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ABSTRACT

THREE PROJECTS IN ARITHMETIC GEOMETRY:

TORSION POINTS AND CURVES OF LOW GENUS

This paper is an exposition of three different projects in arithmetic geometry. All of them con-

sider problems related to smooth curves with low genus and the torsion points of their Jacobians.

The first project studies curves over finite fields and two invariants of the p-torsion part of their

Jacobians: the a-number (a) and p-rank (f ). There are many open questions in the literature about

the existence of curves with a certain genus g and given values of a and f . In particular, not much

is known when g = 4 and the curve is non-hyperelliptic. This is the case that we focus on here; we

collect and analyze statistical data of curves over Fp for p = 3, 5, 7, 11 and their invariants. Then,

we study the existence of Cartier points, which are also related to the structure of J [p]. For curves

with 0 ≤ a < g, the number of Cartier points is bounded, and it depends on a and f .

The second project addresses the problem of computing the endomorphism ring of a supersin-

gular elliptic curve. This question has gained recent interest as the basis of alternative cryptosys-

tems that hope to be resistant to quantum attacks. Our strategy is to generate these endomorphism

rings by finding cycles in the ℓ-isogeny graph which correspond to generators of the ring. We were

able to find a condition for cycles to be linearly independent and an obstruction for two of them to

be generators.

Finally, the last chapter considers the Galois representations associated to the n-torsion points

of elliptic curves over Q. In concrete, we construct models for the modular curves associated to

applicable subgroups of GL2(Z/nZ) and find the rational points on all of those which result in

genus 0 or 1 curves, or prove that they have infinitely many. We also analyze the curves with a

hyperelliptic genus 2 model and provably find the rational points on all but seven of them.
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Chapter 1

Introduction

This dissertation is divided into three main chapters; each one corresponding to a project in

arithmetic geometry. The topics that these encompass are, broadly speaking: the a-number, p-

rank and Cartier points of smooth curves of genus 4; the ℓ-isogeny graphs of supersingular elliptic

curves; and images of Galois for elliptic curves over Q. Although the projects are very different

from one another, they share some features. For example, they all study properties of curves with

low genus g: elliptic curves, hyperelliptic modular curves with g ≤ 2 and non-hyperelliptic curves

with g = 4, defined either over Q or Fp.

An additional common feature is the analysis of curves from the perspective of the torsion

points of their Jacobians. The two most important invariants studied in Chapter 2 are the a-number

and the p-rank. For a curve of genus g defined over a field of characteristic p > 0, these invariants

come from the structure of the p-torsion part of the Jacobian. In Chapter 3, the properties of the

ℓ-torsion subgroup of the supersingular elliptic curves play a main role in the construction and

analysis of the ℓ-isogeny graph. Additionally, in Chapter 4 the goal is to understand the Galois

group of the field extension obtained by adjoining to Q the coordinates of all the n-torsion points

of an elliptic curve, for certain n.

Chapter 2 corresponds to an individual project suggested by my advisor Rachel Pries. Here we

study the p-rank and a-number of non-hyperelliptic genus 4 curves over a field of characteristic

p > 0. If X is a curve of genus g, these two invariants give information about the p-torsion part of

the Jacobian J of X , which is a principally polarized abelian variety of dimension g. The structure

of J [p] as a group scheme is called the Ekedahl–Oort type. It gives rise to the stratification of Ag,

the moduli space of principally polarized abelian varieties of dimension g. This stratification yields

one on Mg, the moduli space of smooth curves of genus g. There are many open questions about

which strata occur for given g and p. For example, it is known by [6] that for any p and any f with
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0 ≤ f ≤ g, there is a genus g curve with p-rank f . If g ≤ 3 and p ≥ 3, then every Ekedahl–Oort

type occurs, but it is not known if this is also true for g ≥ 4.

Another open question, as stated by Pries in [23], is the following: For all p, does there exist

a smooth curve of genus 4 with p-rank 0 and a-number at least 2? The work that we will describe

in Chapter 2 is motivated by these and other similar questions. Concretely, we build a data base

of non-hyperelliptic genus 4 curves over Fp for p = 3, 5, 7, 11. These curves are given by the

equations provided by Kudo and Harashita in [12], we refer to them as curves in standard form.

Then we sort the curves by their a-number and p-rank. In particular, we were able to identify all

of the curves in standard form with a = 3 for p = 3, 5.

To find a and f we first recall that the a number corresponds to the dimension of the kernel

of the Cartier operator C on H0(X,Ω1
X). The p-rank, on the other hand, is the stable rank of

the Frobenius operator F on H1(X,OX). These two operators are dual of each other, and since

the Hasse–Witt matrix H determines the action of Frobenius, if we know H , then we can easily

compute a and f . In [12] the authors provide a method to determine the Hasse–Witt matrix of a

complete intersection given by two homogeneous polynomials in P3.

Once we collect our data, we focus on studying the existence of Cartier points. A point P in

a smooth curve X of genus g is a Cartier point if the subspace of regular differentials on X that

vanish at P is stable under the Cartier operator. Notice that if W is such subspace, then for it to be

stable under C we must have C(W ) = 0 or C(W ) = W . If the first case occurs then we say that P

is of Type 1 and it is of Type 2 otherwise. These points happen to be related to the p-torsion part

of the Jacobian. In fact, Baker uses them in [2] to give an alternative proof of Ekedahl’s theorem

on the bound of the genus of a superspecial curve (Theorem 2.2.6).

Baker also proves that the number of Cartier points is bounded for non-superspecial curves.

The bound depends on p, a, f and g, but for g = 4, it is at most 7. We study the bounds of Type 1

and Type 2 points separately and we are interested in determining when are these bounds attained.

To do this, we develop algorithms to compute the Cartier points of non-hyperelliptic curves of

2



genus 4 over Fp. For example, we prove that the total bound is sharp when a = 3 and p = 7, and

that is never sharp for curves in standard form when a = 3 and p = 3.

Chapter 3 is based on the paper "Cycles in the supersingular ℓ-isogeny graph and corresponding

endomorphisms" [3], written in collaboration with Efrat Bank, Kirsten Eisenträger, Travis Morri-

son and Jennifer Park. This is the conclusion of a project led by Eisenträger and Park as part of

the Women in Numbers 4 Workshop held at Banff, Alberta, Canada in August 2017. In this pa-

per we studied the ℓ-isogeny graph for supersingular elliptic curves over a field of characteristic

p > 0, as a strategy to compute the endomorphism ring of such an elliptic curve. This last prob-

lem is equivalent to finding isogenies between two of the elliptic curves and it is the basis of the

cryptosystem SIKE, which is one of the current candidates (as of October 2019) participating in

the Post-Quantum Cryptography competition organized by NIST. Since the actual difficulty of the

basic problem is still unknown, it is important to conduct research on the matter to detect possible

attacks, both in the classical and post-quantum set ups. The paper has two main results: a condition

for cycles on the graph to correspond to linearly independent endomorphisms and an obstruction

to generate the full endomorphism ring. We also show concrete examples where these results are

applied.

Chapter 4 includes joint work with Wanlin Li, Jackson Morrow, Jack Petok and David Zureick-

Brown. In May 2017, Zureick-Brown organized a group project workshop on the topic of Galois

representations of elliptic curves over Q, held at Emory University. The goal was to determine

subgroups of GL2(Ẑ), that contain the image of Galois under the (mod n) representation , where

n is the product of prime powers for primes less than 13. To do this, we built on progress made

in [25], [37], [29] and [18] that completed the work with the prime and prime power level sub-

groups. Each such subgroup H is attached to a modular curve whose rational non-cuspidal points

correspond to elliptic curves that have image of Galois contained in H . We analyze all genus 0, 1

and 2 modular curves of composite level m1m2 with mi = ℓpii < 37, ℓ < 13 and ℓ1 6= ℓ2. For

the genus 0 and 1 curves we determine which ones had infinitely many points, sporadic points

3



or neither. We know by Faltings theorem that curves of genus g ≥ 2 have finitely many rational

points. We identify at least 4 and at most 11 genus 2 curves with sporadic points.
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Chapter 2

The a-number, p-rank and Cartier points of genus 4

non-hyperelliptic curves

2.1 Introduction

Let X be a smooth projective genus g curve over a field k of characteristic p. The Torelli map

associates X with its Jacobian JX , a principally polarized abelian variety of dimension g. The map

embeds the moduli space Mg of curves of genus g into Ag, the moduli space of principally polar-

ized abelian varieties of dimension g over k. In consequence, it allows us to study the stratification

of Mg by looking at the group scheme structure of JX [p], the p-torsion part of the Jacobian. This

is called the Ekedahl–Oort stratification. For g = 2, 3, the Torelli locus is open and dense in Ag.

For p ≥ 3 and g ≤ 3this can be used to show that all Ekedahl–Oort types occur for the Jacobians

of smooth curves X/Fp ( [21]). The same is not known for g ≥ 4.

Motivated by this and other similar open questions related to the p-torsion part of the Jacobian,

we study smooth irreducible curves with g = 4. We focus on the non-hyperelliptic kind. In

particular, we looked at a-number and the p-rank: two invariants of JX [p].

In order to obtain a database of smooth, irreducible, genus 4 non-hyperelliptic curves, we

restrict our analysis to what we definedas curves in standard form. Recall that if X is a curve

with the above properties, then it has a model given by the zero locus of a quadratic and a cubic

homogeneous polynomials in k[x, y, z, w]. Kudo and Harashita show in [12] that under some

assumptions, the defining equations can be simplified to reduce the number of cases. The curves

given by these simplified equations are in standard form.

We gather a statistical sample of curves in standard form defined over Fp for p ∈ {3, 5, 7, 11}.

For each of them we find the Hasse–Witt matrix H and use it to compute the a-number and p-rank:

the a-number is g − rank(H) and the p-rank is f = rank
(
HH(p) · · ·H(pg−1)

)
. As one should
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expect, the majority of curves appear in the sample are ordinary, and the percentages decrease as

the a-number increases (or similarly, as the p-rank decreases).

Another important topic explored in this chapter is the concept of Cartier point. We say that

P ∈ X(k) is a Cartier point if the hyperplane of regular differentials of X vanishing at P is stable

under the Cartier operator. Baker introduces the definition in [2] and remarks that they are related to

the p-torsion points of the Jacobian. In particular, the author uses them to give an alternative proof

of a theorem by Ekedahl [5], which states that the genus of a curve with a = g in characteristic p

is at most p(p− 1)/2.

When X has a-number 0 < a < g then there is an upper bound on the number of Cartier

points of X given by Baker. If a 6= 0 then we classify Cartier points in Type 1 and Type 2

(see Definition 2.5.5). The maximum number of Type 1 points depends on the a-number and

the maximum number of Type 2 points depends on the p-rank. We are interested in determining

the conditions under which these bounds are attained when X is non-ordinary. Therefore, we

develop algorithms to find all of the Cartier points on curves in standard form and apply them to

our database.

The Cartier points are particularly interesting when a = g − 1, because we can assign multi-

plicity to each of them. This is why we later focus on curves with a = 3. We find all of the curves

in standard form with a = 3, defined over Fp for p = 3, 5 and a subset of them over F7. We explore

the possible degrees and multiplicity distributions of these points.

Here are some of the most relevant conclusions from our work, concerning non-hyperelliptic

genus 4 curves in standard form:

1. In our smooth sample, the are no curves with (a, f) = (1, 0) over Fp for p ∈ {3, 5, 7, 11}.

(Corollary 2.4.2).

2. There are, up to F3-isomorphism, exactly 27 curves with a-number 3 over F3 in standard

form. All of them have p-rank 1. (Corollaries 2.4.4 and 2.4.3).

3. There are, up to F5-isomorphism, exactly 134 curves with a = 3 over F5. (Corollary 2.4.7).
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4. In our smooth sample, no curve with a-number 2 reaches the bound of 6 Type 1 Cartier

points. Moreover, the maximum number of Type 1 points attained on curves with a-number

2 is 3 for p ∈ {5, 7, 11} and 2 for p = 3. (Corollary 2.5.16).

5. In our smooth sample no curve with p-rank 2 or 3 reaches the bound of 6 Type 2 Cartier

points. The maximum number of points that occurs is 3 and 4, respectively.

(Corollary 2.5.18).

6. When a = 3, the bound on Type 1 points is sharp forp ∈ {5, 7, 11} and the total bound for

both Types is sharp for 7. (Corollaries 2.5.17 and 2.5.19).

7. There are no curves in standard form over F3 with a = 3 that attain either of the upper

bounds for Cartier points. (Lemma 2.6.2).

2.2 Preliminaries

This section includes the background information related to the Cartier operator, Hasse–Witt

matrix, p-rank and a-number of a curve. Unless otherwise stated, p will be an odd prime number

and k a perfect field of characteristic p.

2.2.1 The a-number and the p-rank

Let X be a smooth irreducible curve of genus g over k. Denote by JX the Jacobian variety

associated to X . Then JX is an abelian variety of dimension g isomorphic to Pic0X/k, equipped

with a principal polarization. We define the multiplication-by-p morphism [p] as

[p] : JX → JX

P 7→ pP.

The kernel of [p] is the p-torsion part of the Jacobian, denoted by JX [p]. It is known that

[p] is a proper flat morphism of degree p2g and factors through the relative Frobenius morphism

7



Fr : JX → J
(p)
X as [p] = Vr ◦ Fr, where Vr is the Verschiebung morphism from J

(p)
X to JX , which

is the dual of Fr.

The p-torsion part of the Jacobian is also a group scheme and here we will study two important

invariants associated to it: the p-rank and the a-number. The first one is defined as the integer f

such that #JX [p](k) = pf . Equivalently, f is

f = dimk Hom(µp, JX [p]), (2.2.1)

where µp
∼= Spec(k[x]/(xp − 1)) is the kernel of the Frobenius morphism on the multiplicative

group scheme Gm.

Similarly, the a-number a is

a = dimk Hom(αp, JX [p]), (2.2.2)

where αp
∼= Spec(k[x]/xp) is the kernel of Frobenius on the additive group scheme Ga. It is well

known that 0 ≤ f ≤ g and 1 ≤ a+ f ≤ g.

By the Torelli Theorem, X is completely determined by JX together with its principal polar-

ization, this means that we can define the a-number and the p-rank as invariants of X (see [16], for

example). In Section 2.2.2 we will see equivalent definitions for both of these invariants, related to

the Cartier–Manin matrix and the Hasse–Witt matrix.

Example 2.2.1. If E is an elliptic curve over k, then it is isomorphic to its Jacobian. If we consider

the possibilities for the group structure of E[p](k) then only the following can occur (see [28]):

E[p](k) ∼= Z/pZ, or E[p](k) is trivial. If the first is true, then #E[p](k) = p so the p-rank is 1 and

consequently the a-number is 0. If this happens, then E is called ordinary. On the other hand, if

#E[p](k) = 1, then the p-rank is 0, the a-number is 1 and E is supersingular.

Example 2.2.1 only describes the group structure of the p-torsion of E. However, as mentioned

above, E[p] is actually a group scheme so one could ask: if two elliptic curves are of the same

type (ordinary or supersingular) do they have isomorphic p-torsion? It turns out that the answer is
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yes. In other words, the group scheme structure of the p-torsion part of a smooth genus 1 curve is

determined by its p-rank and its a-number. The same is true for the p-torsion of the Jacobian of

a curve X with g = 2, but not if g ≥ 3. For instance, if g = 3 then there are two isomorphism

classes for JX [p] when f = 0 and a = 2 (see [21] for details).

2.2.2 The Cartier and Frobenius operators

Suppose that x is a separating variable of k(X)/k, then every t ∈ k(X) can be written as

t = tp0 + tp1x+ . . .+ tpp−1x
p−1, (2.2.3)

with ti ∈ k(X).

Definition 2.2.2. The Cartier operator C is defined on Ω1
X by

C(tdx) = tp−1dx, (2.2.4)

for t as in (2.2.3).

For t in k(X) and ω, ω1, ω2 ∈ Ω1
X , the operator C satisfies the following properties (see for

example, [24]):

1. C(ω1 + ω2) = C(ω1) + C(ω2).

2. C(dt) = 0.

3. C(tpω) = tC(ω).

From (1) and (3) we see that C is 1/p-linear and induces a well defined map C : H0(X,Ω1
X) →

H0(X,Ω1
X) on the k-vector space of regular differentials.

Definition 2.2.3. If B = {ω1, . . . , ωg} is a k-basis for H0(X,Ω1
X) and C(ωj) =

∑g
i=1 cijωi then

the Cartier–Manin matrix of X with respect to this basis is the matrix (cpij)ij .
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Definition 2.2.4. The absolute Frobenius of X is the morphism F : X → X given by the identity

on the underlaying topological space and t 7→ tp on OX . Let FX be the induced endomorphism in

H1(X,OX).

The Frobenius endomorphism is p-linear, that is FX(aξ) = apFX(ξ) for all a ∈ k and all

ξ ∈ H1(X,OX).

Definition 2.2.5. Let B′ = {ξ1, . . . , ξg} be a k-basis of H1(X,OX) and FX(ξj) =
∑g

i=1 aijξi for

some aij ∈ k. Then the Hasse–Witt matrix of X with respect to B′ is the matrix (aij)ij .

The space H1(X,OX) is the dual of H0(X,Ω1
X) and there is a perfect paring <,> on

H1(X,OX) × H0(X,Ω1
X) such that < FXξ, ω >=< ξ, Cω >p . When the Hasse–Witt matrix is

constructed with respect a basis B′ of H1(X,OX) which is the dual basis of B = {ω1, . . . , ωg} of

H0(X,Ω1
X), then the Cartier–Manin matrix M with respect to B is the transpose of the Hasse–Witt

matrix H with respect to B′.

Now we can revisit the concepts of the a-number and p-rank from Section 2.2.1, which can be

defined in terms of the matrix H . By Serre [27], the p-rank f is the stable rank of the Frobenius

and since this operator is p-linear, it implies that

f = rank
(
HH(p) · · ·H(pg−1)

)
, (2.2.5)

where H(i) is the matrix obtained by raising every entry of H to the i-th power. On the other hand,

by Oort [13]

a = g − rank(H) = g − rank(M). (2.2.6)

Generically f = g, in which case X is said to be ordinary. The other extreme case is when X

is superspecial and it occurs when a = g or equivalently, when the Cartier operator is identically 0

on H0(X,Ω1
X).

In Example 2.2.1 we saw that a supersingular elliptic curve E has p-rank 0 and a-number

1 = g, so it is also superspecial. For a curve X of genus g > 1, Equation 2.2.5 implies that X

could have f = 0 even when a 6= g.
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In Section 2.3.2 we describe how to explicitly find the Hasse–Witt matrix when X is the com-

plete intersection of two homogeneous polynomials and use it to compute the p-rank and a-number.

2.2.3 Previous results

In this section we review some of the main and more recent results with respect to genus g

curves of positive characteristic and possible values for the a-number and p-rank that occur. Let m

be the rank of the Cartier operator. The first three theorems give an upper bound to the genus of X

depending on m and p.

Theorem 2.2.6 (Ekedahl [5],Theorem 1.1). Let X be a smooth curve of genus g over an alge-

braically closed field k of characteristic p > 0. If X is superspecial then

1. g ≤ 1
2
(p2 − p) and

2. g ≤ 1
2
(p− 1) if X is hyperelliptic and (p, g) 6= (2, 1).

An example where this bound is realized is the Hermitian curve given by

X : xp + x = yp+1. (2.2.7)

It is known that X is superspecial, and by the genus formula g = p(p−1)
2

.

Baker gives in [2] an alternative proof for Theorem 2.2.6, based on the existence of Cartier

points. We discuss this concept in Section 2.5. Independently, Re later provides a generalization

of this result to any value of m:

Theorem 2.2.7 (Re [24], Theorem 3.1 and Proposition 3.1). Let X be a smooth complete curve

of genus g over an algebraically closed field of characteristic p > 0. Suppose that the Cartier

operator C has rank m. Then

g ≤ (m+ 1)p
(p− 1)

2
+ pm.

If X is also hyperelliptic then

g <
p+ 1

2
+mp.
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In [33] Zhou gives a strengthening of Theorem 2.2.7 for the case when m = 1:

Theorem 2.2.8 (Zhou [33], Theorem 1.1). If m = 1, then

g ≤ p+
p(p− 1)

2
.

In the case of hyperelliptic curves and p odd, Frei [7] proved that the bound can be even lower

when m = 1.

Theorem 2.2.9 (Frei [7], Theorem 3.1). Let g ≥ p where p is an odd prime. Then there are no

smooth hyperelliptic curves of genus g defined over a field of characteristic p with a-number equal

to g − 1.

There are examples, however, of curves with a-number g − 1 that are non-hyperelliptic. In

Proposition 2.4.6 we define a family of non-hyperelliptic curves genus 4 curves with a = 3 over

F3. Also Zhou finds in [35] a family of Artin–Schreier curves with these properties. We refer to

them again in Section 2.3

More generally, Pries [22] proves the existence of smooth curves with a-number 1, 2 and 3,

under certain conditions. For instance:

• If g ≥ 2 then there is a family of smooth curves of genus g with p-rank g − 2 and a-number

1. Furthermore, if the characteristic of the field is p ≥ 3 then there exists a family of

hyperelliptic curves with the same invariants.

• If g ≥ 3 then there is a family of smooth curves of genus g with p-rank g − 3 and a-number

1.

• If p ≥ 5, there exists a family of smooth curves of genus g with p-rank g − 2 and a-number

2.

• For p ≥ 3 and g odd g 6≡ 1 mod p with g > 6(p− 1) there exist genus g and p-rank g − 3

curves with a-number a = 2 and with a = 3.
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2.3 Genus 4 non-hyperelliptic curves

There are currently many open questions concerning the existence of curves with certain p-

ranks and a-numbers, given a fixed genus g. Pries states some of them in [23]. For instance, there

exist curves of genus 2 and 3 with any possible p-rank and a-number over fields of characteristic

p, with the exception of superspecial curves of genus x2 when p = 2 and superspecial curves of

genus 3 when p = 2, 3. For g ≥ 4, however, it is not known if this happens. For example, consider

Question 3.6 in [23]: For all p, does there exist a smooth curve of genus 4 with p-rank 0 and

a-number at least 2?

One can find in the literature partial answers to the last and similar questions. For example,

suppose that p = 3. Then by Ekedahl’s Theorem (2.2.6), there is no superspecial curve of genus 4,

so there are no curves of a-number 4. In [34], Zhou (building on work from [7], [9] and [22]) shows

that in characteristic 3, there are genus 4 curves with a-number a and p-rank f for all a ≤ 2 and

f ≤ a and for (a, f) = (3, 1). As an example, Zhou studies the family of genus 4 Artin-Schreier

curves over an algebraically closed field k of characteristic 3, given by:

y3 − bx3(y2 + y) = x5 + cx3 + dx2 + 1, (2.3.1)

with b, c, d ∈ k and bd 6= 0. The author shows that every such curve has a-number 3 and p-rank

1. In fact, he computes the Ekedahl-Oort types to show that the corresponding locus of Mg is

non empty of codimension at most 6. In Section 2.5.3 we provide additional examples of genus 4

curves with a-number 3 and p-rank 1 over F3, which are not Artin–Scheier curves. We know by

Theorem 2.2.9 that there are no a-number 3 and p-rank 0 genus 4 hyperelliptic curves, so one can

ask whether it is possible to have a non-hyperelliptic genus 4 with those invariants.

Kudo and Harashita [12], also studied genus 4 curves, they prove two results related to non-

hyperelliptic superspecial curves of genus 4 with p = 7 and p = 5.

Theorem 2.3.1 (Kudo and Harashita [12], Theorem A). Any superspecial curve of genus 4 over

k = F25 is isomorphic to
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2yw + z2 = 0, x3 + a1y
3 + a2w

3 + a3zw
2 = 0,

in P3 , where a1, a2 ∈ F×25 and a3 ∈ F25.

Theorem 2.3.2 (Kudo and Harashita [12], Theorem B). There is no superspecial curve of genus 4

in characteristic 7.

2.3.1 Defining equations of genus 4 non-hyperelliptic curves

We are interested in studying genus 4 non-hyperelliptic curves over k. Our strategy is to con-

struct a large database of them; here we explain how we achieve that. If X is a genus 4, smooth,

irreducible and non-hyperelliptic curve, then the canonical map embeds X into P3
k as the inter-

section of the zero loci of a quadratic and a cubic homogeneous polynomial in four variables

(see [10]). One might start by looking at the k-vector spaces of quadratic and cubic homogeneous

polynomials, picking an element of each and checking whether they define a curve with the de-

sired conditions. However, these vector spaces have dimensions 10 and 20, respectively, so it is

not computationally feasible to construct a curve this way. Instead we will begin by restricting our

computations to what we will define as genus 4 curves in standard form. These are based on fixed

quadratic forms and simplified cubic forms explored by Kudo and Harashita [12]. In this section

we will present this definition and remark on how under certain conditions, every curve can be

written as such.

Quadratic forms and reduction of cubics

Every quadratic form has a symmetric matrix associated to it. Two quadratic forms over k

are equivalent if their matrices are conjugate. We claim that any irreducible quadratic form in

k[x, y, z, w] is equivalent to one of F1 = 2xw+2yz, F2 = 2xw+ y2 − ǫz2 or Fd = 2yw+ z2 with

some ǫ /∈ (k×)2.

Notice that the symmetric matrices associated to F1, F2 and Fd are, respectively:
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N1 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




, N2 =




0 0 0 1

0 1 0 0

0 0 −ǫ 0

1 0 0 0




, D =




0 0 0 0

0 0 0 1

0 0 −1 0

0 1 0 0




.

Indeed, let B and B′ represent equivalent quadratic forms. Then there exists an invertible

matrix C such that B = CTB′C, hence det(B) = det(B′) det(C)2. This implies that the quadratic

forms over k with full rank are classified by whether or not their discriminant is a square in k×.

Since det(N1) = 1 and det(N2) = ǫ we can fix these representatives of the equivalence classes.

On the other hand, a quadratic form can still be irreducible if its rank is 3. By the same

reasoning as above, quadratic forms in three variables are equivalent to one of:

D1 =




0 0 1

0 −υ 0

1 0 0




D2 =




0 0 1

0 1 0

1 0 0




,

for some υ non-square in k×. Let us assume that F ∈ k[x, y, z, w] is a quadratic form of rank

3 with no x terms in it. Then a priori F is equivalent to 2yw − υz2 or 2yw + z2. However, these

two are equivalent by the change of variables (x → x, y → y, z → z, w → −υw). Therefore we

can assume that υ = −1. This completes the proof of our claim.

Now we can assume that X has a model given by V (F,G), with F being one of F1, F2 or

Fd, and G a homogeneous polynomial of degree 3. The possible values of G can be reduced by

changes of variables, induced by the action of the orthogonal similitude groups associated to the

quadratic forms. This is done in detail in Section 4 of [12]. The simplified equations provide the

following definition.

Definition 2.3.3. Let F1 = 2xw + 2yz, F2 = 2xw + y2 − ǫz2 or Fd = 2yw + z2 with ǫ /∈ (k×)2.

We say that a curve X of genus 4 over k is in standard form if it is non-hyperelliptic, irreducible,

smooth and X = V (F,G) with
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(Case D) F = Fd and

G = a0x
3 + (a1y

2 + a2z
2 + a3w

2 + a4yz + a5zw)x+ a6y
3 + a7z

3 + a8w
3 + a9yz

2

+ b1z
2w + b2zw

2,

for ai ∈ k and a0, a6 ∈ k×, with b1, b2 ∈ {0, 1} and the leading coefficient of r = a1y
2 +

a2z
2 + a3w

2 + a4yz + a5zw is 1 or r = 0; or

(Case N1i) F = F1 and

G = (a1y + a2z)x
2 + a3yzx+ y3 + a4z

3 + b1y
2z + a5yz

2 + (a6y
2 + a7yz + b2z

2)w

+ (a8y + a9z)w
2 + a10w

3,

for ai ∈ k with a1 6= 0, a2 6= 0 and for b1 ∈ {0} ∪ k×/(k×)2 and b2 ∈ {0, 1}; or

(Case N1ii) F = F1 and

G = (a1y + a2z)x
2 + a3yzx+ b1y

2z + b2yz
2 + (a4y

2 + a5yz + b3z
2)w

+ (a6y + a7z)w
2 + a8w

3,

for ai ∈ k with a1a2 6= 0 and for b1, b3 ∈ {0, 1} and b2 ∈ {0} ∪ k×/(k×)2; or

(Case N2) F = F2 and

G = (a1y + a2z)x
2 + a3(y

2 − ǫz2)x+ b1y(y
2 − ǫz2) + a4y(y

2 + 3ǫz2) + a5z(3y
2 + ǫz2)

+ (a6y
2 + a7yz + b2z

2)w + (a8y + a9z)w
2 + a10w

3,

for ai ∈ k, with (a1, a2) 6= (0, 0) and b1, b2 ∈ {0, 1} and ǫ a non-trivial fixed representative

of k×/(k×)2,
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Let ~a ∈ k20 be denoted by G~a the cubic whose coefficients correspond to the entries of ~a,

assigned to the monomials of degree 3 in k[x, y, z, w] in graded lexicographic order. This means

that we consider x > y > z > w and to order the monomials we first compare the exponents of

x, then those of y and so on. So, every genus 4 non-hyperelliptic can be written as X = V (F,G),

where F is one of F1, F2, Fd. One can ask if there is a way of always reducing the cubic G by a

change of variable so that X is in standard form. This is addressed in Lemma 2.3.4.

Lemma 2.3.4 (Lemmas 4.3.1, 4.4.1 and 4.5.1 in [12] ). Let X be a non-hyperelliptic genus 4 curve

over k given by X = V (F,G), where F is one of F1, F2, Fd. Then X can be written in standard

form if it satisfies one of the following conditions:

(A1) F = F1 and X has a k-rational point P = [x, y, z, w] such that

w = 1, Ry(y, z) :=
δ

δy
P (−yz, y, z, 1) 6= 0 and Rz(y, z) :=

δ

δz
P (−yz, y, z, 1) 6= 0.

(A2) F = F2 and X has a k-rational point P = [x, y, z, w] such that w = 1, and

Ry(y, z) :=
δ

δy
P

(
−y2 − ǫz2

2
, y, z, 1

)
6= 0 and

Rz(y, z) :=
δ

δz
P

(
−y2 − ǫz2

2
, y, z, 1

)
6= 0.

(A3) F = Fd and k has more than 5 elements..

It is shown in [12] that the conditions (A1), (A2) are satisfied for q sufficiently large: they are

true for all curves with at least 36 and 37 points, respectively. By the Hasse–Weil bound, this is

guaranteed is q > 127.

2.3.2 Hasse–Witt Matrix of genus 4 non-hyperelliptic curves

Let X = V (F,G) be the complete intersection on P3
k defined by homogeneous polynomials

F and G in k[x, y, z, w] of degrees d and c, respectively. Following [10] and [2] we see that
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H1(X,OX) ∼= H3(P3,O3
P(−c − d)), where the basis B of H1(X,OX) that corresponds to the

coordinates x, y, z, w is associated to the basis of H3(P3,O3
P(−c− d)) given by

{xkylzmwn : (k, l,m, n) ∈ (Z<0)
4 and − k − l −m− n = c+ d}. (2.3.2)

Using this fact, Kudo and Harashita [12] present an algorithm to compute the Hasse–Witt of such

curves, which can be generalized to compute the corresponding matrix for any complete intersec-

tion over a perfect field of positive characteristic.

Proposition 2.3.5 (Kudo and Harashita [12], Prop. 3.1.4). Let X of genus g be defined as above

and suppose (FG)p−1 =
∑

ci1,i2,i3,i4x
i1yi2zi3wi4 . Then the Hasse–Witt matrix of X is given by




c−k1p+k1,−l1p+l1,−m1p+m1,−n1p+n1
· · · c−krp+k1,−lrp+l1,−mrp+m1,−nrp+n1

...
...

c−k1p+kr,−l1p+lr,−m1p+mr,−n1p+nr
· · · c−krp+kr,−lrp+lr,−mrp+mr,−nrp+nr




(2.3.3)

Notice that this computation gives a matrix H that represents the action of FX by left matrix

multiplication. Let v be the column vector corresponding to an element of H1(X,OX) expressed

in terms of the basis B. Then the image of v under FX is given by H · v(p), since FX is p-linear.

In the next section, we use Proposition 2.3.5 together with the equations from Section 2.3 to

compute examples of non-hyperelliptic smooth curves of genus 4 with a-number 3.

2.4 A database of curves in standard form over Fp

In this section we construct a database of genus 4 curves in standard form (Definition 2.3.3)

over Fp for p ∈ {3, 5, 7, 11}. We restrict our data collection to non-ordinary and non-superspecial

curves, that is, curves with a-number equal to 1, 2 or 3. First let us explain the notation used:

• Let~a ∈ F20
p . We denote by G~a the cubic whose coefficients correspond to the entries of~a, as-

signed to the monomials of degree 3 in Fp[x, y, z, w] in graded lexicographic order, with x >

y > z > w. For example, the vector ~a = (1, 1, 2, 0, 0, 1, 0, 2, 0, 2, 1, 1, 1, 2, 0, 0, 1, 0, 1, 0)
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corresponds to the cubic x3 + x2y+2x2z+ xyz+2xz2 +2xw2 + y3 + y2z+ y2w+2yz2 +

z3 + zw2.

• For each one of the cases D, N1i, N1ii and N2 in Definition 2.3.3 we define a subset of F20
p

such that for all ~a in that subset, the cubic G~a has the necessary conditions. If we denote

each subset by Dp,N1ip,N1iip and N2p we have:

1. ~a ∈ N1ip iff ~a = (0, a1, a2, 0, 0, a3, 0, 0, 0, 0, 1, b1, a6, a5, a7, a8, a4, b2, a9, a10) with ai

and b1 as in Definition 2.3.3, Case N1(i).

2. ~a ∈ N1iip iff ~a = (0, a1, a2, 0, 0, a3, 0, 0, 0, 0, b1, a4, b2, a5, a6, 0, b3, a7, a8) with ai and

bi as in Definition 2.3.3, Case N1(ii).

3. ~a ∈ N2p iff

~a = (0, a1, a2, 0, a3, 0, 0,−ǫa3, 0, 0, b1+ a4, a5, ǫ(3a4− b1), a7, a8, ǫa5, b2, a9, a10) with

ai, bi an ǫ as in Definition 2.3.3, Case N2.

4. ~a ∈ Dp iff ~a = (a0, 0, 0, 0, a1, a4, 0, a2, a5, a3, a6, 0, 0, a9, 0, 0, a7, b1, b2, a8) with ai an

bi as in Definition 2.3.3, Case D.

We can count the number of elements of each of the sets above. The computations are shown in

Table 2.1.

Table 2.1: Cardinality of the sets Dp, N1ip, N1iip, N2p.

Set Cardinality

Dp 4p3(p− 1)2(p5 + p− 2)

N1ip 6p8(p− 1)2

N1iip 12p6(p− 1)2

N2p 4p7(p− 1)

To construct a curve in standard form we select an element ~a in one of the subsets above to-

gether with the corresponding F ∈ {F1, F2, Fd} and verify if V (F,G~a) is non-singular, irreducible
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and has genus 4. In practice, we implement the algorithm in Magma, where we check each of the

conditions as follows:

• Irreducibility: using the intrinsic Magma function IsIrreducible, which verifies the

condition by a Gröbner basis computation. It is important to note that this does not check if

the curve is irreducible after a base extension.

• Genus: the command Genus computes the arithmetic genus of the projective normalization

of the curve.

• Nonsingularity: in this case we took two different approaches, but both determine if the

curve (given as the zero set of homogeneous polynomials) is non-singular over the algebraic

closure of its field of definition:

(1) Using Magma’s command IsNonsingular.

(2) Implementing Algorithm DetermineNonSingularity (Algorithm 3.2.1 in [12]),

which is based on solving a radical membership problem on the minors of the Jacobian

matrix of V (F,G~a). The later is done by a RadicalMembership algorithm ( [12],

Appendix A)

Next, suppose that X = V (F,G~a) is a curve in standard form, then we need to determine

its a-number and p-rank. We do this by computing the Hasse–Witt matrix H of X with respect

to the basis of H1(X,OX) given by (2.3.2), as in Proposition 2.3.5. The a-number is equal to

4 − rank(H) and the p-rank f is the rank of HH(p) · · ·H(pg−1). In our case, since F and G~a are

defined over Fp, then f = rank(Hg).

2.4.1 Collecting the data

We collected two kinds of data of curves over Fp:

Sampling search: We apply the above procedure to random samples of tuples in Dp, N1ip,

N1iip and N2p for p ∈ {3, 5, 7, 11} in order to gather statistical information. In addition, we

classify the curves by a-number and p-rank.
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We want to obtain a large sample, so in order to keep track of the computations we design an

algorithm that allows us to build the sample in batches of given size. Let S be one of the sets above,

then in Magma we define a Sampled set to store the tuples that have already been sorted.

1. Pick some n to be the size of the batch.

2. Build a Current sample by picking a random element v of S , using the intrinsic Random

command, then verify if v is in Sampled set, if it is not, then add it to Current sample. Repeat

until the size of Current sample is n.

3. Verify the irreducibility, genus and smoothness conditions on the curves given by each tuple

in the Current sample and then sort the ones that satisfy them by a-number.

4. Add the Current sample to the Sampled set.

Remark 2.4.1. When we analyze the samples of curves in our data, we will often compare the

number of curves with certain p-rank and/or a-number with the total of smooth curves in standard

form obtained. In our search we classify the curves with a-number 0, 1, 2 and 3. We ignore the

curves with a = 4 (that is, the superspecial ones) because they represent a very small proportion

of the curves and hence they do not affect the percentages in a significant way. In fact, by Theo-

rems 2.2.6 and 2.3.2 we know that there are no superspecial curves of genus 4 in characteristic 3

or 7. By Theorem 2.3.1 every such curve in characteristic 5 is isomorphic to one of 242 × 5 given

curves over F25. Also, our focus will be studying the occurrence of Cartier points (see Section 2.5),

and we already know that superspecial curves have infinitely many of them (Baker [2]). Here is

how we will refer to our different samples:

• Total set: the set Dp, N1ip, N1iip or N2p, depending on the case.

• Sampled set: the subsets of the sets above that are included in our random search.

• Smooth sample: the set of cubics from the sampled set that give smooth, irreducible, genus

4 curves (excluding superspecial curves, see Remark 2.4.1).
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• Singular sample: the set of cubics from the sampled set that give curves that fail either one

of the conditions for smoothness, irreducibility or genus.

If we do not specify the subcase, then Sampled set, Smooth sample and Singular sample will re-

fer to the total samples throughout the four cases. The analysis of this data is done in Section 2.4.2.

Exhaustive search: In order to focus on the analysis of some aspects of genus 4 curves with

a-number 3, we apply the procedure above to all the tuples in Dp,N1ip,N1iip and N2p, but only

store the smooth, irreducible curves with a = 3. We did this for p = 3, 5. The search is also done

for p = 7 but only for tuples in D7 and a subset of N1i7, because of the long computing times. It

is important to remark that after the search, we classify the curves by Fp-isomorphism classes. For

details on the analysis and results obtained from this search see Section 2.4.3.

2.4.2 Summary of results of sampling search

In this section we display the overall results from the sampling search. The sizes of our final

Sampled sets by case are shown in Table 2.2.

Table 2.2: Total samples size over Fp.

p D N1i N1ii N2 Total sample

3 52704 92123 34992 6447 186266

5 179728 179970 179434 179970 719102

7 215957 225193 206890 214998 863038

11 89999 91100 89999 90000 361098

In Table 2.3 we list the number of curves with p-ranks f = 0, 1, 2, 3 and a-number a = 1, 2, 3,

over Fp for p ∈ {3, 5, 7, 11}. We include the totals for the singular samples and the ordinary curves

(that is, those with a-number 0). From this classification we have the following statement:

Corollary 2.4.2. In our data set of genus 4 curves in standard form there are no curves with p-rank

0 and a-number 1, when p ∈ {3, 5, 7, 11}.
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Proof. See Table 2.3.

Table 2.3: Sample of curves in standard over Fp.

a f 3 5 7 11

Sampled set 186266 719102 863038 361098

Singular sample 92654 251584 191925 81845

0 56983 370476 529394 253627

1 0 0 0 0 0

1 1 1679 3592 1652 217

1 2 4134 14615 10687 2146

1 3 23485 74585 76142 23044

Total 29298 92792 88481 25407

2 0 1157 183 44 3

2 1 2095 790 231 21

2 2 3379 3231 1624 194

Total 6631 4204 1899 218

3 0 0 10 0 0

3 1 700 36 5 1

Total 700 46 5 1

Smooth sample 93612 467518 619779 279253

Next we discuss the results from the search for each p. We include the sizes of the total set,

sampled set, smooth sample and singular sample, normalized by logp. Then we show the break

down of curves with a = 1, 2, 3 and specify the percentage of the sampled set and smooth sample

they represent.
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Case p = 3 .

We checked a total of 186266 tuples, which corresponds to approximately 71% of all the possi-

ble tuples. We saw that 50.26% of them gave smooth curves and 19.66% of the total had a-number

a = 1, 2, 3. Table 2.4 contains the sizes of the total set and the samples obtained from the search,

normalized by log3. Notice that we were able to sort all of the cubics from the total sets D3 and

N1ii3. In Table 2.5 we show the number of curves sorted by a-number and p-rank. We remark

that there are no curves of p-rank 0 with a-numbers 1 or 3.

Table 2.4: Sizes of samples for curves over F3 normalized by log3.

Dp N1ip N1iip N2p Total

Total set 9.8965 10.8928 9.5237 8.8928 11.3585

Sampled set 9.8965 10.4048 9.5237 7.9840 11.0457

Smooth sample 9.3967 9.8705 8.1561 7.5868 10.4194

Singular sample 9.1123 9.6658 9.2946 7.0379 10.4101
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Table 2.5: Curves in standard form over F3 from a sample of size 186266 tuples.

a f Total curves % of sample % of smooth sample

Singular sample 92654 49.74 -

0 56983 30.59 60.871

1 0 0 0 0

1 1 1679 0.90 1.794

1 2 4134 2.22 4.416

1 3 23485 12.61 25.088

Total 29298 15.73 31.297

2 0 1157 0.62 1.236

2 1 2095 1.12 2.238

2 2 3379 1.81 3.610

Total 6631 3.56 7.083

3 0 0 0 0

3 1 700 0.38 0.748

Total 700 0.38 0.748

Total smooth 93612 50.26 100.00

Case p = 5.

We selected a random sample of 719102 tuples in D5,N1i5,N1ii5 and N25. This is around

1.49% of the total set. A 61.01% of that sample corresponds to the Smooth sample, and 13.49% of

the total are non-ordinary curves. In Table 2.6 we detail the sizes of our samples, normalized by

log5. In Table 2.7 we show the results, sorted by a-number and p-rank.
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Table 2.6: Sizes of samples for curves over F5 normalized by log5.

Dp N1ip N1iip N2p Total

Total curves 9.7233 10.8360 9.2667 8.7227 10.9894

Sampled set 7.5177 7.5185 7.5166 7.5185 8.3792

Smooth sample 7.3462 7.3146 6.8105 7.3796 8.1116

Singular sample 6.6339 6.7270 7.2762 6.5194 7.7266

Table 2.7: Curves in standard form over F5 from a sample of 719102 tuples.

a f Total curves % of sample % of smooth sample

Singular sample 251584 34.99 -

0 370476 51.52 79.24

1 0 0 0.00 0.00

1 1 3592 0.50 0.76

1 2 14615 2.03 3.12

1 3 74585 10.37 15.95

Total 92792 10.37 19.84

2 0 183 0.03 0.03

2 1 790 0.11 0.16

2 2 3231 0.45 0.69

Total 4204 0.58 0.89

3 0 10 0.00 0.002

3 1 36 0.01 0.007

Total 46 0.01 0.009

Total smooth 467518 65.01 100
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Case p = 7.

We analyzed a random sample of 863038 pairs of tuples in D7, N1i7, N1ii7 and N27, which

corresponds to 0.06% of the total. The smooth sample from this set has 619779 tuples and 90385

of them are curves in standard form with a-number 1, 2 or 3. These correspond to 71.81% and

10.47% of the total, respectively. Table 2.8 contains the normalized sizes of the total and sampled

sets, as well as the smooth and singular samples. In 2.9 we detail the distribution of these curves

by a-number and p-rank.

Table 2.8: Sizes of samples for curves over F7 normalized by log7.

Dp N1ip N1iip N2p Total

Total curves 9.6333 10.7623 9.1186 8.6332 10.8421

Sampled set 6.3121 6.3336 6.2901 6.3098 7.0241

Smooth sample 6.2188 6.2165 5.7756 6.2309 6.8539

Singular sample 5.3897 5.5162 6.0547 5.3082 6.3733
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Table 2.9: Curves in standard form over F7 from a sample of 863038 tuples.

a f Total curves % of sample % of smooth sample

Singular sample 191925 22.24 -

0 529394 61.34 85.417

1 0 0 0.00 0.000

1 1 1652 0.19 0.267

1 2 10687 1.24 1.724

1 3 76142 8.82 12.285

Total 88481 8.82 14.276

2 0 44 0.01 0.007

2 1 231 0.03 0.037

2 2 1624 0.19 0.262

Total 1899 0.22 0.306

3 0 0 0.00 0.000

3 1 5 0.00 0.001

Total 5 0.00 0.001

Total smooth 619779 71.81 100

Case p = 11

In this case we did a random search that included 361098 tuples in D11,N1i11,N1ii11 and

N211, this is approximately 0.0002% of the total set. Of this sample, 77.33% are smooth and

7.10% of the total are non-ordinary. In Table 2.11 we can see the break-down of the curves with

a-number 1, 2 and 3. Notice that no a-number 2 or 3 curve has p-rank 0. For the sizes of the

samples, normalized by log11 are displayed in Table 2.10.
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Table 2.10: Sizes of samples for curves over F11 normalized by log11.

Dp N1ip N1iip N2p Total

Total curves 9.5384 10.6677 8.9568 8.5384 10.7034

Sampled set 4.7573 4.7624 4.7573 4.7573 5.3367

Smooth sample 4.7128 4.7036 4.3903 4.7181 5.2295

Singular sample 3.8025 3.9163 4.5339 3.7522 4.7177

Table 2.11: Curves in standard form over F11 from a sample of 361098 tuples.

a f Total curves % of sample % of smooth sample

Singular sample 81845 22.67 -

0 253627 70.24 90.8234

1 0 0 0 0

1 1 217 0.06 0.0777

1 2 2146 0.59 0.7685

1 3 23044 6.38 8.2520

Total 25407 7.04 9.0982

2 0 3 0 0.0011

2 1 21 0.01 0.0075

2 2 194 0.05 0.0695

Total 218 0.06 0.0781

3 0 0 0 0

3 1 1 0.0003 0.0004

Total 1 0.0003 0.0004

Total smooth 279253 77.33 100.00
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2.4.3 Summary of results from exhaustive search

In the cases p = 3, 5 we also have a complete list of all curves in standard form that have

a-number 3. For p = 7 we have a subset of them: the ones in case D and those in case N1i where

(b1, b2) = (0, 0), we denote these lists by 7(D) and 7(N1i’). The information on these curves,

classified by isomorphism classes, is shown in Table 2.12. A first conclusion that we can draw

from this data is the following:

Corollary 2.4.3. There are no genus 4 curves in standard form over F3 with p-rank 0 and a-number

3.

Table 2.12: Isomorphism classes of curves in standard form with a = 3 over Fp.

p-rank 3 5 7(D) 7(N1i’)

0 0 36 9 2

1 27 98 56 27

Total 27 134 65 29

Case p = 3

There are a total of 1188 vectors ~a in D3, N1i3, N1ii3 and N23 that give curves of genus 4

and a-number 3 over F3. We give a summary of the number of vectors classified by case and some

restrictions that occur in the case D. We use Magma to classify these curves in F3-isomorphism

classes, which we detail in Table 2.13 and Lemma 2.4.5.
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Table 2.13: Isomorphism classes of genus 4 and a = 3 curves over F3.

Case # Isomorphism classes # p-rank 1 # p-rank 0

D 6 6 0

N1(i) 7 7 0

N1(ii) 3 3 0

N2 11 11 0

Total 27 27 0

Corollary 2.4.4. There are, up to F3-isomorphism, exactly 27 curves of genus 4 with a = 3 in

standard form.

Proof. See Table 2.13.

Lemma 2.4.5. Let X be a curve in standard form with a-number 3 defined over F3. Then X is

isomorphic to one of the following:

• V (Fd, G) with

G = x3 + y3 + xyz + c1yz
2 + xw2 + c2w

3,

where c1 ∈ F×3 and c2 ∈ F3.

• V (F1, G) with

G = x2y + c1y
3 + x2z + c2y

2w + c3w
3 + c4z

3 + z2w,

where c1 ∈ {0, 1}, c2, c3 ∈ F×3 and c4 ∈ F3.
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• V (F2, G) with

G = x2y + c1y
3 + c2x

2z + c3z
3 + c4yzw + c5w

3 + c6(z
2w + y2w),

where c1, c3 ∈ F3, c2, c4, c5 ∈ F×3 and c6 ∈ {0, 1}.

In the case D, we identified some necessary conditions for ~a to give rise to a smooth curve

with a-number 3. Recall from Definition 2.3.3 that the term in Gd,~a where x is degree 1 is r =

a1y
2 + a2z

2 + a3w
2 + a4yz + a5zw and it is 0 or has leading coefficient 1. The cubics that

give a-number 3 curves have a1, a3 or a4 as the leading coefficient of r. In fact, we show in

Proposition 2.4.6 that there is a family of smooth curves of this form over F3 which have a-number

3 and p-rank 1.

Proposition 2.4.6. There exists a family of dimension d ≤ 4 of genus 4 non-hyperelliptic smooth

curves over F3 with a-number 3 and p-rank 1.

Proof. Let k = F3 and let X be the family of curves given by V (F,G) where

F = 2yw + z2, G = a0x
3 + xyz + a6y

3 + a7z
3 + a8w

3 + a9yz
2 + zw2, (2.4.1)

with ai ∈ k and a0, a6 ∈ k×.

Now consider the map

X → (A1
k)

5

V (F,G) 7→ (a0, a6, a7, a8, a9),

and let X0 be the fiber in X over (1, 1, 0, 0, 0). That is, X0 = V (F,G0) with G0 = x3 + xyz +

y3 + zw2. We see that X0 is smooth because its Jacobian matrix

Jac(P ) =



0 2w 2z 2y

yz xz xy + w2 2zw


 , (2.4.2)
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has rank 2 at every point of X0. This implies that there is an open subset U of (A1
k)

5 such that

every fiber above U is smooth. From here we can also see, by the genus formula, that the genus is

4 for all of them.

By Proposition 2.3.5 the Hasse–Witt matrix of every curve in this family is

H =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




, (2.4.3)

from where the a-number is 3 and the p-rank is 1.

Finally, we can show that any curve as in (2.4.1) can be reduced so that G has a coefficient

a6 = 1. Indeed, pick some d such that d5 = a−16 and apply the change of variables

(x, y, z, w) → (x, d4y, d3z, d2w). (2.4.4)

Let F̃ and G̃ be the polynomials obtained from F and G after this change, respectively. Then

F̃ = d6F and

G̃ = a0x
3 + d7xyz + a6d

12y3 + a7d
9z3 + a8d

6w3 + a9d
10yz2 + d7zw2. (2.4.5)

So by multiplying G̃ by d−7 we obtain a cubic of the form

a′0x
3 + xyz + y3 + a′7z

3 + a′8w
3 + a′9yz

2 + zw2, (2.4.6)

with a′i ∈ k and a′0 ∈ k×. Hence this family depends on 4 parameters, at most.
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Case p = 5

From the exhaustive search we conclude that there are 134 F5-isomorphism classes of standard

form curves over F5 with a-number 3. Table 2.14 contains the summary of the isomorphism classes

and the number of curves with p-rank 1 and p-rank 0.

In addition, we found some necessary conditions on ~a ∈ D5 for V (Fd, G~a) to be a smooth

genus 4 curve with a = 3. For instance, the leading coefficient of r = a1y
2 + a2z

2 + a3w
2 +

a4yz+ a5zw is never a5 nor does it happen that r = 0. Also, all of these curves have a7 = a9 = 0.

Table 2.14: Isomorphism classes of genus 4 and a = 3 curves over F5.

Case # Isomorphism classes # p-rank 1 # p-rank 0

D 59 46 13

N1(i) 60 48 12

N1(ii) 6 4 2

N2 9 0 9

Total 134 98 36

Corollary 2.4.7. There are, up to F5-isomorphism, exactly 134 curves of genus 4 and a = 3 in

standard form.

Proof. See Table 2.14.

Case p = 7

The exhaustive search for all curves in standard form with a = 3 proved to be too time con-

suming for p = 7. So it was only possible to find the curves in the case D and a subset of N1

curves. We conclude from this search that there are at least 94 F7-isomorphism classes of curves

of a-number 3, where 65 correspond to the case D and 29 to the N1. Now, we know by Lemma

4.5.1 in [12] that any smooth, irreducible, genus 4 curve X = V (Fd, G) can be written in standard
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form. This is because condition (A3) is satisfied over F7 and G can be reduced by a change of

variables to the form of Definition 2.3.3. This implies that the list of curves that we found in the

case D actually includes all of the curves where the quadratic polynomial is degenerate.

Corollary 2.4.8. There are, up to F7-isomorphism, exactly 65 genus 4 and a-number 3, smooth,

irreducible, non-hyperelliptic curves over F7, given as V (F,G), where G is a cubic homogeneous

polynomial and F is a degenerate quadratic form. In addition, there are, up to F7-isomorphism,

at least 29 genus 4 curve in standard form over F7 with a-number 3 where F is non-degenerate.

Proof. Table 2.15 shows the total of

In the case D there are 1440 curves with a-number 3, which are divided into 65 classes, 56 of

them have p-rank 1 and 9 have p-rank 0. The subset of curves of the case N1 that we computed

corresponds to those where the the cubic is of the form

G = (a1y + a2z)x
2 + a3yzx+ y3 + a4z

3 + a5yz
2 + (a6y

2 + a7yz)w + (a8y + a9z)w
2 + a10w

3,

for ai ∈ F7 with a1 6= 0, a2 6= 0. There are 432 of these G such that V (F1, G) is a smooth

genus 4 smooth curve with a-number 3, only 16 have p-rank 0. These curves are distributed in 29

F7-isomorphism class with 2 of them having p-rank 0 and 27 of p-rank 1.

Table 2.15: Isomorphism classes of genus 4 and a = 3 curves over F7.

Case # Isomorphism classes # p-rank 1 # p-rank 0

D 65 56 9

N1i’ 29 27 2

Total 94 83 11
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2.5 Cartier points

2.5.1 Definition and properties

Theorem 2.2.6 states that the genus of a superspecial curve in characteristic p is bounded by

p(p − 1)/2. Ekedahl [5] bases the proof of this result on the fact that a curve is superspecial if

and only if its Jacobian is isomorphic to the product of supersingular elliptic curves (Oort, [19]).

Baker, on the other hand, presents in [2] an alternative proof which makes use of an equivalent

definition: a curve is superspecial if and only if the Cartier operator annihilates H0(X,Ω1
X). The

other component of his proof is the existence of linear systems of dimension 1, associated to a

certain type of points on X , defined as Cartier points.

Definition 2.5.1. A closed point P of X is said to be a Cartier point if the hyperplane of regular

differentials vanishing at P is stable under the Cartier operator.

Theorem 2.2.6 is a corollary of the following result:

Theorem 2.5.2 (Baker [2], Theorem 2.8). Let X be a curve of genus g over an algebraically closed

field of characteristic p.

1. If X has at least p distinct Cartier points, no two of which differ by a p-torsion point on JX ,

then g ≤ p(p− 1)/2.

2. If X is hyperelliptic of genus g, p is odd, and some hyperelliptic branch point of X is a

Cartier point, then g ≤ (p− 1)/2.

Notation 2.5.3. Let k be a field of characteristic p. Let X be a non-hyperelliptic curve of genus g

over k embedded in P(H0(X,Ω1
X)) = Pg−1 by a basis B′ = {ω1, . . . , ωg} of H0(X,Ω1

X). Suppose

x1, . . . , xg are the coordinates of Pg−1 given by this basis and that B is the basis of H1(X,OX)

dual to B′. Given a point P = [a1 : . . . : ag] of X we denote by vP the vector (a1, . . . , ag)
T in

H1(X,OX) expressed in terms of B. Conversely, given a vector w = (b1, . . . , bg)
T in H1(X,OX)

expressed in terms of B, let Q
w

denote the point [b1 : . . . : bg]. From here on, we consider the

Hasse–Witt matrix H of X to be in terms of the basis B, unless otherwise stated.
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Proposition 2.5.4. Let X be a non-hyperelliptic curve of genus g over k embedded in Pg−1 as in

Notation 2.5.3. A point P = [a1 : . . . : ag] of X(k) is a Cartier point if and only if there exists

c ∈ k such that

Hv
(p)
P = cvP , (2.5.1)

where v
(i)
P indicates that each entry of the vector is raised to the i-th power.

Proof. Since X is embedded in Pg−1 by {ω1, . . . , ωg} then ωi(P ) = ai, for i = 1, . . . , g. A regular

1-form ω = b1ω1 + · · ·+ bgωg vanishes at P if and only if

b1a1 + · · ·+ bgag = 0. (2.5.2)

Then the hyperplane of 1-forms vanishing at P is

LP :=
{
(b1, . . . , bg)

T : b1a1 + · · ·+ bgag = 0
}
. (2.5.3)

Let L0
P be the annihilator of LP . We know that this is a 1-dimensional subspace of H0(X,Ω1

X)
∗ ∼=

H1(X,OX), so it is generated by the vector v = (a1, . . . , ag)
T .

Now, LP is stable under the action of C if C(ω) ∈ LP , for every ω ∈ LP . By duality, this is

equivalent to FX(vP ) = cvP , that is, Hv
(p)
P = cvP .

Definition 2.5.5. We say that a Cartier point P ∈ X as above is of Type 1 if c = 0 and of Type 2

otherwise.

Notice that if k is not algebraically closed, then the Cartier points of X/k might not be defined

over k, but over some extension. In general we consider Cartier points as points in X(k).

The next lemma gives us a way to find the Type 1 points.

Lemma 2.5.6. A point P is a Type 1 Cartier point of X if and only if H(1/p)vP = 0.

Proof. By definition P is a Type 1 point of X if and only if Hv(p) = 0. By applying the inverse of

the p-th Frobenius morphism we see that this is equivalent to H(1/p)vP = 0.
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Corollary 2.5.7. Supose X is defined over Fp. Then P ∈ X is a Type 1 point if and only if

HvP = 0.

Suppose that X is defined over Fq, with pr = q for some positive integer r. For a point Q ∈ X

we denote by σ(Q) the action of the r-th power of the Frobenius morphism on Q. It turns out that

the set of Cartier points is stable under the action of σ.

Lemma 2.5.8. Let Q be a Cartier point of X/Fq and let P = σ(Q). Then Q is a Cartier point

of X if and only if P := σ(Q) is a Cartier point of X . Furthermore, if Hv
(p)
Q = cvQ, then

Hv
(p)
P = cqvP .

Proof. First we note that P is also a point on X , because X = V (F,G) and F and G are defined

over Fq. Let H be the Hasse–Witt matrix of X . After scaling, we can assume that v
(q)
Q = vP . Then

Hv
(p)
Q = cvQ ⇐⇒

(Hv
(p)
Q )(q) = (cvQ)

(q) ⇐⇒

H(q)(v
(p)
Q )(q) = cqv

(q)
Q ⇐⇒

H(v
(q)
Q )(p) = cq(vQ)

(q) ⇐⇒

Hv
(p)
P = cqvP .

Where the second to last equivalence is true because X is defined over Fq then so is H .

We apply Lemma 2.5.8 to reduce the search of Cartier points to a computation of eigenvectors.

Lemma 2.5.9. Suppose X is defined over Fp and H is its Hasse–Witt matrix. Let Q be a Cartier

point of X defined over Fpe . There exists λ ∈ Fp such that HevQ = λvQ.

Proof. Since Q is a Cartier point in of X then Hv
(p)
Q = cvQ for some c ∈ Fp. Now, since

Q ∈ X(Fpe), then c ∈ Fpe . Let Pi := σi(Q), then P1, P2, . . . , Pe = Q are distinct Cartier

points. Also, after scaling we can assume that v
(p)
Pi

= vPi+1
. After applying i times the result from
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Lemma 2.5.8 with q = p, we get that Hv
(p)
Pi

= cp
i

vPi
. To ease notation, we write vi instead of vPi

.

Then

Heve = Hev
(p)
e−1 = He−1

(
Hv

(p)
e−1

)
= He−1

(
cp

e−1

ve−1

)
= cp

e−1

He−1v
(p)
e−2.

By an inductive process, we get that HevQ = cp
e−1+pe−2···+p+1vQ = c

pe−1

p−1 vQ. Let λ := c
pe−1

p−1 .

Since c ∈ Fpe then λ is a (p− 1)-root of unity, if c 6= 0 and λ = 0 if c = 0. Hence λ ∈ Fp.

Baker provides in [2] an upper bound for the number of Cartier points on a smooth irreducible

curve that is not ordinary nor superspecial. Recall that such points might only be defined on the

curve after some base field extension.

Proposition 2.5.10 (Baker, [2] Prop. 3.3). Let X be a smooth, irreducible curve of genus g with

p-rank f , which is not ordinary nor superspecial.

1. The number of Type 2 points on X is bounded by

b := bg,p,f,δX = min

(
2g − 2, δX

pf − 1

p− 1

)
, (2.5.4)

where δX is 2 if X is hyperelliptic and 1 otherwise.

2. The number of Type 1 points on X is bounded by 2g− 2. Furthermore, if the a-number of X

is g − 1 then there is at least one Type 1 Cartier point on X .

Let us explore the geometric meaning of this bound, following the proof of Proposition 2.5.10

in [2]. We will only be concerned with non-hyperelliptic curves, so here δX = 1.

We know by Proposition 2.5.4 that P ∈ X(k) is a Cartier point if and only if there exists c ∈ k

such that

Hv
(p)
P = cvP . (2.5.5)
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Suppose that c = 0, then by Lemma 2.5.6 Equation (2.5.5) is equivalent to Hv
(1/p)
P = 0. This

implies that the Type 1 points are those in the intersection of X(k) and the subspace spanned

by the kernel of H(1/p) in Pg−1. This subspace is linear and has codimension at least 1, so it is

contained in a hyperplane. From where we conclude that the number of points in the intersection

is at most the degree of the curve 2g − 2.

On the other hand, if c 6= 0 then we can rewrite Equation (2.5.5) as Hw(p) = w by setting

w = λvP for λ equal to some (p − 1)-th root of c−1. Now the element of H1(X,OX) given by

w is fixed by the Frobenius operator. By definition the p-rank f is the dimension of the subspace

of H1(X,OX) where F is bijective. So there are pf − 1 non trivial solutions, that yield at most

pf−1
p−1

Type 2 points. We can improve this bound: after maybe doing a base extension on X one can

choose a basis of H0(X,Ω1
X) given by {ξ1, . . . , ξg} such that C(ξi) = ξi for 1 ≤ i ≤ f . Assume

that the coordinates of a Type 2 point are given by this basis, then, in particular some coordinate,

say xg of every such point must be zero, since f < g. Then the point lies on the hyperplane xg = 0.

Again, there can only be 2g− 2 such points, so the number of Type 2 points is min{2g− 2, p
f−1
p−1

}.

As a direct consequence of the existence of the upper bound on the number of Cartier points,

we also get a bound on the degree of the field of definition of the point. In particular, we have

Corollary 2.5.11 for the case k = Fq.

Corollary 2.5.11. Let X be a genus g non-hyperelliptic curve that is not ordinary nor superspecial,

defined over Fq.

• If P is a Type 1 Cartier point of X , then P ∈ X(Fqe) with 1 ≤ e ≤ 2g − 2.

• If P is a Type 2 Cartier point of X , then P ∈ X(Fqe) with 1 ≤ e ≤ b, where b is as in

Proposition 2.5.10.

Proof. Let P be a Cartier point of X . Let e be the minimum positive integer such that P ∈ X(Fqe).

By Lemma 2.5.8, the e distinct points {P, σ(P ), σ2(P ), . . . , , σe−1(P )} are all Cartier points of the

same type. By Proposition 2.5.10, there are at most 2g − 2 Type 1 points and b Type 2 points.

Hence, if P is a Type 1 points (resp. Type 2), then e ≤ 2g − 2 (resp. e ≤ b).

40



Type 1 points in the case a = g − 1

The behavior of the Cartier points when the a-number is g−1 has an additional feature which is

the multiplicity. In this case, the subspace S generated by the kernel of H(1/p) is a hyperplane, then

assuming X * S, the intersection X∩S is proper. Then we can define the intersection multiplicity

of P ∈ X ∩ S, that is, of the Type 1 Cartier points. We use the definition from Miranda [17]. Let

L be a homogeneous linear polynomial defining S and L0 another linear polynomial that does not

vanish at P . Then the multiplicity of P in X ∩ S is the order of the rational function h = L/L0

at P . One can show that this does not depend on the choice of L0. Let P1, . . . , Pn be the points

in X ∩ S. We denote each multiplicity distribution of the set of Type 1 Cartier points of X by a

partition of 2g−2. So if (m1,m2, . . . ,mn) denotes the multiplicity of the Type 1 points of X , then

there is one point of multiplicity mi for i = 1, . . . , n and
∑n

i=1 mi = 2g − 2.

Now we want to determine the possible fields of definition of the Type 1 points, depending on

their multiplicity. Since L is defined over Fq, the order of h at P is the same as the order of h at

σ(P ). Therefore the multiplicity of P is preserved under σ. Similarly, the degree is preserved.

Let di be the degree of the point Pi, then Pi, σ(Pi), σ
2(Pi), . . . , σ

di−1(Pi) are di points of the same

degree and multiplicity. We use [(m1,m2, . . . ,mn), (d1, . . . , dn)] to denote that the curve has n

Type 1 points P1, . . . , Pn where Pi has multiplicity mi and degree di.

We pay special attention to those curves where the bounds on the Cartier points are attained,

which for the case when a = g − 1 implies that all the points in the intersection of S and X are of

multiplicity one. It is not hard to see that there are exactly as as many possible degree distribution

for those points as partitions of 2g − 2.

In Section 2.5.2 we discuss this bound in the case of genus 4 non-hyperelliptic curves and how

the bound depends on the a-number and p-rank of the curve.
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2.5.2 Cartier points on genus 4 curves

Suppose q = pr for some positive integer r and let X = V (F,G) be a non-ordinary and non-

superspecial smooth, irreducible genus 4 non-hyperelliptic curve over Fq. We want to determine

the sharpness of Baker’s bound from Proposition 2.5.10 for the number of Cartier points on X .

We will first make some remarks about the possible bounds depending on the a-number and the

p-rank.

Corollary 2.5.12 (Type 2 Cartier points and the p-rank). Let X be a non-hyperelliptic curve of

genus 4 defined over Fq with p-rank f .

(i) There are at most 6 Type 2 points on X and they are defined over Fqe for some 1 ≤ e ≤ 6.

Moreover:

(ii) if f = 0, then there are no Type 2 points;

(iii) if f = 1, then there is at most 1 Type 2 point and it must be defined over Fq;

(iv) if f = 2, then there are at most 6 Type 2 points, at most 3 if p = 2 and at most 4 if p = 3.

Proof. Parts (i), (ii) and (iv) are direct consequences of the discussion following Proposition 2.5.10.

Indeed, the minimum of 2g − 2 = 6 and pf−1
p−1

is 6, unless f ≤ 1 or p = 2, 3 and f = 2.

For (iii), let Q be a Type 2 Cartier point of X and suppose that P = σ(Q) 6= Q. By

Lemma 2.5.8 we have that P is another Cartier point of Type 2, which is a contradiction.

Corollary 2.5.13 (Type 1 points and the a-number). If X is non-hyperelliptic of genus 4 with

a-number 1, 2 or 3 defined over Fq, then

(i) X has at most 6 Cartier points of Type 1 and they are defined over Fqe for some e ≤ 6.

Moreover,

(ii) if a = 1, then there is at most one Type 1 Cartier point

(iii) if a = 3, there are exactly 6 Type 1 Cartier points on X , counting with multiplicity.

42



Proof. Part (i) follows from Proposition 2.5.10 and Corollary 2.5.11, using 2g − 2 = 6. Now, if

a = 1, the kernel of H(1/p) has dimension 1, because a = dim(ker(H)). Then the kernel spans a

point in P3, and this is the only possible Type 1 point. When a = 3, on the other hand, the subspace

spanned by the same kernel is a hyperplane, so its intersection with X is not empty.

In Table 2.16 we synthesize the possible bounds on the number of Cartier points on a non-

ordinary non-superspecial non-hyperelliptic genus 4 curve, depending on the a-number a and the

p-rank f .

Table 2.16: Upper bounds on the number of Cartier points.

a f # Type 1 points ≤ # Type 2 points ≤

3
1 6 1

0 6 0

2

2 6 4 if p = 3 and 6 otherwise

1 6 1

0 6 0

1

3 1 6

2 1 4 if p = 3 and 6 otherwise

1 1 1

0 1 0

Computing Cartier points

We explain here an algorithm to find the Cartier points on smooth, irreducible genus 4 non-

hyperelliptic curves over Fp, given their quadratic and cubic homogeneous polynomials. Before

we detail the procedure, we will revisit some facts about Cartier points. Let X = V (F,G) be a

curve as before.
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1. Let H be the Hasse–Witt matrix of X as in Proposition 2.3.5. Recall that H represents

the action of Frobenius on H1(X,OX) with respect to the basis that corresponds to the

coordinates x, y, z, w. This implies that we can use H and Proposition 2.5.4 to find the

Cartier points of X , by solving Hv(p) = cv.

2. If P ∈ X(Fpe) is a Cartier point, then there exists some λ ∈ Fp such that HevP = λvP

(Lemma 2.5.9).

3. If P is a Type 1 point, then HvP = 0 (Corollary 2.5.7).

4. The eigenvalues of He are exactly the e-powers of the eigenvalues of H . If λ is as in (2),

then there exists an eigenvalue µ of H such that λ = µe ∈ Fp. In other words, in order for a

Cartier point to be defined over Fpe , then there must be a µ such that µe ∈ Fp.

5. Let h(x) be the characteristic polynomial of H . The splitting field of h(x) is either Fp, Fp2

or Fp3 . Indeed, h(x) has degree 4, but since H has rank at most 3, then x is a factor of h(x).

We use these facts to compute the Type 1 and Type 2 Cartier points of X . Algorithm 2.5.15 is

restricted to the case when q = p, to simplify the computations.

Algorithm 2.5.14. [Type 1 Cartier points]

Input: F and G in Fq[x, y, z, w].

Output: List of Type 1 Cartier points of X = V (F,G).

1. Compute the Hasse–Witt matrix H of X , as in Proposition 2.3.5.

2. Let M = H(1/p). Construct the linear forms Li = (M)i,1x+ (M)i,2y + (M)i,3z + (M)i,4w,

for 1 ≤ i ≤ 4.

3. Let I be the ideal generated by {L1, L2, L3, L4, F,G} and let T = V (I).

4. For each 1 ≤ e ≤ 6, find the points in Te = T (Fqe).

5. The set of Type 1 points is
⋃

e(Te).
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Algorithm 2.5.15. [Type 2 Cartier points]

Input: F and G in Fp[x, y, z, w].

Output: List of Type 2 Cartier points of X = V (F,G).

1. Compute the Hasse–Witt matrix H of X , as in Proposition 2.3.5.

2. Compute h(x), the characteristic polynomial of H and find the roots of h(x) in its splitting

field.

3. For each µ non-zero root of h(x):

(a) For each 1 ≤ e ≤ 6 such that µe ∈ Fp:

i. Let M = He − µeI , where I is the identity matrix.

ii. For 1 ≤ i ≤ 4, construct the linear forms Li = (M)i,1x + (M)i,2y + (M)i,3z +

(M)i,4w.

iii. Let I be the ideal generated by {L1, L2, L3, L4, F,G} and T = V (I).

iv. For each point in T (Fpe), compute Hv
(p)
P . If this gives a multiple of v, then P is a

Type 2 Cartier point.

2.5.3 Cartier points on standard curves over Fp

In this section we present the results from our search of curves in standard form, related to their

a-number, p-rank and Cartier points, both of Type 1 (T1) and Type 2 (T2). Recall that we analyzed

two kinds of data: on the one side our sampling search provides a random set of standard form

curves over Fp for p ∈ {3, 5, 7, 11}. On the other, we obtain a complete list of all of the curves in

standard form over F3 and F5 and a partial list over F7. See Section 2.4 for more details.

Here is how this section is organized. First, we make a couple of observations regarding the

bounds for the number of Cartier points in the case where X is defined over Fp. Then we state

Corollaries 2.5.16, 2.5.17 and 2.5.18 which we obtain from the analysis of the data. We summarize

the statistical results from the sampling search first and the exhaustive search later, breaking down

each of them case by case by p.
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The upper bound of Type 1 points: Our data reflects that, as expected, it is hard to find curves

that attain the bounds on the number of Type 1 and Type 2 Cartier points. For instance when the

a-number is 1, a curve can have at most 1 Type 1 point, but most curves have zero (see Table 2.19).

When a = 2 the bound is 6, but as stated in Corollary 2.5.16, all of the curves in our sample have

3 or fewer Type 1 Cartier points.

The bound on Type 1 points is also 6 when a = 3, but here we see a different behavior. This is

mainly because in this case, the Type 1 points come from intersecting the curve with a hyperplane,

which guarantees exactly 6 points, counting with multiplicity. Even though our statistical data does

not give a large sample of a-number 3 curves over F7 and F11, we can see in Tables 2.21 and 2.19

that most curves attain the bound, except for p = 3.

The bound on Type 2 points: Similarly, it seems unlikely for a curve with p-rank f > 0 to

reach the upper bound of Type 2 points. This is true even when f = 1 and thus the bound is 1.

We can see in Table 2.20 that the majority of curves with p-rank 1 have no such points. The same

happens when f = 2. In this case the bound is 6, but we did not find any curve with more than 2

Type 2 points, except when p = 5, where there exist 2 curves with 6 Type 2 points.

It is important to recall that the bound for Type 2 points in characteristic 3 is 4, not 6, and there

are in fact 16 p-rank 3 curves that reach this bound.

Corollary 2.5.16. In our sample of smooth curves, no curve with a-number 2 reaches the bound

of 6 Type 1 Cartier points. Moreover, the maximum number of Type 1 Cartier points attained for

curves with a-number 2 is 3 for p ∈ {5, 7, 11} and 2 for p = 3.

Proof. See Table 2.19.

Corollary 2.5.17. The bound on the number of Type 1 points is sharp for non-hyperelliptic smooth

genus 4 curves over Fp when

• p ∈ {3, 5, 7, 11} and a = 1.

• p ∈ {5, 7, 11} and a = 3.
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Proof. See Table 2.19.

Corollary 2.5.18. In our sample of smooth curves, no curve with p-rank 2 or 3 reaches the bound

of 6 Type 2 Cartier points when p ∈ {5, 7, 11}.

Proof. See Table 2.20.

Summary of results from the sampling search

In Tables 2.17 and 2.18 we show the percentages of curves from the smooth non-ordinary

samples that attain the upper bound on the number of Type 1 and Type 2 Cartier points, respectively.

Recall that in Section 2.5.2 we explained how the maximum number of Type 1 points depends on

the a-number of the curve and in the case of Type 2, on the p-rank. Therefore, in Table 2.17 we

organized the samples by a-number on the first column, the second column refers to the upper

bound and for each p we specify the percentage of curves with the given a-number that attain that

maximum. The format of Table 2.17 is the same, except that we sort the curves by their p-ranks

instead.

Table 2.17: Percentage of curves that attain the upper bound on T1 points.

a Upper bound 3 5 7 11

1 1 5327 / 29298 3896 / 92792 1918 / 88481 202 / 25407

= 18.18 % = 4.20 % = 2.17 % = 0.80 %

2 6 0 / 6631 0 / 4204 0 / 1899 0 / 218

= 0 % = 0 % = 0 % = 0 %

3 6 0 / 700 24 / 46 4 / 5 1 / 1

= 0 % = 52.17 % = 80 % = 100 %
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Table 2.18: Percentage of curves that attain the upper bound on T2 points.

f Upper bound 3 5 7 11

1 1 198 / 4474 146 / 3362 35 / 1888 0 / 239

= 4.43 % = 4.34 % = 1.85 % = 0 %

2 6 0 / 7513 0 / 13385 0 / 12311 0 / 2340

(4 if p = 3) = 0 % = 0 % = 0 % = 0 %

3 6 0 / 23485 0 / 51914 0 / 76142 0 / 23044

= 0 % = 0 % = 0 % = 0 %

We know by Corollary 2.5.13 that the upper bound on the number of Type 1 Cartier points is

given by 2g − 2 = 6 if a = 2, 3 and 1 if a = 1. We want to determine for which a, f and p these

bounds are attained. As we can see in Table 2.17 this does not happen for any of the curves with

a = 2 that we found. In Table 2.19, we break down the number of curves over Fp by the number

of Type 1 points they have.

On the other hand, the upper bound on the number of Type 2 points depends on the p-rank: it

is min{2g − 2, p
f−1
p−1

}. As stated in Corollary 2.5.16, and observed in Table 2.20, it is unlikely that

a curve of p-rank 2 or 3 reaches the bound of 6 Type 2 points.
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Table 2.19: Summary of Type 1 points on samples of standard form curves.

a #T1 3 5 7 11

1 0 23971 88896 86563 25205

1 1 5327 3896 1918 202

Total 29298 92792 88481 25407

% that attains UB 18.18 % 4.20 % 2.17 % 0.80 %

2 0 1690 3158 1595 191

2 1 3268 832 262 25

2 2 1673 149 37 1

2 3 0 65 5 1

Total 6631 4204 1899 218

% that attains UB 0 % 0 % 0 % 0 %

3 0 0 0 0 0

3 1 660 4 0 0

3 2 40 4 0 0

3 3 0 14 0 0

3 4 0 0 1 0

3 5 0 0 0 0

3 6 0 24 4 1

Total 700 46 5 1

% that attains UB 0 % 52.17 % 80.00 % 100 %

Sample size 186266 719102 863038 361098
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Table 2.20: Summary of Type 2 points on samples of standard form curves.

f #T2 3 5 7 11

0 0 1157 193 44 3

1 0 4276 4272 1853 239

1 1 198 146 35 0

Total 4474 4418 1888 239

2 0 7137 17072 12071 2320

2 1 353 737 235 20

2 2 23 35 5 0

2 3 0 2 0 0

Total 7513 17846 12311 2340

3 0 21951 71423 74504 22837

3 1 1394 3032 1597 204

3 2 117 113 41 3

3 3 14 15 0 0

3 4 9 2 0 0

Total 23485 74585 76142 23044

Sample size 186266 719102 863038 361098

Case p = 3

From the sample of 186266 curves over F3 a total of 35472 have a-number 1, 2 or 3. There are

only two instances in which we identified curves that realize the (non-zero) upper bound on Type

1 and Type 2 points. These are when a = 1, for Type 1 points, and when f = 3 for Type 2 points,

and the bounds are 1 and 4, respectively. Even so, we can observe in Tables 2.19 and 2.20 that

most curves tend to have fewer Cartier points.
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Case p = 5

Recall that we sampled a total of 719102 tuples over F5 and obtained 97042 curves of a-number

1 ≤ a ≤ 3. As expected, most of these curves have a-number 1. In addition, only 3896 out of the

88896 curves with a = 1 have a Type 1 Cartier point. This is also expected because for each curve,

there is only one point P such that HvP = 0, so it is unlikely for this point to also be on the curve.

Case p = 7

We sampled a total of 863200 random tuples, obtaining 619872 curves in standard form and

90403 of them with a-numbers 1, 2 or 3. We note that the upper bounds for the number of Type

1 points are realized when a = 1 and a = 3, but not for a = 2, where the maximum number

of points attained is 3. With respect to the Type 2 points, the (non-zero) upper bounds are only

attained when the p-rank is 1. In particular, we get the following result:

Corollary 2.5.19. Baker’s bound on the total number of Cartier points for genus 4 curves with

a = 3 and p-rank 1 is attained over F7.

In our data there is only one curve with a-number 3 where both the bounds of Type 1 and Type 2

points are attained, we show it in Example 2.5.20. Another illustration of this can be found later in

Example 2.6.9. We also include Examples 2.5.21, 2.5.22 and 2.5.23 where the maximum number

of Type 1 points is reached, and Example 2.5.24, in which we see a curve with only 4 Type 1 points.

The Hasse–Witt matrix in each example is computed with the basis given in Proposition 2.3.5.

Example 2.5.20. Let X = V (F,G) be a genus 4 curve over F7 where

F = 2yz + 2xw,

G = 2x2y + y3 + x2z + y2z + 3z3 + 2yzw + z2w + 4yw2 + 6zw2 + 4w3.

Notice that X belongs to the N1 case from Definition 2.3.3. We will see how this curves attains

Baker’s bound on Cartier points. First, the Hasse–Witt matrix of X is
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


2 3 6 1

0 0 0 0

0 0 0 0

0 0 0 0




.

Thus the a-number is 3 and the p-rank 1, in which case the total bound on the number of Cartier

point is 7. By solving Hv = cv we see that the Type 2 point is [1 : 0 : 0 : 0].

Also, the Type 1 points are those in the intersection of X and the hyperplane 2x+3y+6z+w =

0. There are two such points defined over F7, they are [0 : 0 : 1 : 1] and [2 : 4 : 3 : 1]. The other four

points are two pairs of σ-conjugate defined over F49 which are [6 : α26 : α22 : 1], [6 : α38 : α10 : 1]

and [4 : α33 : α23 : 1], [4 : α39 : α17 : 1], for α such that α2 + 6α + 3 = 0.

Example 2.5.21. Let X = V (F,G) be a genus 4 curve over F7 where

F = 2yz + 2xw,

G = 3x2y + y3 + 6x2z + 2xyz + 3y2z + 6yz2 + z3 + 2y2w + 2yzw + z2w + 2w3.

The Hasse–Witt matrix of X is

H =




0 0 0 0

5 2 4 1

6 1 2 4

2 5 3 6




.

Thus X has a-number 3 and p-rank 1. However, there are no Type 2 points because the only

vector, up to scalar multiplication, that satisfies Hv = cv for some c ∈ F7 is v = (0, 1, 4, 6)T , but

the corresponding point in P3 with these coordinates is not on X .
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The hyperplane spanned by the kernel of H is given by x + 6y + 5z + 3w = 0 and the points

of X that intersect it, that is, the Type 1 points, are: [1 : β11 : β13 : 1], [1 : β29 : β43 :1] where

β2 + 6β + 3 = 0, and

[α500 : α674 : α1026 : 1], [α500 : α1826 : α2274 : 1], [α1100 : α782 : α1518 : 1],

[α1100 : α2318 : α2382 : 1] where α4 + 5α2 + 4α + 3 = 0.

Example 2.5.22. Let X = V (F,G) be a genus 4 curve over F7 where

F = y2 + 4z2 + 2xw,

G = 6x2y + 4xy2 + y3 + 3x2z + 5y2z + 2xz2 + 2yz2 + 5z3 + 2yzw + z2w + yw2

+ zw2 + 5w3.

The Hasse–Witt matrix of X is

H =




6 5 2 4

4 1 6 5

2 4 3 6

4 1 6 5




.

This curve has p-rank 1 and no Type 2 Cartier points, since the only vector v, up to scaling such

that Hv = cv is (1, 3, 5, 3)T , and these coordinates do not correspond to a point on X .

The Type 1 points are [1 : 6 : 1 : 1], [3 : 0 : 3 : 1], [0 : α3 : α23:1], [0 : α21 : α17 : 1],

[α17 : 1 : α31 : 1] and [α23 : 1 : α25 : 1], where α2 + 6α + 3 = 0.

Example 2.5.23. Let X = V (F,G) be a genus 4 curve over F7 where

F =y2 + 4z2 + 2xw,

G =3x2y + 2xy2 + 5y3 + 2x2z + 4y2z + xz2 + 3yz2 + 4z3 + 4y2w + 6yzw + z2w+

4yw2 + 4zw2 + w3.
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The Hasse–Witt matrix of X is

H =




2 2 3 3

3 3 1 1

6 6 2 2

6 6 2 2




.

The p-rank of X is 1, but there are no Type 2 points, as the only solution, up to scalar multiplication,

of Hv = cv is (1, 5, 3, 3)T , and this does not give a point on X .

The Type 1 points are [1 : 6 : 6 : 1], [6 : 3 : 0 : 1] and [α178 : α1202 : α1071 : 1],

[α1054 : α1886 : α153 : 1], [α1246 : α1214 : α297 : 1], [α1522 : α1298 : α2079 : 1] such that

α4 + 5α2 + 4α + 3 = 0.

Example 2.5.24. Let X = V (F,G) be a genus 4 curve over F7 where

F = y2 + 4z2 + 2xw.

G = 3x2y + 4xy2 + 3y3 + 5y2z + 2xz2 + yz2 + 5z3 + y2w + 6yzw + 5zw2 + 2w3.

The Hasse–Witt matrix of X is

H =




1 4 1 6

5 6 5 2

0 0 0 0

1 4 1 6




.

In this case, X has p-rank 1, but the only eigenvector of H , up to scaling is (1, 5, 0, 1)T , and this

does not give a point on X . On the other hand, there are four Type 1 points: [0 : α14 : α34 : 1],

[α7 : α36 : α34 : 1], [0 : α2 : α46 : 1], [α : α12 : α46 : 1], where α2 + 6α+ 3 = 0. The first two have

multiplicity one and the others have multiplicity 2.
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Case p = 11

The size of the random sample in this case is of 361098 tuples. Note that, once again, the upper

bound for the Type 1 points is attained for some cases where a = 1, 3. On the other hand, none of

the curves realize the bound of Type 2 points (except, of course when f = 0).

One important observation is that, from all sampled tuples, only one of them resulted in a curve

with a-number 3. This curve also achieves the maximum of 6 Type 1 points.

Example 2.5.25. Let X = V (F,G) be a genus 4 curve over F11 where

F =z2 + 2yw,

G =9x3 + xy2 + 4y3 + 9xyz + 2xz2 + 8z3 + 7xzw + 8xw2 + zw2 + 3w3.

The Hasse–Witt matrix of X is

H =




1 5 3 10

7 2 10 4

2 10 6 9

4 9 1 7




.

This curve has a-number 3 and p-rank 1. There are no Type 2 points. Indeed, the only solution,

up to scalar multiplication of Hv = cv is v = (1, 7, 2, 4)T , and this does not give a point over X .

The Type 1 points are those on the intersection of X and the hyperplane with equation x+5y+

3z + 10w = 0, that is [6 : 9 : 9 : 1], [7 + 2α + 7α2 + 9α3 + 10α4 : 6 + 4α + 5α2 + 4α3 + 1α4 :

10 + 4α2 + 5α3 + 6α4 : 1] with α5 + 10α2 + 9 = 0, and its 4 conjugates.
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2.6 Cartier points on curves over Fp with a-number 3 from ex-

haustive search

In Table 2.21 we display the information of curves in standard form over Fp for p ∈ {3, 5, 7},

obtained from the exhaustive search. For p = 3, 5 the search was done over all the possible tuples.

For p = 7 we found all the curves in standard form in the degenerate case and all of those in the

case N1i when the coefficients of y2z and z2w are 0. We denote these lists by 7(D) and 7(N1i’),

respectively. In the second column, we list the total number of isomorphism classes of curves with

a-number 3 found for each p. The third column indicates the total number of curves that attain the

maximum of 6 Type 1 Cartier points. The last two columns correspond to the number of curves

that reach the maximum of Type 2 points, over the total with the respective p-rank. Notice that all

curves with f = 0 trivially reach this bound, since the bound is 0.

Table 2.21: Isomorphism classes in standard form with a-number 3 over Fp.

p

Classes Attain max. of T1 Attain max. of T2

a = 3 a = 3 f = 0 f = 1

(6) (0) (1)

3 27 0 0/0 0/27

5 134 80 36/36 5/98

7(D) 65 48 9/9 0/56

7(N1i’) 29 23 2/2 1/27

By Corollary 2.5.13, genus 4 curves with a-number 3 have exactly 6 Type 1 Cartier points,

but only when we count with multiplicity. In the case p = 3 all curves have either 1 or 2 Type 1

points maximum; for p = 5, the curves show 1, 2, 3 or 6 points, and for p = 7 we saw evidence of

curves with any number of Type 1 points ranging from 1 to 6. Furthermore, we determine which

multiplicity and degree distributions occur and show this information in Tables 2.22 and 2.23,
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up to Fp-isomorphism classes. An important observation is that, over F5, every possible degree

distribution for curves with 6 (distinct) Type 1 points occurs. Also, all except one of them occur

among our sample over F7.

Table 2.22: Multiplicities and degree distribution of T1 points.

# T1 points Multiplicity Degree 3 5 7(D) 7(N1i’)

6 (1,1,1,1,1,1) (1,1,1,1,1,1) 0 1 0 0

6 (1,1,1,1,1,1) (1,1,1,1,2,2) 0 6 2 1

6 (1,1,1,1,1,1) (1,1,1,3,3,3) 0 4 1 4

6 (1,1,1,1,1,1) (1,1,2,2,2,2) 0 9 1 4

6 (1,1,1,1,1,1) (1,1,4,4,4,4) 0 8 0 3

6 (1,1,1,1,1,1) (1,2,2,3,3,3) 0 13 5 2

6 (1,1,1,1,1,1) (1,5,5,5,5,5) 0 10 2 12

6 (1,1,1,1,1,1) (2,2,2,2,2,2) 0 3 4 2

6 (1,1,1,1,1,1) (2,2,4,4,4,4) 0 8 1 5

6 (1,1,1,1,1,1) (3,3,3,3,3,3) 0 10 2 4

6 (1,1,1,1,1,1) (6,6,6,6,6,6) 0 9 5 11

5 (2,1,1,1,1) (1,1,1,1,1) 0 0 0 0

5 (2,1,1,1,1) (1,2,2,2,2) 0 0 1 0

5 (2,1,1,1,1) (1,4,4,4,4) 0 0 2 1

5 (2,1,1,1,1) (1,1,3,3,3) 0 0 0 0

5 (2,1,1,1,1) (1,1,1,2,2) 0 0 2 1
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Table 2.23: Multiplicities and degree distribution of T1 points (continued).

# T1 points Multiplicity Degree 3 5 7(D) 7(N1i’)

4 (2,2,1,1) (1,1,1,1) 0 0 0 0

4 (2,2,1,1) (2,2,1,1) 0 0 2 0

4 (2,2,1,1) (1,1,2,2) 0 0 1 0

4 (2,2,1,1) (2,2,2,2) 0 0 0 0

4 (3,1,1,1) (1,1,2,2) 0 0 3 2

4 (3,1,1,1) (1,3,3,3) 0 0 0 0

4 (3,1,1,1) (1,1,1,1) 0 0 3 1

3 (3,2,1) (1,1,1) 0 0 0 0

3 (2,2,2) (1,1,1) 0 4 1 0

3 (2,2,2) (2,2,1) 0 10 0 0

3 (2,2,2) (3,3,3) 0 12 2 0

3 (1,1,4) (1,1,1) 0 0 0 0

3 (1,1,4) (2,2,1) 0 0 0 0

2 (3,3) (1,1) 10 0 0 0

2 (3,3) (2,2) 11 0 0 1

2 (1,5) (1,1) 0 8 0 0

2 (2,4) (1,1) 0 0 0 0

1 (6) (1) 6 19 0 0

2.6.1 Exhaustive search: case p = 3

We will now discuss the curves in standard form over F3 of a-number 3. Since we have a

complete list of all of the isomorphism classes of these curves, we know that all of them have

p-rank 1. As an illustration, we review the family of curves from Proposition 2.4.6.
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Example 2.6.1. We use Proposition 2.5.4 to compute the Cartier points on the family of curves

C = V (F,G) over k = F3 with

F = 2yw + z2, G = a0x
3 + xyz + a6y

3 + a7z
3 + a8w

3 + a9yz
2 + zw2,

where ai ∈ k and a0, a6 ∈ k×. Notice that here F = Fd, hence X belongs to the degenerate case

D.

The Hasse–Witt matrix H of each curve in this family is given by

H =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




.

Even though the p-rank of the curve is 1, there are no Type 2 points. Indeed, if v = (a, b, c, d)T

is such that Hv = cv for some c ∈ k then a = c = d, but [0 : 1 : 0 : 0] is not a point on C,

since a6 6= 0. Now, the hyperplane generated by the kernel of the Hasse–Witt matrix is given by

L := y = 0, which intersects C at P = [a : 0 : 0 : 1] where a = −a8
a0

, hence there is only one Type

1 point.

In Lemma 2.4.5 we specify representatives for the isomorphism classes of curves in standard

form over F3 with a-number 3. It turns out the all the curves from the same kind have the equal

multiplicity and degree distribution of Type 1 points, as a consequence we get the next lemma. We

show explicitly the points in Tables 2.24, 2.25 and 2.26.

Lemma 2.6.2. Let X = V (F,G) be a curve in standard form with a-number 3 over F3, then X

has no Type 2 Cartier point and

• if F = Fd = 2yw + z2, then X has exactly one Type 1 point of multiplicity 6;

59



• if F = F1 = 2xw+2yz, then X has exactly two Type 1 points of multiplicity 3, each defined

over F3;

• if F = F2 = 2xw + y2 + z2, then X has exactly two Type 1 points of multiplicity 3, each

defined over F9.

Proof. See Tables 2.24, 2.25 and 2.26.

The proof of Lemma 2.6.2 follows from our classification of curves in standard form into

isomorphism classes and direct computation of Cartier points. Here we give an overview of the

heuristics that go into this procedure, in the degenerate case. The other two cases can be worked

out in a similar way.

Example 2.6.3 (Cartier points in the case D). Let X = V (F,G) be a curve from Table 2.24. We

know that F = 2yw + z2yw and that G is of the form

G = x3 + y3 + xyz + c1yz
2 + xw2 + c2w

3,

where c1 ∈ F×3 and c2 ∈ F3.

We will show that X has no Type 2 Cartier points and that [2− c1 − c2 : 1 : 2 : 1] is the unique

Type 1 Cartier point, and it has multiplicity 6.

By Proposition 2.3.5, the Hasse-Witt matrix of X with respect to the basis

{x−2y−1z−1w−1, x−1y−2z−1w−1, x−1y−1z−2w−1, x−1y−1z−1w−2}

of H1(X,OX) is H1 in Table 2.27. We can see right away that X has no Type 2 Cartier

points, since, up to scalar multiplication, the only vector such that H1v = cv for some c ∈ F3 is

v = (0, 1, 0, 0)T , but these are not the coordinates of a point on X .

Now, the hyperplane S generated by the kernel of H1 is the zero locus of L = y + 2z + w.

Then by substituting y = z − w in F = 0 we get z2 + 2zw + w2 = 0. If w = 0, then z = y = 0,

but [1 : 0 : 0 : 0] 6∈ X , so assume w = 1. Then z = 2 and y = 1 and the Type 1 points of X are of

60



the form P = [α : 1 : 2 : 1]. To find α we evaluate G at P and get α = 2 − c1 − c2. So there is a

unique (not counting multiplicity) Type 1 point.

The fact that P is the only point on the intersection of S and X implies that it must have

multiplicity 6. We can indeed verify this by considering a parametrization of X at P . If t is a

local parameter at P , then there exists a neighborhood of P where the points of X are of the form

Pt = [α− t : 1 : φ1(t) : φ2(t)] for some φ1 and φ2 regular at 0. In particular φ1(0) = 2. Then since

F (Pt) = 0 we get φ2
1(t) = φ2(t). Similarly, since G(Pt) = 0 we have

(α− t)3 + 1 + (α− t)φ1 + c1φ
2
1 + (α− t)φ4

1 + c2φ
6
1 = 0. (2.6.1)

Let φ1(t) = 2+a1t+a2t
2+ . . . be the expansion of φ1 at 0. Then by comparing the coefficients

of both sides of Equation 2.6.1 we find that φ1(t) = 2 + c1t
3 + . . .. Now consider h = L/y, with

respect to t the function h is

h(t) = 1− φ1(t) + φ2
2(t) = c1t

6 + (terms of higher order).

Hence h has vanishing order of 6 at t = 0, from where the multiplicity of P is 6.

In Tables 2.24, 2.25 and 2.26 we show the cubic polynomial for a representative of each iso-

morphism class in the cases D, N1 and N2, respectively. The curves are of the form X = V (F,G).

We also specify the Hasse-Witt for each representative (that can be found in Table 2.27) and the

Type 1 Cartier points.
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Table 2.24: Isomorphism classes of D curves with a = 3 over F3.

Representative G Hasse–Witt matrix T1 points

x3 + y3 + xyz + yz2 + xw2 H1 [1 : 1 : 2 : 1]

x3 + y3 + xyz − yz2 + xw2 H1 [0 : 1 : 2 : 1]

x3 + y3 + xyz + yz2 + xw2 + w3 H1 [0 : 1 : 2 : 1]

x3 + y3 + xyz − yz2 + xw2 + w3 H1 [2 : 1 : 2 : 1]

x3 + y3 + xyz + yz2 + xw2 − w3 H1 [2 : 1 : 2 : 1]

x3 + y3 + xyz − yz2 + xw2 − w3 H1 [1 : 1 : 2 : 1]

Table 2.25: Isomorphism classes of N1 curves with a = 3 over F3.

Representative G Hasse–Witt matrix T1 points

x2y + y3 + x2z + y2w + z2w − w3 H2 [1 : 2 : 1 : 1], [0 : 0 : 2 : 1]

x2y + y3 + x2z − y2w + z2w − w3 H3 [0 : 2 : 0 : 1], [0 : 0 : 1 : 1]

x2y + y3 + x2z + z3 + y2w + z2w + w3 H2 [1 : 2 : 1 : 1], [1 : 1 : 2 : 1]

x2y + y3 + x2z + z3 − y2w + z2w + w3 H3 [0 : 0 : 1 : 1], [2 : 2 : 2 : 1]

x2y + y3 + x2z − z3 + y2w + z2w + w3 H2 [0 : 0 : 2 : 1], [1 : 0 : 1 : 0]

x2y + y3 + x2z − z3 + y2w + z2w − w3 H2 [1 : 1 : 2 : 1], [1 : 0 : 1 : 0]

x2y + y3 + x2z − z3 − y2w + z2w + w3 H3 [2 : 1 : 1 : 1], [1 : 0 : 1 : 0]

x2y + x2z + y2w + z2w + w3 H2 [1 : 2 : 1 : 1], [1 : 1 : 2 : 1]

x2y + x2z + y2w + z2w − w3 H2 [0 : 2 : 0 : 1], [0 : 0 : 2 : 1]

x2y + x2z − y2w + z2w + w3 H3 [0 : 2 : 0 : 1], [2 : 1 : 1 : 1]
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Table 2.26: Isomorphism classes of N2 curves with a = 3 over F3, with β2 + 2β + 2 = 0.

Representative G HW matrix T1 points

x2y + y3 + x2z − z3 − yzw − w3 H4 [β5 : 1 : β3 : 1], [β7 : 1 : β : 1]

x2y + x2z − yzw − w3 H4 [0 : β5 : β7 : 1], [0 : β7 : β5 : 1]

x2y + y3 + x2z − z3 − yzw + w3 H4 [β2 : 0 : β : 1], [β6 : 0 : β3 : 1]

x2y + x2z − z3 − yzw + w3 H4 [β2 : 0 : β : 1], [β6 : 0 : β3 : 1]

x2y + y3 + x2z + z3 − yzw + w3 H4 [1 : β2 : β6 : 1], [1 : β6 : β2 : 1]

x2y − y3 + x2z − z3 − yzw − w3 H4 [β7 : β2 : 1 : 0], [β5 : β6 : 1 : 0]

x2y + x2z + z3 − y2w − yzw + z2w + w3 H5 [2 : 0 : β2 : 1], [2 : 0 : β6 : 1]

x2y − y3 + x2z − y2w − yzw + z2w − w3 H5 [β7 : β5 : 1 : 1], [β5 : β7 : 1 : 1]

x2y − x2z − y2w + yzw + z2w + w3 H5 [β2 : β3 : β7 : 1], [β6 : β : β5 : 1]

x2y + x2z − z3 − y2w − yzw + z2w + w3 H5 [β2 : β3 : β7 : 1], [β6 : β : β5 : 1]

x2y − x2z − z3 − y2w + yzw + z2w − w3 H5 [0 : 2 : β2 : 1], [0 : 2 : β6 : 1]

We compute the Hasse-Witt matrices for the representatives of the isomorphism classes using

Proposition 2.3.5, with respect to the ordered basis of H1(X,OX)

{x−2y−1z−1w−1, x−1y−2z−1w−1, x−1y−1z−2w−1, x−1y−1z−1w−2}.
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Table 2.27: Hasse–Witt matrix for representatives over F3.

H1 =




0 0 0 0

0 1 2 1

0 0 0 0

0 0 0 0




H2 =




0 0 0 0

0 0 0 0

0 0 0 0

1 2 2 2




H3 =




0 0 0 0

0 0 0 0

0 0 0 0

1 1 2 1




H4 =




0 0 0 0

0 0 0 0

0 0 0 0

2 1 1 1




H5 =




0 0 0 0

0 0 0 0

0 0 0 0

2 2 0 2




2.6.2 Exhaustive search: case p = 5

We found the set of Cartier points on all curves in standard form over F5 with a-number 3.

There are some behaviors that are different from the case p = 3. For instance, there are isomor-

phism classes of curves that attain the bound on the number of Cartier points, both with f = 1 and

f = 0. It also happens that some of them have Type 2 Cartier points (see Table 2.28 and Proposi-

tion 2.6.5). Another feature is that every degree distribution occurs when there are 6 distinct Type

1 points, as shown in Table 2.29.

64



Table 2.28: Number of Type 1 and 2 Cartier points over F5.

Case Curves with n Type 1 points Curves with Type 2

1 2 3 4 5 6 1

D 14 0 26 0 0 19 0

N1i 3 7 0 0 0 50 4

N1ii 0 1 0 0 0 5 1

N2 2 1 0 0 0 6 0

Total 19 9 26 0 0 80 5
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Table 2.29: Occurrence of field of definition Type 1 points over F5.

# T1 points Multiplicity Degree D N1i N1ii N2

6 (1,1,1,1,1,1) (1,1,1,1,1,1) 0 1 0 0

6 (1,1,1,1,1,1) (1,1,1,1,2,2) 2 3 1 0

6 (1,1,1,1,1,1) (1,1,1,3,3,3) 1 3 0 0

6 (1,1,1,1,1,1) (1,1,2,2,2,2) 1 8 0 0

6 (1,1,1,1,1,1) (1,1,4,4,4,4) 0 1 1 0

6 (1,1,1,1,1,1) (1,2,2,3,3,3) 5 6 1 1

6 (1,1,1,1,1,1) (1,5,5,5,5,5) 0 9 0 1

6 (1,1,1,1,1,1) (2,2,2,2,2,2) 1 1 0 1

6 (1,1,1,1,1,1) (2,2,4,4,4,4) 4 2 0 2

6 (1,1,1,1,1,1) (3,3,3,3,3,3) 2 5 2 0

6 (1,1,1,1,1,1) (6,6,6,6,6,6) 0 0 0 0

3 (2,2,2) (1,1,1) 4 0 0 0

3 (2,2,2) (2,2,1) 10 0 0 0

3 (2,2,2) (3,3,3) 12 0 0 0

2 (1,5) (1,1) 0 7 0 1

1 (6) (1) 14 3 0 0

Example 2.6.4. There are only 5 isomorphism classes of curves in standard form with a-number

3 over F5 that have a Type 2 Cartier point. Here we show the cubic polynomial of each curve,

together with the Type 2 point. All of these curves have only 1 Type 1 Cartier point, which implies

there are no p-rank 1 curves over F5 that reach the bound of 7 total Cartier points.

• x2y + y3 + x2z + 2xyz + 2yz2 + z3 + 2y2w + 2yzw + yw2 + w3, [1 : 0 : 3 : 0].

• 2x2y + y3 + x2z + xyz − yz2 − z3 + 2yzw − 2yw2 + zw2 − w3, [0 : 0 : 1 : 2].

• 2x2y+y3+2x2z+xyz+y2z−2yz2−2z3+2y2w−yzw+yw2−2zw2−2w3, [1 : 3 : 2 : 4].
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• x2y + y3 − 2x2z + y2z − yz2 − y2w − yzw + z2w − yw2 − 2zw2 − 2w3, [1 : 2 : 0 : 0].

• x2y+2x2z− 2xyz + y2z + yz2 − 2y2w+2yzw+ z2w+ yw2 − 2zw2 − 2w3, [1 : 4 : 1 : 1].

Proposition 2.6.5. There are no curves in standard form over F5 with p-rank 1 and a-number 3

that reach Baker’s bound of 7 Cartier points.

There are, up to F5-isomorphism, 17 curves in standard form with p-rank 0 and a-number 1

that reach the bound of 6 Type 1 Cartier points.

Proof. If a genus 4 curve with a = 3 has p-rank 0 then by Proposition 2.5.10, it has at most 6

Cartier points. If the p-rank is 1, then the curve has at most 7 Cartier points: 6 of Type 1 and 1

of Type 2. We use Algorithms 2.5.14 and 2.5.15 to compute the Cartier points on all N1, N2 and

D curves with a = 3 over F5 and find that only 17 curves with p-rank 0 have a total of 6 Cartier

points. Example 2.6.4 shows that the only curves with Type 2 Cartier points have fewer than 6

Type 1 points, hence the total of Cartier points is less than the upper bound for all the p-rank 1

curves.

We know give examples of families of curves and their Cartier points.

Example 2.6.6. Let C be the genus 4 curve over k = F5 embedded in P3 as the zero locus of

F = 2yw + z2 and (2.6.2)

G = αx3 + xyz + βy3 + zw2, (2.6.3)

with α, β ∈ k×. The computation of the Hasse–Witt matrix by Proposition 2.3.5 gives

H =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




. (2.6.4)
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So C has a-number 3 and p-rank 1. The vectors such that Hv(p) = cv for some c ∈ k× are

the scalar multiples of (0, 1, 0, 0)T , but [0 : 1 : 0 : 0] is not a point on C. On the other hand,

if Hv(p) = 0 then v must be a scalar multiple of (0, 0, 0, 1)T , hence the only Cartier point is

[0 : 0 : 0 : 1] and it is of Type 1.

Example 2.6.7. Let X be the genus 4 curve over F5 embedded in P3 as the zero locus of

F = 2yw + z2, G = ax3 + xw2 + by3 + cw3 + zw2, (2.6.5)

with a, b ∈ F×5 and c ∈ F5. By Proposition 2.3.5 the Hasse-Witt matrix of X is

H =




0 0 0 0

0 3ab2 4ab 4a

0 0 0 0

0 0 0 0




. (2.6.6)

If Hv = cv for some c 6= 0, then v must be in the subspace spanned by (0, 1, 0, 0)T . But

[0 : 1 : 0 : 0] is not a point on X . Therefore, X has no Type 2 point.

Now, suppose P = [x0, y0, z0, w0] is a Type 1 Cartier point of X , and let v = vP . Since P is

also on the hyperplane generated by the kernel of H , then 3b2y0 + 4bz0 + 4w0 = 0, from where

w0 = 3b2y0 + 4bz0. By evaluating F at P we see that

b2y2 + 3byz + z2 = 0,

hence z0 = 2by0. Note that y0 6= 0, because otherwise P = [1 : 0 : 0 : 0], and this is not a point on

X . So we can assume that y0 = 1, and then P = [x0 : 1 : 2b : b2]. Evaluating P at G we get that

ax3
0 + x0 + 3b+ cb = 0.
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Therefore, X has 1, 2 or 3 Type 1 Cartier points (counting without multiplicity), one for each

of the roots of ax3 + x+ 3b+ cb, that can be defined over F5, F52 or F53 .

Example 2.6.8. Let X be the genus 4 curve over F5 embedded in P3 as the zero locus of

F = 2yw + z2, G = 3a2x3 + xw2 + bxyz + b2ay3 + aw3 + zw2, (2.6.7)

with a, b ∈ F×5 . The curve X is smooth and irreducible if a 6= b. By Proposition 2.3.5 the Hasse-

Witt matrix of X is

H =




0 0 4ab3 4b

0 0 2a3b2 2a2

0 0 0 0

0 0 4b3 4a3b




. (2.6.8)

So X has a-number and p-rank 1. There are no points on X such that the corresponding vector v

is a solution to Hv(5) = cv for c in F×5 .

Now, suppose that P = [x0, y0, z0, w0] is a Type 1 point. Then P is in the hyperplane given

by ab2z + w = 0, hence w0 = 4ab2z. If z0 = 0, then w0 = 0 and since G(P ) = 0, we have

3a2x3
0 + ab2y30 = 0. Clearly x0 and y0 cannot be zero, so let y0 = 1 and then P = [x0 : 1 : 0 : 0]

for x0 a root of 3ax3 + b2 = 0. This gives a Type 1 point over F5 and two over F25.

On the other hand, if we assume z0 = 1 then w0 = 4ab2 and by substituting P in F = 0 we ob-

tain y0 = 3a3b2. Therefore P = [x0 : 3a3b2 : 1 : 4ab2], with x0 a root of

3a2x3 + x(a2 + 3a3b3) + 3a2 + 4b2. For all possible (a, b), this polynomial has three distinct

roots, either over F5, F25 or F125.

2.6.3 Exhaustive search: case p = 7

As mentioned in Section 2.4.2, for p = 7 we also computed all the a-number 3 curves of type

D and of type N1i with (b1, b2) = (0, 0). Table 2.30 shows the number of Cartier points on these

curves.
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Table 2.30: Number of Cartier points on known D and N1 genus 4 curves over F7.

Case #Curves with n Type 1 points #Curves with Type 2

1 2 3 4 5 6 1

D 0 0 3 9 5 48 0

N1i’ 0 1 0 3 2 23 1

Total 0 1 3 12 7 71 1
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Table 2.31: Occurrence of field of definition Type 1 points over F7.

# T1 points Multiplicity Degree 7(D) 7(N1i’)

6 (1,1,1,1,1,1) (1,1,1,1,2,2) 2 1

6 (1,1,1,1,1,1) (1,1,1,3,3,3) 1 4

6 (1,1,1,1,1,1) (1,1,2,2,2,2) 1 4

6 (1,1,1,1,1,1) (1,1,4,4,4,4) 0 3

6 (1,1,1,1,1,1) (1,2,2,3,3,3) 5 2

6 (1,1,1,1,1,1) (1,5,5,5,5,5) 2 12

6 (1,1,1,1,1,1) (2,2,2,2,2,2) 4 2

6 (1,1,1,1,1,1) (2,2,4,4,4,4) 1 5

6 (1,1,1,1,1,1) (3,3,3,3,3,3) 2 4

6 (1,1,1,1,1,1) (6,6,6,6,6,6) 5 11

5 (2,1,1,1,1) (1,2,2,2,2) 1 0

5 (2,1,1,1,1) (1,4,4,4,4) 2 1

5 (2,1,1,1,1) (1,1,1,2,2) 2 1

4 (2,2,1,1) (2,2,1,1) 2 0

4 (2,2,1,1) (1,1,2,2) 1 0

4 (3,1,1,1) (1,1,2,2) 3 2

4 (3,1,1,1) (1,1,1,1) 3 1

3 (2,2,2) (1,1,1) 1 0

3 (2,2,2) (3,3,3) 2 0

2 (3,3) (1,1) 0 0

2 (3,3) (2,2) 0 1
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In Section 2.4.2 we saw, through our random sample search, that the bound of Cartier points is

attained for curves with a-number 3 over F7, as stated in Corollary 2.5.19. This was also reflected

in our exhaustive search, with a curve over in the case N1i, shown in Example 2.6.9.

Example 2.6.9. Consider the curve X = V (F,G) with

F = 2yz + 2xw,

G = 3x2y + y3 + 2x2z − yz2 + 2z3 + y2w + 3yzw − 3yw2 − 3zw2 + w3.

The Hasse–Witt matrix of X is




2 5 2 6

0 0 0 0

0 0 0 0

0 0 0 0




.

The Type 1 Cartier points then are the points of intersection of X and the hyperplane

S : 2x+ 5y + 2z + 6w = 0,

which are [0 : 3 : 0 : 1], [5 : 2 : 1 : 1], [1 : 3b+2: 3b + 5 : 1], [1 : 4b+2: 4b + 5 : 1],

[3 : 2b+ 3 : 2b+ 4 : 1] and [3 : 5b+ 3 : 5b+ 4 : 1], where b is a primitive element of F49 such that

b2 + 2 = 0. Also, [1 : 0 : 0 : 0] is the Type 2 Cartier point.
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Chapter 3

Endomorphism rings of supersingular elliptic curves

and ℓ-isogeny graphs

This chapter is based on the paper "Cycles in the supersingular ℓ-isogeny graph and correspond-

ing endomorphisms" [3], written in collaboration with Efrat Bank, Kirsten Eisenträger, Travis Mor-

rison and Jennifer Park that started as part of the Women in Numbers 4 workshop (WIN4) held

at Banff, Alberta, Canada in August 2017. Motivated by the renewed interest on the potential use

of supersingular elliptic curves based cryptosystems, Eisenträger and Park proposed a project to

study the properties of the ℓ-isogeny graph of the supersingular elliptic curves over fields of posi-

tive characteristic. The main goal is to learn more about the hardness of the problem of computing

the endomorphism ring of such curves.

3.1 Introduction

Ordinary elliptic curves and their group law constitute the basis for Elliptic Curve Cryptogra-

phy (ECC), where one uses a subgroup of order n generated by an element Q, the private key is

a number d ∈ {1, . . . , n − 1} and the public key is a point P such that P = dQ. Finding d is

consider a “hard problem" (meaning there is no polynomial time algorithm to solve it) called the

Discrete Logarithm Problem. However, ECC, as well as RSA, is known to be vulnerable under

attacks with quantum computers, which is why there has been an interest in transitioning to new

systems. In 2017, the National Institute of Standards and Technology (NIST) initiated the project

Post-Quantum Cryptography Standardization, where proposals of cryptosystems are reviewed in

order to determined their effectiveness in a post-quantum scenario. In January 2019 the Round 2

candidates were announced, with a supersingular elliptic curve based system as one of them. As

the NIST report states: "The basic security problem upon which SIKE relies, finding isogenies be-
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tween supersingular elliptic curves, has not been studied as much as some of the security problems

associated with other submissions." [1], p. 14).

The problem of finding isogenies between supersingular elliptic curves is equivalent to com-

puting the endomorphism ring of a supersingular elliptic curve. Here, we study the hardness of

this last problem by following a strategy first explored by Kohel in [11]: the ℓ-isogeny graph.

Let p and ℓ be distinct primes. In the ℓ-isogeny graph, every vertex corresponds to an Fp- iso-

morphism class of supersingular elliptic curves over Fp2 and each vertex is an ℓ-isogeny between

such curves. This implies that every cycle at a vertex j can be seen as an element of the endomor-

phism ring of an elliptic curve E with j-invariant j. The idea is to find cycles that can generate

End(E), which happens to be isomorphic to a maximal order in a quaternion algebra.

In Section 3.2 we cover the necessary background on supersingular elliptic curves, quaternion

algebras and ℓ-isogeny graphs, along with some important results. In Section 3.3 we present a few

questions that arise from the approach taken and the results obtained as partial answers to these

questions: a condition for two cycles to be linearly independent and an obstruction to generate

End(E). Finally in Section 3.4 we include examples for p = 31, 101, 103 where the results are

applied.

3.2 Supersingular Elliptic curves

Let k be any field of characteristic different from 2 and 3, and let E an elliptic curve defined

over k, that is, a non-singular curve of genus 1. We consider E as given by a short Weierstrass

equation

y2 = x3 + a1x+ a2, (3.2.1)

for some a1, a2 ∈ k, the base point at infinity is O = [0 : 1 : 0]. The k-isomorphism classes of ellip-

tic curves are classified by their j-invariant, which can be computed from (3.2.1) as

j = 2833a1
22a3

1
+33a2

2

.

Elliptic curves have the structure of an abelian group. In particular, we can consider the isogeny

from E to itself given by
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[m] : E → E

P 7→ mP,

for some integer m, defined as the multiplication by m map. The kernel of this map is exactly

the m-torsion subgroup of E, that is E[m] := {P ∈ E : mP = O}.

Suppose now that k has characteristic p > 0. Let E[p](k) be the group of p-torsion points of E

over k. Then there are two possibilities: either E[p](k) = 0 or E[p](k) = Z/pZ (Silverman [28]).

Definition 3.2.1. If E is an elliptic curve over a filed of characteristic p > 0, such that E[p](k) = 0,

then E is supersingular. Otherwise, E is ordinary.

Another characterization of supersingular elliptic curves comes from the structure of its endo-

morphism ring. In particular, End(E) is isomorphic to either:

• Z,

• an order in an imaginary quadratic field, or

• or an order in a quaternion algebra.

When char(k) = p > 0, the first case does not happen, and E is supersingular exactly when

End(E) is an order in a quaternion algebra. We will discuss more in Section 3.2.1.

In addition, all supersingular elliptic curves over k have a model that is defined over Fp2 , and

consequently their j-invariant is also in F2
p. Our new “hard problem" is going to be to compute

the endomorphism ring of a supersingular elliptic curve. The next result, due to Deuring, gives an

important starting point to a solution:

Theorem 3.2.2. [Deuring, 1941] Let Bp,∞ be the unique, up to isomorphism, quaternion algebra

over Q ramified exactly at p and infinity. Let E be a a supersingular elliptic curve over Fp2 . Then

End(E)⊗Q = Bp,∞ and End(E) is a maximal order in Bp,∞.

Proof. See Voight [32], p. 733.

In order to understand this result, we will review some basis theory of quaternion algebras.
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3.2.1 Quaternion algebras

Let F be a field with char(F ) 6= 2.

Definition 3.2.3. An F -algebra B is a quaternion algebra if there is a basis 1, i, j, k for B as an

F -vector space such that

i2 = a, j2 = b, and k = ij = −ji. (3.2.2)

for some a, b ∈ F×. We denote B by
(
a,b
F

)
.

The quaternion algebra B is generated by the elements i, j and has dimension 4 as an F -vector

space. Since char(F ) 6= 2 then B is also a central simple F -algebra. A typical example of a

quaternion algebra is one formed by the 2× 2 matrices over F , that we detail in Example 3.2.4.

Example 3.2.4. [Split matrix algebra] The set M2(F ) of 2× 2 matrices with coefficients in F is a

quaternion algebra over F . Indeed M2(F ) ≃
(
−1,1
F

)
, where the isomorphism is given by taking

i 7→




0 1

−1 0


 , j 7→



1 0

0 −1


 .

It turns out that every quaternion algebra over F is isomorphic to a matrix algebra over some

extension of F . For instance in Proposition 3.2.5 we see what happens when K = F (
√
(a)).

Proposition 3.2.5. Let a, b ∈ F× and K = F (
√
a). Then

a. if K/F is quadratic and α 7→ α is the nontrivial element of Gal(K/F ), there is an F -algebra

isomorphism

(
a, b

F

)
≃







α bβ

β α


 : α, β ∈ K





⊂ M2(K), and

b. if K = F then (
a, b

F

)
≃ M2(F ).
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A direct consequence of Proposition 3.2.5 is that if a ∈ (F×)2, then
(
a,b
F

)
≃ M2(F ). Also,

if F is algebraically closed, then clearly every quaternion algebra is isomorphic to M2(F ). If B

is a quaternion algebra isomorphic to M2(F ) we said that it is split. If B is not split, then it is a

division algebra.

Following Theorem 3.2.2, we will be interested in quaternion algebras over Q, specially defi-

nite quaternion algebras.

Definition 3.2.6. A definite quaternion algebra over Q is an algebra of the form

K = Q+Qi+Qj +Qij,

whose multiplication satisfies i2, j2 ∈ Q, i2 < 0, j2 < 0 and ij = −ji.

Since Q is not algebraically closed it makes sense to ask: when is a (definite) quaternion

algebra B over Q split? Moreover, for any prime p one can define the Qp-algebra Bp = B ⊗Q Qp.

In the same way, since ∞ is the place given by the usual absolute value and R is the corresponding

completion of Q then B∞ = B ⊗Q R is an R-algebra.

Definition 3.2.7. A quaternion algebra B over Q splits at p (resp. ∞) if Bp (resp. ∞) is split.

Otherwise, B is ramified at p (resp. ∞).

The quaternion algebras over Q are classified, up to isomorphism, by the places where they are

ramified, which always form sets of even cardinality (Voight [32], p.192). So for every prime p

there is a unique (up to isomorphism) quaternion algebra over Q that is ramified at p and ∞, and

there is an explicit representation in each case we get the next result.

Theorem 3.2.8. Let p be a prime. Then the unique quaternion algebra over Q ramified at p and

∞ is given by:

(i) Bp,∞ =
(
−1,−1

Q

)
if p = 2;

(ii) Bp,∞ =
(
−1,−p

Q

)
if p ≡ 3 mod 4;
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(iii) Bp,∞ =
(
−2,−p

Q

)
if p ≡ 5 mod 8 and

(iv) Bp,∞ =
(
−p,−q

Q

)
if p ≡ 1 mod 8,

where q is a prime with q ≡ 3 mod 4 and
(

q
p

)
= −1.

Proof. See Pizer [20], p. 368.

Definition 3.2.9. Let B be a Q-algebra that is finitely generated over Q. An order O of B is a

subring of B that is finitely generated as a Z-module and satisfies O ⊗Q = B.

Let O be an order of a quaternion algebra B. Then there exist α, β ∈ B such that

O = Z+ Zα + Zβ + Zαβ.

Whenever it is clear from context, we denote O as < 1, α, β, αβ >. Going back to the problem

of finding End(E) and using Theorem 3.2.2, now our task is: given E over Fp2 , find the elements

of Bp,∞ that generate O ∼= End(E).

Theorem 3.2.2 gives a correspondence between maximal orders of Bp,∞ and supersingular

elliptic curves over Fp2 . If O is a maximal order in Bp,∞, there exist (up to isomorphism) one or

two supersingular elliptic curves such that the endomorphism ring is isomorphic to O. There are

two such curves if and only if the j-invariant is in Fp2 − Fp, in which case O ∼= End(j) ∼= End(j).

Our approach is to use the ℓ-isogeny graph for p, which was first explored by Kohel in [11], to

find generators of O. An isogeny is called an ℓ-isogeny if it has degree ℓ. Intuitively, this means

that it is an ℓ-to-1 map.

3.2.2 The ℓ-isogeny graph

Let ℓ be a prime, such that p 6= ℓ.

Definition 3.2.10. The ℓ-isogeny graph is constructed as follows.

• Vertices: set of isomorphism classes of supersingular elliptic curves over Fp2 , labeled by

their j-invariants.
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• Edges: ℓ-isogenies between such curves, constructed in this way: pick some j-invariant j

and E such that j(E) = j. Each ℓ isogeny from E is determined by its kernel, so let H be

a subgroup of E of order ℓ, then the isogeny a : E → E/H ∼= E ′ corresponds to an edge

from j to j′, where j′ = j(E ′). It is important to remark that two ℓ-isogenies could have the

same kernel: indeed, if we consider u ∈ Aut(E ′), then the kernel of a′ = u ◦ a is also H ,

but the two isogenies might be different. In the construction of G(p, ℓ) we make an arbitrary

choice of ℓ-isogeny for each cyclic subgroup of E[ℓ] to represent each edge.

In practice we usually choose an elliptic curve for each j invariant. We denote by E(j) the

elliptic curve with j-invariant j and affine model y2 + xy = x3 − 36
j−1728

x− 1
j−1728

, if j 6= 0, 1728.

We set the affine models y2 = x3 + 1 and y2 = x3 + x for E(0) and E(1728), respectively.

Let G(p, ℓ) be the ℓ-isogeny graph. Since E[ℓ], the ℓ-torsion subgroup of E, is isomorphic to

Z/ℓZ×Z/ℓZ, there are ℓ+ 1 subgroups of E of order ℓ and hence ℓ+ 1 directed edges from each

j. This implies that G(p, ℓ) is a (ℓ+1)-regular, directed multigraph. Kohel [11] proved that G(p, ℓ)

is connected in the supersingular case.

Lemma 3.2.11. Let G = G(p, ℓ) as in Definition 3.2.10, then

1. G is connected,

2. G is (ℓ+ 1)-regular and

3. #V =
⌊

p
12

⌋
+ εp, where

εp =





0, p ≡ 1 mod 12

1, p = 3

1, p ≡ 5, 7 mod 12

2, p ≡ 11 mod 12

The number εp distinguishes the cases where 0 or 1728 are supersingular j-invariants: the first

one occurs when p ≡ 2 mod 3 and the later one when p ≡ 3 mod 4. The (ℓ + 1) regularity of
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G(p, ℓ) has an exception at the vertices E(0) and E(1728) and their neighbors, due to the extra

automorphisms. Two other important features of the graph are:

• Each cycle from E(j) corresponds to an endomorphism of E, since it is a composition of

ℓ-isogenies.

• The dual isogenies: let a be an edge from E(j) to E(j′) and α its corresponding ℓ-isogeny.

We say that the edge â from E(j′) to E(j) is the dual of a if it corresponds to an isogeny of

the form uα̂ for u ∈ Aut(E(j)).

In this way, it makes sense to look for elements of Bp,∞ corresponding to cycles on the graph,

starting at a fixed j.

3.2.3 Norm and Trace

Let φ be an element of End(E). There exist unique t and n such that

φ2 − tφ+ [n] = 0. (3.2.3)

We define t to be the trace of φ and n is the norm of φ and

x2 − tx+ n = 0 (3.2.4)

is the minimal polynomial of φ, except when φ = [m], for some m ∈ Z. In that case the minimal

polynomial is x2 − m and the trace is 0. In order to identify a cycle of G(p, ℓ) with some φ, we

need to find its norm and trace. The first one is easy to compute, due to the following lemma given

by Deuring correspondence:

Lemma 3.2.12. Let L be a cycle beginning and ending at a vertex j. Then the (reduced) norm of

L interpreted as an element of End(E(j)) is ℓm, where m is the length of L.

The trace, on the other hand, is more difficult to find, but there are some cases where the answer

comes directly from the geometry of the graph. For example, if E(j) has a unique self loop φ, then
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it must correspond to its own dual, so

φ2 = φ ◦ φ̂ = [ℓ],

and the trace of φ is 0.

An algorithm to compute the trace of an endomorphism.

As mentioned above, the task of computing the trace of an endomorphism is somewhat compli-

cated. However, following the ideas in [11] and [26] we can deduce the existence of an algorithm

that gives results in polynomial time:

Proposition 3.2.13. Let L be a cycle beginning and ending at a vertex v corresponding to an

elliptic curve Ev. Then the (reduced) trace of L interpreted as an element of End(Ev) can be

computed in polynomial time.

Here is an idea of the proof of Proposition 3.2.13. The complete proof can be found in the

Appendix of [3].

Schoof [26] proofs the existence of an algorithm that computes in polynomial time the number

of points in an elliptic curve over a finite field, given by a Weierstrass equation (where the charac-

teristic of the field is not 2 nor 3). To do this, the author uses the facts that, if E is an elliptic curve

over Fq and T is the trace of Frobenius φF then

E(Fq) = q + 1− T, (3.2.5)

the minimal polynomial for Frobenius is

x2 − Tx+ q, (3.2.6)

and by the Riemann hypothesis for elliptic curves, T is bounded by 2
√
q.

The idea is that, if l is relatively prime to q then the relation
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(φ2
l − Tφl + q)P = 0, (3.2.7)

where φl is the reduction mod l of φF , holds for all points P ∈ E[l]. Hence we check, for

sufficiently many prime l’s such that the product of all of them is larger than 4
√
q, which values of

T ′ satisfy the relation (φ2
l − T ′φl + q)P = 0 for all P ∈ E[l]. Then T can be determined by the

Chinese Reminder Theorem. In practice the computations of (φ2
l − T ′φl + q)P are done using the

explicit formulas for the multiplication by T ′ map and φl(P ), both of which are well known.

Kohel ( [11], proof of Theorem 81) suggests modifying Schoof’s algorithm to compute the

trace of any endomorphism. To prove our result we go through Schoof’s explanation and adjust it

to our case for an endomorphism φ of trace t and norm n.

First, we know that the minimal polynomial is given by 3.2.4 and that we can compute n from

the length of the cycle. Also, by [28] the trace t is given by t = 1 + n − norm(φ − 1), so it

is bounded by 1 + ℓm, where m is the length of the corresponding cycle. Hence we can replicate

Schoof’s technique using this bound (avoiding the prime ℓ in the product) and the explicit formulas

for the ℓ isogenies adapted from Vélu’s [31] work.

Now that we find a way of computing both the trace and the norm of every cycle on the ℓ-

isogeny graph, we want to determine under which conditions two cycles will correspond to ele-

ments on the quaternion algebra Bp,∞ that would generate a maximal order. We address this in the

next section.

3.3 Main results

The main results obtained in this paper are motivated by some natural questions, that arise from

the approach of studying the ℓ-isogeny graph to construct endomorphism rings. These questions

include:

1. Is there a criterion for when two cycles are linearly independent or dependent in Bp,∞?

2. Is there a criterion for when the corresponding elements of two cycles generate a maximal

order?
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3. Are there always such cycles in the 2-isogeny graph?

We give a partial answer to Question 1: a condition for when two cycles correspond to lin-

early independent endomorphisms of End(E) ⊂ Bp,∞. This is done in Section 3.3.1. Regarding

Question 2, Section 3.3.2 describes an obstruction to generate the full endomorphism ring. In

Example 3.4.3 we show that there exists at least one particular case in which the endomorphism

ring can not be generated by cycles in the 2-isogeny graph, hence giving a negative answer to

Question 3.

One key idea is that elements of Bp,∞ are linearly dependent if and only if they commute. We

eventually conclude that if two cycles have different vertex set, then they do not commute (see

Corollary 3.3.3). Kohel [11] introduces the notion of a simple cycle and proves that they corre-

spond to primitive endomorphisms. A less restrictive notion is that of a cycle with no backtracking.

Definition 3.3.1. A cycle C = {a1, . . . , ae} has no backtracking if ai+1 is not the dual of ai for

any 1 ≤ i < e.

In [3] it is shown that cycles with no backtracking correspond exactly to primitive endomor-

phisms.

3.3.1 A condition for linearly independent cycles

Suppose that C = {a1, . . . , ae} is a cycle with no backtracking, then either a1 is not dual to ae,

or there is some k such that ai is the dual of ae+1−i for all 1 ≤ i ≤ k. Theorem 3.3.2 states that

under certain conditions, if the two cycles commute, then they are actually the same cycle repeated

a possibly different number of times.

Theorem 3.3.2. Suppose C1 and C2 are cycles in G(p, ℓ) through E(j), α and β their correspond-

ing endomorphisms on End(E(j)) that:

1. have no backtracking,

2. at least one of them does not have its first edge dual to its last and
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3. αβ = βα.

Then there is a cycle with no backtracking passing through E(j) which corresponds to γ ∈

End(E(j)) and u, v ∈ Aut(E(j)) which commute with γ such that α = uγa and either β = vγb or

β = vγ̂b.

Proof. See [3] Theorem 4.10.

This theorem implies that cycles with no backtracking with condition (2) can not be linearly

dependent unless they can be defined as repetitions of the same cycle. We can relax condition (2)

if we instead assume that no cycle contains a self-loop dual to itself and that their vertex set do not

include E(0) or E(1728).

Corollary 3.3.3. Suppose that two cycles C1 and C2 through E(j) have no backtracking and that

C1 passes through a vertex through which C2 does not pass. Suppose also that one cycle does not

contain a self-loop which is dual to itself. Further assume that neither cycle passes through E(0)

or E(1728). Then the corresponding endomorphisms in End(E(j)) are linearly independent.

Proof. This is a consequence of Theorem 4.10 an Corollary 4.11 in [3].

3.3.2 Obstructions to generate the endomorphism ring

The next theorem is based on a result by Waterhouse, cited in McMurdy [15]. It evidences a

feature of two cycles in the ℓ-isogeny graph that prevent them from generating the endomorphism

ring of an elliptic curve.

Theorem 3.3.4. Suppose two cycles in G(p, ℓ) both contain the same path between two vertices

E(j1) and E(j2). Let α and β be the corresponding endomorphisms of E(j1). If the path between

E(j1) and E(j2) passes through additional vertices, or if jp1 6= j2, then {1, α, β, αβ} is not a basis

for End(E(j1)).

Proof. See [3] Theorem 5.1.
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3.4 Examples

In this section we show three cases where the 2-isogeny graph can be used to find the en-

domorphism ring of supersingular elliptic curves. The graphs are based on examples given by

Galbraith in [8]. To construct them we fix p to be the characteristic of the field. The supersingular

j-invariants over Fp2 can be found by looking at the roots of the supersingular j-polynomial, whose

roots are exactly the supersingular j-invariants. Here is how we can obtain this polynomial: by

Silverman [28] the elliptic curve given by y2 = x(x− 1)(x− λ) has j-invariant

j =
28(λ2 − λ+ 1)3

λ2(λ− 1)2
(3.4.1)

and it is supersingular if and only if λ is a root of

Hp(t) =
m∑

1=0

(
m

i

)2

ti. (3.4.2)

We then compute the resultant of the polynomial 28(t2 − t + 1)3 − jt2(t − 1)2 and Hp(t), which

gives the supersingular j-polynomial. This algorithm is intrinsically implemented in SAGE [30],

where the factors j and j − 1728 are removed, if they appear.

In order to determine the edges of the graph, we follow Definition 3.2.10. In practice we fix a

j-invariant j and a curve E(j), then compute the 2-torsion points of E and for each of them find

the 2-isogeny whose kernel it generates. If φ is a 2-isogeny from E(j) and j′ is the j-invariant of

φ(E(j)), then there is and edge from E(j) to E(j′).

Once we construct the graph we proceed to analyze different pairs of cycles that satisfy the

conditions for linear independence from Corollary 3.3.3 do not present the obstruction condition

from Theorem 3.3.4.

Example 3.4.1. If E is a supersingular elliptic curve over Fp2 then by Theorem 3.2.2 End(E) ⊗Q

is isomorphic to B31,∞, the quaternion algebra over Q ramified exactly at 31 and infinity. We know

by Theorem 3.2.8 that B31,∞ is given by
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B31,∞ = Q+Qi+Qj +Qij,

where i2 = −1 and j2 = −31.

The supersingular j-polynomial of p = 31 factors as (j− 2)(j− 4) and since 31 ≡ 7 mod 12

then 1728 ≡ 23 mod 31 is supersingular j-invariant. Figure 3.1 shows the 2-isogeny graph with

labeled edges.

23 2 4e23

e′23,2
e23,2

e2,23
e2

e2,4

e4,2

e4

e′4

Figure 3.1: 2-isogeny graph for p = 31.

In this case it was possible to find pairs of cycles at every vertex that generate each of the

maximal orders of B31,∞.

Table 3.1 contains, for each vertex, two cycles that correspond to elements that generate a

maximal order in Bp,∞. Hence these two cycles must generate the full endomorphism ring.

Table 3.1: Cycles that generate maximal orders in B31,∞.

Vertex Cycle Trace Norm

2
e2 0 2

e2,4e4e4,2 2 8

4
e4 1 2

e4,2e2e2,4 0 8

23
e23 2 2

e23,2e2e2,23 −1 8
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With respect to the basis < 1, i, j, ij > of B31,∞ defined above, the endomorphism rings of the

supersingular curves over F312 correspond to the following maximal orders:

End(E(23)) ∼=
〈
1,−i,−1

2
i+

1

2
ij,

1

2
− 1

2
j

〉
,

End(E(2)) ∼=
〈
1,

1

4
i
1

4
ij, 2i,

1

2
− 1

2
j

〉
,

End(E(4)) ∼=
〈
1,

1

2
+

1

6
i+

1

6
j − 1

6
ij,

5

6
i+

1

3
j +

1

6
ij,−13

6
i+

1

3
j +

1

6
ij

〉
.

Example 3.4.2 (p = 103). The endomorphism rings of the supersingular elliptic curves over F1032

are isomorphic to maximal orders of he unique quaternion algebra ramified at 103 and ∞, that is

B103,∞ = Q+Qi+Qj +Qij, (3.4.3)

where i2 = −1 and j2 = −103.

On the other hand, the supersingular j-polynomial at 103 factors as

(j + 34)(j + 69)(j + 79)(j + 80)(j2 + 63j + 69)(j2 + 84j + 73), (3.4.4)

hence there are at least four j-invariants over F103, namely 69, 34, 24 and 23. In addition 103 ≡ 3

mod 4 implies that 1728 ≡ 80 mod 103 is a supersingular j-invariant. There are also two pairs

of F103-conjugate j-invariants (α, α) and (β, β) that correspond to the roots of (j2+84j+73) and

(j2 + 63j + 69), respectively. Figure 3.2 shows the 2-isogeny graph.
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80

24

23 69 34

α

α

β

β

e24

e′24

e80

e
′
80
,23

e69

e
′β
,β

e
′β
,β

e
β
,β

e
β
,β

e
α
, α

e
α
,α

e
24,23e

23,24

e80
,23

e23
,80

e23,69

e69,23

e69,34

e34,69

eα,3
4

e34,
α

eα,β

eβ,α

e
α,34

e
34,α

eα,β

eβ,α

Figure 3.2: 2-isogeny graph for p = 103.

First we look at the j-invariants defined over F103. For each of them, we were able to find

generators of the maximal orders corresponding to the endomorphism rings. We show the pairs of

generating cycles for each vertex in Table 3.2.

Table 3.2: Cycles that generate maximal orders of B103,∞.

Vertex Cycle Trace Norm

34
e34,αeα,αeα,34 −3 8

e34,69e69e69,34 0 8

69
e69 0 2

e69,34e34,αeα,αeα,34e34,69 −6 32

23
e23,24e24e24,23 2 8

e23,80e80e80,23 −4 8

80
e80 2 2

e80,23e23,69e69e69,23e23,80 0 32

24
e24 −1 2

e24,23e23,69e69e69,23e23,24 0 32
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These endomorphism rings are then isomorphic to the following maximal orders, where the

basis is given as in (3.4.3).

End(E(80)) ∼=
〈
1, i,

1

2
i+

1

2
ij,

1

2
+

1

2
j

〉
,

End(E(23)) ∼=
〈
1, 2i,

3

4
i+

1

4
ij,

1

2
− 1

2j

〉
,

End(E(34)) ∼=
〈
1,

17

14
i+

1

14
ij
15

7
i− 2

7
ij,

1

2
− 1

2
j

〉
,

End(E(69)) ∼=
〈
1,

1

2
+

1

7
i+

3

14
j,
1

2
− 16

7
i+

1

14
j,
1

2
− 17

14
i− 1

14
j − 1

2
ij

〉
,

End(E(24)) ∼=
〈
1,

1

2
+

3

8
i+

1

8
ij,

1

2
− 29

8
i+

1

8
ij,−13

8
i+

1

2
j +

1

8
ij

〉
.

In the case of α, β and their conjugates, it was not possible to find cycles that would generate

the maximal orders. However we were able to use other tools to determine these endomorphism

rings. First, note that conjugate pairs of j-invariants have isomorphic endomorphism rings,hence

End(α) ∼= End(α) and End(β) ∼= End(β). By Theorem 3.2.2, the two remaining maximal orders

of B103,∞ are each isomorphic to one of End(α) and End(β).

For the vertex α we found an a pair of cycles that generate an order which is not maximal, these

are

eα,βe
′

β,β
e′
β,β

eβ,α,

eα,34e34,69e69e69,34e34,α

and the order is given by O =
〈
1,−1

2
+ 17

6
i− 1

6
j + 1

6
ij,−5

2
i+ 1

2
ij,−1

2
− 22

3
i− 11

6
j − 2

3
ij
〉
.

There is a unique maximal order containing O, hence it corresponds to

End(E(α)) ∼= End(E(α)). Finally, there is only one maximal order remaining in B103,∞, which is

isomorphic to the endomorphism rings of E(β) and E(β).

The endomorphism rings of α and β are then isomorphic to:
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End(E(α)) ∼=
〈
−1,−1

2
+

1

6
i− 1

6
j − 1

6
ij, 3i,

5

6
i− 1

3
j +

1

6
ij

〉
,

End(E(β)) ∼=
〈
1,

1

2
+

13

10
i+

1

10
j − 1

10
ij,−12

5
i+

1

5
j − 1

5
ij,

1

2
− 3

5
i+

3

10
j +

1

5
ij

〉
.

Example 3.4.3. The unique quaternion algebra ramified at 101 and ∞ is

B101,∞ = Q+Qi+Qj +Qij, (3.4.5)

where i2 = −2 and j2 = −101.

We know that E(0) is supersingular because 101 ≡ 2 mod 3. The supersingular j-polynomial

at 101 factors as

(j + 35)(j + 37)(j + 42)(j + 44)(j + 80)(j + 98)(j2 + 27j + 54). (3.4.6)

From where the supersingular j-invariants over F101 are 0, 66, 64, 59, 57, 21 and 3. We also denote

by α and α the roots of j2 + 27j + 54 in F1012 . Figure 3.3 shows the 2-isogeny graph.

0 66 21 57 64 3 59

α

α

e 6
6,
α

e α
,6
6

e
α
,57e
57,α

e
α
,2
1

e
2
1
,α

e
2
1
,α

e
α
,2
1 e α

,5
7

e 5
7,
α

e
66,αe

α
,66

e′0,66

e0,66

e57,64

e64,57

e64,3

e3,64

e3,59

e59,3

e′′0,66

e66,0

e21

e′59

e59e′64,3

e′3,64

Figure 3.3: 2-isogeny graph for p = 101.
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The cases where it was possible for us to find two cycles that generate the maximal order

corresponding to End(E(j)) are j = 3, 59, 64, 66. In Table 3.3 we show the cycles for each vertex.

Table 3.3: Cycles that generate maximal orders in B101,∞.

Vertex Cycle Trace Norm

3
e3,59e59e59,3 2 8

e3,64e
′
64,3 −1 4

59
e59 −1 2

e59,3e3,64e64,3e3,59 −8 16

64
e64,57e57,αeα,66e66,αeα,57e57,64 10 64

e64,3e
′
3,64 −1 4

66
e66,0e0,66 2 4

e66,αeα,57e57,αeα,66 5 16

The endomorphisms for these j-invariants are isomorphic to the following maximal orders:

End(E(3)) ∼=
〈
1,

1

2
− 13

12
i+

1

12
ij,

5

6
i+

1

6
ij,

5

12
i− 1

2
j +

1

12
ij

〉
,

End(E(59)) ∼=
〈
1,

1

2
+

5

12
i− 1

12
ij,−13

6
i− 1

6
ij,−13

12
i+

1

2
j − 1

12
ij

〉
,

End(E(64)) ∼=
〈
− 1,−1

2
− 3

5
i− 1

10
j +

1

10
ij,−1

2
− 21

20
i+

1

5
j +

1

20
ij,

− 67

20
i− 1/10j − 3/20ij

〉
,

End(E(66)) ∼=
〈
1,

7

10
i− 1

10
ij,

1

2
− 29

20
i− 3

20
ij,

7

20
i− 1

2
j − 1

20
ij

〉
.
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For the vertices 21, 57, α no two cycles were found that generate the full endomorphism ring.

However, in each of these cases we were able to to generate an order from two cycles which

happened to be contained in a unique maximal order. These cycles are listed in Table 3.4.

Table 3.4: Cycles that generate non maximal orders of B101,∞.

Vertex Cycle Trace Norm

21
e21 0 2

e21,αeα,66e66,0e
′
0,66e66,αeα,21 −8 64

57
e57,64e64,3e3,59e59e59,3e3,64e64,57 −8 128

e57,αeα,66e66,αeα,37 −5 16

α
eα,21e21e21,αeα,57e57,α 5 32

eα,66e66,0e
′
0,66e66,α 4 16

The maximal orders are

End(E(21)) ∼=
〈
−1, i,−1

2
+

1

4
i− 1

4
ij,−1

2
+

1

2
i− 1

2
j

〉
,

End(E(57)) ∼=
〈
1,

1

2
− 13

28
i+

1

7
j +

1

28
ij,−53

28
i− 1

14
j +

3

28
ij,

1

2
− 11

4
i− 1

4
ij

〉
,

End(E(α)) ∼= End(E(α)) ∼=
〈
−1, 2i,−1

2
+

3

8
i+

1

4
j − 1

8
ij,−7

8
i+

1

4
j +

1

8
ij

〉
.

Finally, by Theorem 3.3.4, no two cycles through j = 0 generate a maximal order, but it is

possible to determine which one corresponds to the endomorphism ring of E(0) once we ruled out

the other seven, this is
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End(E(0)) ∼=
〈
−1,−1

2
+

7

20
i+

1

20
ij,−1

2
+

9

5
i+

1

2
j − 1

10
ij,−29

20
i+

1

2
j +

3

20
ij

〉
.
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Chapter 4

Composite level images of Galois and hyperelliptic

modular curves of low genus

This chapter is based on work in collaboration with Wanlin Li, Jack Petok, Jackson S. Morrow

and David Zureick-Brown started in May 2017 at a group project workshop held at Emory Univer-

sity, organized by Zureick-Brown. This work is still in progress and the results present here will

be summarized in a paper to be submitted for publication in the near future.

4.1 Introduction

Let E be an elliptic curve defined over Q without complex multiplication. For every positive

integer n, the Galois group Gal(Q/Q) induces an action on the n-torsion points of E and so there

is a group representation ρE,n : Gal(Q/Q) → GL2(Z/nZ).

In recent years, Zureick–Brown, Rouse, Sutherland and Zywina have made significant progress

towards classifying the subgroups of GL2(Ẑ) which contain subgroups that are conjugate to images

of Galois for some elliptic curve. Based off work of Sutherland–Zywina, Morrow began the study

of the composite-(m1,m2) image of Galois in the case where m1 is a power of 2 and m2 is a prime

≤ 13.

The focus of this project is to continue the study of composite-(m1,m2) image of Galois,

where m1 and m2 are powers of primes p1, p2 ≤ 13. To do this, we build from the work of the

previous authors and use the fact that an elliptic curve E defined over Q with jE /∈ {0, 1728}, has

ρE(GalQ) conjugate in GL2(Ẑ) to a subgroup of G if and only if jE belongs to πH(XH(Q)) (see

Section 4.2.2). Then we construct models for the modular curves XH and study the rational points

on those that have genus equal to 0, 1 or 2. These points correspond to either the elliptic curves

of our interest, elliptic curves with complex multiplication, or cusps. We use different methods to

find the rational points, which we execute with the aid of the software Magma.
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4.2 Background

This section includes a review on elliptic curves over number fields, their Galois representations

and modular curves. We refer the reader to [27] and [29] for a more detailed description. First we

will introduce some basic definitions and properties of elliptic curves.

4.2.1 Elliptic curves

Let k any field of characteristic different from 2 and 3, an elliptic curve E defined over k is

nonsingular curve of genus 1. We can assume that E is defined by the homogenization of

y2 = x3 + a1x+ a2, (4.2.1)

for some a1, a2 ∈ k, the base point at infinity is O = [0 : 1 : 0].

We define the j-invariant of E as the quantity j =
2833a3

1

4a3
3
+27a2

2

. This invariant classifies the k-

isomorphism classes of elliptic curves.

An elliptic curve E is equipped with an additive group law, with O as the identity element, as

follows:

Definition 4.2.1 (Group Law). Let P,Q ∈ E, let L be the line through P and Q (if P = Q, let L

be the tangent line to E at P ), and let R be the third point of intersection of L with E. Let L′ be

the line through R and O. Then L′ intersects E at R, O, and a third point. We denote that third

point by P +Q and the sum of P with itself m times by mP .

Definition 4.2.2. The N -torsion subgroup of E is given by

E[N ] = {P ∈ E(k) : NP = O}.

Definition 4.2.3. Let E and E ′ be elliptic curves. An isogeny from E to E ′ is a morphism

φ : E → E ′ satisfying φ(O) = O.
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Two elliptic curves E and E ′ are isogenous if there is an isogeny φ : E → E ′ such that φ(E) 6= O.

In fact, if φ(E) 6= O, the only other possibility is φ(E) = E ′.

Since elliptic curves have group structures, the set Hom(E,E ′) of isogenies between two el-

liptic curves has a ring structure. In particular, we define the Endomorphism Ring of E as

End(E) = Hom(E,E) = {isogenies E → E}. (4.2.2)

Proposition 4.2.4. The endomorphism ring of E, denoted End(E) is either

• Z,

• an order in an imaginary quadratic field Q(
√
−D), D < 0 or

• an order in a quaternion algebra.

Proof. See Silverman, [28], pp. 102.

It turns out that when char(k) = 0, only the first two options are possible. For our purposes, we

will study elliptic curves over Q. When End(E) is not isomorphic to Z, we say that E has complex

multiplication (CM).

4.2.2 Galois representations

Let E be an elliptic curve defined over Q without CM, with j-invariant jE and let N be a

positive integer. As shown in Silverman in [28], the N -torsion subgroup of E over Q has the form

E[N ] ∼= Z/NZ× Z/NZ.

The absolute Galois group GalQ ∼= Gal(Q/Q) acts naturally on E[N ] and so we get an induced

Galois representation

ρE,N : GalQ → GL2(Z/NZ), (4.2.3)
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where ρE,N(GalQ) is the Galois group of the extension of Q obtained by adjoining the coordinates

of the N -torsion points of E (see Serre [27]). This is defined as the mod N Galois representation.

Similarly, there are a representations associated to each one of the subgroups of E

E[tors] :=
⋃

n≥1

E[n], (4.2.4)

E[ℓ∞] :=
⋃

n≥1

E[ℓn]. (4.2.5)

Recall that Ẑ, the profinite completion of Z, can be defined both as lim
←−

Z/NZ and as the

product
∏

ℓ Zℓ, hence, for a fixed Ẑ- basis of E[tors] there is an induced Zℓ-basis for any prime ℓ,

and for any positive integer N there is an induced Z/NZ-basis on E[N ].

The automorphism group of E[tors] is isomorphic to

∏

ℓ

GL2(Zℓ) ∼= GL2(Ẑ) ∼= lim
←

GL2(Z/NZ). (4.2.6)

We define the adélic and ℓ-adic representations induced by the action of GalQ on E[tors] and

E[ℓ∞] respectively as

ρE : GalQ 7→ Aut(E[tors]) ∼= GL2(Ẑ), (4.2.7)

ρE,ℓ∞ : GalQ 7→ Aut(E[ℓ∞]) ∼= GL2(Zℓ). (4.2.8)

By Serre’s open image theorem ( [27]) and with the hypothesis that E does not have CM, we

get that ρE(GalQ) is an open subgroup of GL2(Ẑ) and hence it is of finite index. This gives a

starting point to Mazur’s program B ( [14]):

Given a number field K and a subgroup H of GL2(Ẑ) =
∏

ℓ GL2(Zℓ) classify all elliptic curves

E/K whose associated Galois representation on torsion points maps Gal(K/K) into

H ⊂ GL2(Ẑ).
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We are interested in expanding the work of program B. The progress so far suggests that there

exists a constant B, such that for every elliptic curve E/Q, the index of ρE(GalQ) in GL2(Ẑ) is

bounded by B. In fact, Serre [27] shows that there exists a constant cE such that ρE,ℓ(GalQ) =

GL2(Z/ℓZ) for all ℓ > cE and asks whether cE = c could be chosen independently of E. Moreover,

the author conjectures that c = 37. Regarding this, Zywina [37] formulates the next conjecture:

Conjecture 4.2.5. There is an absolute constant c such that for every non-CM elliptic curve E

over Q, we have ρE,ℓ(GalQ) = GL2(Z/ℓZ) for all ℓ > c.

Following [18] we consider the inclusions

ρE(GalQ) →֒
∏

ℓ prime

ρE,ℓ∞(GalQ) ⊂
∏

ℓ

GL2(Zℓ). (4.2.9)

The image of ρE(GalQ) projects onto each ℓ-adic factor, so we look at the composite-(m1,m2)

image (ρE,m1
× ρE,m2

)(GalQ), for all m1,m2 that are relatively prime.

For H ⊂ GL2(Ẑ) such that det(H) = Ẑ× and −I ∈ H , the level of a subgroup is the least

integer such that H = φ−1(φ(H)), where the composition of ρE with the projection φ : GL2(Ẑ) →

GL2(Z/NZ) given by reduction mod N is ρE,N . To each open subgroup H of GL2(Z/NZ) with

−I ∈ G and det(G) = (Z/NZ)× we can attach a modular curve XH (see [29] for definition and

details). If H ⊂ GL2(Ẑ) is before and N is divisible by the level of H , we can define modular

curve of H as XH := XH . This curve does not depend on the choice of N or H and it is smooth,

projective and geometrically closed. Suppose that H ′ is a subgroup H ⊂ H ′ ⊂ GL2(Ẑ), such that

the determinant map on H ′ is surjective. Then there is a natural homomorphism XH → XH′ of

degree [H ′ : H]. In particular, if H ′ = GL2(Ẑ) then the map is

πH : XH → P1
Q. (4.2.10)
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The next two propositions, as stated by Sutherland and Zywina [29] and following the work of Zy-

wina ( [37], [36]) are key to determine if a given open subgroup H of GL2(Ẑ) contains a conjugate

of ρE(GalQ) for some non-CM elliptic curve E over Q.

Proposition 4.2.6. Let E be an elliptic curve defined over Q with jE /∈ {0, 1728}, then ρE(GalQ)

is conjugate in GL2(Ẑ) to a subgroup of G if and only if jE belongs to πG(XG(Q)).

Proposition 4.2.7. Let E be an elliptic curve over Q for which ρE,N is not surjective. Then H =

±ρE,N(GalQ) ⊂ GL2(Z/NZ) has the following conditions:

• H 6= GL2(Z/NZ),

• −I ∈ H and det(H) = (Z/NZ)×,

• H contains an element with trace 0 and determinant −1 that fixes a point in (Z/NZ)2 order

N .

Definition 4.2.8. A subgroup with the conditions of Proposition 4.2.7 is called applicable.

4.2.3 Progress on Mazur’s Program B

In the past few years there have been several result towards a complete classification of adélic

representation for non-CM elliptic curves. Zywina [36] described all known, and conjecturally all,

pairs (E, ℓ) such that ρE,ℓ(GalQ) is non-surjective. Rouse and Zureick-Brown computed in [25]

all of the possible 2-adic images of Galois for non-CM elliptic curves over Q. Also, Sutherland

and Zywina [29] found all the prime level modular curves XH where the set of rational points is

infinite. The main focus of these works is to determine the rational functions as in (4.2.10) that

correspond to the j-invariants of non-CM elliptic curves for which the image of Galois is conjugate

to a subgroup of H in GL2(Z/NZ) where N is the level of H .

Following the computations from [36] and [25], Morrow [18] analyzed the Q points of compos-

ite level modular curves with level N = ℓ · 2n. To do this, the author defines a composite-(m1,m2)

level modular curve XH1,H2
(m1 ·m2) as the normalization of the fibered product X in
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j(H2)
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Figure 4.1: Fiber product of modular curves.

Where Hi(mi) is an applicable group of GL2(Z/miZ). Hence, the rational points of

XH1,H2
(m1 ·m2) correspond to elliptic curves over Q with composite-(m1,m2) image conjugate

to a subgroup H1 × H2 ⊂ GL2(Z/m1Z) × GL2(Z/m2Z) ∼= GL2(Z/m1m2Z). Morrow finds all

the equations for the composite-(2n, ℓ) level modular curves and determined their rational points

for the tuples (2, ℓ) with ℓ = 3, 5, 7, 11, 13 and (m1, 3) with m1 = 4, 8, 16.

4.3 Main Results

For this project, we use the same strategy as Morrow’s to analyze curves of the form

XH1,H2
(m1 ·m2) where H1 and H2 belong to the set of subgroups already studied in [25] and [36],

m1 and m2 are powers of distinct primes ℓ1 and ℓ2 with ℓi ≤ 13 and mi ≤ 37. We focus our

analysis on the modular curves of genus 0, 1 and 2 that arise this way. In particular, we want to

address to questions:

1. Which subgroups of GL2(Z/m1m2) contain the image ρE(GK) for infinitely many E?

Equivalently, which modular curves of composite (m1,m2)-level have infinitely many ra-

tional points?

2. Are there any curves of composite (m1,m2)-level curves that contain non-cuspidal and non-

CM rational points?

To answer question (1) we need only to look at modular curves of genus 0 and 1, since smooth

curves of genus ≥ 2 have finitely many rational points. We give a positive answer to question

(2) by explicitly finding the rational points on modular curves of genus 1 and rank 0 and on some

curves of genus 2. This last analysis is described in Section 4.4.
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Theorem 4.3.1. Let m1,m2 be powers of distinct primes ℓ1, ℓ2 ≤ 13. Up to conjugacy, there are

81 open subgroups G of GL2(Ẑ) of composite-(m1,m2) level satisfying −I ∈ G and det(G) = Ẑ×

for which XG(m1m2) has infinitely many rational points. Of these 81 groups, there are 46 of genus

0 and 35 of genus 1.

Proposition 4.3.2. Let m1,m2 as before, up to conjugacy in GL2(Ẑ):

a) there are exactly 8 genus 1 modular curves XG(m1m2) with sporadic points.

b) there are at least 4 and at most 11 genus 2 modular curves XG(m1m2) with sporadic points.

The proofs of Theorem 4.3.1 and Part a) of Proposition 4.3.2 are part of the work done in [4].

Here we describe the analysis of genus 2 curves that completes the proof of Theorem 4.3.2. We

have been able to provably find all of the rational points on the genus 2 modular curves with rank

0 and 1, and on all but 7 curves of rank 2.

4.4 Analysis of composite-(m1,m2) level modular curves of

genus 2

There are 70 modular curves of genus 2, with 59, 14 and 7 of ranks 0, 1 and 2 respectively.

We use Chabauty’s method to find the rational points on all of the rank 0 and most of the rank 1

curves, for the other ones we apply ètale descent. For each of the modular curve we find a (possibly

singular) model C and use the Magma intrinsic function IsHyperelliptic to obtain a smooth

model C ′ and Jacobian to find JC′(Q).

We are also able to group theoretically compute the cusps of the modular curve. Once we find

the rational points we determine which curves have sporadic points, that is, non-CM non-cuspidal

points. We proceed in the following way: if the number of rational points is equal to the number

of cusps, then this guarantees no sporadic points. If there are more cusps than rational points on

then we pull these back from C ′ to C and verify if they are nonsingular. In every case we have

that the number of nonsingular rational points on C plus the number of cusps equals the number of
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rational points on C ′, and since nonsingular points on C map to rational points on C, we only need

to check if the image of these points under the j-map correspond to j-invariants of CM elliptic

curves.

Rank 0

Since rank(JC′(Q)) is less than 2. we are able to apply Chabauty0 on JC′(Q) to provably

compute all the rational points on C ′. From here we compare the number of cusps we the number

of rational points as previously described. After this computation we conclude that there are no

sporadic points on any genus 2 rank 0 modular curves of interest.

Rank 1

For all of the 14 curves it is possible to find a point P in JC′(Q) of infinite order, through a naive

point search bounding the height of P . Hence we can implement the command Chabauty(P)

which returns all the rational points of C ′. After applying the procedure described above the find

that 10 curves have no non-cuspidal rational points but 4 have sporadic points:

• XH10,H33
(28) has two sporadic points with j-invariants −38575685889/16384 and 351/4.

• XH16,H24
(20) has four sporadic points, two with j-invariant −36 and two −64278657/1024.

• XH25,H132
(45) has two sporadic points with j-invariants −23788477376 and 64.

• XH29,H39
(40) has two sporadic points with j-invariant −5000.

Rank 2 curves: There are 9 curves of rank 2 and at most 8 isomorphism classes. The method

of Chabauty does not apply here, since it requires the rank of the Jacobian to be less than the genus

of the curve. We proceed by étale descent, specifically using double étale covers. We were only

able to find rational points on 2 of the curves, but on both cases they correspond to CM points.

For the remaining 7 cases, 4 of the curves have no 2-torsion points on their jacobians, hence étale

descent is actually not an option.
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