der Berg algorithm 0:00:00 – 11:02:01 1:17:19 ± 1:23:02 0:53:09 (0:22:16 – 1:41:52) 

van der Berg algorithm – Self-report 0:04:12 – 4:34:41 1:04:39 ± 0:54:49 0:45:36 (0:28:28 – 1:27:13) 

     

Bed times – Weekdays (hh:mm:ss) 

Relative differences Range Mean ± SD Median (Q1 – Q3) 

activPAL algorithm – Self-report -6:48:32 – 4:54:18 -0:20:09 ± 1:33:57 -0:20:22 (-0:58:43 – 0:09:54) 

activPAL algorithm – van der Berg algorithm -11:02:01 – 4:07:28 -0:36:34 ± 1:27:05 -0:30:05 (-1:04:53 – -0:02:25) 

van der Berg algorithm – Self-report -4:31:09 – 3:26:27 0:15:19 ± 1:05:21 0:09:39 (-0:14:22 – 0:43:12) 

Absolute differences    

activPAL algorithm – Self-report 0:4:11 – 7:34:28 1:32:07 ± 1:22:37 1:03:33 (0:39:55 – 1:57:53) 

activPAL algorithm – van der Berg algorithm 0:04:12 – 4:34:41 1:04:39 ± 0:55:07 0:45:36 (0:28:28 – 1:27:13) 

van der Berg algorithm – Self-report 0:00:00 – 11:02:01 1:17:07 ± 1:23:09 0:53:09 (0:22:06 – 1:41:52) 
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Bed times – Weekends (hh:mm:ss) 

Relative differences Range Mean ± SD Median (Q1 – Q3) 
activPAL algorithm – Self-report -6:48:32 – 4:54:18 -0:19:36 ± 1:30:39 -0:19:36 (-0:58:43 – 0:09:54) 

activPAL algorithm – van der Berg algorithm -11:02:01 – 4:07:28 -0:35:35 ± 1:26:52 -0:30:05 (-1:02:38 – -0:02:52) 

van der Berg algorithm – Self-report -4:31:09 – 3:26:27 0:15:45 ± 1:03:46 0:09:39 (-0:13:43 – 0:41:33) 

Absolute differences    

activPAL algorithm – Self-report 0:04:11 – 7:34:28 1:31:20 ± 1:19:14 1:03:35 (0:41:22 – 1:57:53) 

activPAL algorithm – van der Berg algorithm 0:00:00 – 11:02:01 1:17:48 ± 1:22:50 0:53:18 (0:23:23 – 1:45:58) 

van der Berg algorithm – Self-report 0:04:12 – 4:34:41 1:04:06 ± 0:54:06 0:46:29 (0:28:28 – 1:27:13) 
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 All Days Weekdays Weekends 

activPAL 
algorithm – 
Self-report  
 

   
activPAL 
algorithm – 
van der Berg 
algorithm 

   
van der Berg 
algorithm – 
Self-report 

   
Figure 6. Bland-Altman plots for time in bed for all days, weekdays, and weekends 
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 All Days Weekdays Weekends 

activPAL 
algorithm – 
Self-report 

   
activPAL 
algorithm – 
van der Berg 
algorithm 

   
van der Berg 
algorithm – 
Self-report 

   

Figure 7. Equivalence plots for time in bed for all days, weekdays, and weekends 
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 All Days Weekdays Weekends 

activPAL 
algorithm – 
Self-report 

   
activPAL 
algorithm – 
van der Berg 
algorithm 

   
van der Berg 
algorithm – 
Self-report 

   

Figure 8. Equivalence plots for wake times for all days, weekdays, and weekends 
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 All Days Weekdays Weekends 

activPAL 
algorithm – 
Self-report 

   
activPAL 
algorithm – 
van der Berg 
algorithm 

   
van der Berg 
algorithm – 
Self-report 

   

Figure 9. Equivalence plots for bed times for all days, weekdays, and weekends 
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a. activPAL figure 

of algorithm resultsd 

b. MATLAB figure 

of van der Berg 

algorithm results 

aactivPAL bed time: 7:51PM, wake time: 11:02AM; bvan der Berg bed time: 10:30PM, wake time: 5:05AM; cSelf-reported bed time: 
10:35PM, wake time: 5:00AM; dLarger vertical bars indicate a greater level of stillness. Different shades of gray represent whether 
the individual was lying on their back, front, left side, or right side.   

Legend 

Bed Time 

 

Wake Time 

Legend 

Bed Time 

 

Wake Time 

a. activPAL figure 

of algorithm resultsd 

b. MATLAB figure 

of van der Berg 

algorithm results 

aactivPAL bed time: 11:12PM, wake time: 2:15AM; bvan der Berg bed time: 11:11PM, wake time: 9:05AM; cSelf-reported 
bed time: 11:00PM, wake time: 9:00AM; dLarger vertical bars indicate a greater level of stillness. Different shades of gray 
represent whether the individual was lying on their back, front, left side, or right side.   

 

Figure 10. activPALa overestimating time in bed compared to van der Berg algorithmb and self-reportc 

Figure 11. activPALa underestimating time in bed compared to van der Berg algorithmb and self-reportc 
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b. MATLAB figure 

of van der Berg 

algorithm results 

Legend 

Bed Time 

 

Wake Time 

a. activPAL figure 

of algorithm resultsd 

aactivPAL bed time: 11:46PM, wake time: 6:45AM; bvan der Berg bed time: 11:46PM, wake time: 6:45AM; cSelf-reported 
bed time: 11:35PM, wake time: 6:45AM; dLarger vertical bars indicate a greater level of stillness. Different shades of gray 
represent whether the individual was lying on their back, front, left side, or right side.   
 

Figure 12. activPALa estimating same bed and wake times as van der Berg algorithmb and self-reportc 
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CHAPTER 4 – STATISTICS AND MATH 
 
 
 

Data scientists must be capable of identifying the appropriate statistical methods to use based on 

the characteristics of the specific study design and sample in question, as well as employing said methods 

to understand study outcomes. Substantive expertise in a particular area, such as psychosocial 

determinants of health behaviors and health outcomes, should be used to inform which variables are 

included in a given analysis, how to examine the effects of said variables on study outcomes, and how to 

interpret outcomes. One example of this is deciding whether to control for the effects of unmodifiable 

determinants (i.e. sex) or to examine the potential moderating effects of unmodifiable determinants on 

study outcomes. These decisions require a consideration of the theoretical underpinnings of a given 

study’s research questions, the study design, and the study sample’s characteristics. The studies in this 

chapter provide practical examples of how data scientists can combine statistical knowledge with 

substantive expertise to examine the relationships among unmodifiable and psychosocial determinants of 

health and health behaviors. Study 3 demonstrates the use of growth modeling for examining how 

unmodifiable determinants, including sex and race/ethnicity, and psychosocial determinants, including 

autonomous motivation, controlled motivation, and PA planning, relate to PA participation in a nationally 

representative sample of adolescents transitioning into early adulthood. Study 4 provides an example of 

using smartphone technology to capture repeated measures of psychosocial determinants of health (e.g. 

stress and tiredness) in real-time and in an individual’s natural environment, and using appropriate 

statistical modeling (mixed-effects location scale models) to analyze the data captured via smartphones to 

examine acute stress and tiredness, and between- and within-person variability in stress and tiredness 

among a sample of career firefighters.  
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Study 3 – Motivation and Planning Effects on Physical Activity during the Adolescent-to-Adult-

Transition 

Introduction 

Although research indicates that engaging in sufficient physical activity (PA) consistently relates 

to better health outcomes, very few adolescents meet PA recommendations based on accelerometer-

measured PA (8%) and self-reported PA (26%) (Centers for Disease Control and Prevention, 2019a; 

Troiano et al., 2008). These low PA rates cause concern as lower PA corresponds with greater chronic 

disease risk (Kohl et al., 2012; Mozaffarian et al., 2015). Increasing PA participation among adolescents 

may reduce their chronic disease risk; however, this requires an understanding about which factors predict 

PA participation. Self-determination theory (Ryan & Deci, 2000; Teixeira et al., 2012) and social 

cognitive theory (Sniehotta et al., 2005) suggest that two potential predictors of PA participation include 

motivation and planning.  

In Self-Determination Theory, researchers conceptualize motivation on a continuum from non-

autonomous amotivation to completely autonomous intrinsic motivation, with four subcategories of 

extrinsic motivation in between (Ryan & Deci, 2000; Teixeira et al., 2012). The subcategories of extrinsic 

motivation vary in the extent to which they are autonomously regulated (Ryan & Deci, 2000; Teixeira et 

al., 2012). External and introjected regulation represent the less autonomous forms of extrinsic motivation 

and are often combined to represent controlled motivation (Ryan & Deci, 2000; Teixeira et al., 2012; 

Williams et al., 1996). Identified and integrated regulation represent more autonomous forms of extrinsic 

motivation (Ryan & Deci, 2000; Teixeira et al., 2012). Intrinsic motivation represents the most 

autonomous form of motivation (Ryan & Deci, 2000; Teixeira et al., 2012). Researchers often combine 

identified regulation, integrated regulation, and intrinsic motivation to represent autonomous motivation 

(Ryan & Deci, 2000; Teixeira et al., 2012). 

Greater autonomous motivation corresponds with increased PA participation (Barbeau et al., 

2009; Dishman et al., 2018; Ryan & Deci, 2000; Teixeira et al., 2012; Wilson, Rodgers, Fraser, & 

Murray, 2004). In contrast, greater controlled motivation corresponds with lower PA participation (Ryan 
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& Deci, 2000; Teixeira et al., 2012) or has no association with PA participation (Teixeira et al., 2012). 

Dishman et al. found that adolescents who maintained higher levels of autonomous motivation for PA 

showed smaller declines in PA between middle and high school (Dishman et al., 2018). Adolescents with 

higher autonomous motivation for PA also demonstrated larger declines in valuing PA as a means to an 

end (a form of controlled motivation) (Dishman et al., 2018), suggesting that autonomous motivation 

related to PA enjoyment may displace controlled motivation. These findings suggest that motivation may 

be prospectively associated with PA participation and that researchers should examine the separate effects 

of autonomous and controlled motivation. 

Despite the importance of motivation to PA participation, substantial research indicates that 

individuals who report being motivated to participate in PA often fail to do so (Sniehotta et al., 2005). 

This incongruence may relate to whether an individual actively plans to participate in PA (K. Li et al., 

2014; Sniehotta et al., 2005). Action planning refers to someone making the conscious decision to engage 

in a behavior, and can include making concrete plans, including when, where, and how to be active (K. Li 

et al., 2014; Sniehotta et al., 2005). Research indicates that action planning is associated with greater PA 

in a variety of settings (Cao et al., 2013; K. Li et al., 2014; Scholz et al., 2008; Sniehotta et al., 2005), and 

interventions have successfully improved action planning as a means to increase PA (Dombrowski & 

Luszczynska, 2009; Koring et al., 2012). These findings suggest that PA action planning may represent an 

important link between motivation and PA participation.  

PA participation also decreases across the lifespan (Bauman et al., 2012). Previous studies 

indicate that PA declines during the adolescent-to-adult transition (Gordon-Larsen, Nelson, & Popkin, 

2004; Kwan, Cairney, Faulkner, & Pullenayegum, 2012; K. Li et al., 2016), a meaningful transition 

period characterized by changes in other health behaviors, such as increased substance use (Kwan et al., 

2012) and sedentary behavior (Gordon-Larsen et al., 2004). While these studies describe the pattern of PA 

during the adolescent-to-adult transition, none of them examined the effects of potential predictors of PA, 

like motivation, on PA during the adolescent-to-adult transition. 
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Cross-sectional studies indicate that time-invariant variables, such as sex and race/ethnicity, 

correlate with PA participation in adolescents. For example, more adolescent males than females meet PA 

guidelines (36.6% and 17.7%, respectively) (Kann et al., 2014; Kohl et al., 2012). Race/ethnicity also 

relates to PA participation and, in adolescent males, 37.5% of whites, 37.2% of African Americans and 

33.9% of Hispanics meet PA guidelines (Kann et al., 2014). Among adolescent females, only 18.7% of 

whites, 16.0% of African Americans, and 17.4% of Hispanics meet PA guidelines. Considerable 

differences in PA by sex and race/ethnicity suggests the need for understanding longitudinal PA patterns 

by sex and race/ethnicity, which could help inform the timing and content of targeted interventions.  

The objectives of this study were to examine prospective associations between the slopes for PA 

during the adolescent-to-adult transition with the following: 1) sex and race/ethnicity; and (2) the slopes 

for autonomous motivation, controlled motivation, and PA planning. We hypothesized that PA would: 1) 

decrease across time; (2) be higher among males than females; (3) be higher among whites than other 

races/ethnicities; and (4) be positively associated with higher autonomous motivation and greater PA 

planning; and (5) not be associated with controlled motivation. 

Methods 

Participants 

Data for this study come from the NEXT Generation Health Study (NEXT), a nationally 

representative cohort study starting in the 2009-2010 school year in the United States (U.S.). School 

districts represented the primary sampling units (PSU) and were stratified by the nine U.S. Census 

division. PSUs were selected with probability proportional to total school enrollment. A total of 137 PSUs 

with 10th grade classes were randomly recruited and 81 schools agreed to participate. One 10th grade 

classroom within each school was randomly selected to participate. All students in each 10th grade 

classroom were invited to participate (N=3796). African American participants were oversampled to 

improve population estimates and ensure an adequate sample size for examining racial/ethnic differences 

in outcomes.  
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Surveys were administered annually (2009–2016), during the spring of each year, and data were 

collected over seven waves, beginning in the 10th grade (W1) and continuing through the fourth year post-

high school (W7). A total of 2785 students agreed to participate in the study. This study uses data from 

Waves 2 (W2, 11th grade) through 7 (W7, four years post-high school). Wave 1 data were not used due to 

survey questions related to motivation being different from those at wave 2 and subsequent years. For 

participants less than 18 years of age, parental consent and participant assent were obtained. When 

participants turned 18, participant consent was obtained. The Institutional Review Board of the Eunice 

Kennedy Shriver National Institute of Child Health and Development approved this study. 

Measures 

Dependent variable 

PA participation was assessed by asking participants to report the number of days (0-7 days) over 

the past seven days that they were physically active for at least 60 minutes per day (Prochaska, Sallis, & 

Long, 2001). 

Independent variables 

Time-varying covariates 

The three time-varying covariates were examined using previously validated questionnaires: 1) 

autonomous motivation (Ryan & Connell, 1989), 2) controlled motivation (Ryan & Connell, 1989), and 

3) PA planning (Luszczynska, 2006). Participants completed three questions assessing the influence of 

autonomous motivation on PA participation by indicating how true they felt each of the following 

statements were with regard to the initial statement “The amount of time I am physically active during a 

typical day is because”:  (1) “I enjoy it”, (2) “It fits with how I see myself”, and (3) “It is personally 

important to me”, using a 7-point Likert scale, with responses ranging from (1) “Not at all true” to (7) 

“Very true” (Cronbach’s alpha: 0.84-0.88) (Ryan & Connell, 1989). Items were averaged (range 0-7) to 

account for the presence of a small number of missing responses. 

Participants completed three questions assessing the influence of controlled motivation on PA 

participation by indicating how true they felt each of the following statements were with regard to the 
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initial statement “The amount of time I am physically active during a typical day is because”:  (1) “I feel 

guilty if I do otherwise”, (2) “My parents, other family members, or friends tell me to do it”, and (3) “I 

am required to do it”, using a 7-point Likert scale, with responses ranging from (1) “Not at all true” to (7) 

“Very true” (Cronbach’s alpha: 0.51-0.61) (Ryan & Connell, 1989). Items were averaged (range 0-7) to 

account for the presence of a small number of missing responses. 

Participants completed three questions assessing PA planning by indicating how often over the 

past seven days they made plans for vigorous PA, including: (1) “I planned when to exercise”, (2) “I 

planned how often to exercise”, and (3) “I planned where to exercise”, using a 5-point Likert scale, with 

responses ranging from (1) “Not at all” to (5) “Very often” (Cronbach’s alpha: 0.93-0.96) (Luszczynska, 

2006). Items were averaged (range 0 – 5) to account for the presence of a small number of missing 

responses. 

Time-invariant covariates 

Participants reported sex and race/ethnicity at baseline. Participants provided self-reported height 

and weight each wave, which were used to calculate body mass index (BMI) (Lipsky et al., 2019). Due to 

substantial missing data, BMI at W2 was examined as a time-invariant covariate in the analyses. 

Statistical analyses 

We used a latent growth curve modeling approach in a structural equation modeling framework 

(Grimm, Ram, & Estabrook, 2017) to examine the longitudinal effects of the time-invariant covariates 

(TICs) and time-varying covariates (TVCs) on PA participation across time, selecting the model of best 

fit at each step. We started with a no growth model, and then examined linear, quadratic, cubic, and 

piecewise growth models for the outcome variable (PA). The intercept and slope for PA were allowed to 

vary between persons and to covary with one another. Time scores (waves) were treated as equidistant. 

We examined the effects of the TICs and TVCs on the model, both in isolation and additively. TICs that 

failed to improve model fit were removed from the model for parsimony. We examined whether the 

effects of TVCs should vary across time, be fixed across time, or have a random slope. Model fit was 

tested using the log likelihood difference test (LL Diff Test), root mean square error of approximation 
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(RMSEA), Confirmatory Fit Index (CFI), Tucker-Lewis Index (TLI), and Bayesian Information Criterion 

(BIC) values compared between models to determine the model of best fit. Data were analyzed in SAS 

(version 9.4) and Mplus (version 8.1). Listwise deletion was applied, as this was the default in Mplus due 

to the complexity of the models and presence of missing data for some of the TICs and TVCs. Mplus 

product support’s solution to account for missing data for the TICs and TVCs involved fixing 

coefficients at zero; however, this only allowed the use of LL Diff Tests to test the significance of 

coefficients, but prohibited comparing nested models to determine the model of best fit, resulting in the 

final decision to use list wise deletion to ensure we obtained the model of best fit, resulting in 1414 

participants in the final model. Features of the complex sampling design were taken into account, 

including stratifying, clustering, and sampling weights. Statistical significance was p<.05. Data were 

analyzed in 2019. 

Results 

Participant Characteristics 

Participants were 17.16 years old (standard error of the mean (SEM)=0.02), 35.9% male, 59.8% 

white, 17.9% African American, and 18.5% Hispanic, and mean BMI was 24.08 (SEM=0.31) at W2. 

Table 4 includes participants’ PA participation and average autonomous motivation, controlled 

motivation, and PA planning at all six time points. 

Growth Model Outcomes 

Model fit tests for change in PA across time indicated that a piecewise model with two pieces 

(Piece 1: W2–W4; Piece 2: W4–W7) provided better model fit (LL=-21051.637; BIC=44214.708, 

RMSEA=0.016, CFI=0.994, TLI=0.992; LL Diff Test=152.006) than the linear, quadratic, cubic, and 

other piecewise models. Sex, race/ethnicity, and BMI significantly improved model fit and were retained 

in the final model. Allowing the effects of autonomous and controlled motivation to vary with time and 

PA planning to have a random slope provided better model fit. Therefore, PA planning was entered as a 
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random slope in the final model and the effects of the TICs on the random slope for the effect of PA 

planning on PA were also included. Table 5 includes results from the final piecewise growth model. 

As shown in Figure 12, there was an overall decrease in PA across time. Additionally, at W2, 

males participated in greater PA than females (b=-0.786, SE=0.145, p<.001), and whites participated in 

greater PA than African Americans (b=-0.542, SE=0.159, p=.001) and Hispanics (b=-0.501, SE=0.237, 

p=.034).  

None of the TICs affected the slope of change in PA from W2–W4. Having an ‘other’ 

race/ethnicity significantly affected the slope of change in PA (b=0.256, SE=0.118, p=.030) from W4–

W7. None of the other TICs significantly affected the slope of change in PA from W4–W7. 

As shown in Figure 13, autonomous motivation was significantly and positively associated with 

PA at each wave (b: 0.196-0.384; p<.001; see Table 5 for specific values). Controlled motivation was not 

significantly associated with PA at any wave. The effect of PA planning on PA varied significantly 

between individuals, with the average effect of PA planning significantly and positively affecting PA 

(b=0.445, SE=0.047, p<.001). Being female significantly decreased the effect of PA planning on PA (b=-

0.117, SE=0.048, p=.015). No other TICs affected the relationship between PA planning and PA. 

Discussion 

This study contributes to the literature by examining the longitudinal relationships between 

autonomous motivation, controlled motivation, and PA planning on PA among a representative cohort 

during the adolescent-to-adult transition. We found that PA participation between the 11th grade and four 

years post-high school was characterized by two distinct growth phases, the first between the 11th grade 

and one-year post-high school, and the second between one and four years post-high school. Individual 

characteristics, including being female and African American or Hispanic corresponded with lower PA 

than being male or White, respectively. In alignment with our hypotheses, controlled motivation was not 

significantly associated with PA; whereas, autonomous motivation was significantly and positively 

associated with PA and PA planning significantly and positively predicted PA.  
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One of our most unique findings was that PA participation during the adolescent-to-adult 

transition was characterized by two distinct phases, and that, while PA decreased across time, there 

existed a trend for an increase in PA between one and two years post-high school. Only a few studies 

have examined PA during this transition, all finding that PA decreased across time (Gordon-Larsen et al., 

2004; Kwan et al., 2012; K. Li et al., 2016). Gordon-Larsen et al.’s study used logistic regression, 

precluding their ability to examine the pattern of PA participation (Gordon-Larsen et al., 2004). Kwan et 

al. used mixed-effects modeling and found a linear pattern of decreased PA across time, which could be 

due to their data being collected biannually, rather than annually, suggesting they might have missed a 

trend for an increase in PA between one and two years post-high school (Kwan et al., 2012). Li et al.’s 

study used data from the NEXT study to examine accelerometer-measured PA from 10th grade through 

one year post-high school, thus missing the later increase between one and two years post-high school (K. 

Li et al., 2016). Interestingly, Li et al. found that being in school versus not attending school, and living 

on campus versus living at home was associated with an increased likelihood of engaging in PA during 

the first year post-high school (K. Li et al., 2016), and, although the complexity of our models precluded 

examining this, future studies should examine the longer term longitudinal relationships between school 

status and residence on PA. Our study design enabled us to capture a transient increase in PA during one-

to-two years post high school, whereas previous studies may have failed to detect this transient increase 

due to different analytical or methodological approaches (Gordon-Larsen et al., 2004; Kwan et al., 2012; 

K. Li et al., 2016). Our findings are unique from these studies in suggesting that one-to-two years post-

high school may represent a unique time period with regard to PA participation.  

The finding that autonomous, but not controlled, motivation was significantly associated with 

higher PA corresponds with previous literature (Barbeau et al., 2009; Dishman et al., 2018; Teixeira et al., 

2012; Wilson et al., 2004), and contributes to the existing literature by revealing that this relationship 

persists during the adolescent-to-adult transition. Autonomous forms of motivation, particularly intrinsic 

motivation, works by prompting behaviors that fulfill psychological needs, such as relatedness and 

competence (Barbeau et al., 2009). Characteristics of PA, such as social engagement, the need to 
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overcome challenges, and the desire to develop PA-specific skills, align with these psychological needs 

(Barbeau et al., 2009) and enhance autonomous motivation for PA (Teixeira et al., 2012). Our findings 

suggest that the role of autonomous motivation in increasing PA in adolescents transitioning into 

adulthood parallels that in other populations (Barbeau et al., 2009; Dishman et al., 2018; Ryan & Deci, 

2000; Teixeira et al., 2012). However, our analyses only examined autonomous versus controlled 

motivation; therefore, future research should consider distinguishing among more specific regulatory 

styles of motivation to inform interventions (Ryan & Deci, 2000). 

Our finding that PA planning was positively associated with PA participation aligns with 

previous literature (Cao et al., 2013; K. Li et al., 2014; Scholz et al., 2008; Sniehotta et al., 2005). This is 

particularly important, as previous interventions have successfully improved PA planning and, 

subsequently, PA (Dombrowski & Luszczynska, 2009; Koring et al., 2012). However, our finding that the 

effects of PA planning on PA varied significantly between individuals suggests that its effects during the 

adolescent-to-adult transition may be more nuanced than previously assumed. For example, the effects of 

PA planning on PA were attenuated in females in our sample, a particularly concerning finding since 

females already participate in less PA than males. This finding suggests that other factors (e.g., 

autonomous motivation) may be more important drivers of PA in females. Additional research identifying 

which characteristics distinguish between individuals for whom PA planning does/does not affect their 

PA is warranted. Successfully identifying such characteristics could inform research regarding which 

individuals would benefit from interventions focused on PA planning versus individuals who might 

benefit from interventions focusing on other predictors of PA.  

Our findings related to sex and race/ethnicity correspond with the preponderance of previous 

literature, all of which indicates that females, including adolescents and young adults, participate in less 

activity than males (Kann et al., 2014), and white adolescents participate in more PA than either African 

Americans or Hispanics (Kann et al., 2014). These findings suggest the need to tailor interventions based 

on sex and race/ethnicity to increase PA.  
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Limitations 

There are limitations to this study. Due to intermittent missing data for BMI across the time 

points, we included BMI at wave 2 as a TIC rather than a TVC in the model, limiting our ability to assess 

the longitudinal relationship between changes in BMI and PA participation. However, that BMI did not 

significantly affect PA participation at W2 suggests that this likely did not affect the study outcomes. We 

relied on self-reported measures of PA, autonomous and controlled motivation, and PA planning, 

increasing risk for self-report biases. Research indicates that individuals over-report PA participation and, 

as such, readers should interpret the average levels of PA reported in this study with caution. Finally, we 

were unable to examine the relationship between distinct types of motivation and PA, limiting the 

specificity of our findings for informing future interventions.  

Conclusion 

Overall, we found that PA participation during the adolescent-to-adult transition was 

characterized by two distinct phases, with a transient increase in PA between one and two years post-high 

school. Females and African Americans and Hispanics participated in significantly less PA at baseline 

than males and Whites, respectively. Autonomous motivation and PA planning were significantly and 

positively associated with PA; whereas, controlled motivation was not associated PA. The effect of PA 

planning on PA varied significantly between individuals. Our findings suggest that future interventions 

may require tailoring based on sex and race/ethnicity and may benefit from focusing on PA planning 

and/or autonomous motivation to increase PA during the adolescent-to-adult transition.   
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Table 4. Participant descriptive statistics for model variables 

Study Variables (Mean ± SEM)a Wave 2b Wave 3b Wave 4b Wave 5b Wave 6b Wave 7b  

Physical Activity Participationc 3.95 ± 4.84 3.91 ± 4.94 3.46 ± 4.93 3.35 ± 4.98 3.09 ± 4.82 3.03 ± 4.90 

Autonomous Motivationd 4.59 ± 3.05 4.65 ± 2.97 4.50 ± 3.58 4.47 ± 3.66 4.26 ± 3.57 4.18 ± 3.58 

Controlled Motivatione 2.66 ± 2.11 2.77 ± 2.23 2.53 ± 1.95 2.38 ± 1.65 2.35 ± 1.72 2.60 ± 1.86 

Physical Activity Planningf 2.98 ± 1.92 3.14 ± 1.96 3.17 ± 1.93 3.03 ± 2.14 2.89 ± 2.06 2.69 ± 2.04 

aAll values were stratified by U.S. census division, clustered by primary sampling unit, and weighted based on oversampling African Americans. SEM = 
Standard Error of the Mean. 
bWave 2 occurred during the 11th grade. Wave 3 occurred during the 12th grade; and Waves 4-7 occurred during one to four years post-high school, 
respectively. 
cAverage days per week participant was physically active for at least 60 minutes per day. 
dSample average of the three questions assessing autonomous motivation for physical activity. 
eSample average of the three questions assessing controlled motivation for physical activity. 
fSample average of the three questions assessing physical activity planning. 
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Table 5. Growth model examining physical activity participation from 11th grade through the four years 
post-high school 

 Estimate SE 

Intercept  4.661 0.160*** 

Female effect on intercept (ref: Male)  -0.786 0.145*** 
Race/Ethnicity effect on intercept (ref: White)   
  African American -0.542 0.159** 

  Hispanic -0.501 0.237* 
  Other  -0.371 0.322 
BMIa effect on intercept -0.005 0.018 
   

Piece 1 Time (linear slope): Wave 2 – Wave 4 -0.285 0.072*** 

Female effect on piece 1 (ref: Male) 0.081 0.094 
Race/Ethnicity effect on piece 1 (ref: White)   
  African American -0.022 0.101 
  Hispanic 0.031 0.119 
  Other  -0.190 0.197 
BMIa effect on piece 1 0.012 0.012 
   

Piece 2 Time (linear slope): Wave 4 – Wave 7 -0.125 0.062* 

Female effect on piece 2 (ref: Male) -0.082 0.061 
Race/Ethnicity effect on piece 2 (ref: White)   
  African American 0.016 0.071 
  Hispanic -0.008 0.098 
  Other  0.256 0.118* 
BMIa effect on piece 2 -0.007 0.007 
   

Random Slope for Physical Activity Planning and Physical Activity 0.445 0.047*** 
   

Effects of the Time Invariant Covariates on the Random Slope for 

Physical Activity Planning on Physical Activity  

 

Female effect on PA planning (ref: Male) -0.117 0.048* 
Race/Ethnicity effect on PA planning (ref: White)   

  African American -0.072 0.050 
  Hispanic 0.008 0.061 
  Other  -0.056 0.103 
BMIa effect on PA planning -0.001 0.005 
   

Associations of Physical Activity with Autonomous and Controlled 

Motivation at Each Wave   

Wave 2 Physical Activity    
  Autonomous Motivation  0.384 0.048*** 
  Controlled Motivation  0.002 0.050 
Wave 3 Physical Activity    
  Autonomous Motivation 0.338 0.059*** 

  Controlled Motivation 0.110 0.077 
Wave 4 Physical Activity    
  Autonomous Motivation 0.292 0.048*** 
  Controlled Motivation 0.055 0.053 
Wave 5 Physical Activity    
  Autonomous Motivation 0.236 0.040*** 
  Controlled Motivation 0.094 0.070 
Wave 6 Physical Activity    
  Autonomous Motivation   0.282 0.044*** 
  Controlled Motivation 0.085 0.046 
Wave 7 Physical Activity    
  Autonomous Motivation   0.196 0.046*** 
  Controlled Motivation 0.073 0.048 

Boldface indicates statistical significance (*p<0.05, **p<.01, ***p<0.001). aBMI = Body Mass Index. BMI is based on self-
reported BMI at wave 2 and was centered at the sample mean.  
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*Being female predicted participating in significantly less physical activity at Time 0 (11th Grade) compared to being male, b=-0.786, p<.001. 

§Being African American predicted participating in significantly less physical activity at Time 0 (11th Grade) compared to being White, b=-0.542, 

p=.001. ¥ Being Hispanic predicted participating in significantly less physical activity at Time 0 (11th Grade) compared to being White, b=-0.501, 

p=.034. The solid vertical line separates Piece 1 (W2–W4) and Piece 2 (W4–W7) of the piecewise growth model. 
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Figure 13. Sex and race differences in longitudinal participation in physical activity 
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*Autonomous motivation was significantly and positively associated with physical activity at all times, b=0.196-0.384, p<.001. §Physical activity 

planning had a random slope and significantly and positively predicted with physical activity participation, b=0.444, p<.001. ¥Controlled 

motivation was not significantly associated with physical activity participation at any time point. £Physical activity without controlling for 

autonomous motivation, controlled motivation, or physical activity planning. The solid vertical line separates Piece 1 (W2–W4) and Piece 2 (W4–

W7) of the piecewise growth model. 
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Figure 14. Effects of autonomous motivation, controlled motivation, and physical activity planning on longitudinal 

participation in physical activity 
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Study 4 – Using ecological momentary assessment to examine the effects of duty status on acute 

stress and tiredness in firefighters: A pilot study 

Introduction 

On-duty firefighters experience a variety of psychological stressors, such as rescuing or losing 

victims and low situational control (Guidotti, 1992; Soteriades, Smith, Tsismenakis, Baur, & Kales, 

2011), which increase the risk of post-traumatic stress disorder and other stress-related symptoms (Dean, 

Gow, & Shakespeare-Finch, 2003). Psychological stress also significantly affects physiological reactivity 

to and recovery from stressful events, causing adverse changes in heart rate, systolic blood pressure, and 

cortisol levels (Dean et al., 2003; Guidotti, 1992; Roy, Steptoe, & Kirschbaum, 1998), which put 

firefighters at a higher-than-normal risk for cardiovascular disease (CVD) (Soteriades et al., 2011). In 

fact, CVD accounts for 45% of on-duty deaths in firefighters (Soteriades et al., 2011).  

Sleep disturbances may also play a role in firefighters’ increased CVD risk, as research 

consistently indicates that insufficient sleep correlates with increased risk for CVD and metabolic disease 

(Kashani et al., 2012; Wolk et al., 2005) and predicts increased risk for coronary events and hypertension 

(Kashani et al., 2012; Wolk et al., 2005). Unfortunately, firefighters’ shift work and job-related stressors 

increase their risk for insufficient sleep (Akerstedt et al., 2002; Akerstedt et al., 2007; Akerstedt et al., 

2012; Kashani et al., 2012). The independent effects of sleep and stress on CVD, as well as the 

relationship between sleep and stress, suggests that both variables may represent important predictors of 

CVD risk and other health outcomes in firefighters.  

Previous investigations used retrospective surveys to assess stress and tiredness in firefighters 

(Chamberlin & Green, 2010; Guidotti, 1992; Soteriades et al., 2011), which fail to capture acute stress or 

tiredness levels or dynamic changes in stress and tiredness. In contrast, ecological momentary assessment 

(EMA) allows researchers to collect repeated, real-time measurements of variables (e.g., experiences, 

feelings) within an individual’s real environment (Shiffman, Stone, & Hufford, 2008; J. M. Smyth & 

Stone, 2003), and smartphone applications (Houghton, 2018) allow researchers to implement EMA on a 

large scale and in difficult to access populations, like firefighters. Researchers have successfully used 
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EMA to assess acute psychological stress (J. Smyth et al., 1998; J. M. Smyth & Stone, 2003; Yang, Ryu, 

& Choi, 2019) and tiredness (Buysse et al., 2007; Hacker & Ferrans, 2007). However, few studies have 

employed EMA to examine psychological stress in firefighters (Gomes et al., 2013; Kaikkonen, 

Lindholm, & Lusa, 2017; Rodrigues, Paiva, Dias, & Cunha, 2018), with no studies (to our knowledge) 

assessing acute tiredness in firefighters. EMA studies in firefighters also typically occur over a single, 24-

hour shift period, failing to capture information about firefighters when they are off-duty (Gomes et al., 

2013; Kaikkonen et al., 2017; Robinson, Leach, Owen-Lynch, & Sunram-Lea, 2013; Rodrigues, Paiva, et 

al., 2018; Schwerdtfeger & Dick, 2019). As such, there is a need for researchers to capture acute stress 

and tiredness data in firefighters when they are on- and off-duty and across multiple shift periods. 

Therefore, the purposes of this study were to: 1) test the feasibility of capturing acute 

psychological stress and tiredness in firefighters using a smartphone-based EMA approach; and 2) 

characterize firefighters’ acute stress and tiredness by duty status. We hypothesized that: 1) capturing 

acute psychological stress and tiredness measures in firefighters would be feasible using smartphone-

based EMA, and 2) being on-duty would significantly increase acute stress and tiredness levels and 

variability in firefighters.  

Methods 

Participants 

 A convenience sample of participants were recruited via email from fire departments participating 

in Colorado State University’s Firefighter Testing Program. Participants were full-time, career firefighters 

on active duty who worked a shift-schedule, including the Kelly schedule (two repetitions of 24 hours 

on/24 hours off, followed by 24 hours on/96 hours off) or the 48/96 schedule (48 hours on/96 hours off). 

Firefighters were excluded if they were taking medication for or attending psychological counseling for 

depression or anxiety. Out of the 55 firefighters who expressed interest in participating, 39 firefighters 

were included in the final analyses. Participants were compensated up to $34 for participating. This study 

was approved by the Colorado State University Institutional Review Board. 
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Procedures 

Interested participants provided informed consent via an electronic survey completed using the 

Research Electronic Data Capture (REDCap) platform (P. A. Harris et al., 2009). Upon providing 

consent, participants completed an electronic screening survey and a demographics survey. 

Eligible participants provided their shift schedules for researchers to schedule three, eight-day 

EMA assessment periods. Each assessment period included at least three on-duty days and no vacation 

days, and there was at least a two week break between each assessment period. Participants used their 

personal smartphones to report their nighttime sleep, recent sleep, current stress, and current tiredness 

levels using the Ilumivu mEMA smartphone application (Houghton, 2018). Participants were prompted to 

complete seven EMA surveys between 8AM and 9PM each day. The first survey was scheduled at 8AM 

and the subsequent six surveys were randomly sent out every two hours between 9AM and 9PM. Each 

survey required 2-3 minutes to complete. After completing the three EMA periods, participants completed 

a feasibility survey in REDCap (P. A. Harris et al., 2009) .  

Measures 

 The demographics survey included firefighters’ date of birth, biological sex, race/ethnicity, 

marital status, education, shift schedule type, and years in the fire service.  

Researchers developed a 13-item feasibility survey consisting of 10 questions on a 0 to 100 visual 

analog scale (VAS) assessing participants’ perceptions of the feasibility of completing the daily EMA 

surveys, such as whether the surveys interfered with their work or home duties, the ease of and time 

required to complete surveys, and whether the surveys allowed participants to provide adequate 

information about their sleep, stress, and tiredness. The 10 VAS questions demonstrated high internal 

consistency (Cronbach’s alpha=0.90 [95% CI: 0.84, 0.94]). We calculated an average feasibility score 

using participants’ responses for the 10 VAS questions. When necessary, questions were reverse scored, 

such that the average score ranged from 0 to 100, with 0 representing low feasibility and 100 representing 

high feasibility.  
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The EMA prompt at 8AM asked about participants’ current duty status and included a series of 

questions about their nighttime sleep, including the number of call and non-call related sleep disruptions 

(0 to 7 or more), total number of sleep bouts, and how many minutes they slept the previous night. They 

answered a single-item VAS measure about stress: “How stressed are you right now on a scale of 0-100, 

with 0 being “Not at all stressed” and 100 being “The most stressed I’ve ever been in my life?”, and a 

single-item VAS measure about tiredness: “How tired are you right now on a scale of 0-100, with 0 being 

“Not at all tired” and 100 being “The most tired I’ve ever been in my life?”. Single-items were used to 

assess stress and tiredness due to concerns over respondent burden in EMA studies related to the frequent 

repeated measures (Collins & Muraven, 2007). Previous researchers found that single-item stress and 

tiredness measures demonstrate acceptable reliability and validity and perform comparably to longer 

assessments (Littman, White, Satia, Bowen, & Kristal, 2006; van Hooff, Geurts, Kompier, & Taris, 

2007). The six EMA prompts participants received between 9AM and 9PM asked about current duty 

status, any sleep bouts since their previous assessment, and the single-item stress and tiredness measures. 

Participants received 168 EMA survey prompts over the three, eight-day assessment periods.  

Statistical analyses 

 Descriptive statistics were calculated using range, mean and standard deviation for continuous 

variables, and n and percent for categorical variables.  

 We calculated participants’ EMA survey completion rates by examining the proportion of 

assigned EMA surveys completed in total, by duty status and by time of day the survey was assigned. 

Logistic regression analyses predicting the odds of EMA survey completion as a function duty status 

during the daytime and the time of day the survey was assigned. 

We used mixed-effects location scale models (MELSM), estimated using maximum-likelihood 

methods (Hedeker, Mermelstein, & Demirtas, 2008), to examine the effects of duty status on acute stress 

and tiredness. MELSMs function as an extension of random-intercept models by including log-linear sub-

models for within-subject and between-subject variance, which allows covariates to influence within-

subject and between-subject variation (Hedeker et al., 2008). MELSMs allow an examination of whether 
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the effects of covariates can explain some of the variation in within-subject and between-subject 

variation, over and above the effects of covariates on the mean response (Hedeker et al., 2008). MELSMs 

include random subject effects for the mean response (random location effect) and for a subject’s within-

subject variance (random scale effect), thus allowing for different average levels of and consistency in the 

outcome (Hedeker et al., 2008). MELSMs also account for correlations among random location and scale 

effects. We used the MIXREGLS program developed by Hedeker and Nordgren (Hedeker & Nordgren, 

2013) for the MELSMs. MIXREGLS estimates the full MELSM in three sequential stages, with the stage 

1 model examining between-subject variance effects, the stage 2 model examining between-subject and 

within-subject variance effects, and the stage 3 model (full model) examining between-subject and 

within-subject variance effects, the association of the random location and scale effects, and the random 

scale effects (for further details regarding model estimation using MIXREGLS see Hedeker and 

Nordgren, 2013).  

Preliminary analyses indicated that a firefighter’s duty status during the prior night and during the 

current day (the day during which they completed EMA surveys) affected acute stress and tiredness 

levels. As such, duty status was examined based on the firefighter’s duty status the prior night and during 

the day, resulting in four duty status categories: 1) Off-duty prior night/Off-duty day (“off night/day”), 2) 

On-duty prior night/On-duty day (“on night/day”), 3) On-duty prior night/Off-duty day (“on night/off 

day”), and 4) Off-duty prior night/On-duty day (“off night/on day”). We also examined the effects of 

nighttime and daytime sleep variables, including nighttime sleep hours, total nighttime sleep disruptions 

(created by summing call and non-call related sleep disruptions), total nighttime sleep bouts, recent 

daytime sleep (a.k.a. ‘taking a nap’), and length of daytime sleep on acute stress and tiredness. We 

examined the effects of demographic characteristics, including shift schedule type, years in the fire 

service, age, sex, and race/ethnicity on acute stress and tiredness. Model fit was tested at each step using 

log-likelihood difference tests (LL Diff Test) and values were compared between the stage 1, 2, and 3 

models to determine the model of best fit. We compared the effects of different types of duty status on 

means, WS, and BS variance in the outcomes by changing the reference group and re-fitting the models. 
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We converted the log-linear values for between-subject and within-subject variance reported in the model 

outcomes to the original 0 – 100 VAS for the purposes of plotting the data, interpreting the data, and 

calculating intraclass correlation coefficients (ICC) (for further details on the conversion of log-linear 

values and calculations of ICCs, see Hedeker and Nordgren, 2013). ICCs were used to examine the 

proportion of variance due to between-subject versus within-subject effects.  

Descriptive statistics of demographic characteristics, the feasibility survey, and the logistic 

regression analyses of EMA survey completion rates were analyzed in R (version 3.6.1) (R Core Team, 

2019). The MELSMs were estimated using MIXREGLS (Hedeker & Nordgren, 2013). Statistical 

significance was set at p<.05. 

Results 

Participant demographics and EMA survey descriptive characteristics 

 Table 6 includes demographics for the study participants (n=39). The majority of participants 

were white (n=33, 85%) and male (n=34, 87%). Participants were 39 ± 11 years old and had served in the 

fire service for 13 ± 9 years. Across all EMA surveys, firefighters reported an average acute stress level of 

22 ± 14 and an average acute tiredness level of 29 ± 18. Firefighters slept an average of 7 ± 1 hours per 

night. The total number of nighttime sleep disruptions ranged from 0 to 8, with a median and mode of 1.  

Feasibility and EMA survey completion rates 

 Overall, firefighters reported a mean feasibility score of 73 ± 18 out of 100. Firefighters 

completed 61 ± 30% of all EMA surveys assigned. Logistic regression analyses revealed no significant 

differences in EMA survey completion rates by duty status or by time of day.  

Mixed-effects location scale model - Stress 

 The model of best fit for stress indicated that only duty status and total nighttime sleep 

disruptions significantly predicted acute stress in firefighters. None of the other sleep-related variables or 

demographic characteristics predicted acute stress. LL Diff Tests revealed that the stage 3 model provided 

the model of best fit (LL Diff Test = 25318.289 – 24204.72 = 1113.569). Table 7 includes the outcomes 

for the stage 3 MELSM for acute stress.  
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As shown in Figure 14, there were significant main effects of duty status on acute stress, with 

firefighters reporting the lowest levels of acute stress when they were “off night/day” (𝛽𝛽1=16.27) and the 

highest levels when they were “on night/day” (𝛽𝛽1+𝛽𝛽2=24.47). There were significant differences in the 

effects of duty status on acute stress between all types of duty status, with the exception of “on night/day” 

versus “off night/on day”. Total nighttime sleep disruptions significantly increased acute stress, with each 

additional nighttime sleep disruption increasing stress by 0.65 (𝛽𝛽5, p<.001) on the 0 – 100 VAS. 

As shown in Figure 15, duty status significantly affected firefighters’ between-subject variance in 

acute stress. Being “off night/day” had the smallest effect and being “on night/day” had the largest effect 

on between-subject variance in acute stress (𝛼𝛼0=4.55 [9.75 on VAS] and 𝛼𝛼0+ 𝛼𝛼1=5.57 [16.18 on VAS], 

respectively). There were significant differences in the effects of duty status on between-subject variance 

in acute stress between all types of duty status. Total nighttime sleep disruptions did not significantly 

affect between-subject variance in acute stress (𝛼𝛼4=-0.01 [9.71 on VAS], p=.781).  

As shown in Figure 16, duty status significantly affected firefighters’ within-subject variance in 

acute stress. Being “off night/day” had the smallest effect and being “off night/on day” had the largest 

effect on within-subject variance in acute stress (𝜏𝜏0=4.39 [12.66 on VAS] and 𝜏𝜏0+𝜏𝜏3=4.67 [14.55 on 

VAS], respectively). There were significant differences in within-subject variance by duty status, such 

that being “off night/day” resulted in significantly less within-subject variance in acute stress than any 

other type of duty status. There were no other significant differences between the types of duty status on 

within-subject variance in acute stress. Nighttime sleep disruptions did not affect within-subject 

variability in acute stress (𝜏𝜏4=0.04 [12.93 on VAS], p=.054).  

ICCs examining the proportion of variance in effects of duty status on acute stress were as 

follows: 1) “Off night/day”: ICC=0.37; 2) “On night/day”: ICC=0.55; 3) “On night/off day”: ICC=0.41; 

and 4) “Off night/on day”: ICC=0.46, indicating that, with the exception of when firefighters were “on 

night/day”, a larger proportion of variance was due to the within-subject effects of duty status on acute 

stress (Figure 17). 
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There was a significant location effect on within-subject variability in stress, with higher mean 

stress corresponding with greater within-subject variability in stress (𝜎𝜎𝜐𝜐𝜐𝜐=0.79, p<.001) (Figure 18). 

There was a significant random scale effect for stress (𝜎𝜎𝜐𝜐2=0.87, p<.001). 

Mixed-effects location scale model – Tiredness 

The model of best fit for tiredness indicated that duty status, recently taking a nap, and total 

nighttime sleep disruptions significantly predicted acute tiredness in firefighters. None of the other sleep-

related variables or demographic characteristics significantly predicted acute tiredness. LL Diff Tests 

revealed that the stage 3 model was the model of best fit (LL Diff Test = 22194.95 – 21411.671 = 

783.279). Table 8 includes the outcomes for the stage 3 MELSM for acute tiredness.  

As shown in Figure 19, there were significant main effects of duty status on acute tiredness, with 

firefighters reporting the lowest levels of acute tiredness when they were “off night/day” (𝛽𝛽0=24.68) and 

the highest levels of acute tiredness when they were “on night/day” (𝛽𝛽0+𝛽𝛽1=30.00). There were 

significant differences in the effects of duty status on acute tiredness, such that being “off night/day” 

resulted in significantly lower acute tiredness compared to the other types of duty status. There were no 

other differences between the types of duty status on acute tiredness. Total nighttime sleep disruptions 

increased acute tiredness, with each additional disruption increasing acute tiredness by 1.74 (𝛽𝛽4, p<.011) 

on the 0 – 100 VAS. Recently taking a nap significantly decreased acute tiredness by 2.67 (𝛽𝛽5, p=.027) on 

the 0 – 100 VAS.  

As shown in Figure 20, duty status significantly affected firefighters’ between-subject variance in 

acute tiredness. Being “off night/day” had the smallest effect and being “on night/day” had the largest 

effect on between-subject variance in acute tiredness (𝛼𝛼0=4.97 [12.01 on VAS] and 𝛼𝛼0+𝛼𝛼1=5.26 [13.87 

on VAS], respectively). There were significant differences in the effects of duty status on between-subject 

variance in acute tiredness, such that being “off night/day” resulted in significantly lower between-subject 

variance in acute tiredness compared to being “on night/day” and “off night/on day”. There were no other 

significant differences between the types of duty status on between-subject variance in acute tiredness. 
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Nighttime sleep disruptions increased between-subject variance in acute tiredness (𝛼𝛼4=0.10 [12.63 on 

VAS], p=.002). Recently taking a nap did not affect between-subject variance in acute tiredness (𝛼𝛼5=-

0.10 [11.45 on VAS], p=.506). 

As shown in Figure 21, duty status significantly affected within-subject variance in acute 

tiredness. Being “on night/day” had the smallest effect and being “on night/off day” had the largest effect 

on within-subject variance in acute tiredness (𝜏𝜏0-𝜏𝜏1=5.07 [15.94 on VAS] and 𝜏𝜏0+𝜏𝜏2=5.55 [20.35 on 

VAS], respectively). There were significant differences in within-subject variance by duty status, such 

that being “on night/off day” resulted in significantly greater within-subject variance in acute tiredness 

than any other type of duty status. There were no other differences between the types of duty status on 

within-subject variance in acute tiredness. Nighttime sleep disruptions increased within-subject variability 

in acute tiredness (𝜏𝜏4=0.08 [17.50 on VAS], p=.002). Recently taking a nap did not affect within-subject 

variance in acute tiredness (𝜏𝜏5=-0.24 [14.89 on VAS], p=.066).  

The ICCs examining the proportion of variance in effects of duty status on acute tiredness were as 

follows: 1) “Off night/day”: ICC=0.34; 2) “On night/day”: ICC=0.43; 3) “On night/off day”: ICC=0.29; 

and 4) “Off night/on day”: ICC=0.39, indicating that a larger proportion of variance was due to the 

within-subject effects of duty status on acute tiredness (Figure 22). 

There was a significant location effect on within-subject variability in acute tiredness, with higher 

mean tiredness corresponding with greater within-subject variability in tiredness (𝜎𝜎𝜐𝜐𝜐𝜐=0.65, p<.001) 

(Figure 23). There was a significant random scale effect for tiredness (𝜎𝜎𝜐𝜐2=0.72, p<.001). 

Discussion 

 To our knowledge, this is the first study to use EMA to characterize firefighters’ acute stress and 

tiredness by duty status and across multiple shift periods. In this way, our findings make a substantial 

contribution to the existing literature. These data provide a starting point for informing future studies 

focused on understanding predictors of firefighters’ stress and tiredness, eventually paving the way for 

interventions to improve their stress and tiredness outcomes. The results supported our hypotheses that it 
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is feasible to capture acute stress and tiredness data in firefighters using a smartphone-based EMA 

approach, and that being on-duty increases acute stress and tiredness levels and variability in firefighters. 

Firefighters with higher mean stress and tiredness levels exhibited greater within-subject variability in 

stress and tiredness. Firefighters also demonstrated significant within-subject variability in stress and 

tiredness above and beyond the effects of duty status and other covariates. Total nighttime sleep 

disruptions increased stress and tiredness and increased between-subject and within-subject variability in 

tiredness, and recently taking a nap decreased tiredness in firefighters.  

 The relatively high feasibility score (70 out of 100) and EMA survey completion rate (61%) 

indicated that the smartphone-based EMA approach was feasible among Colorado firefighters. Previous 

EMA studies in firefighters neglected to report EMA survey completion rates (Gomes et al., 2013; 

Kaikkonen et al., 2017; Robinson et al., 2013; Robinson, Sunram-Lea, Leach, & Owen-Lynch, 2008; 

Rodrigues, Paiva, et al., 2018; Schwerdtfeger & Dick, 2019); however, our completion rate was similar to 

EMA studies in police officers, who completed 55-60% of EMA surveys (Tong et al., 2007; Yang, Ryu, 

Han, Oh, & Choi, 2018). While these completion rates are lower than EMA studies in the general 

population (completion rates 72-86%) (Jones, Taylor, Liao, Intille, & Dunton, 2017; J. M. Smyth et al., 

2007), we expected lower rates due to the nature of firefighters’ jobs (i.e. inability to answer EMA 

surveys when on calls) and intentionally used multiple assessment periods to capture sufficient data. 

Completion rates did not differ by duty status or time of day, indicating that researchers can feasibly 

capture EMA data in firefighters during the daytime, increasing the ecological validity of the results. The 

feasibility of capturing EMA data in firefighters when they are on- and off-duty is particularly important 

given the varied effects of duty status on firefighters’ outcomes and previous calls in the literature for 

researchers to include off-duty assessments in firefighter studies (Rodrigues, Paiva, et al., 2018). 

Our findings revealed that the combined effects of firefighters’ duty status the prior night and 

during the day differentially affected their acute stress and tiredness levels and between-subject and 

within-subject variability. The fact that their prior night’s duty status affected firefighters’ daytime 

outcomes corresponds with research indicating that stress and fatigue levels in firefighters and other 
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emergency responders increase from the beginning to the end of a shift (Gomes et al., 2013; Patterson et 

al., 2019; Rodrigues, Kaiseler, et al., 2018; Rodrigues, Paiva, et al., 2018). Other research indicates that 

an individual’s mean and variability in stress at bedtime (measured by cortisol) affects their subsequent 

day’s mean and slope for cortisol (Proulx, Klee, & Oken, 2017). These previous studies align with our 

findings and support our approach in simultaneously examining the effects of the prior night’s duty status 

and daytime duty status on firefighters’ stress and tiredness.  

While duty status differentially affected stress and tiredness outcomes, some common themes 

emerged. For example, firefighters exhibited their lowest acute stress and tiredness levels, as well as their 

lowest between-subject variability in stress and tiredness when they were “off night/day”. Firefighters 

exhibited their highest acute stress and tiredness levels, as well as their highest between-subject 

variability in stress and tiredness when they were on-duty during the day, regardless of their prior night’s 

duty status. These higher acute stress and tiredness levels when on-duty correspond with a study in police 

officers, who exhibited greater psychological and physiological stress when they were on-duty 

(Rodrigues, Kaiseler, et al., 2018), and with other research indicating that stress and fatigue levels 

increase from the beginning to end of a shift (Gomes et al., 2013; Patterson et al., 2019; Rodrigues, 

Kaiseler, et al., 2018; Rodrigues, Paiva, et al., 2018).  

When firefighters were “off night/day”, the within-subject effects of duty status accounted for a 

greater proportion of variability in acute stress (ICC=0.37) and tiredness (ICC=0.34) than the between-

subject effects. This suggests that the different experiences firefighters have when they are off-duty 

increase their heterogeneity in acute stress and tiredness. This aligns with previous research indicating 

that firefighters’ lives outside of the fire station, such as having a second job and their levels of social 

support, affect their perceived stress (Arbona, Pao, Long, & Olvera, 2017; Davidson & Moss, 2008; 

Regehr, 2009; Regehr, Dimitropoulos, Bright, George, & Henderson, 2005; Regehr, Hill, Knott, & Sault, 

2003). Arbona et al. found that, among Black and Latino male firefighters, having a positive 

partner/spouse relationship correlated with lower perceived stress and, among Latino male firefighters, 

having a second job correlated with increased perceived stress (Arbona et al., 2017). Similar studies 
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indicate that firefighters’ and other emergency responders’ social support systems are vital for coping 

with trauma and other stressors (Davidson & Moss, 2008; Regehr, 2009; Regehr et al., 2005; Regehr et 

al., 2003). Clearly, firefighters’ lives outside of their jobs affect their outcomes, which could explain the 

heterogeneity in acute stress and tiredness levels when firefighters are off-duty night/day. Future research 

examining how firefighters’ lives outside of their jobs relate to stress and tiredness could aid researchers 

in identifying potential interventions for reducing firefighters’ mean stress and stress variability.  

When firefighters were “on night/day”, the between-subject effects of duty status accounted for a 

greater proportion of variability in acute stress (ICC=0.55) than the within-subject effects. This suggests 

that the similar experiences firefighters have when they are on-duty result in more similar stress 

outcomes. For example, all firefighters participate in activities like waiting for a call, riding in the truck, 

or responding to an emergency (Rodrigues, Paiva, et al., 2018; Schwerdtfeger & Dick, 2019). Firefighters 

also respond similarly to and express common concerns regarding their experiences of critical incidents, 

such as traffic accidents, fires, and suicides (Jacobsson, Backteman-Erlanson, Brulin, & Hornsten, 2015). 

As such, firefighters’ similar on-duty experiences, as well as their similar responses to and concerns 

regarding critical incidents, likely explain the greater similarity in their stress outcomes when they are “on 

night/day”. 

The between-subject effects of duty status on tiredness were greatest when firefighters were on-

duty during the day, with a slightly greater contribution of between-subject effects when they were “on 

night/day” (ICC=0.43) versus “off night/on day” (ICC=0.39). These findings align with the stress 

outcomes in our study and support the idea that firefighters’ similar experiences when they are on-duty 

during the day result in more similar tiredness outcomes.  

In contrast, firefighters exhibited the greatest within-subject effects of duty status when they were 

“on night/off day” (ICC=0.29). This corresponds with research in other first responders, whose fatigue 

increased from the beginning to end of a shift (Patterson et al., 2019), and implies that the effects of being 

on-duty may extend beyond the end of the shift. These findings also suggest that an individual 

firefighter’s experiences when on-duty during the night vary from shift-to-shift. For example, firefighters 
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in our study experienced 0 to 8 sleep disruptions on a given night. This wide range of sleep disruptions 

could affect variability in acute tiredness during the daytime. Indeed, our findings showed that nighttime 

sleep disruptions significantly increased acute tiredness and between-subject and within-subject 

variability in tiredness. Similarly, Takeyama et al. found that a greater frequency of nighttime ambulance 

calls increased subsequent stress and fatigue among firefighter paramedics (Takeyama et al., 2005), and 

other researchers found that responding to nighttime calls resulted in insufficient sleep, fragmented sleep, 

and greater fatigue in firefighters (Paterson, Aisbett, & Ferguson, 2016).  

Finally, the different experiences firefighters have when they are off-duty might help explain the 

large within-subject effects of being “on night/off day” on tiredness. Previous research indicates that 

firefighters who work a second job experience poorer sleep quality (Billings & Focht, 2016) and are more 

likely to experience excessive daytime sleepiness (Haddock, Poston, Jitnarin, & Jahnke, 2013). 

Unfortunately, we did not ask firefighters to report whether they worked a second job, precluding us from 

examining said effects on tiredness in our sample. Overall, the different experiences firefighters have 

when they are off-duty, as well as the wide range of sleep disruptions they experience, could explain the 

large within-subject effects on acute tiredness when firefighters were “on night/off day”. 

Strengths and Limitations 

The strengths of our study include using both on- and off-duty days in our study design and 

analyses. To our knowledge, this represents the only EMA study in firefighters including on- and off-duty 

days, multiple shift periods, and firefighters working different shift schedules (i.e. Kelly or 48/96 shifts). 

In contrast, other EMA studies in firefighters typically occurred over a single, 24-hour shift period and 

only included on-duty data (Gomes et al., 2013; Kaikkonen et al., 2017; Robinson et al., 2013; Rodrigues, 

Paiva, et al., 2018; Schwerdtfeger & Dick, 2019). Researchers specifically identified the need for EMA 

studies in firefighters to include more shift periods (Rodrigues, Paiva, et al., 2018; Schwerdtfeger & Dick, 

2019) and on- and off-duty days (Rodrigues, Paiva, et al., 2018). Our study addressed both of these needs. 

Secondly, ours is one of only a few EMA studies examining firefighters’ psychological outcomes, with 

one prior study examining anxiety (Robinson et al., 2013), one examining resilience and negative affect 
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(Schwerdtfeger & Dick, 2019), and a few studies examining perceived stress (Gomes et al., 2013; 

Kaikkonen et al., 2017; Rodrigues, Paiva, et al., 2018). Further, ours is the first EMA study to examine 

perceived tiredness in firefighters. Finally, to our knowledge, ours is one of only two EMA studies in 

firefighters that included females (Rodrigues, Paiva, et al., 2018).  

Our study has some limitations. We used a convenience sample of Colorado, career firefighters 

that consisted predominantly of white male firefighters who worked either the Kelly or a 48/96 hour shift 

schedule, limiting the generalizability of our findings. Future studies should include a wider variety of 

races/ethnicities, particularly given that firefighters who are racial/ethnic minorities likely experience 

additional stressors related to their minority status, which may exacerbate the effects of firefighting on 

stress (Arbona et al., 2017). Future EMA studies should also include firefighters who work 24/48 hour 

shifts, as previous research suggests that firefighters who work 24/48 hour shifts experience better sleep 

quality (Billings & Focht, 2016) and are less likely to experience excessive daytime sleepiness (Haddock 

et al., 2013) than firefighters who work 48/96 hour shifts.  

The focus on psychological stress is a potential limitation, because some firefighters indicated, 

via feedback on the feasibility survey (data not shown), that they experience anxiety rather than stress 

when they are on-duty. Indeed, one study in firefighter trainees revealed increased state anxiety 

immediately after they completed a 60 minute search and rescue and fire extinguishing exercise 

(Robinson et al., 2013). As such, focusing solely on stress, rather than including other similar 

psychological constructs like anxiety, may explain the relatively low stress levels in our sample. Finally, 

at the request of fire departments and to avoid disturbing firefighters’ sleep, we only scheduled EMA 

surveys between 8AM and 9PM, precluding us from characterizing firefighters’ stress and tiredness at 

nighttime.  

Conclusions 

 In conclusion, our data indicate that it is feasible to capture acute stress and tiredness data in 

firefighters using a smartphone-based EMA approach. The combined effects of firefighters’ duty status 

the prior night and day differentially affected their acute stress and tiredness levels, and between-subject 
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and within-subject variability. Firefighters had more similar stress and tiredness outcomes when they 

were on-duty and less similar outcomes when they were off-duty. This could be due to firefighters having 

more similar experiences to one another when they are on-duty and less similar experiences to one 

another when they are off-duty. Our study contributes to the literature by providing the first 

characterization of firefighters’ acute stress and tiredness by duty status and across multiple shift periods. 

Future studies can build upon our findings to further examine predictors of firefighters’ stress and 

tiredness to inform interventions to improve firefighters’ stress, tiredness, and associated health outcomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

146 

Table 6. Participant demographics and descriptive statistics 

Demographics EMA Participants (N=39a) 

Age in years (Mean ± SD)  38.75 ± 10.60 

Years in the Fire Service (Mean ± SD) 13.28 ± 9.41 
Sex (n (%))  

Male 34 (87.18) 
Female 4 (10.26) 
Missing 1 (2.56) 

Race/Ethnicity (n (%))  
White 33 (84.62) 
Hispanic  4 (10.26) 
African American 1 (2.56) 
Missing 1 (2.56) 

Marital Status (n (%))  
Married 29 (74.36) 
Divorced 0 (0.00) 
Single 10 (25.64) 

Education (n (%))  
High School 0 (0.00) 
Associate’s Degree 10 (25.64) 
Some College 10 (25.64) 
College 17 (43.59) 
Graduate School 1 (2.56) 
Missing 1 (2.56) 

Shift Schedule Type (n (%))  
Kelly Shift Scheduleb 24 Hour Shifts 17 (43.59) 
48 Hour Shiftsc 22 (56.41) 

Anthropometrics (Mean ± SD)  
Height (inches) 69.71 ± 2.94 
Weight (pounds) 190.65 ± 28.51 
BMI (kg/m2) 27.53 ± 3.38 

Weight Categories (n (%))  
Normal Weight 9 (23.08) 
Overweight 19 (48.72) 
Obese 10 (25.64) 
Missing 2 (5.13) 

aN includes all participants who were included in final analyses based on completing at 
least one EMA survey and working a shift schedule; bTwo repetitions of 24 hours on/24 
hours off, followed by 24 hours on/96 hours off; c48 hours on/96 hours off 
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Table 7. Two-level mixed-effects location scale model examining effects of duty status and nighttime 
sleep disruptions on acute stress in firefightersa 

Beta – Regression Coefficients Estimate SE p 

Intercept 𝛽𝛽1b  16.267 1.585 <.001 
Duty Status (ref: “Off Night/Day”)    

  “On Night/Day” 𝛽𝛽2 8.200 1.24 <.001 

“On Night/Off Day” 𝛽𝛽3 2.553 0.666 <.001 

“Off Night/On Day” 𝛽𝛽4 6.827 0.745 <.001 

Number of Nighttime Sleep Disruptions 𝛽𝛽5c 0.650 0.166 <.001 

    
Alpha – Between-Subject Variance    

Intercept 𝛼𝛼0b 4.554 0.237 <.001 

Duty Status (ref: “Off Night/Day”)    

  “On Night/Day” 𝛼𝛼1 1.014 0.107 <.001 

“On Night/Off Day” 𝛼𝛼2 0.389 0.089 <.001 

“Off Night/On Day” 𝛼𝛼3 0.623 0.071 <.001 

Number of Nighttime Sleep Disruptions 𝛼𝛼4c -0.007 0.024 .781 
    

Tau – Within-Subject Variance    

Intercept 𝜏𝜏0b 4.392 0.204 <.001 

Duty Status (ref: “Off Night/Day”)    
  “On Night/Day” 𝜏𝜏1 0.271 0.095 .004 

“On Night/Off Day” 𝜏𝜏2 0.242 0.085 .004 

“Off Night/On Day” 𝜏𝜏3 0.278 0.077 <.001 

Number of Nighttime Sleep Disruptions 𝜏𝜏4c 0.042 0.022 .054 
    

Random Location (Mean) Effect on 

Within-Subject Variance in Stress (𝜎𝜎𝜐𝜐𝜐𝜐) 0.786 0.181 <.001 
    

Random Scale Effect (𝜎𝜎𝜐𝜐2) 0.868 0.115 <.001 
aLevel one of the model included 3172 observations (EMA survey responses) nested into 39 level two clusters 
(participants); bThe intercept values represent the predicted stress level (0 – 100) for a firefighter who was off 
duty the prior night and off duty during the day time, experienced zero nighttime sleep disruptions, and did not 
recently sleep; cNumber of nighttime sleep disruptions ranged from 0 to 7 or more disruptions. 
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Table 8. Two-level mixed-effects location scale model examining effects of duty status, nighttime sleep 
disruptions, and recent daytime sleep on acute tiredness in firefightersa 

Beta – Regression Coefficients Estimate SE p 

Intercept 𝛽𝛽0b  24.681 2.049 <.001 
Duty Status (ref: “Off Night/Day”)    

  “On Night/Day” 𝛽𝛽2 5.323 1.090 <.001 

“On Night/Off Day” 𝛽𝛽3 4.778 0.974 <.001 

“Off Night/On Day” 𝛽𝛽4 4.526 0.759 <.001 

Number of Nighttime Sleep Disruptions 𝛽𝛽4c 1.743 0.317 <.001 

Recent Nap 𝛽𝛽5d -2.670 1.219 .027 

    
Alpha – Between-Subject Variance    

Intercept 𝛼𝛼0b 4.971 0.250 <.001 

Duty Status (ref: “Off Night/Day”)    

  “On Night/Day” 𝛼𝛼1 0.289 0.115 .012 

“On Night/Off Day” 𝛼𝛼2 0.146 0.107 .173 

“Off Night/On Day” 𝛼𝛼3 0.218 0.081 .007 

Number of Nighttime Sleep Disruptions 𝛼𝛼4c 0.100 0.032 .002 

Recent Nap 𝛼𝛼5d -0.095 0.143 .506 
    

Tau – Within-Subject Variance    

Intercept 𝜏𝜏0b 5.173 0.175 <.001 

Duty Status (ref: “Off Night/Day”)    
  “On Night/Day” 𝜏𝜏1 -0.108 0.103 .296 

“On Night/Off Day” 𝜏𝜏2 0.381 0.092 <.001 

“Off Night/On Day” 𝜏𝜏3 -0.029 0.079 .713 

Number of Nighttime Sleep Disruptions 𝜏𝜏4c 0.080 0.026 .002 

Recent Nap 𝜏𝜏5d -0.244 0.133 .066 
    

Random Location (Mean) Effect on 

Within-Subject Variance in Tiredness 

(𝜎𝜎𝜐𝜐𝜐𝜐) 0.651 0.150 <.001 
    

Random Scale Effect (𝜎𝜎𝜐𝜐2) 0.722 0.094 <.001 
aLevel one of the model included 2613 observations (EMA survey responses) nested into 38 level two clusters 
(participants); bThe intercept values represent the predicted tiredness level (0 – 100) for a firefighter who was off 
duty the prior night and off duty during the day time, experienced zero nighttime sleep disruptions, and did not 
recently sleep; cNumber of nighttime sleep disruptions ranged from 0 to 7 or more disruptions; dRecent daytime 
sleep reflects whether the participant indicated they had slept since their last assessment and specifically reflects 
daytime sleep bouts. 
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Figure 16. Effects of duty status on between-subject variance in acute stress 

aValues for between-subject variance in stress were converted from the log-linear values reported in the 

model outcomes to the 0 – 100 VAS for ease of interpretation (Hedeker & Nordgren, 2013). 
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Figure 15. Effects of duty status on acute stress in firefighters 
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aValues for within-subject variance in stress were converted from the log-linear values reported in the 

model outcomes to the 0 – 100 VAS for ease of interpretation (Hedeker & Nordgren, 2013). 

 

 

Figure 18. Proportion of variability in acute stress due to between-subject versus within-subject effects of 
duty status 
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Figure 17. Effects of duty status on within-subject variance in acute stress 
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Figure 19. Significant location effect on within-subject variance in acute stress 
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Figure 20. Effects of duty status on acute tiredness in firefighters 
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aValues for between-subject variance in tiredness were converted from the log-linear values reported in 

the model outcomes to the 0 – 100 VAS for ease of interpretation (Hedeker & Nordgren, 2013). 

 

 

 

 

 

 

 

 

 

 

 

aValues for within-subject variance in tiredness were converted from the log-linear values reported in the 

model outcomes to the 0 – 100 VAS for ease of interpretation (Hedeker & Nordgren, 2013). 
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Figure 21. Effects of duty status on between-subject variance in acute tiredness 

Figure 22. Effects of duty status on within-subject variance in acute tiredness 
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Figure 23. Proportion of variability in tiredness due to between-subject versus within-subjects effects of 
duty status 

 

Figure 24. Significant location effect on within-subject variance in tiredness 

 

 

33.76

43.11

28.73

39.47

66.24

56.89

71.27

60.53

0

10

20

30

40

50

60

70

80

90

100

Off Night/Day On Night/Day On Night/Off Day Off Night/On Day

P
er

ce
n
t 

o
f 

V
ar

ia
n
ce

 i
n
 T

ir
ed

n
es

s

Duty Status

Between-Subject
Effects

Within-Subject
Effects

24.68

8.13

46.03

0

10

20

30

40

50

60

70

80

90

100

T
ir

ed
n
es

s 
(0

 -
1

0
0

)

Survey Instance

Full Sample - Mean Tiredness

Participant A - Low Mean
Tiredness

Participant B - High Mean
Tiredness

Participant B - High Within-
Subject Variability in Tiredness

Participant A - Low Within-
Subject Variability in Tiredness



 

154 

CHAPTER 5 – CONCLUSIONS 
 
 
 

This dissertation provided concrete examples of how researchers in the health sciences can 

combine data scientists’ three areas of knowledge: 1) Substantive Expertise; 2) Technology & Computer 

Science; and 3) Statistics & Math (Wickham & Grolemund, 2017), to inform the collection, management, 

analysis, and interpretation of data related to unmodifiable and psychosocial determinants of health, 

health behaviors, and health outcomes. 

Study 1, “Migration of an ongoing, community-based project in firefighters to the Research 

Electronic Data Capture (REDCap) platform”, demonstrated how technology and computer science skills 

enabled the development of a sophisticated REDCap project (P. A. Harris et al., 2009) that employed real-

time electronic data capture, automated surveys, branching logic, and calculated fields, etc., to increase 

the efficiency of data collection, improve data management and quality control/assurance, and 

accommodate the Firefighter Testing Program’s (FTP) varied approach to repeated measures, specific 

reporting needs, and research goals. This study demonstrated the challenges related to creating an 

electronic database that supports proper data management and quality control/assurance measures, which 

is necessary so that data scientists can trust research outcomes (Bowne-Anderson, 2018). Migrating the 

FTP from paper-based data capture to REDCap required 15 months of project development, with 

subsequent field-testing and ongoing data collection resulting in continued changes to the FTP REDCap 

project one-year after its initial launch, reinforcing previous research suggesting that data scientists use 

approximately 80% of their time finding, cleaning, and/or organizing data (Bowne-Anderson, 2018; 

Crowdflower, 2016). While this study primarily demonstrated technology/computer science skills, it is 

important to note that substantive expertise related to measuring unmodifiable and psychosocial 

determinants of health, fitness, and cardiovascular disease risk factors, as well as statistical knowledge, 

significantly informed the development of the FTP REDCap project. For example, such knowledge 

informed the decision to discontinue measuring psychosocial variables related to type A personality, 

forgiveness, etc. in favor of using more well-established and relevant measures for firefighters, such as 
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the occupational stress, measured via the Sources of Occupational Stress-13. Statistical knowledge 

regarding researchers’ needs for clearly defined and coded data informed the decision to transition from 

qualitative to quantitative measures of outcomes, like hospitalizations/surgeries and family history of 

heart disease, for ease of data analyses. Overall, study 1 demonstrates that creating an efficient and usable 

electronic database requires data scientists to draw upon their entire skill set, including 

technological/computer science skills, statistical skills, and substantive expertise.  

Study 2, “Comparing the activPAL software’s Primary Time in Bed Algorithm against self-report 

and van der Berg’s algorithm”, demonstrated how technology can be used to examine individuals’ health 

behaviors, specifically examining the utility of the activPAL monitor (PAL Technologies Ltd., 2010) for 

measuring individuals’ primary time spent lying down (a proxy for sleep) compared to the commonly 

used measure of self-report (Devine et al., 2005; Quante et al., 2015) and the van der Berg algorithm. The 

results of study 2 indicated that the activPAL algorithm was not equivalent to self-report or the van der 

Berg algorithm for detecting time in bed. However, the activPAL algorithm was equivalent to self-report 

for identifying bed time, and was equivalent to the van der Berg algorithm for identifying wake time. 

Despite this lack of equivalence, knowledge regarding how the activPAL monitor measures movement 

and body posture (PAL Technologies Ltd., 2010) and how the activPAL algorithm identifies primary time 

in bed (PAL Technologies Ltd., 2019), combined with substantive expertise related to lying down and 

sleep-related behaviors informed the conclusion that the activPAL algorithm only requires minimal 

updates to achieve equivalence with self-report and the van der Berg algorithm. For example, we 

determined that lying down with high levels of stillness prior to actually going to bed caused the 

activPAL to misidentify bed time, resulting in overestimating time in bed, which is a common challenge 

when using accelerometers to identify sleep-related behaviors (Gibbs & Kline, 2018), as well as when 

distinguishing sedentary behaviors surrounding sleep from sleep itself (Quante et al., 2015). Additionally, 

we determined that wakefulness after sleep onset resulted in the activPAL inaccurately identifying wake 

time, resulting in underestimating time in bed, which is another challenge common to using 

accelerometers for sleep-related measures (Gibbs & Kline, 2018; Quante et al., 2015). Despite these 
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short-comings, only minor adjustments are needed to improve the activPAL algorithm for time in bed. 

The need for minor adjustments and the fact that activPAL users can manually adjust bed and wake times 

led to our conclusion that activPAL users can start taking advantage of the new algorithm. We also 

concluded that the new time in bed algorithm enhances the utility of using the activPAL for examining 

24-hour movement patterns, including sleep, in free-living individuals. Overall, the study demonstrated 

how data scientists can leverage technology to measure health behaviors and use their substantive 

expertise to inform the interpretation of health behavior data. 

Study 3, “Motivation and planning effects on physical activity during the adolescent-to-adult-

transition”, demonstrated that statistics and math can be used to examine how unmodifiable determinants, 

including sex and race/ethnicity, and psychosocial determinants, including autonomous motivation, 

controlled motivation, and physical activity planning, relate to physical activity participation in 

adolescents transitioning into early adulthood. The results of the piece-wise growth model indicated that 

physical activity participation during the adolescent-to-adult transition was characterized by two distinct 

phases, with a transient increase in physical activity between one and two years post-high school. 

Additionally, unmodifiable characteristics, like sex and race/ethnicity significantly affected baseline 

physical activity levels, with females, African Americans and Hispanics participating in significantly less 

physical activity than males and Whites, respectively. We also found that the psychosocial determinants 

of autonomous motivation and physical activity planning were significantly and positively associated 

with physical activity; whereas, controlled motivation was not associated physical activity. Statistical 

knowledge strongly informed the modeling approach used in this study, and substantive expertise 

informed the decision to examine the effects of sex and race/ethnicity, rather than controlling for them, as 

research consistently indicates differences in physical activity by sex (Bauman et al., 2012; Healy et al., 

2011; Luke et al., 2011; Mozaffarian et al., 2015; Troiano et al., 2008) and race/ethnicity (Kann et al., 

2014; Mozaffarian et al., 2015). Substantive expertise also informed the decision to examine the 

individual effects of autonomous motivation (Barbeau et al., 2009; Dishman et al., 2018; Teixeira et al., 

2012), controlled motivation (Barbeau et al., 2009; Dishman et al., 2018; Teixeira et al., 2012), and 
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physical activity planning on physical activity (Ajzen, 1991; Blanchard et al., 2002; Fishbein & Ajzen, 

1980; Maddux, 1993; Sniehotta et al., 2005). The results of study 3 reinforced the value of data scientists’ 

ability to identify appropriate statistical models for examining health behavior outcomes, and the value of 

using their substantive expertise to inform which variables should be examined as potential predictors of 

health behaviors, like physical activity. 

Study 4, “Using ecological momentary assessment to examine the effects of duty status on acute 

stress and tiredness in firefighters: A pilot study”, provided an example of how data scientists can 

combine their technological and statistical skills with substantive expertise to examine psychosocial 

determinants of health behaviors. This study leveraged smartphone technology to capture repeated 

measures of stress and tiredness in real-time and in an individual’s natural environment so that we could 

examine acute stress and tiredness, and between- and within-person variability in stress and tiredness 

among a sample of career firefighters. We found that it was feasible to capture acute stress and tiredness 

data in firefighters using a smartphone-based ecological momentary assessment approach. Additionally, 

the mixed-effects location scale models revealed that the combined effects of firefighters’ duty status the 

prior night and during the current day differentially affected their acute stress and tiredness levels, and 

between-subject and within-subject variability in stress and tiredness. Substantive expertise regarding the 

effects of psychological stress (Dean et al., 2003; Guidotti, 1992; Roy et al., 1998) and tiredness (Kashani 

et al., 2012; Wolk et al., 2005) on health outcomes, as well as knowledge of firefighters’ experiences with 

stress (Guidotti, 1992; Soteriades et al., 2011) (Dean et al., 2003) and sleep disturbances (Akerstedt et al., 

2002; Akerstedt et al., 2007; Akerstedt et al., 2012; Kashani et al., 2012), strongly informed the design of 

this study, including the decision to use ecological momentary assessment (Shiffman et al., 2008; J. M. 

Smyth & Stone, 2003). This study also demonstrated the value of statistical knowledge, particularly 

because other modeling approaches would have precluded the ability to extract information about the 

unique effects of firefighters’ duty status on their between- and within-subject variability in stress and 

tiredness, which were the most meaningful outcomes of the study.  
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The studies in this dissertation demonstrated how skills in technology/computer science, 

statistics/math, and substantive expertise in the health sciences can inform the collection, management, 

analysis, and interpretation of data related to unmodifiable and psychosocial determinants of health, 

health behaviors, and health outcomes (Wickham & Grolemund, 2017). They also demonstrated how 

these skills can be applied to research in a variety of populations and research using various 

methodological and statistical approaches. Overall, this dissertation supports the assertion that we should 

intentionally foster the development of data scientists within the health sciences and capitalize on data 

scientists’ skills to promote progress in research, clinical practice, and public health, with the long-term 

goal of improving human health.   
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