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ABSTRACT 

 

 

 

TUNING THE INTERACTION OF DROPLETS WITH LIQUID-REPELLENT 

SURFACES: FUNDAMENTALS AND APPLICATIONS 

 

 

 

Liquid-repellent surfaces can be broadly classified as non-textured surfaces (e.g., smooth 

slippery surfaces on which droplets can slide easily) and textured surfaces (e.g., super-repellent 

surfaces on which liquid droplets can bead up and roll off easily). The liquid repellency of 

smooth slippery surfaces can be adjusted by tuning the surface chemistry. The liquid repellency 

of super-repellent surfaces can be adjusted by tuning the surface chemistry and surface texture. 

In this work, by systematically tuning the surface chemistry and surface texture and consequently 

the surface wettability of solid surfaces, the interaction of droplets of various liquids on liquid-

repellent surfaces has been investigated. Based on this understanding, the following 

phenomena/applications have been investigated/developed: 

(i) New methodology to sort liquid droplets based on their surface tension: By tuning the 

surface chemistry and surface texture of solid surfaces, we tuned the mobility of 

liquids with different surface tension on super-repellent surfaces. Utilizing this, we 

fabricated a simple device with precisely tailored domains of surface chemistry that 

can sort droplets by surface tension. 

(ii) New approach to detect the quality of fuel blends: By tuning the surface chemistry of 

solid surfaces, we investigated the interaction of fuel blends with liquid-repellent 

surfaces. Based on the understanding gained, we fabricated a simple, field-
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deployable, low-cost device to rapidly detect the quality of fuel blends by sensing 

their surface tension with significantly improved resolution.  

(iii) Novel materials with improved hemocompatibility: By systematically tuning the 

surface chemistry and surface texture and consequently the surface wettability of 

solid surfaces, we investigated the interaction of blood with super-repellent surfaces. 

Based on the understanding gained, we fabricated super-repellent surfaces with 

enhanced hemocompatibility. 

(iv) Advanced understanding of droplet splitting upon impacting a macroscopic ridge: By 

systematically tuning the ridge geometry, we investigated the interaction of impacting 

water droplets with super-repellent ridges. Based on the understanding gained, we 

demonstrated the scaling law for predicting the height from which water droplets 

should fall under gravity onto a super-repellent ridge for them to split into two 

smaller droplets. 

 

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

 

 

 

It is a great pleasure to convey my gratitude to many people that without their participation 

and assistance the completion of this dissertation could not have been possible.  

The foremost among those people is my supervisor, Dr. Arun K. Kota and I would like to 

express my sincere appreciation to him for his unwavering support, helpful and insightful 

criticism and understanding spirit throughout my PhD program. With his determined, 

experienced and enthusiastic nature, he has been a mentor for me both academically and non-

academically.  

I would also like to thank my outstanding committee members, Dr. Susan P. James, Dr. 

Charles S. Henry and Dr. Ketul C. Popat, for their encouragement, support and constructive 

comments.  

I extend a warm thanks to my colleagues at our research group for their company, assistance, 

and friendship. I would like to thank all my teachers and professors for inspiring me to love 

learning.  

Last in order but not of importance, I would like to deliver my love to my beloved husband 

and family for their patience, support and encouragement.  

 

 

 

 



 

v 

DEDICATION 

 

 

 

To my beloved husband, Saman,  

and 

My sweet and loving mother, father, and sisters  

For their unconditional love, wholehearted support, and day to day encouragement 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

TABLE OF CONTENTS 

 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

DEDICATION ................................................................................................................................ v 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ....................................................................................................................... xi 

CHAPTER 1 OVERVIEW .......................................................................................................... 1 

CHAPTER 2  BACKGROUND ................................................................................................... 4 

2.1. Introduction .......................................................................................................................... 4 

2.2. Underlying Physics and Chemistry of Liquid-repellent Surfaces ........................................ 4 

2.3. Tuning the Surface Texture ................................................................................................ 11 

2.4. Tuning the Surface Chemistry............................................................................................ 13 

2.5. Motivation Behind Tuning Wettability .............................................................................. 15 

2.5.1. Patterned Surfaces ....................................................................................................... 15 

2.5.2. Water-Oil Separation Membranes ............................................................................... 17 

2.5.3. Droplet Movement and Manipulation of Droplets ...................................................... 18 

2.5.4. Controllable Adhesion ................................................................................................. 19 

REFERENCES ............................................................................................................................. 21 



 

vii 

CHAPTER 3  TUNABLE SUPEROMNIPHOBIC SURFACES FOR SORTING DROPLETS 

BY SURFACE TENSION ............................................................................................................ 28 

3.1. Introduction ........................................................................................................................ 28 

3.2. Design Principles................................................................................................................ 30 

3.3. Fabrication and Characterization of Superomniphobic Surfaces ....................................... 32 

3.4. Tuning the Surface Wettability of Superomniphobic Surfaces .......................................... 36 

3.5. A Device to Sort Droplets by Surface Tension .................................................................. 41 

3.6. Conclusions ........................................................................................................................ 47 

REFERENCES ............................................................................................................................. 48 

CHAPTER 4  RAPID, FIELD-DEPLOYABLE, LOW-COST DEVICE TO DETECT FUEL 

QUALITY ..................................................................................................................................... 52 

4.1. Introduction ........................................................................................................................ 52 

4.2. Design Principles................................................................................................................ 53 

4.3. Fabrication of Non-textured, Non-polar Slippery Surfaces ............................................... 55 

4.4. Characterization of Non-textured, Non-polar Slippery Surfaces ....................................... 57 

4.5. Non-textured, Non-polar Slippery Surfaces  Experiments .............................................. 58 

4.6. A Device to Detect the Fuel Quality .................................................................................. 61 

4.7. Conclusions ........................................................................................................................ 64 

REFERENCES ............................................................................................................................. 65 



 

viii 

CHAPTER 5  HEMOCOMPATIBILITY OF SUPERHEMOPHOBIC TITANIA SURFACES

....................................................................................................................................................... 67 

5.1. Introduction ........................................................................................................................ 67 

5.2. Design Principles................................................................................................................ 68 

5.3. Fabrication of Titania Surfaces .......................................................................................... 70 

5.4. Surface Morphology, Surface Chemistry and Surface Wettability of Titania Surfaces .... 71 

5.5. Platelet Adhesion................................................................................................................ 73 

5.6. Whole Blood Clotting ........................................................................................................ 75 

5.7. Platelet Activation .............................................................................................................. 77 

5.8. Robustness Factor A* .......................................................................................................... 78 

5.9. Protein Adsorption ............................................................................................................. 80 

5.10. Bacteria Adhesion ............................................................................................................ 81 

5.11. Conclusions ...................................................................................................................... 82 

REFERENCES ............................................................................................................................. 84 

CHAPTER 6  INFLUENCE OF SUPERHYDROPHOBIC RIDGE GEOMETRY ON THE 

CRITICAL SPLITTING HEIGHTS OF WATER DROPLETS .................................................. 87 

6.1. Introduction ........................................................................................................................ 87 

6.2. Droplet Splitting  Theory ................................................................................................. 88 

6.3. Fabrication of Superhydrophobic Ridges ........................................................................... 90 

6.4. Droplet Splitting - Experiments ......................................................................................... 92 



 

ix 

6.5. Droplet Splitting - Results .................................................................................................. 95 

6.6. Conclusions ........................................................................................................................ 98 

REFERENCES ............................................................................................................................. 99 

CHAPTER 7  CONCLUSIONS AND FUTURE WORK ........................................................ 101 

7.1. Contributions to Fundamental and Applied Sciences ...................................................... 101 

7.2. Future Work ..................................................................................................................... 103 

REFERENCES ........................................................................................................................... 107 

APPENDIX A- MATERIALS AND METHODS ...................................................................... 109 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

LIST OF TABLES 

 

 

 

Table 3.1. The apparent advancing and the apparent receding contact angles of different liquids 

on superomniphobic surfaces before UV irradiation. ................................................................... 36 

Table 3.2. Advancing contact angles of water and n-hexadecane and solid surface energies, at 

different UV irradiation times, for fluorinated, non-textured TiO2 surfaces. ............................... 39 

Table 3.3. The apparent advancing and receding contact angles and roll off angles of water and 

n-hexadecane on superomniphobic surfaces after UV irradiation. ............................................... 40 

Table 3.4. Apparent advancing and apparent receding contact angles, and the estimated roll off 

angles of different water-ethanol mixtures in each of the discrete domains shown in Figures 

3.4c–3.4g. For each tested liquid, significant differences were observed between the roll off 

angles at each of the discrete domains (p ≤ 0.05 at =0.05). ....................................................... 43 

Table 4.1. The contact angles and sliding angles of different liquids on OTS-treated silicon 

wafers. ........................................................................................................................................... 58 

Table 5.1. Contact angles and roll off angles of human blood plasma on all the titania surfaces 

fabricated in this work. NR implies no roll off. ............................................................................ 73 

Table 5.2. Free hemoglobin concentration (measured as absorbance) after clotting experiments 

on various surfaces. ....................................................................................................................... 77 

Table 5.3. The estimated robustness parameter A* for titania nanotubes and nanoflowers. ........ 80 

 

 

 



 

xi 

LIST OF FIGURES 

 

 

 

Figure 2.1. a) A droplet of water (dyed blue) beading up on a lotus leaf. Reproduced with 

permission.37 © 2014 Nature Publishing Group. Schematic of a liquid droplet b) on a non-

textured solid surface, c) in the Wenzel state, and d) in the Cassie-Baxter state on a textured solid 

surface. Note: θ*, apparent contact angle; θ, contact angle; R, radius of the feature; D, half the 

inter-feature spacing........................................................................................................................ 6 

Figure 2.2. Schematic illustrating the a) advancing (the maximum) and receding (minimum) 

contact angles on a solid surface, b) a liquid droplet rolling off a tilted surface with the roll off 

angle of  ....................................................................................................................................... 8 

Figure 2.3. Schematics of a liquid droplet in the Cassie–Baxter state on a) a coarser textured 

surface, b) a finer textured surface, and c) a hierarchically textured surface, respectively. 

Schematics of a liquid droplet on d) concave textures with ψ ≥ 90° showing a liquid with θ > 90° 

in the Cassie-Baxter state, e) convex (re-entrant) textures with ψ < 90° showing a liquid with θ < 

90° in the Cassie-Baxter state. Note: ψ, local texture angle. .......................................................... 9 

Figure 2.4. Scanning Electron Microscopy (SEM) images of the polystyrene beads. Insets 

indicate the water droplets on each surface. The diameters of polystyrene beads and water 

contact angles on these surfaces are, a) 400 nm, 135°, b) 360 nm, 144°, c) 330 nm, 152°, and d) 

190 nm, 168°, respectively. Reproduced with permission.64 © 2004 American Chemical Society. 

Sequential wetting of four alkane droplets on e) unstretched, f) 15% strained, g) 30% strained 

and h) 60% strained polyester fabric. Reproduced with permission.67 2009 Wiley. .................... 12 

Figure 2.5. a) The transformation of surface wetting properties in response to different pH 

values after modification with a mixed self-assembled monolayer. ............................................. 14 



 

xii 

Figure 2.6. Off-set printing based on the superhydrophilic–superhydrophobic patterns. a) 

Schematic diagram of the patterning and reusing processes and b) Photographs of posters printed 

by the pristine plate (left) and reused plate (right). Reproduced with permission.93 © 2009 

Elsevier. c) and d) Site-selective self-assembly of UV fluorescent green microspheres dispersed 

in water and UV fluorescent red microspheres dispersed in heptane, respectively. 

Superomniphobic surface patterned with superomniphilic domains e) before and f) after 

exposure, respectively, to heptane vapors. g) Vapor bubbles nucleation of boiling methanol on 

the superomniphobic domains. Reproduced with permission.94 © 2012 Wiley. .......................... 16 

Figure 2.7. a) Water droplet with high contact angle and spreading and permeating behavior of a 

diesel oil on a mesh showing superhydrophobicity and superoleophilicity. Reproduced with 

permission.96 © 2012 Wiley. b) Oil/water separation using modified silicone nanofilaments on 

polyester textile. Reproduced with permission.101 © 2011 Wiley. c) Water droplet and oil droplet 

on the surface of PU/PTFE/A-SiO2/SiO2. Reproduced with permission.97 © 2013 Materials 

Research Society. .......................................................................................................................... 17 

Figure 2.8. Droplet movement due to a wettability gradient, a) top view and b) side view. 

Reproduced with permission.111 © 2006 American Chemical Society.  c) The motion of a water 

droplet on a surface with a variable density of micro-textures. The time interval between two 

snapshots is 8 s. Reproduced with permission.110 © 2009 IOP Publishing. d) Snapshots showing 

the droplet trapping at electrically tunable wetting defects on an inclined superhydrophobic 

surface. Reproduced with permission.102 © 2014 Nature Publishing Group. e) Movement of 

droplets induced by an electric field. Reproduced with permission.112 © 2010 American 

Chemical Society. ......................................................................................................................... 18 



 

xiii 

Figure 2.9. a) Spatially selective adhesion behavior by controlling the morphologies of Silicon 

nanowire arrays. ............................................................................................................................ 20 

Figure 3.1. a) Schematic depicting the fabrication of the superomniphobic surfaces with 

fluorinated flower-like TiO2 nanostructures. b) The root mean square roughness of the surfaces at 

different etching times. ................................................................................................................. 33 

Figure 3.2. a), b) and c) SEM images showing the morphology of TiO2 nanostructures after 2, 4 

and 6 hours, respectively, of etching under hydrothermal conditions. The root mean square 

roughness Rrms increased with etching time. The inset in (c) shows the re-entrant texture of the 

flower-like TiO2 nanostructure. d) Apparent contact angles of water and n-hexadecane on the 

surfaces shown in (a)–(c) after the surfaces are fluorinated. e) Droplets (left to right) of n-

hexadecane, water + 60% ethanol, water + 30% ethanol, water + 20% ethanol, water + 10% 

ethanol, and water showing very high apparent contact angles on the superomniphobic 

TiO2 surface. f) A series of snapshots showing a droplet of water + 60% ethanol bouncing on the 

superomniphobic TiO2 surface. ..................................................................................................... 34 

Figure 3.3. a) High resolution C1s X-ray photo-electron spectroscopy (XPS) scan showing the 

degradation of –CF2 and –CF3 groups with increasing UV irradiation time tUV. b) The solid 

surface energy of fluorinated TiO2 surfaces increasing with increasing UV irradiation time. c), d) 

and e) The wettability of water (blue) and n-hexadecane (red) droplets on fluorinated 

TiO2 surfaces increasing with increasing UV irradiation time. f) Apparent contact angles of water 

and n-hexadecane on fluorinated TiO2 surfaces decreasing with increasing UV irradiation time. 

g) The measured roll off angles of ∼5 μL n-hexadecane droplets on fluorinated TiO2 surfaces 

increasing more rapidly compared to those of ∼5 μL water droplets with increasing UV 

irradiation time. The measured roll off angles are in good agreement with the estimated roll off 



 

xiv 

angles. Significant differences were observed between the average receding contact angles for n-

hexadecane at different UV irradiation times tUV (p ≤ 0.05 at =0.05). ....................................... 37 

Figure 3.4. Schematic depicting the a) fabrication process of a device and b) final device with 

multiple, discrete domains of identical texture, but different solid surface energies. c)–g) A series 

of snapshots showing the sorting of ∼5 μL liquid droplets with different surface tension values 

using a device with four discrete surface energy domains tilted at an angle of 15° relative to the 

horizontal. Each domain is 15 mm ± 2 mm long. h) The estimated roll off angles of 5 μL liquid 

droplets with different surface tension values on super-repellent surfaces with different solid 

surface energies. ............................................................................................................................ 42 

Figure 3.5. The measured roll off angles of different liquids on the domain with = 12 mN m-1 

after wetting with ethanol and subsequently drying, for 25 times. For each liquid, no statistically 

significant difference was observed between roll off angles at different wetting/drying cycles. 

Using power analysis, it is verified that the test has adequate power. .......................................... 46 

Figure 4.1. Schematics depicting the fabrication of non-textured, non-polar slippery OTS- and 

FDTS-treated surfaces. ................................................................................................................. 56 

Figure 4.2. Full survey XPS spectra of a) untreated, b) OTS-treated and c) FDTS-treated silicon 

wafers. High-resolution C1s XPS spectra of d) untreated, e) OTS-treated and f) FDTS-treated 

silicon wafers. ............................................................................................................................... 57 

Figure 4.3. Variation of sliding angle with volume on non-textured, non-polar slippery OTS-

treated silicon wafer for a) water-SDS liquid system, b) water-ethanol liquid system and c) 

alkanes. A series of snapshots captured from the video showing the sliding of a 10 l d) water 

droplet (a representative high surface tension liquid) and e) n-decane droplet (a representative 

low surface tension liquid) on non-textured, non-polar slippery OTS-treated silicon wafer tilted 

sv




 

xv 

at 20° and 3° relative to horizontal, respectively. For each liquid, significant difference was 

observed between sliding angles of 10 l and 2 l droplets (p ≤ 0.05 at =0.05). Further, 

significant difference was observed between sliding angles of alkanes on OTS-treated silicon 

wafers for 2 l droplets (p ≤ 0.05 at =0.05). .............................................................................. 59 

Figure 4.4. Variation of sliding angle with volume on non-textured, non-polar slippery FDTS-

treated silicon wafer for a) water-SDS liquid system, b) water-ethanol liquid system and c) 

alkanes. A series of snapshots captured from the video showing the sliding of a 10 l d) water 

droplet and e) n-decane droplet on non-textured, non-polar slippery FDTS-treated silicon wafer 

tilted at 30° and 10° relative to horizontal, respectively. For each liquid, significant difference 

was observed between sliding angles of 20 l, 10 l and 2 l droplets (p ≤ 0.05 at =0.05). 

Further, significant difference was observed between sliding angles of alkanes on FDTS-treated 

silicon wafers for 2 l droplets (p ≤ 0.05 at =0.05). ................................................................... 60 

Figure 5.1. A textured solid composed of hexagonally packed pillars with diameter 2R and inter-

feature spacing of 2D. ................................................................................................................... 70 

Figure 5.2. Schematic depicting the fabrication of titania nanotubes. ......................................... 71 

Figure 5.3. a), b) and c) SEM images showing the morphology of titania non-textured, titania 

nanoflowers and titania nanotubes, respectively. The root mean square roughness Rrms of each 

surface is shown. d), e) and f) High resolution C1s XPS spectra for unmodified, PEGylated and 

fluorinated titania surfaces, respectively. ...................................................................................... 72 

Figure 5.4. Fluorescence microscope images showing platelet adhesion for all the titania 

surfaces. a), b) and c) Unmodified, PEGylated and fluorinated non-textured surfaces, 

respectively. d), e) and f) Unmodified, PEGylated and fluorinated nanoflower surfaces, 

respectively. g), h) and i) Unmodified, PEGylated and fluorinated nanotube surfaces, 



 

xvi 

respectively. Significant differences were observed between % area of adhered platelets on 

fluorinated non-textured, nanoflowers and nanotubes surfaces (p ≤ 0.05 at =0.05). ................. 75 

Figure 5.5. SEM images showing platelet activation (enclosed by dotted lines in red) on the 

titania surfaces. a), b) and c) Unmodified, PEGylated and fluorinated non-textured surfaces, 

respectively. d), e) and f) Unmodified, PEGylated and fluorinated nanoflower surfaces, 

respectively. g), h) and i) Unmodified, PEGylated and fluorinated nanotube surfaces, 

respectively. .................................................................................................................................. 78 

Figure 5.6. SEM images of – a) Titania nanotubes and b) Titania nanoflowers. ........................ 79 

Figure 5.7. High resolution C 1s and N 1s scans for albumin adsorption on unmodified titanium 

(Ti), unmodified nanotube arrays (NT) and superhemophobic nanotube surfaces (S-NT). ......... 81 

Figure 5.8. Representative fluorescence microscopy images of S. aureus on different surfaces 

after 6 h and 24 h of culture. Green stain represents live bacteria and red stain represents dead 

bacteria. ......................................................................................................................................... 82 

Figure 6.1. Schematic illustrating the fabrication of a superhydrophobic surface. The 

superhydrophobic surface was fabricated by first, a) spin coating of a glue layer on substrate, 

followed by b) spray coating F-SiO2 particles on the substrate with a glue layer. c) Colored water 

droplets can easily bead up on superhydrophobic surface. d) SEM image indicates the surface 

morphology of the superhydrophobic surface. ............................................................................. 91 

Figure 6.2. Schematic illustrating the experimental set-up. The triangular prism-like ridge and 

flat substrates enable controlling the ridge height. ....................................................................... 92 

Figure 6.3. 10 l water droplets hitting a macroscopic ridge on a superhydrophobic surface. 

Water droplet a) bouncing back as a single droplet after hitting the ridge with H = 6.24 mm, We 

= 2.3 and b) splitting into two droplets after hitting the ridge with Hc = 6.58 mm, Wec = 2.4, on 



 

xvii 

the same ridge with r35°, hr  1 mm. Water droplet c) bouncing back as a single droplet after 

hitting the ridge with H = 5.64 mm, We = 2.1 and d) splitting into two droplets after hitting the 

ridge with Hc = 5.97 mm, Wec = 2.2,  on the same ridge with r90°, hr  1 mm. .................... 93 

Figure 6.4. 10 l water droplets hitting a macroscopic ridge on a superhydrophobic surface. 

Water droplet a) bouncing back as a single droplet after hitting the ridge with H = 9.74 mm, We 

= 3.6 and b) splitting into two droplets after hitting the ridge with Hc = 9.88 mm, Wec = 3.7, on 

the same ridge with r70°, hr = 0.5 mm. Water droplet c) bouncing back as a single droplet 

after hitting the ridge with H = 5.69 mm, We = 2.1 and d) splitting into two droplets after hitting 

the ridge with Hc = 5.92 mm, Wec = 2.2, on the same ridge with r70°, hr = 1 mm. ................ 95 

Figure 6.5. Critical splitting height Hc as a function of Ridge geometry. .................................... 96 

Figure 6.6. Water droplet splitting into two droplets after hitting the ridge with Hc = 4.3 mm, on 

the same ridge with r70°but different ridge heights a) hr = 2 mm, b) hr = 2.5 mm and c) hr = 

3 mm. As the ridge height increases, there is no change in the critical splitting height Hc because 

the two lobes of the droplet cannot touch the flat surfaces. .......................................................... 97 

Figure 6.7. The variation of critical Wec as a function of ridge heights hr for different ridge 

angles r. ....................................................................................................................................... 97 

 

 

 

 

 



 

1 

CHAPTER 1 OVERVIEW 

 

 

 

In recent years, extensive efforts have been devoted to the investigation of liquid-repellent 

surfaces, i.e., surfaces that display repellency to liquids. Liquid-repellent surfaces can be broadly 

classified as non-textured surfaces (e.g., smooth slippery surfaces on which droplets can slide 

easily) and textured surfaces (e.g., super-repellent surfaces on which liquid droplets can roll off 

easily). Smooth slippery surfaces with a homogeneous, non-polar surface chemistry with low 

surface energy typically provide high degree of mobility for liquid droplets. On the other hand, 

the extreme repellency of super-repellent surfaces arises from the combination of appropriate 

surface texture with a surface chemistry with low surface energy. In fact, the surface chemistry 

and surface texture are the two important governing parameters of surface wettability and the 

mobility of droplets on surfaces. Therefore, controlling the surface chemistry and surface texture 

leads to tunable surface wettability, resulting in tunable interaction between the surface and the 

contacting liquid droplets. 

In this dissertation, the fundamental chemical and physical principles of designing liquid-

repellent surfaces (with the emphasis on super-repellent surfaces) will be reviewed in chapter 

two. In addition, recent studies on super-repellent surfaces with tunable wettability and the 

motivation behind these studies will also be discussed. In chapter three, the systematic design of 

superomniphobic surfaces with tunable wettability to sort droplets by their surface tension will 

be presented. Subsequently, in chapter four, using the methodology of sorting droplets by surface 

tension described in chapter three, the systematic design of non-textured surfaces to quantify the 

fuel adulteration will be presented. Then, in chapter five, the interaction between blood droplets 

and super-repellent surfaces, as well as the design criteria for fabrication of hemocompatible 
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surfaces will be discussed. In chapter six, a systematic study of droplet splitting dynamics on 

super-repellent surfaces with a macroscopic ridge will be presented. Finally, in chapter seven, the 

contributions of this work to fundamental science and applied science will be summarized and 

the potential aspects of this work for future investigation will be presented. 

So far, the following peer-reviewed journal publications have resulted from my PhD work at 

Colorado State University (in reverse chronological order): 

• K. Bartlet, S. Movafaghi, L. P. Dasi, A. K. Kota, K. C. Popat " Antibacterial activity on 

superhydrophobic titania nanotube arrays," Colloids and Surfaces B: Biointerfaces, 

166, p. 179 (2018).  

• A. Pendurthi,* S. Movafaghi,* W. Wang, S. Shadman, A. P. Yalin, A. K. Kota 

"Fabrication of nanostructured omniphobic and superomniphobic surfaces with 

inexpensive CO2 laser engraver," ACS Applied Materials & Interfaces, 9, p. 25656 

(2017). *These authors contributed equally to the work. 

• K. Bartlet, S. Movafaghi, A. K. Kota, K. C. Popat, "Superhemophobic titania nanotube 

array surfaces for blood contacting medical devices," RSC Advances, 7, p. 35466 

(2017).  

• S. Movafaghi, V. Leszczak, W. Wang, J. A. Sorkin, L. P. Dasi, K. C. Popat, A. K. Kota 

“Hemocompatibility of Superhemophobic Titania Surfaces,” Advanced Healthcare 

Materials, accepted (2016). 

• S. Movafaghi, W. Wang, A. Metzger, D. Williams, J. Williams, A. K. Kota, “Tunable 

Superomniphobic Surfaces for Sorting Droplets by Surface Tension,” Lab on a Chip, 16, 

p. 3204 (2016). 
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• W. Wang, K. Lockwood, L. M. Boyd, M. D. Davidson, S. Movafaghi, H. Vahabi, S. R. 

Khetani, A. K. Kota, “Superhydrophobic Coatings with Edible Materials,” ACS Applied 

Materials & Interfaces, 8, p. 18664 (2016). 

• H. Vahabi, W. Wang, S. Movafaghi, A. K. Kota, “Free-Standing, Flexible, 

Superomniphobic Films,” ACS Applied Materials & Interfaces, 8, p. 18664 (2016). 

• D. L. Bark Jr, H. Vahabi, H. Bui, S. Movafaghi, B. Moore, A. K. Kota, K. Popat, and L. 

P. Dasi. “Hemodynamic Performance and Thrombogenic Properties of a 

Superhydrophobic Bileaflet Mechanical Heart Valve,” Annals of Biomedical 

Engineering, p. 1 (2016). 
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CHAPTER 2  BACKGROUND 

 

 

 

2.1. Introduction 

In the past two decades, inspired by biological surfaces with special wettabilities, liquid-

repellent surfaces have received considerable attention because of their numerous applications 

such as anti-fouling,1-2 self-cleaning,3-7 liquid drag reduction,8-10 chemical shielding,11 

icephobicity,12-14 micro-robots,15-16 anti-corrosion coatings,17-18 enhanced dropwise 

condensation,19-22 controlled manipulation of liquid droplets23-26 and hemocompatible surfaces.27-

31 Liquid-repellent surfaces can be broadly classified as non-textured surfaces (e.g., smooth 

slippery surfaces on which droplets can slide easily)32-35 and textured surfaces (e.g., super-

repellent surfaces on which liquid droplets can bead up and roll off easily).36-37 Super-repellency 

towards water was first observed in Lotus leaves and hence the term “Lotus effect” is commonly 

used to describe superhydrophobicity (i.e., the extreme repellency towards water; Figure 2.1a).38-

40 Detailed inspection of the Lotus leaves has established that appropriate surface chemistry and 

appropriate surface texture (and the associated physical principles) are the two important factors 

leading to superhydrophobicity.40-42 In this chapter, the underlying chemical and physical 

principles of liquid-repellent surfaces (with the emphasis on super-repellent surfaces) are 

discussed and recent studies on tunable wettability (achieved by tuning the surface texture and 

surface chemistry) of super-repellent surfaces and their motivation will be presented. 

2.2. Underlying Physics and Chemistry of Liquid-repellent Surfaces 

The primary measure of wetting of a liquid on a non-textured (i.e., smooth) solid surface 

(Figure 2.1b) is the equilibrium (or Young's) contact angle θ, given by Young’s equation:43 
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lv

slsv


 

cos            (2-1) 

Here, sv, sl and lv are the solid-vapor interfacial tension, the solid-liquid interfacial tension and 

the liquid-vapor interfacial tension, respectively. sv andlv are also known as the solid surface 

energy and the liquid surface tension, respectively. It is evident from the Young’s relation 

(equation 2-1) that the solid surface energy sv is inversely proportional to the contact angle . 

This implies that surfaces with very high surface energy tend to display lower contact angles, 

while surfaces with very low surface energy tend to display higher contact angles.37 Therefore, 

surfaces with low surface energy are preferred for the design of super-repellent surfaces. 

Hare et al.44 reported that among various surface functional groups, the surface energy 

decreases in the order of -CH2 > -CH3 > -CF2 > -CF2H > -CF3. Typically, low surface energy 

materials (i.e., sv < 35 mNm−1 such as hydrocarbons with sv ≈ 20-35 mNm−1 and fluorocarbons 

with sv ≈ 10-20 mNm−1) have become the logical choice of materials used for obtaining higher 

contact angles. Note that although the maximum contact angle of a water droplet reported on a 

non-textured surface is about 130,45-47 under certain conditions, textured surfaces can display 

much higher contact angles with a contacting liquid as described below. 

When a liquid droplet contacts a textured (i.e., rough) solid surface, it displays an apparent 

contact angle θ*, and it can adopt one of the following two configurations to minimize its overall 

free energy  the Wenzel48 state or the Cassie-Baxter state.49 In Wenzel state, the liquid can 

penetrate into the surface protrusions and fully wet the solid surface (Figure 2.1c). In this state, 

θ* is calculated using the Wenzel relation:48 

*
cos r cos               (2-2) 
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Here, r is the surface roughness and can be obtained from the ratio of the actual surface area to 

the projected surface area. As r is always greater than unity, roughness amplifies both the 

wetting and non-wetting behavior of surfaces in the Wenzel state. In other words, θ* << 90° if  

< 90° and, θ* >> 90° if  > 90°. Typically, lower surface tension liquids (e.g., oils and alcohols) 

display Young’s contact angle  < 90°. Consequently, such low surface tension liquids tend to 

display very low contact angles in the Wenzel state. 

 

Figure 2.1. a) A droplet of water (dyed blue) beading up on a lotus leaf. Reproduced with permission.37 

© 2014 Nature Publishing Group. Schematic of a liquid droplet b) on a non-textured solid surface, c) in 

the Wenzel state, and d) in the Cassie-Baxter state on a textured solid surface. Note: θ*, apparent contact 

angle; θ, contact angle; R, radius of the feature; D, half the inter-feature spacing. 
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In the Cassie-Baxter state, there are air pockets trapped between the solid (Figure 2.1d) and 

the liquid and θ* is calculated using the Cassie-Baxter relation:49 

lvsllvsl

*
fcosfcosfcosfcos         (2-3) 

Here, fsl is the area fraction of the solid-liquid interface, which can be computed from the relation 

fsl = rs; 
flv is the area fraction of the liquid-air interface underneath the liquid droplet on a 

uniformly textured surface. Note that r is the roughness ratio of the wetted area and s is the 

area fraction of the projected liquid-air interface occluded by the surface texture.50 On surfaces 

with non-uniform roughness, fsl and flv represent the local area fractions of the solid-liquid 

interface and the liquid-air interface, respectively, in the vicinity of the three-phase (solid-liquid-

air) contact line.51 It is evident from equation 2-3 that the Cassie-Baxter state can lead to 

apparent contact angle θ* >> 90° not only for  > 90° but also for  < 90°, provided the solid-

liquid area fraction fsl is sufficiently low and the liquid-air area fraction flv is sufficiently high. In 

other words, in contrast to the Wenzel state, the formation of the Cassie-Baxter state can lead to 

very high contact angles even for low surface tension liquids (e.g., oils and alcohols). Further, 

the lower solid-liquid area fraction fsl leads to a lower contact angle hysteresis  (the difference 

between the advancing and receding contact angles; Figure 2.2a) for the Cassie-Baxter state 

when compared with the Wenzel state.52-53 This results in a significantly lower solid-liquid 

interfacial area and so the lower solid-liquid interaction. The Cassie-Baxter state is preferred for 

designing super-repellent surfaces because it leads to high θ* and low Δθ*.52-53 Super-repellent 

surfaces can be broadly classified as superhydrophobic surfaces (i.e., surfaces that are extremely 

repellent to high surface tension liquids such as water) and superomniphobic surfaces (i.e., 

surfaces that are extremely repellent to both high surface tension liquids such as water and low 
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surface tension liquids such as oils and alcohols).23-25,33 A surface is considered 

superhydrophobic if it displays θ* > 150° and Δθ* < 10° with water, and superoleophobic if it 

displays θ* > 150° and Δθ* < 10° with low surface tension liquids.23-25,33 Therefore, 

superomniphobic surfaces (i.e., surfaces that are extremely repellent to virtually any liquid) are 

both superhydrophobic and superoleophobic.23,24  

Contact angle hysteresis, the second important parameter for characterizing surface 

wettability, primarily arises from surface roughness and heterogeneity.37, 54-55 It is related to the 

energy barriers that oppose the movement of a liquid droplet along a solid surface. In other 

words, contact angle hysteresis characterizes the resistance to droplet movement.54-55 

Consequently, low contact angle hysteresis achieved by Cassie-Baxter state facilitate the ease in 

mobility of the contacting liquid droplets and leads to low roll off angle  of the liquid droplets 

on super-repellent surfaces. The roll off angle  is defined as the minimum angle by which the 

surface must be tilted for the droplet to roll off from the surface (Figure 2.2b). 

 

Figure 2.2. Schematic illustrating the a) advancing (the maximum) and receding (minimum) contact 

angles on a solid surface, b) a liquid droplet rolling off a tilted surface with the roll off angle of  

Moreover, employing hierarchically structured surfaces (i.e., surfaces possess more than one 

scale of texture; a finer length scale texture on an underlying coarser length scale texture) can 

lead to further decreasing of solid-liquid interfacial area and interaction (Figures 2.3a - 2.3c).36-37 

When a hierarchically structured surface supports a contacting liquid droplet in the Cassie-Baxter 
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state at all length scales, the liquid droplet displays higher apparent contact angles compared to 

surfaces that possess a single scale of texture. This is because of the air trapped at both the 

coarser length scale, as well as the finer length scale. 

 

Figure 2.3. Schematics of a liquid droplet in the Cassie–Baxter state on a) a coarser textured surface, b) a 

finer textured surface, and c) a hierarchically textured surface, respectively. Schematics of a liquid droplet 

on d) concave textures with ψ ≥ 90° showing a liquid with θ > 90° in the Cassie-Baxter state, e) convex 

(re-entrant) textures with ψ < 90° showing a liquid with θ < 90° in the Cassie-Baxter state. Note: ψ, local 

texture angle. 

Although the formation of the Cassie-Baxter state is desirable in designing super-repellent 

surfaces, not all types of textures can lead to a Cassie-Baxter state for a contacting liquid. To 

illustrate this qualitatively, consider the two types of textures shown in Figures 2.3d and 2.3e, 

both having the same solid surface energy. The texture shown in Figure 2.3d is concave (texture 

angle °) and the texture shown in Figure 2.3e is convex (°) facing upwards. In both 

the cases, any liquid contacting the texture in the Cassie-Baxter state locally displays a contact 

angle equal to the Young’s contact angle. A stable Cassie- Baxter state results only when ≥ 
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.11, 36-37, 56-58 This is because if < , the net traction on the liquid-vapor interface is 

downward due to the capillary force, which promotes imbibition of the liquid into the solid 

texture, leading to a fully wetted Wenzel state. When a liquid droplet comes in contact with a 

concave texture, Cassie-Baxter state is only possible with high surface tension liquids with high 

Young’s contact angle ( > 90).58-59 Consequently, concave texture can only lead to 

superhydrophobic surfaces. On the other hand, when a liquid droplet comes in contact with a 

convex (or re-entrant) texture, Cassie-Baxter state is possible for both high and low surface 

tension liquids, so it can be superomniphobic. 

Convex (or re-entrant) texture is necessary, but not sufficient for the formation of the Cassie-

Baxter state for virtually all contacting liquids.58, 60 Typically, the Cassie-Baxter state is a 

metastable state.58, 60 When a sufficiently high pressure is applied on a liquid in the Cassie-

Baxter state, regardless of the type of texture, the liquid will breakthrough (i.e., permeate and 

fully wet the protrusions), thereby transitioning to the Wenzel state. The breakthrough pressure 

Pbreakthrough is the minimum pressure that can force such a transition from the Cassie-Baxter state 

to the fully wetted Wenzel state. The breakthrough pressure Pbreakthrough can be determined from a 

force balance at the liquid-air interface. Typically, higher surface tension liquids and/or surface 

textures with smaller inter-feature spacings have higher Pbreakthrough.
58, 60 Optimal super-repellent 

surfaces need to simultaneously display high Pbreakthrough and high apparent contact angles θ* with 

the contacting liquid. High θ* can be obtained from high liquid-air area fraction flv. One way of 

obtaining high flv is to design a texture with large inter-feature spacing. However, larger inter-

feature spacings result in lower Pbreakthrough. In order to obtain high Pbreakthrough without 

compromising high θ*, it is essential to decrease the length scale of the texture. For example, 

consider a microstructure with flv,micro and Pbreakthrough,micro. Now, consider decreasing the length 
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scale of the texture to a nanostructure with flv,nano and Pbreakthrough,nano. If the nanostructure can be 

designed such that flv,micro= flv,nano, it will display a high θ* similar to that obtained with the 

microstructure, but the nanostructure will have Pbreakthrough,nano >> Pbreakthrough,micro due to the 

smaller inter-feature spacing. In this manner, by designing textures on smaller length scales (e.g., 

nanostructure) with high liquid-air area fraction, one can obtain super-repellent surfaces that 

simultaneously display high breakthrough pressures and high apparent contact angles. 

As discussed earlier, both the surface chemistry and the surface texture governs the surface 

wettability.37, 61 Therefore, the wettability of super-repellent surfaces, i.e., the interaction of 

droplets with such surfaces can be tuned by changing the surface chemistry or surface texture. 

Super-repellent surfaces with tunable wettability and their tremendous applications have recently 

aroused great interest. 

2.3. Tuning the Surface Texture 

The primary studies on tuning the surface texture have been initiated by the evolution of 

superhydrophobic surfaces.62-64 In order to investigate the dominant factors in 

superhydrophobicity, Shiu et al.64 utilized lithography and oxygen plasma treatment to fabricate 

nano-textured surfaces with different liquid-solid contact area fractions. They showed that water 

contact angle can be adjusted from 132° to 170° on their fabricated surfaces (Figures 2.4a–2.4d). 

In another study, Acatay et al.62 suggested that by increasing the viscosity of polymer solution, 

the surface texture of electrospun film can be altered from predominantly beads to only fibers. 

They discussed the significant role of surface texture in the final wetting behavior and concluded 

that the surfaces with beads are more hydrophobic than those consisting of only nanofibers. 

Several studies have focused on the switching between different wettability states such as 

superhydrophobicity, hydrophobicity (i.e., contact angles > 90° with water), hydrophilicity (i.e., 
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contact angles < 90° with water) and superhydrophilicity (i.e., contact angle < 10° with water). 

For example, Zhu et al.65 altered the surface texture using silicon micromachining technology.  

In this manner, they adjusted the wettability of their silicon surfaces from hydrophobicity to 

superhydrophobicity. In another study, Zhang et al.66 controlled the surface texture of an elastic 

polyamide film by cooperation of bi-axially extending and unloading the film. Their surfaces 

exhibited reversible wettability from superhydrophilicity upon extending to superhydrophobicity 

upon unloading. In a similar approach, polyester fabrics with switchable wettability via 

mechanical deformation were developed by Choi et al.67 They utilized biaxial stretching of a 

fabric to create reversible wettability behavior of fabric surfaces between super-wetting and 

super-repellent with a wide range of liquids (Figures 2.4e–2.4h). Functional textiles, controllable 

drug release, and thermally responsive filters are among various applications, which may be 

aroused from such reversible surfaces.68 

 

Figure 2.4. Scanning Electron Microscopy (SEM) images of the polystyrene beads. Insets indicate the 

water droplets on each surface. The diameters of polystyrene beads and water contact angles on these 

surfaces are, a) 400 nm, 135°, b) 360 nm, 144°, c) 330 nm, 152°, and d) 190 nm, 168°, respectively. 

Reproduced with permission.64 © 2004 American Chemical Society. Sequential wetting of four alkane 

droplets on e) unstretched, f) 15% strained, g) 30% strained and h) 60% strained polyester fabric. 

Reproduced with permission.67 2009 Wiley. 
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2.4. Tuning the Surface Chemistry 

Recently, much effort has been directed to tuning the surface chemistry of super-repellent 

surfaces using an external stimulus such as thermal treatment,68 pH/solvent sensitivity,69-71 

chemical deposition,72-73 light irradiation,74-78 plasma treatment79-80 and electric field81-84 (see 

Figure 2.5). As an example, for thermal treatment stimulus, Sun et al.68 studied the reversible 

switching of superhydrophobic surfaces induced by controlling the temperature. They showed 

that the wettability of poly (N-isopropylacrylamide)-modified surfaces can be dramatically 

changed from superhydrophilicity to superhydrophobicity by increasing the temperature by only 

30° C. In order to fabricate a pH-responsive surface, Yu et al.71 combined a fractal-like gold 

surface obtained via electrodeposition technique and a mixed thiol self-assembled monolayer to 

create an acid/base sensitive surface. They observed that their surface is superhydrophobic with 

acidic droplets and superhydrophilic with basic water droplets. 

In another study, Minko et al.70 studied controlling of a polymer surface wettability by 

exposing the surface to different solvents. The solvent sensitivity evoked the switchable 

wettability from superhydrophilic to superhydrophobic state. Kietzig et al.73 created 

superhydrophilic surfaces with different metal alloys using femtosecond laser irradiation of 

different metal alloys. However, they observed that surfaces kept in air, became 

superhydrophobic after about 10 days and this change was attributed to the deposition of carbon 

on the laser-textured surface.  

Several studies have investigated a variety of photo-responsive materials such as V2O5, ZnO, 

TiO2, etc., for fabrication of super-repellent surfaces with controllable surface wettability.85 Lim 

et al.76 reported the fabrication of rose-like nanostructured V2O5 films that are photo-responsive. 

The wettability of textured V2O5 films was reversed from superhydrophobicity to 
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superhydrophilicity upon UV light irradiation. In another study, Huang et al.75 prepared carbon 

nanotubes on silicon substrates using chemical vapor deposition followed by a ZnO layer 

deposition. The initially fabricated surfaces showed superhydrophobic behavior, however, 

surfaces turned to hydrophilic after UV light irradiation.  

 
Figure 2.5. a) The transformation of surface wetting properties in response to different pH values after 

modification with a mixed self-assembled monolayer. Reproduced with permission.69 © 2013 Wiley. b) 

Switchable wettability using UV/ozone and vacuum pyrolysis treatments. Oxygen adsorption occurs 

during UV/ozone treatment, and oxygen desorption occurs during vacuum pyrolysis treatment. 

Reproduced with permission.74 © 2011 American Chemical Society. c) Reversible contact angles of 

water droplet and d) wettability transitions through UV exposure and dark storage of V2O5 surface. The 

inset indicates the SEM image of a rose-garden-like nanostructured V2O5. Reproduced with permission.76 

© 2007 American Chemical Society. e) Schematic of hydrophilic/superhydrophilic channel like regions, 

which can be imprinted onto superhydrophobic surfaces. Reproduced with permission.77 © 2011 IOP 

Publishing. The fluorescent microscopy image highlights the section of a superhydrophilic channel on the 

superhydrophobic surface. Electrically induced reversible transitions is demonstrated f) before and g) 

after applying voltage. Reproduced with permission.82 © 2007 American Chemical Society. 

More recently, Aria and Gharib74 reported that the wettability of carbon nanotube arrays can 

be tuned by controlling the oxygenated functional groups concentrations induced by UV/ozone 

irradiation. Low amount of oxygenated functional groups exhibits a superhydrophobic behavior. 

In contrast, high surface concentration of oxygenated functional groups exhibits 

superhydrophilic behavior leading to a reversible wettability. As another external stimulus, 
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plasma treatment was used by Song et al.80 to create superhydrophobic surface with controllable 

wettability. They synthesized poly (L-lactic acid) (PLLA) superhydrophobic surfaces using 

phase inversion-based methods. They showed that by increasing Ar-plasma treatment 

hydrophilicity of the samples increases. 

In recent years, tuning the surface chemistry via electric field (i.e., electrowetting) turned to 

an interesting topic due to its simplicity and reproducibility.86 Ahuja et al.87 demonstrated 

superlyophobic surfaces (i.e., surfaces showing contact angles >150° with a wide range of 

liquids) with nanonail texture. They reported that the surface wettability can be reversibly 

switched between superlyophobic and fully wet surfaces by applying electrical voltage and 

current. 

2.5. Motivation Behind Tuning Wettability 

Tuning the interaction of liquid droplets with super-repellent surfaces by tuning the surface 

wettability has several applications in the fields of patterned surfaces, oil-water separation 

membranes, manipulation of droplets and controllable adhesion.  

2.5.1. Patterned Surfaces 

Fabrication of patterned surfaces, resulting from controlling the surface wettability has 

attained interest owing to its great number of applications.88 Micro-condensation for water 

collection89-91 and high resolution printing92-93 can be named as a few out of many applications of 

patterned surfaces (see Figure 2.6). 

In order to mimic water harvesting property of Namib desert beetle, Zhai et al.91 suggested a 

patterned surface. For fabrication of the patterned surface, they first synthesized a 

superhydrophobic surface using polyelectrolyte multilayer films and then created hydrophilic 

domains by selective delivery of a philic solution on the superhydrophobic surface. Later, Garrod 
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et al.90 and Dorrer and Ruhe89 developed microcondensers for water collecting by creating 

hydrophilic domains on a superhydrophobic surface. They investigated the parameters like 

wettability and size of domains and droplets volume for efficient water collecting. For printing, 

Nishimoto et al.93 fabricated superhydrophobic surfaces using ODP-modified textured TiO2 

surfaces and adjusted the wettability using UV irradiation. They reported enhanced resolution of 

such patterned surfaces in off-set printing (Figures 2.6a and 2.6b). In their other work,92 they 

showed rewritable surfaces owing to photocatalytic activity of TiO2 surfaces. 

 
Figure 2.6. Off-set printing based on the superhydrophilic–superhydrophobic patterns. a) Schematic 

diagram of the patterning and reusing processes and b) Photographs of posters printed by the pristine plate 

(left) and reused plate (right). Reproduced with permission.93 © 2009 Elsevier. c) and d) Site-selective 

self-assembly of UV fluorescent green microspheres dispersed in water and UV fluorescent red 

microspheres dispersed in heptane, respectively. Superomniphobic surface patterned with 

superomniphilic domains e) before and f) after exposure, respectively, to heptane vapors. g) Vapor 

bubbles nucleation of boiling methanol on the superomniphobic domains. Reproduced with permission.94 

© 2012 Wiley. 
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2.5.2. Water-Oil Separation Membranes 

Tuning the surface wettability plays a critical role in several oil-water separation techniques 

out of which a few studies are presented here (Figure 2.7).95-101 As one of the very first studies, 

Feng et al.96 fabricated a superhydrophobic/superoleophilic by spray coating 

polytetrafluoroethylene (PTFE) surface onto a stainless-steel mesh. They demonstrated the 

separation of diesel oil and water using their engineered surfaces. Later, Tian et al.98 presented a 

switchable superhydrophobic ZnO-coated stainless-steel mesh film, which induced a photo-

induced water–oil separation. Recently, Jian et al.97 fabricated a 

superhydrophobic/superoleophilic sponge using PTFE coated SiO2 surfaces. Such surface 

exhibited oil spills removal property.  

 

Figure 2.7. a) Water droplet with high contact angle and spreading and permeating behavior of a diesel 

oil on a mesh showing superhydrophobicity and superoleophilicity. Reproduced with permission.96 © 

2012 Wiley. b) Oil/water separation using modified silicone nanofilaments on polyester textile. 

Reproduced with permission.101 © 2011 Wiley. c) Water droplet and oil droplet on the surface of 

PU/PTFE/A-SiO2/SiO2. Reproduced with permission.97 © 2013 Materials Research Society. 
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2.5.3. Droplet Movement and Manipulation of Droplets 

Spontaneous movement of droplets as a consequence of gradient in wettability of a surface 

has been demonstrated in numerous studies (Figure 2.8). With a solid surface energy gradient, a 

droplet may be able to move on the surface from the lower solid surface energy end towards the 

higher one by a net force, as a result of the imbalance of surface forces acting on the two 

opposite sides of the liquid–solid contact line. Controlling droplet motion in desired manner or in 

another word manipulation of droplets on super-repellent surfaces has been shown using various 

methods including electric fields87, 102-104 and wettability gradients105-110 to enable the 

transportation, trapping, merging and splitting of droplets on super-repellent surfaces. 

 

Figure 2.8. Droplet movement due to a wettability gradient, a) top view and b) side view. Reproduced 

with permission.111 © 2006 American Chemical Society.  c) The motion of a water droplet on a surface 

with a variable density of micro-textures. The time interval between two snapshots is 8 s. Reproduced 

with permission.110 © 2009 IOP Publishing. d) Snapshots showing the droplet trapping at electrically 

tunable wetting defects on an inclined superhydrophobic surface. Reproduced with permission.102 © 2014 

Nature Publishing Group. e) Movement of droplets induced by an electric field. Reproduced with 

permission.112 © 2010 American Chemical Society.   

Zhu et al.65 fabricated superhydrophobic surfaces via Octadecyltrichlorosilane (OTS) coated 

silicon micro-pillars and created a tunable wettability using controlling the inter-pillar spacing. 
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They observed the spontaneous movement of a droplet on a surface with a certain roughness 

spatial gradient. In addition, a number of other studies have introduced gradient wettability using 

tuning the surface texture to evoke droplet motion.23, 111, 113 In another study, Wang et al.114 

utilized a brush containing animal hairs allowing the manipulation of low-viscosity liquid ink in 

a controlled manner. Such functionality was attributed to the anisotropic multi-scale structural 

feature of hairs.  

2.5.4. Controllable Adhesion 

Recently, there has been significant interest in superhydrophobic surfaces with controllable 

adhesion (Figure 2.9).115 Lai et al.116 Utilized basic principles of capillary-induced adhesion and 

roughness-enhanced hydrophobicity and designed different types of superhydrophobic porous-

nanostructure models with controllable water-adhesive force ranging from very high to 

extremely low. They found that the water adhesive force of the superhydrophobic nano-textured 

surface can be tuned by changing the diameter and length of nanotubes. Dawood et al.117 

produced rose petal and lotus effects on the silicon wafer by a chemical etching process using 

H2O2 and HF, which revealed superhydrophobicity. Tuning the morphology of nanowires on the 

Si surface leads to spatially selective adhesive behavior. 

Controllable adhesion has been studied for biological applications, such as protein adsorption 

and controlled cell adhesion/detachment. For example, Ballester-Beltran et al.120 fabricated a 

superhydrophobic surface, consisting of a micro and nanotextured (i.e., hierarchically textured) 

polystyrene (PS) (sv ≈ 35 mNm-1) surface, using a phase separation method. They investigated 

the adsorption of fibronectin on their superhydrophobic PS surface and compared it with that on 

a non-textured PS surface. Their results indicate about 60% reduction in the amount of adsorbed 

fibronectin on superhydrophobic PS surface compared to the non-textured PS surface. Shiu et 
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al.121 utilized switchable superhydrophobic surfaces created by electrowetting to develop 

addressable protein patterning microarrays. They fabricated Teflon-based superhydrophobic 

surface using a combination of nano-sphere lithography and plasma treatment. They showed that 

high protein resistance of superhydrophobic surfaces can be switched to an enhanced protein 

adsorption in superhydrophilic state. As another example, Li et al.122 fabricated 

superhydrophobic surfaces using microtextured polypropylene (PP) (sv ≈ 20 mNm-1) surfaces 

via solvent-nonsolvent technique. By comparing the whole blood interaction with smooth and 

superhydrophobic PP, they indicated that the rupture and adhesion of red blood cells are 

remarkably reduced on the superhydrophobic PP compared to the smooth PP. 

 
Figure 2.9. a) Spatially selective adhesion behavior by controlling the morphologies of Silicon nanowire 

arrays. Reproduced with permission.117 © 2011 American Chemical Society. b) A transition between the 

superhydrophobic surface with ultrahigh adhesion and the superhydrophobic surface with ultralow 

adhesion for the PDMS surfaces irradiated by a femtosecond laser. Reproduced with permission.118 © 

2013 American Chemical Society. c) SEM images of Staphylococcus aureus adhesion after 2 h and 4 h on 

hydrophilic, hydrophobic and superhydrophobic surfaces. Reproduced with permission.119 © 2011 Peifu 

Tang et al. 

In the following four chapters, droplet manipulation and controlled adhesion that I obtained 

from tailored wettability of liquid-repellent surfaces and their applications have been discussed. 
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CHAPTER 3  TUNABLE SUPEROMNIPHOBIC SURFACES FOR SORTING 

DROPLETS BY SURFACE TENSION 

 

 

 

Summary: We utilized tunable superomniphobic surfaces with flower-like TiO2 nanostructures 

to fabricate a simple device with precisely tailored surface energy domains that, for the first time, 

can sort droplets by surface tension (published in Lab on a Chip, 2016). We envision that our 

methodology for droplet sorting will enable inexpensive and energy-efficient analytical devices 

for personalized point-of-care diagnostic platforms, lab-on-a-chip systems, biochemical assays 

and biosensors. 

 

 

 

3.1. Introduction 

Recent years have witnessed a significant spike in manipulation of liquid droplets because of 

their applications in microfluidic diagnostics,1-2 DNA analysis,3-4 drug discovery,5 

microreactors6-7 and biosensing.8 Particularly, droplet manipulation on super-repellent surfaces9-

10 has been widely studied because droplets exhibit high mobility, minimal contamination and 

minimal sample loss on such surfaces. Various droplet manipulation methods including electric 

fields,11-14 magnetic fields,15-17 guiding tracks,18-20 and wettability gradients,21-26 have been 

developed to enable the transportation, trapping, merging and splitting of droplets on super-

repellent surfaces. However, there are very few studies21, 25 that demonstrate droplet sorting (i.e., 

systematically ordering or categorizing droplets by a physical property of the droplet) on super-

repellent surfaces. 

 As described in chapter two, super-repellent surfaces can be broadly classified as 

superhydrophobic surfaces and superomniphobic surfaces.27-30 The few studies21, 25 that 

demonstrated droplet sorting have employed superhydrophobic surfaces to sort water droplets 

based on the droplet size. However, to the best of our knowledge, there are no studies that 
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employ super-repellent surfaces to sort droplets based on surface tension. Since 

superhydrophobic surfaces cannot repel low surface tension liquids, superomniphobic surfaces 

are necessary for sorting droplets by surface tension over a wide range (i.e., both high and low 

surface tension liquids).  

In this work, we synthesized tunable superomniphobic surfaces with fluorinated, flower-like 

TiO2 nanostructures. We demonstrated that the surface chemistry, and consequently the solid 

surface energy and contact angle hysteresis, of our superomniphobic surfaces can be tuned using 

UV irradiation. This allowed us to systematically tune the mobility of droplets with different 

surface tensions on our superomniphobic surfaces. Each of these surfaces with same surface 

texture, but different solid surface energy allowed certain high surface tension liquid droplets to 

freely roll past the surface while “trapping” other low surface tension liquid droplets due to 

adhesion. Leveraging this selective mobility of droplets based on their surface tension, we 

fabricated a simple device with precisely tailored discrete surface energy domains that, for the 

first time, can sort droplets by their surface tension. The novelty of our work lies in the design of 

discrete and tunable superomniphobic domains as well as the ability of the device to sort droplets 

by surface tension.  

Droplet sorting occurs on our device due to a balance between the work done by gravity and 

the work expended due to adhesion (that depends on liquid surface tension), without the need for 

any external energy input. Our devices can be fabricated easily in a short time and we 

demonstrated that each device can be reused multiple times (up to 25 times in our experiments) 

to sort droplets by surface tension over a wide range (28.7 mN m−1 to 72.1 mN m−1). Further, our 

devices can be readily used to estimate the surface tension of miscible liquid mixtures that in turn 

enables the estimation of mixture composition. This is particularly useful for in-the field and on-
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the-go operations, where complex analysis equipment is unavailable. We envision that our 

methodology for droplet sorting will enable inexpensive and energy efficient analytical devices 

for personalized point-of-care diagnostic platforms, lab-on-a-chip systems, biochemical assays 

and biosensors.  

3.2. Design Principles 

As described in Chapter two, superhydrophobic and superomniphobic surfaces are fabricated 

by combining low solid surface energy (typically  < 15 mN m−1) materials and textured 

surfaces.31-35 Although superhydrophobic surfaces can be fabricated with a wide variety of 

textures, fabrication of superomniphobic surfaces requires a re-entrant texture (i.e., multivalued 

surface topography).11, 31-35 

Liquid droplets roll off easily from super-repellent surfaces because of the low Δθ*. Based on 

a balance between work done by gravity (left side of equation 3-1) and work expended due to 

adhesion (right side of equation 3-1), the roll off angle on a super-repellent surface is given as:31, 

36
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lv TCL rec advgV sin D cos cos             (3-1) 

Here, and are the apparent advancing and receding contact angles, respectively, ρ is the 

density of the liquid, g is acceleration due to gravity, and V is the volume of the liquid droplet. 

DTCL is the width of solid–liquid–vapor contact line perpendicular to the rolling direction. When 

the shape of the droplet does not deviate significantly from a spherical cap, the width of the triple 

phase contact line can be computed as:37 
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Here,    is the average apparent contact angle, given as: 
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         (3-3) 

When a liquid droplet with roll off angle ω is placed on a super-repellent surface tilted 

relative to the horizontal at a tilt angle α, the liquid droplet will roll off from the surface when ω 

< α and the liquid droplet will remain adhered (i.e., not roll off and stick) to the surface when ω 

> α.  

Consider droplets with different surface tension, but the same volume. Typically, in systems 

with no specific solid–liquid interactions, liquids with lower  adhere more to a super-repellent 

surface (i.e., display higher ω) and liquids with higher  adhere less (i.e., display lower ω). 

This is because of the higher DTCL and higher Δθ* associated with low  liquids.38 So, when a 

super-repellent surface with solid surface energy  is tilted at an appropriate tilt angle α, it may 

be anticipated that certain higher surface tension liquid droplets with ω < α will roll off from the 

surface while other lower surface tension liquid droplets with ω > α will remain adhered to the 

surface. Similarly, when a super-repellent surface with identical texture, but a slightly different 

solid surface energy is tilted at the same tilt angle α, it may be anticipated that a different set of 

higher surface tension liquid droplets with ω′ < α will roll off from the surface and another set of 

lower surface tension liquid droplets with ω′ > α will remain adhered to the surface. If  < 

then ω < ω′, i.e., at a fixed tilt angle α, the super-repellent surface with lower solid surface 
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energy will allow more liquids with lower surface tension to roll off from the surface compared 

to the one with higher solid surface energy. In this manner, different super-repellent surfaces 

with identical texture can be used to sort droplets into different sets – one set of higher surface 

tension liquids that freely roll past the surface and another set of lower surface tension liquids 

that are trapped on the surface and so on. If the super-repellent surfaces are superhydrophobic, 

they can be used to sort only a narrow range of high  liquids. On the other hand, if the super-

repellent surfaces are superomniphobic, they can be used to sort a wide range of liquids with 

both high  and low . Utilizing the principles discussed thus far, we fabricated a simple 

device with multiple precisely tailored  domains of tunable superomniphobic surfaces to sort 

liquid droplets by their surface tension. 

3.3. Fabrication and Characterization of Superomniphobic Surfaces 

We synthesized our superomniphobic surfaces via hydrothermal synthesis of titanium 

dioxide (TiO2) nanostructures39 and subsequent surface modification with a fluorinated silane. 

For hydrothermal synthesis of superomniphobic surfaces, titanium (Ti) sheets (Titanium Joe Inc.; 

6 cm long × 2 cm wide × 0.8 mm thick) were cleaned by sonication in acetone and isopropanol, 

dried with nitrogen and placed in a PTFE-lined stainless-steel autoclave containing 20 mM 

hydrofluoric acid (47% Alfa Aesar). The autoclave was sealed and the Ti sheets were etched 

under hydrothermal conditions at 100 °C for different times. After hydrothermal synthesis, the 

samples were rinsed thoroughly with deionized water, dried with nitrogen, and the surface was 

modified via vapor phase silanization at 120 °C for 1 hour using 200 μL of heptadecafluoro-

1,1,2,2-tetrahydrodecyl trichlorosilane (Figure 3.1a). In order to determine the surface 

morphology, the surfaces were imaged using SEM (JEOL JSM-6500F) at 15 kV. Also, the 

contact angles and roll off angles were measured using a contact angle goniometer (Ramé-Hart 
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200-F1). The contact angles were measured by advancing or receding 5 ± 0.5 μL droplets on the 

surface using a micrometer syringe (Gilmont). The roll off angles were measured by tilting the 

stage until the 5 ± 0.5 μL droplet rolled off from the surface. At least six measurements were 

performed on each surface. The errors in contact angle and roll off angle were ±1° and ±0.5°, 

respectively. 

 

Figure 3.1. a) Schematic depicting the fabrication of the superomniphobic surfaces with fluorinated 

flower-like TiO2 nanostructures. b) The root mean square roughness of the surfaces at different etching 

times. 

The etching time tetch in hydrothermal synthesis allowed us to tailor the morphology of the 

TiO2 nanostructures and obtain the required re-entrant texture. As the etching time tetch increased, 

more TiO2 nanostructures formed and consequently the roughness Rrms of the surface increased 
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(Figure 3.1b). Significant differences were observed between the root mean square roughness of 

the surfaces at different etching times (p ≤ 0.05 at =0.05). The root mean square roughness Rrms 

of the surfaces was measured using an optical profilometer (Zygo Zescope). 

 

Figure 3.2. a), b) and c) SEM images showing the morphology of TiO2 nanostructures after 2, 4 and 6 

hours, respectively, of etching under hydrothermal conditions. The root mean square 

roughness Rrms increased with etching time. The inset in (c) shows the re-entrant texture of the flower-like 

TiO2 nanostructure. d) Apparent contact angles of water and n-hexadecane on the surfaces shown in (a)–
(c) after the surfaces are fluorinated. e) Droplets (left to right) of n-hexadecane, water + 60% ethanol, 

water + 30% ethanol, water + 20% ethanol, water + 10% ethanol, and water showing very high apparent 

contact angles on the superomniphobic TiO2 surface. f) A series of snapshots showing a droplet of water 

+ 60% ethanol bouncing on the superomniphobic TiO2 surface. 
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Low etching time (tetch = 2 h) resulted in bead-like TiO2 nanostructures (Figure 3.2a). After 

this surface was fluorinated, it displayed relatively low contact angles and high contact angle 

hysteresis (Figure 3.2d) with water ( = 72.1 mN m−1; a representative high  liquid) and n-

hexadecane (  = 27.5 mN m−1; a representative low  liquid) indicating that the surface 

roughness is unsuitable to render it super-repellent. On this surface, both water and n-hexadecane 

are primarily in the Wenzel state. Slightly higher etching time (tetch = 4 h) resulted in 

predominantly bead-like TiO2 nanostructures along with a few flower-like TiO2 nanostructures 

(Figure 3.2b). After this surface was fluorinated, it displayed very high contact angles and very 

low contact angle hysteresis with water (Figure 3.2d) indicating that it is superhydrophobic. 

However, the surface displayed relatively lower contact angles and higher contact angle 

hysteresis with n-hexadecane indicating that it is not superoleophobic. This is because of 

insufficient re-entrant textured nanostructures on the surface. On this surface, water is in the 

Cassie–Baxter state and n-hexadecane is primarily in the Wenzel state. 

Sufficiently high etching time (tetch ≥ 6 h) resulted in flower-like TiO2 nanostructures (Figure 

3.2c). After this surface was fluorinated, it displayed very high contact angles and very low 

contact angle hysteresis with water and n-hexadecane (Figure 3.2d) indicating that it is both 

superhydrophobic and superoleophobic, i.e., superomniphobic. Further, significant differences 

were observed between the average receding contact angles for n-hexadecane at different etching 

times (p ≤ 0.05 at =0.05). The re-entrant texture of the flower-like TiO2 nanostructures coupled 

with the low solid surface energy (  = 10 mN m−1) imparted by the fluorinated groups 

rendered our surfaces superomniphobic. On this surface, both water and n-hexadecane are in the 

Cassie–Baxter state. The superomniphobicity is further evident from a wide range of liquids 
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beading up (Figure 3.2e) and bouncing (Figure 3.2f) on the surface due to their high contact 

angles and low contact angle hysteresis. The apparent advancing and the apparent receding 

contact angles of different liquids on superomniphobic surfaces are listed in Table 3.1. 

Table 3.1. The apparent advancing and the apparent receding contact angles of different liquids on 

superomniphobic surfaces before UV irradiation.  

Liquid 
Surface tension 

(mN m-1) 
               

Water 72.1 164° 162° 

Water + 10% Ethanol 53.4 161° 159° 

Water + 20% Ethanol 43.7 159° 155° 

Water + 30% Ethanol 37.2 156° 153° 

Water + 60% Ethanol 28.7 154° 150° 

n-hexadecane 27.5 153° 150° 

3.4. Tuning the Surface Wettability of Superomniphobic Surfaces 

We chose to synthesize our superomniphobic surfaces with TiO2 because the photocatalytic 

activity of TiO2 would allow us to precisely tune the surface chemistry, and consequently the 

solid surface energy, via UV irradiation. The surface chemistry, and consequently the solid 

surface energy, of the superomniphobic surfaces with flower-like TiO2 nanostructures was tuned 

by UV irradiating the surface for different times using a 254 nm UV bench lamp (UVP XX-40S). 

The samples were placed approximately 2 cm away from the UV lamp. 
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Figure 3.3. a) High resolution C1s X-ray photo-electron spectroscopy (XPS) scan showing the 

degradation of –CF2 and –CF3 groups with increasing UV irradiation time tUV. b) The solid surface energy 

of fluorinated TiO2 surfaces increasing with increasing UV irradiation time. c), d) and e) The wettability 

of water (blue) and n-hexadecane (red) droplets on fluorinated TiO2 surfaces increasing with increasing 

UV irradiation time. f) Apparent contact angles of water and n-hexadecane on fluorinated TiO2 surfaces 

decreasing with increasing UV irradiation time. g) The measured roll off angles of ∼5 μL n-hexadecane 

droplets on fluorinated TiO2 surfaces increasing more rapidly compared to those of ∼5 μL water droplets 
with increasing UV irradiation time. The measured roll off angles are in good agreement with the 

estimated roll off angles. Significant differences were observed between the average receding contact 

angles for n-hexadecane at different UV irradiation times tUV (p ≤ 0.05 at =0.05). 

Under UV irradiation, electron–hole pairs are generated on the surface of TiO2, which in turn 

produce radical species such as OH and O2
−.40 These radical species gradually degrade organic 

compounds such as the fluorinated groups on our superomniphobic surfaces.41-42
 The 
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degradation of –CF2 and –CF3 groups is evident from the high resolution C1s X-ray photo-

electron spectroscopy (XPS) scan (Figure 3.3a). XPS analysis was conducted on the surfaces 

before and after UV irradiation using a PHI-5800 spectrometer (Physical Electronics) to verify 

the degradation of the fluorinated groups (−CF2 and –CF3) upon UV irradiation. As a result, with 

increasing UV irradiation time tUV, the solid surface energy of our superomniphobic surfaces 

increased (Figure 3.3b). Further, significant differences were observed between the solid surface 

energy of our superomniphobic surfaces at different UV irradiation times tUV (p ≤ 0.05 at 

=0.05). 

In order to determine the solid surface energy, non-textured, uniform, thin films of TiO2 (150 

nm thick) were deposited on piranha cleaned glass substrates via RF ion beam sputtering with 

ion beam assist using a Ti target under 130 μTorr of oxygen in argon. Subsequently, the non-

textured TiO2 surfaces were modified via vapor phase silanization at 120 °C for 1 hour using 200 

μL of heptadecafluoro-1,1,2,2- tetrahydrodecyl trichlorosilane. The advancing contact angles 

measured at different UV irradiation times on fluorinated, non-textured TiO2 surfaces were used 

to estimate the solid surface energy. Owens-Wendt43 approach was used to estimate the solid 

surface energy of the fluorinated TiO2 surfaces before and after UV irradiation. n-hexadecane 

(  = 27.5 mN m-1) was used as the non-polar liquid to estimate the dispersive component of the 

solid surface energy and water ( = 21.1 mN m-1 and = 51.0 mN m-1) was used as the 

polar liquid to estimate the polar component of the solid surface energy . Assuming the 

advancing contact angle is approximately equal to Young’s contact angle,31, 33-34, 44-46 the 

advancing contact angles adv measured at different UV irradiation times tUV on fluorinated, non-

textured TiO2 surfaces were used to estimate the solid surface energy (Table 3.2). The error in 

sv


lv


d

sv
 d

lv
 p

lv


p

sv




 

39 

solid surface energy was ±0.5 mN m−1. Correspondingly, the apparent contact angles decreased 

and the contact angle hysteresis increased for both water and n-hexadecane (Figures 3.3c–3.3f). 

Table 3.2. Advancing contact angles of water and n-hexadecane and solid surface energies, at different 

UV irradiation times, for fluorinated, non-textured TiO2 surfaces.   

tUV (min) 
adv 

 (mN m-1) 
n-hexadecane Water 

0 80° 120° 10 

2 77° 108° 12 

4 73° 104° 14 

6 69° 97° 17 

8 62° 85° 24 

10 56° 74° 31 

 

Here, it is important to note that the apparent receding contact angle decreased, and the 

contact angle hysteresis increased more rapidly for n-hexadecane (lower  liquid) compared to 

water (higher  liquid). Consequently, the roll off angles increased more rapidly for n-

hexadecane compared to water with increasing tUV (Figure 3.3g). The influence of tUV on and 

consequently on the apparent advancing and receding contact angles  and , and roll off 

angles  of water and n-hexadecane on our superomniphobic TiO2 surfaces is shown in Table 

3.3. The estimated roll off angles of different liquids shown in Figure 3.2g were obtained using 

equation 3-1. 

It is evident from Table 3.3 and Figure 3.3f that  and  decrease for both n-hexadecane 

and water with increasing tUV. Further, it is evident that  decreases (Figure 3.3f) and  

increases (Figure 3.3g) more rapidly for n-hexadecane (lower liquid) compared to water 

(higher liquid) with increasing tUV. In this work, our primary interest lies in tUV ≤ 10 min 
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because at tUV ≥ 10 min, n-hexadecane droplets remain adhered and can no longer roll off, i.e., 

the mobility of n-hexadecane droplets can no longer be tuned or changed. For longer UV 

irradiation times (i.e., 10 min < tUV < 30 min), our experiments indicate that the apparent 

receding contact angles of n-hexadecane continue to decrease more rapidly than water. For very 

long UV irradiation times (i.e., tUV > 30 min), our experiments indicate that the surfaces become 

superomniphilic (i.e., the apparent contact angles of both water and n-hexadecane are ~0°). It is 

worth noting that in spite of numerous studies,47-55
 the explicit mechanisms involved in UV-

induced wettability of TiO2 surfaces (including the rate and degree of degradation of organic 

compounds such as fluorinated groups) are not completely established and continue to be an area 

of active research. 

Table 3.3. The apparent advancing and receding contact angles and roll off angles of water and n-

hexadecane on superomniphobic surfaces after UV irradiation.  

tUV 

(min) 
 (mN m-1) 

  
n-

hexadecane 
Water 

n-

hexadecane 
Water 

n-

hexadecane 
Water 

0 10 153° 164° 150° 162° 5° 2° 

2 12 144° 162° 125° 155° 16° 3.5° 

4 14 139° 158° 114° 151° 27° 5° 

6 17 131° 155° 102° 147° 44° 7° 

8 24 124° 151° 89° 141° 68° 11° 

10 31 120° 144° 70° 134° No roll off 13° 

For example, on a superomniphobic surface before UV irradiation (tUV = 0 min,  = 10 mN 

m−1), the difference between the measured roll off angles of water (ω = 2°) and n-hexadecane (ω 

= 5°) is very small. However, on a UV irradiated surface (tUV = 6 min,  = 17 mN m−1), the 

difference between the measured roll off angles of water (ω = 7°) and n-hexadecane (ω = 44°) is 

quite significant. When this UV irradiated surface is tilted relative to the horizontal at an angle α 
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= 15°, the higher  water droplets roll off from the surface and the lower  n-hexadecane 

droplets remain adhered to the surface.  In this manner, we can allow certain higher surface 

tension liquids to freely roll past the surface while trapping other lower surface tension liquids. 

3.5. A Device to Sort Droplets by Surface Tension 

While a single surface with a fixed solid surface energy is sufficient to sort liquids into two 

sets – one with higher surface tension liquids that freely roll past the surface and another with 

lower surface tension liquids that are trapped on the surface – it cannot provide a finer sorting of 

liquids by their surface tension. In order to sort a wide range of liquids by their surface tension, 

we fabricated a simple device with multiple, discrete domains with identical texture, but different 

precisely tailored solid surface energy. The solid surface energy of each discrete domain was 

tuned to the desired value by controlling the UV irradiation time while masking the other areas 

with a PTFE tape (Figure 3.4a). The discrete domains were fabricated along the length of the 

device in the order of increasing solid surface energy (Figure 3.4b). The device was tilted 

relative to the horizontal at an angle α with the lowest solid surface energy domain at the top of 

the incline and the highest solid surface energy domain at the bottom of the incline. 
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Figure 3.4. Schematic depicting the a) fabrication process of a device and b) final device with multiple, 

discrete domains of identical texture, but different solid surface energies. c)–g) A series of snapshots 

showing the sorting of ∼5 μL liquid droplets with different surface tension values using a device with 

four discrete surface energy domains tilted at an angle of 15° relative to the horizontal. Each domain is 15 

mm ± 2 mm long. h) The estimated roll off angles of 5 μL liquid droplets with different surface tension 

values on super-repellent surfaces with different solid surface energies. 

When a liquid droplet is introduced at the top of the incline, depending on its surface tension, 

it will freely roll past the domains where its roll off angle ω < α and it will get trapped in the first 

domain where its roll off angle ω′ > α. As an example, here we demonstrate sorting of five 

different ∼5 μL liquid droplets by their surface tension – water (  = 72.1 mN m−1), water + 

10% ethanol (  = 53.4 mN m−1), water + 20% ethanol (  = 43.7 mN m−1), water + 30% 

ethanol (  = 37.2 mN m−1) and water + 60% ethanol (  = 28.7 mN m−1) – using a device with 

four precisely tailored solid surface energy domains – domain 1 (  = 12 mN m−1 , tUV = 2 min), 
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domain 2 (  = 14 mN m−1 , tUV = 4 min), domain 3 (  = 17 mN m−1 , tUV = 6 min) and 

domain 4 (  = 24 mN m−1 , tUV = 8 min). We used water–ethanol mixtures to demonstrate 

droplet sorting because this allows us to systematically tune the surface tension of liquid droplets 

over a wide range (28.7 mN m−1 to 72.1 mN m−1). 

Table 3.4. Apparent advancing and apparent receding contact angles, and the estimated roll off angles of 

different water-ethanol mixtures in each of the discrete domains shown in Figures 3.4c–3.4g. For each 

tested liquid, significant differences were observed between the roll off angles at each of the discrete 

domains (p ≤ 0.05 at =0.05). 

      Water 
Water +10% 

Ethanol 

Water +20% 

Ethanol 

Water +30% 

Ethanol 

Water +60% 

Ethanol 

       Surface tension 

             (mN m-1) 
72.1 53.4 43.7 37.2 28.7 

Domain 1 

(tUV = 2 min;  

 = 12 mN m-1) 

 162° 158° 156° 150° 145° 

 155° 150° 147° 141° 121° 

 3° 3° 4° 5° 17° 

Domain 2 

(tUV = 4 min; 

 = 14 mN m-1) 

 158° 152° 146° 141° 140° 

 151° 140° 132° 117° 111° 

 4° 8° 11° 24° 27° 

Domain 3 

(tUV = 6 min; 

 = 17 mN m-1) 

 155° 143° 140° 132° 131° 

 147° ° 109° 101° 95° 

 6° 11° 44° 46° 47° 

Domain 4 

(tUV = 8 min; 

 = 24 mN m-1) 

 151° 129° 127° 126° 122° 

 141° 115° 95° 90° 81° 

 9° 24° 74° 82° 84° 

 

We estimated the roll off angles for 5 μL droplets of each of the five liquids in each of the 

four domains by measuring the apparent contact angles and using equation 3-1. The estimated 

roll off angles of different water-ethanol mixtures in each of the discrete domains of our device 

are listed in Table 3.4. It is evident from Table 3.4 that all of our UV irradiated surfaces used to 
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fabricate the device have finite roll off angles (< 90°) with the liquids listed. While these liquid 

droplets may adhere to a UV irradiated surface at low tilt angles ( < ), they roll off from the 

UV irradiated surface at higher tilt angles (> ). 

If the droplets were completely in the Wenzel state, they would remain adhered to the surface 

and no longer exhibit mobility (i.e., droplets would not have a finite roll off angle ). Based on 

this, we conclude that the droplets on the UV irradiated surfaces used to fabricate the device 

(e.g., Figures 3.4c–3.4g) are primarily in the Cassie-Baxter state. Further, it is evident from 

Table 3.4 that the contact angle hysteresis of droplets with lower surface tension is higher than 

that of droplets with higher surface tension. Contact angle hysteresis primarily arises from 

surface roughness and heterogeneity.56-58
 It is related to the energy barriers that a liquid droplet 

must overcome during its movement along a solid surface, and thus characterizes the resistance 

to droplet movement.56-58
 Typically, the resistance to droplet movement is higher for lower 

surface tension liquids compared to higher surface tension liquids.59 This is possibly because 

lower surface tension liquids have higher solid-liquid contact area (and longer triple phase 

contact line), which in turn is due to their lower contact angles. Consequently, on our tunable 

superomniphobic surfaces, for any given solid surface energy, the contact angle hysteresis of 

droplets with lower surface tension is higher than that of droplets with higher surface tension. 

Based on the estimated roll off angles (Figure 3.4h) which is  obtained using Equation 3-1, when 

the device is tilted at an angle α = 15°, droplets of water + 60% ethanol should get trapped in 

domain 1; droplets of water + 30% ethanol should freely roll past domain 1, but get trapped in 

domain 2; droplets of water + 20% ethanol should freely roll past domains 1 and 2, but get 

trapped in domain 3; droplets of water + 10% ethanol should freely roll past domains 1, 2 and 3, 

but get trapped in domain 4; and droplets of water should freely roll past all domains. These 
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predictions match reasonably well with the experiments (Figure 3.4c–3.4g) indicating that our 

devices with discrete domains of precisely tailored solid surface energy and a predetermined tilt 

angle (based on estimated roll off angles) can, for the first time, sort liquid droplets by their 

surface tension. 

Our devices can be reused multiple times (up to 25 times in our experiments) after 

completely drying the adhered liquid droplets from a previous experiment. In order to evaluate 

the reusability of our devices, we first wet each discrete solid surface energy domain with an 

extremely low surface tension liquid (e.g., ethanol;  = 22.1 mN m-1) that remained adhered to 

the surface. Then, we completely dried the liquid on the surface by heating. Subsequently, we 

measured the roll off angles of different liquids in each domain to verify that the surface 

repellence has not been altered. Our experiments indicated that the roll off angles of different 

liquids in each domain remained unaltered even after a few wetting/drying cycles.  

To illustrate this with an example, here we present (Figure 3.5) the measured roll off angles 

of different liquids (water, water + 10% ethanol, water + 20% ethanol, water + 30% ethanol, and 

water + 60% ethanol) on one of the domains with  = 12 mN m-1 after wetting with ethanol 

and subsequently drying for 25 times. The functionality of the device remains un-altered up to 25 

cycles. As we increase the number of cycles further, the range over which we can sort droplets 

by surface tension decreases. This is because the re-entrant texture of our superomniphobic 

surfaces starts to deteriorate with increased cycles. This in turn causes the low surface tension 

liquid droplets to adopt the Wenzel state (and consequently, the droplet mobility can no longer 

be tuned) at increasingly more locations on the surface. Here, it is worth noting that improving 

the mechanical durability of superomniphobic surfaces continues to be a grand challenge in the 

field of surface science. 
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Figure 3.5. The measured roll off angles of different liquids on the domain with = 12 mN m-1 after 

wetting with ethanol and subsequently drying, for 25 times. For each liquid, no statistically significant 

difference was observed between roll off angles at different wetting/drying cycles. Using power analysis, 

it is verified that the test has adequate power. 

A careful inspection of sorting droplets by surface tension using our devices (Figure 3.4c–

3.4g) indicates that the droplets of the same liquid (with same surface tension) adhere at slightly 

different locations (typically < 10 mm from each other) within a discrete domain (with same 

surface energy). We attribute this to the small variation in droplet volume (±0.5 μL) that leads to 

different kinetic energies of the droplets as well as the small spatial variation in the surface 

roughness (±0.2 μm) that leads to different droplet mobility. We ensured that each discrete 

domain is long enough (∼15 mm) so that the kinetic energy of the accelerating droplets is 

completely overcome by the work expended due to adhesion precisely in the first domain, where 

its roll off angle is higher than the tilt angle. In other words, when a liquid droplet is introduced 

at the top of the incline, depending on its surface tension, it will freely roll past the domains 
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where its roll off angle is lower than the tilt angle and it will get trapped in the first domain, 

where its roll off angle is higher than the tilt angle.  

3.6. Conclusions 

In summary, we synthesized superomniphobic surfaces with fluorinated, flower-like TiO2 

nanostructures. We demonstrate that the surface chemistry, and consequently the solid surface 

energy, of our superomniphobic surfaces can be tuned using UV irradiation. This allows us to 

systematically tune the mobility of droplets with different surface tensions on our 

superomniphobic surfaces. Leveraging the selective mobility of droplets on our superomniphobic 

surfaces based on their surface tensions, we fabricated a simple device with precisely tailored 

solid surface energy domains that, for the first time, can sort droplets by surface tension (  = 

28.7 mN m−1 to 72.1 mN m−1). Our devices can be fabricated easily in a short time and each 

device can be reused multiple times to sort droplets by surface tension. In addition, using 

estimated roll off angles, new devices can be systematically designed with predetermined tilt 

angle, number and surface energy of superomniphobic domains to sort droplets with different 

surface tension ranges and different droplet volumes. Our methodology and mechanism are 

applicable to a wide range of surface tensions and droplet volumes as long as the droplets are in 

the Cassie–Baxter state and not all in the Wenzel state. We envision that our methodology for 

droplet sorting will enable inexpensive and energy-efficient analytical devices for personalized 

point-of-care diagnostic platforms, lab-on-a-chip systems, biochemical assays and biosensors. 
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CHAPTER 4  RAPID, FIELD-DEPLOYABLE, LOW-COST DEVICE TO DETECT 

FUEL QUALITY 

 

 

 

Summary: We employed liquid repellent (e.g., non-textured, non-polar slippery) surfaces to 

fabricate a simple, field-deployable, low-cost device to rapidly detect the quality of fuel blends 

(e.g., diesel-kerosene blends with different compositions) by sensing their surface tension with 

significantly improved resolution (submitted to ACS Applied Materials & Interfaces, 2018). 

In addition to detecting adulterated fuel, we envision that our methodology can also be used for 

personalized point-of-care diagnostic platforms, biochemical assays and biosensors. 

 

 

 

4.1. Introduction 

Numerous developing countries in Asia (e.g., India) and Africa (e.g., Nigeria) offer 

subsidized fuels such as kerosene to support lighting and cooking needs of the rural poor.1-3 

However, the lower cost of kerosene compared to market-rate fuels results in fuel adulteration, 

the unauthorized addition of foreign substance into fuel (e.g., introduction of kerosene to diesel 

or gasoline). For example, about 40% of the kerosene sold in India frequently gets blended with 

gasoline and diesel.4-6 This significantly alters the desired specifications of the fuel and can give 

rise to the substantial economic and environmental concerns.4, 6 Thus far, the misuse of kerosene 

has been hard to quantify in the field (e.g., at the dispensing gas station) because the currently 

used technologies (e.g., gas chromatography–mass spectrometry, Fourier transform infrared 

spectrometry, microcontroller sensor, long period fiber grating,  hydrometer etc.) are either 

time consuming or expensive or not sensitive enough or require well-equipped analytical 

laboratories.6-9 To circumvent this issue, there is a critical need to develop and deploy rapid, low-

cost, easy-to-use devices to detect fuel adulteration in the field, specifically in developing 

economies where fuel quality is a concern. 
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In the past decade, manipulation of liquid droplets with the aim of identifying the physical or 

chemical properties of the liquids has received significant attention.10-15 In chapter three, we 

developed a device that can rapidly detect compositions of liquid blends by sensing their surface 

tension.15 The device was fabricated using a textured superomniphobic surface.16-18 However, 

such superomniphobic surface-based devices have relatively low resolution (~ 10 mN m-1) and 

poor mechanical durability (i.e., not field-deployable) due to the surface texture. In order to 

overcome these challenges, in this work, we employed liquid repellent (e.g., non-textured, non-

polar slippery) surfaces to fabricate a simple, field-deployable, low-cost device to rapidly detect 

the quality of fuel blends (e.g., diesel-kerosene blends with different compositions) by sensing 

their surface tension with significantly improved resolution (~1 mN m-1). In addition to detecting 

adulterated fuel, we envision that our methodology can also be used for personalized point-of-

care diagnostic platforms, biochemical assays and biosensors. 

4.2. Design Principles 

The working principle of our devices relies on the differences in the mobility of liquid 

droplets with different surface tensions. One measure of the mobility of a liquid droplet on a 

solid surface is the sliding angle (i.e., the minimum angle  by which the surface must be tilted 

relative to the horizontal for a droplet to slide off from the surface). As stated in chapters two and 

three, low contact angle hysteresis on non-textured surfaces  = adv – rec (i.e., the difference 

between the advancing [maximum] contact angle adv and the receding [minimum] contact angle 

rec) results in low sliding angles , as implied by a balance between work done by gravity and 

work expended due to adhesion:19-20 

 lv TCL rec advgV sin D cos cos             (4-1)  
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Here, DTCL is the width of solid–liquid–vapor contact line perpendicular to the sliding direction, 

lv and  are the surface tension and density of the liquid, g is acceleration due to gravity, and V 

is the volume of the liquid droplet. 

Typically, for droplets of a binary liquid system (e.g., a miscible liquid blend or a solution) or 

droplets of a homologous series (e.g., alkanes etc.) on a non-textured, non-polar slippery solid 

surface, the sliding angle  increases with increasing surface tension lv. This is perhaps due to 

the increased dispersive interactions between the non-polar solid and the liquid. Now, consider 

three droplets of a binary liquid system or a homologous series with same volume, but different 

surface tensions – low surface tension lv,low, intermediate surface tension lv,inter, and high surface 

tension lv,high – placed on a non-textured, non-polar slippery surface. When the surface is 

horizontal, all the three droplets will remain stationary. When the surface is tilted at a certain tilt 

angle  relative to horizontal, it may be anticipated that the droplet with lv,low slides off, while 

the droplets with lv,inter and lv,high remain adhered to the surface. At a higher tilt angle ′, it may 

be anticipated that the droplets with lv,low and lv,inter slide off, while the droplet with lv,high 

remains adhered to the surface. At an even higher tilt angle ′′, it may be anticipated that all the 

three droplets will slide off from the surface. In this manner, using non-textured, non-polar 

surfaces tilted at different tilt angles, the sliding angle  of a droplet of a binary liquid system or 

a homologous series with unknown composition can be estimated. Using this estimated sliding 

angle , the surface tension lv and the chemical composition of the unknown liquid can be 

estimated using pre-determined calibration curves. This is the premise of our devices that can 

detect the quality of fuel or fuel blends. 
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It must be noted that for an effective sorting of droplets based on surface tension with a high 

resolution, sufficient difference in sliding angles is necessary. One way to increase the resolution 

of the device (i.e., the difference in sliding angles of different liquids) is by increasing the 

contact angle hysteresis.  In fact, the motion of partially wetting liquid drops in contact with a 

solid surface is strongly affected by contact angle hysteresis and interfacial pinning.21 Contact 

angle hysteresis is related to the energy barriers that a liquid droplet must overcome during its 

movement along a solid surface, and thus characterizes the resistance to droplet movement (e.g., 

the resistance of micro-scale heterogeneities on the surface).22-24 Typically, the resistance to 

droplet movement and so the contact angle hysteresis on non-textured, non-polar slippery 

surfaces is lower for low surface tension liquids compared to high surface tension liquids. This is 

consistent with the theory (Equation 4-1), that the sliding angle typically decreases with both 

decreasing liquid surface tension and contact angle hysteresis.19, 25 However, while comparing 

the sliding angles of different liquids, one should be cautious about the droplets volume, density 

of liquids and also the chemical interaction of the liquids with the substrate.26-28 Therefore, in 

order to properly sort liquid droplets based on their surface tension, with an appropriate choice of 

surface chemistry and surface roughness and droplet volume, one could obtain sufficient 

variation in sliding angle.  

4.3. Fabrication of Non-textured, Non-polar Slippery Surfaces 

Building on the principles discussed above, we fabricated non-textured, non-polar slippery 

surfaces using two different surface chemistries, octadecyltrichlorosilane (OTS) and 

heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane (FDTS) via liquid phase silanization. For 

fabrication of non-textured, non-polar slippery OTS-and FDTS-treated surface, the silicon 

wafer/glass substrate was first sonicated in ethanol-DI water (1:1, v/v) solution for 10 min and 
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then rinsed with copious amounts of DI water to remove any impurity on the surface. The 

cleaned silicon wafer/glass substrate was then placed in a plasma chamber (Plasma etch) for 15 

minutes to deposit hydroxyl groups over the surface which reacts readily with silane. After that 

the silicon wafer/glass substrate was placed in a reactive solution which was prepared at scales 

ranging from 10 to 50 ml in a polypropylene screw-cap tube (Falcon) for 2 hours. For example, 

15 ml of toluene (Fisher Chemical), 12 l of hydrochloric acid (Fisher Scientific) and 16 l of 

either   octadecyltrichlorosilane (to fabricate OTS-treated surface; Gelest) or heptadecafluoro-

1,1,2,2-tetrahydrodecyl trichlorosilane (to fabricate FDTS-treated surface; Gelest) were added to 

a bottle (see Figure 4.1). The sample was then dried by blowing nitrogen. 

 

Figure 4.1. Schematics depicting the fabrication of non-textured, non-polar slippery OTS- and FDTS-

treated surfaces. 

We employed two different surface chemistries (i.e., hydrocarbon and fluorocarbon) to create 

different resolution of sorting liquid droplets based on surface tension. Such variation in the 

resolution of sorting between hydrocarbon and fluorocarbon can be attributed to the fluorocarbon 

chains being stiffer than hydrocarbon chains.29-32 Further, we chose silicon wafers as our 

substrates because those are extremely smooth (to avoid the presence of micro-scale 

heterogeneities on the surface that affects the contact angle hysteresis) and upon forming 

hydroxyl groups, react readily with silanes.  
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4.4. Characterization of Non-textured, Non-polar Slippery Surfaces 

In order to characterize the surface chemical composition and assure the uniformity and 

coverage of the surface chemistry across each sample, we conducted XPS and obtained the full 

survey spectra and high-resolution C1s XPS spectra (see Figure 4.2.) for each studied surface 

chemistry. At least three spots were analyzed on each studied surface chemistry and one full 

survey and one C1s spectra is shown for each surface chemistry. 

 

Figure 4.2. Full survey XPS spectra of a) untreated, b) OTS-treated and c) FDTS-treated silicon wafers. 

High-resolution C1s XPS spectra of d) untreated, e) OTS-treated and f) FDTS-treated silicon wafers. 

Further, a wide range of liquids with a broad range of surface tension and viscosity can slide 

off easily from such non-textured, non-polar slippery surfaces. We measured the advancing 

and receding contact angles and sliding angles for liquids with a wide range of surface tension, 

20 mN m−1 ≤ lv ≤ 72 mN m−1, on non-textured, non-polar slippery OTS and FDTS-treated 

silicon wafer as shown in Table 4.1.  
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Table 4.1. The contact angles and sliding angles of different liquids on OTS-treated silicon wafers. 

Liquid 

Surface tension 

(mN m-1) 

θadv () θrec () ()

Diiodomethane 50.8 70 65 5 

Dimethylformamide 37.1 45 40 4 

Toluene 28.2 39 36 2 

Chloroform 27.5 37 34 2 

4.5. Non-textured, Non-polar Slippery Surfaces  Experiments 

In order to study the resolution of sorting of liquid droplets on non-textured, non-polar 

slippery surfaces, we investigated the sliding angles of different liquid systems on non-textured, 

non-polar slippery OTS- and FDTS- treated silicon wafers. First, we measured the sliding angle 

of liquid droplets of water-sodium dodecyl sulfate (SDS) liquid system, water-ethanol liquid 

system and alkanes (Figures 4.3a4.3c) on non-textured, non-polar slippery OTS-treated silicon 

wafers. For each liquid system, we looked at the influence of the liquid droplet volume on the 

sliding angle and the resolution of sorting. As anticipated by decreasing the liquid droplet 

volume, the sliding angle for each liquid droplet increases.33-34 Further, by decreasing the liquid 

droplet volume, the range of variation of sliding angles and so the sorting resolution increases. 

For example, the sliding angles for water-SDS liquid system on non-textured, non-polar 

slippery OTS-treated silicon wafer change between 6° to 13° for 20l liquid droplets, 11° to 22° 

for 10l liquid droplets and 24° to 85° for 2l liquid droplets (Figure 4.3a). However, it should 

be noted that the sliding velocity on liquid droplets with smaller volume is lower compared to 

larger volume droplets and sometimes the movement of droplet may not be clear or noticeable 



 

59 

without watching carefully at the motion of triple-phase contact line. Consequently, it requires 

better precision to sort liquid droplets with smaller volume based on their surface tension 

(particularly droplets with volume <2 l). Further, the easy sliding of water droplet (a 

representative high surface tension liquid; lv = 72 mN m−1) and n-decane droplet (a 

representative low surface tension liquid; lv = 20 mN m−1) on non-textured, non-polar slippery 

OTS-treated silicon wafers is demonstrated (see Figures 4.3d4.3e). 

 

Figure 4.3. Variation of sliding angle with volume on non-textured, non-polar slippery OTS-treated 

silicon wafer for a) water-SDS liquid system, b) water-ethanol liquid system and c) alkanes. A series of 

snapshots captured from the video showing the sliding of a 10 l d) water droplet (a representative high 

surface tension liquid) and e) n-decane droplet (a representative low surface tension liquid) on non-

textured, non-polar slippery OTS-treated silicon wafer tilted at 20° and 3° relative to horizontal, 

respectively. For each liquid, significant difference was observed between sliding angles of 10 l and 2 l 

droplets (p ≤ 0.05 at =0.05). Further, significant difference was observed between sliding angles of 

alkanes on OTS-treated silicon wafers for 2 l droplets (p ≤ 0.05 at =0.05). 

Further, we measured the sliding angle of liquid droplets of water-SDS liquid system, water-

ethanol liquid system and alkanes for 2, 5 and 10 l droplets (Figures 4.4a4.4c) on non-

textured, non-polar slippery FDTS-treated silicon wafers. Similar to OTS-treated silicon wafers, 
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on slippery non-textured FDTS-treated silicon wafers, the increase in the liquid surface tension 

and the decrease in liquid droplet volume result in the increase in the sliding angle for each 

liquid droplet. Water droplet and n-decane droplet can easily slide on slippery non-textured 

FDTS-treated silicon wafers (see Figures 4.4d4.4e) easily.  

 

Figure 4.4. Variation of sliding angle with volume on non-textured, non-polar slippery FDTS-treated 

silicon wafer for a) water-SDS liquid system, b) water-ethanol liquid system and c) alkanes. A series of 

snapshots captured from the video showing the sliding of a 10 l d) water droplet and e) n-decane droplet 

on non-textured, non-polar slippery FDTS-treated silicon wafer tilted at 30° and 10° relative to horizontal, 

respectively. For each liquid, significant difference was observed between sliding angles of 20 l, 10 l 

and 2 l droplets (p ≤ 0.05 at =0.05). Further, significant difference was observed between sliding 

angles of alkanes on FDTS-treated silicon wafers for 2 l droplets (p ≤ 0.05 at =0.05). 

Our results indicated that different surface chemistries may induce different sorting 

resolution for a particular liquid system. For example, for 10 l liquid droplets of different 

alkanes, the sliding angles change between 0.5° to 4° on non-textured, non-polar slippery OTS-

treated silicon wafers, but between 9° to 23° on non-textured, non-polar slippery FDTS-treated 

silicon wafers (Figures 4.3c and 4.4c). Further, our experimentally measured sliding angles 

match reasonably well with the predictions based on the work by Furmidge. It should be noted 
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that, the sorting resolution for water-SDS and water-ethanol liquid systems is comparable on 

both non-textured, non-polar slippery OTS- and FDTS-treated surfaces and either of these 

surfaces can be utilized for sorting of these liquid systems. 

4.6. A Device to Detect the Fuel Quality 

In order to design the fuel quality sensor, we measured the sliding angles of the fuel blends 

with different compositions (i.e., diesel-kerosene liquid system) for different droplet volumes on 

a non-textured, non-polar slippery OTS-treated silicon wafer (Figure 4.5a). The sliding angles 

for diesel-kerosene liquid system on non-textured, non-polar slippery OTS-treated silicon wafer 

change between 1° to 4° for 20l liquid droplets, 2° to 6° for 10l liquid droplets, 5° to 11° for 

5l liquid droplets and 9° to 25° for 2l liquid (Figure 4.5a). As anticipated the sliding angle 

decreases with both decreasing liquid surface tension and contact angle hysteresis. Based on the 

obtained values, non-textured, non-polar slippery OTS-treated silicon wafer cannot provide 

sufficient differences between the sliding angles of different compositions of fuel blends. 

Therefore, such surface is not a good candidate for detecting small differences in surface tension 

and consequently could not identify the adulteration of diesel blended with small amounts of 

kerosene. In addition, as discussed earlier, although the differences in sliding angles of diesel-

kerosene liquid system is relatively high (i.e., 9° to 25°) for 2l liquids, the motion of 2l liquid 

droplets cannot be clearly visualized. To resolve this issue, we utilized glass slides and fabricated 

them similar to silicon wafers to obtain non-textured, non-polar slippery OTS-treated glass 

substrate. We measured the sliding angles for diesel-kerosene liquid system on non-textured, 

non-polar slippery OTS-treated glass and observed the change in sliding angles between 5° to 

10° for 20l liquid droplets, 7° to 16° for 10l liquid droplets, 9° to 25° for 5l liquid droplets 

and 21° to 47° for 2l liquid (Figure 4.5b). Such differences between the sorting resolution of 
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non-textured, non-polar slippery OTS silicon wafer and glass can be attributed to the relatively 

higher surface roughness of OTS-treated glass slide (Rrms = 15.7±0.8 nm) compared to the OTS-

treated silicon wafer (Rrms = 3.6±0.5 nm). The relatively higher surface roughness on glass 

substrate results in higher contact angle hysteresis and consequently higher sliding angles for 

diesel-kerosene liquid systems. Therefore, non-textured, non-polar slippery OTS-treated glass 

substrates were chosen as the desired substrates for the fuel quality sensor based on their sorting 

resolution. It should also be noted that the droplets of diesel with different concentration of 

kerosene could not slide off from non-textured, non-polar slippery FDTS-treated silicon wafer or 

glass, likely due to the existing impurities (e.g., lead, sulfur, halogenated compounds, etc.) in fuel 

blends and their interaction with fluorocarbon surface chemistry. 

We designed a simple device consisting of different tilt angles for holding non-textured, non-

polar slippery OTS-treated glass substrates at certain angles relative to horizontal (Figure 4.5c) 

and fabricated it through 3D printing. The device with different tilt angles was fabricated using 

3D printer from acrylonitrile butadiene styrene (ABS) using uPrint SE (Stratasys, Eden Prairie, 

MN, USA). The 3D-printed device was designed with Creo Parametric software. For 

demonstration of fuel quality sensor, we placed three non-textured, non-polar slippery OTS-

treated glass substrates on the 3D-printed embedded stands corresponding to 12°, 15° and 20° tilt 

angles relative to the horizontal. First, three 5 l droplets of diesel + 25% kerosene (with lv = 

22.3 mN m−1) were placed on non-textured, non-polar slippery OTS-treated glass substrates 

(Figure 4.5d). As anticipated based on the measured sliding angles, Diesel + 25% kerosene liquid 

droplets slid off from all three 12°, 15° and 20° tilted non-textured, non-polar slippery OTS-

treated glass substrates (Figure 4.5d). After that, we placed three 5 l droplets of diesel + 10% 
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kerosene (with lv = 23.9 mN m−1) on the tilted non-textured, non-polar slippery OTS-treated 

glass substrates (Figure 4.5e). 

Figure 4.5. Variation of sliding angle with volume on non-textured, non-polar slippery OTS-treated a) 

silicon wafer substrate and b) glass substrate. c) A schematic of a field sensor with multiple angles 

sensing surfaces. (d-f) A series of snapshots captured from the video showing the fuel quality sensor. 

Three 5 l droplets of d) diesel + 25% kerosene, e) diesel + 10% kerosene and f) diesel + 5% kerosene are 

placed on non-textured, non-polar slippery OTS-treated glass substrates tilted at 12°, 15° and 20°, 

respectively. Diesel + 25% kerosene droplets slide from all three tilted glass substrates, while diesel + 

10% kerosene droplets slide only from 15° and 20° tilted glass substrates (and not 12° tilted glass 

substrate) and diesel + 5% kerosene droplets slide only from 20° tilted glass substrates (and not 12° and 

15° tilted glass substrates). No statistically significant difference was observed for diesel-kerosene 

mixtures on OTS-treated silicon wafer for 20 l and 10 l droplets. Further, significant difference was 

observed between sliding angles of diesel-kerosene mixtures on OTS-treated glass for 2 l droplets (p 

≤ 0.05 at =0.05). 

Diesel + 10% kerosene liquid droplets slid off only from 15° and 20° tilted non-textured, 

non-polar slippery OTS-treated glass substrates (and not from 12° tilted substrate). Finally, three 

5 l droplets of diesel + 5% kerosene (with lv = 24.5 mN m−1) were placed on the tilted non-

textured, non-polar slippery OTS-treated glass substrates and slid only from 20° tilted substrate 

(and not 12° and 15° tilted substrates; Figure 4.5f). In this manner, we demonstrated sorting of 
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fuel blends droplets based on their liquid composition which enables detecting the fuel 

adulteration. Such surfaces can be reused multiple times after completely washing and drying 

with ethanol and water solvents. 

4.7. Conclusions 

In conclusion, we fabricated non-textured, non-polar, slippery OTS and FDTS-treated 

surfaces that on which liquids with a wide range of surface tension can easily slide off. We 

discussed that the sliding angle of a liquid droplet on a slippery surface is strongly dependent on 

the liquid surface tension and contact angle hysteresis, which in turn depends on the composition 

of the liquid blend. Using such slippery surfaces and building on principles of sliding angles, we 

designed and fabricated a simple fuel sensor that can rapidly detect the composition of fuel 

blends. We demonstrated that our fuel sensor can detect small differences in surface tension and 

consequently could detect adulteration of diesel blended with small amounts of kerosene. In 

addition to detecting adulterated fuel, we envision that our methodology can also be used for 

personalized point-of-care diagnostic platforms, biochemical assays and biosensors. 
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CHAPTER 5  HEMOCOMPATIBILITY OF SUPERHEMOPHOBIC TITANIA 

SURFACES 

 

 

 

Summary: In this work, we investigated the blood platelet adhesion and activation of truly 

superhemophobic surfaces and compared them with that of hemophobic surfaces and hemophilic 

surfaces (published in Advanced Healthcare Materials, 2016; RSC Advances, 2017; Colloids 

and Surfaces B: Biointerfaces, 2018). Our analysis indicates that only those superhemophobic 

surfaces with a robust Cassie-Baxter state display significantly lower platelet adhesion and 

activation. We envision that the understanding gained through this work will lead to the 

fabrication of improved hemocompatible, superhemophobic medical implants. 

 

 

 

5.1. Introduction 

Titanium-based implants have received a great deal of attention for their biocompatibility 

with many different tissues in the human body. However, when these implants come in contact 

with blood, protein adsorption and platelet adhesion and activation occur, which may lead to 

further thrombosis and sometimes failure of these implants.1-6 It is well known that blood protein 

adsorption and platelet adhesion and activation can be tailored by tuning the chemistry and 

texture of surfaces.7-11 One strategy that has been recently receiving attention is improving 

hemocompatibility (e.g., reduced protein adsorption and platelet adhesion and activation) by 

employing superhydrophobic surfaces.8, 12-15 As described in chapter two, superhydrophobic 

surfaces display very high contact angles and very low roll off angles with water (a liquid with 

high surface tension, lv = 72.1 mN m-1).16-17 But superhydrophobic surfaces may not display 

high contact angles and more importantly very low roll off angles with blood (a liquid with 

relatively lower surface tension,18 lv ≈ 56 mN m-1). In this context, we define superhemophobic 

surfaces as surfaces that display very high contact angles (> 150°) and very low roll off angles (< 

10°) with blood. While there are a few studies19-21 investigating the hemocompatibility of 
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superhydrophobic titania surfaces, it is not clear from the reports whether they are 

superhemophobic or not. In this work, for the first time, we investigated the blood protein and 

platelet adhesion and activation of truly superhemophobic surfaces and compared them with that 

of hemophobic surfaces (i.e., surfaces display contact angles > 90° with blood) and hemophilic 

surfaces (i.e., surfaces display contact angles < 90° with blood). Further, we studied the bacteria 

adhesion and biofilm formation on superhydrophobic titania nanotube surfaces. For each of our 

surfaces, we characterized the wettability using contact angle goniometry, the surface chemistry 

using XPS, and platelet adhesion and activation using fluorescence microscopy and SEM. Based 

on our results, the blood protein and platelet adhesion and activation reduced on 

superhemophobic surfaces. However, our results indicate that not all superhemophobic titania 

surfaces lead to significantly reduced platelet adhesion and activation. Our analysis indicates that 

only those superhemophobic surfaces with a robust Cassie-Baxter state22 display significantly 

lower platelet adhesion and activation compared to hemophobic and hemophilic surfaces. 

Further, the bacteria adhesion and biofilm formation on superhydrophobic titania nanotube 

surfaces were lower compared to unmuddied titanium and unmodified nanotube arrays. We 

envision that the understanding gained through this work will lead to the fabrication of improved 

hemocompatible, superhemophobic medical implants. 

5.2. Design Principles 

As described in chapter two, when a liquid droplet is in Cassie-baxter state, pockets of air 

remain trapped underneath the liquid droplet introducing a composite liquid-air-solid interface. 

This greatly reduces the solid-liquid interfacial area, which in turn leads to high * and low roll 

off angles .23-26 Typically, the Cassie-Baxter state is preferred for designing super-repellent 

surfaces (e.g., superhydrophobic and superhemophobic surfaces). 16-17, 27 The Cassie-Baxter state 
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can be obtained by combining a surface chemistry possessing a low solid surface energy with an 

appropriate texture.28-29 

As discussed in chapter two, the Cassie-Baxter state is a metastable state.30-31 In order to have 

effective super-repellence to liquids, it is essential to have a robust Cassie-Baxter state with high 

Pbreakthrough. One measure of the robustness of Cassie-Baxter state is the robustness factor A*.32-33 

The robustness factor represents the ratio between the breakthrough pressure Pbreakthrough and 

reference pressure Pref = 2lv/lcap, where lcap =
lv

g




 is the capillary length, ρ is the liquid density 

and g is the acceleration due to gravity. The reference pressure is approximately the minimum 

possible pressure difference across the composite interface for millimetric or larger liquid 

droplets or puddles on extremely non-wetting textured surfaces. When a liquid is in the Cassie-

Baxter state on a textured solid, a generalized force balance across the composite (solid-liquid-

air) interface can be written as:32-33 

Pbreakthrough (Interfacial area) =  (Contact line length)     (5-1) 

Here,  is the sag angle of the liquid-vapor interface. For a textured solid composed of 

hexagonally packed textured surfaces
 
composed of discrete pillars (such as the textures used in 

this work), equation 5-1 can be written as: 

      sin636
2

RDRP
lvghbreakthrou

        (5-2)
 
 

Here, 2R is the pillar diameter and 2D is the inter-feature spacing (Figure 5.1). Solving for 

Pbreakthrough, we get: 

 2
3

cos

DR

R
P lv

ghbreakthrou 



         

(5-3) 

 
       

Here,  is the Young’s contact angle. The robustness factor A* is obtained as: 
 

lv sin
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Large values of A* (A* >> 1) imply a robust Cassie-Baxter state. On the other hand, values of 

A* < 1 imply that the composite interface cannot maintain its stability against small pressure 

differentials across the liquid-vapor interface and the Cassie-Baxter state is not robust. 32-33 

 

Figure 5.1. A textured solid composed of hexagonally packed pillars with diameter 2R and inter-feature 

spacing of 2D.  

5.3. Fabrication of Titania Surfaces 

In this work, we fabricated superhemophobic titania surfaces with different values of A* and 

compared their platelet adhesion and activation with hemophobic and hemophilic surfaces. In 

order to fabricate the hemophilic, hemophobic and superhemophobic titania surfaces, we 

employed three different morphologies – non-textured, nanoflowers and nanotubes – and for each 

morphology, three different surface chemistries – unmodified, PEGylated34 and fluorinated.35 We 

synthesized the non-textured titania surfaces via oxidation,36 titania nanoflower surfaces via 

hydrothermal synthesis37 and titania nanotube surfaces via electrochemical anodization.6  

Titanium sheets (8 mm long × 8 mm wide × 0.8 mm thick) were cleaned with soap, followed 

by sonication in acetone and isopropanol and then dried with nitrogen gas. Non-textured titania 

surfaces were fabricated by dipping cleaned titanium sheets in 1:1:20 HF:H2O2:H2O (by volume) 
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oxidizing solution for 10 seconds. Then, the samples were rinsed with de-ionized (DI) water and 

dried with nitrogen gas. For fabricating titania nanotubes, a two-electrode cell was used with the 

cleaned titanium sample as the anode and a platinum sheet as the cathode (Figure 5.2). The 

electrolyte was prepared by mixing 95% diethylene glycol with 2% hydrofluoric acid HF and 3% 

DI water. All experiments were carried out at room temperature, at 60 V for 24 h. After 

anodization, the samples were rinsed with isopropanol and dried with nitrogen gas. 

Subsequently, the substrates were annealed in oxygen ambient at 530 C for 6 h to obtain the 

titania nanotube arrays. Titania nanoflowers were fabricated as described in chapter three. 

 

Figure 5.2. Schematic depicting the fabrication of titania nanotubes. 

5.4. Surface Morphology, Surface Chemistry and Surface Wettability of Titania Surfaces 

SEM images show the nearly smooth morphology of non-textured titania surfaces (Figure 

5.3a), the textured morphology of titania nanoflowers with 2R ≈ 1 m (Figure 5.3b) and the 

textured morphology of titania nanotubes with 2R ≈ 0.25 m (Figure 5.3c). Subsequently, each 

titania morphology was left unmodified, PEGylated with a PEG silane and fluorinated with a 

fluorosilane. The titania surfaces were PEGylated via liquid phase silanization with 2 vol% 2-

[Methoxy (Polyethyleneoxy) propyl] trimethoxysilane in ethanol for 24 h. The titania surfaces 

were fluorinated via vapor phase silanization with 200 l of heptadecafluoro-1,1,2,2-
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tetrahydrodecyl trichlorosilane at 120C for 1 hour. We estimated the solid surface energy of our 

surfaces using Owens-Wendt analysis as described in chapter three. The solid surface energy of 

unmodified, PEGylated and fluorinated titania surfaces are sv = 40 mN m-1, sv = 51 mN m-1 and 

sv = 11 mN m-1, respectively. 

 

Figure 5.3. a), b) and c) SEM images showing the morphology of titania non-textured, titania 

nanoflowers and titania nanotubes, respectively. The root mean square roughness Rrms of each surface is 

shown. d), e) and f) High resolution C1s XPS spectra for unmodified, PEGylated and fluorinated titania 

surfaces, respectively. 

We chose to PEGylate and fluorinate the surfaces because the steric repulsion induced by the 

water-soluble PEG layer38-39 and the reduced interaction induced by the low solid surface energy 

of the fluorocarbons40-42 are known to reduce platelet adhesion and activation. The high 

resolution C1s spectra (Figures 5.3d5.3f) indicate the presence of the characteristic –CO groups 

on PEGylated surfaces43 and the characteristic –CF2 and –CF3 groups on fluorinated surfaces.44 

We characterized the wettability of all titania surfaces (i.e., different morphologies and surface 

chemistries) by measuring the contact angles and roll off angles of human blood plasma in Table 
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5.1. The characterization techniques including optical profilometery, SEM, XPS and contact 

angle goniometry were performed as described in chapter three. Based on the contact angles, all 

unmodified and PEGylated surfaces (non-textured, nanoflowers and nanotubes) are hemophilic, 

fluorinated non-textured surfaces are hemophobic, and fluorinated nanoflower and fluorinated 

nanotube surfaces are superhemophobic. Human blood plasma droplets are in the Wenzel state 

on the unmodified nanoflower and nanotube surfaces and the PEGylated nanoflower and 

nanotube surfaces. In contrast, human blood plasma droplets are in the Cassie-Baxter state on the 

fluorinated nanoflower and nanotube surfaces and consequently, these surfaces are 

superhemophobic. As might be anticipated, on superhemophobic titania surfaces, blood droplets 

can easily roll off. 

Table 5.1. Contact angles and roll off angles of human blood plasma on all the titania surfaces fabricated 

in this work. NR implies no roll off. 

 Contact angles and roll off angles 

 Non-textured Nanoflower Nanotube 

Unmodified 


=61, NR
Hemophilic 

 


*,NR
Hemophilic 

 


*,NR
Hemophilic 

 

PEGylated 

 

=31, NR
Hemophilic 

 

*,NR
Hemophilic 

 

*,NR
Hemophilic 

 

Fluorinated 

 

=97, NR
Hemophobic 

 

*, = 7°
Superhemophobic 

 

*,= 5°
Superhemophobic 

 

5.5. Platelet Adhesion 

After surface fabrication and characterized, the titania samples were sterilized and incubated 

for 2 h in human blood plasma. Whole blood was drawn from a healthy individual with care to 

avoid locally activated platelets and centrifuged in vials at 300g for 15 min to separate the human 

blood plasma from the erythrocytes. Sterilized titania surfaces (washed in 70% ethanol, then in 
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PBS and air dried) were incubated in 1 ml of the plasma in a 24-well plate at 37°C and 5% CO2 

on a horizontal shaker plate (100 rpm) for 2 h. After incubation of titania surfaces in human 

blood plasma, the unadhered platelets were removed by gently rinsing with PBS. Adhered 

platelets were fixed in a 3.7 wt % formaldehyde in PBS solution for 15 min and subsequently 

washed multiple times with PBS. The cell membranes were permeabilized using 1% Triton-X in 

PBS for 3 min. The titania surfaces were then incubated in PBS solutions containing 500 l of 

rhodamine phalloidin (cytoskeleton red stain) for 25 min. The surfaces were subsequently rinsed 

with PBS and imaged using a fluorescence microscope (Zeiss). The % area of adhered platelets 

fadh was obtained using ImageJ software. In order to evaluate the platelet adhesion, we measured 

the % area of adhered platelets fadh using fluorescence microscopy (Figure 5.4a5.4i). Among the 

non-textured titania surfaces (Figure 5.4a4c), the PEGylated and the fluorinated surfaces 

resulted in a 5% and 10% lower fadh, respectively, compared to the unmodified surfaces. The 

slightly lower fadh on the PEGylated and the fluorinated surfaces is due to the steric repulsion 

induced by the water-soluble PEG layer and the reduced interaction induced by the low solid 

surface energy of the fluorocarbons, respectively. Among the unmodified titania surfaces 

(Figures 5.4a5.4g), the nanoflower and nanotube surfaces resulted in 6% and 5% higher fadh, 

respectively, compared to the non-textured surfaces. The slightly higher fadh on the nanoflower 

and nanotube surfaces is due to the higher blood-solid interfacial area resulting from the Wenzel 

state. Similarly, among the PEGylated titania surfaces (Figures 5.4b5.4h), the nanoflower and 

nanotube surfaces resulted in 10% and 7% higher fadh, respectively, compared to the non-textured 

surfaces due to the higher blood-solid interfacial resulting from the Wenzel state. Among the 

fluorinated titania surfaces (Figures 5.4c5.4i), the superhemophobic nanoflower and 

superhemophobic nanotube surfaces resulted in 15% and 67% lower fadh, respectively, compared 
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to the non-textured surfaces. The lower fadh on the superhemophobic nanoflower and 

superhemophobic nanotube surfaces is due to the lower blood-solid interfacial resulting from the 

Cassie-Baxter state. 

 
Figure 5.4. Fluorescence microscope images showing platelet adhesion for all the titania surfaces. a), b) 

and c) Unmodified, PEGylated and fluorinated non-textured surfaces, respectively. d), e) and f) 

Unmodified, PEGylated and fluorinated nanoflower surfaces, respectively. g), h) and i) Unmodified, 

PEGylated and fluorinated nanotube surfaces, respectively. Significant differences were observed 

between % area of adhered platelets on fluorinated non-textured, nanoflowers and nanotubes surfaces (p ≤ 
0.05 at =0.05). 

5.6. Whole Blood Clotting  

We compared the whole blood clotting on our hemophilic, hemophobic and 

superhemophobic surfaces by measuring the free hemoglobin concentration. In a typical 

experiment, whole human blood was drawn from a healthy individual, and 5 L of the blood was 

immediately placed on unmodified non-textured, nanoflower and nanotube surfaces as well as 



 

76 

fluorinated non-textured, nanoflower and nanotube surfaces contained in a 48-well plate. The 

blood was allowed to clot on the surfaces for 15 min at room temperature. Subsequently, 500 L 

of deionized water was added to each well. The surfaces were gently agitated for 30 s and left in 

DI water for 5 min to release free hemoglobin from red blood cells that were not trapped in the 

thrombus. To measure the free hemoglobin concentration, 200 L of the solution in each well 

was then transferred into a 96-well plate. The absorbance of the solution with free hemoglobin 

was measured at a wavelength of 540 nm using a plate reader. The value of absorbance is 

directly proportional to the concentration of free hemoglobin in DI water and is an inverse 

measure of the degree of clotting. 

Our results (see Table 5.2) indicate that the amount of free hemoglobin is slightly higher (i.e., 

blood clotting is slightly lower) for the fluorinated non-textured titania surfaces compared to the 

unmodified non-textured titania surfaces. Further, the amount of free hemoglobin on unmodified 

textured (i.e., nanoflower and nanotube) titania surfaces is lower (i.e., blood clotting is higher) 

compared to unmodified non-textured titania surfaces. Due to the superhemophobicity of the 

fluorinated nanoflower and fluorinated nanotube surfaces, blood droplets immediately rolled off 

and did not remain on these surfaces even when they are horizontal, possibly indicating low 

potential for blood clotting. However, rigorous blood clotting experiments via immersion could 

not be conducted because our substrates are not textured on all sides. These whole blood clotting 

results are consistent with our platelet adhesion and activation results. The platelet adhesion 

results are consistent with our whole blood clotting results. Among the superhemophobic 

surfaces, the nanoflower surfaces display significantly higher platelet adhesion compared to the 

nanotube surfaces. This will be discussed further later. In order to investigate platelet activation, 

the titania samples were sterilized and incubated for 2 h in human blood plasma and the fixed 
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surfaces were subsequently studied using a SEM. Prior to imaging the platelet activation, the 

incubated titania surfaces were gently rinsed with PBS to remove the unadhered platelets. The 

adhered platelets were first fixed in a primary fixative (6% glutaraldehyde, 0.1 M sodium 

cacodylate, and 0.1 M sucrose) for 45 min and then in a secondary fixative (primary fixative 

without glutaraldehyde) for 10 min. The surfaces were then dehydrated in consecutive solutions 

of ethanol (35%, 50%, 70%, and 100%) for 10 min each and finally in a solution of 

hexamethyldisilazane for 10 min. The surfaces were then air-dried and imaged.  

Table 5.2. Free hemoglobin concentration (measured as absorbance) after clotting experiments on various 

surfaces. 

Surface 

Free hemoglobin conc. (measured as absorbance) 

Before clotting After clotting 

Unmodified non-textured surface 3.0±0.2 0.6±0.1 

Fluorinated non-textured surface 3.0±0.2 1.0±0.3 

Unmodified nanoflower surface 3.0±0.2 0.5±0.2 

Unmodified nanotube surface 3.0±0.2 0.5±0.2 

5.7. Platelet Activation  

Typically, platelet activation manifests as change in platelet shape, including dendritic 

extensions6, 45and platelet aggregation.46-47 Our results indicate that all unmodified titania 

surfaces (Figures 5.5a5.5g) display both dendritic extensions and aggregation. The PEGylated 

non-textured surfaces (Figure 5.5b) display aggregation, PEGylated nanoflower surfaces (Figure 

5.5e) display dendritic extensions and the PEGylated nanotube surfaces (Figure 5.5h) display 

both dendritic extensions and aggregation. In other words, all hemophilic surfaces (Figures 

5.5a5.5b, Figures 5.5d5e, Figures 5.5g5h) display platelet activation. In addition, the 
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fluorinated non-textured hemophobic surfaces also display platelet activation via dendritic 

extensions and aggregation (Figure 5.5c). Among the superhemophobic surfaces, the fluorinated 

nanoflower surfaces (Figure 5.5f) display platelet activation via aggregation, but the fluorinated 

nanotube surfaces display no platelet activation. 

 
Figure 5.5. SEM images showing platelet activation (enclosed by dotted lines in red) on the titania 

surfaces. a), b) and c) Unmodified, PEGylated and fluorinated non-textured surfaces, respectively. d), e) 

and f) Unmodified, PEGylated and fluorinated nanoflower surfaces, respectively. g), h) and i) 

Unmodified, PEGylated and fluorinated nanotube surfaces, respectively. 

5.8. Robustness Factor A* 

While both fluorinated nanoflower surfaces and fluorinated nanotube surfaces are 

superhemophobic, the fluorinated nanoflower surfaces display significantly higher platelet 

adhesion and activation compared to the fluorinated nanotube surfaces. This can be explained in 

terms of robustness of the Cassie-Baxter state for these two surfaces. The robustness factor A* 

values for superhemophobic surfaces titania nanoflowers and titania nanotubes are calculated 
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using Equation 5-4. For human blood plasma, the density  = 1025 kg m-3 48 and the surface 

tension lv = 56mN m-1.18 For human blood plasma, we obtained the capillary length lcap = 2.36 

mm. We assumed that the Young’s contact angle of human blood plasma on fluorinated titania 

surface is approximately equal to the static contact angle  of human blood plasma on the 

non-textured fluorinated titania surface (see Table 5.1).  

 
Figure 5.6. SEM images of – a) Titania nanotubes and b) Titania nanoflowers. 

For titania nanotubes (Figure 5.6a), the feature size (i.e., nanotube diameter) 2R ≈ 0.25 μm 

and the inter-feature spacing 2D ≈ 0.15 μm. For titania nanoflowers (Figure 5.6b), the feature 

size (i.e., nanoflower diameter) 2R ≈ 1 μm, but there is a significant variation in the inter-feature 

spacing 2D ≈ 0.4 μm to 10 m. Using the above listed values, we estimated the robustness factor 

A* for superhemophobic titania nanotube and titania nanoflower surfaces (see Table 5.3). 

For titania nanotubes, the feature size (i.e., nanotube diameter) 2R ≈ 0.25 m and the inter- 

feature spacing 2D ≈ 0.15 m, resulting in a highly robust Cassie-Baxter state for human blood 

plasma with A* ≈ 815. For titania nanoflowers, the feature size (i.e., nanoflower diameter) 2R ≈ 1 

m and the inter-feature spacing 2D ≈ 0.4 m to 10 m, resulting in A* ≈ 266 to 4. In other 

words, due to the large variation in the inter-feature spacing, there is a large variation in the 
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robustness of the Cassie-Baxter state for the fluorinated nanoflower surfaces. When such 

fluorinated nanoflower surfaces are subjected to shaking during incubation, the human blood 

plasma can easily breakthrough and transition from the Cassie-Baxter state to the Wenzel state in 

local pockets with low robustness (e.g., A* ≈ 4) of the Cassie-Baxter state. These local Wenzel 

states lead to higher blood-solid interfacial area and consequently higher platelet adhesion and 

activation for the fluorinated nanoflower surfaces compared to the fluorinated nanotube surfaces 

with a complete and robust Cassie-Baxter state. These results indicate that not all 

superhemophobic titania surfaces lead to significantly reduced platelet adhesion and activation. 

Further, our analysis indicates that only those superhemophobic surfaces with a robust Cassie-

Baxter state display significantly lower platelet adhesion and activation compared to hemophobic 

and hemophilic surfaces. 

Table 5.3. The estimated robustness parameter A* for titania nanotubes and nanoflowers. 

Texture 2R (m) 2D (m) A* 

Nanotubes 0.25 0.15 815 

Nanoflowers 1 0.4 to 10 266 to 4 

5.9. Protein Adsorption 

In collaboration with Dr. Popat research group, we have investigated the adsorption of 

human fibrinogen and human serum albumin on superhemophobic titania nanotube surfaces 

using XPS. Protein adsorption on sterilized substrates was characterized using the process 

described elsewhere.1, 49 A precise way to characterize proteins adsorbed on the surface is to 

determine the contribution of N–CO (amide) peak in the overall C 1s peak (Figure 5.7a). The 

results indicate that the unmodified titanium (Ti) had the highest fibrinogen adsorption, followed 

by unmodified nanotube arrays (NT) and superhemophobic nanotube surfaces (S-NT). The high-
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resolution N 1s peak, which is characteristic to proteins as it is not inherently present on any 

surface, followed similar trend as that of N–CO peak (Figure 5.7b). The albumin adsorption 

followed similar trend as that of fibrinogen adsorption with higher adsorption on Ti, followed by 

NT and S-NT.  

 
Figure 5.7. High resolution C 1s and N 1s scans for albumin adsorption on unmodified titanium (Ti), 

unmodified nanotube arrays (NT) and superhemophobic nanotube surfaces (S-NT). 

5.10. Bacteria Adhesion 

In collaboration with Dr. Popat research group, we have investigated the ability of 

superhydrophobic titania nanotube arrays to prevent initial gram-positive and gram-negative 

bacterial adhesion and further biofilm formation and have compared the results with unmodified 

titanium and unmodified nanotube arrays. Fluorescence microscopy was used to investigate the 

adhesion of S. aureus and P. aeruginosa bacteria to studied surfaces. The results for S. aureus 

indicated that the adhesion of live (green) and dead (red) bacteria was highest on Ti after 24 h of 

culture as compared to all other surfaces (Figure 5.8) followed by lower adhesion on NT surfaces 

(p < 0.05). Further, S-NT showed the least adhesion of S. aureus compared to all other surfaces 

after 6 and 24 h of culture (Figure 5.8; p < 0.05). Similar results were observed with P. 

aeruginosa. In addition, S-NT showed almost no biofilm formation after 24 h for S. aureus and 

P. aeruginosa bacteria. The reduction in bacteria adhesion on the S-NT can be attributed to the 
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reduced surface energy of the superhydrophobic surfaces along with their tendency to reduce 

protein adsorption to the surface which makes it more difficult for bacteria to adhere, reducing 

adhesion and making it easier to remove those that do attach.51-53  

 
Figure 5.8. Representative fluorescence microscopy images of S. aureus on different surfaces after 6 h 

and 24 h of culture. Green stain represents live bacteria and red stain represents dead bacteria. 

5.11. Conclusions 

In summary, we fabricated hemophilic, hemophobic and superhemophobic titania surfaces by 

employing three different morphologies – non-textured, nanoflowers and nanotubes – and for 

each morphology, three different surface chemistries – unmodified, PEGylated and fluorinated. 

For each of our titania surfaces, we characterized the wettability using contact angle goniometry, 

the surface chemistry using XPS, and platelet adhesion and activation using fluorescence 

microscopy and SEM. Our results indicate that although the protein adsorption and platelet 

adhesion and activation is reduced on superhemophobic surfaces, not all superhemophobic 

titania surfaces lead to significantly reduced platelet adhesion and activation. Our analysis 

indicates that only those superhemophobic surfaces with a robust Cassie-Baxter state display 
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significantly lower platelet adhesion and activation compared to hemophobic and hemophilic 

surfaces. Further, the bacteria adhesion and biofilm formation on superhydrophobic titania 

nanotube surfaces were lower compared to unmuddied titanium and unmodified nanotube arrays. 

We envision that the understanding gained through this work will lead to the fabrication of 

improved hemocompatible, superhemophobic medical implants. 
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CHAPTER 6  INFLUENCE OF SUPERHYDROPHOBIC RIDGE GEOMETRY ON 

THE CRITICAL SPLITTING HEIGHTS OF WATER DROPLETS 

 

 

 

Summary: In this work, we demonstrated that for each ridge angle, as the ridge height 

increases the critical splitting height decreases. However, this reduction turns into a plateau 

beyond a certain ridge height which is a function of droplet volume, because the two lobes of 

droplet do not touch the flat surfaces anymore. Further, our results indicate that a water droplet 

impacting a superhydrophobic ridge splits when Wec ~ O(1), regardless of the ridge geometry 

(manuscript under preparation for Journal of Fluid Mechanics).  

 

 

 

6.1. Introduction 

In recent years, several studies have investigated the impingement of liquid droplets on 

superhydrophobic surfaces and the dynamic behavior of droplets upon interaction with such 

surfaces.1-8 The interaction of superhydrophobic surfaces with impinging droplets is governed by 

physics and chemistry of the surface (e.g., surface wettability, surface topography, surface 

modulus, surface charge, surface temperature etc.), the properties of impinging liquid (e.g., 

surface tension, density, viscosity, volume etc.) as well as the impinging velocity of the droplet.4, 

9-11 It has been shown that tuning the interaction of superhydrophobic surfaces with impinging 

droplets can lead to different dynamic behavior of droplets such as droplet bouncing off the 

surface,5, 12-13 pancake bouncing,14-15 droplet breaking,16 droplet splitting,17-19 droplet splashing20 

or even sticking12, 20 to the surface. Based on the dynamic behavior of the droplet upon impinging 

the superhydrophobic surfaces, various potential applications such as self-cleaning, anti-icing, 

microfluidics etc. have been suggested.12, 21 
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One of the dynamic behaviors of impinging droplets is droplet splitting upon impinging a 

superhydrophobic ridge like structures (nano- or micro-texture) or wires on a flat surface,17-18, 22-

23 or superhydrophobic/hydrophilic patterned stripes.19, 24 Among the prior work on droplet 

splitting, a few reports have shown that a water droplet can split into two smaller droplets after 

hitting the superhydrophobic ridge and reported that such splitting leads to reduced water-solid 

contact time by about 40%.17-18 Such reduction in droplet-solid contact time is important because 

it can prevent droplets from freezing when contacting cold surfaces (e.g., preventing the 

formation of ice from rain droplets). However, to the best of our knowledge, there are no scaling 

analyses to predict the critical splitting height (i.e., the height above which splitting occurs) for 

liquid droplets on superhydrophobic surfaces. Further, the influence of the ridge geometry (i.e., 

ridge height and ridge angle) on the splitting height of liquid droplets hitting a macroscopic ridge 

has not been investigated. In this work, we have studied the critical splitting height of water 

droplets impacting a superhydrophobic macroscopic ridge on a flat surface. We demonstrated 

that for each ridge angle, as the ridge height increases the critical splitting height decreases. 

However, this reduction turns into a plateau beyond a certain ridge height which is a function of 

droplet volume, because the two lobes of droplet do not touch the flat surfaces anymore. Further, 

our results indicate that a water droplet impacting a superhydrophobic ridge splits when Wec ~ 

O(1), regardless of the ridge geometry. 

6.2. Droplet Splitting  Theory 

When a liquid droplet impacts a superhydrophobic ridge, the droplet splits if the inertial 

forces (or kinetic energy) of the impacting droplet can overcome the surface tension forces (or 

surface energy expended in deforming a droplet) and the viscous forces (or viscous dissipation). 

The energy balance can be represented as follows: 
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3 2 2 2~c cR V R V R             (6-1) 

Here, , and are density, surface tension and viscosity of the liquid, respectively. R is the 

radius of liquid droplet. Vc is the critical initial velocity of the liquid droplet at which splitting 

occurs and will be calculated using c cV gH 2 , g and Hc being the acceleration due to gravity 

and critical splitting height, respectively. The term on the left-hand side represents the kinetic 

energy. The first term on the right-hand side represents the surface energy and the second term 

represents the viscous dissipation. Equation 6-1 can be rewritten in a non-dimension form, as 

follows: 

2

~ 1c cRV V 
 

            (6-2) 

~ 1c cWe Ca             (6-3) 

Here, Wec, is the critical Weber number at which splitting occurs, Wec=

2

cRV


 and Cac is the 

critical capillary number at which splitting occurs, Cac =
cV


. In all the experiments we have 

conducted with water impacting a superhydrophobic ridge, the capillary number is negligible, Ca 

< 0.01. Consequently, the energy balance shown in equation 6-3 simplifies as: 

~ 1cWe            (6-4) 

Therefore, based on equation 6-4, droplet splitting is anticipated to occur when Wec ~ O(1). 
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6.3. Fabrication of Superhydrophobic Ridges 

In this work, we fabricated superhydrophobic surfaces by spray coating the substrates with 

fluorinated SiO2 particles. 300 mg of fumed silica particles (diameter ~7 nm; Sigma Aldrich) 

were functionalized in a solution consisting of 10 mL n-Hexane (Fisher) and 0.3 mL 

heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane (Gelest) for three days to form a 

suspension of fluorinated silica (F-SiO2) particles. To fabricate the superhydrophobic surface, 

first, a glue layer (Gorilla glue; polyurethane adhesives) was spin coated on the ridge at 5000 

rpm for 120 s to make sure a very thin layer of adhesive was distributed on the ridge (Figure 

6.1a). Immediately after spin coating of the adhesive layer (i.e., before adhesive layer was dried), 

the suspension of F-SiO2 particles was spray coated on the adhesive layer (Figure 6.1b). Spray 

coating was done at a pressure of 30 psi using an air brush (Paasche) held 10 cm from the surface 

(Figure 6.1b). The surface was then allowed to dry at room temperature. The resulting surfaces 

was superhydrophobic to water droplets (Figure 6.1c). Further, we used SEM to assess the 

surface morphology and uniformity of the coating (Figure 6.1d).  

In order to investigate the influence of ridge geometry on critical splitting height, we 

fabricated ridges with different angles on aluminum bars (6061 aluminum alloy) using a belt 

grinder. We chose aluminum as our substrate due to the ease of machining.25 In order to 

systematically investigate the influence of ridge angle r on critical splitting height Hc, we 

fabricated ridges with angles of 35, 70, 90, 115 and 140. For each ridge angle r, different 

ridge heights hr were achieved using a simple set-up shown in figure 6.2. In this set-up, the ridge 

was placed on a micrometer jack, and two sharp angles flat aluminum sheets (fabricated with a 

CNC machine and an angled cutter) were placed on two stands on the either sides of the ridge, in 
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contact with the ridge (Figure 6.2). We ensured that there is no gap between the ridge and the flat 

sheets.  

 

Figure 6.1. Schematic illustrating the fabrication of a superhydrophobic surface. The superhydrophobic 

surface was fabricated by first, a) spin coating of a glue layer on substrate, followed by b) spray coating 

F-SiO2 particles on the substrate with a glue layer. c) Colored water droplets can easily bead up on 

superhydrophobic surface. d) SEM image indicates the surface morphology of the superhydrophobic 

surface.  

In our set-up, the micrometer jack enables the moving of the ridge vertically and precise 

control over the ridge height. In order to systematically investigate the influence of ridge height 

hr on the critical splitting height Hc of a droplet, we conducted experiments at 0.5, 1, 1.5, 2, 2.5, 

and 3 mm ridge heights. Based on the droplet volume (10 l), the effect of ridge heights hr 

higher than 3 mm on critical splitting height Hc is anticipated to be negligible because the droplet 

lobes cannot reach the flat sheets anymore. We utilized a syringe pump to dispense liquid 

droplets with consistent volume to minimize the influence of volume variation on the results 
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(Figure 6.2). The volume of liquid droplets was kept constant at 10 l. Also, the syringe pump 

was placed on an adjustable stage to enable controlling the initial droplet height H. Each ridge 

and flat substrates were then spray coated with F-SiO2 particles to become superhydrophobic. 

 

Figure 6.2. Schematic illustrating the experimental set-up. The triangular prism-like ridge and flat 

substrates enable controlling the ridge height.  

6.4. Droplet Splitting - Experiments 

After fabricating the superhydrophobic ridges and flat sheets and establishing the 

experimental set-up, we utilized a high-speed camera (Photron FASTCAM SA3) to capture the 

liquid droplets hitting on the ridge (Figure 6.2.). The videos were recorded at 2000 frames per 
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second and 640x640 resolution to ensure that the droplet impact dynamics are captured with 

sufficient time and spatial resolution for further analysis. Two light sources were used to provide 

the movies with proper light and prevent any possible shadows. The high-speed camera was 

placed at the same level and perpendicular to the ridge set-up to eliminate any possible errors 

resulting from the camera angle. The calibration of videos was conducted by capturing pictures 

of a ruler held at the same place that the experiments occur. The movies were analyzed using 

PFV Ver.3641 software to measure precise splitting heights H.  

 

Figure 6.3. 10 l water droplets hitting a macroscopic ridge on a superhydrophobic surface. Water 

droplet a) bouncing back as a single droplet after hitting the ridge with H = 6.24 mm, We = 2.3 and b) 

splitting into two droplets after hitting the ridge with Hc = 6.58 mm, Wec = 2.4, on the same ridge with 

r35°, hr  1 mm. Water droplet c) bouncing back as a single droplet after hitting the ridge with H = 

5.64 mm, We = 2.1 and d) splitting into two droplets after hitting the ridge with Hc = 5.97 mm, Wec = 2.2,  

on the same ridge with r90°, hr  1 mm. 

Utilizing superhydrophobic macroscopic ridges on flat surfaces, we systematically 

investigated the critical splitting heights Hc of 10 l water droplets on ridges with different 

geometries. First, the splitting of water droplets on superhydrophobic macroscopic ridges on flat 

surfaces with same ridge height hr, but different ridge angle r is demonstrated in figure 6.3. For 
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example, on the superhydrophobic macroscopic ridge on flat surface with r= 35° and hr = 1 

mm, for a releasing height of H = 6.24 mm above the ridge (corresponding to We = 2.3), the 

water droplet bounces back as a single droplet after hitting the ridge (Figure 6.3a), while on the 

same ridge but for a higher releasing height (critical releasing height) Hc = 6.58 mm above the 

ridge (corresponding to Wec = 2.4), water droplet splits into two smaller droplets after hitting the 

ridge (Figure 6.3b). As another example, on the superhydrophobic macroscopic ridge on flat 

surface with r = 90° and hr = 1 mm, for a releasing height of H = 5.64 mm above the ridge 

(corresponding to We = 2.1), the water droplet bounces back as a single droplet after hitting the 

ridge (Figure 6.3c), while on the same ridge but for a higher releasing height (critical releasing 

height) Hc = 5.97 mm above the ridge (corresponding to Wec = 2.2), water droplet splits into two 

smaller droplets after hitting the ridge (Figure 6.3d). In this manner, the critical splitting height 

Hc and critical Weber number Wec were determined for different ridge heights hr of each ridge 

angle r. 

Second, we demonstrated the splitting of water droplets on superhydrophobic macroscopic 

ridges on flat surfaces with same ridge angle r, but different ridge height hr, in figure 6.4. For 

example, on the superhydrophobic macroscopic ridge on flat surface with r = 70° and hr = 0.5 

mm, for a releasing height of H = 9.74 mm above the ridge (corresponding to We = 3.6), the 

water droplet bounces back as a single droplet after hitting the ridge (Figure 6.4a), while on the 

same ridge but for a higher releasing height (critical releasing height) Hc = 9.88 mm above the 

ridge (corresponding to Wec = 3.7), water droplet splits into two smaller droplets after hitting the 

ridge (Figure 6.4b). As another example, on the superhydrophobic macroscopic ridge on flat 

surface with r = 70° and hr = 1 mm, for a releasing height of H = 5.69 mm above the ridge 

(corresponding to We = 2.1), the water droplet bounces back as a single droplet after hitting the 
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ridge (Figure 6.4c), while on the same ridge but for a higher releasing height (critical releasing 

height) Hc = 5.92 mm above the ridge (corresponding to Wec = 2.2), water droplet splits into two 

smaller droplets after hitting the ridge (Figure 6.4d). As previously mentioned, the critical 

splitting height Hc and critical Weber number Wec were determined for different ridge heights hr 

and different ridge angles r. 

 

Figure 6.4. 10 l water droplets hitting a macroscopic ridge on a superhydrophobic surface. Water 

droplet a) bouncing back as a single droplet after hitting the ridge with H = 9.74 mm, We = 3.6 and b) 

splitting into two droplets after hitting the ridge with Hc = 9.88 mm, Wec = 3.7, on the same ridge with 

r70°, hr = 0.5 mm. Water droplet c) bouncing back as a single droplet after hitting the ridge with H = 

5.69 mm, We = 2.1 and d) splitting into two droplets after hitting the ridge with Hc = 5.92 mm, Wec = 2.2, 

on the same ridge with r70°, hr = 1 mm. 

6.5. Droplet Splitting - Results 

To further investigate the influence of ridge geometry on critical splitting height Hc, we 

plotted Hc as a function of ridge height hr, for different ridge angles r (Figure 6.5). Our results 

indicate that for each ridge angle r, as the ridge height hr increases the critical splitting height 

Hc decreases. However, this reduction turns into a plateau beyond a certain ridge height hr. For 
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example, on the superhydrophobic macroscopic ridge on flat surface with r = 70°, but different 

ridge heights hr = 2 mm, hr = 2.5 mm and hr = 3 mm for a certain critical releasing height of Hc = 

4.3 mm above the ridge, water droplet splits into two smaller droplets after hitting the ridge 

(Figures 6.6a  6.6c). This happens because beyond a certain ridge height hr, which is a function 

of the droplet volume, the two lobes of droplet do not touch the flat surfaces anymore. Therefore, 

the droplet interacts only with the ridge and not the flat surfaces. Consequently, beyond a certain 

ridge height hr, by increasing the ridge height hr, there is no change in critical splitting height Hc. 

Further, beyond ridge height of hr = 1 mm for r = 115° and r = 90° and beyond ridge height of 

hr = 1.5 mm for r = 70° and r = 35°, no statistically significant difference was observed 

between the critical splitting height of water droplets. 

 

Figure 6.5. Critical splitting height Hc as a function of Ridge geometry.  
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Figure 6.6. Water droplet splitting into two droplets after hitting the ridge with Hc = 4.3 mm, on the same 

ridge with r70°but different ridge heights a) hr = 2 mm, b) hr = 2.5 mm and c) hr = 3 mm. As the ridge 

height increases, there is no change in the critical splitting height Hc because the two lobes of the droplet 

cannot touch the flat surfaces. 

 

Figure 6.7. The variation of critical Wec as a function of ridge heights hr for different ridge angles r. 

As previously mentioned (in section 6.2), we have discussed that a droplet impacting a 

superhydrophobic ridge splits when the inertial forces overcome the capillary forces. In other 

words, the droplet splits when Wec ~ O(1) (see equation 6-4). In order to verify whether our 

experimental results agree with this theoretical prediction, we have plotted the critical Wec as a 

function of ridge heights hr for different ridge angles r (Figure 6.7). Our results indicate that 
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experimental results indeed agree with theoretical prediction of Wec ~ O(1), regardless of the 

ridge geometry. 

6.6. Conclusions 

In summary, in this work, we studied the splitting of water droplets on superhydrophobic 

macroscopic ridge on flat surfaces. We demonstrated that for each ridge angle, as the ridge 

height increases the critical splitting height decreases. However, this reduction turns into a 

plateau beyond a certain ridge height which is a function of droplet volume, because the two 

lobes of droplet do not touch the flat surfaces anymore. Further, our results indicate that a water 

droplet impacting a superhydrophobic ridge splits when Wec ~ O(1), regardless of the ridge 

geometry. 
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CHAPTER 7  CONCLUSIONS AND FUTURE WORK 

 

 

  

The tailored surface wettability, achieved by tuning the surface chemistry and surface 

texture, results in tunable interaction between the surface and the contacting liquid droplets. Thus 

far, the tailored wettability of liquid-repellent surfaces has been employed for various novel 

applications such as patterned surfaces for enhanced heat transfer, oil-water separation 

membranes, droplet manipulation and controllable adhesion and more applications yet to come. 

The research presented herein summarizes the fundamentals of tuning the interaction of droplets 

with liquid-repellent surfaces and provides some of its subsequent applications. In this chapter, 

the contributions of this work to fundamental science and applied science is highlighted and the 

potential aspects of this work for future investigation is presented. 

7.1. Contributions to Fundamental and Applied Sciences 

Through this research effort, the following contributions to fundamental science and applied 

science were made: 

(i) New methodology to sort liquid droplets based on their surface tension: 

Contributions to fundamental science: We have demonstrated that in systems with no 

specific solid–liquid interactions, liquids with lower surface tension adhere more to a 

super-repellent surface (i.e., display less mobility) and liquids with higher surface 

tension adhere less (i.e., display higher mobility). This is because liquids with lower 

surface tension spread more on the surface, which results in higher width of solid–

liquid–vapor contact line and higher contact angle hysteresis. 
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Contributions to applied science: We fabricated a simple device with precisely 

tailored solid surface energy domains that, for the first time, can sort droplets by 

surface tension. Further, we envision that our methodology for droplet sorting will 

enable inexpensive and energy-efficient analytical devices for personalized point-of-

care diagnostic platforms, lab-on-a-chip systems, biochemical assays and biosensors. 

(ii) New approach to detect the quality of fuel blends:  

Contributions to fundamental science: We demonstrated that increasing the stiffness 

of the non-polar functional groups, increasing the surface roughness and decreasing 

the droplet volume can enhance the differences in contact angle hystereses and 

droplet mobilities of liquid droplets with different surface tensions on non-textured, 

non-polar liquid-repellent surfaces.  

Contributions to applied science: We employed liquid repellent (e.g., non-textured, 

non-polar slippery) surfaces to fabricate a simple, field-deployable, low-cost device to 

rapidly detect the quality of fuel blends (e.g., diesel-kerosene blends with different 

compositions) by sensing their surface tension with significantly improved resolution.  

(iii) Novel materials with improved hemocompatibility:  

Contributions to fundamental science: We demonstrated that only those 

superhemophobic surfaces with high breakthrough pressure and a robust Cassie-

Baxter state have the potential to enhance hemocompatibility.  

Contributions to applied science: We fabricated materials (i.e., superhemophobic 

titania surfaces) on which blood protein adhesion and platelet adhesion and activation 

decreased significantly. We envision that the understanding gained from this work 

will lead to the fabrication of implants and devices with improved hemocompatibility. 
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(iv) Advanced understanding of droplet splitting upon impacting a macroscopic 

ridge: 

Contributions to fundamental science: We demonstrated that for each ridge angle, as 

the ridge height increases the critical splitting height decreases. However, this 

reduction turns into a plateau beyond a certain ridge height, which is a function of 

droplet volume, because the two lobes of the droplet do not touch the flat surfaces 

anymore. Further, our results indicate that a water droplet impacting a 

superhydrophobic ridge splits when Wec ~ O(1), regardless of the ridge geometry. 

7.2. Future Work 

During this research, some notable research issues regarding tuning the interaction of 

droplets with liquid-repellent surfaces were uncovered, which need further investigation. The 

following is a list of these issues: 

Manipulation of droplets to sort droplets based on surface tension: 

Benign Surface Chemistry: Many studies on super-repellent surfaces have employed long chain 

fluorocarbon surface chemistry due its low solid surface energy. However, long chain 

fluorocarbon materials are rapidly being phased out by environmental agencies across the world 

because of the growing concerns regarding their negative environmental impacts (e.g., non bio-

degradable) and biological impacts (e.g., bioaccumulation).1-4 Consequently, future work should 

be focused on employing benign surface chemistries that are non-toxic and non-bioaccumulative. 

Devices to Sort Droplets by Surface Tension as Diagnostic Platforms: Prior work has 

demonstrated that the surface tension of biological fluids (e.g., blood, plasma, urine etc.) can be 

altered due to certain diseases (e.g., diabetic kidney disease) or certain health condition (e.g., 
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gestation period).5-6 Consequently, future work should investigate the functionality of devices 

which can sort droplets by surface tension for personalized point-of-care diagnostic platforms. 

Economic analysis: We anticipate that the device which can detect the fuel quality, have 

substantial economic impacts in developing nations. Future work should investigate the 

economic analysis of this product in different developing counties (e.g., India). 

Hemocompatibility of super-repellent surfaces: 

Mechanical Durability: Practical applications of super-repellent surfaces for medical implants 

and devices require mechanical durability of the texture. While the number of reports on durable 

super-repellent surfaces continues to increase,7-11 mechanical durability of super-repellent 

surfaces, especially against shear stresses in solid abrasion, continues to be a significant 

challenge. Therefore, there is a significant need for improving the mechanical durability by using 

monolithic textures of materials with high deformability and/or self-healing ability or proceeding 

towards non-textured slippery surfaces where possible. 

Mechanistic Studies: To obtain a mechanistic understanding of the of hemocompatibility of 

super-repellent surfaces, future work should investigate the influence of different solid-liquid 

area fractions and different surface morphologies of the super-repellent surfaces on each single 

event in thrombotic and immune responses need to be investigated in detail. Clearly 

understanding the underlying mechanisms will allow material scientists to better tune the texture 

and chemistry of the super-repellent surfaces for favorable interactions with blood. 

Dynamic Testing: The interaction of blood with the super-repellent surfaces under hemodynamic 

conditions12-15 can be significantly different from the static conditions. Since most practical 

materials, implants and devices experience hemodynamic conditions, future work should be 



 

105 

focused on evaluating the hemocompatibility under relevant dynamic conditions (e.g., blood 

flow rate, wall shear stress, pulsatile flow etc.) in the context of the application.16 

In vivo Testing: The true functionality of any surface or material in contact with blood can be 

revealed when implanted inside body. In order to truly design and develop effective implantable 

medical devices, future studies should earmark more in vivo tests in animal models first and 

eventually human clinical trials. 

Longevity: Practical application of super-repellent surfaces for medical implants and devices 

require longevity of the Cassie-Baxter state (i.e., air pockets). In order to avoid the loss of air 

pockets by dissolution of air into the blood or by breakthrough of blood into the texture, one 

strategy is to employ textures with as small of an inter-feature spacing as possible (e.g., sub-

micron inter-feature spacings). In addition to offering very high breakthrough pressures, super-

repellent surfaces with extremely small inter-feature spacings have the potential to offer virtually 

infinite lifetimes for the air pockets.17-19 Future study should investigate the prolonged 

functionalities of super-repellent surfaces in contact with blood (over weeks and months). 

Splitting droplets on super-repellent microscopic ridge: 

Splitting Height of Low Surface Tension Liquids: While the splitting of water droplets on 

superhydrophobic ridges has been studied, the behavior of low surface tension liquids hitting 

superomniphobic ridges has not been investigated. Future study should investigate the influence 

of surface tension on splitting height and predicts the scaling law that agrees with the 

experimental data.  

Influence of Viscosity on Splitting Height: For liquid droplets with high viscosity, the capillary 

number is not negligible anymore. Future study should investigate the influence of viscosity on 
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splitting height and predicts the scaling law that agrees with the experimental data. Employing 

water-glycerin solutions enables systematically investigation of the influence of viscosity on the 

critical splitting height using super-repellent surfaces.  

Numerical Simulations: Future study should implement 3D numerical simulations to model the 

splitting of the droplets and verify the obtained experimental results. 
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APPENDIX A- MATERIALS AND METHODS 

 

 

 

1. Statistical Analysis: 

1.1. For the statistical analysis, one-way analysis of variance (ANOVA) followed by Tukey’s 

test is conducted using Minitab Software. 

1.2. In order to determine whether there is a statistically significance difference between the 

means, p-value was compared to the significance level to assess the null hypothesis. The 

null hypothesis states that the population means are all equal. Here, the significance level 

of 0.05 is used (5% risk of concluding that a difference exists when there is no actual 

difference). 

1.3. P-value ≤ α: The differences between some of the means are statistically significant. The 

null hypothesis is rejected, and we conclude that not all of population means are equal.  

1.4. P-value > α: The differences between the means are not statistically significant. There is 

no enough evidence to reject the null hypothesis. (In this case, we need to verify the test 

has enough power to detect a difference that is practically significant). 

1.5. If there is no statistically significant difference, using power analysis it needs to be 

verified that the test has enough power. 

1.6. Note that with higher number of comparison, the likelihood that at least one of them 

indicates the significant differences is higher and it may increase the type 1 error rate. 

1.7. P-value ≤ α states that some of the group means are different, but it doesn’t identify the 

pairs of groups which are different. The grouping information table can provide further 

information about significant differences between specific pairs of groups. 
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2. Growing Titania Nanoflowers (Hydrothermal Synthesis): 

2.1. First, clean titanium sheet (Titanium Joe Inc.) with dimension of 6 cm long × 2 cm wide × 

0.8 mm thick using sonication in acetone for 10 min and sonication in isopropanol for 10 

min. 

2.2. Wash cleaned titanium sample thoroughly with water and dry it with nitrogen. 

2.3. With extreme caution, make 20 mM hydrofluoric acid (47% Alfa Aesar) solution in DI 

water in the PTFE-lined stainless-steel autoclave. 

2.4. Use stir bars to for 2 min at 200 rpm to make sure the solution is well mixed. 

2.5. Place the titanium sheet in the autoclave horizontally.  

2.6. Sealed the autoclave to etch the titanium sheet under hydrothermal conditions at 100 °C 

for different times. The autoclave should be properly sealed in order to keep the vapor 

inside the autoclave. Note: Instead of an autoclave, the nanoflowers can be grown using 

Teflon beakers placed on hot plate. In this case, the hot plate should be adjusted to 300 °C. 

2.7. After the time for the experiment was over, let the autoclave to be cooled down for 30 

min before opening the lid. 

2.8. After that, wash the sample with water thoroughly and dry it on hot plate at 50 °C for 1 

hour. 

3. Vapor Phase Silanization: 

3.1. Expose the cleaned surfaces to oxygen plasma (Plasma etch) for 15 minutes to form 

hydroxyl groups on the surfaces for silanization.   

3.2. After oxygen plasma is completed, place the samples on the hot plate. 

3.3. Use a glass slide which is large enough to hold 200 µL of target silane on the glass slide 

which is placed next to the oxidized sample. 
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3.4. Use glass bowl to cover the sample and silane and create a closed chamber.  

3.5. Silanization takes one hour at 120 °C. After that, wash the sample with DI water and 

ethanol to remove any excess silane and dry the sample using nitrogen. 

4. Sorting Droplet Device: 

4.1. Use a 254 nm UV bench lamp (UVP XX-40S) for tuning the surface chemistry of 

titanium dioxide surfaces. 

4.2. The UV light was covered completely with cardboard except a 2x2 cm square hole. 

4.3. Place the samples approximately 2 cm away from the UV lamp. 

4.4. Expose discrete domains of the titanium dioxide sample to UV irradiation for the desired 

time while masking the other areas with a PTFE tape. 

5. Fabrication of Non-polar Slippery Surfaces with Fluorocarbon or Hydrocarbon Silanes. 

5.1. For fabrication of non-textured, non-polar slippery OTS-and FDTS-treated surface, the 

silicon wafer/glass substrate, first sonicate the sample in ethanol-DI water (1:1, v/v) 

solution for 10 min and then rinsed with copious amounts of DI water to remove any 

impurity on the surface.  

5.2. Then, place the cleaned sample in plasma chamber (Plasma etch) for 15 minutes to 

deposit hydroxyl groups over the surface which reacts readily with silane.  

5.3. After that the place the sample in a reactive solution which was prepared at scales ranging 

from 10 to 50 ml in a polypropylene screw-cap tube (Falcon) for 2 hours.  

5.4. For example, 15 ml of toluene (Fisher Chemical), 12 l of hydrochloric acid (Fisher 

Scientific) and 16 l of either   octadecyltrichlorosilane (to fabricate OTS-treated surface; 

Gelest) or heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane (to fabricate FDTS-

treated surface; Gelest). 
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5.5. The sample was then dried by blowing nitrogen. 

6. Fabrication of Superomniphobic Surfaces using Spray Coating: 

6.1. Put 300 mg of fumed silica particles (diameter ~7 nm; Sigma Aldrich) in a 20 ml vial. 

6.2. After that make a solution consisting of 10 mL n-Hexane (Fisher) and 0.3 mL 

heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane (Gelest) and add it to the silica 

particles. 

6.3. Keep the solution on a vortexer for three days to form a suspension of fluorinated silica 

(F-SiO2) particles. 

6.4. To fabricate the superhydrophobic surface, first, spin coat a glue layer (Gorilla glue) on 

the target surface at 5000 rpm for 120 s to make sure a very thin layer of adhesive was 

distributed on the ridge. 

6.5. Immediately after spin coating of the adhesive layer (i.e., before adhesive layer was 

dried), spray coat the suspension of F-SiO2 particles on the adhesive layer. 

6.6. Spray coating should be done at a pressure of 30 psi using an air brush (Paasche) held 10 

cm from the surface. Then, allow the surface to be dried at room temperature. 


