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ABSTRACT 

 

 

 

PREDICTING FATIGUE LIFE EXTENSION OF STEEL REINFORCEMENT IN RC BEAMS 

REPAIRED WITH EXTERNALLY BONDED CFRP  

 

 

 

A majority of the United States’ transportation infrastructure is over 50 years old with 

one in nine bridges being considered structurally deficient. Fatigue damage accumulation in 

bridge structures, generated by cyclic loading of passing traffic, has led to shorter service lives. 

Over the past few decades studies have shown carbon fiber reinforced polymer (CFRP) repairs to 

be an effective means of reducing fatigue damage accumulation in reinforced concrete (RC) 

girders. Despite the abundant research, the results, specifically the increase in fatigue life, vary 

widely making it difficult to apply them directly to repair designs. Therefore, design codes and 

guidelines presently in use are insufficient in providing engineers with the proper information to 

determine the extended fatigue life of the RC bridges repaired with CFRP. 

Current design codes state FRP repairs should limit the stress range in the reinforcing 

bars below the threshold where fatigue cracks can propagate. The problem with this philosophy 

is it essentially designs an overly conservative system with an infinite fatigue life. The proposed 

approach follows a performance based design philosophy for which the engineer designs for a 

specified extension in service life by limiting the crack growth rate in the reinforcement so the 

critical crack length, for which fracture in the reinforcement would occur,  is never reached in the 

extended life.  
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In this thesis, the results of experimental fatigue testing of control and CFRP repaired RC 

beams are highlighted and the fatigue crack propagation rate in the steel reinforcement is 

assessed for different repair schemes. The focus on steel reinforcement crack propagation rates 

was made because similar studies have found the reinforcement to be the limiting fatigue 

component in RC bridge girders. The results of the experimental study showed an extended 

fatigue life and a slowed crack growth rate in specimens repaired with both CFRP systems. The 

crack growth rates were then used to determine the material constants for the Pairs Law, which 

describes growth of a stable fatigue crack. These results were then used to propose 

recommendations for design of FRP repair systems for RC flexural members for a specific 

fatigue life.  
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1. INTRODUCTION 
 

 

 

1.1 Background 

Since 1998 the American Society of Civil Engineers has conducted an annual study 

providing information on the condition and performance of the United States infrastructure to the 

public in the form of report cards (ASCE 2013). These report cards, and recent structural 

failures, have shown the poor condition of our transportation infrastructure. One in nine of the 

nation’s bridges are considered structurally deficient due to lack of funding for maintenance and 

repair, environmental degradation of structural components and/or increased vehicular weight 

(ASCE 2013). In bridges, a large amount of the degradation is due to the hundreds of cyclic 

loading events that are experienced each day due to passing traffic. These cyclic loads lead to 

fatigue of the components in the structure. Fatigue is defined as cyclic loading producing stress 

ranges in a component well below its ultimate strength, resulting in microscopic damage 

accumulation until a crack develops, whose growth can lead to failure of the component 

(Dowling 1999). While fatigue is usually considered a more prominent problem in steel 

structures, the same concern is present in the steel reinforcing bars (rebar) in reinforced concrete 

(RC) beams.  

While no structural failures have been reported as a result of fatigue in RC bridges, with 

the average age of the over 600,000 bridges in the US being 42 years, replacement of many RC 

bridges with service lives of 50 years may soon need to occur. However, this option isn’t always 

feasible with federal, state and local departments of transportation (DOT’s) struggling to procure 

the funding that is needed to address the deficient bridges, which the Federal Highway 
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Administration estimates to be $20.5 billion annually to eliminate the backlog by 2028 (ASCE 

2013. Therefore, a more economical, readily applicable, and durable repair method was needed.  

Over the past couple decades several systems have been developed and implemented in 

the field for repair of RC structures. Examples include enlarging the cross-sectional area of 

members, externally attaching steel plates to the tension soffit of the member and most recently 

employing the use of fiber reinforced polymers (FRP). More focus has been shifted to the use of 

FRP systems due to the impracticality of increasing the member’s cross-sectional area due to 

limited clearance and increased dead load, and the need of formwork for an extended amount of 

time when attaching steel plates (Jumaat et al. 2007).  

FRP repair systems which were originally developed in U.S., Canada, Switzerland, and 

Japan excelled over other methods due to their lightweight, high strength, noncorrosive material 

and mechanical properties (Bank, 2006). In addition FRP’s have extremely high resistance to 

fatigue degradation. FRP sheet systems have the additional advantage of being able to take the 

form of almost any surface. For these reasons research looking at the fatigue performance of RC 

beams strengthened with FRP systems has increased in the past decade. 

Studies researching this topic have led to design guidelines and state-of-the-art reports 

from the American Concrete Institute (ACI), the American Association of State Highway and 

Transportation Officials (AASHTO) and the National Cooperative Highway Research Program 

(NCHRP). These guidelines and the rapid expansion of FRP manufacturers have led many 

DOT’s to look at the use of FRP systems for strengthening of RC bridges.  However, the 

problem is design guidelines currently available to engineers focus on providing increased 

strength with little guidance in addressing the critical fatigue component in RC bridges, the 
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tensile reinforcement. Even when the codes do address fatigue of the steel reinforcement the 

recommendations are overly conservative; additionally the effects of predamage to the steel 

reinforcement aren’t accounted for. Therefore recommendations need to be developed which can 

help engineers in designing FRP repairs of RC structures experiencing fatigue of the reinforcing 

steel with some degree of predamage from exposure to environmental attacks from in-service 

use.    

1.2 Objectives  

 The significance of the current study is to experimentally determine the effect externally 

bonded CFRP repairs of RC girders have on the fatigue crack growth rate. The experimental 

program was designed to achieve the following objectives: 

 Determine if addition of a CFRP repair can slow the fatigue crack growth rate and extend 

the fatigue life of a predamaged beam  

 Determine the Paris Law material constants for steel reinforcing bars in RC beams 

repaired with CFRP 

 Determine the validity of using Linear Elastic Fracture Mechanics (LEFM) and the Paris 

Law to predict the extended fatigue life a CFRP repair provides 

 Develop fatigue limit state design recommendations for FRP repaired RC girders based 

on crack growth rate findings from the current study 

1.3 Methods  

 In order to meet the objectives listed above an experimental fatigue test program was 

designed and performed. Seven RC beams were designed, fabricated, and fatigue tested. Three 

beams had no external CFRP repair, two beams were repaired with a typical modulus CFRP 

sheet, and two were repaired with a high modulus CFRP strip. Additionally, one of the 
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unrepaired beams was fabricated with no void in the concrete exposing the tensile rebars, while 

the rest of the beams did have a void. This void allowed for continuous monitoring of the fatigue 

crack growth throughout the test, as well as the effect this void had on the fatigue performance of 

the beam. Continuous monitoring of the fatigue crack growth would provide answers as to 

whether addition of FRP alters the crack growth rate. Additionally, strain gages, linear 

potentiometers, and an actuator mounted load cell provided the structural response of the test 

beams so determination of the fatigue parameters could be made. Fatigue life predictions using 

well-accepted and experimentally determined Paris Law constants would allow for justification 

of further use of these parameters and validation of the use of LEFM for predicting the fatigue 

life of RC member repaired with FRP. Once the use of these equations was confirmed, well-

established equations for the strength design for FRP repairs of RC flexural members could be 

used along with determined results to provide recommendations for FRP repairs of RC members 

based on a fatigue limit state. 

1.4 Organization of Thesis  

The presented thesis is broken into five chapters. Chapter 1 provides an introduction on 

the study, giving a general overview of the problem to be addressed, background on the problem, 

and what is the significance of addressing this problem. It also lists the objectives of the study 

and the methods performed to address these objectives. Chapter 2 provides background 

information on FRPs, fatigue and fracture mechanics, existing studies focusing on the fatigue 

performance of FRP repaired RC beams, existing design guidelines, and methods for measuring 

fatigue crack growth. Chapter 3 details the experimental methods used to address gaps in the 

existing research, including small scale testing, full scale experimental test matrix, specimen 

design, specimen fabrication, material properties, test setup and instrumentation. Chapter 4 
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provides the results of the experimental test and analysis of those results to validate the obtained 

values. Finally, Chapter 5 gives the proposed design recommendations based on the experimental 

results, conclusions of the study, and suggestions for future research.  
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2. LITERATURE REVIEW 
 

 

 

2.1  Fiber Reinforced Polymers 

Fiber reinforced polymers (FRPs) are a composite materials, which means they are made 

from a combination of materials which have significantly different mechanical and/or chemical 

properties, that when combined, create a material with properties unique from the components 

that comprise it. As can be assumed from the name, FRP’s are comprised from two materials: a 

polymer resin matrix, and reinforcing fibers as shown in Figure 1. The type of matrix and fiber, 

orientation of the fibers, as well as the ratio of matrix to fiber content will affect the properties of 

the FRP.  

 

 

2.1.1 Fibers 

While many types of fibers exist, the most common types used in structural engineering 

applications are Aramid fibers (Kevlar) used in AFRP, Carbon fibers used in making CFRP and 

Glass fibers used in making GFRP. Of the FRP fiber types, carbon has the greatest strength; 

Fibers 

Matrix 

Figure 1. FRP composite material components (Gibson, 1994) 
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typically 29,000-116,000 ksi, the highest modulus of elasticity, as well as the most resistance to 

fatigue failure in the fiber direction, with an endurance limit 60 – 70% of the initial static 

ultimate strength (ACI Committee 440.2R, 2008).  

The single fiber filaments, once produced, can be post-processed into numerous different 

configurations as shown in Figure 2. For RC structure repairs the most common products are 

near surface mount rods, prepreg strips and woven fabric sheets. The fibers in woven fabrics are 

typically orientated in a unidirectional (0o) or bidirectional (0o, 90o or 45o, -45o) fashion. 

Unidirectional fabrics are primarily used in applications where tensile forces are only present in 

one direction, such as flexure of a beam.  

a) b) c) 
 

Figure 2. Different types of FRP products: a) carbon fiber tow, b) glass fiber woven 
fabric,    c) continuous glass filament mat (Bank, 2006) 

2.1.2 Matrix 

The matrix in FRPs is a polymer resin which acts as the binding agent holding the fibers 

together, redistributing forces in the system, and protecting the fibers from mechanical and 

environmental damage. The difference between polymer types is based on the functional groups 

present in the polymer chains and how the chains interact. The two primary functional groups are 

thermosetting polymers and thermoplastic polymers. A limiting factor for use of many FRP 

systems is based upon the glass transition temperature of the matrix, which is loosely defined as 
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the temperature when a solid begins to soften and become a liquid. For thermosetting polymers, 

the glass transition temperature is typically around 180o F. It is important for manufacturers as 

well as engineers to select and employ a matrix with a greater ultimate strain than the fibers. The 

correct selection ensures the brittle matrix doesn’t fail (crack) before the fibers reach their 

maximum strength capacity (ACI Committee 440).  

Typical matrix types in structural engineering applications include: unsaturated polyester, 

epoxy, vinyl ester, phenolic and polyurethane resins. Unsaturated polyester resins are widely 

used in the pultrusion process. Epoxy resins are most commonly used for retrofitting of 

structures because of their good adhesive properties, low shrinkage during curing, and resistance 

to environmental degradation. Vinyl ester resins are primarily used in the pultrusion production 

of FRP rebars, and are a combination of unsaturated polyester and epoxy resins. 

2.1.3 FRP Composite Properties 

AFRP, CFRP and GFRP are the most widely used FRP systems because they have high 

ultimate strengths, low ultimate elongations, low thermal conductivity, high chemical resistance 

and are light weight. With this being said, it is worth noting the FRP is only as strong or resilient 

as its components. Since FRPs are composites, they have the combined mechanical and chemical 

properties of the fibers and matrix. Figure 3 shows the tensile stress-strain relationship of a 

typical FRP and its components. Mild steel does perform better at lower strains than GFRP; 

however CFRP out-performs all shown systems. It should also be noted when unidirectional FRP 

systems are loaded in direct tension they remain linear-elastic (no yielding) until sudden rupture. 
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Figure 3. Tensile stress-strain relationship for a typical FRP and its fiber and matrix 
components (Badawi, 2007) 

Despite having higher tensile strength properties than steel reinforcement, the 

compressive strength of FRPs are quite low relative to their tensile strength. For this reason ACI 

Committee 440 does not recommend the use of FRP systems in compressive strengthening 

applications. When FRP is applied to compressive members, it is normally used in such a way as 

to take advantage of its tensile strength such as confining a compression member, limiting effects 

like buckling, as opposed to directly resisting compression (Banks, 2006).  

2.1.4 FRP System Applications  

Structural engineers designing repairs using FRP are limited to using externally bonded 

FRP systems because often only the surface is accessible. Generally three externally bonded FRP 

systems are recognized: wet layup, precured, and near-surface mount (NSM) systems. Despite 

the nomenclature, NSM systems are still classified as an externally bonded FRP system by ACI 

Committee 440.  Selection of externally bonded FRP systems depends on the availability of the 

product and trained application personal, the ease and simplicity of application, and most 

importantly the condition and needs of the structure.  
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Wet layup FRP systems are often used on structures where the application surface is 

relatively smooth, but has an abrupt or curved geometry as shown in Figure  4. The smooth 

surface is a requirement of this system as to ensure proper bonding of the FRP to the structure 

substrate so an ideal composite action can take place. The wet layup system consists of either a 

unidirectional or bidirectional fabric, and a polymer resin. In the case of a wet layup system the 

resin used acts not only as the composite matrix but also as the adhesive securing the FRP to the 

structure. The fabric is saturated with the resin in the field by hand and then applied and allowed 

to cure on the structural surface.  

 

Figure  4. CFRP fabric sheet wet layup application to girder (CPS Construction Group, 
2011) 

Precured FRP systems are often used when the surface of the structure is smooth and flat, 

or when it is not practical to use a wet layup. The system consists of either precured (fiber and 

matrix already combined) unidirectional or bidirectional laminate strips or sheets, typically 

delivered to the field in thin ribbon strips coiled on a roll. The system requires an adhesive for 

attaching the system to the structure.  

Near surface mount FRP systems are limited to use in RC beam structures because it 

requires cutting a groove into the soffit of the structure which then has a FRP rod bonded into it. 

The FRP bars are typically rectangular or circular in cross-section manufactured using the 
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pultrusion process. While additional time and effort is required cutting the groove, increased 

flexural properties have been found when the NSM rods are pretensioned (Badawi, 2007).  

2.2 Fatigue and Fracture Mechanics 

For years structural engineers have been aware of the fact that cyclic loading of bridges 

caused by passing traffic can lead to fatigue failure of structural members. Fatigue is caused by 

cyclic stress ranges, which are below the material’s ultimate strength, causing initial microscopic 

flaws in the material to accumulate and grow. When these small cracks combine into a large 

enough cracks the cross-sectional area of the member is effectively decreased. If the crack 

propagates enough, to the point where the applied load causes a stress greater than the remaining 

intact cross-section can endure, a sudden fracture of the member occurs. While fatigue occurs in 

every material subjected to cyclic loading, in the current study the focus will be on the steel 

reinforcing bars, which have been shown to be the limiting fatigue component in RC bridge 

structures (Kim and Heffernan, 2008). The steel reinforcement is considered the limiting fatigue 

component because concrete experiences fatigue cracking at far fewer cycles and has a lower 

fracture toughness (Dowling, 1999). Additionally, RC beam structures continue to perform to the 

desired levels despite cracking along the tension face; due to the small amount of tensile strength 

supplied by the concrete in comparison to the rebar. However, when the available tensile strength 

provided by the rebars is removed from the equation as a result of fatigue induced fracture, the 

structure cannot endure with just the strength provided by the concrete.  

2.2.1 Fatigue Failure Stages 

Fatigue failures have three stages: crack initiation, crack propagation, and sudden 

fracture. While on the macro scale steel is considered isotropic, at a micro scale it is quite 

anisotropic with different crystal grains present. For ductile metals, like that composing steel 
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reinforcing bars, the crystal grains are orientated in a fashion in which slip bands easily occur at 

the grain boundaries due to the applied stress. As the applied stress is cycled these slip bands 

extend leading to initiation of a crack (Barsom and Rolfe, 1999). These cracks initiate quicker at 

locations where stress concentrations are present. Stress concentrations can appear in- many 

different forms especially in welded components, however for fully intact straight deformed steel 

reinforcing bars stress concentrations naturally occur at the intersection of the transverse and 

longitudinal ribs as shown in Figure 5.  

 

Figure 5. Fatigue crack in rebar with initiation at intersection of longitudinal and 
transverse ribs. (Derkowski, 2006) 

Once a crack is formed, it propagates perpendicular to the applied stress; in the case of 

tensile rebar in flexural members, the cracks propagate transversely due to the tensile forces 

developed. The crack will continue to propagate as long as the stress intensity factor range is 

above the threshold value (Barsom and Rolfe, 1999). The cracked cross-section of a piece of 

rebar will appear smooth due to the rubbing of the crack faces as the crack opens and closes 

under cyclic loading. The progress of crack propagation can also be indicated by beach marks 

extending away from where the crack initiated. Beach marks are semielliptical rings left in the 

material due to the progressing crack tip as shown in Figure  7. 
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After the crack propagates a sufficient degree the cross-section of the component is 

effectively decreased to the point where the applied load induces a stress no longer below the 

ultimate strength of the material, and fracture occurs. The fracture stage of fatigue failure 

frequently occurs with no warning. In contrast to the smooth surface produced by crack 

propagation, the fracture surface is rough as shown in Figure 6. 

 

Figure 6. Fatigue failure of a steel reinforcing bar with crack initiating from a sharp 

identification mark (Zheng & Abel, 1998) 

Rough fracture 

surface Smooth fatigue 

surface 
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Figure  7. Fatigue Fracture of bolts with beach marks visible in fatigue region (Milan et 
al. 2004) 

2.2.2 Linear Elastic Fracture Mechanics 

Linear Elastic Fracture Mechanics (LEFM) has been recognized as the primary approach 

for fatigue and fracture assessment of structures (Barsom and Rolfe, 1999). The use of fracture 

mechanics requires the determination of the material’s fracture toughness, nominal stress range, 

flaw size and geometry. The stress field near the tip of a crack, in Mode I – opening mode, is 

characterized by the stress intensity factor, KI, having units of MPa√m. This factor takes into 

account the nominal stress, σ, crack size, a, among other factors, F. In its most general form, the 

stress intensity factor under Mode I loading (opening mode) can be calculated using the 

following equation: 

Equation 1. Stress intensity factor 

KI =  Fσ√πa 

Equations have been developed to describe the crack correction factor for many different 

applications. As for the case of a steel reinforcing bar with a surface flaw, the crack can be 

described by the equation for a round bar with a semi-circular edge crack. 
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Equation 2. Crack correction factor for a round bar with a semi-circular edge crack (BS 
7910) 

𝐹 =

1.84
𝜋 [

tan (
𝜋𝑎
4𝑟)

(
𝜋𝑎
4𝑟)

]

0.5

cos
𝜋𝑎
4𝑟

{0.752 + 2.02
𝜋𝑎

4𝑟
+ 0.37 [1 − sin (

𝜋𝑎

4𝑟
)]

3

} 

Where a is the flaw/crack depth and r is the radius of the bar. 

When the stress intensity factor for Mode I reaches its critical value, KIC, the crack size 

has reached its critical length and the remaining material can no longer take the applied stress 

resulting in fracture. Since this is the stress intensity factor at which fracture occurs, KIC is often 

referred to as the fracture toughness of the material. Values for KIC can be determined from 

material tests such as the Charpy V-notch test, ASTM E23 (2007), or from assessing Equation 1 

for the maximum stress a component will experience and the critical flaw length, ac. 

Equation 3. Fracture toughness. Derived from stress intensity factor equation 

𝐾𝐼𝐶 = 𝐹𝜎𝑚𝑎𝑥√𝜋𝑎𝑐  

In fatigue, when the crack tip is cyclically stressed, this driving force parameter becomes 

ΔKI, where the nominal stress term becomes the nominal stress range, Δσ, which is equal to the 

maximum stress minus the minimum stress. 

Equation 4. Stress intensity factor range  

∆𝐾𝐼 = 𝐹∆𝜎√𝜋𝑎 

 Just as a material with a flaw has a critical value for KI, it too has a threshold value 

designated as ΔKth for which a fatigue crack will not propagate.  Conservative estimates of this 

threshold value can determined from the following equation.  

Equation 5. Threshold stress intensity factor range 

∆𝐾𝑡ℎ = 7(1 − 0.85𝑅)   𝑀𝑃𝑎√𝑚 
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In Equation 5 the parameter R is the stress ratio which is equal to the minimum stress divided by 

the maximum stress (Dowling, 1999).  

Equation 3 can be rearranged to determine the critical crack length, ac, if the fracture 

toughness is determined using a material property test, such as the aforementioned Charpy V-

notch test.  

Equation 6. Critical crack length 

𝑎𝑐 =
1

𝜋
(

𝐾𝐼𝐶

𝐹 ∗ 𝜎𝑚𝑎𝑥
)

2

 

In Equation 6 σmax is the maximum nominal stress in a component.  

In order to determine how long it will take a crack, once detected, to reach its critical 

length, it is useful to determine the crack propagation rate. The fatigue crack growth rate is 

essentially the increase in crack length (a) per cycle (N) resulting in the ratio (Da/DN). However, 

since the change in length per cycle is small the growth rate can be considered as the derivative, 

da/dN (Dowling, 1999).  

In 1964 Paris proposed the Paris Law which correlates the crack propagation rate, da/dN, 

and the stress intensity factor (Paris, 1964).  

Equation 7. Paris Law equation 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 

Where N is the number of fatigue cycles corresponding to stable crack growth, and C and m are 

material constants. The material constant m, is a measure of the sensitivity of the growth rate to 

stress, and is found from the slope of the linear portion on the log-log plot. The material constant 

C, is then the y-intercept of the linear portion of the plot (Dowling, 1999). The relation between 

the crack propagation rate and the stress intensity factor range is made up of three regions: 
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threshold region, steady growth, and unstable growth/fracture as shown in Figure 8. It should be 

noted the Paris Law only accounts for crack growth and not initiation, which differs from the 

more traditional nominal stress range vs. elapsed fatigue cycles to failure, S-N curves, which will 

be discussed in the next section. 

 
Figure 8. Typical crack growth rate vs. stress intensity factor range 

Due to the nature of a growing crack in metallic components the log(da/dN)  vs log (ΔK) 

plot has a distinct S-curve shape. When a small flaw is stressed such that the stress intensity 

factor range is just above the threshold value crack growth is initially quite rapid, with the curve 

generally having a steep slope approaching a vertical asymptote at the threshold stress intensity 

factor range. (Dowling, 1999). Again this threshold value is generally the value at which cracks 

typically won’t propagate. The next segment is the stable crack growth region described by the 

Paris Law. On a log-log plot this segment should be fairly linear with the crack growth rate and 

stress intensity factor range increasing at the same rate. The growth rate again accelerates 

unstably as the stress intensity factor range becomes large, typically as the crack reaches its 

critical length and fracture occurs.  
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In addition to the crack growth rate depending on the stress intensity factor range, the 

growth rate also depends on the stress ratio, R (σmin/σmax), as shown in Figure  9. An increase in 

the stress ratio will cause the growth rate to increase. However, if testing conditions, such as the 

R value, environment, and testing frequency, are held constant the growth rate will only depend 

on the stress intensity factor range, ΔK. This is due to the fact ΔK accounts for the combined 

effects of cyclic loading, geometry, and crack length. Therefore, all da/dN vs. ΔK data will fall 

along a single line on a log-log plot as shown in Figure  9.  
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Figure  9. a) Crack length vs. cycles data at differing levels of cyclic load applied, b) log da/dN 

vs. log ΔK data plotted from data in plot a). (Produced from Dowling 1999). 

2.2.3 Fatigue Life Prediction and S-N Curves 

The use of the Paris Law and knowledge of the factors affecting it (ΔK and R) can 

effectively be used to determine the fatigue life and safety inspection intervals of an in service 

component. According to Dowling (1999) the first step is to test a specimen with a convenient 

geometry in such a manner as to replicate the fatigue loading in the field at different stress levels, 

so a range of fatigue crack growth rates are acquired. The derivatives of these fatigue crack 

growth rates can then be plotted versus the stress intensity factor ranges on a log-log plot in order 
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to create a plot similar to the one shown in Figure  9 b). As mentioned in the previous section the 

Paris Law material constants can be determined from this plot, which with the stress intensity 

factor range will produce the crack growth rate. The crack growth rate, however, isn’t useful in 

itself without being able to determine the fatigue life of the component of for which it was 

determined. The Paris Law, Equation 7, can be rewritten so the number of fatigue cycles from an 

initial crack length to the critical crack length can be determined.  In order to do this an 

integration procedure must be utilized solving for N (Derkowski, 2006). 

Equation 8. Integration of Pairs Law Equation to solve for N 

∫ 𝑑𝑁
𝑁𝑓

𝑁𝑖

=  𝑁𝑖𝑓 = ∫
𝑑𝑎

𝑓(∆𝐾, 𝑅)

𝑎𝑓

𝑎𝑖

 

Nif is the number of fatigue cycles from the initial cycle to the final cycle. If it is reasonable to 

assume the crack shape factor, F, is constant or approximately constant throughout the fatigue 

life due to the crack being relatively small and the effects of R are included in the material 

constant C, it is possible to determine the fatigue life by substituting Equation 4 into Equation 8.  

Nif = ∫
da

C(∆K)m

af

ai

= ∫
da

C(F∆σ√πa)
m

af

ai

= ∫
1

C(F∆σ√π)
m

af

ai

da

a
m
2

 

Equation  9. Number of fatigue cycles to unstable crack growth. Derived from Paris Law 

N =
2(𝑎𝑐

2−𝑚
2 − 𝑎𝑖

2−𝑚
2 )

(2 − 𝑚)𝐶(𝐹∆𝜎√𝜋)
𝑚 

Another method for predicting the fatigue life of a component is using stress range-

number of cycles, S-N, curves. These curves are constructed by testing numerous specimens at 

different stress ranges and determining the number of cycles it takes to fail the specimen.  By 

varying the stress amplitude the number of cycles to failure also varies allowing different points 

on the curve to be plotted, the higher the stress amplitude the fewer cycles it takes to reach 
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failure, and vise-versa. Eventually the stress range will be so low that the stress intensity factor 

will be below the threshold value and the specimen will not fatigue. AASHTO (2012) has set 

fatigue categories, A-E, B’ and E’ for various components which are subjected to fatigue 

loading. Use of these categories allows an engineer to determine the lower bound fatigue life of a 

component if he/she knows the stress range in that component.  A typical S-N plot is shown in 

Figure 10 along with the AASHTO fatigue categories.   

 

Figure 10. S-N test data (Fisher et al. 1974) and AASHTO fatigue design curves 

S-N curves are useful due to their simplicity but in order to determine a fatigue category 

for a new component many test specimens are needed; this becomes expensive and very time 

consuming since many fatigue tests reach millions of cycles. In addition S-N curves don’t take 

into account initial flaw sizes or predamage to components limiting their use and accuracy as a 

fatigue life prediction method.  

2.3 Existing Studies on Fatigue Performance of RC Beams Repaired with FRP 

 Over the past decade research on fatigue characteristics of reinforced concrete beams 

strengthened with FRP has grown rapidly, with many researchers conducting experimental tests. 
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While a large portion of the research has focused on the application of externally bonded CFRP 

sheets or plates, other FRP types and strengthening systems such as NSM rods have been 

researched. Most papers concerned with the fatigue behavior of strengthened RC beams address 

at least one the following topics: 1) different CFRP strengthening configurations, 2) different 

anchorage systems, 3) impact of environmental conditions, or 4) fatigue life prediction models.  

2.3.1 Review Papers 

In the literature currently available two review papers covering the fatigue performance 

of externally strengthened FRP beams, Kim and Heffernan (2008) and Oudah and El-Hacha 

(2012), exist with the purpose of informing researchers on the current state of research and the 

existing codes and design guidelines available to practicing engineers. Both of these papers 

address fatigue characteristics of the constituent materials, fatigue provisions in design codes 

such as AASHTO and ACI 440, and fatigue behavior and failure modes of strengthened beams. 

In addition both papers present tables summarizing the experimental testing programs for at least 

a dozen papers on the subject. Oudah and El-Hacha focus more on the available fatigue life 

prediction models and the fatigue behavior of the materials, whereas Kim and Heffernan 

emphasize research on debonding and anchorage issues and design considerations.   

Both papers summarize the general findings from previous research on the fatigue 

performance of externally bonded FRP reinforced concrete beams as: 

1. The addition of FRP increased the fatigue life 

2. Fracture of the tensile steel reinforcement was the initiating failure mode 

3. The critical parameter was the stress range in the reinforcing steel 

4. Debonding in the FRP-concrete interface needs to be addressed in order to 

achieve better performance from the repair. 
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 Oudah and El-Hacha noted the fatigue response followed a bilinear trend as a result of reaching 

the full cracking stage early on during cycling. Kim and Heffernan pointed out predamage to the 

beam had a significant effect on the fatigue behavior, therefore must be accounted for in repair 

designs.  

The authors finished their respective papers with research needs. The emphasis of the two 

sections was on developing design charts or procedures for practicing engineers; especially for 

cases where the application of such FRP systems will be for predamaged, retrofitted structures. 

The researchers found that the current design codes, AASHTO, ACI440 and ACI 215, only 

provide guidelines on the stress range and don’t take into account other factors which can affect 

the fatigue life. Kim and Heffernan explicitly state “Detailed design guidelines for the fatigue 

limit state for reinforced concrete beams externally strengthened with FRP should be developed. 

Current design guidelines merely limit the strains and stresses in the FRP without providing 

detailed information such as the level of predamage in concrete or steel, environmental 

conditions, applied loading ranges, or expected fatigue lives.”  Thus it was the goal of this study 

to develop a design procedure based on a fatigue limit state for the repair of predamaged RC 

bridge girders with externally bonded FRP.  

2.3.2 FRP Strengthening Configurations  

 Most studies considering the fatigue performance of RC beams repaired with FRP have 

shown an increase in fatigue life with the addition of FRP, however, Kim and Heffernan (2008) 

reported the degree of fatigue life extension varies greatly, with many factors affecting the 

fatigue performance. Barnes and Mays (1999), Shahawy and Beitelman (1999), Mosoud et al. 

(2001), Papakonstantinou et al. (2001), El-Hacha et al. (2003), Aidoo et al. (2004), Heffernan 

and Erki (2004), Gussenhoven and Brena (2005), and Toutanji et al. (2006) showed that fatigue 
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failure of RC beams strengthened with FRP was initiated by fatigue-fracture of the tensile 

reinforcing bars followed by concrete crushing, FRP delamination and/or fracture of the FRP. 

The fact that so many studies have found the tensile steel reinforcement to be the limiting fatigue 

component allows future studies to focus on the fatigue behavior of this element.   

 Gussenhoven and Breña (2005), Aidoo et al. (2006), Al-Rousan and Issa (2011), 

Shahawy and Beitelman (1999) and Heffernan and Erki (2004) investigated different 

configurations of externally bonded CFRP including number of plies, width of plies, and 

externally bonded prepreg strips versus hand laid-up sheets. Gussenhoven and Breña’s testing 

was unique in the fact the thirteen tested beams were the smallest of any found in the open 

literature, measuring only 914mm in length. The variations in the CFRP laminate configuration 

and testing consisted of fatigue testing five beams strengthened with a single ply, 89mm wide 

sheet of M-Brace C-130, three beams which had a single-51mm wide ply, two beams which had 

two plies of the 51mm wide laminate, and three beams which were cyclically loaded 500,000 

times in an unstrengthened state at 50% of the steel yield strength, then strengthened with a 

single layer of 51mm wide laminate and cycled until failure.  Results found greater laminate 

thickness delayed fatigue failure of the reinforcing steel. The most astounding finding of the 

study was increased number of cycles to failure of beams with predamage. This result gives the 

indication CFRP application does not extend the fatigue life of RC beams, which is contrary to 

the findings of every other study found. Kim et al. (2008) suggested the reason for these results 

was due to the same stress range being applied to the steel reinforcement whether the beam was 

strengthened or not and due to the small size of the test specimens.  

General findings from the other studies include: 
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 NSM exhibited greater ductility than externally bonded FRP sheets due to improved bond 

characteristics (Kim and Heffernan, 2008) (Badawi, 2007).   

 Increased number of FRP layers and concrete contact area resulted in decrease in mid-

span deflection, and increase in stiffness, ultimate load capacity and fatigue life. (Kim 

and Heffernan, 2008) (Aidoo et al., 2004) ( Al-Rousan and Issa, 2011) 

 Strengthening of the sides of beams resulted in increased effectiveness of repairs as it 

limited width and propagation of shear cracks and provided confining forces in the beam. 

(Al-Rousan and Issa, 2011) (Masoud et al., 2005) (Shahawy and Beitelman, 1999) 

2.3.4 Corrosion Effects  

Newly constructed RC structures can generally be considered quite impervious to 

environmental attack as the concrete provides a highly alkaline environment around the steel 

reinforcement  which resists corroding (Masoud et al., 2005). However after many years in 

service RC structures are prone to cracking of the concrete, which can progressively get worse if 

the structures experience freeze-thaw cycles or over-loading caused by heavy trucks. If these 

cracks reach the steel reinforcement, chloride attacks from deicing agents or salt water will 

eliminate the passive alkaline film and the steel will begin to corrode. The effect a corrosive 

environment has on a RC structure is twofold: first, the formation of rust will cause cracks to 

widen and concrete to spall-off, further exacerbating the problem and secondly the corrosion will 

reduce the steel reinforcement cross-sectional area and produce corrosion pitting. In regards to 

fatigue both the reduction in cross-sectional area and corrosion pits can greatly decrease the 

fatigue life (Masoud et al., 2005). With a reduced cross-section the remaining intact steel will 

experience an increased nominal stress thereby increasing the stress intensity at any flaw, which 

due to the formation of corrosion pits, there are many. The issue then becomes can FRP repairs 
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of these structures reduce the steel stress range such that fatigue cracking stop or at least slows 

such that fracture never occurs within the service life. 

Masoud et al. (2005) investigated the fatigue performance of RC beams that were lab 

corroded and repaired with GFRP sheets. It was found that reinforcing bar pit corrosion reduced 

the fatigue life significantly, up to 78% of an uncorroded control specimen, and even when the 

reinforcement was corroded to a minor degree (5% mass loss) corrosion pits were observed to 

have formed as shown in Figure 11. Since FRP repairs can be implemented in order to add 

strength to a member with a severe degree of corrosion loss; in order to make up for the reduced 

cross-sectional area, the presence of corrosion pitting needs to be taken into account when 

looking at the fatigue life of the member. 
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Figure 11. Corrosion pitting shown for varying degrees of corrosion (Masoud et al., 
2005) 

 

 The study by Gonzalez et al. (1995) sought to obtain values for maximum corrosion pit 

depths developed in steel rebars embedded in concrete. It was proposed the maximum pit depth 

could be estimated using the following equation. 

Equation 10. Maximum corrosion pit depth 

𝑃𝑚𝑎𝑥 = 𝐼𝑐𝑜𝑟𝑟 × 𝑡 × 𝑅 

where Pmax is the maximum pit depth in mm, Icorr is the corrosion current density in μA/cm2, t is 

the time in years , R is the ratio of Pmax to Pavg.  The authors found Icorr values to range from 

0.001-0.005, 0.005-0.01, and >0.01 for low, medium, and high corrosion levels, respectively. R 

values were found to range from 4-10 with higher values correlating to more localized pitting. 

After 6 years in the Barcelona, Spain environment Pmax values were found to range from 1.1 – 

5.5 mm, and R values were found to range from 2.7 – 8.9.  

2.3.5 Life Prediction Models 

Studies performed by Dong et al. (2008), and Gordon and Cheng (2011) sought to 

develop equations and methods for characterizing fatigue life extension provided by FRP applied 

to RC beams. Dong et al. (2008) derived the following equation from fatigue testing ten RC 

specimens strengthened with externally bonded CFRP 

log(𝑁) = 6.905 − 0.0046𝜎𝑟 

where N = number of cycles to failure; and σr = applied steel stress range(MPa). The correlation 

factor was found to be 0.8808. Gordon and Cheng (2011) summarized existing S-N prediction 

models and derived models from available literature data. Each model’s percent accuracy was 

determined by comparing its predicted result with the experimental results of all other studies. 
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Although some of the S-N models provided fatigue life prediction accuracies within 10% of the 

experimental value for a particular study’s data set, high inaccuracies over multiple sets of data 

limited any one model from providing a solid fatigue life prediction.   

 In 1979 a study by Lovegrove, Salah El Din, and Daoud investigated the use of LEFM to 

predict the fatigue crack growth rate in steel reinforcing bars embedded in concrete. Similar to 

the current study the use of the Paris Law was highlighted and the determination of the materials 

constants C and m was a major focal point of the study. The authors note the difficulty of 

continuously measuring the fatigue crack growth throughout testing due to the limitations on 

having the rebars exposed. In order to overcome this obstacle the authors propose testing two 

specimens, each with different initial crack lengths and tested at different stress ranges. Using an 

integrated form of the Paris Law equation, similar to Equation 8, the authors would have two 

equations with only two unknowns, the material constants, since all other parameters are known 

from testing. The authors then experimentally tested four beams with varying initial notch depths 

all at the same stress range and found m to equal 5.3 and C to equal 6.3E-20. These values were 

then compared with values obtained from similar steel fatigued in air which found m to equal 3 

and C to equal 2.8E-13. The difference in these values suggested the fatigue crack growth rate of 

steel reinforcing bars embedded in concrete is lower than in air. The authors did note the stress 

range in the rebars could not be directly measured at the time therefore the use of conventional 

linear elastic equations for RC beams was used which might have had an effect on the 

determined values. The authors conclude the proposed technique can accurately predict the 

material constants of the Paris Law.  

A study conducted by Rocha and Brühwiler (2012) also investigated fatigue life 

prediction using LEFM. The study gave background on LEFM and the Paris Law along with the 
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need equations and well-accepted values so to predict the fatigue life of a RC flexural member. 

The authors then perform a case study on a railway bridge in Brazil to determine the fatigue life 

at the current service level as well as under increased use and loading.  

  The only study found in the open literature applying LEFM to predict fatigue life of RC 

beams repaired with FRP was performed by Derkowski in 2006. Similar to other studies which 

used LEFM as the bases for prediction Derkowski also used the Paris Law to determine the 

number of cycles to failure of the reinforcing steel. The study was unique in several ways: first, 

the primary goal of the study was to determine a coefficient of FRP strip position which when 

used with the Paris Law would be able to more accurately predict the fatigue life of a reinforcing 

bar within the influence area of an externally bonded FRP strip. The proposed model takes into 

account the energy absorbed by the strengthening and how this effects the stress intensity factor 

term in the Paris Law equation. It is the aspect of using the absorbed energy which is the second 

unique aspect of the study. Derkowski relates the absorbed energy to the J-integral and then with 

the modulus of elasticity of the steel, to the stress intensity factor range. The proposed model was 

then validated with fatigue testing four RC beams with different CFRP strip configurations, and 

comparing the experimental fatigue life with the obtained using the process described. The 

results showed the typical increase in fatigue performance with addition of FRP, however the 

most important finding was the positive agreement between the predicted and experimental 

fatigue lives, which at the worst had a difference of 21.5%.  

As mentioned previously, due to the empirical nature of S-N curves, the application of 

these models for predicting fatigue life of strengthened RC beams is often inaccurate due to 

testing and specimen variation. For that reason and the fact that the use of LEFM can take into 
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account more of the factors which affect the fatigue life, such as predamage, and the promising 

results of recent studies, for the present study the use of LEFM was decided.   

2.3.6 Other Testing Variations 

Heffernan and Erki (2004), Papakonstantinou et al. (2001), Toutanji et al. (2006), 

Gussenhoven and Breña (2005), Aidoo et al. (2006) and Barnes and Mays (1999) considered the 

effect load intensity had on the fatigue performance of RC beams strengthened with FRP; either 

adjusting the loading as a percentage of the steel yield strength or a percentage of the static 

capacity of the unstrengthened beam. It was generally found that loading between 30 and 50% of 

the steel yield strength did not produce fatiguing of the specimen; therefore for the sake of 

testing practicality, the stress ranges induced in the rebars of the test specimens were much 

higher than those that would typically be experienced in the field. It was not uncommon for the 

steel stress ranges in unstrengthened beams to reach 200 MPa with some specimens reaching 400 

MPa. These values are 19% and 60% higher, respectively, than the 162 MPa permissible stress 

range recommended by AASHTO. It will be shown later in this paper that the stress ranges 

produced in the tensile steel reinforcement of test specimens for the current study were between 

88 and 107 MPa, 21% and 26% of the yield strength of the steel reinforcement, which still 

produced fatigue failure of the rebars. 

2.4 Existing Design Guidelines and Recommendations 

Currently ACI 440.2 Guide for the Design and Construction of Externally Bonded FRP 

Systems for Strengthening Concrete Structures is the most widely used and recognized design 

document for FRP repairs of RC structures within the US. The design approach taken by ACI 

440.2 for serviceability of a flexural member, limits the stress in the steel reinforcement to below 

80% of the yield strength to avoid inelastic deformations, no other limits are placed on the stress 
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in the steel. Fatigue failure of the FRP is addressed by limiting the sustained plus cyclic stress in 

the different FRP types as a function of the ultimate tensile design strength. While the provision 

states “the possible failure modes and subsequent strains and stresses in each material should be 

assessed”, at no point is fatigue of the steel reinforcement considered. Therefore, in order to 

address fatigue of the steel reinforcement, which has been shown to be the primary failure mode, 

other design codes such as AASHTO LFRD Bridge Design Specification or ACI-215 must be 

used. 

Section 5: Concrete Structures of the AASHTO Bridge Design Specifications states the 

following fatigue consideration for steel rebars shall be met: 

Equation 11. Load-induced fatigue design criteria (AASHTO) 

γ(Δf) ≤ ( ΔF)TH 

where γ = the load factor for the Fatigue I load combination, Δf = the live load stress range due 

to the passage of the fatigue load (MPa), and ΔFTH = constant-amplitude fatigue threshold which 

is equal to 165 - 0.33fmin for straight reinforcement, where fmin is the minimum live-load stress 

(MPa) resulting from the Fatigue I load combination, combined with the more severe stress from 

either the permanent loads or the permanent loads, shrinkage, and creep-induced external loads. 

While AASHTO does more to provide limits on the steel reinforcement stress range, because it is 

for new construction, it is concerned with preventing crack initiation and does not address 

fatigue damage accumulation.  

 ACI-215 Considerations for Design of Concrete Structures Subjected to Fatigue Loading 

recommends for straight deformed steel reinforcement in nonprestressed members the stress 

range shall not exceed the value computed from the following expression: 
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Equation 12. Recommended stress range limit for nonprestressed straight deformed 
reinforcement (ACI-215R) 

Sr = 161 - 0.33 Smin 

where Sr = stress range (MPa) and Smin = algebraic minimum stress (MPa). The similarity 

between the limits set by AASHTO and ACI-215 should be noted. While ACI-215 does discuss 

other variables affecting the fatigue performance such as minimum stress, bar size and type, 

geometry of deformations, yield strength and bending, no recommendations on fatigue life are 

made based on these variables.  

The currently available design codes simply limit the stress range to a level below the 

fatigue threshold, with no consideration as to how long the FRP repair will extend the fatigue life 

at the current live load stress range or any other variables affecting the performance. In other 

words the current design philosophy essentially recommends the engineer design an FRP repair 

scheme that produces an overly conservative, infinite fatigue life.  

2.5 Measuring Fatigue Crack Growth 

In order to obtain valid results of the crack growth rate within the rebar cross-section, an 

accurate method of measuring the crack length was needed. The trouble with measuring crack 

propagation in the rebar of RC structures, compared to entirely steel structures, is rebar generally 

cannot be visually inspected during loading due to it being embedded in concrete. Several 

methods were investigated based on a chart provided by Frost et al. (1974), shown in Figure 12 

listing fatigue crack growth measurement techniques, including several non-destructive testing 

(NDT) methods as well as visual methods. While some of the measurement techniques provided 

by Frost were developed for crack growth measurement in steel components many appeared to 

be applicable to the steel in RC components.  
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Figure 12. Fatigue Crack Growth Measurement Techniques (Frost et al, 1974) 

 NDT methods for determining the fatigue crack growth rate were initially investigated 

due to the fact they would allow crack measurement in an intact RC beam, where direct access to 

the rebar at the crack location was not possible. NDT is any technique which is used to evaluate 

a material, component or system without causing damage. Several types of NDT commonly used 

in structural engineering applications include: acoustic emission, electro-magnetic, radiography, 

ultrasonic, x-ray, impact echo, and electric potential. The problem with a lot of these methods is 

they are limited to determining the location of flaws, voids, joints and depth and placement of 

rebar and conduit; and are unable to determine propagation of cracks with any certainty. Despite 
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these limitations engineers have been innovative in the use of some of these methods, eventually 

being able to determine the size, location and growth rates of fatigue cracks in concrete. While 

some of these methods are unrealistic for field use the goal of this study was not to investigate 

the applicability of such methods for field use but to study how fatigue crack growth rates are 

affected by the application of CFRP to RC structures.   

2.4.1 Acoustic Emission 

One NDT method which has been shown to be effective in evaluating the fatigue crack 

growth rates in two-dimensional members is acoustic emission (AE). The technique involves 

sensing transient elastic waves which are generated when energy is rapidly released from a 

localized source, often a flaw or void, as they propagate through the solid material. The AE 

method is unique in the way the measured energy signal is supplied from the test material, 

through the stressing of a flaw, and not from an external transducer.  

 With technological advances in computing and signal processing the AE method has 

become commercially available and capable of detecting the small changes in the stress wave as 

a result of a growing crack. Shah and Kishen (2012) have shown with proper calibration this 

method can determine the location of a crack in a material and with continued monitoring 

determine the crack propagation characteristics under fatigue loading. However, the problem 

with translating this method to the current study is that the interest of this study is in determining 

the crack growth rate within the reinforcing bars, which are essentially one-dimensional. The AE 

method would only be able to identify the location of cracking and not the growth of a fatigue 

crack because the AE sensors would only have access to the rebars which would have to be 

extended out the ends of the beam. Along with a substantial cost and the need for a skilled 

technician, a more direct and economical method was pursued.  
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2.4.2 Electric Potential Drop 

 Another method suggested by Frost for studying the fatigue crack growth characteristics 

was electric potential drop. This method was initially investigated because it too would need 

physical access to rebars just as the AE method did. The electric potential drop method involves 

measuring the drop in electric potential energy as the electric resistance of the material increases 

between the points of measurement. 

 In general, there exists two different categories of the electric potential drop method: 1) 

the alternating current technique (ACPD) and 2) the direct current technique (DCPD) (Nordtest 

Method, 1988). In the ACPD technique an alternating current is passed through the metal, where 

most of the current density is carried only in a thin layer on the metal’s surface due to the skin 

effect. In order to determine the crack depth the voltage must be measured, using potential 

electrodes, across the crack mouth distance both before and during the presence of the crack. The 

crack depth can then be measured by the following expression: 

𝑑 = (
𝑉𝑐

𝑉𝑜
− 1) ∗ (

𝑠

2
) 

where   

  Vo =   measured voltage between the electrodes when no crack is present 

  Vc =  measured voltage between the electrodes with a crack present 

  s =  distance between potential electrodes 

Essentially, the ACPD technique involves measuring an increasing current path around the crack 

tip and relating that increased path with a progressing crack.  

 The DCPD technique involves passing a direct current through the metal, where the 

current flows through the entire cross-section, and measuring the voltage across a distance 



35 

 

between the applied current. Using Ohm’s law the measured voltage will be given by the 

expression:  

𝑉 = 𝐼𝑅 = 𝐼(
𝜌𝑠

𝐴
) 

where  

  V = measured voltage 

  I = applied current 

  R = electrical resistance 

  r = material resistivity 

  s = distance between potential electrodes 

  A = cross-sectional area 

From this expression it can be seen that as a crack grows the cross-sectional area decreases 

resulting in an increased resistance. Additionally, if the current is kept constant the measured 

voltage must also increase at the same rate as the resistance, allowing an equation for crack depth 

as a function of voltage to be derived.  

 The electric potential drop methods do have some limitations, which were eventually 

determined to be too large to work in the current study. The ACPD method requires the potential 

electrodes to the placed close to the crack mouth in order for the small changes in the current 

path to be measured. The DCPD method is largely dependent on the resistivity value of steel 

which has a value varying from 1.43-1.71*10-7 Wm making the measured voltages very small. 

The problem with very small voltage readings is the equipment required to measure the slight 

variation due to crack growth is very expensive.  Additionally, due to the interlocking between 

the concrete and the reinforcing steel in RC structures, the crack mouth is restricted from 

opening as far.  This restricted movement allows sustained contact between the crack faces, 
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resulting in continued current flow despite the crack tip having passed this region. The increased 

area for current flow, regardless of electric potential drop technique, results in discrepancies in 

the measured voltage and therefore crack length. 

 2.4.3 Microscopy 

 The feasibility, physically and economically, of other NDT methods led to the 

investigation of visual inspection of the fatigue cracks. The instrumentation for visual inspection 

of fatigue cracks is typically some sort of microscope due to the relatively small size of fatigue 

crack in steel rebars.  The use of microscopy relied upon whether visual inspection of the crack 

was possible.  The tensile rebars in RC flexural members are embedded in concrete so that the 

tensile stresses can be transferred from the concrete, which is weak in tension, to the rebars 

which are strong in tension. Additionally, as mentioned before, the concrete cover provides 

protection of the rebars from external environmental attacks. However, in the current study rebar 

protection wasn’t needed as the beams would be tested relatively quickly after fabrication. 

Furthermore, in order to keep the fatigue test of each beam to a reasonable time frame a 

relatively high stress loading would need to be applied to the beam. As discussed in further detail 

in the methodology section of this paper, the loading was calculated to produce an applied 

moment greater than the cracking moment of the beam, meaning the beam would have flexural 

crack up to the neutral axis of the beam. Because the concrete below the neutral axis was cracked 

it would hardly provide any tensile strength, therefore it was hypothesized a small portion of 

concrete could be removed exposing the rebar for visual inspection via a microscope. A digital 

microscope was used for practical purposes because it, along with the accompanying software, 

could measure the crack length directly from the digital photos. In order to validate the 

prediction that removal of a small portion of the concrete, to allow for visual inspection, would 

have minimal effect on the overall structural performance of the beam and fatigue crack growth 
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rate a small scale test was performed, and one of the full scale test beams was fabricated without 

a void and compared to two identical beam with a void. 

2.6  Significance of Present Research  

The current study aims to provide more explicit recommendations for design of 

externally bonded FRP repairs of RC flexural members for fatigue limit states by using fatigue 

and fracture mechanics, specifically the Paris Law, to specifically consider fatigue performance 

of the steel reinforcement.  This approach is innovative because much of the previous research 

interested in developing a fatigue life prediction model for FRP repaired beams has focused on 

the use of S-N curves for the whole beam despite the fact failure of the steel is known to control 

beam performance. The approach studied here has the potential to be less constrained by specific 

beam geometry.  The experimental portion of the study determined the fatigue crack growth rate 

of rebar in both strengthened and unstrengthened beams and is believed to be the first test to do 

so. Furthermore, the study addresses the presence of predamage in the form an artificially 

produced corrosion pit.  The current study is also one of only a few studies which have sought to 

experimentally determine the Paris Law material constants for steel reinforcing bars in RC 

beams repaired with FRP.  The study also addresses the inherent difference between designing a 

FRP repair for strength and for fatigue, as current code provisions focus on the former, and 

presents a design process based on a specific fatigue life extension rather than recommending 

that RC members be strengthened to a level at which fatigue will never occur.  

 In general, it is hypothesized the current study will be able to predict the crack growth 

rate and fatigue life extension of RC beams repaired with externally bonded CFRP  using LEFM 

and the proposed visual means of inspection. These results will then allow for the development 

of a design process for RC beams repaired with CFRP which has a fatigue limit state.   
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3. METHODOLOGY 
 

 

 

3.1 Small Scale Testing 

As described in section 2.5, a visual inspection of the rebar was determined to be the 

most economical and direct method for measurement of the fatigue crack growth rate. The direct 

access to the rebar also reduces uncertainty in results that may be present with other NDE 

techniques. In order to validate the prediction that removal of a small portion of the concrete 

would have minimal effect on the overall structural performance of the beam and fatigue crack 

growth rate a small scale test was performed. The rational for the test was: if the small scale 

beams with and without rebar access holes have similar performance, then the access holes are 

not significantly affecting beam performance. Furthermore, the performance in the actual test 

specimens should also be unaffected by the access holes, since the removed concrete makes up a 

greater portion of the cross-section in the small scale beams.  

3.1.1 Manufacturing and Dimensions   

Three small scale beams were constructed, each having a span of 864 mm, depth of 

89mm, and width of 89 mm as shown in Figure 13. The steel reinforcement of each beam 

consisted of a single 10 mm, Grade 60 (420 MPa), black bar as the tensile reinforcement and 

shear stirrups bent from smooth steel bar with nominal area of 40.65 mm2. The tensile 

reinforcement was placed at a depth of 70 mm below the compression face of the beam. During 

the fabrication of the stirrups a surface roughness was applied to achieve interlocking between 

the concrete and stirrup. The stirrups were tied to the tensile rebar in the shear zone of the beams 

with 50 mm spacing between them, Figure 14. Two of the beams had cylindrical sections of the 

concrete removed, by placing foam tubing in the forms before concrete placement as shown in 
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Figure 15. The missing concrete section measured 38 mm deep and traversed the width of the 

beam. Quickrete high early strength sack concrete, which is rated to achieve a 27.6 MPa 

compressive strength at 28-days of curing, was also used. A concrete vibrator was used while 

placing concrete to reduce air voids in the beams. For further identification of each beam the 

following designations were used: Beam 1 was fabricated with no void in the concrete and had 

three strain gages, Beam 2 was identical to Beam 1 but with a void, and Beam 3 was identical to 

Beam 2 but only had the single strain gage. 

  

Figure 13. Small scale test beam shown with rebar access hole, reinforcement detail, and support 

and loading points. 

  

Figure 14. Shear Stirrups with surface texture shown 
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Figure 15. Small scale beam forms with foam cylinders for access holes 

 

Figure 16. Small scale beam with rebar access hole. 

3.1.2 Instrumentation 

The instrumentation used for the small scale beams consisted of 350 Ω foil backed strain 

gages attached to the single longitudinal bar. The ribs on the rebar were ground down and the 

surface smoothed using silicon carbide paper as per the installation instructions of the strain gage 

manufacturer as seen in Figure 17. Prior to concrete placement lead wires were soldered to the 
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strain gages and a protective coating applied to eliminate damage to the strain gages during 

concrete placement.  

 A picture of the strain gage layout on each beam is shown in Figure 18.The strain gage 

layout was used so the tensile stresses developed in the reinforcement could be determined both 

in and outside of the removed concrete section to ensure the stresses in the beams with and 

without access holes were acceptably close in value. Theoretically the stresses should be the 

same, up to yielding of the reinforcement, since the beam was loaded in four point bending and 

the gages were all in the constant moment region.  

 

Figure 17. Deformed steel reinforcement with ribs ground down and sanded 

 

Figure 18. Strain gage layout 
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3.1.3 Testing 

The cured beams, shown in Figure 19, were tested monotonically to failure under four 

point bending with the span between loading points being 305mm and the span between supports 

being 813 mm. Applied force and displacement was measured internally by the United Testing 

Systems universal testing machine. The strain measurements were made by attaching the strain 

gage lead wires to a Campbell Scientific CR1000 data logger. In addition to ensuring the stresses 

in the rebar were similar, the strength and deflection of each beam was determined. Furthermore 

the applied force and measured deflection of each beam was used to determine the stiffness 

variations between beams.  

 

Figure 19. Cured small scale beam with access hole and strain gage lead wires shown 

3.1.4 Small Scale Results 

The test results, Figure 20 and Figure 21, show all three beams had very similar load-

deflection curves with negligible differences in stiffness in the elastic range and comparable 

strain levels in the rebar prior to overload failure. While the data does show Beam 1 yielding at a 

lower load level than Beam 2, because the fatigue tests for the full scale beams were to be run 

well below the level where rebar yielding would occur, this test showed good agreement with the 

thinking the void in the concrete wouldn’t affect the fatigue performance of the beams.  
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Figure 20. Small scale beam load vs. 

deflection curve 

 
Figure 21. Small scale beam load 

deflection curves 

3.2 Full Scale Experimental Test Program 

The large scale experimental program consisted of 7 beams to be fatigue tested, while a 

total of ten beams were fabricated, 3 beams were for a similar project. The beams were divided 

into 3 groups in addition to a control beam; a non-CFRP strengthened group, a typical modulus 

CFRP sheet strengthened group, and a high modulus CFRP strip strengthened group. The 

following sections detail the design, fabrication, testing set up and instrumentation layout of the 

experimental test specimens.   

3.2.1 Test Matrix  

Seven 4,725 mm long, 250 mm wide, and 400 mm deep steel reinforced concrete beams 

were constructed for the experimental investigation. The beams were fabricated with two 

A615M Gr 420 No. 10 compression bars, three A615M Gr 420 No. 19 tension bars, and a total 

of eighteen A615M Gr 420 No. 10 shear stirrups as shown in Figure 22.  The stirrups were 

spaced at 170 mm within the shear spans of each beam. Additionally, each beam’s outer-most 

tensile rebars were notched to promote fatigue crack growth from this point; this is discussed 

further in the following sections. Through the remainder of the paper the following designations 

will be used for each full scale specimen: 
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Beam 1: No rebar access void in the concrete, no extern ally bonded CFRP 

Beam 2 and 3: Rebar access void at mid-span, no externally bonded CFRP 

Beam 4 and 5: Rebar access void at mid-span, externally bonded common modulus CFRP 

sheet 

Beam 6 and 7: Rebar access void at mid-span, externally bonded high modulus CFRP 

procured strip 

The test matrix was designed in order to achieve the stated objectives using the proposed 

methods given in the Introduction section. Beams 1, 2, and 3 were designed in order to verify the 

results obtained from the small scale testing on the effect the rebar access void had on the over-

all beam performance, and on the fatigue performance of the steel reinforcement. Comparisons 

between the crack growth rates of groups 2, 3, and 4 would allow for determination of the how 

much extension in fatigue life each repair provides as well as the values for the Paris Law 

material constants. Comparison between the fatigue performance between groups 3 and 4 would 

provide answers on whether there is a difference in designing a FRP repair in order to solely add 

strength or if there is a correlation between increased strength and extended fatigue life.  

All beams were fatigue tested under four-point loading using a single servo-hydraulic 

actuator applying a sine waveform under force control at a frequency of 2.5 Hz. It was initially 

predicted a 60 kN - 110 kN loading would produce a stress range in the reinforcement which 

would allow crack propagation and limit the fatigue life to a reasonable number of cycles. 

However, after running Beam 1 at this loading level for 700,000 cycles with no signs of fatigue it 

was determined that the stress range needed to be larger. Therefore Beams 2-7 were loaded at an 

increased range of 40 kN - 100 kN.  The same cyclic loading was applied to each beam, 

regardless of strengthening level, as this represents the most realistic situation where a RC girder 
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would be repaired with CFRP and the same loading cycle would be present before and after the 

repair. Two slower cycles, at a frequency of 0.05 Hz, were applied to the beam at the first two 

cycles and every 50,000 cycles afterwards. These slow cycles allowed for a more refined data set 

to be collected, approximately 56 scans per slow cycle, and allowed for the digital microscope to 

be switched to both sides of the beam to view the most exterior No. 19 bars. For Beam 1, with no 

concrete void, the number of slow cycles was set to a single cycle since pictures could not be 

taken with the digital microscope. Table 1 gives a summary of the test beam variations.  

Table 1. Summary of experimental beam variations 

3.2.2 Specimen Design 

 All test beams were designed with the same dimensions and internal steel reinforcement 

using ACI-318: Building Code Requirements for Structural Concrete. Length of the specimens 

was controlled by the size of the testing frame. From there the depth was chosen to ensure the 

beam didn’t fall under deep beam conditions, and a width picked to produce a rectangular cross-

section which is typical for RC beams and agreed well with previous research. Adequate 

concrete cover was also taken into account when dimensioning the beam cross-section.  The steel 

reinforcement amount was chosen to produce an under-reinforced beam which would fail in 

flexure. While compression reinforcement wasn’t needed for strengthening purposes, fabrication 

 Concrete Void Rebar Strain Gages CFRP 

Beam 1 No One on each No. 19 at mid-span, 3 total       None 

Beam 2 Yes One on each No. 19 at mid-span and 400 mm off center, 6 

total 

None 

Beam 3 Yes One on each No. 19 at mid-span and 400 mm off center, 6 

total 

None 

Beam 4 Yes One on each No. 19 at mid-span, 3 total Tyfo SCH-41  

Sheet 

Beam 5 Yes One on each No. 19 at mid-span, 3 total Tyfo SCH-41 

Sheet 

Beam 6 Yes One on each No. 19 at mid-span, 3 total Tyfo UC Strip 

Beam 7 Yes One on each No. 19 at mid-span, 3 total Tyfo UC Strip 
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of the reinforcing cages was easier with them. Additionally, since the beams were to be 

fabricated in an inverted position, so the FRP could be applied to the tensile soffit of the beam, 

the compression bars were needed to provide a place for the rebar chairs to elevate the cage off 

the bottom surface of the forms. The shear stirrups were needed in order to resist diagonal-shear 

cracking, which would have been the controlling failure mode at the given loadings.  

 

Figure 22. Experimental test specimen details 

The notch cut into the tensile reinforcement was sized using Equation 10  to represent a 

corrosion pit which would have formed in a highly corrosive environment, at a very localized 

point, such as a flexural crack in the concrete, over 20 years. This gave a notch depth of 

approximately 2mm. This value was checked with Equation 5 and Equation 4 to ensure this 

notch would be able to produce a stress intensity factor range higher than the threshold value, 

allowing fatigue crack growth.  
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In order to investigate the difference in designing a FRP repair for strength versus fatigue 

the beams in groups 3 and 4 were both repaired to the same nominal moment carrying capacity 

using Equation 10-13 from ACI 440.2 with two different CFRP types. The beams in group 3 (4 

and 5) were strengthened using a CFRP sheet while the beams in group 4 (6 and 7) were 

strengthened using a CFRP pressured strip. Since it was easier to vary the width of the CFRP 

sheet the moment capacity for a beam strengthened with the CFRP strip was determined then the 

width of the CFRP sheet which would be able to provide the same strength was solved for. The 

factored nominal moment capacity for beams 1, 2, and 3 was found to be 115.9 kN-m, for beams 

4 and 5 the capacity was found to be 150.26 kN-m and for beams 6 and 7, 150.19 kN-m was 

calculated. Whereas the moment capacity of the unstrengthened beams was governed by yielding 

of the steel rebars, the moment capacity of both types of strengthened beams was governed by 

the debonding of the CFRP. In the strengthened beams the yield strain of the steel rebars is 

reached first followed by the predicted debonding strain of the CFRP while the concrete strain 

remains below the ultimate strain until after the CFRP debonds. 

The applied load range between 40 kN and 100 kN gave a predicted stress range in the 

tensile steel reinforcement of 150 MPa for the unstrengthened beams, 130 MPa for the Tyfo 

SCH-41 strengthened beams, and 120 MPa for the Tyfo UC strengthened beams. These values 

were obtained using equation 10-14 from ACI 440.2 and general section analysis calculations. 

Equation 13. Stress in steel reinforcement under service loads (ACI 440.2) 

𝜎𝑠,𝑠 =
[𝑀𝑠 + 𝜀𝑏𝑖𝐴𝑓𝐸𝑓 (𝑑𝑓 −

𝑘𝑑
3 )] (𝑑 − 𝑘𝑑)𝐸𝑠

𝐴𝑠𝐸𝑠 (𝑑 −
𝑘𝑑
3 ) (𝑑 − 𝑘𝑑) + 𝐴𝑓𝐸𝑓 (𝑑𝑓 −

𝑘𝑑
3 ) (𝑑𝑓 − 𝑘𝑑)
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3.2.3 Specimen Fabrication 

 The test beam specimens were fabricated in the structural engineering lab at the Colorado 

State University Engineering Research Center directly adjacent to the testing frame. Form-work 

was constructed out of 19mm thickness plywood and lumber 2x4s, shown in Figure 23. The 

formwork was assembled in such a way so that the walls could be removed after the concrete had 

cured so application of the CFRP could occur and the beams could be picked up and individually 

loaded into the testing frame.  

 

Figure 23. Braced plywood and lumber form-work 

In addition to the walls and bottom of the form-work, foam tubes were used to form a 

90mm deep and 100 mm wide cylindrical void into the concrete to expose the No. 19 tensile 

rebars at mid-span of beams 2-6, which allowed access for a digital microscope to track the crack 

growth rate, as shown in Figure 24 . Again the beams were fabricated in an inverted position to 
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allow access to the tensile soffit of the beam for FRP application; therefore the voids were cast in 

the relative top of the beams. The void in the concrete offset relative to the notch at mid-span to 

allow the nominal strain in the rebar in the void to be measured via a strain gage. In order to keep 

the strain gage away from any stress concentration cause by the notch while also keeping the 

void to a minimal size the void was offset. 

a) b) 

Figure 24. a) Foam tube used to form void at mid-span, shown with notches cut in 
outer-most rebars, b) Foam void forms with lumbar caps in beams 2-10. 

The steel rebar cages were tied up and lowered into the forms with the No. 19 rebars on 

the relative top. The cages rested on plastic rebar chairs in order to achieve the concrete cover 

needed shown in Figure 25 b). Once the cages were in the forms the ribs on the No. 19 rebars 

were removed for a length of 150 mm at mid-span and in beams 2 and 3 at an additional location 

230 mm away. The purpose for these additional smoothed portions is explained later in the 
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Instrumentation section. The ribs were removed and the surface polished not only to give the 

strain gages a smooth surface to attach to but also so propagation of a fatigue crack from the cut 

notch would be more easily visible. The notches were cut into the outer most No. 19 rebars after 

polishing using a Dremel tool with a silicon carbide cutoff wheel with marking of 2 mm to 

ensure all notches were cut to approximately the same depth. A rounded notch tip was left by the 

cutting wheel; therefore a utility knife blade was used to sharpen the notch tip to preserve the 

higher stress intensity. 
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a) 

 
b) 

 
c) 

d) 

Figure 25. a) Rebar cages, b) 40mm plastic rebar chairs, c) position of rebar cage in 
form, d) depth of tensile reinforcement once supported on 40mm rebar chairs 

The concrete was supplied by a local concrete batch plant and placement of the concrete 

for all beams was performance in the same day, Figure 26. A concrete vibrator, shown in Figure 

26, was used to ensure minimal voiding between the rebar cages and form walls as well as 

around and in the rebar chairs. The concrete was allowed to cure for 28 days before the form-

work was removed and testing began.  
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Figure 26. Concrete placement. 

Application of the CFRP didn’t occur until the concrete reached the 28 day compressive 

strength. Four beams were externally strengthened with commercially available CFRPs produced 

by Fyfe Co. Prior to application of any CFRP, a diamond cup grinding wheel was used to 

remove the concrete laitance layer (about 5mm) from the soffit of each beam to expose the 

aggregate and promote a stronger bond between the concrete and CFRP, Figure 27. Beams 4 and 

5 were strengthened with a 190mm wide Tyfo SCH-41 uni-directional carbon fabric sheet and 

Tyfo S Epoxy. The fabric sheet was saturated with the epoxy and applied to the prepared beams 

via a hand lay-up process shown in Figure 28. Beams 6 and 7 were strengthened with a single 

Tyfo UC strip, which is a high modulus, high tensile strength, pultrusion fabricated carbon-

epoxy laminate. The Tyfo UC strips were adhered to the concrete substrate with Tyfo TC Epoxy, 

shown in Figure 29. 
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Figure 27. Concrete surface, top) removed laitance layer exposing aggregate, bottom) 
concrete surface left by finishing of wet concrete 

  

Figure 28. Hand-layup process of Tyfo SCH-41 CFRP sheets and beams 4 and 5 
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Figure 29. Tyfo UC CFRP strip 

3.2.4 Material Properties 

The concrete was allowed to cure for 28 days. Cylinder compression tests were 

performed at 7, 14, and 28 days. In addition a test was performed at the half-way point through 

testing. At each testing day 3 cylinders were tested to determine an average value. The results 

were then used to produce a compressive strength curve so the concrete compressive strength for 

each beam could be determined the day the specimen was tested. In Table 2 the values for the 

compressive strength are the average of the each beam in the group. Properties for the CFRP and 

steel reinforcement are also given. Detailed mill certificates for the steel rebars are provided in 

Appendix A.  
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Table 2. Experimental beam material properties 

* Properties provided by manufacturer 

3.2.5 Test Setup and Instrumentation 

All beams were loaded at clear-span third points, 1370mm from each support, through a 

spreader-bar by a single 160 kN capacity MTS servo-hydraulic actuator, Figure 30 a). The 

actuator was controlled using an MTS Flex test GT whose control software was configured to 

collect the applied load, actuator extension, and cycle count data at each load cycle peak and 

valley. Linear pots mounted to the beam at mid-span and at each loading point provided direct 

measurement of beam displacements. Foil backed 350Ω strain gages were attached to each No. 

19 rebar 65mm from the notch cut at mid-span. Beams 2 and 3 had additional strain gages 

attached to the No. 19 rebars 400 mm off from mid-span for strain comparison purposes within 

the constant moment region. . In addition, a single strain gage was attached to the concrete 

surface on top of each beam at mid-span and 2 strain gages were applied to the CFRP within the 

constant moment region, one directly over the void and the other 230 mm away. All 

instrumentation was wired to Campbell Scientific CR1000 data loggers for data collection. 

Material Properties 
Unstrengthened 

Beams 1,2, and 3 

Tyfo® SCH-41 Sheet 

Beams 4 and 5 

Tyfo® UC Strip 

Beams 6 and 7 

Concrete compressive strength (MPa)  32.82 33.23 33.35 

Rebar Tensile Yield Strength No. 

10/No.19 (MPa)* 
491/481 491/481 491/481 

CFRP Tensile Strength (MPa)* N/A 986 2790 

CFRP Tensile Modulus (GPa)* N/A 82 140 

CFRP Elongation at Break (%)* N/A 1.0 1.8 

CFRP Width (mm) N/A 190 100 

CFRP Thickness (mm) N/A 1 2 

Epoxy Tensile Strength (MPa)* N/A 72.4 22.7 

Epoxy Tensile Modulus (GPa)* N/A 3.18 1.2 



57 

 

 

Figure 30. a) Constant moment region of beam showing loading apparatus at top and 

void in concrete exposing tensile rebars, b) void showing CFRP sheet (bottom center) and digital 

microscope mount (top left), and c) notch and polished surface of rebars at mid-span 

 

 
a) b) 

Figure 31. Loading and instrumentation set-up a) beam profile view, b) beam end view 

 

a)

b)
c)
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Crack length measurements were made using a Dino Lite digital microscope. The 

microscope was attached to the side of the beam allowing for a profile image at approximately 

20 times magnification to be taken of the rebars closest to the sides of the beam, Figure 31. 

Based on the magnification, dimensions of the crack could be measured from the image using a 

companion software. Fatigue cracking would only be able to be measured along the side facing 

circumference of the rebar, which would still give accurate results since the crack growth rate 

and not the absolute crack length was more of a concern.   
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4. RESULTS AND ANALYSIS 
 

 

 

4.1 Concrete Void Comparison 

The significance of the rebar access void in the concrete with respect to the structural 

performance of the beam was first considered. Figure 32 shows the secant stiffness of each beam 

throughout the fatigue test. The secant stiffness is defined as the slope of the load-deflection 

curve during cycling. Comparing Beam 1 to Beams 2 and 3 (those with no CFRP, but with a void 

in the concrete) indicates the addition of the void decreases the member stiffness by about 4.5%. 

The plot indicates that the stiffness of Beam 1 is more similar to Beams 4 and 5 (those 

strengthened with the SCH-41 CFRP) than it is to Beams 2 and 3. This result is contrary to that 

of the small scale testing which showed negligible difference in stiffness between the beam with 

no void and the ones with a void.  

 

Figure 32. Secant stiffness vs. number of cycles 

  The effect the void had on the measured rebar strains was also investigated in Beams 2 

and 3. Figure 33 and Figure 34 show the comparison between the strain ranges in the three 
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tensile rebars both inside the void and embedded in the concrete at a location 100mm away for 

Beams 2 and 3, respectively. The lower measured strain values in Beam 2 are attributed to the 

higher stiffness of Beam 2 at the 50,000 cycle mark when the strain values in Figure 33 and 

Figure 34 were taken. These strain ranges were only assessed at this point because shortly after 

the 50,000 cycle mark the rebar strain gages embedded in concrete started to fail due to flexural 

cracking of the concrete causing the lead-wires to pull away from the gages. These plots show 

for both beams the stress ranges in the void were noticeably higher than in the concrete despite 

both locations being within the constant moment region. This result differed from that found for 

the small beam test which showed similar load-strain rates within the elastic region along the 

beam’s length.  However, the post-yield strain measured in the rebar embedded in concrete was 

lower than the rebar in the void, which agrees with the trend in the large scale beams.  While 

these results, from the large scale beam tests, indicate that the void did have an impact on the 

structural performance of the beams, the degree of this impact was minor, especially for the 

purpose of the study, which focused on the comparison of the CFRP repairs on the beams, all of 

which had voids in the concrete. Additionally, strain measurements were made within the void 

near the location of the notch, where rebar crack growth occurred, allowing the nominal stress at 

the location of the crack to be determined. 
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While the exact cause for the differing results between the small scale and full scale 

beams is unknown, a portion of the discrepancy might have been caused by the location of the 

strain gages in the voids. In the small beams the strain gages were located centrally in the void 

while in the full scale beams the gages were near the edge of the void, which might have caused 

a stress concentration resulting in the higher strain readings. However, this only explains the 

difference in strain and not the stiffnesses. 

4.2 Observed Behavior 

All beams, with the exception of Beam 1, failed due to fatigue induced fracture of one or 

more of the notched tensile No. 19 bars, Figure 35.  It is believed Beam 1 did not show signs of 

fatigue due to the smaller stress range that was produced from the loading and the fact that the 

notches in the rebar were not sharpened with the utility blade prior to concrete placement, 

resulting in a notch tip that did not produce a sufficiently high stress intensity factor range to 

promote crack extension. Beams 2 and 3 both experienced fatigue crack growth in both notched 

rebars, while in beams 4-7 fatigue crack propagation only occurred in one of the notched bars 

despite continuing the testing for a minimum of 50,000 cycles after the fracture of the first rebar. 

In beams 2 and 3 presence of a visible crack in the other notched rebar occurred prior to fatigue 

induced fracture of the rebar which first showed crack growth. Additionally, the number of 

 
Figure 33. Beam 2 rebar strain ranges 

 
Figure 34. Beam 3 rebar strain ranges 
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cycles between fracture in both rebars in beams 2 and 3 was less than 50,000 cycles. 

Immediately following fracture of the second notched rebar, the third, middle rebar yielded and 

development of large flexural cracks extending from the concrete void ensued as shown in 

Figure 36. The propagation of the fatigue crack that occurred in Beam 6 is shown in Figure 37. 

 

Figure 37. Progression of fatigue crack growth in beam 6. a) 600,000 cycles, no 

cracking, b) 1,050,000 cycles, 1.702 mm crack, c) 1,200,000 cycles, 8.392 mm crack, d) 

1,214,700 cycles, fracture 

The addition of both CFRP repair systems was observed to reduce the strain in the tensile 

reinforcement. The average rebar strain range in Beams 2 and 3 was 564.55 με, however an 

observed decrease of 16.2% was present in Beams 4 and 5 strengthened with the Tyfo SCH-41 

 
Figure 35. Fatigue induced fracture of 

tensile No. 19 rebar 

 

Figure 36. Large flexural cracking 
occurring immediately after fracture of 

second rebar in beams 2 and 3 

a) b) c) d) 
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sheet, and a decrease of 19.6% was present in Beams 6 and 7 strengthened with the Tyfo UC 

strip, as shown in Figure 38. The addition of Tyfo SCH-41 increased the beam stiffness by 

6.85% and the Tyfo UC strips increased the stiffness by 15.31% over the unrepaired beams. The 

difference in the increased stiffness and the decreased stress range in the repaired beams show 

that increasing the stiffness due to the application of CFRP doesn’t necessarily ensure a 

proportional decrease in the stress range the steel reinforcement experiences.   

 

Figure 38. Average tensile rebar strain range during fatigue test 

The presence of different strain/stress ranges in the two CFRP systems, despite being 

designed for the same flexural capacity, indicates there might be is a slight difference in applying 

a CFRP repair for strengthening and fatigue. This finding further emphasizes the need for design 

provisions for fatigue and not just using strength designs to provide increased fatigue 

performance. 
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Just prior to any cracking in the rebar becoming observable with the digital microscope, a 

drop in the measured strain would occur. This drop was linear at first, but after the crack length 

exceeded 3 mm the drop became exponential with continued cycling. Additionally, as the strain 

in the fatiguing bar would drop the strain in the other two bars would increase, signifying a 

redistribution of stresses.  

It was interesting to observe that although the notches were sharpened and theoretical 

calculations showed the stress intensity factor range was higher than the threshold value of 3.3 

MPa√m, crack propagation was not observed for a significant number of cycles in each beam, 

showing that despite the attempt to achieve crack growth from the first cycle crack initiation still 

needed to take place.  

Finally, despite Kim and Heffernan (2008) reporting many studies experiencing issues 

with debonding of the FRP along the beam’s length especially with thicker and high modulus 

FRPs, no debonding of any type was observed in this study. This was to be expected, as the 

measured strains in the CFRP never exceeded 0.0017e, which was below the calculated value for 

which debonding would occur of 0.0045e. It is believed end-peel debonding was prevented by 

extending the CFRP sheets/strips to beyond the supports creating a mechanical clamping action 

when the beam was loaded. While cracking was observed in the thicker Tyfo TC epoxy used on 

Beams 6 and 7 at locations of flexural cracking of the concrete, debonding was limited to just 

over the crack and did not extend away from the crack along the beam’s length.  

4.3 Fatigue Life and Crack Growth Rate 

Figure 39 and Figure 40show the crack length vs. number of cycles for each beam over 

the entire test and from the point where the crack first becomes visible, respectively. A general 

trend of increased fatigue life and slowed crack growth rate with the addition of CFRP can be 
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seen. It is inconclusive, however, as to whether there is improved performance with either CFRP 

sheets or strips in regard to these parameters. Both the fatigue life and crack growth rate for the 

SCH-41 sheet strengthened beams (4 and 5) are very consistent, however, the differences in both 

parameters for the UC strip strengthened beams (6 and 7) are significant. Beam 6 shows 

improved performance over the SCH-41 system with a longer fatigue life and slowed crack 

growth rate. Conversely, Beam 7 shows worse performance, with a shorter fatigue life and a 

quicker crack growth rate. Therefore, the experimental results of this study are not enough to 

determine if there is a difference in designing CFRP repairs for strength and repairs for fatigue, 

despite the theoretical calculations and a slight difference in the experienced stress range in the 

rebar showing otherwise.    
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Figure 39. Crack length vs. number of cycles 

 

Figure 40. Crack length vs. number of cycles after the crack is visible 

4.4 Fatigue Parameter Analysis 

The Paris Law constants, C and m, were determined from a log-log plot of the crack 

growth rate, da/dN, versus the stress intensity factor range, ΔK, for each beam  as shown in 

Figure 41.  The values for C and m are the y-intercept and slope of the power trend line shown 
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on the plot respectively. The R2 value for this trend line was 0.803. The value for C was 

determined to be 1.435E-10, below the conservative value for this type of steel of 3.6E-10 

proposed by Barsom and Rolfe (1999), while the value for m was found to be 2.2375, which is 

slightly below the well-accepted average value of 3. It should be noted that these values were 

obtained after the outliers of the data set were removed. Large ΔK and da/dN values were 

removed because these points correspond with large crack lengths which were assumed to be 

well outside the stable crack growth region which is described by the Paris Law. Therefore, the 

removal of these values was theoretically needed as they cannot be described by the Paris Law. It 

is believed the determined constants varied from the well-established values due to the high 

tolerance needed for measuring the crack length, which was often difficult to accurately 

determine due to the extremely small size of the crack. 

 

Figure 41. Crack propagation rate vs. stress intensity factor range  
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The fracture toughness, KIC, was found by solving Equation 3, where the max stress and 

critical crack length were obtained experimentally from each specimen and the value of F for the 

crack correction factor was determined for the critical crack length. The average KIC value from 

all tests was found to be 113.35 MPa√m. This value was validated by a Charpy V-notch test 

which consisted of testing 5 specimens which were milled from the core of a left over piece of 

the No. 19 tensile bars. The average fracture determined from the CVN test was 104.4 MPa√m.  

With these material constants determined from the data, a comparison between the actual 

and predicted fatigue lives could be performed in order to evaluate the accuracy and applicability 

of these values. Table 3 compares the actual fatigue life from the experimental study to the 

predicted fatigue life using Equation  9 with the published and calculated values for C and m.  

The results show the published values for the material constants by Barsom and Rolfe 

greatly underestimate the fatigue life, with an average percent of actual of 12.6%. The values 

determined from this study overestimated the fatigue life by a fair amount, with an average 

percent of actual of 163%. A portion of the overestimation is believed to be due to the fact the 

number of cycles from the experimental tests only account for cycles from first observation to 

fracture of the rebar, whereas the predicted values, being calculated from the Paris Law equation, 

account for every cycle within the stable crack growth region whether or not it was visible from 

a profile view. It is believed the predicted values from the determined constant values and actual 

fatigue lives would be much closer if the number of cycles to fracture from the very first bit of 

crack growth could be determined. This is because the initial very first cycles actually take the 

largest number of cycles to grow because of the small stress intensity factor value.   
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Table 3. Number of cycles from first crack detection to fracture 

 Experimental 
Fatigue Life 

Predicted Fatigue life 
using Theoretical C and 

m values 

% of 
Actual 

Predicted Fatigue Life 
using Determined C 

and m values 

% of  
Actual 

Beam 2 132,794 30,530 23 343,811 259 

Beam 3 Near 84,800 13,113 15 189,579 224 

Beam 3 Far 92,100 12,093 13 180,717 196 

Beam 4 240,500 24,558 10 306,403 127 

Beam 5 285,000 24,852 9 308,826 108 

Beam 6 414,700 24,206 6 303,461 73 

Beam 7 198,400 23,625 12 298,185 150 
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5.  RECOMMENDATIONS, FUTURE WORK, AND CONCLUSIONS 
 

5.1 Recommendations 

A means of designing a FRP repair for flexural RC members that addresses the fatigue 

performance of the repaired member and not solely the static strength is needed. The use of well-

established fracture mechanics equations along with the preexisting design guidelines in ACI 

440.2 allows for a design method that explicitly considers the way FRP repaired members loaded 

in fatigue are most likely to fail, i.e. through fatigue failure of the reinforcing steel.  The 

following flowchart, Figure 42, is proposed to allow the design engineer to specify the desired 

extension in the fatigue service life, and using fatigue parameters such as those obtained from 

this study, average daily truck traffic and properties of the bridge girders determine the amount 

and mechanical properties of FRP needed in order to achieve the desired life extension. The 

flowchart is broken into four general segments: a) Known Parameters, b) FRP Repair Design, c) 

FRP Repair Properties, and d) Fatigue Evaluation. Use of the proposed flowchart first requires 

establishing values for variables in the Known Parameters segment, which are grouped into three 

categories: Girder Properties, Bridge Characteristics, and Fatigue Properties. Next the Fatigue 

Evaluation side of the flowchart must be solved to determine the stress range in the rebar the 

FRP repair must reach in order to get the desired fatigue life extension referred to as Δσneeded. In 

order to find this value the number of loading cycles within the extended life, Next, and the 

critical crack length must be determined. Next is simply found by multiplying the average daily 

truck traffic, ADTT, by 365 days in a year and by the number of years the repair is to extend the 

fatigue life. The ac term is calculated using Equation 6. Since this equation requires σmax in the 

tensile rebar after the FRP repair, which is still unknown, an initial estimated value, σmax*, is 

needed. Most repair schemes have resulted in σmax values after FRP repair being 75-90% of the 
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unrepaired maximum; however any reasonable value is adequate since at a later point σmax*is 

adjusted and the design can be performed again to achieve convergence. Since F is dependent on 

the crack length, but the crack length though out the fatigue life isn’t known the average value of 

F for the initial crack length and the critical crack length was taken to be F. Once Next and ac are 

found, a reworked form of the Paris Law equation can be used to find Δσneeded. 

Equation 14. Stress range in steel rebar FRP repair must achieve. Derived from the Paris 
Law equation 

∆𝜎𝑛𝑒𝑒𝑑𝑒𝑑 =

√2 (𝑎𝑐

2−𝑚
2 − 𝑎𝑖

2−𝑚
2 )

𝑁(2 − 𝑚)𝐶

𝑚

𝐹√𝜋
 

Now the process shifts to the FRP Repair Design side of the flowchart in order to plan a 

design which will provide a stress range, Δσprovided, in the tensile rebars at or below the Δσneeded 

level. Preliminary values for the area of FRP, Af, effective depth of the FRP, df, and the modular 

ratio of FRP to concrete, nf, are calculated. These values along with the dead load moment, MD, 

and dead plus live load moment, MD+L, are then used in section analysis calculations to 

determine ratio of depth of the neutral axis to steel reinforcement depth measured from the 

extreme compression fiber, k. Once this value is known for both design loads, the maximum, 

σmax, and minimum stress, σmin, in the steel rebars can be calculated using Equation 13. At this 

point the σmax value that has been determined should be checked with the σmax* value first used to 

find Δσneeded. If the values are different the Fatigue Evaluation side of the flow chart should be 

revaluated plugging in σmax for the initial σmax* value until convergence is achieved between 

σmax* and σmax. Next Δσprovided is determined from σmax, and σmin,and check against Δσneeded. If 

Δσprovided is lower than Δσneeded the design is adequate but overly conservative therefore the area 

and/or modulus of the reinforcement should be lower; if the converse is true, and the provided 
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stress range is too low, then the area and/or modulus should be increased until the stress ranges 

agree. Once agreement is reached the design should be checked with the remainder of the ACI 

440.2 provisions for strain limits in/ between each component. 
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Figure 42. Proposed fatigue design flowchart for FRP repair of RC flexural members 
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Table 4. Variable definitions and units 

ADTT = average daily truck traffic 
(trucks/day) 

MD = Dead load moment (kN-m) 

Af = area of FRP external 
reinforcement (m2) 

MD+L = Dead plus live laod moment (kN-m) 

As = area of tensile steel 
reinforcement (m2) 

m = Paris Law material constant 

ac = critical crack length (m) Next = Number of cycles repair extends fatigue 
life (cycles) 

ai = initial flaw length (m) n = Number of plies of FRP reinforcement 
b = width of member (m) nf = Modular ratio of elasticity between FRP 

and concrete 
C = Paris Law material constant ns = Modular ratio of elasticity between 

steel and concrete 
d = distance from extreme 

compression fiber to 
centroid of tension 
reinforcement (m) 

Ptruck = Design truck load (kN) 

df = effective depth of FRP 
flexural reinforcement(m) 

tf = Nomial thickness of one ply of FRP 
reinforcement (m) 

Ec = 
 

modulus of elasticity of 
concrete (MPa)  

wf = Width of FRP reinforcing ply (m) 

Ef = Tensile modulus of 
elasticity of FRP (MPa) 

Yext = Years FRP repair is to extend fatigue life 
(years) 

Es = Modulus of elasticity of 
steel (MPa) 

Δσneeded = Stress range in steel reinforcement 
needed to ensure fatigue cracks don’t 
reach critical value within extended life 
(MPa) 

F = Crack shape factor Δσprovided = Stress range in steel reinforcement 
after FRP repair (MPa) 

f’c = Specified compressive 
strength of concrete (MPa) 

εbi = Strain level in concrete substrate at 
time of FRP installation (m/m) 

h = Overall height of member 
(m) 

σmax = Maximum stress in steel reinforcement 
after FRP repair produced by MD+L 
(MPa) 

k = Ratio of depth of neutral 
axis to reinforcement depth 
measured from extreme 
compression fiber 

σmax* = Initial predicted value of maximum 
stress in steel reinforcement after FRP 
repair (MPa) 

KIC = Fracture toughness or 
critical stress intensity 
factor (MPa√m) 

σmin = Minimum stress in steel reinforcement 
after FRP repair produced by MD(MPa) 

L = Flexural member length (m)    
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An assessment of the proposed flowchart was performed using the beams from the 

experimental study along with the determined fatigue parameters. Setting Next to the number of 

cycles determined from the experimental study, ai to the initial notch depth cut into the rebars, 

σmax*to the values measured during fatigue testing and using the determined values for C and m, 

Δσneeded was determined. The modulus and amounts of each type of CFRP repairs were used 

along with the material and geometric properties of the beams to determine Δσprovided and the 

corresponding number of cycles the repair provided using Equation  9. Table 5 shows the 

obtained stress ranges and number of cycles compared to the experimentally determined values. 

Table 5. Predicted fatigue life and rebar stress range using proposed flowchart and 
equations 

Specimen Nactual 
∆σneeded 

(MPa) 

σmin 

(MPa) 

σmax 

(MPa) 

∆σprovided 

(MPa) 

% of 

Δσneeded 
Nprovided 

% of 

Nactural 

2 132794 145.14 108.17 249.84 141.67 97.6 192196 144.7 

3 far 84800 156.30 108.17 249.84 141.67 90.6 136043 160.43 

3 near 92100 133.56 108.17 249.84 141.67 106.1 110257 119.71 

4 240500 78.10 98.07 226.51 128.44 164.5 145377 60.45 

5 285000 73.45 98.07 226.51 128.44 174.9 153115 53.72 

6 414700 60.72 95.40 220.34 124.95 205.8 146985 35.44 

7 198400 83.16 95.40 220.34 124.95 150.2 139727 70.43 

Below are the calculations, as described above, being solved for the values for Beam 4 in 

Table 5.  

Fatigue Evaluation: 

1) Critical crack length: 𝑎𝑐 =
1

𝜋
(

𝐾𝐼𝐶

𝐹∗𝜎𝑚𝑎𝑥∗
)

2

=
1

𝜋
(

113.35 𝑀𝑃𝑎√𝑚

2.368∗250𝑀𝑃𝑎
)

2

=0.0117m  

Where KIC was determined to be 133.35 MPa√m, F is calculated for the value of 

0.0117m using Equation 2, and σmax* is initially estimated at 250 MPa  
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2) The stress in the steel reinforcement which the FRP system needs to provide in order 

to achieve the desired fatigue life is calculated using the following equation. 

∆𝜎𝑛𝑒𝑒𝑑𝑒𝑑 =

√
2(𝑎𝑐

2−𝑚
2 −𝑎𝑖

2−𝑚
2 )

𝑁(2−𝑚)𝐶

𝑚

𝐹√𝜋
=

√
2(0.0117

2−2.2375
2 −0.00218

2−2.2375
2 )

240500(2−2.2375)1.43×10−10

2.2375

1.245√𝜋
= 74.71𝑀𝑃𝑎 

Where the determined values for C and m are used, N is the fatigue life from Figure 

40 for Beam 4, the initial crack length measured in Beam 4 is used for ai, and F is the 

average value between ai and ac. This value is slightly lower than the measured stress 

range for that specimen which was 92.07 MPa. This suggests if the repair does 

produce a stress range in the steel reinforcement close to 74.71 MPa the fatigue life 

will be higher than what was found experimentally.  

FRP Repair Design: 

3) Section analysis of the Beam 4 solving for the ratio of depth of the neutral axis to 

reinforcement depth measured from the extreme compression fiber. 

 0 = 𝑏 ∗
𝑘𝑑2

2
− 𝑛𝑠𝐴𝑠(𝑑 − 𝑘𝑑) − 𝑛𝑓𝐴𝑓(𝑑𝑓 − 𝑘𝑑) → 𝑘𝑑 = 0.10138 𝑚  

Where the modular ratios, area of reinforcements, and depths to the reinforcements 

are the same as those used in Beam 4. 

4)  The service load stress in the steel reinforcement was calculated using Equation 10-

14 from ACI 440.2 The stress at the lower load level (40kN) was:                            

𝜎𝑚𝑖𝑛 =
[𝑀𝐷+𝜀𝑏𝑖𝐴𝑓𝐸𝑓(𝑑𝑓−

𝑘𝑑

3
)](𝑑−𝑘𝑑)𝐸𝑠

𝐴𝑠𝐸𝑠(𝑑−
𝑘𝑑

3
)(𝑑−𝑘𝑑)+𝐴𝑓𝐸𝑓(𝑑𝑓−

𝑘𝑑

3
)(𝑑𝑓−𝑘𝑑)

=

[28.8+0×0.000194×82047(0.34976−
0.10183

3
)](0.34925−0.10183)200000

0.000852×200000(0.34925−
0.10183

3
)(0.34925−0.10183)+0.000194×82047(0.34976−

0.10183

3
)(0.34976−0.10183)

 

= 98.067 𝑀𝑃𝑎 
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Where the strain in the concrete soffit is zero because the beams were not loaded 

prior to repair, and the dead load moment is from the lower level applied load and not 

just the self-weight of the beam.  

5) The stress due to dead plus live load, 100kN, σmax is calculated the same way, just 

with the dead plus live load moment. The calculated value is 226.509  MPa 

6) The critical crack length from the Fatigue Evaluation side of the flowchart is then 

recalculated with the new max stress, which gave a value of 0.0142 m.  

7) ∆σneeded is revaluated with the new critical crack length and found to be 78.10 MPa, 

which is still below the experimentally measured value, but by a lesser amount.  

8) The stress range provided by the FRP repair, ∆σprovided = σmax - σmin, was found to be 

128.44 MPa. This is much higher than the needed value but also higher than the 

measured value. 

9) 𝑁𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 =
2(𝑎𝑐

2−𝑚
2 −𝑎𝑖

2−𝑚
2 )

(2−𝑚)𝐶(𝐹∆𝜎𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑√𝜋)
𝑚 =

2(0.0025
2−2.2375

2 −0.0024
2−2.2375

2 )

(2−2.2375)1.43×10−10(0.72543×128.44√𝜋)
2.2375 =

6055.5 𝑐𝑦𝑐𝑙𝑒𝑠 

The number of cycles to unstable crack growth using the ∆σprovided was calculated for 

the growth of the fatigue crack from 0.0024m to 0.0025m. Applying the same process 

for 0.0001m increments from the initial crack length to the critical crack length and 

summing the results together the total number of cycles to propagate the crack from 

can be found to be 145377.   

These findings suggest the Paris Law can reasonably predict the fatigue life extension 

and needed stress range in the rebar for a FRP repaired RC girder, however the presented 

equation from ACI 440.2 (Equation 13) shown in step 4) for determining the stress range in the 

rebar provided by a FRP repair produced values much higher (larger stress range) than what has 
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been shown to take place. Therefore, further investigation into not only better determination of 

the Paris Law material constants, but also equations which can better predict the stresses in the 

steel reinforcement of RC girders with externally bonded FRP repairs is needed.  

5.2 Future Work 

The findings of the current study for fatigue life prediction and fatigue limit state design of 

FRP repaired RC flexural members emphasizes the need for continued research on this topic. 

Some of the most pressing needs requiring further study include:  

 Evaluation of the recommended design flowchart against the results of other studies to 

determine any potential limitations of its applicability 

 Determination of equations which can better estimate the steel reinforcement stress range 

in RC flexural members repaired with FRP 

 Investigation into more accurate methods of measuring the fatigue crack length and 

growth rate, so to achieve a more accurate determination of the Paris Law constants for 

steel reinforcing bars 

 The presence of environmental conditions (corrosion, embedded in concrete) of the 

reinforcing steel potentially altering the fracture toughness and Paris Law constants.  

 Determining statistical variations in the Paris Law constants for different rebars types, 

repair systems, and environmental conditions to determine if a single value can be used 

for each coefficient. 

 Adjusting the recommended flowchart to include prestressed externally bonded CFRP 
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5.3 Summary 

The current study used a unique experimental test to directly measure the fatigue crack 

propagation rates in the tensile steel reinforcement of full scale RC beams with and without 

CFRP repairs. The results of the tests were then used to determine the material constants in the 

Pairs Law equation. Use of the Paris Law equation along with equations from ACI 440.2 allowed 

for the development of a design process with which an engineer can design a FRP repair 

extending the fatigue life of the strengthened RC flexural member by ensuring the fatigue crack 

will never reach its critical value within the design life. This design philosophy is unlike those of 

current design provisions which recommend an overly conservative design which prohibits any 

fatigue crack growth. Additional significant findings / unique characteristics of the study include: 

 The application of both CFRP systems lowered the stress range in the tensile 

reinforcement. Specifically Beams 6 and 7 which were strengthened with the Tyfo UC 

strips achieved the lowest stress range with Beams 4 and 5 strengthened with the Tyfo 

SCH-41 sheets producing just a slightly higher stress range. The lowered stress ranges in 

all repaired beams produced extended fatigue lives in these beams over the unrepaired 

specimens.  

 A visual method of inspection for fatigue crack growth in the tensile steel reinforcing 

bars of RC beams, despite affecting the structural performance of the beam to a minor 

degree, generated accurate crack growth rate results producing Paris Law material 

constant values fairly close to well-accepted values. Variation in theses coefficient values 

from published values may have occurred due to the visual method not being able to give 

the absolute crack length value as the forefront of the crack was at the center of the bar 

and the measured crack length was slightly shorter due to the curvature of the crack front. 
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 The use of the Paris Law equation with well-established constant values, on average, 

vastly underestimated (12.6% of actual) the stable crack growth fatigue life of an RC 

flexural member strengthened with FRP in this study; however the use of experimentally 

determined material constant values (m=2.24 and C = 1.435E-10), on average, increased 

the accuracy, but produced an overestimation (163% of actual) of the fatigue life.  

 Calculations using section analysis and equations from ACI 440.2 showed a difference in 

the fatigue life in beams that are strengthened to the same level yet using different CFRP 

strengthening systems, suggesting a difference between repairing a RC flexural member 

for strength and for fatigue. However, experimental results were inconclusive in support 

of this hypothesis, with one of the Tyfo UC strip strengthened beams, which should have 

had a longer fatigue life, in fact fatiguing faster than the two Tyfo SCH-41 sheet 

strengthened beams. 

 A design flowchart based on a fatigue limit state was established using the Paris Law and 

already developed equations for strength design of FRP repairs. On average, the predicted 

stable crack growth fatigue life using  this flowchart was 92% of the actual fatigue life 

determined from the experimental study, suggesting it reasonably captures the fatigue 

crack growth and can be potentially be used in the future.   
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